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Preface 

It has been our great pleasure and honor to organize the Thirty-Third Annual Conference of the 

Psychology of Mathematics Education North American Chapter in Reno, Nevada. We have a 

great selection of speakers and papers included in these proceedings that include researchers 

from Canada, the United States, and Mexico. In addition, several researchers from countries in 

other parts of the world, such as Turkey, England, and Australia, will present their work at the 

conference. 

 

This year’s conference theme is “Transformative Mathematics Teaching and Learning.” The 

plenary speakers were chosen to address this theme. Research should not only address issues in 

mathematics education; it should also help us transform mathematics teaching and learning.  

Plenary speakers include Megan Franke from the University of California-Los Angeles with 

Discussant James Middleton from Arizona State University, David Reid from Acadia 

University in Nova Scotia with Discussant Carolyn Maher from Rutgers University, and Marty 

Simon from New York University with Discussant Douglas Clements from the University of 

Buffalo.  

 

We would like to thank all authors for contributing papers, as well as the reviewers for taking the 

time to carefully read the proposals and provide constructive feedback and professional 

opinions. We would also the University of Nevada, Reno faculty and graduate students, as well 

as Extended Studies at the University of Nevada, Reno (Shera Alberti-Annuzio, Sheehan 

Niethold, and Martin Morales), who assisted in conference preparations. Finally, we would 

like to thank the University of Nevada, Reno for hosting this year’s conference. 

 
Teruni Lamberg                                Lynda Wiest 
PME-NA Conference Chair 2011                  PME-NA Conference Co-Chair 2011 
PME-NA Chair 2011-2012                                               
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In-depth analyses of six elementary mathematics classrooms (with varying student achievement) 
captured student and teacher interactions and documented the critical role of teacher follow-up 
in shaping opportunities for low-income students of color to engage in algebraic 
reasoning.  This paper details the efforts of teachers as they, contrary to existing school 
practices, found ways to support student engagement around explanations.  Examining the 
variation in teacher follow-up that existed across classrooms illuminated how one high-
achieving classroom teacher’s use of follow-up communicated a set of high expectations around 
mathematical work for students and supported them to wrestle productively with the 
mathematics. 
 

Across a number of studies, Cognitively Guided Instruction (CGI) research documents the 
relationship between teachers’ knowledge of student thinking and student mathematical 
achievement.  We have found that teachers draw upon their knowledge of students’ mathematical 
thinking as they pose problems, encourage the use of a range of strategies, and support students 
to share their ideas.  We also have evidence of variability in the ways teachers engage in these 
practices, and we are interested in how that variability relates to student outcomes. We believe 
that knowing more about the details of teachers’ classroom practice within the context of student 
outcomes can help both to elaborate Hiebert and Grouws’ (2007) argument for allowing students 
to “wrestle” with the mathematics and to address our concern of the kinds of opportunities 
provided for marginalized students.   

Efforts to detail the aspects of teachers’ mathematical classroom practice that support the 
development of mathematical proficiency are not new (see Franke, Kazemi & Battey, 2007; 
Lampert, 2001; Stein, Engle, Smith & Hughes, 2008; Wood, 1998).  For example, researchers 
have studied how posing rich mathematical tasks, allowing students to solve problems in 
different ways, and encouraging students to share their strategies may foster learning (Franke, 
Kazemi & Battey, 2007; Hiebert & Grouws, 2007) or how teachers might orchestrate sharing of 
student explanations and use students’ explanations to highlight a mathematical goal (Lampert, 
2001; Forman & Ansell, 2002; Forman, Larreamendy-Joerns, Stein & Brown, 1998).  And while 
evidence shows these practices are not likely in many classrooms, they are even less likely in 
classrooms of low-income students of color (Anyon, 1981, Ladson-Billings, 1997; Lubienski, 
2002; Means & Knapp, 1991).   Our project builds on these studies and focuses particularly on 
tying the classroom practices of teachers working to make use of students’ mathematical 
thinking to student outcomes.     
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Teacher Practice and Student Learning 
This study was a follow-up to a larger experimental study that found teachers who had 

participated in one year of CGI algebraic thinking professional development knew more about 
students’ algebraic thinking and the students in their classroom performed better on algebraic 
reasoning assessment items than a comparison group (Jacobs, et al., 2007).  Yet, even within the 
CGI professional development group, variability existed; thus we wanted to understand what 
teachers were doing in classrooms with higher student achievement to support student learning 
that may not have been occurring in the classrooms of teachers in the same professional 
development but with lower achievement outcomes.  The teachers of this project were second or 
third grade teachers with student achievement on our algebraic thinking measure that was 
consistently high, low, or on average fell to the middle range.  We then observed in these 
classrooms while the teachers were engaged in working on relational thinking, doing so in a way 
that captured the teacher’s interactions with students in whole class settings, as well as all of the 
talk of twelve randomly selected target students (see Webb et al., 2008, 2009 for details). 

The schools participating in this study served predominately low-income students of color 
and are considered some of the lowest performing in the state (99% Latino and African-
American students combined in each school, over 98% students receiving free or reduced lunch, 
49-64% English Language Learners, and scored 1-3 out of 10 on California’s Academic 
Performance Index).  The district was expected to: use curricula that focused on developing 
skills over conceptual understanding, “drill” rather than engage in mathematical conversation, 
and target the students “on the bubble” of proficiency to raise test scores.  However, this 
characterization of the schools only reflects one aspect of the district.  At the time of this work, 
the local district leadership was working with the schools to meet a new vision for developing 
mathematical understanding, showing what students were capable of, and creating school 
learning communities.  The schools involved in the project had been working hard to meet the 
needs of students in a variety of ways. The elementary school principals all wanted to participate 
in our work, seeing algebraic thinking as critical to their students’ success and believing that it 
was appropriate content to take on.   

We engaged schools in site-based professional development focused on relational thinking1, 
providing professional development first for one group of schools and the following year for a 
comparison group.  Our experimental study showed that the students in both the algebraic 
thinking group and the comparison group thought relationally and were able to solve a range of 
algebraic thinking problems.  While not all students in the schools understood mathematics in 
ways we would hope, this study showed that students across the district were capable of 
engaging in algebraic thinking and the schools were willing to support students in doing so. 

Understanding that working on algebraic thinking in the ways we suggested through 
professional development was contrary to many existing practices, we conducted this follow-up 
study of six classrooms to understand in detail exactly how teachers were finding space to create 
opportunities for students to engage in algebraic reasoning.  
 

Classroom Practice 
Our observations of these six classrooms found that on the surface they looked much like 

what we would expect in a CGI classroom.  The teachers posed problems that often encouraged 
more than one strategy, asked students (98% of the time) how they solved the problem, and 
asked for elaboration of student thinking (76% of the time).  These practices are not what we 
would expect more typically in elementary classrooms, and we would argue that these practices 
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are important for creating opportunities for students to engage in wrestling with the mathematics.   
These practices alone, however, did not lead to productive student outcomes for all students in 
these classrooms (See Table 1), suggesting that closer examination of the ways in which teachers 
engaged students and content was needed to understand opportunities for student learning. 
 
Table 1.  Mean student achievementa across classrooms 
 

 Group 3 
(low-achieving 

classrooms) 

 Group 2 
(medium-
achieving 
classroom) 

 Group 1 
(high-achieving 

classrooms) 

 Guo Collins  Gomez  Lane Lee Theissen 

Mean 

 (SD) 

18 

(30) 

27 

(35) 

 50 

(46) 

 60 

(46) 

75 

(35) 

88 

(25) 
 
aPercent of algebraic reasoning posttest problems correct. 
Note: Differences across classrooms:  F(5,68) = 5.91, p<.001. 
 
Problems Posed 

Looking more closely at the problems teachers posed – taking into account that they were all 
working on common CGI algebraic reasoning content of relational thinking – we did find that 
there were differences in the problems posed.  If we focus on one teacher from each of the 
achievement groups—Ms. Guo, Ms. Gomez, and Ms. Lee—we can examine closely how the 
problems posed were the same and different.  Ms. Guo posed the most mathematically powerful 
sequence of problems that built toward a relational understanding of the equal sign.  The 
majority of Ms. Lee’s problems were drawn from ones the students had written.  She chose 
problems that provided opportunities to use relational thinking, but without a particular sequence 
except when she added a problem to build from student responses.  Ms. Gomez’s problems often 
did not lend themselves to using relational thinking, as they focused mainly on multi-digit 
computation.  An examination of the problems teachers posed across classroom observations is 
one approach to understanding opportunities for student mathematical learning.  Yet, the teacher 
with the “best” problem sequence had the lowest achieving students, suggesting that while the 
tasks differed in the mathematical opportunities provided for students, they alone did not 
determine student outcomes.   
 

Student explanations. As we looked further at what was occurring for students in these 
classrooms, we focused on the explanations students provided to the problems posed.  We 
tracked student answers and explanations, given both to other students and to the teacher, within 
the whole-class setting and in small-group or pair-share settings.  Students were participating in 
giving explanations in each classroom and for a high percentage of problems.  (see Table 2).   
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Table 2.  Overall level of student participation   
 

 Group 3 Group 
2 

Group 1 

 Collins Guo Gomez Lee Lane Theissen 
Percent of target students who  
ever gave an explanation or 
answer  

85 100 100 100 87 83 

Percent of problems in which 
students gave explanations 

64 80 88 100 86 70 

 
 
It was not just the giving of explanations that differentiated classrooms, but rather the kinds of 
explanations that were given.  The degree to which the explanations were complete and accurate 
varied across classrooms (see Table 3).   
 
Table 3.  Work contributed by students during the whole class: Percent of classwork problems 
with student contributions of each type 
 

 Group 3  Group 2  Group 1 

 Collins Guo  Gomez  Lee Lane Theissen 

Correct/complete 
explanations  

55 40  88  100 86 70 

Incorrect/incomplete 
explanations only  

9 40  0  0 0 0 

Correct answer but no 
explanation 

36 20  13  0 14 30 

Incorrect answer but  
no correct answer or 
explanation 

0 0  0  0 0 0 

Note:  Numbers in a column do not always sum to 100, due to rounding. 
 
We found that students who gave complete, correct explanations scored better on the student 
achievement measures designed to measure algebraic thinking (see Table 4).   We have 
examined this finding in a number of ways and each time we find the same pattern: it is not the 
mere act of explaining that is related to positive student achievement, but rather the giving of 
correct and complete explanations. 
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Table 4. Correlations between Student Participation and Achievement Scores 
Highest level of student participation on a problema  Achievement 

Scoreb 
Gives explanation .52*** 

Correct and complete .59*** 
Ambiguous, incomplete, or incorrect           -.01 

Gives no explanation           -.41*** 
aPercent of problems in which a student displayed this behavior.  Problems discussed during 
pair-share and whole-class interaction are included.  bPercent of problems correct. (n=74) 
 

There are two critical points to be made here.  First, “correct and complete” is not simply 
about making an explanation that gets to an end.  Correct and complete explanations are about 
students articulating the steps in their solution in a way that details the mathematical 
relationships.  In explaining a solution to 24 + 19 = 25 + ___,  rather than saying the answer has 
to be 18 “because of the 24 and 25”, the student would say (or point to) “24 is one less than 25 so 
whatever you add to 25 has to be one less than 19”.  The latter articulation makes explicit the 
particular relationship between the 24 and 25 and thus the 19 and the unknown.  In complete 
explanations students are articulating in a way that as one listens and watches they can tell 
exactly what the student did to solve the problem.  Second, as this is correlational data one might 
argue that students in Ms. Lee’s class simply knew the math better and that is why their 
explanations are complete and correct.  While we have no data that supports that these students 
came in knowing more, it is a possibility.  What makes it less likely as an argument is that as we 
examined what teachers did to support students to make correct and complete explanations we 
found clear differences within and across classrooms.  As the data we share will show, when 
teachers followed up in particular ways, it was more likely that students would produce correct 
and complete explanations.  

Engagement around Explanations 
Teacher Follow-Up 

As we continued our examination of classroom practice across classrooms with a range of 
student achievement, we looked closely at the interactions among students and teachers as 
students gave explanations.  We wanted to know how teachers were supporting students to give 
complete and correct explanations.  We focused specifically on teacher follow-up that resulted in 
the articulation of more student thinking, whether their initial explanations were complete, 
incomplete, or ambiguous. The teachers with the highest achieving students followed up in ways 
that led to more explanation being given by the student (see Table 5).   
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Table 5.  Experiences of target students when engaging with the teacher around their 
contribution during the whole class: Percent of target students who experienced each type of 
student participation 
 

 Group 3 Group 
2 

Group 1 

 Collins Guo Gomez Min Lane Theissen 
More student thinking was provided  
beyond the initial explanationa,  
engagement ended with a  
correct/complete explanation 

8 18 17 92 60 83 
 

 
More student thinking was provided  
beyond the initial explanationa, but  
the engagement never led to a  
correct/complete explanation 

      0 45 17 0 0 0 

No more student thinking was 
provided beyond initially 
correct/complete explanation 
 

31 55 25 8 33 8 

No more student thinking was 
provided beyond initially 
incorrect/incomplete/ ambiguous 
explanation 

15 64 0 8 0 0 

No more student thinking was 
provided beyond the student’s correct 
answer 

69 27 9 23 60 17 

No more student thinking was 
provided beyond the student’s 
incorrect answer 

46 36 0 8 7 0 

 
aIn most cases, the target students themselves provided the additional thinking; in a few cases, 
another student in the class provided the additional thinking. 
 
Looking closely at the follow-up, we expected to see that the teachers supporting more complete 
and correct explanations would be using particular approaches to do so – more probing 
questions, revoicing, providing tools, and so on.  We did not find this to be true.  All of the 
teachers drew upon a repertoire of follow-up moves.  It was how they used these moves in 
relation to the students and the mathematics that seems to support students to provide more 
explanation, take an incorrect explanation to correct, or an explanation from incomplete to 
complete.   

Returning to our one focus teacher per group, Ms. Guo, Ms. Gomez and Ms. Lee, we found 
that not only did they draw upon a repertoire of follow-up moves, but that the substance of their 
follow up was quite different.  We examined these interactions in detail to gain insight into the 
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different experiences students had as they solved problems and gave explanations (Franke et al, 
2009).   

Ms. Guo, the teacher with the lowest achieving students, posed productive problems, asked 
students how they solved the problems, and while she followed up on student thinking less often 
than the other teachers, she did follow up.  For 45 percent of her students, however, her follow 
up did not lead to more explanation.  Often this was due to her not pressing the student idea and 
posing a new problem or to confusion about what she was asking.  

 
Problem: a= a; True or False? 

Marcus: It’s true, true true. 
Lindsay: It’s a letter.  It’s an alphabet letter. It’s true because A is the same as A. 
Marcus: It’s true for everything. 
Ms. Guo: You guys think that this one is true? 
Marcus: Yes. 
Lindsay: Yes. Because A and A is the same letters. 
Ms. Guo: So they are the same letters, so that makes it true? 
Lindsay and Marcus: Yeah. 
Ms. Guo: We’ll check it out. 
Marcus: Everything is true, huh? 

 
Here Ms. Guo followed up on Marcus and Lindsay’s thinking and even asked a question that was 
specific to what students had said.  However, she did not press either of the students to articulate 
what they mean by “A is the same letter as A” and then what that means for the problem they 
were solving. We do not learn more about either Lindsay or Marcus’ thinking as they engaged 
with Ms. Guo.    

In addition, Ms. Guo often followed up but rather than press the student, she revoiced or 
posed a new problem for the students to consider.  In the next example Ms. Guo posed 100 + ☐ 
= 100 + 50 as a follow-up to a previous unresolved discussion.  The class had begun to refer to 
this idea as “partners”, that is, 50 is “partnered” with the other 50.  Here Fernando used his 
notion of needing the same numbers on both sides to argue that 50 goes in the box.  
 
Problem:  100+ ___ = 100 + 50 

Ms. Guo:  Ok. One hundred plus box over here is the same as…one hundred plus 
fifty. What would go inside that box now and why?  Fernando? 

Fernando:  One hundred…no, the fifty will go right there because it has to be the 
same number. 

Ms. Guo:  What has to be the same number? 
Fernando:  One hundred fifty and the other side has to be one hundred fifty too 

(unclear whether Fernando is saying 150 or 100 and 50). 
Ms. Guo:  Ok, so you are adding these together. You said this side has to be (bell 

rings) one hundred fifty? 
Fernando:  No. 
Ms. Guo:  Oh, what were you saying? 
Fernando:  That they have to be those because… ‘cause it has to have the same 

numbers. 
Ms. Guo:  It has to have the same numbers. Ok. 
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Fernando:  Fifty, fifty, and one hundred. 
Ms. Guo:  Ok, this side has a fifty and this side has a fifty. Ok. I see that relation 

going across. But what if I did this though? What if I did this? If I 
called…I did one hundred and I called box, B for box. And if I did one 
hundred plus (writes: 100 + B = 100 + 75)…what would B have to be?  

 
It was never clear if Fernando was considering numbers on each side as equivalent quantities 
across the equal sign or matching to find the same number in the number sentence.  Ms. Guo 
followed up by posing another problem, but not one that would necessarily clarify the 
mathematical issue of “partners”.  This issue came up a number of times as the lesson 
progressed, causing difficulty as students began to match numbers regardless of the position in 
the number sentence (such as a + a = b + b being always true because “the a’s have partners”).  
The issue is never resolved.   

Ms. Gomez, whose problems were often focused on a computational solution and not related 
to the algebraic thinking, followed up about half of the time and half of that follow-up led to 
more explanation.  Ms. Gomez asked follow-up questions directed at the mathematics, but she 
did so to help the student through the solution that they could not complete.  So the follow-up, 
while framed as a question, was structured to help the student see the next step rather than to 
elicit more student thinking.  Here Ms. Gomez stopped in while Miguel and Maricela were 
working on the problem.  
 
Problem: 14 ÷ 2 = 3 x __ + 1 

Miguel:  Three times… 
Ms. Gomez:  You are working on number one right? 
Miguel:  Three times one… 
Ms. Gomez:  Ok, but you are working on number one… So remember, we always ask 

ourselves, which of the two sides is complete.  The left side or the right 
side? 

Miguel:   Left side. (pointing on paper with pencil) 
Ms. Gomez:  Ok, so can you solve the one that’s complete?  (Miguel nods) So, do you 

think that’s a good idea if you solve that first? (Miguel nods) Ok.  (Miguel 
looks up at teacher)  So what does that tell you? 

Miguel:   That fourteen divided by two equals, is the same as seven? 
Ms. Gomez:  Ok, very well read.  Now so, if this side equals seven, what does this 

side… Oh my, you’ve already solved it.   
 
Ms. Gomez wanted to help Miguel with an approach that starts with solving one side of the 
equation and then using that to help you figure out the other side.  This is an example of a 
problem Ms. Gomez posed that does not readily lend itself to relational thinking, so her approach 
of solving one side may be best.  She did not, however, ask Miguel how he was thinking about 
the problem nor did she ask him to think about the whole problem, what it is asking and what he 
knows in relation to what it is asking.  If Ms. Gomez’s approach made sense to you as a student, 
it could be very helpful; if not you could be lost.  Ms. Gomez did not leave incorrect strategies 
unaddressed, yet she often did not ask any additional questions when a correct and complete 
explanation was given.  
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Ms. Lee, who chose productive relational thinking problems from those her students had 
written, regularly followed up on students’ explanations and regularly supported students to 
provide additional explanation.  She followed up on the mathematical ideas embedded in the 
student explanations and could always find something productive in what the student had 
offered, using it to ask a follow up question.  Her questions took into account both the 
mathematics and the student’s thinking.  Ms. Lee had posed the problem, 11 + 2 = 10 + __.  
During the whole-class share she followed up on Andrew’s explanation by asking him a 
clarification question and then specific to his explanation as well as the mathematics. 
  
Problem: 11 + 2 = 10 + __ 

Andrew:   I put eleven here, put a two right here, then I plussed it, and it was thirteen.  
I put take away… take away (holds fingers up).  I wrote thirteen right 
here. I put right here a caret and put thirteen.  I put here a thirteen. Three, 
thirteen take away, take away ten and then I minus, I minus (counting on 
fingers)… ten.  And then (inaudible). 

Ms. Lee:   Wow. Okay. This is really interesting. Okay, let's look at this. Does 
everybody understand how you got eleven plus two equals thirteen? 

Students:   Yeah. 
Ms. Lee:   Okay. Why did you minus ten? And where did you get that ten from? 
Andrew:   Cause on the three I added first… I went three, four, five, six, seven, eight, 

nine, ten, eleven, twelve, thirteen (inaudible). 
Ms. Lee:   Okay, is there anywhere else in the problem that has a ten? 
Andrew:   Yes here (points to the 10 to the right of the equal sign). 
Ms. Lee:   There.  Okay, does anyone see that connection? 
 

As she followed up with Andrew, she asked a question particular to his explanation and to the 
mathematics within the problem that has the potential of encouraging him to think relationally. 
She also worked to connect their interaction to the whole class.   

Ms. Lee also, more than any other teacher, asked extension questions about the mathematical 
properties.  In sharing his strategy D’ante stated that he knew when he took zero from 30 it 
would still be 30.  Ms. Lee followed up on this particular idea. 
 

D’ante:   Because thirty take away zero is still thirty. 
Ms. Lee:    Okay, is that true? Is that true that thirty take away zero is still thirty? 
Students:   Yes. (a small number of students) 
Ms. Lee:   How do you know that's true? 
Student:   When you have thirty and you don’t take away nothing, so it's still thirty. 
Ms. Lee:   Can you say it louder so everyone can hear you? 
Student:  Because you have thirty fingers and you don't take away nothing so it's still 

thirty. 
Jennifer:  (loudly, to herself) ‘Cause you don’t take away nothing.  You have nothing 

to take away. 
Ms. Lee:   Is that always true? 
 

This conversation continued for over five minutes and then Ms. Lee took it back to the problem 
at hand, connecting to why it would help you to use this idea.  This type of follow-up was typical 
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in her classroom.  Following up on the students’ ideas, while following up on a relevant math 
idea, and pushing beyond the solution given occurred in the highest achieving classes.   

Another way to consider the follow up that occurred in Ms. Lee’s class is to think about the 
way that her follow-up sets up expectations for students and the effect this has on opportunities 
for mathematics learning. In their studies of teachers of African American students, Clark and his 
colleagues (2009) found that teacher expectations stood out as a major factor in shaping the 
mathematics learning of students.  Battey and Stark (2009) showed how deficit beliefs created 
impoverished mathematical practices for Latino and African American students.  Ms. Lee’s 
actions reflect her belief that students are capable of high-level mathematical work and thus 
expected to participate as such.  Ms. Lee demonstrated follow-up (in ways similar to what 
Kazemi and Stipek (2001) term “press”) to each students’ ideas in a way that communicated 
these high expectations.  Ms. Lee did not shy from addressing the mathematical properties or 
working with variables with her second and third graders.  She had the students write the 
problems they solve together.  She asked follow-up questions to everyone (each student shared 
an explanation at some point across two class sessions), questions that pushed them to articulate 
their mathematical ideas but in a way that was connected to their own ideas.  Ms. Lee found 
something positive –mathematically—in what each student shared and used it to move the 
group’s mathematical work forward.  A growing literature suggests that this focus on what 
students can do, positioning students competently, matters and matters often for the lowest 
achieving students (Battey (under review); Boaler & Greeno, 2000; Boaler, 2003; Empson, 
2003).  In addition, she expected and supported students to do this with each other.  This is not 
only about holding high expectations; it is a set of actions that communicate those expectations. 
 
Student Follow-Up 

We are finding that students do the same types of follow-up that their teachers do when they 
are in small groups or pairs together.  In Ms. Guo’s class the students in pair share frequently 
discussed ideas for solving the problem, but they did not complete the solutions nor did they 
work to make sense of each other’s ideas.  The goal seemed to be to get ideas out on the table, 
much like Ms. Guo did, with little to no follow-up to further detail these ideas or move them 
toward completion.  Ms. Gomez’s follow-up in both pair-share and whole-class discussions 
communicated an expectation of completing the problem, often with a particular procedure that 
the class had been working on.  Rarely were there interchanges among students that moved 
beyond working through a procedure to involve probing of explanations.  Students in Ms. Lee’s 
class exhibited further probing of each others’ ideas as they shared explanations and worked 
toward finding more than one way to approach the problem. The ways in which students engaged 
with each other in pair share reflected the kinds of opportunities created as Ms. Guo and Ms. 
Gomez engaged students.  

As we further examined the interactions in Ms. Lee’s class, however, we recognized that 
there were other potentially productive outcomes occurring through these interactions beyond the 
sharing of explanations.  Students were learning a way of participating in mathematics that 
included: sharing their ideas to a greater degree of detail, listening and engaging with someone 
else’s ideas, asking mathematical questions based on another’s strategy, understanding someone 
else’s ideas in relation to their own, and so on.  The following interchange demonstrates both 
how students follow up like their teacher (Ms. Lee) and how they are learning a range of things 
beyond how to correctly solve a mathematics problem.   

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

10



 

In this example Ana and Michael were working during pair share on a problem posed to their 
class:  8 + 8 = 15 + ☐.   Michael thought the answer to the problem was 15 (likely due to a 
similar “partner” misunderstanding as in Ms. Guo’s class).  Ana, who knew the answer was one, 
worked to get Michael to see that he was not thinking about it correctly.  
 

Problem: 8 + 8 = 15 + ☐ 
Ana:   It's not... it's not... it's not fifteen, because eight plus... I'll explain it back to 

you so you can understand that it's one. Because eight plus eight sixteen… 
Michael:  I already tried two times.                                      
Ana:  Huh? 
Michael:  I already tried two times. 
Ana:   It's not... it's not fifteen, because eight plus eight is sixteen. So this one has 

to... has to equal sixteen—“the same”. 
Michael:   (pause) The equal sign means “the same” and there's eight (trails off)... 
Ana:  But it, the equal sign means that “the same answer”… It has to be the same 

answer.  Like if... if I put... (pause) I could switch it: fifteen plus one is the 
same as eight plus eight. 

Michael:  OH! I know what you're talking about. 
Ana:  It's just gonna be sixteen. 
Michael:   So it's worth sixteen right here (gestures to one side of paper) and sixteen 

right here (gestures to the other side). Ohhh! 
 
Ana’s first move to challenge Michael’s incorrect idea was to explain that the expressions on 
both sides had to equal sixteen, but that explanation did not make sense to him.  She emphasized 
the language “the same.”  Michael agreed with the idea of “the same”, but this did not resolve his 
incorrect answer.  Ana persisted.  She added that it was not only “the same” but it was “the same 
answer.”  As that explanation did not convince Michael, she made yet another attempt to get her 
point across: she flipped the number sentence around to say “fifteen plus one is the same as eight 
plus eight.”  It was this specific move that helped Michael understand the quantity sixteen on 
both sides of the equal sign, moving him away from his incorrect answer of fifteen. 
 Ana helps Michael with a way to think about the solution that made sense to him.  You can 
see him gesture in a way that shows you can move the 15 + 1 together and the 8 + 8 together and 
they are the same because they are both just 16.  This interchange exemplifies the impressive 
caliber of mathematical discourse that occurred in Ms. Lee’s classroom.  Ana explains; Michael 
listens and works to make sense.  Ana listens to Michael and tries a different approach she thinks 
might be more successful.  Ana finally makes a mathematically powerful move that helps 
Michael make a connection about the quantities on both sides of the equal sign.  There is a sense 
in watching this interchange that Ana is confident that she can communicate with Michael, and 
she has the skills and tools to do so.  The types of interactions in this exchange occurred in other 
pairshare episodes in Ms. Lee’s class.  It is though an interchange that contrasts significantly 
those in Ms. Gomez’s and Ms. Guo’s classrooms. 
 

Summary 
Freund (2011) found in examining the aspects of mathematical proficiency developed within 

theses classrooms that developing the types of classroom norms seen in the higher achieving 
classrooms was not a matter of simply telling kids to work with each other or explain their 
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thinking (all of the teachers did this).   It was a combination of norms statements as well as 
communication of expectations through interaction that determined what constituted engagement 
around a mathematical explanation (Cobb et al, 2001). We can see through the work shared here 
and Freund’s study that teachers and students together are developing a set of norms that shape 
participation in ways that allow students to make complete and correct explanations and create a 
culture of what it means to do mathematics together.  
 Ms. Guo, Ms. Gomez, and Ms. Lee serve as exemplars of what occurred across the six 
classrooms with differing student outcomes.  Each of these teachers engaged their students in 
mathematics that countered the prevailing district culture.  Each of these teachers was working to 
reach each of their students and engage them in developing an understanding of algebraic ideas 
often not addressed in second and third grade and certainly not addressed in the lowest 
performing schools at these grade levels.  Each of these teachers carried out practices that 
research would contend are productive for developing mathematical understanding.  What these 
three cases do is help us understand the nuance of Ms. Lee’s interaction with her students and 
how that is related to student outcomes.  Ms. Lee through her follow-up interactions connected 
with students’ mathematical ideas and pressed students to detail their ideas for themselves and 
the class.  She expected her students to participate in high-level mathematics and worked with 
them so they would know how. 
 

Conclusions 
In understanding the classroom practices that support student achievement in mathematics 

the data from this project suggest that posing productive mathematics problems while necessary, 
is not sufficient.  Asking students the initial “how did you solve that” is necessary, but not 
sufficient.  Following up on the students’ explanation is necessary, but not sufficient.  The way 
one follows up matters.  It matters that the follow up presses students to provide more 
explanation and the explanation gets to something that is complete and correct.  It matters that 
the follow-up is connected to what the student has articulated or shown as well as to the 
mathematical ideas being addressed in the lesson.  It matters that, as the teachers are following 
up, they are supporting students to learn a way of engaging with the mathematics and creating a 
culture of doing mathematics that signals that wrestling with the mathematics means asking each 
other questions, considering others’ ideas, and connecting mathematical ideas.  It matters that 
teacher and student interactions create a set of expectations and a way of positioning students 
that make explicit that each child brings mathematical knowledge to the interactions and can 
engage in challenging mathematical work.  It matters that the interactions highlight persistence, 
detailing thinking, listening, questioning, as well as the process of getting stuck and unstuck.  We 
would argue that this type of work constitutes creating opportunities to “work and wrestle” with 
the mathematics in ways that set expectations through action for each of her students. 

 
Endnote 

1. Relational Thinking involves children’s use of fundamental properties of operations and 
equality to analyze a problem in the context of a goal structure and then to simplify progress 
towards this goal. (Carpenter, Franke, & Levi, 2003; Empson, Levi, & Carpenter, 2011) 
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This article reviews some key ideas about the nature of proof, kinds of proofs, and the way of 
reasoning called proving. This provides background for a discussion of the teaching of proof, in 
which some important aspects of teaching that support students’ proving are described, and the 
ideas of a tool-box of accepted premises and local organization of knowledge are explored as 
ways to structure teaching. Finally, lessons learned from approaches to teaching proof and 
problem solving in the past are connected with the earlier discussions of understanding and 
teaching proof to suggest a transformation of proof teaching into proof based teaching, in which 
proof is a process of coming to understanding rather than a topic to be taught and learned. 

The Reasoning and Proof Standard (National Council of Teachers of Mathematics [NCTM], 
2000) advocates that all students should recognize proof as fundamental to mathematics, should 
read and write mathematical proofs, and should reason in various ways, including the way called 
proving. In this article I will consider what these goals might mean, and how they might be 
achieved. I will begin by considering the nature of proof and four ways in which it is 
fundamental to mathematics: as a means to verify, explain, discover and belong. I will give some 
examples of proofs and compare their formats and functions. And I will examine the types of 
reasoning involved in conjecturing and proving. This will provide the background for a 
consideration of the teaching of proof. I will describe aspects of teaching that seem to create a 
good context for proving in school, and two ideas, a tool-box of accepted premises and local 
organization of knowledge, that have potential as ways to structure teaching. Finally, I will bring 
together my discussions of the nature of proof, proofs and proving and the teaching of proof to 
suggest a possible role for proof in mathematics teaching, as a way to teach rather than a topic to 
be taught.  

Proof 
What does it mean to recognize proof as a fundamental aspect of mathematics? How is proof 

fundamental? It is clear that proof is essential to the work of professional mathematicians. Papers 
without proofs do not get published. But why are proofs needed in mathematics? 

Verification 
Fischbein and Kedem (1982) say that proofs are needed because “a formal proof of a 

mathematical statement confers on it the attribute of a priori universal validity” (p. 128). In other 
words, proof tells us what is true and what is not. This idea, that mathematical proofs verify 
mathematical statements, has been recognized and admired for a long time. For example, 
Descartes commented: 

Of all those who have already searched for truth in the sciences, only the mathematicians 
were able to find demonstrations, that is, certain and evident reasons. (Descartes, 
1637/1993, p. 11, italics added)  

Mathematical proofs provide certainty. That is one answer why they are needed and why proof is 
a fundamental aspect of mathematics.  
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While many people believe that the essential role of proof in mathematics is verification of 
theorems, there are objections to this position. Some are fairly abstract, like the observation that 
Gödel’s Incompleteness Theorem tells us that there are true statements in mathematics that have 
no proofs. Others are completely pragmatic, like Davis’s (1972) comment that “most proofs in 
research papers are unchecked other than by the author ... They are loaded with errors.” (p. 259). 
Obviously proofs with mistakes in them cannot tell us what is true and what is not in any 
absolute way. Davis concludes that “A derivation of a theorem or a verification of a proof has 
only probabilistic validity.”  And there are objections based on looking at how mathematicians 
actually behave, as opposed to what they say they do. Gila Hanna (1983, p. 70), for example, 
lists five factors other than a mathematical proof that contribute to the acceptance of theorems, 
including the reputation of the author and the plausibility of the result.   

Explanation 
There are other roles proof plays that make proof fundamental to mathematics. “Proof, in its 

best instances, increases understanding by revealing the heart of the matter.” (Davis & Hersh, 
1981, p. 151). Proof helps us understand and explain mathematics. Especially in the context of 
education, this explanatory role has increasingly come to be seen as vital. Gila Hanna was 
perhaps the first to point out to mathematics educators, at PME 13 in Paris (1989, p. 2-45), that 
proofs that explain, that show not only that the statement is true but also why it is true, should be 
favored in mathematics education.  

To understand this distinction, consider these two proofs, both of which show that the sum of 
the first n integers S(n) is n(n+1)÷2: 
 
Initial step 
For n = 1 it is true since 1 = 1(1 + 1) ÷ 2.   
 
Induction step 
Assume it is true for some arbitrary k, that is, 
S(k) = k(k + 1) ÷ 2.  
 
Then consider  
S(k + 1) = S(k) + (k + 1)  

= k(k + 1) ÷ 2 + (k + 1)  
= (k + 1)(k + 2) ÷ 2   
 

Therefore, if the statement is true for k it is 
true for k + 1. 
 
Hence, by mathematical induction, the 
statement is true for all n.   
(adapted from Reid & Knipping, 2010, p. 99) 

 
Proof 1 Proof 2 

Both proofs require some unpacking, but of a very different kind. To understand Proof 1 the 
reader must be familiar with mathematical induction as a proof technique, and even then if the 
technique has been taught formally, without first establishing a link to informal ways of 
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reasoning recursively, the whole process can seem entirely arbitrary. In that case a proof like 
Proof 1 can be not only non-explanatory, but also unconvincing. Proof 2 offers an example. It 
does not show that S(n) is n(n+1)÷2. All it shows is that S(8) is 8(8+1)÷2. The reader must see 
that this specific example is in fact a generic example; that the same process would work for any 
n. But once this is grasped, the proof is explanatory. It gives answers to questions like “Why do 
you divide by 2?” and “Why do you multiply by n+1?”  

Discovery 
Proof is also fundamental to mathematics as a way of discovering new knowledge. In 

mathematics education de Villiers seems to have been the first to point this out. In 1990 he 
noted: 

Proof can frequently lead to new results. To the working mathematician proof is therefore 
not merely a means of a posteriori verification, but often also a means of exploration, 
analysis, discovery and invention. (p. 21)  

The role of proof in the discovery of non-Euclidean geometries is an historically significant 
example of proof as a means of discovery. Here is a more simple example:  

There are many ways to prove that the sum of any two consecutive odd numbers is even. The 
simplest is to note that the sum of any two odd numbers (consecutive or not) is even. This 
verifies the statement and explains it. It is also possible to verify the statement with a proof using 
mathematical induction, if you believe in it, producing a proof that verifies but does not explain. 
You could use a generic example: 7+9 = 7+7+2, which must be even because 7+7 must be even 
and 2 is even. This proof both verifies and explains. Or you could do some algebra: 
2n – 1 + 2n + 1 = 2(2n) which is even. The final proof lets you discover something more that you 
were trying to prove. 2(2n) is 4n, so the sum of any two consecutive odd numbers is not only 
even, it is a multiple of four.  

Being a Mathematician 
Papers without proofs do not get published. That signals another role of proof in 

mathematics. Publishing proofs is part of being a mathematician. As Thurston (1995) points out: 
We are driven by considerations of economics and status. Mathematicians, like other 
academics, do a lot of judging and being judged. Starting with grades, and continuing 
through letters of recommendation, hiring decisions, promotion decisions, referees 
reports, invitations to speak, prizes...we are involved in a fiercely competitive system. 
(p. 34, ellipses in original) In our credit driven system, [mathematicians] also want and 
need theorem credits (p. 36, emphasis in original).  

By “theorem credits” Thurston means the social acknowledgement that comes from publishing 
theorems, and in mathematics results must be published with proofs to count. 

This social role of proof is usually implicit. As long as everyone conforms to the norm, it 
does not become evident. However, when a mathematician publishes without proving theorems, 
the reaction can be very strong. For example, when Benoit Mandelbrot named and began 
publishing images of fractals Steven Krantz (1989) published a critique in the Mathematical 
Intelligencer that focused on the lack of definitions, proofs and theorems in Mandelbrot’s work. 
Without these, could fractal geometry be part of mathematics? The exclusion of non-Europeans 
from the history of mathematics, on the same basis that they did not prove their work (Joseph, 
1991), provides another example.  
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Proofs 
Let us turn now to proofs, as opposed to the concept of proof. What is a proof? The NCTM has a 
simple definition: 

By the end of secondary school, students should be able to understand and produce 
mathematical proofs—arguments consisting of logically rigorous deductions of 
conclusions from hypotheses—and should appreciate the value of such arguments. (2000, 
p. 56) 

This definition is not far from the first ones published in the North American mathematics 
textbooks: 

Every statement in a proof must be based upon a postulate, an axiom, a definition, or 
some proposition previously considered of which the student is prepared to give the proof 
again when he refers to it. ... No statement is true simply because it appears to be true 
from a figure. ... [In a proof] are set forth, in concise steps, the statements to prove the 
conclusion ... asserted. (Beman and Smith, 1899, pp. 19–20, cited in Herbst, 2002)  

A proof is something like this: 
 

Given an arbitrary triangle ABC we will show that AB = AC. 
Construction 

Let O be the intersection of the angle bisector of !BAC and the 
perpendicular bisector of segment BC. (In the case where these lines are 
parallel it is easy to show AB = AC. This is left as an exercise.) Draw OD 
perpendicular to BC, OR perpendicular to AB, and OQ perpendicular to AC. Draw OB and OC.  
Proof 
1 OD = OD reflexive property of equality 
2 BD = CD  OD bisects BC, definition of perpendicular bisector 
3 !ODB " !ODC  both are right angles, definition of perpendicular bisector 
4 !ODB " !ODC Side Angle Side congruence property 
5 OB = OC Corresponding Parts of Congruent Triangles are Congruent 
6 AO = AO reflexive property of equality 
7 !OAQ " !OAR   AO bisects !A, definition of angle bisector 
8 !ARO " !AQO both are right angles, definition of perpendicular bisector 
9 !RAO " !QAO Angle Angle Side congruence property 
10  AR = AQ & OR = OQ Corresponding Parts of Congruent Triangles are Congruent 
11 !ORB " !OQC both are right angles, definition of perpendicular bisector 
12 OB = OC from 5 
13 OR = OQ from 10 
14 !ROB " !QOC Hypotenuse Leg congruence property 
15 RB = QC Corresponding Parts of Congruent Triangles are Congruent 
16 AB = AR + RB segment addition postulate 
17 AR + RB = AQ + QC  from 10 and 15, addition property of equality 
18 AQ + QC = AC segment addition postulate 
19 AB = AC    [Q.E.D.] transitivity of equality 

Proof 3 (adapted from Maxwell, 1959, Chapter II, § 1) 
Every statement in the proof is based upon a postulate, an axiom, a definition, or some 

proposition previously proven. The conclusions follow from the hypotheses by logically rigorous 
deductions. To make it clear that this is happening, the proof is arranged in two columns, one 
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giving the concise steps of the proof, and the other providing the supporting postulates and so on. 
This is the famous two column proof format that was invented by two American textbook 
authors, Arthur Schultze and Frank Sevenoak in the early years of the twentieth century (Herbst, 
2002, p. 297). According to Herbst, the two column proof format was an innovation that allowed 
teachers to better handle some of the challenges they faced. At that time a greater proportion of 
the population was attending secondary school and taking high school geometry, and at the same 
time the focus of high school geometry courses had shifted from the content of geometry to the 
process of proving. Explicit descriptions of what a proof should be (like that of Beman and 
Smith quoted above) and the general use of the two column format to present all proofs seen in 
schools, meant that the object of learning, proofs, was explicit. This meant that the teacher and 
students were clear about the object of the class.  

However, writing school mathematics proofs in the two column format means that they no 
longer resemble mathematicians’ proofs. In mathematicians’ proofs any step that the reader can 
be expected to supply is omitted, and explicit reference is made to supporting postulates, 
definitions and theorems only when they are unusual. If our goal is that “High school students 
should be able to present mathematical arguments in written forms that would be acceptable to 
professional mathematicians” (NCTM, 2000, p. 58) then we will have to start teaching written 
forms that are more like those of professional mathematicians. 

Another disadvantage of the two column format is that it shifts the focus away from the 
statement being proven and towards the form and details of the proof. As a result, students are 
likely to believe that a proof like Proof 3 would be accepted, and even praised, by their teachers, 
in spite of the fact that its conclusion is false.  

As well as illustrating the two column format, Proof 3 also allows us to revisit the question of 
the role of proof with a concrete example. Assuming you know that some triangles are not 
isosceles, you are unlikely to have been convinced by Proof 3. It does not verify anything. Nor is 
it particularly explanatory or useful for discovering new knowledge (unless you do find it 
convincing, and then it would lead you to the new knowledge that not only are all triangles 
isosceles, they are all equilateral, as the same reasoning can be applied to any two sides of the 
triangle.) What it might be useful for, from a student’s point of view, is satisfying school norms 
for what a proof should look like. A student might expect, in the context of a tradition in which 
the two column format is highly valued, to be rewarded for producing such a proof. Proof 3 also 
illustrates a pitfall in Beman and Smith’s description of a proof. They require that “No statement 
is true simply because it appears to be true from a figure.” This reflects a general distrust of 
reasoning using pictures that was dominant in the twentieth century. But pictures can be 
extremely useful. The simplest way to see what is wrong with Proof 3 is not to go through it line 
by line looking for a missing or unjustified step. The simplest way to is draw a picture, as 
accurately as you can, following the steps of the initial construction.  

As we have seen above, visual proofs can be both convincing and explanatory, especially in 
school contexts. Proof 4 (from Hoyles, 1997, p. 12) is another example, and one that works even 
better as an action proof if you trace a triangle on the floor and walk around it, paying attention 
to the way that your body turns.  

Another well known visual proof is Proof 5, of the Pythagorean Theorem. This kind of proof 
reflects a very old Chinese tradition of proving using dissections of shapes. Occasionally, such 
proofs are rejected because of the existence of false proofs like Proof 6, which shows that 64=65. 
But this makes no more sense than rejecting all two column proofs because Proof 3 exists.  
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Proof 4 Proof 5 

Proof 6 

Proving 
I have discussed the concept of proof, the texts that are called proofs, and now I will turn to 

the activity of proving. As the NCTM notes “a mathematical proof is a formal way of expressing 
particular kinds of reasoning” (2000, p. 56). But what kinds of reasoning should be called 
proving?   

We have seen that in the twentieth century there was an emphasis in schools on a form of 
proofs that made their deductive structure very clear. In addition to the ways in which two 
column proofs helped teachers, their emphasis on deduction may also have derived from the 
focus on foundational questions in the first part of the century, which provided axiomatic 
structures for all branches of mathematics. The work of Polya and Lakatos later in the twentieth 
century critiqued this focus on axiomatics and deductive logic, pointing out the historical 
importance of analogies and empirical approaches in mathematical discovery and conjecturing. 
Their critiques, along with the growing awareness that teaching proving in schools was not very 
successful, led some jurisdictions, notably England, to put a greater emphasis on pattern noticing 
and conjecturing. The NCTM’s 1989 Curriculum and Evaluation Standards also placed 
conjecturing as an equal partner to verification by deductive reasoning. Hoyles (1997) points out 
that the emphasis on discovery and conjecturing in England meant that the majority of students 
saw nothing else. “The majority of students will engage in data generation, pattern recognition, 
and inductive methods while only a minority, at levels 7 or 8, are expected to prove their 
conjectures in any formal sense” (p. 9). Duval (1991) goes further, claiming that because 
arguments leading to conjectures and deductive proving “use very similar linguistic forms and 
propositional connectives,” an emphasis on discovery and conjecturing “is one of the main 
reasons why most of the students do not understand the requirements of mathematical proofs.” 
(p. 233). However, according to a group of Italian researchers, the relationship between 
conjecturing and proving is one of “cognitive unity” and their research has shown cases in which 
students built on what they had learned in making a conjecture to develop a deductive proof. 
Clearly, the relationship between conjecturing and proving deductively is unclear. However, it is 
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clear that there is a useful distinction to be made between these two kinds of reasoning. The 
particular kind of reasoning that is called proving is deductive. So it is especially important to 
clarify what deductive reasoning looks like. 

When reasoning about a familiar context, even quite young students can produce deductive 
arguments. For example, consider this argument in favor of the existence of the tooth fairy made 
by five year olds: 

Kim: My sister says there isn’t even a tooth fairy.  She says it’s our mother. 
Teacher: What do you think? 
Kim: I think the fairy came in after my sister was asleep.   Because my sister said I 

would get one dime and I got two dimes. 
Kenny: I got a dollar.  My mom can’t spend a dollar because we are saving money for a 

car.  So it has to be the tooth fairy. 
(Paley, 1981, p. 40)  

Kenny’s deductions start with some prior knowledge: He knows he got a dollar for his lost tooth, 
and he knows that his mother is not spending any money because they are saving for a car. From 
this knowledge he deduces that his mother did not put the dollar under his pillow and so he 
rejects Kim’s sister’s conjecture in favor of Kim’s, that the tooth fairy exists. Kenny does not 
include every step; he never says, “It can’t be my mother”. He also makes use of a hidden 
assumption that the only two possible sources of the tooth money are his mother and the tooth 
fairy. This is typical of children’s deductions. Steps are skipped and hidden assumptions are 
made. But recall that mathematicians also skip steps and use shared assumptions without 
explicitly mentioning them. Kenny is far from producing a two column proof but he might not be 
so far from producing a proof acceptable to mathematicians.  

Older children can link together simple deductions into chains in which conclusions of one 
step are used to justify subsequent steps. For example, consider Maya, age 11, who is explaining 
why the number of squares in a 10 by 10 grid is 10!10 + 9!9 + 8!8 + ... + 1 (Long dashes — 
represent pauses. Ellipses ... represent omissions). 

Maya:   Can everyone see? So you count 1, 2, 3, 4, 5, 6, 7, 8, 9 right? … Since a 
square—this—any square—the square is 10 by 10 no matter how you turn it, it’s 
always going to be…the same. So you don’t have to measure it again. You can 
go 9 times 9. Do you understand why? Yeah? OK, So you go 9 times 9 like Gino 
said, 81. Then you can do 3 by 3, 1, 2, 3, 4, 5, 6, 7, 8—and then again you don’t 
have to measure again you know. It’s going to be the same. So 8 times 8—64. 
And you can keep on going.… You can do the 7 times 7—49. And 6 times 6—
36. 5 times 5—25. 4 times 4—16. 3 times 3—9.  

(Reid & Knipping, 2010, p. 88) 
First Maya counts how many 2 by 2 squares will fit along the top edge. Then she deduces that 
the number of 2 by 2 squares down either side will be the same, because the square is the same 
length on all sides. So the number of 2 by 2 squares is 9 times 9. For the 3 by 3 squares there are 
8 along the top and the same reasoning gives 8 times 8. “And you can keep on going.” The same 
reasoning gives the number of all the remaining sizes of squares. 

Deductive reasoning is not something children need to be taught, although clearly contexts in 
which deductive reasoning is useful will encourage them to develop their reasoning further. 
However an important step toward proving is the formulation of that reasoning. It is necessary 
for students to become aware of their own reasoning and to explore ways to express that 
reasoning so that it can be understood by others. Maya is taking steps in that direction as she 
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explains her reasoning to her classmates. In the next section I will discuss ways to support he 
development of students’ proving in classrooms. 

 
I have discussed the role of proof, some kinds of proofs, and the nature of proving. I would 

like now to turn to the theme of the conference, transformative mathematics teaching and 
learning, and consider the teaching of proof. How might the goals of the NCTM’s Reasoning and 
Proof Standard be realized? In what contexts do students learn to prove? How might teaching be 
transformed by a renewed attention to proof? 

Teaching proof 
Efforts to teach proof in the twentieth century occurred either in the context of a high school 

geometry course, or, in the New Math era, in a unit on logic. The NCTM is clear about one thing 
we learned from this experience:   

Reasoning and proof cannot simply be taught in a single unit on logic, for example, or by 
“doing proofs” in geometry. (2000, p. 56) 

But how should proof be taught? In this section I will consider first five aspects of teaching that 
Vicki Zack and I identified as contributing to students’ proving in her classroom and in others’. I 
will then turn to two ideas that I believe help to clarify what it means to teach proof.  

In Reid and Zack (2009) we describe how five key aspects of Vicki’s teaching contributed to 
her grade 5 students’ proving. They are: a focus on problem solving, allowing sufficient time, 
encouraging conjecturing, expectations concerning the nature of students’ communications, and 
the teacher’s expertise in listening closely and seizing opportunities to provoke discussion. 

Problem Solving 
Problem solving was at the core of the mathematics curriculum in Vicki’s classroom. Non-

routine problems were integrated into the everyday mathematics lessons, and a problem solving 
approach was also taken to other areas of the curriculum. The Problem of the Week tasks were 
especially rich as contexts for proving. These differ from the other non-routine problem-solving 
tasks used in the class in that the children were asked to write detailed explanations at two or 
more points in the problem solving process. For the most part Vicki used the same problems year 
after year. This allowed her to make small adjustments in phrasing or in follow up tasks that 
further supported the development of the children’s reasoning (Brown, Reid & Zack, 1998). Four 
of the Problem of the Week tasks have received the most attention in our research. They are 
Prairie Dog Tunnels, Handshakes, Decagon Diagonals and Count the Squares (see Figure 1). 

 
Find all the squares in the figure on the left. Can you prove that you have found them all?  
What if ... ? [A five by five grid is given as a figure]. Can you prove you have them all?  
Extension: What if it were a 10 by 10 square? What if it were a 60 by 60 square?  

Figure 1: The Count the Squares problem 
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The prompts for Prairie Dog Tunnels, Handshakes, and Decagon Diagonals are:  
• Nine prairie dogs need to connect all their burrows to one another in order to be 

sure they can evade their enemy, the ferret. How many tunnels do they need to 
build?  

• If everyone in your class shakes hands with everyone else, how many handshakes 
would there be?  

• How many diagonal lines can be drawn inside a figure with 10 sides? [Figures 
were provided of a triangle, square, pentagon and hexagon, labeled: 3 sides, 0 
diagonals; 4 sides, 2 diagonals; 5 sides, 5 diagonals; 6 sides, 9 diagonals] 
How many diagonal lines would there be in a 25-sided polygon?  
How many diagonal lines ... in a 52 sided polygon? 

In these tasks the students used common techniques such as making organized tables, using 
diagrams, and searching for patterns in sequences and using differences. The first three problems 
involve finding the sum for the whole numbers from 1 to n. In solving them the equivalence of 
(1+2+3+4+…+n–1) and n(n–1)/2 was discovered through a combination of empirical testing and 
deduction. Empirical strategies such as drawing all the possible diagonals were used to establish 
correct answers when n was small. These gave way (as n increased) to reasoning deductively 
either that each person shakes one less hand than the previous person (the first shakes n–1 hands, 
the next n–2, and so on) or that each of the n people shakes n–1 hands but that counts each 
handshake twice so the correct number is n(n–1)/2. The fact that these two methods of reasoning 
both correctly solve the problem established their equivalence.  

Generally, the students did not spontaneously use symbols. Generalizations were most often 
expressed as procedures tied to the structure of the problem, for example, “Multiply the number 
of people by the number of handshakes each person does, which is one less, and divide by two 
because you counted all the handshakes twice.” Vicki then nudged the students to go further, 
asking them if they could express this idea by using a letter to represent any number of people 
shaking hands.  In some years expressions like n(n–1)¸2 were written using variables. For 
example, Micky recorded this proof of a formula for finding the number of diagonals in a 
polygon: 

If you can find all the diagonals possible from one [vertex] you can figure out the whole 
amount of inside diagonal lines.... I know that a [vertex] connects with all of the other 
[vertices] except for 3, itself the [vertex] to the left and right. You subtract 3 from the 
amount of total sides, ... here’s the rule: (Z = no. of sides)...Z – 3 ´ Z ¸ 2 = no. of diagonal 
lines in figure.  

(from Micky’s Math Log, May 16, 1994, described in Zack, 1995) 
Micky’s proof has several steps. He is explicit about one: that the number of diagonals from each 
vertex is Z – 3 (because each vertex is connected by diagonals to all the others, except itself and 
its neighbors). However, he leaves the justification for another step implicit: Every diagonal is 
counted twice, so the formula ends with dividing by two.  

Time 
In Vicki’s class the children were given a great deal of time to experiment with, think 

through, discuss and refine their understandings. Each Problem of the Week was assigned on a 
Monday. The students worked independently on the problem during class time (an extended 90 
minute class period) and wrote a detailed description in their Math Logs. On Tuesday, she 
allowed time for the students to review their Logs if they chose to do so and at times prompted 
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some students to reflect upon their explanation (for example, to clarify their thinking, elaborate 
on a diagram or add a diagram). Wednesday was the day the discussions took place, again in a 
90-minute session. They worked first in pairs (or in a group of three), and then came together in 
a group of four or five. In these small groups they compared solutions and discussed further, and 
then reported to the half-class, with more discussion following. On occasion, if the discussions in 
the small group or the class warranted, class time on Thursday and Friday was also used to allow 
the discussions to come to a fruitful conclusion. This means that the exploration of the problems 
occurred over a significant period of time, almost four hours per task. This allowed for 
conjectures to be made and explanations sought without being artificially cut short by time 
constraints.  

Conjecturing 
The problems used allowed the students to make hypotheses and discover solutions, which 

they then proved in order to verify and explain. The processes of conjecturing and proving were 
intertwined in two ways. Proving made use of insights gained through the explorations that led to 
conjectures (For example, cut-out squares of different sizes were used to support the counting of 
squares, but they were also used in proving. See Maya’s proving above and Zack, 2002). 
Conjectures were also used as the basis for proving (For example, one child conjectured that the 
number of squares would always be a multiple of 5, unless the size of the grid was a multiple of 
3. He later rejected answers conjectured by his peers if they contradicted his general rule; see 
Reid, 2002).  

Expectations 
The groundwork for proving laid during the year included an expectation that the children 

would be looking for patterns, and that they could be nudged to think about the mathematical 
structure underlying the pattern (Zack, 1997). In addition, there were expectations that 
everyone’s answers should be considered and that answers should not be changed without 
discussing how they arose and what might be the source of an error.  

This valuing of clarity, explanation, and attention to others supported the expression of the 
students’ thinking, whether it involved proving or not, but also made that thinking available to 
others to question. At the close of each session, Vicki distributed a sheet entitled “Helpful 
explanations/Helpful ideas” and asked the children to note any ideas or explanations they found 
helpful, to tell why, and to credit the peer(s) who helped. She found that the children became 
increasingly aware of the contribution others had made to their understanding, and at times could 
indicate how they have reshaped others’ ideas to make them their own (See Zack & Graves, 
2001 for further elaboration). 

Expertise 
In terms of her mathematical background, Vicki could be considered a typical elementary 

school teacher in that she describes her background in formal mathematics as weak. She is not an 
expert on the nature and role of mathematical proof, and has not formally proven anything 
herself since high school. However, her research interest in how meaning is constructed in 
dialogue led to a close look at the children’s ways of expressing their ideas, and then in turn at 
issues of convincing and proving.  

Working with the children’s ways of making meaning is central to Vicki’s teaching. Her 
expertise lay in listening closely, recognizing potentially fruitful avenues and seizing 
opportunities to provoke discussion. There was a constant expectation for explanation (e.g., 
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asking “Explain how it works and why it works.”), and for generalization (Will it always work? 
Can you construct a general rule?). Vicki discovered the richness of the mathematical tasks in 
large measure due to the children’s ways of solving the problem. The tasks lent themselves to 
algebraic thinking and generalizing and proving. The proving arose from the tasks, even though 
there had been no ‘a priori’ objective to teach proof and proving.  

The five aspects of teaching described above, problem solving, sufficient time, conjecturing, 
expectations for communication, and teacher expertise, seem to be important in creating a 
context for proving, even where no explicit intent to teach proof existed. However, in higher 
grades where the teaching of proof might become more structured, more attention must be paid 
to two key ideas: the tool-box, and local organization. 

The Tool-box 
Mathematicians’ and children’s proofs make reference to, or assume without stating, other 

theorems or assumptions. Things are taken for granted. Even in the work of professional 
mathematicians there are theorems that are used without their proofs being read, and even 
without any source being known. 

Within any field, there are certain theorems and certain techniques that are generally 
known and generally accepted. When you write a paper, you refer to these without proof. 
You look at other papers in the field, and you see what facts they quote without proof, 
and what they cite in their bibliography. You learn from other people some idea of the 
proofs. Then you’re free to quote the same theorem and cite the same citations. You don’t 
necessarily have to read the full papers or books that are in your bibliography. Many of 
the things that are generally known are things for which there may be no known written 
source. As long as people in the field are comfortable that the idea works, it doesn’t need 
to have a formal written source. (Thurston, 1995, p. 33) 

Netz (1999) discusses the omission of references to theorems and assumptions in classical 
Greek proofs. He calls the set of theorems and assumptions that can be used without comment 
the “tool-box”. For example, Archimedes can assert that two segments are of the same length 
because they are radii of the same circle. He does not have to make any reference to this 
justification. He simply states that they are the same length and leaves it to the reader to figure 
out why (Netz, 1999, p. 172). As his readers were all members of a cultural community for 
whom the same tool-box was taken for granted, this was acceptable.  

Similarly, Proofs 1, 2, 4 and 5, above, make use of tools from my tool-box which includes 
rules governing algebraic symbolization and manipulations, the idea of mathematical induction, 
and even implicit rules about using generic examples that have probably never been stated 
anywhere, but which are followed by those who consider such proofs acceptable.  

Netz argues that the results proven in Euclid’s Elements constitute most of the classical 
Greek tool-box. One might imagine that the study of the Elements was undertaken as the 
beginning of a scholar’s mathematical education and so thereafter mathematicians could assume 
that anything in Euclid could be used without comment or reference. However, Netz suggests 
that the contents of the tool-box could become known in another way.  

The very fact that an argument was made, without any intuitive or diagrammatic support 
for that argument, must have signalled for the audience that the argument was sanctioned 
by the Elements. Once this is the expectation, the need to refer explicitly to the Elements 
declines, which would in turn support the same tendency: the regular circle in which local 
conventions are struck without explicit codification.  (p. 232) 
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In other words, the process might resemble that described by Thurston, above; the reader 
comes to know, by observing what things are taken for granted in proofs, what is in the tool-box, 
without even being told explicitly.  

In a mathematics classroom, determining what is in the class tool-box can be done in various 
ways. One approach sometimes taken is to inform the students that they must forget everything 
they already know and start from the axioms and definitions given in the textbook. But 
experience tells us that the students do not forget everything they know, and the axioms and 
definitions given in the textbook are never complete themselves. What results is the class 
pretending to base its arguments on the given axioms and definitions, while being guided by their 
prior knowledge. The tool-box is supposed to be limited to what the textbook allows, but is 
actually larger.  

Another approach is for a teacher to start presenting proofs without establishing what is in 
the tool-box, so that, as Netz says happened for the Greeks, the contents of the tool-box become 
known to the students through the making of arguments without stating their justifications. If a 
proof is based on an assumption that the measures of angles can be added, but this is never stated 
or justified, then it must be part of the tool-box.  

The idea of the tool-box can be usefully connected with another idea, that of local 
organization. 

Local Organization 
Freudenthal (1971) discusses the introduction of proving and claims that proving must begin 

with what he calls “local organization” as opposed to the “global organization” of an axiomatic 
system. In a globally organized system the definition of parallelogram would be part of the tool-
box and would either be explicitly taught or would become known through its use in proofs. 
Freudenthal describes another approach: A discussion, for example, of the properties of 
parallelograms can begin by simply listing all those that are apparent to the students. Similar lists 
might be made for rectangles and rhombuses. In examining such lists, Freudenthal claims, 
“There are a host of visual properties which ask for organization. Here starts deductivity; rather 
than being imposed it unfolds from local germs. The properties of the parallelogramme become 
deductively interrelated” (p. 424). Finally, one property emerges as a definition from which the 
others can be deduced.  This is local organization. It can be extended as the properties of 
parallelograms are related to the properties of rectangles, rhombuses and squares.  

So rather than a definition being given at the outset, the students’ proving determines which 
property is a definition and which ones are consequences of it. There is a local organization of 
mathematical knowledge, but no global system into which that knowledge fits. This is necessary, 
Freudenthal states, because, “a student who never exercized organizing a subject matter on local 
levels will not succeed on the global one” (p. 426). It is at the local level that proving and 
defining are learned, before being used (perhaps much later) to define and prove in an axiomatic 
system.  

Freudenthal’s implications for teaching are clear: 
In general, what we do if we create and if we apply mathematics, is an activity of local 
organization. Beginners in mathematics cannot do even more than that. Every teacher 
knows that most students can produce and understand only short deduction chains. They 
cannot grasp long proofs as a whole, and still less can they view substantial part of 
mathematics as a deductive system. (p. 431) 

Local organization and use of an implicit tool-box raise the question for teaching of what 
must be made explicit, what requires proof, and what can be left implicit. Freudenthal’s 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

26



examples (in Mathematics as an Educational Task, 1973) offer a resolution to this problem. The 
decision as to what to leave implicit, what to make explicit and what to prove must be made in 
order to develop students’ understanding of mathematical concepts and ability to apply them. In 
cases where the proof brings a new understanding of the concepts involved, the proof is useful. 
Assumptions that have unexpected implications will need to be made explicit in exploring those 
implications. Assumptions that would seem obvious and trivial to the students if made explicit 
can safely be left implicit.   

Proof 7 is another visual proof that the angle sum of a triangle is 180 degrees. It depends on 
an assumption that any triangle can be used to tile the plane. It is clear that the six angles around 
a vertex total 360 degrees (although this depends an another hidden assumption, that angle 
measures can be added, and a hidden definition, of degrees). The congruence of the marked 
angles depends on the fact that all the triangles are congruent. All of the hidden assumptions here 
are likely to be accepted without question by students, and making them explicit would be 
pointing out the obvious. In contrast, the typical two column proof depends on properties of 
transversals that are not so obvious as assumptions, and if proven depend on the even less 
obvious parallel postulate.  

Proof 7 makes use of a minimal tool-box, and puts together its elements in a way that proves 
an important mathematical property of plane triangles, a property which in turn contributes to 
many other proofs of significant results. As it is based on assumptions that are more obvious than 
the conclusion it verifies and explains the result, in a way that the traditional two column proof 
does not. A similar comment could be made about Proof 4, although unless it is actually enacted 
the fact that one turns 360 degrees in tracing around a triangle may not be obvious to those who 
have not done LOGO programming. 

  

Proof 7 Proof 7 detail 

Teaching Proof versus Proof Based Teaching 
The NCTM opened the twenty-first century with a call for increased attention on 

mathematical proof and reasoning, for all students. Reform movements at the beginning of the 
twentieth century also called for mathematics teaching, and especially high school geometry 
teaching, to focus much more on proof, at a time when parallel reforms were allowing many 
more students to go to high school. In North America this resulted in the invention of a new 
proof format, the two column proof, along with other pedagogical innovations designed to help 
teachers teach proof.   

To make student proving possible, a system of resources had to be developed and 
coordinated with a norm for accomplished proofs. The integration of all those elements 
produced a stable geometry course oriented toward students’ learning the art of proving 
embodied in the two-column format. However, that stability came with a price – that of 
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dissociating the doing of proofs from the construction of knowledge. (Herbst, 2002, 
p. 307) 

Instead of school proofs being like mathematicians proofs in that they gave insight into 
mathematics, school proofs became another topic to be covered, disconnected from all others. 
Proofs became an object, rather than a process of learning.  

To avoid following the same path now, we must tread carefully. We must ensure that we see 
proof as fundamental to mathematics as a way to develop understanding of mathematical 
concepts, and as a way to discover new and significant mathematical knowledge. Proof cannot be 
limited to the format of proofs, and to the role of verification of knowledge (for which there is 
probably good empirical or other evidence already). 

We have recent experience with a comparable reform effort, the increased focus on 
mathematical problem solving after the 1970s. At first, problem solving was an object of 
teaching. Texts added new chapters on problem solving, including Polya’s four stages, sets of 
heuristics and even larger sets of strategies to help teachers and students learn to be better 
problem solvers. Problem solving was a huge area for research in mathematics education. 
Unfortunately, a lot of the research indicated that making problem solving an object of 
mathematics teaching wasn’t making anyone better problem solvers (Schoenfeld, 1987, p. 30). 
Perhaps the people with the best success in developing problem solving in students, the 
mathematics faculty who coached students for the Putnam exam or for various Olympiads, had it 
right. “Students don’t learn to solve problems by reading Polya's books, they said. In their 
experience, students learned to solve problems by ... solving lots of problems.” (p. 30). Some 
decades on now, problem solving is taking on a different role in mathematics teaching. 
Textbooks for new teachers and some curricula and school mathematics textbooks are 
advocating that problems not be an object of mathematics teaching, but instead be the means by 
which mathematics is taught.  

 I would like to conclude by suggesting that today proof teaching and research is in a similar 
state to problem solving in the 1980s. Much research is being done, but proof is still seen as a 
topic to be taught. In the case of problem solving we have moved towards seeing it as a way of 
teaching, and there are early hints that something like proof based teaching, akin to problem 
based teaching, might emerge in the next decades. It will be interesting to see. 
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This paper describes a program of research aimed at better understanding mathematics conceptual 
learning. Rather than studying the products of learning (conceptual steps), it focuses on the process 
(mechanism) of students’ learning – learning that occurs through their mathematical activity in the 
context of a sequence of mathematical tasks. Intensive design research investigates subtle shifts in 
thinking that lead to the development of new abstractions. 

Introduction 
In Simon (1995), I introduced the idea of a “hypothetical learning trajectory (HLT)” to 

characterize important aspects of pedagogical thinking. The HLT consists of (1) the educator’s goal 
for the students’ learning, (2) the mathematical tasks that will be used to promote the students’ 
learning, and (3) hypotheses about the process by which the students will learn. The paper 
emphasized the interdependency of the learning tasks and the learning process. Much research is 
still needed to support all of the three components. However, my colleagues1 and I have embarked 
on a research program to investigate particular aspects of the conceptual learning process, which 
also implies careful attention to tasks. Whereas considerable important work has been going on 
investigating social interactive aspects of learning that take place during class discussions, our 
research focuses on cognitive learning that can take place when students are engaged in a series of 
mathematical tasks in small groups and individually. In this paper, I describe this emerging research 
program. 

What Do We Mean by “Studying Learning?” 

In spite of the animated theoretical debate that has taken place on the nature of abstraction, little 
experimental research is available. … We surmise that the lack of experimental evidence is due 
to the difficulty of observing the processes of abstraction (as opposed to the products, for which 
there is more evidence). (Hershkowitz et al., 2001, p. 197) 

Because our research focuses on learning through interaction with a task, we use primarily 
cognitive (constructivist) constructs as the basis for this work.2 The focus of this work is on the 
process by which abstractions are developed.3 Much of the important research in mathematics 
education over the last 30 years has been referred to as “research on mathematics learning.” Given 
that this language is already widespread, it is difficult to denote the differences between our 
research program and the research that has been labelled “research on mathematics learning.” I will 
try to articulate two key distinctions. First, most of the work subsumed under this heading has 
characterized static mathematical student understandings (e.g., Steffe, 2003) or a hierarchy of 
student understandings (schemes, classroom practices) (e.g., Cobb, McClain, & Gravemeijer, 
2003). Whereas this work has been foundational to our work, it is not what we mean by “studying 
learning.” Our focus is in understanding the subtle shifts in thinking that account for the transition 
between two consecutive schemes (or understandings or classroom practices). Our goal is to explain 
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how the scheme or understanding has come about as students interact with a sequence of 
mathematical tasks. Second, when learning is explained, it is often explained using broad concepts 
such as reflective abstraction, generalizing assimilation or negotiation of meaning. For us, these are 
not sufficiently nuanced to be useful for instructional design. Siegler (1996) argued, 

The standard labels for hypothesized transition processes: assimilation, accommodation, and 
equilibration; change in M-space; conceptual restructuring; differentiation and hierarchic 
integration; are more promissory notes, telling us that we really should work on this some time, 
than serious mechanistic accounts. (p. 223) 

And diSessa & Cobb (2004, p. 81) pointed out, “Piaget’s theory is powerful and continues to be an 
important source of insight. However, it was not developed with the intention of informing design 
and is inadequate, by itself, to do so deeply and effectively.” Our research program is aimed at 
moving from Piagetian constructs as a source of insight and broad hypothesis toward an explication 
of students’ mathematics learning through engagement with tasks that can support instructional 
design. 

What is the Nature of a Mathematical Concept? 
Understanding the nature of mathematical concepts and understanding how they are learned are 

necessarily intertwined. Each has implications for the other. Thus, investigating how mathematical 
concepts are learned requires a useful characterization of the nature of concepts, but as will become 
clear, the nature of a concept involves considering aspects of how it is learned. To make some key 
distinctions about mathematical concepts, I use the following example presented in Simon (2006, 
pp. 4-5): 

In a fourth-grade class [students 11-12 yrs old], I asked the students to use a blue rubber band on 
their geoboards to make a square of a designated size, and then to put a red rubber band around 
one half of the square. Most of the students divided the square into two congruent rectangles. 
However, Mary cut the square on the diagonal, making two congruent right triangles. The 
students were unanimous in asserting that both fit with my request that they show half of the 
square. Further, they were able to justify that assertion by explaining that each of the parts was 1 
of 2 equal parts and that the two parts made up the whole. I then asked, “Is Joe’s (rectangular) 
half larger; is Mary’s half larger, or are they the same size?” Approximately a third of the class 
chose each option.4 

When I share this scenario and ask current and prospective mathematics educators about potential 
instructional interventions for the two thirds of the class who did not recognize the equality of the 
area of the two parts, the overwhelming majority suggest having students cut up the triangular half 
and superimpose it on the rectangular half (and additional activities of this type). Let us examine 
this response. 

No matter how many such experiences are created for the student, these experiences will never 
teach the students the critical concept involved. Readers of this paper likely know that the areas of 
the two different shaped halves are equal. They know this, not because they have cut up and 
superimposed one half on the other half; they know that the two halves must be equal. They know 
the logical necessity of their equality. Having students cut and superimpose the halves may 
convince the students that the halves have equal area, but the activity does nothing to help them 
learn that the halves must have the same area.  
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The cutting up and superimposing activity could be done with different fractions and different 
shaped parts. Students could come to believe that the same fraction with a different shape has the 
same area. This is what I have called an “empirical learning process” (Simon, 2006). In an 
empirical learning process, the student introduces a number of inputs and sees a pattern in the 
outputs. However, an empirical learning process never produces a mathematical concept. A 
mathematical concept involves knowledge of the logical necessity of an idea. I have used Piaget’s 
(2001) term reflective abstraction to identify learning processes that lead to mathematical concepts. 
The choice of this term will become clearer in the subsequent discussion. 
Let’s consider a second example (Heinz et al, 2000). Ivy is a sixth-grade teacher (students 11-12 yrs 
old) who is committed to her students learning mathematics with understanding. In this episode, she 
was beginning the teaching of the area of triangles. Following is an outline of her lesson as it 
unfolded: 

1. Students worked in groups to find the area of a right triangle (legs 2 and 3 units) on a geoboard. 
2. The class discussed their strategies. Completing the rectangle was a popular strategy.                     

 
3. Students worked in groups to find areas of other right triangles on their geoboards. Following 

Ivy’s instructions, they recorded measures of the base, height, and area for each triangle in a 
chart.  

4. Ivy convened the class and recorded in a large chart the base, height, and area of the different 
triangles contributed by the students. 

5. Ivy then directed,  
Look at how these numbers are in this chart with our areas . . . and see if you can figure out a 
pattern that you can use every time using the numbers [measures of base and height] to come up 
with the area. . . . There is something that you can do to these [measures of] the bases and the 
heights to get the area. (Heinz et al., 2000, p. 94) 

Ivy’s encouragement of students to find a pattern in the “numbers” is a promotion of an empirical 
learning process. In her lesson, she treated the geoboard work as if it was a black box that turned 
inputs (measures of the legs of the triangles) into outputs (measures of the areas) for the purpose of 
finding a pattern in the numbers. Finding a pattern in this way does not result in knowing the logical 
necessity of the relationships expressed in the formula for the area of a triangle. 

At this point, I anticipate the following objection, “Denoting patterns is a key aspect of doing 
mathematics.” Mathematics has been called “the science of patterns” (Steen, 1988; Devlin, 1996). 
We do not want to eliminate attention to patterns in mathematics classrooms. However, the 
discussion here is about explaining the process of learning mathematical concepts, not of doing 
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mathematics more broadly. Empirical identification of a pattern never, in itself, results in 
conceptual understanding. It may be the trigger for some other activity that results in such learning. 
I argue that identifying patterns empirically is neither necessary nor sufficient for conceptual 
learning. Further, in some situations it might not even be appropriate. In our example, looking for a 
pattern among the legs of a triangle and the area is neither optimal for learning nor does it provide a 
useful model of mathematics. 
Consider now this modification of Ivy’s lesson. I begin the lesson as Ivy did in order to highlight 
particular contrasts in students’ opportunities to learn, even though more effective lessons might be 
designed for this subject matter. The sequence follows: 

1. Students work in groups to find the area of a right triangle (legs 2 and 3 units) on a 
geoboard. 

2. The class discusses their strategies. Completing the rectangle is a popular strategy. 
3. Students work in groups to find areas of other right triangles on their geoboards. No 

recording chart. 
4. Students are given a ruler and asked to find the area of right triangles drawn on plain 

paper (legs not parallel to sides of paper). 

5.  
6. Students are given the measurement of the legs of right triangles involving larger numbers for 

the dimensions. They are asked to find the area of each triangle (without drawing) by mentally 
running the process they did on paper. 

7. Students are asked to write a generalization (algorithm) for how to calculate the area of a right 
triangle given the measures of the sides.   

What do we see in this example? If we accept that the lesson sequence could promote reinvention of 
an algorithm for the area of a right triangle, we can see that it does so without employing an 
empirically generated pattern. The sequence is designed so that students can explain the 
appropriateness of each step in the algorithm based on the relationship between a right triangle and 
a particular related rectangle. I will engage in further analysis of this lesson in the next section. 

Evolving Constructs for Studying Learning during Engagement with Mathematical Tasks 

If we are convinced that empirical learning processes alone do not result in conceptual learning, 
then the important question is, how might we think about learning that develops conceptual 
understanding? The modified lesson discussed above is not an exemplary lesson and the intended 
learning is not particularly impressive. However, the simplicity of the lesson, allows it to be used 
for exemplification of particular ideas.  

Students are able, without difficulty, to find the area of right triangles on the geoboard by 
completing the rectangle and taking half of it. For the purpose of this paper, we are not concerned 
with where the idea came from to complete the rectangle, only that carrying out the strategy with 
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understanding is not beyond their current conceptual knowledge. The geoboard work developed an 
activity from which the learning could take place. It became a process in the APOS sense 
(Dubinsky & McDonald, 2001). That is, students reached a point where they were able to anticipate 
the whole process, not needing to stop and determine each next step. 5   

Note that for an elementary student, adding a rubber band to complete the rectangle, 
determining the number of little boxes contained in the rectangle (perhaps by counting) and taking 
half of that number is still pretty far from knowing how to compute the area of a right triangle given 
the measures of its legs. In the modified lesson, the diagrams of right triangles are given next. This 
changes the context, putting additional demands on the student. First, the student needs to draw the 
rectangle that produces two congruent triangles. When the geoboard was used, the choice of 
rectangle probably occurred without discrimination, because the geoboard is arranged as an 
orthogonal array and the triangles were arranged with the legs parallel to the sides of the geoboard. 
When working with the diagram, the students are able to produce appropriate rectangles based on 
their anticipation of a rectangle made up of two congruent triangles. Once again their strategy 
becomes a process as they reach a point where they do not need to think about how to draw the 
additional lines to complete the rectangle. The second difference in the paper context is the unit 
squares do not appear on the paper. Therefore, the students need to use their prior knowledge of 
measurement and computation of the area of a rectangle. 
The mental run problems offer a third context, again changing the demands of the task. These 
problems are aimed at fostering abstraction of the relationships involved. On the geoboard or on 
paper, the student could determine the length of the rectangular sides using visual clues after having 
completed the rectangle. For the mental run problems, the students have no rectangle to visually 
examine. They need to anticipate the dimensions of the rectangle based on the dimensions of the 
triangle. They are able to do this based on an anticipation of how they constructed the rectangle (on 
paper) from the triangle. At this point they should have the abstractions that can be represented by 
A = ½ l1 l2, where l1 and l2 are the legs of the right triangle. 

What can we take from this example? 

1. This was not a problem solving activity. That is, at no point were the students facing a real 
problem. They moved smoothly through the tasks. Problem solving is an important part of 
mathematics. However, there are ways of teaching concepts that do not depend on students 
spontaneously solving the “next” problem. 

2. Related to #1, this lesson sequence was not constructed to foster cognitive conflict. Rather, 
it was anticipated that the students would have the knowledge to operate at every point in 
the lesson when they reached those points.  

3. The lesson sequence was designed to foster conceptual learning without hints or leading 
questions on the part of the teacher. 

4. The learning was not the result of an empirical learning process. Students were not involved 
in finding a pattern in the numbers. Students came to understand the logical necessity of the 
relationships represented by the formula above. 

If the learning is not the result of empirical learning, problem solving, or cognitive conflict, and if 
the teacher did not lead the student to the idea, how can we understand the learning process that was 
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hypothesized in this lesson? (See Simon, et al, 2010 for the analysis of a teaching experiment 
involving division of fractions.) I will provide a brief, rudimentary explanation. We use three 
constructs adapted from Piaget’s (2001) description of reflective abstraction: goal-directed activity, 
which can be mental and/or physical, reflection, which we understand as humans’ innate ability 
(and tendency) to recognize (not necessarily consciously) commonality in their experience (von 
Glasersfeld’s, 1995), and abstraction, which involves a learned anticipation. Using these constructs 
we view the students’ hypothesized learning as the development of abstractions through reflection 
on their goal-directed activity (consistent with Piaget’s reflective abstraction). If you return to the 
description above, at each point the students came to anticipate a process that coordinated particular 
aspects of their extant knowledge. In particular, the students came to anticipate: 

1. the right triangle as half a rectangle divided diagonally,  

2. the requisite rectangle formed by creating sides at right angles to the legs of the triangle, 

3. the sides of the resultant rectangle having the dimensions of the legs of the right triangle, 

4. the area of the triangle determined using a known formula for the area of a rectangle and 
halving the result.  

But what does it mean that they “came to anticipate?” The student, faced with a task, engages in 
activity to meet their goal. Initially, the student engages step by step, determining the next action as 
they complete the preceding one. As they encounter similar situations, they at some point begin to 
notice a commonality (reflection) in their activity used to meet their goal. This results in 
anticipation of the needed actions. The sequence of actions no longer need to be assembled, the 
whole activity sequence is anticipated in response to recognizing the situation. Finally, the 
anticipation of the process reaches a point at which not all of the activity needs to be carried out in 
order to arrive at the intended result. The student no longer needs to create or imagine the rectangle 
to find the area of the right triangle. 

Vision of a More Scientific use of Tasks for Engendering Conceptual Learning 
I offered the example above to provide a concrete basis for discussing the particular vision for 

mathematics education that underlies our research program. Overall, my colleagues and I support 
the shared goals of the mathematics education community: equal opportunity, deep understanding, 
strong problem solving abilities, and competence in communicating mathematical ideas. However, 
our research program is focused on a specific goal that can advance the larger goal of deep 
understanding of mathematics. This particular goal is an improved ability to engineer task 
sequences that can foster particular understandings for a diverse set of students. We use the term 
“foster” to emphasize that teaching cannot cause learning. However, mathematics teaching has the 
potential to make conceptual learning likely.  

To consider the vision, I invite engagement in the following thought experiment. A highly 
competent teacher gives her mathematics class a problem whose solution requires the mathematics 
to be learned. The students are asked to work in small groups, provided with a rich set of 
representations to work with, and asked after considerable work time to discuss their work with the 
class as a whole. A couple groups generate solutions to the problem, but the majority are not able to 
generate solutions (although there is considerable variability in their efforts). During the class 
discussion, different students talk about their work and one of the students who solved the problem 
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presents her solution. After some questions and paraphrasing by the teacher, many of the students 
who did not solve the problem, seem to understand the solution presented.  

I have probably described many classes with which you are familiar. Now I ask you to make a 
prediction. Who will more likely retain the new mathematics, apply it appropriately, and build on it 
– a student who independently generated the solution or a student who came to understand it in the 
context of the class discussion?6 I think most mathematics educators would predict that the student 
who generated the solution to be more successful with the concept in the future. There is a 
difference in the cognitive demands of generating a solution versus understanding a solution 
(analogous to active versus passive knowledge of a language). This difference is not generally 
discussed.7 Further, one can see this distinction as an equity issue. Who are the students who 
usually solve the mathematical tasks during small group time? It is the students who are more 
advanced in their mathematical knowledge. In the common scenario I described, the more-advanced 
students continue to work novel problems, while the less-advanced students struggle to follow the 
explanations of solutions given by the more-advanced students. This phenomenon can work against 
narrowing the gap between less-advanced and more-advanced students and even contribute to 
increasing the gap. 

The hypothetical class described is not an unusual one. Particularly when a difficult new idea is 
the focus, generally few students generate the mathematics on their own. Sometimes no one in the 
class is able to generate a solution prior to the class discussion. This is where our research program 
comes in. What if we had the research-based knowledge so that typically 80% or more of the 
students could generate the new mathematical ideas through their engagement with the 
mathematical tasks? Would this improve the quality of student learning? Would this improve the 
quality and impact of the class discussion? Would this increase access to high-quality learning for 
more students? – an issue of equity. 

The vision behind our research program is just that: understand how students learn through their 
mathematical activity, so that pedagogical design principles can be created that guide task sequence 
design. As a result, task sequences would be designed to engage students in the particular activity 
that allows them to abstract the intended new ideas. Currently, mathematical tasks often 
discriminate in favor of those who have the appropriate prior experience and against those who do 
not have it. The vision is to provide instructional task sequences that are designed to build up the 
requisite experience. 

One might ask, “Don’t we do this already?” Let’s consider a couple of frequently used 
approaches. The use of manipulative materials and other physical or iconic representations is often 
thought to create the experiential base for conceptual learning. These tools are useful and have 
potential beyond their current uses. However, there is insufficient theory guiding the use of physical 
and iconic representations. Teachers often have students initially solve problems using these 
representations. The students produce solutions that are isomorphic, in the mind of the 
knowledgeable adult, to formal solutions. However, these “concrete solutions” in themselves do not 
produce conceptual understanding and do not embody the vision articulated in the last paragraph.  
A second approach is the pedagogical use of a series of problems. This is an attempt to create a 
series that allows students to generate ideas, but where the steps from one problem to the next are 
within the students’ grasp, that is novel problems that are only a small change from the prior one. 
Although there is not much theory to guide the development of such series, these series at their best 
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might approximate what is described by the vision presented. However, it seems that in many cases, 
key problems in the sequence are only solved by a minority of the students.  

In contrast, in our work, the intention is to identify (goal-directed) activities in which students 
are already capable of engaging, from which they predictably can abstract the new ideas. There is 
no point at which we hope that they can do or see something that is key to the new mathematics. 
There is no point at which their learning is based on solving a novel problem that they might not be 
able to solve. The vision involves a shift from provoking learning to engineering learning (albeit not 
in a deterministic sense). 

One of the basic tenets of this vision is that children are born with an ability to learn concepts 
and they do this through their activity. Let us take two well-known examples. First, most people 
have probably observed that children, after learning the rules and basic moves of a game (e.g., 
chess, video games), often develop sophisticated concepts for playing the game without instruction 
from anyone. They are certainly more sophisticated than learning simply what move has a positive 
effect and what move has a negative one. Do we understand how these concepts are developed? 
Could this ability be harnessed? 

This second example involves mathematics learning. One of the greatest mathematical learning 
achievements in the life of any individual is the development of a concept of number. This is 
generally accomplished without professional teachers although parents figure prominently. There 
are many types of activities in which parents can and do engage their young children. However, 
there is one that is ingenious – counting. Counting activities, in which children engage in 
coordinating the touching of an object with the reciting of the next number name in the learned 
number name sequence, result in major conceptual gains. The child is not trying to solve a problem 
or even trying to learn something mathematical. They are most likely trying to imitate the adult, 
enjoy the play, and gain the adult’s approval. Counting is a specific activity that leads to important 
abstractions of number concepts. Our vision is to understand the process underlying learning to 
count and an array of other mathematical concepts and to develop pedagogical design principles 
based on this understanding. 

How Does This Work Potentially Contribute to and Fit into Mathematics Instruction? 
In classrooms in which students initially work in small groups (and/or individually) and then 

convene in whole-class discussions, we envision our work informing the design of sequences of 
tasks for students’ small group and individual work. Envisioned task sequences would provide the 
experience (requisite activity and opportunities for abstraction) that would allow students to have 
significant insight into the mathematics at hand. The purpose of the classroom discussion would not 
be to bring students to the intended ideas, but rather for students to share their insights developed 
through their work with the tasks, make new ideas explicit, provide justifications, and develop 
shared language and symbols for the ideas (as in situations of institutionalization (Brousseau, 
1997). Teachers, in addition to leading class discussions, can interact with small groups of students 
who are in the process of abstracting a new idea. 

It may not be necessary to employ this type and level of didactical engineering to all conceptual 
learning in the classroom. However, there are particular mathematical ideas taught in elementary 
and secondary school that many students never learn or never learn well. It is towards these 
pedagogical challenges that this approach is particularly directed. 
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I have described this approach to fostering learning as not involving problem solving. Certainly, 
the mathematics classroom must promote and engage students regularly in problem solving. 
However, having an approach to foster new concepts that does not rest on each student’s ability to 
solve novel problems would be a useful pedagogical tool. 

Current Project 
In our last project, we developed a methodology for studying students learning. The 

methodology is an adaptation of teaching experiments with individual students (Simon, et al., 
2010). We are now embedding that methodology in a 5-year project, Measurement Approach to 
Rational Number (MARN).8 The project combines two main goals, continuing our inquiry into 
students’ learning through activity and developing approaches to teach some of the most intractable 
concepts in the domain of fractions and proportional reasoning. Therefore we are studying learning 
in the context of fractions and decimals, and we are using our emerging understanding of how 
students learn through their activity to design tasks for promoting fraction and ratio understanding. 
The design of instruction builds on a foundation of measurement concepts modifying and extending 
the approach of Davydov and his colleagues (c.f., Davydov, & Svetkovich, 1991). Our hypothesis is 
that measurement-based activities can provide the specific basis for students’ abstractions in these 
key mathematical areas. 

MARN Methodology 
The MARN design research will occur in two phases, individual teaching experiments and 

whole-class teaching experiments. The purpose of the first phase is to develop knowledge of 
promoting intended abstractions through task sequences. The resulting task sequences and 
hypothesized learning processes will constitute a significant part of the hypothetical learning 
trajectories for the whole-class teaching experiment. 

As mentioned, the methodology we developed for studying students’ learning through their 
mathematical activity involves individual teaching experiments. The design of the project is also 
predicated on the potential value of the individual teaching experiments to inform the whole class 
work on learning fractions and ratio. Our expectation of this potential is not shared by many in the 
mathematics education research community.9 The MARN Project gives us a chance to examine this 
methodological issue empirically. 
 
Rationale for Individual Teaching Experiments 

How do changes in children’s thinking occur? Focusing on change . . . will require reformulation 
of our basic assumptions about children’s thinking, the kinds of questions we ask about it, our 
methods for studying it, the mechanisms we propose to explain it, and the basic metaphors that 
underlie our thinking about it. (Siegler, 1996, p. 218) 

Our goal for studying learning (understanding the mechanism by which conceptual understanding 
develops) is seen by many as impossible. Indeed it is both difficult and the success of any study is 
uncertain. The methodology for data collection is critical to producing a set of data from which 
warranted inferences about the learning process can be made.  

We have found that the most important feature of the data collection is that it produces reasonably 
continuous evidence of the student’s activity (mental and physical). Whereas observing physical 
activity is relatively straight forward, inferring mental activity requires attention to physical activity 
in conjunction with encouraged regular verbalization on the part of the student. Inference of 
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students’ mental activity has been part of qualitative research for several decades. What is different 
in this research is trying to infer the ongoing evolution of the thinking as opposed to key snapshots. 

The main obstacle to continuous evidence of students’ activity is instances when the students are 
listening to someone else who affects their subsequent activity. For this reason, we found that we 
could not use even 2 students together in a teaching experiment. When one person watched and 
listened to the other pursuing an idea, it often changed the flow of the observing student; however 
the researchers had no evidence of what went on in the mental activity of that student. For similar 
reasons the researcher avoids hints, suggestions, and leading questions. This data collection 
approach also allows us to focus on what aspect of the abstraction process can take place without 
extensive interaction. 

Conclusions 
The research program I have described is based on a simple idea: the more we understand about 

the learning of mathematical concepts, the better we will be able to promote conceptual learning. 
Bransford, Brown, and Cocking (2000, p. 221) asserted, “A scientific understanding of learning. . . 
provides the fundamental knowledge base for understanding and implementing changes in 
education. Our research program focuses on students’ learning through their mathematical activity 
in the context of series of mathematical tasks. It rests on two important claims. First, learning can 
be studied directly and to productive ends Second, learning can be engineered in ways that do not 
depend on novel problem solving on the part of students. Third, engineering learning opportunities 
that allow students to build abstractions upon their mathematical activity (engendering the requisite 
activity) would increase equitable access to high-quality conceptual learning. Because this research 
program pushes the boundaries of what is generally believed to be possible, this program of 
research, meets with skepticism. In particular, the following questions are raised about the research. 

1. Can data be produced to make useful inferences about the learning process? 

2. Can empirically based constructs be developed which are useful for a variety of 
mathematical concepts for a variety of students in a variety of contexts? 

3. Can design principles for task and task sequence creation be developed across concepts? 

4. Can analyses of individual concept learning usefully inform design for classroom lessons? 

Our research program represents a conjecture that the answers to these questions are, “Yes.” As 
mentioned this is an extremely difficult and uncertain undertaking. Let me speculate (optimistically) 
about the potential payoff of this endeavor. 

Contribution to Research 
Design research is a productive and increasingly used methodology in mathematics education. It 

figures prominently in the generation of learning progressions, an exciting and growing area of 
current research. The problem with design research is that researchers’ ability to study the learning 
of particular concepts is limited by their ability to promote the learning they wish to study. A 
greater understanding of students’ learning through their mathematical activity (developing 
abstractions) and concomitant design principles for generative task sequences could provide a basis 
for more consistently productive design research.  
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Contribution to Curriculum Development 
Whereas recent curricula tend to increase students’ opportunities to learn, they tend to be 

uneven (within each curriculum) in quality. Part of the unevenness may be the variation among the 
authors, but much of the unevenness seems to be due to lack of task design principles grounded in 
an understanding of student learning processes. Strong lessons reflect an author’s insight into a 
particular area. However, there is insufficient theory to guide the majority of lessons. 

 
Contribution to Teaching and Teacher Education 

In the context of ongoing mathematics education reform efforts, teachers seem to have derived 
both constraints on and recommendations for their teaching. As a result they try to refrain from 
telling students what they want them to learn and giving answers. They tend to use a variety of 
strategies: classroom discussions, small groups, non-routine problems, multiple representations, 
manipulatives and computer tools. However, none of this gives them a clear understanding of how 
to help students learn a new concept. As a result, teachers often fall back on strategies that do not 
differ fundamentally from traditional teaching, such as asking leading questions (trying to get 
students to say what the teacher would say if they were not avoiding telling) or having the student 
who already has the concept tell the others. Classroom discussion is a powerful tool. However 
teachers are too often working from a vague plan of conducting a classroom discussion so the 
majority of the students, who do not understand the new concept, understand it. Teacher education 
aims at strategies, skills, and dispositions, but neglects, for the most part, to help prospective and 
practicing teachers understand fundamentally new ways to promote the learning of particular 
concepts.  

The research program described is aimed at providing a partial basis for filling the voids in each 
of these areas. However, while remaining optimistic, some tempering is in order. It is reasonable to 
expect that what is learned through basic research should be useable by researchers (e.g., in design 
research). However, the effect on teaching and teacher education will require additional research 
and development. What a researcher learns after 10+ years of intensive investigation is not 
necessarily accessible to practitioners.10 We must ask of every product of basic research, “What part 
or version of this can practicing teachers understand with a realistic level of support?” And another 
set of questions not often asked about adult learners (e.g., teachers, doctoral students) is, “How can 
we understand the learning trajectory with respect to these new ideas (support experiences and 
learning process)?” 

Finally, there is good reason why few research groups endeavor to study learning directly. It is 
difficult and success in any particular study is uncertain (Simon et al, 2010). The ambitious 
program of research that I have outlined will require the efforts of many research groups who take 
part in shaping the program and contributing results. Further, as a community, we will need to 
continue to make a strong case for support of basic research in mathematics education in an era 
dominated by a demand for “results now.” 

Endnotes 
1. Ron Tzur and I collaborated on the initial work of this research program. We built upon his 

dissertation work and my prior research. Other collaborators have included Luis Saldanha, Evan 
McClintock, Tad Wattanabe, Gulseren Karagoz Akar, Ismail Zembat, Karen Heinz, and Margaret 
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Kinzel. Our current project includes Barbara Dougherty, Zaur Berkaliev, Arnon Avitzur, Nicora 
Placa, and Jessica Tybursky. 

2. We use a social lens to examine interactive aspects of the classroom and the constructs of 
social and sociomathematical norms to examine opportunity for learning 

3. Focus on abstraction is often seen as the province of constructivist theoretical approaches. 
However, Russian activity theory, derived from the theory of Vygotsky, uses abstraction as a key 
construct (c.f., Davydov, 1990). 

4. In case the reader is sceptical about whether there was a shared meaning for “bigger,” the 
same problem has been done in interviews in which the squares represented cookies that the 
interviewee liked and the question was “Which piece would you rather eat?” and the reasons for the 
answer were probed. The same phenomenon was observed. 

5. This process could be investigated and explicated further, but it is not within the aims of this 
paper. 

6. Answering this thought question empirically would present significant methodological 
challenges. 

7. There is widespread conviction that engaging students in developing new mathematical ideas 
is more effective than giving them the ideas in a lecture. However, given classrooms in which 
students are engaged in generating ideas, there is little or no attention to the differential 
contributions of students and the effect on the quality of their learning. 

8. The Measurement Approach to Rational Number (MARN) is supported by the National 
Science Foundation under grant no. DRL-1020154. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author and do not necessarily reflect 
the views of the National Science Foundation. 

9. Case in point was some protracted arguments on this point during our first project advisory 
board meeting. 

10. Often other researchers struggle to deeply understand the results of lengthy, focused 
investigations. 
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Lack of satisfaction with the quality of the mathematical knowledge of non-mathematics majors 
has led to the design of new curricular materials. In this study, a mixed methods explanatory 
design was used to compare the performances of two groups of engineering majors enrolled in 
two courses on differential equations and investigate their written work in light of differing 
curricular and instructional approaches. 

Introduction 
Calls for curriculum and instructional reform have been expanded to include collegiate 

mathematics education  (American Mathematical Society, 2011).  Lack of satisfaction with the 
quality of mathematical knowledge of students completing service courses in the mathematics 
department has raised considerable concerns regarding how these courses are taught.  Among 
many such courses, Differential Equations (DEs) entertains a particularly prominent role since it 
caters to a variety of clients from engineering areas.  Skills fostered in a traditional theory-driven 
DE course have been claimed to be of little value to these degree programs.  For instance, in a 
survey, Varsavsky (1995) found that engineering faculty value skills like modeling over 
technical competencies like differentiation and integration.  Indeed, engineering and physical 
science faculty recommend that service courses in mathematics be made more relevant to their 
students and suggest incorporating an engineering viewpoint (Czocher, 2010; Pennell, Avitable, 
& White, 2009; Varsavsky, 1995).  These perspectives have motivated the design of new 
curricular materials that aim to frame student learning in meaningful contexts (eg, Rasmussen 
and King, 2000).  Despite such curriculum development efforts, little is known about the actual 
impact of such curricula on student learning.  The primary motive of the present study was to 
address this gap.  To this end, I compared the performances of two groups of students enrolled in 
two different sections of an introductory course on DEs to see what differences, if any, existed in 
their work on various types of tasks due to exposure to differing curricular and instructional 
approaches.  One section followed a standard commercial textbook while the other used a 
reform-based curriculum with a conceptual orientation that was built around contexts central to 
engineering fields. 

Context and Background: The Case of Differential Equations 
The study of DEs is a unique point in the trajectories of engineering and physical science 

majors.  In some instances, it serves as a capstone to the calculus sequence.  On the other hand, 
an introductory course on DEs might be the first time that these students are exposed to material 
that is specialized for their disciplines.  Many introductory undergraduate courses strip the 
equations of their natural contexts in order to treat the equations abstractly and then treat DEs 
deductively.  That is, a general equation is presented, its solution is derived, and applications 
from the physical sciences related to the target equation can then be handled by manipulating the 
generic solution. 

Researchers have argued that curriculum and instruction must align in order to support 
students’ transitions to studying advanced mathematical topics.  The study of DEs poses special 
challenges to building and implementing supportive curricula since the “switch from 
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conceptualizing solutions as numbers to conceptualizing solutions as functions is nontrivial for 
students” (Rasmussen, 2001, p. 67), and students’ documented difficulties with function extend 
to the form of the initial conditions (ICs) (Raychaudhuri, 2008).  Others have shown a related 
aversion to the use of boundary conditions (Black and Wittmann, n.d.). 

“Unifying” views of introductory DEs range from the use of linear operators to physical 
approaches that emphasize formulation (see West, 1994) to models and derivations from first 
principles (Myers, Trubatch, and Winkel, 2008). Scholars have studied student performance on 
procedural and conceptual components of DE knowledge (Arslan, 2010) and on contextual and 
de-contextualized problems (Upton, 2004), whose analyses graded student responses as either 
“right” or “wrong;” a method too coarse to account for different heuristics or representational 
schemes potentially nurtured in instruction.  Donovan (2004), in a pair of case studies, 
demonstrated the variety in students' conceptualizations of linear DEs and their representations, 
but did not address the bases for student reasoning.  In contrast, Black and Wittmann (n.d.) 
studied students' reasoning strategies and identified important connections between the physical 
and mathematical interpretations of the DE model that influence student performance.  
Bingolbali, Monaghan, & Roper (2007) found that the teacher's proclivity for a particular 
interpretation of derivative was adopted by students.  Indeed, it is likely that the student is 
heavily influenced by the values placed on types of knowledge (Hedegaard, 1998). 

These considerations guided the development of the curricular materials whose impact on 
learning was examined in this work.  The reformed curricula, Baker's (n.d.) text, supports a 
unifying solution strategy with physical reasoning by showing how a guess-and-check heuristic 
for formulating the solution mimics the physical system's response to the forcing term in the DE.  
Additional considerations, regarding the contextual domains provided for students’ 
investigations, motivated the development of examples and contexts used in the text, as well as 
how content was sequenced. The curricula are described more fully in a later section of this 
article. 

Methods 
Participants  

The participants were 51 undergraduate students enrolled in an introductory DE course and 
the two postdoctoral lecturers who taught them.  The course is intended for non-mathematics 
majors and all 51 students were engineering majors. Of the 51 volunteers, 30 were in Lecture 1 
(L1) which used a custom edition of Elementary Differential Equations and Boundary Value 
Problems by Boyce and DiPrima and 21 were in Lecture 2 (L2) which used “An Introduction to 
Differential Equations for Scientists and Engineers,” a set of course notes written by a member 
of the math department faculty.  There were 25 males and 5 females in L1 and 15 males and 6 
females in L2.  Typically, students were in the end of their freshman or sophomore years, 
depending on their level of high school mathematics preparation. However, many of the students 
had earned enough college credit to have junior standing. The students carried, on average, 
between 10 and 11 credit hours in addition to their course on DEs, the equivalent of two or three 
additional classes.  The mean grade point average (GPA) for the participants was 3.29 (SD = 
0.44) and their mean mathematics GPA was 3.14 (SD = 0.61).  Their collegiate mathematical 
preparation, in terms of coursework, was uniform.  All had completed single- and multivariable 
calculus, but not linear algebra.  In addition, all had completed at least the first two quarters of 
their engineering and physics sequences. The two groups had similar backgrounds relative to the 
number of incoming credit hours, the number of quarters enrolled, the number of credit hours 
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earned, the number of credit hours carried, overall GPA, math GPA, and the number of math, 
science, and engineering credit hours taken. 

Both lecturers held postdoctoral positions and both were familiar with their respective 
curricula. L2 had some mathematics education experience and coursework during his graduate 
studies.  L1 was a nonnative speaker of English. 
Data Collection Instrument  
Three tasks were created toward the end of the observation period from material common to both 
lectures and embedded in the groups' respective final exams. To establish content validity, the 
items were drafted and revised five times with input from both lecturers, and finally from the 
course coordinator. This type of negotiation when designing data collection instruments that 
measure student learning has precedence in mathematics education (Boaler, 2008). The values of 
parameters were different for the two classes since final exams were administered on different 
days.  The problems were written with the conventions used in each class, eg, derivatives were 
denoted by y' in L1 and by dy/dt in L2.  Values for parameters were selected in order to simplify 
calculations while maintaining structural similarity between the matched problems.  Students in 
both classes were allowed graphing calculators.  A brief description of each problem is offered 
below. 
Problem 1 (P1): A first-order linear, constant coefficient, nonhomogeneous mixing problem.  

Part (a) asked the students to find the amount of contaminant in a tank for any time t, 
supposing that initially the tank was full of pure water. In part (b), the flow of the 
contaminant is turned off at time !=t . The students were asked to find the amount of 
contaminant for times !>t .  

L1 wanted his students to derive the differential equation, while L2 did not want to test that 
knowledge.  Both lecturers decided to abbreviate P1, cutting out a third part that asked the 
students to interpret their solutions in terms of the physical situation.  Thus, this problem is 
contextually situated, but is not an application of DEs to an engineering context.  Since these 
tasks were not identical for the two groups, I do not compare the students' scores on this item 
beyond including it in the total score for the tasks.  However, some information, such as students' 
handling of the ICs, is intact and relevant to the analyses presented here. 
Problem 2 (P2): A second-order linear, constant coefficient, nonhomogeneous DE:

2/4''4 teuu !=+ . Given the DE, part (a) asked students to find the general solution.  In part 
(b), students were asked to suppose that 0)0( uu = and that 1=(0)u'  and then to find a value 
of 0u so that the amplitude of the steady state solution was 5.   

The model in P2 represents a system that oscillates with no dampening, subject to forcing that is 
like an exponentially decreasing pulse.  The focus is on the connection between ICs and long-
term behavior of the system. 
Problem 3 (P3): Separation of variables.  Students were asked to use the separation of variables 

method to replace 0)()( =! xxt uxnutm  with a pair of ordinary DEs. 
In both lectures, PDEs were most commonly treated with constant coefficients.  P3 was designed 
to indicate whether students were able to use the method of separation of variables in a novel 
setting or if their knowledge was limited to a sequence of steps specific to the case

1)()( == xntm .  
Data Collection and Analysis   

Since this study followed a mixed methods explanatory design (Creswell & Plano Clark, 
2011), quantitative analysis of the exam tasks was followed with qualitative analysis of the 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

46



 

students’ responses.  Quantitative data were generated through the grading of exams for 
accuracy. Tasks were graded independently from the lecturers so that data transformation 
decisions would not affect students' grades. The quantitative design was a prospective causal-
comparative study and an ANCOVA was selected to analyze the total scores on the constructed 
tasks while controlling for the students' prior mathematics achievement, as measured by their 
math GPAs.  Other numerical transformations involve frequencies and percentages.  Qualitative 
data were generated through the observation of 24 (out of 29) sessions of each lecture and the 
detailed inspection of the students' responses to the tasks. 

Student responses were examined first to establish what kinds of solutions they attempted.  
For each problem, a rubric was created to account for the level of difficulty of each stage of the 
solution process, and each stage was subdivided into steps.  For example, one step of solving the 
DE by the method of integrating factor would require evaluating an integral. This step would not 
be broken down to diagnose the student's performance on integration by parts in order to avoid 
assessing prerequisite knowledge. 

Each step of a student's response was assigned a value of “correct” (1) or “incorrect” (0), but 
responses were graded so that step n+1 was graded for consistency with step n.  This decision 
prevented minor mistakes from compounding and so errors in student thinking could be 
diagnosed instead of tabulating wrong answers.  There were a total of 14 steps in P1, 13 steps in 
P2, and 7 steps in P3.  The value of each task, and so its parts, were scaled to 14 points to assign 
equal weight to each in the total score. 

24 class sessions of each section was observed over one academic term.  Lectures were 48-
minutes long and met three days a week.  Two 48-minute recitation sections were held on the 
other two days.  Field notes included the instructors' and the students' comments, the instructors' 
board work, and my overall impressions of how lessons progressed.  In analyzing observational 
records, I focused on lesson content, context, and pedagogy (Saroyan & Snell, 1997), noting 
lesson structure, the number and quality of examples used in each session, the number of 
connections made among topics made within and outside of mathematics, interactivity among 
the instructor and the students, and the mathematical behaviors that were modeled by the 
instructor. 

Curriculum and Instruction 
Both instructors used a traditional lecture format and both classes treated the same set of 

topics.  L1 used Boyce and DiPrima's text (T1), which intended to provide exposure to the theory 
of differential equations with “considerable material on methods of solution, analysis, and 
approximation” (Boyce & DiPrima, 2009, p. vii). T1 follows an exposition-example-exercise 
format, where new topics are introduced formally through definitions and formulae, organized 
around analytic techniques with topics grouped into modules to allow for flexibility in usage.  
Theorems are stated precisely in symbols and are sometimes proved rigorously and sometimes 
through example.  T1 does not assume familiarity with linear algebra, but many theorems rely on 
linear operators.  Exercises tend to drill for procedural fluency and theoretically oriented 
problems have step-by-step directions or ask only for verification.  In either case, the solution 
path is evident from the problem statement.  Separate sections are devoted to applications, such 
as mechanical vibrations, and these are placed after the sections that develop techniques for 
solving the relevant DEs. 

L2 used Baker's (n.d.) text (T2) which uses a modeling approach and the author's goal is to 
draw on common problems in the practice of science and engineering to motivate the creation 
and solution of DEs.  It follows an example-exposition-exercise format where physical 
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considerations precede mathematical formalism in each section.  T2 does not contain 
“theorems,” but instead offers “principles” which are written in English.  Some principles are 
proven rigorously and some are justified through examples.  Among the rigorously proved 
theorems, T2 uses English explanations while T1 relies on symbolic proof.  There are few truly 
concrete examples or exercises, as most have at least one parameter.  In comparison to T1, there 
are fewer exercises and these tend to be less technically difficult and less computationally 
oriented.  Only one solution technique is presented throughout T2: guess-and-substitute (G&S), 
which is similar to the method of undetermined coefficients. 

L1 followed the development of topics from abstract to concrete.  The lectures were content-
driven and L1 made every effort to convey the material on the syllabus.  He drew examples from 
the text's exposition or from exercises that were similar to the assigned homework problems, 
with a focus on computation.  Between one and seven examples were presented each lecture, 
with an average of between three and four per lecture.  The examples followed presentation of 
theory.  L1 held a goal orientation toward problem solving in that examples were considered 
complete when an answer was reached.  He selected examples to maximize variety in technical 
complexity and sequenced them logically so that the adjustments in parameters from one 
example to the next were evident.  The steps taken in each example were clearly labeled in order 
to provide guidelines to help structure student thinking about the problems.  Taken together, 
these pedagogical choices yielded high intra-lesson coherence.  Mathematics was communicated 
through symbolic representations and summary formulas.  Students were encouraged to ask 
questions, and they did so regularly but infrequently. 

L2 followed the development of topics through the text, but he did not regularly devote class 
time to explicit discussions of theory.  Lectures were context-driven, in that all abstractions were 
derived through applications.  Class time was spent on the structure of the physical problem, 
recognizing and articulating assumptions, deriving a model from first principles, and justifying 
its appropriateness, so the sessions had high inter-lesson continuity.  Each example modeled a 
simplified real-life physical problem and each took between one-half and three sessions.  L2 
focused on building students' awareness of symbols and formulae as tools to represent quantities 
and relationships.  The pace of the session was driven by L2's questioning, but the students were 
highly interactive, both posing and answering questions, while pursuing systematic exploration 
of the relationships between physical properties and their reflections in the model.  Examples 
rarely ended in formulae; instead L2 would ask metacognitive questions.  Thus, L2 held a 
process-orientation toward modeling.  He wrote very little on the board, instead communicating 
mathematics verbally. 

Findings 
Numerical Results  

P1 was missing from one student's exam in L1 and so his data are not included in the 
numerical analyses.  Students in L1 scored a mean of 27.55 (SD=1.76) out of the 42 points 
available (Range: 3.08, 42).  The mean score in L2 was 31.89 (SD = 1.90, Range: 6.38,42).  A 
fixed effects ANCOVA model was selected with Lecture as the independent variable and Math 
GPA as the covariate.  All statistical tests were performed at the 05.=! level and the data 
satisfied all assumptions for the model.  A homogeneity of slopes test revealed no significant 
interaction between Lecture and Math GPA.  The ANCOVA summary is shown in Table 1.  The 
main effect for Math GPA is statistically significant )001.,47,1,191.27( <== pdfFGPA and the 
adjusted main effect for Lecture is also significant )018.,47,1,972.5( === pdfFLec with a 
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moderate effect size and showing only moderate power (partial !2 = .113, observed power = 
.668).  Thus, when taking prior mathematics achievement into account, the L2 student performed 
better on constructed tasks. 

 
Table 1. ANCOVA summary table 

Solution Strategies  
Three techniques can be used to solve the DE in P1: the methods of integrating factor, 

separation of variables, and G&S.  The G&S method is the only method appropriate to solving 
the DE in P2.  In L1, the method of undetermined coefficients was presented in the context of 
second-order linear DEs of the formError! Not a valid embedded object.. After two lessons, 
f(t) was allowed to be nonzero and L1 explained the method symbolically and procedurally.  The 
students, in the text and in class, were given the form of the particular solution as
t s e!t!" Ak tk cos "t+" Bk tk sin "t # , in which they had to set the parameters s, ", and # to 
match the form of each of the summands of f,  and then apply the DE to determine the weights Ak 
and Bk.  In L2, the method was explained physically as follows: when written in standard form, 
the right hand side of the DE represents the external force applied to the physical system (the 
“forcing term”) and that the system responds to the forcing (the “response”) in kind.  Thus, the 
form of the response (ie, the solution) must match the form of the forcing.  Table 2 illustrates the 
frequencies of solution strategies used by the students, from left to right, they are: method of 
integrating factor, separation of variables, guess-and-substitute, and did not attempt (DNA). 

 
Table 2. Chosen solution strategies 

Almost all of the L2 students used the G&S strategy.  This is not surprising since it was the only 
strategy they were shown, but they did use it more successfully than L1 students used the other 
methods.  Again, this is not surprising since the L2 students had more practice with the method 
in various settings.  What is surprising is that the L2 students were able to successfully adapt the 
G&S strategy to the procedural problem, more often than did the L1 students.  Many L1 students 
either set 1)()( == xntm or else incorrectly applied the equation to the guess )()(),( tTxXtxu =
indicating that the “substitute” part of the strategy was not as prominent for the L1 students.  The 
G&S method highlights the relationship between the solution and the DE by framing the DE as a 
condition on the solution in much the same way as an algebraic equation is a condition upon its 
solution.  This perspective may be lost with techniques that reduce the relationship between the 
DE and the solution to a sequence of steps. 
Initial Conditions 

In P1 part (b), the IC does not correspond to the level of contaminant at time zero, but rather 
to when the flow of contaminant is halted.  Thus, the solution function is piecewise 
differentiable.  Nine students (31%) in L1 handled the ICs correctly in this case as compared 
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with 13 (62%) of the students in L2. The most common mistake committed was to neglect the 
constant of integration and was made solely by L1 students. The second most common mistake 
was not ensuring that the pieces of the solution were matched at $, caused by using 0=t .  In P2, 
the ICs determine specific properties of the long-term behavior of the solution so that amplitude 
is formulated in terms of the unknown ICs.  Sixteen students (53%) of the students in L1 handled 
the ICs correctly as opposed to 19 students (90%) in L2. Many students who arrived at one 
correct IC did not find the other since they did not extract both roots of the condition squared. 
However, the most common mistake, among both groups, was to apply the ICs only to the 
homogeneous solution. The second most common mistake was to apply the ICs to the steady 
state solution. This points to an interesting conception, since it amounts to setting 0=t  after 
letting !"t , but it is not pursued further here. 

Both lectures introduced ICs as “another condition on the solution to the DE.” ICs are an 
important part of the DE model, since they contain parameters that determine how the transient 
solution adjusts to the steady state solution.  One key difference between how the two lectures 
treated ICs was that in L2, ICs were driven by context and each time were derived from the 
physical situation during the derivation or the discussion of the model.  In contrast, the ICs in L1 
were either stated outright at the beginning of the initial value problem or were selected by 
considering the neatness of the solution. 

Discussion and Conclusions 
The students in L2 were more successful with the G&S strategy, which can be attributed to a 

number of reasons.  First, there were fewer strategies from which they could choose when 
solving problems.  In L2, guessing was an allowed heuristic.  Lastly, the G&S was developed on 
physical grounds, which allowed for alternative ways of understanding the solution strategy 
(Harel & Koichu, 2010).  One could also argue that since G&S does not require memorization 
then the strategy is easier to access and implement.  In a test-taking situation, the take-the-best 
heuristic (see Gigerenzer, 2008) might be the only accessible approach to the test taker.  In this 
light, L1 students needed a greater amount of time to search through all possible integration 
techniques in order to recognize a discriminating cue.  The fast-and-frugal nature of the G&S 
heuristic favors the L2 students whose allowable solution-space includes the G&S method, 
which mimics the familiar educated-guess-and-check strategies. 

In P1 and P2, students needed to attend to the ICs in novel ways.  In P1, the ICs join 
solutions from distinct, non-overlapping time periods.  The difficulty exhibited here by L1 
students may be less an indicator of correctly applied ICs and may instead be symptomatic of 
their discomfort with piecewise functions.  In comparison, L2 students' success in handling  ICs 
suggests that contextual treatment of ICs both places them appropriately within the solution 
procedure and strengthens conceptual connections among the components of the mathematical 
model in a sensible way.  Alternatively, L2 would close each example, not with a formula, but by 
modeling how to justify the solution process by matching properties of the solution with 
assumptions made at the outset of the example.  The looking-back heuristic thus reinforces ICs 
as relevant to the model. The application orientation of L2 and its text provides a foundation for 
relational understanding (Skemp, 1987) and legitimizes physical intuition as a way of 
understanding (Harel & Koichu, 2010) when working with ICs.   

Overall, the students in L2 performed better on the constructed tasks than did the students in 
L1. While there may be a number of extraneous factors contributing to this finding, evidence 
from a closer analysis of the students' responses reveals two main reasons for the difference in 
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performance.  The students in L2 were more adept at treating ICs and they were more successful 
in selecting and applying solution techniques.  While results merit further investigation, such as a 
larger sample size and more varied instrumentation, they do point to the potential of 
conceptually- and contextually-oriented curriculum and instruction for enhancing student 
learning of DEs. 
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HOW ARE GRAPHS OF TWO VARIABLE FUNCTIONS TAUGHT? 

This is a study about how graphs of functions of two-variables are taught. We are interested in 
particular in the techniques introduced to draw and analyze these graphs. This continues 
previous work dedicated to students’ understanding of topics of two-variable functions in 
multivariable calculus courses. The model of the “moments of study” from the Anthropological 
Theory of the Didactic (ATD) is used to analyze the didactical organization of the topic of 
interest in a popular calculus textbook, and in a typical classroom presentation. In so doing we 
obtain information about the institutional dependence of findings in previous studies. 

Antecedents 
Despite its importance, there are not many published articles in the mathematics education 

research literature that deal with the particularities of functions of two variables. The first 
published article we found that explicitly treats functions of two variables is by Yerushalmy 
(1997). In it he insisted on the importance of the interplay between different representations to 
generalize key aspects of these functions and to identify changes in what seemed to be fixed 
properties of each type of function or representation. Kabael (2009) studied the effect that using 
the “function machine” might have on student understanding of functions of two variables, and 
concluded that it had a positive impact in their learning. In other work, Montiel, Wilhelmi, 
Vidakovic, & Elstak (2009) considered student understanding of the relationship between 
rectangular, cylindrical, and spherical coordinates in a multivariable calculus course. They found 
that the focus on conversion among representation registers and on individual processes of 
objectification, conceptualization and meaning contributes to a coherent view of mathematical 
knowledge. Martínez-Planell and Trigueros (2009) investigated formal aspects of students’ 
understanding of functions of two variables and identified many specific difficulties students 
have in the transition from one variable to two variable functions. Using APOS theory, they 
related these difficulties to specific coordinations that students need to construct among the set, 
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one variable function, and R3 schemata. Finally, in a study about geometric aspects of two 
variable functions, Trigueros and Martinez-Planell (2010) concluded that students’ 
understanding can be related to the structure of their schema for R3 and to their flexibility in the 
use of different representations. They gave evidence that the understanding of graphs of 
functions of two variables is not easy for students, that it can be related to the structure of 
students’ schema for R3, and in particular, that intersecting surfaces with planes, and predicting 
the result of this intersection, plays a fundamental role in understanding graphs of two variable 
functions and was particularly difficult for students. 

The way students are taught, and the way mathematical topics are introduced in the textbooks 
used by students plays an important role on what they learn. In this study we analyze the way 
graphs of functions of two variables are presented in a widely used textbook, and in standard 
university classrooms. Our research questions for the part of the study we present here are: 

• How is the topic “graphs of two-variable functions” introduced in a widely used 
textbook? 

• How is this topic taught in a university class? 
• Are conversions among representations favored?  
• What relationships can be found between the above mentioned students’ difficulties, the 

presentation used in the textbook, and the selected classrooms? 

Theoretical Framework 
In this article we incorporate Anthropological Theory of the Didactic (ATD) as a tool for the 

epistemological analysis of the textbook and classrooms.  In this theory the mathematical activity 
and the activity of studying mathematics are considered parts of human activity in social 
institutions (Chevallard, 1997; Bosch and Chevallard, 1999). The theory considers that any 
human activity can be explained in terms of a system of praxeologies, or sets of practices which 
in the case of mathematical activity constitute the structure of what is called mathematical 
organizations (MO). Mathematical organizations always arise as response to a question or a set 
of questions. In a specific institution, one or several techniques are introduced to solve a task or a 
set of tasks. Tasks and the associated techniques, together form what is called the practical block 
of a praxeology. The existence of a technique inside an institution is justified by a technology, 
where the term “technology” is used in the sense of a discourse or explanation (logos) of a 
technique (technè). The technology is justified by a theory. A theory can also be a source of 
production of new tasks and techniques. Technology and theory constitute the technological-
theoretical block of a praxeaology. Thus a praxeology is a four-tuple (T/$/%/&) (tasks, 
techniques, technologies, theories), consisting of a practical block, (T/$), the tasks and 
techniques, and a theoretical block, (%/&), made up of the technological and theoretical discourse 
that explains and justifies the techniques used for the proposed tasks. Typically, a praxeology 
gives raise to new praxeologies as new problems are explored, techniques are generalized and 
different ones are introduced, the range of application of technologies expand, and the theoretical 
basis grows to encompass more general phenomena. This gives raise to mathematical 
organizations consisting of interrelated sets of praxeologies.  

Within an educational institution a mathematical praxeology is constructed by a didactic 
process or a process of study of a MO. This process is described or organized by a model of six 
moments of study (Chevallard, 2002) which are: first encounter with the praxeology, exploratory 
moment to work with tasks so that techniques suitable for the tasks can emerge and be 
elaborated, the technical work moment to use and improve techniques, the technological-
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theoretical moment where the technological and theoretical discourse takes place, the 
institutionalization moment where the key elements of a praxeology are identified, leaving 
behind those that only serve a pedagogical purpose, and evaluation moment where student 
learning is assessed and the value of the praxeology is examined. It is important to clarify that 
the order of the moments is not fixed. It depends on the didactical organization in a given 
institution, but independently of the order it can be expected that there will be instances where 
the class will be involved in activities proper to each of the “moments”.  

This didactic model is used in this study to describe the mathematical organization related to 
functions of two variables presented both in the textbook used by students and in the work done 
in class. This description will be helpful when looking for relations between results of the 
analysis and students’ difficulties and constructions found in the literature. The use of results of 
this endeavor can be helpful in the design and analysis of activities of a didactic sequence in 
terms of their institutional suitability with the purpose to help students understanding the concept 
of two variable functions. 

Methodology 
This study is related to a project being conducted by the authors in two universities in 

different countries. A textbook was selected by the researchers to be analyzed considering that it 
is used in both universities involved in the study, and widely used in other universities. Two 
researchers independently reviewed the text in terms of the theoretical framework and negotiated 
their findings until agreement was reached. One of the researcher observed several classes where 
the topic was introduced by different teachers, took notes about the way functions of two 
variables was taught by different teachers and interviewed some of them. After transcription of 
observations and interviews, data was analyzed again by two researchers and results negotiated 
between them. Results obtained were compared with those found in previous studies and with 
the genetic decomposition suggested in Trigueros and Martinez-Planell (2010) in terms of the 
constructions this model proposes for the learning of the topic in order to look for possible 
relations of constructions found to be made by students and the way functions of two variable are 
introduced in the text and in classrooms.  

In this study we concentrate on results related to graphs of two variable functions. For this 
purpose, we take into account the analysis of the selected textbook and the classroom 
observations and interview from one of the teachers who represent the way most of the observed 
teachers taught this topic to their students. 

Analysis of a Textbook Based on the ATD Moments of Study 
Graphs of functions of two variables are introduced in courses of multivariable calculus to 

help students construct a richer mental model to reason about them, and to illustrate the 
important concepts of multivariable differential and integral calculus.  

In the selected text, Calculus: early transcendentals by James Stewart, 6th edition (2006), 
multivariable functions are introduced in the text in chapter 14 devoted to partial derivatives. 
However, fundamental planes  (that is, planes parallel to the coordinate planes), considered as a 
prerequisite to understand these functions, are met before, in Section 12.1, where the three-
dimensional coordinate system is introduced. This is done through the introduction of the tasks 
of graphing the planes z=3 and y =5. This can be considered a moment of the first encounter with 
graphs of two variable functions. These tasks remain isolated since they are not afforded any 
special role in relation to their use in understanding other subsets of R3 (by forming intersections, 
for example), and are not met again until the exercises at the end of the section. Its only 
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connection with a mathematical organization is their appearance in a section devoted to three-
dimensional space. There is another moment of the first encounter for the topic of graphing 
functions of two variables in Section 12.6 where the graphs of quadric surfaces are shown for the 
first time. Even though quadric surfaces are not always graphs of functions of two variables, the 
task of graphing an ellipsoid with equation 2 2 2/ 9 / 4 1x y z+ + =  is introduced, and the technique 
to do the task explained: “By substituting 0z = , we find that the trace in the xy-plane is 
2 2 / 9 1x y+ = , which we recognize as an equation of an ellipse”, and immediately generalized to 

a families of traces: “In general, the horizontal trace in the plane z k=  is 2 2 2/ 9 1 / 4x y k+ = !  
… ” . We found another example of a moment of first encounter in Section 14.1 where after 
defining functions of two variables, the text presents the first examples of graphs of functions. A 
linear function and the top half of a sphere are graphed by recognizing their types of equations 
(no use of traces), then a graph is generated by a computer without using or mentioning traces, 
and finally an elliptic paraboloid is presented, one that had been presented before, by making 
reference to its prior appearance.  

We can observe an absence of questions generating the need for graphing functions, nor the 
importance of understanding how to graph them. These facts, together with the isolation of the 
tasks presented, are not conductive to a mathematical activity where techniques arise in a 
productive way in terms of students’ learning.  

In the exploratory moment in Section 12.6, the tasks of graphing five quadric surfaces are 
introduced, perhaps not as an end in and of itself, but as a means to establish the technique of 
traces that expectedly is to be further developed with the continued exploration of other tasks. 
Although at first sight this number of might seem quantitatively adequate, the examples and their 
accompanying explanation require students from the outset to recognize and place in space a 
family of curves, a task that has not been introduced before. The tasks in this exploratory 
moment are not adequate to prepare students to use traces as a technique to draw the graphs of 
two variable functions. The exploration continues in Section 14.1, where the text mentions the 
use of traces in computer generated graphs and shows four such graphs with hardly any 
comment. Here, the technique of using traces to draw graphs of function is related to tasks done 
with technology, but the way it is presented makes it difficult for students to interpret how the 
technique works in this mathematical organization.  

As we can see the textbook’s moment of exploration does not present students with 
opportunities to encounter relevant tasks which can help them make sense of what the traces 
shown are about, they also are not given real opportunities to explore the tasks in order to find 
regularities or properties which can help them make sense of the technique that is being 
introduced.  

To examine the moment of practice of the technique we found that in Section 12.1 there are 
some exercises that make direct or indirect use of fundamental planes to describe regions in 
three-dimensional space. Only a few of them are assigned exercises in the syllabus of both 
courses. Further and more importantly, these exercises do not provide the opportunity of 
exploring the result of intersecting fundamental planes with subsets of R3 and to relate these 
intersections with the technique of traces introduced before. Then, in Section 12.6, relatively few 
exercises at the end of the section require using sections to produce the graph of a surface, and 
only six of them are assigned in the courses’ syllabus. In Section 14.1 we found some exercises 
that require using cross-sections to draw the graph of a two variable function, most of them are 
presented in terms of matching problems. This kind of problems would be useful to exercise the 
technique of drawing graphs of surfaces if they required students to justify their selections using 
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cross-sections. As they are presented, students attempt using other strategies, frequently without 
success, and hence these tasks do not really give students the opportunity to practice the 
technique introduced. Exploratory moments are not integrated and systematic; the text has hardly 
any task where interpretation or justification of the technique is needed. It introduces other 
techniques, i.e. recognition of the algebraic form of quadric surfaces, but unrelated with the use 
of traces. 

We can say that the text does not provide enough opportunities for the students to work on 
the practical block of the praxeology and no ground is set to develop consistently the theoretical 
part of the praxeology related to graphing functions and converting flexibly among different 
representation registers. 

As discussed in Chevallard (2007), the moment of development of technology and theory is 
closely interrelated with each of the other moments of study. This is clearly seen to be the case in 
this topic. The technology of using traces or cross-sections to draw the graph of a function of two 
variables is introduced in the moment of first encounter and developed with scant opportunities 
to do task explorations, as discussed above. In the book, there is not an explicit discussion of the 
fact that substituting a number for a variable in an equation with three variables corresponds to 
intersecting a fundamental plane with the graph of the equation. Hence, there is hardly an 
explanation about cross-sections, projections, and contours. The examples discussed in Section 
12.6 assume that students can readily recognize families of curves and place them in space; the 
reader is left to make sense by him or herself, or resort to a memorized table of surfaces and 
formulas to answer questions about graphs of two variable functions.  

From the point of view of ATD, the lack of a technology to make sense of the technique 
introduced leaves the mathematical organization ungrounded. Students may not understand why 
the graph of a function of two variables is important, why it is a surface and how to make sense 
of even computer generated graphs. The mathematical organization constructed consists of 
isolated ideas. It does not have coherence. 

Consider now the moment of institutionalization. From the point of view of the two 
educational institutions, as documented in the course syllabus, this is a topic to be mastered. 
Differential and integral calculus of functions of two variables is to a large extent based on 
reducing problems of functions of two variables into problems of functions of one variable by 
holding a variable fixed and analyzing the resulting one-variable function. The textbook can be 
considered as the reference for the institutionalization of those elements of the mathematical 
organization that are considered as mathematical objects. However, as discussed before, the way 
graphs of functions are presented does not provide any ground for students to be aware of the 
importance of this idea. Moreover, quadric surfaces are not used again in any substantial way 
after their introduction in Section 12.6, their importance and their role is never clarified. They 
remain isolated from the rest of the mathematical organization being presented in multivariable 
calculus. Even if it appears that the intention was to use them, as a means to introduce sections in 
graphing surfaces, this goal is not achieved as we have seen. They are not reinforced in Chapter 
14 where functions of two and three variables are introduced. The moment of institutionalization 
of this topic is not clear. 

 The moment of evaluation of what is learned by students is done by the instructors teaching 
the course. Although the textbook includes some review questions and a test, for the most part 
they are not related with graphing functions of two variables, and they are not used by the 
teachers. If we review the courses’ syllabus we find that students are evaluated using three or 
four partial examinations and a final examination. In one of the universities the topic of graphing 
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surfaces comes late in the semester of Calculus II, and is not included in a partial examination, so 
it accounts for no more than 3% of the final grade but in Calculus III the topic is evaluated more 
thoroughly. At the other university the topic is covered at the beginning of Calculus III and is 
evaluated in a partial examination. Despite the fact that the analysis of graphs of two variable 
functions by considering its restriction to fundamental planes is pervasive throughout the study 
of calculus of two variables, its introduction through the textbook and in evaluations, does not 
stress that importance. Students get the impression that this is not an important topic and may not 
pay attention to it. There is not a clear presence of the moment of evaluation of the technique 
itself in the textbook. 

Analysis of the Teaching of the Graphs of Two Variable Functions  
As can be expected, professors in their class complement the information given in textbooks. 

We now use the moments of study to analyze the data we obtained from observing the classes of 
a particular professor during the two weeks he devoted to the teaching of functions of two 
variables, as an illustration of how the teachers work in class, since we found out many 
similarities in the work of all the teachers observed, even though they teach in different 
countries. Again, we focus here on their graphs. 

 After a brief discussion of one variable functions where the teacher emphasizes graphs of 
these functions, in particular linear and quadratic functions, he introduces functions of two 
variables as an extension of functions of one variable and asks students how they would graph 
this type of function and what kind of geometrical object the graph would be. After discussion 
with the whole group the teacher leads the students to the fact that the graph should be a surface. 
He introduces the equation of a plane in R3 and its relationship to the graph of the plane, using 
fundamental planes in the analysis. Students are given a few tasks where they have to draw 
planes parallel to the coordinate planes and to find their equation. The moment of the first 
encounter with two variable functions is presented in terms of the relationship between functions 
of one and two variables and the question of how the graph would look like. Fundamental planes 
are introduced but there is no justification of why they are needed. 

Later on, the class as a whole discusses quadric surfaces; the tasks for discussion consist in 
finding the conic curves that combined give raise to different surfaces. Then tasks are given to 
the students where they have to find intersections of a surface with fundamental planes in order 
to graph a given function and find its domain and range.  
Thus the moment of task exploration consists of a series of tasks designed for the students to be 
aware of the difficulties involved in graphing functions of two variables and how they can use 
some strategies, such as using fundamental planes, including intersections with the coordinate 
planes to help them doing so. Graphs of functions are also linked with other properties of 
functions of two variables. An example of a task is: draw the graph of the function z=2-y2 by 
using different planes of the form x=k. It is interesting to note that when students use the planes, 
the equation remains the same, so they have to discuss the difference between the graph of the 
function and the intersection curves. The teacher then gives homework where students can use 
computer generated graphs to relate the equation of quadric surfaces with their graphs. In the 
moment of task exploration students work with graphing functions of two variables using 
fundamental planes. The technique is introduced as a means to facilitate graphing the functions 
and it is also linked to the domain and range of the given functions. We consider that up to this 
point, the teacher is constructing the practical part of the praxeology. We noticed, however that 
this moment is not expanded to the homework; it goes back to graphs and equations of quadric 
surfaces without connection to the introduced tasks. 
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The moment of practice of the technique is quite restricted. After introducing the technique 
the teacher goes back to the definition of function of two variables and gives students some tasks 
where they have to find domain, range and graph of several functions. Students can either use 
what they have reviewed about quadric surfaces and their graphs, or fundamental planes. Most of 
the tasks are related to quadric surfaces. 
Students do not have enough opportunities to work with the technique, although it seems clear to 
them that the use of fundamental planes is related to finding these graphs.  

While working with the technique there is some explicit discussion of the fact that 
substituting a number for a variable in an equation with three variables corresponds to 
intersecting a fundamental plane with the graph of the equation, and some explanation about 
contours and projections. However, since the number of tasks worked by the students is reduced, 
in our opinion, the moment of the development of the technology is not well developed, this may 
leave students with a superficial idea of the importance of the technique, although they may be 
able to use it with simple functions. The technological-theoretical block of the praxeology is not 
well developed in this class. 

The professor works with other examples when finding graphs of functions, and each time he 
makes clear that fundamental planes, contours and projections are useful to understand how the 
function “behaves”. This repeated emphasis can be considered as the moment of 
institutionalization of the topic we are concerned with. 

In the first partial exam the teacher asks students to draw the graph of a simple function using 
fundamental planes. He also asks a question where students have to find the intersection of a 
fundamental plane with a given surface and they have to graph the resulting curve in the plane. 
This can be considered the evaluation moment. 

Discussion and Conclusions 
Results of the previous analysis show that even though curriculum and teachers underline the 

importance of the graphs of functions of two variables in relation to their study, the components 
of the praxeology are presented in an isolated and incomplete form in the textbook used and in 
the analyzed classrooms: its practical block is presented in a very superficial way, there are very 
few opportunities for students to do tasks where they can establish relationships among different 
representations, and the technological-theoretical block is absent. This presentation is bound to 
be ineffective, in terms of learning. Its importance is also not communicated to the reader. We 
can also see that although professors, as demonstrated by the one described here, present this 
praxeology with more elements, including more work on tasks relating representations, in terms 
of the moments of study, this presentation is also incomplete. It consists of quite isolated 
elements, since the technique introduced is not practiced enough and is not clearly related to a 
technological discourse.   

In previous research Trigueros and Martínez-Planell (2009, 2010) investigated the 
relationship between students’ notion of subsets of Cartesian three-dimensional space, and their 
understanding of graphs of two-variable functions with students who had taken courses as the 
one described here and used the textbook as a reference, using APOS theory and Duval’s theory 
of representations as a theoretical framework. Results from these studies showed that 
understanding of two variable functions is not easy for students and can be related to the 
structure of their schema for R3 and to their flexibility in the use of different representations. In 
particular, it was shown that students who had completed a multivariable calculus course present 
many difficulties with constructions involving fundamental planes and surfaces in Cartesian 
space. Most of the interviewed students had difficulty relating information about two variable 
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functions in different representation registers, did not use fundamental planes to draw graphs, 
showed confusion between surfaces, curves and solids in space and only one of them was found 
to be able to intersect surfaces with planes and predict the result of this action. Results also 
demonstrated that most students have many difficulties understanding functions of two variables, 
their domain and range, and that the generalization of understanding of one variable functions to 
two-variable functions, in particular in the case of graphical representation, is not direct. The 
study showed, for example, that many students do not readily convert the action “substituting 

0z = ” , which is a task, into that of intersecting a fundamental plane with the surface, so they are 
not ready to consider families of traces. They need more opportunities to work on tasks that help 
them interiorize actions into processes, and thus build the necessary techniques.  

Results of the present study, together with those of the previous ones, show a more complete 
and detailed picture of observed phenomena. It is not surprising that students do not learn how to 
use traces to draw graphs of two variable functions. It is also comprehensible why they have 
difficulties to distinguish different subsets of Cartesian space and do not clearly understand the 
importance of being able to analyze graphs of these functions. Results obtained from the analysis 
of the moments of study of the mathematical activity associated with this topic demonstrate that 
not enough opportunities are given to students to master the techniques and technologies needed 
to analyze and use graphs of two variable functions. So, an effort needs to be done to balance 
activity in class so than all the moments of study are present in the study of these functions and 
help students deepen their understanding. It is true that students can use technology to see the 
graphs of functions, but without the necessary tools to make sense of the information contained 
in them, they may not “see” what the teacher intends to show.  

Taken together, results of both studies give information about what needs to be done. We 
have started some work in this direction. We have designed sets of activities aimed at helping 
students to construct a better understanding of functions of two variables. Activity sets are 
available on the internet at http://math.uprm.edu/~rafael/. The design of these activities follows 
the constructions modeled in the refined genetic decomposition described in Trigueros and 
Martinez-Planell (2010), and also takes into account the characteristics of the two universities 
where the studies took place.  
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The goal of the present study was to report an instrument designed to determine students’ 
mathematical performances and preference for visual or analytic thinking for the calculus 
derivative and antiderivative tasks as well as examine the relationships among students’ 
cognitive style, cognitive ability, and mathematical performance in calculus. Data were collected 
from 150 Advanced Placement calculus students. The results suggest that the instrument is 
measuring an important component of cognition and has the potential to be a measure of 
performance and preference for visual thinking in calculus. 

Introduction 
Researchers have been interested in identifying the preference and ability components of 

cognitive style for several decades (e.g., Clements, 1979; Bishop, 1980, 1989; Hegarty & Waller, 
2005). The visualizer-verbalizer distinction in particular has been an area of interest for 
researchers in various disciplines (e.g., Hadamard, 1945, Kozhevnikov, Hegarty, & Mayer, 2002; 
Paivio, 1971; Richardson, 1969, 1977). The goal of the present study was to report an instrument 
designed to determine students’ mathematical performances and their preferred mode of thinking 
for the calculus derivative and antiderivative tasks as well as examine the relationships among 
students’ cognitive style, cognitive ability, and mathematical performance in calculus. 

Background 
Krutetskii (1976) identified types of mathematical giftedness based on students’ preferences 

for two cognitive processes: verbal-logical or visual-pictorial. Following the work of Krutetskii 
(1976), Moses (1977), Lean and Clements (1981), Suwarsono (1982), and Presmeg (1985) have 
recognized that individuals could be placed on a continuum (i.e., degree of visuality) according 
to their preference for visual processing. In designing instruments —Problem Solving Inventory 
(PSI) and Mathematical Processing Instrument (MPI)—consisting of algebra word problems to 
determine students’ preferences, and in their work, Moses and Suwarsono defined visuality as 
the extent to which a learner prefers to use visual processes to solve mathematics problems. That 
is, visualizers are considered as learners who prefer to think with images and visual strategies, 
and analyzers (or verbalizers) as learners who prefer not to think with images and visual 
strategies when there is a choice on a specific task. In this study, we used the visualizer-
verbalizer distinction as a lens to determine students’ preferred mode of thinking. However, in 
the remainder of this paper, we have used the terms “analytic” and “analyzer” interchangeably to 
describe verbal-logical processing or verbalizers.  

There have been studies of cognitive abilities and styles in mathematical performance in 
different content areas. Battista (1990) with high school students found that spatial visualization 
and logical reasoning were significant factors of geometry achievement and geometric problem 
solving, and that spatial visualization was related to the use of visual and analytic problem 
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solving strategies (i.e., analytic, visual without drawing, and visual with drawing). A similar 
finding was reported by Ferrini-Mundy (1987), who found a correlation between spatial ability 
and certain aspects of calculus. However, other research has shown divergent perspectives. 
Studies including MPI, developed by Suwarsono (1982) and later modified by Presmeg (1985) as 
a measure of visualizer-analyzer cognitive style have found either a weak relationship or no 
relationship between either mathematical performance or cognitive abilities and mathematical 
visuality. For instance, Galindo-Morales (1994) compared mathematical visuality indicated by 
MPI and performance of students enrolled in three calculus courses using different instructional 
approaches (i.e., graphing calculator, Mathematica, and no technology) and concluded that there 
was no significant relationship between the degree of visuality and calculus performance in any 
of the three groups. Hegarty and Kozhenikov (1999) administered the MPI to measure sixth 
grade students’ problem solving performance and preference for visual thinking. Their results 
revealed that mathematical visuality did not correlate with problem solving performance and was 
negatively associated with the cognitive abilities—verbal ability, nonverbal reasoning, and 
spatial ability.  

Our contention is that calculus requires visual thinking and adequate understanding of visual 
representations, and that aspects of visuality (or visual imagery) that play an important role in 
calculus performance may not be measured accurately by existing questionnaires consisting of 
tasks that do not involve calculus. Moreover, research has shown that the nature, complexity, or 
novelty of a task influences the degree of visuality (or visual imagery) a student uses when 
solving the task (e.g., Dean & Morris, 2003; Lowrie & Kay, 2001; Massa & Mayer, 2006; 
Paivio, 1971; Richardson, 1977). Although various tasks and questionnaires have been designed 
to measure cognitive styles and learning preferences related to the verbalizer-visualizer 
distinction (e.g., Mayer & Massa, 2003; McAvinue & Robertson, 2006-2007; Riding, 2001), no 
adequate instrument for Calculus is available. Thus, there is a need for a calculus instrument 
designed to determine students’ mathematical visuality. We believe this demands research 
examining the role of cognitive abilities and styles in calculus performance. The present study 
extends existing research on cognitive styles by examining the relationships among calculus 
students’ preferred modes of thinking, cognitive abilities, and mathematical performances and 
provides measures of visualizer-analyzer style dimension and mathematical performance in 
calculus.  

Method 
Participants 

The participants were 169 high school students who were enrolled in Advanced Placement 
(AP) calculus courses at four high schools in two school districts in Central Florida in the United 
States at the time of the study. All 169 students agreed to participate in the study. Nineteen 
students who failed to take all tests were excluded from the data.  Of the 150 students, 55 percent 
of the students were males, and 45 per cent were females. 
 
Materials 

The six tests, measuring spatial orientation (Cube Comparisons (CC) and Card Rotations 
(CR)), spatial visualization (Form Board (FB) and Paper Folding (PF)), and logical reasoning 
(Nonsense Syllogisms (NS) and Diagramming Relationships (DR)) abilities, are part of the KIT 
of Reference Tests for Cognitive Factors (Ekstrom, French, & Harman, 1976). Cognitive style 
tests consisted of a revision of Mathematical Processing Instrument for Calculus ([MPIC], 
Haciomeroglu et al, 2009) and a modified version of Mathematical Processing Instrument 
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([MPI], Suwarsono, 1982). The students’ scores on the Advanced Placement (AP) Calculus 
Exam were collected from teachers at the end of the study.  
 
Spatial Ability Measures 

The Cube Comparisons Test consists of 21 items and requires the participant to view two 
drawings of a cube and determine whether or not the two drawings can be of the same cube. The 
Card Rotations Test consists of 10 items, each of which presents a two-dimensional figure and 
eight other drawings of the same card. The participant indicates whether each of the eight cards, 
without reflecting, is the same or different from the original figure. The Form Board Test 
consists of 24 items. Each item presents five shaded drawings of pieces and requires the 
participant to decide which of the shaded figures, from two to five, can be used to make the 
given geometric figure. The Paper Folding Test consists of 10 items each of which illustrate 
folds made in a square sheet of paper and a hole punched in it. The participant selects one of the 
five drawings that shows the position of the holes when the paper is completely unfolded.  

 
Logical Reasoning Ability Measures  
     The Nonsense Syllogisms Test consists of 15 items. Each item is a formal syllogism, in which 
statements are nonsense and cannot be solved by reference to past learning. The participant 
determines whether conclusions drawn from the statements show good reasoning. The 
Diagramming Relationships Test consists of 15 items. In each item, the participant selects one of 
five diagrams, which illustrates the interrelationships among sets of three objects.  
 
Cognitive Style Measures 

Two cognitive style tests, a revision of Mathematical Processing Instrument for Calculus 
([MPIC], Haciomeroglu et al, 2009) and a modified version of Mathematical Processing 
Instrument ([MPI], Suwarsono, 1982), were used to determine the degree to which students 
preferred visual or analytic thinking.  

The MPIC and the MPI consist of two parts. The first part of each instrument is a test 
consisting of mathematical tasks: there are 10 derivative and 10 antiderivative tasks (i.e., 7 
graphic and 3 algebraic tasks in each test) on the MPIC and 8 algebra word problems on the 
MPI. The second part is a visualizer-analyzer questionnaire consisting of a visual and an analytic 
solution for each task on the MPIC and at least 3 or more visual or analytic solutions for each 
task on the MPI. Upon completion of each test, the students were given the visualizer-analyzer 
questionnaire and were asked to choose for each task a method of solution that most closely 
describes how they solved the tasks.  

In this study, the MPIC was used to measure the students’ preference for visual thinking and 
mathematical performance for derivative and antiderivative tasks presented graphically or 
algebraically. Thus, it yielded two performance and two visuality scores for each student: 
performance (P-G) and visuality (V-G) scores from 14 graphic derivative and antiderivative 
tasks, and performance (P-A) and visuality (V-A) scores from 6 algebraic derivative and 
antiderivative tasks. The MPI was used to measure mathematical visuality, but not performance 
because it consisted of algebra word problems and may not reflect the differences in their 
mathematical performance. The internal reliability of the MPI visualizer-analyzer questionnaire 
was 0.225. The internal reliability of the V-G (14 graphic tasks) and V-A (6 algebraic tasks) 
visualizer-analyzer questionnaires were 0.918 and 0.71 respectively.  
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Calculus Performance Measures  
     Three calculus performance scores were included in the analyses. The students’ scores on the 
AP Calculus Exam were collected from teachers at the end of study. The AP Calculus Exam is 
an important standardized test. High school students who perform well can earn college credit 
and advanced placement. It covers differential and integral calculus topics, and scores are 
reported on a 5-point scale (5 is the highest and 1 is the lowest). The students’ calculus 
performance was also assessed by the MPIC Derivative and Antiderivative tests presented 
graphically and algebraically. The internal reliability of graphic (P-G) and algebraic (P-A) tests 
were 0.801 and 0.36 respectively. 
 

Procedure 
All students received standardized instructions and were tested in groups of 12 to 30 in their 

classrooms. All participating students gave their informed consent and were debriefed at the end 
of the study. Four school visits were made during semester, and the tasks were administered in 
the following order: At the first visit, Form Board, Card Rotations, and Diagramming 
Relationships were administered. At the second visit, Paper Folding, Cube Comparisons, and 
Nonsense Syllogisms were administered. The students had completed MPI test prior to the third 
visit, and they were first given MPI questionnaire and then MPIC Derivative test and 
questionnaire at the third visit. At the fourth visit, MPIC Antiderivative test and questionnaire 
were administered. The students were willing to participate in the study and enjoyed most of the 
tests under classroom conditions. We were unable to administer fewer tests per day due to the 
time restrictions. Results might have been higher under research conditions. The students were 
given 8 minutes for FB, 4 minutes for ND and DR, and 3 minutes for CC, CR, and PF. 
Completion of MPIC and MPI was not timed. The total scores for CC, CR, FB, and NS tests 
were determined by subtracting the number of incorrect answers from the number of correct 
answers. Since there were 5 response options for each item on PF and DR, the total scores were 
determined by subtracting one-fourth the number of incorrect answers from the number of 
correct answers.  
 
Scoring of MPIC and MPI 

In determining preference for visual or analytic thinking, the primary goal was to identify the 
students’ methods as visual or analytic; whether their answers were correct or incorrect mattered 
less than their method(s) in measuring mathematical visuality. On the MPIC visualizer-analyzer 
questionnaire, to determine the students’ visual preference scores for the derivative and 
antiderivative tasks, they were given a score of 0 for each analytic solution and 2 points for each 
visual solution. If a solution does not give any indication of method or both methods were used, 
a score of 1 was given. On the MPI visualizer-analyzer questionnaire, to determine the students’ 
visual preference scores for the algebra word problems, they were given a score of 0 for each 
analytic solution and 1 point for each visual solution. Thus, for the derivative, the antiderivative, 
and the MPI questionnaires, the total possible scores were 20, 20, and 8 points respectively.  
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In assessing students’ 
performance on the MPIC 
Derivative and Antiderivative 
tests, the students were given 
a score of 0 for each incorrect 
answer and 1 point for each 
correct answer. Thus, for each 
of the two tests, the total 
possible score was 10 points. 
To illustrate the use of the 
MPIC, we give an example of 
one of the derivative tasks 
(see Figure 1) and the 
corresponding item in the 
questionnaire.  We consider 
thinking as visual when 
individuals prefer to use 
visual methods and thinking 
as analytic when individuals 
prefer not to use visual 
methods when there is a 
choice on a specific task. Analytic solutions are generally equations-based.  An analytic solution 
to a task presented graphically typically may involve translation to an equation, computing the 
integral of the equation, and then using this new equation to draw the antiderivative graph.  

We observed that instead of estimating equations precisely, analytic students referred to basic 
groups of functions such as linear, quadratic, or cubic functions and their derivative graphs 
associated with odd or even powers of x respectively. The following is the analytic solution 
given on the questionnaire for the derivative task in Figure 1: I estimated the equation of the 
graph (or recognized the equation of the graph). For example: This could be the graph of f(x) = 
!x2 so I computed the derivative as f "(x) = !2x and drew the derivative graph using this 
equation. 

Visual solutions are image-based.  They are able to visualize the changing slopes of tangent 
lines to the function and accordingly are able to construct an entire derivative graph with no need 
to consider individual parts of equations at critical points or intervals.  These individuals are able 
to determine the shape of derivative graphs based on their visual estimates of slopes. The 
following is the visual solution given on the questionnaire for the derivative task in Figure 1: 
From the graph I estimated the slopes (or the slopes of tangent lines) at various points on the 
graph of the function and used this to draw the graph of the derivative.  For example: The slopes 
of tangent lines are positive and decreasing as x approaches 0 from the left. The slope is zero at 
x = 0 because the graph of the function has a horizontal tangent line at (0, 1). The slopes of 
tangent lines are negative and decreasing as x approaches positive infinity.   

For the tasks presented algebraically, we consider thinking as visual when students prefer to 
draw the graph of the given function on paper (or in mind) and estimate the slopes of tangent 
lines at various points on this graph to draw a possible graph of the derivative or antiderivative. 
On the other hand, we consider thinking as analytic when students prefer to calculate the 
derivative or integral, and used this equation to draw a possible graph of the derivative or 

Graph is shown. Please sketch the graph of the derivative. 

 
 

Figure 1. Derivative task. 
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antiderivative. For instance, one of the algebraic tasks requires sketching a possible graph of the 
antiderivative, given f "(x) = 3x2 + 1. An analytic solution involves computing the integral as f(x) 
= x3 + x2 + c and drawing the graph of f(x) using this equation, whereas a visual solution 
involves drawing the graph of f "(x) = 3x2 + 1 on paper (or in mind) and using the y values to 
estimate the slopes to draw the graph of the antiderivative.  

Results 
Means and standard deviations for each of the ten measures appear in Table 1. In order to 

determine between cognitive styles as assessed by the MPIC and the MPI visualizer-analyzer 
questionnaires and the other variables, Pearson product-moment correlations were computed. 
The correlations between cognitive styles, abilities, and mathematical performances are 
presented in Table 2.  

 
Correlational Analysis 

There was a significant correlation between the three measures of calculus performance. The 
correlations between MPI and the other two measures of cognitive style V-G and V-A were non-
significant and negative. Of the three measures of cognitive style, V-A significantly correlated 
with AP and P-G. There was a significant but small correlation between V-A and P-G. The MPI 
had non-significant negative correlations with the three performance measures. The correlations 
between the three measures of cognitive style and the measures of spatial and logical reasoning 
abilities were either negative or non-significantly low.  

Among the spatial ability measures, only FB had a significant correlation with P-A. CC and 
CR had the lowest correlations with the performance measures. FB, PF, NS, and DR 
significantly correlated with AP and P-G. The correlation between CC and P-G was significant, 
but CR was correlated neither with AP nor with P-G. It can be seen from the correlations of 
cognitive ability tests, except CR and FB, the four measures of spatial ability significantly 
correlated with each other. The two measures of logical reasoning ability significantly correlated 
with each other. DR correlated three of the four measures of spatial ability, CC, FB, and PF, 
whereas NS only correlated with FB, suggesting that FB was the only spatial ability measure 
correlating with both measures of logical reasoning ability. 
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Table 1 
Means and Standard Deviations of Measures  

Measure Label M SD n 

1. AP Calculus Exam AP 2.69 1.55 150 
2. MPIC Derivative & Antiderivative Tests - Graphic P-G 0.46 0.26 150 
3. MPIC Derivative & Antiderivative Tests - Algebraic P-A 0.24 0.18 150 
4. Cube Comparisons Test CC 9.99 4.70 150 
5. Card Rotations Test  CR 59.01 15.35 150 
6. Form Board Test FB 7.74 5.68 150 
7. Paper Folding Test PF 6.52 2.23 150 
8. Nonsense Syllogisms Test NS 2.55 4.50 150 
9. Diagramming Relationships Test DR 8.69 3.74 150 
10. MPIC Visualizer-Analyzer Questionnaire - Graphic V-G 1.09 0.67 150 
11. MPIC Visualizer-Analyzer Questionnaire - Algebraic V-A 0.60 0.56 150 
12. MPI Visualizer-Analyzer Questionnaire MPI 0.62 0.18 150 

 
Table 2 
Correlation Matrix for Twelve Measures 
Measure 1 2 3 4 5 6 7 8 9 10 11 12 

1. AP —            
2. P-G .62* —           
3. P-A .42* .54* —          
4. CC .23 .28* .20 —         
5. CR .16 .24 .04 .50* —        
6. FB .38* .40* .28* .45* .23 —       
7. PF .33* .33* .15 .36* .35* .47* —      
8. NS .30* .40* .17 .20 .14 .27 .10 —     
9. DR .36* .40* .23 .34* .18 .37* .30* .41* —    
10. V-G .31* .51* .18 .09 .08 .19 .17 .18 .16 —   
11. V-A .11 .28* .11 .02 .01 .15 .08 .12 .11 .40* —  
12. MPI '.08 '.08 '.05 .07 .04 .12 .09 '.08 .11 '.09 .06 — 
*p < .05.  

Conclusions 
This study contributes to the existing research by examining the relationships between 

cognitive styles, cognitive abilities, and mathematical performances in calculus. The 
correlational matrix revealed that spatial orientation ability, measured by Card Rotation and 
Cube Comparisons tests, did not correlate with calculus performance. Unlike spatial 
visualization and logical reasoning ability, spatial orientation seems to be unrelated to calculus 
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performance although visualizing mathematical objects from different perspectives is crucial to 
understanding calculus. The significant correlation between spatial visualization and calculus 
performance could be partially attributed to the tasks that require sketching derivative or 
antiderivative graphs; however, this trend is also evident in consideration of correlations with AP 
test scores. The MPIC and MPI visualizer-analyzer questionnaires did not correlate with spatial 
ability and logical reasoning ability measures, suggesting that cognitive abilities do not influence 
students’ preference for visual or analytic thinking, and vice versa. This is consistent with 
previous research (Hegarty & Kozhevnikov, 1999; Lean & Clements, 1981; Moses, 1977; 
Suwarsono, 1982). Krutetskii (1976) also observed that gifted students do not possess strong 
spatial abilities and might prefer not to use visual methods. 

A factor analysis on the twelve variables in Tables 1 and 2 provides interesting results.  
Using the varimax rotation, eleven of these variables load onto four easily interpretable factors:  
a calculus performance factor with AP (0.582), P-G (0.721), P-A (0.612); spatial ability factor 
with CC (.717), CR (.639), PF (.523), FB (.495); logical reasoning factor with DR (.76), NS 
(.416), and cognitive style factor with V-G (.729), V-A (.522), P-G (.426). A modified version of 
Mathematical Processing Instrument ([MPI], Suwarsono, 1982) was used to measure the calculus 
students’ visual preference. The MPI did not did not load on any of the four factors and did not 
correlate significantly with any measure. On the other hand, the MPIC test and questionnaire 
regarding derivative and antiderivative tasks presented graphically loaded substantially on the 
cognitive style factor and correlated significantly with calculus performance measures, 
suggesting that the MPIC is measuring an important component of cognition. Our results are 
consistent with those of Galindo-Morales (1994), who reported that visuality as assessed by the 
MPI was not related to calculus performance.  However, when calculus derivative and 
antiderivative tasks were used to measure mathematical performance and visuality, significant 
correlations can be found. Moreover, most calculus students have acquired a deep conceptual 
understanding of mathematics and might have characteristics that distinguish them from others 
(Ferrini-Mundy, 1987).  

Our work with AP calculus students has generated new information about ability, style and 
mathematical performance in calculus. We believe that analyses of data obtained with the MPIC 
have produced results worthy of continued study, and that the MPIC has the potential to be a 
measure of performance and preference for visual thinking in calculus. 
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The purpose of this paper is to argue for increased attention to students’ experiences in research 
on mathematics curriculum. I call for examining students’ roles in the process of curriculum use 
to complement studies of student data to assess the outcomes of curriculum use. I present a 
framework that illuminates students’ roles in the process of curriculum use. 

Opportunities to learn are considered to be the strongest influence on what students learn 
(Hiebert & Grouws, 2007). One way to think about creating opportunities to learn is through a 
process of curriculum construction. When students are represented in studies of mathematics 
curriculum, student performance (and, more rarely, attitudes or dispositions) is assessed as an 
outcome indicator. However, students are less frequently represented in research studies as 
explicitly part of the process of constructing curriculum. The purpose of this paper is to argue for 
an increase in research on how students play roles in creating opportunities to learn mathematics. 
In this paper, I present a framework for the ways in which researchers have represented or might 
represent students as part of the process of curriculum construction, beyond representing 
students as outcomes of teachers’ curriculum use. 

The need for more complex representations of students in research on mathematics 
curriculum has been requested previously. Smith and Star (2007) argued for broader 
conceptualizations of impact of mathematics curriculum. They recommended that researchers 
look beyond achievement outcomes to include students’ disposition measures as outcomes and to 
examine interactions between indicators of impact when studying the effects of curriculum. The 
Research Advisory Committee [RAC] of the National Council of Teachers of Mathematics 
[NCTM] (Confrey et al., 2008) called for examining subgroups of students to assess for whom 
various curriculum materials and approaches are more and less effective (and why). The RAC 
suggested that a more complex representation of students would involve accounting for race, 
socio-economic class, and gender when studying the effects of curriculum materials. Erickson 
and Shultz (1992) noted that when researchers have investigated students’ experiences in 
classrooms, they rarely accounted for subject matter. In this paper, I extend these calls for more 
complex representations of students in research on mathematics curriculum by emphasizing a 
focus on students’ roles in the process of creating opportunities to learn mathematics. 

Why is it valuable to consider how students are represented in research on mathematics 
curriculum? In the context of post-No Child Left Behind, so much emphasis is on “what works.” 
Students are represented in terms of achievement scores, as outcomes in the process of 
implementing instructional innovations (including particular curriculum materials or teaching 
practices). Yet we realize that students are more than their test scores. Classrooms are social 
contexts, and all of the participants – including students – affect the unfolding of social events. 
As the social event of a lesson unfolds, it usually does not do so exactly as a teacher planned; 
changes are often made to the lesson in the moment, as the participants respond to one another. 
In this way, among others, students can play a role in constructing what can be learned during a 
lesson. 

In this paper, I present a framework for characterizing how students influence their 
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opportunities to learn mathematics. I take up the following questions in this paper: How have 
students been represented in research on mathematics curriculum? How might students be 
represented in research on mathematics curriculum? What are the affordances and constraints of 
these different constructions? My analysis of current research on mathematics curriculum 
suggests the need for further research on the role of students in the process of curriculum use. 

 
Theoretical Framework 

To describe my general perspective on research on mathematics curriculum, first I define 
what I mean by “curriculum.” Then, I share some of the purposes for studying mathematics 
curriculum use in past research, and I discuss how students have been represented in this area of 
research. The Mathematical Tasks Framework (Henningsen & Stein, 1997) is presented for the 
insights it provides about how students are constructed and might be constructed in research on 
curriculum. 

 
Curriculum 

Following Stein, Remillard, and Smith (2007), I view curriculum broadly as “the substance 
and content of teaching and learning – the ‘what’ of teaching and learning (as distinguished from 
the ‘how’ of teaching)” (p. 321). I view curriculum construction as a dynamic & flexible process. 
Opportunities to learn mathematics in a classroom involve teachers and students participating 
with written curriculum materials and each other (Remillard, 2005). These learning opportunities 
are shaped by the tasks in the written materials, how teachers implement the tasks, and how 
students engage with the tasks.  

 
Purposes of Research on Mathematics Curriculum 

Mathematics educators whose research addresses mathematics curriculum have examined (1) 
comparative effects of new curriculum materials (evaluation studies) and (2) how features of 
curriculum and pedagogy shape these effects and influence students’ learning (Star & Smith, 
2007). Across studies that evaluate the effects of curriculum materials, the focus has been either 
upon demonstrating that newer materials (“Standards-based” materials designed to help teachers 
implement lessons aligned with the NCTM Standards) do no harm or can more effectively 
promote students’ learning of content aligned with NCTM Standards, compared to other 
curriculum materials (e.g., Huntley et al., 2000).  

Research on mathematics curriculum has evolved toward representing teachers’ roles with 
greater complexity. Researchers from the QUASAR project illustrated that teachers’ 
implementation of mathematics tasks could transform tasks that were written to be challenging to 
become less demanding or teacher could maintain the level of challenge through task 
implementation (Henningsen & Stein, 1997). Tarr et al. (2008) studied the effects of the use of 
middle grades curriculum materials along with instructional practices (Standards-Based Learning 
Environment) on student achievement; they found that curriculum materials converged with 
teachers’ instructional practices to foster students’ achievement. Across studies, results suggest 
the importance of teachers’ roles in constructing students’ opportunities to learn from curriculum 
materials.  

There is a need to represent students in research on curriculum with greater complexity as 
well, including how students help create opportunities to learn from particular curriculum 
materials. In a recent review of the research literature on how curriculum influences student 
learning (Stein, Remillard, & Smith, 2007), students’ roles are discussed for less than a page (p. 
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355), which suggests a lack of research on their role in the process of curriculum use. If students 
are represented typically at the “end” of the curriculum use process, specifically in terms of what 
they have learned, students may be represented as having a relatively passive role in curriculum 
use – as receiving the curriculum. Following Goodlad (1979), it is possible that the teachers’ 
instructional approaches and written curriculum materials (or, in Goodlad’s terms, the intended, 
perceived, and operational curriculum) may not be aligned with what students experience (the 
received curriculum). Thus, capturing students’ perspectives in relation to curriculum use would 
provide insight on constructing opportunities to learn mathematics. Not only might students 
receive a curriculum that may not be aligned with what the teacher intends or implements, 
students’ engagement with a mathematical task can influence their learning. 

 
Stages of Curriculum Use and Students’ Roles 

Stages in the Mathematical Tasks Framework (Figure 1) provide insights about how students 
have been represented in research on curriculum use. The first stage is the mathematical task as 
represented in curricular/instructional materials, or the written curriculum. Teachers then plan to 
use written tasks in the form of lessons. Teachers implement these lessons, which would be the 
second stage – mathematical task as set up by the teacher in the classroom. The third stage 
represents students’ interactions with mathematical tasks – mathematical task as implemented by 
students in the classroom. The fourth stage represents students as outcomes of curriculum use.  

 
 

Figure 1. Mathematical Tasks Framework (Henningsen & Stein, 1997, p. 528) 
Note that students also appear as factors influencing how teachers set up tasks (teachers’ 
knowledge of students) and how students implement tasks (students’ learning dispositions). The 
Mathematical Tasks Framework suggests that students’ roles in the process of curriculum use 
include influencing teachers’ planning and implementation of mathematical tasks, students’ 
engagement with tasks, and, potentially (if there was an arrow creating a cycle from student 
learning outcomes to teachers’ implementation of the task again in the future) students could 
influence how teachers revised their lessons based upon these mathematical tasks.  

The idea that students play a role in influencing opportunities to learn is not new. Borasi 
(1990) wrote about students as the “invisible hand operating in mathematics instruction” (p. 
174), and she illustrated that students' conceptions and expectations can influence their learning. 
Erickson and Shultz (1992) argued for the need to capture variation in students’ subjective 
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experiences of curriculum. Although some mathematics education researchers have examined 
how student engagement shapes their opportunities to learn (e.g., Nasir & Hand, 2008), these 
studies are either set outside of school or not in relation to tasks in specific curriculum materials. 
To support mathematics educators in moving toward more complex representations of students 
in research on mathematics curriculum, there is a need for a framework to describe students’ 
roles in the process of curriculum use. 

Methods 
To develop this framework, I purposefully selected research literature to examine for this 

paper. I used the following criteria to select articles: To discuss how students have been 
represented to date, I drew upon peer reviewed publications. To consider how students might be 
represented, I drew upon a wider range of texts and looked beyond peer reviewed publications to 
include conference papers and book chapters. The Mathematical Tasks Framework provided a 
structure for locating research on students’ experiences with curriculum use. I examined research 
with representations of students in the second stage (mathematical task as set up by the teacher), 
the third stage (mathematical tasks as implemented by students), and, if there could be a 
feedback loop between student learning outcomes and selection of mathematical tasks, I 
examined research that represented students in the process of teachers revising opportunities to 
learn as well. 

 
Results 

In this section of the paper, I explore how students have been represented in the process of 
curriculum use within a framework (Table 1), and components of this framework serve as 
inspiration for how students might be represented in future research on the process of curriculum 
use in mathematics education. 
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Processes How are students represented in 

curriculum research? 
How might students be 

represented? 
When teachers 
plan lessons 
based upon 
curriculum 
materials 

• Students’ mathematical thinking 
as resources to draw upon when 
designing opportunities to learn. 

• Students’ funds of knowledge as 
resources to draw upon when 
designing opportunities to learn. 

• Students’ voices as a factor 
that influences selection of 
curriculum materials or other 
aspects of curriculum design. 

When teachers 
implement 
lessons based 
upon curriculum 
materials 

• Students as texts to be “read” by 
teachers during instruction (to 
inform in-the-moment revisions) 

• Students’ engagement as a 
factor that influences cognitive 
demand of mathematical tasks 
(maintenance or decline). 

• Students’ engagement as a 
factor that influences 
increase in cognitive 
demand. 

When students 
implement 
mathematical 
tasks 

• Variations in how students 
engage with the same 
mathematical tasks. 

• In terms of strengths in 
students’ engagement in 
balance with opportunities to 
improve their engagement. 

When teachers 
revise lessons 
based upon 
curriculum 
materials 

• Students’ mathematical thinking 
as a factor that influences 
revisions of opportunities to 
learn. 

• Students’ voices (attitudes or 
other perspectives toward 
curriculum) can be a factor 
that influences revisions of 
opportunities to learn. 

Table 1. Students’ Roles in Constructing Opportunities to Learn 
 

Students as Resources when Planning Lessons 
Students play a role in the process of constructing opportunities to learn when they are draws 

upon as resources for teachers when selecting tasks or designing and planning to implement 
mathematical tasks in their classroom. In Child and the Curriculum, Dewey (1902) argues for 
“psychologizing” the curriculum. This process involves constructing educative experiences for 
learners that originate from the child’s present experiences and move into the logic of academic 
disciplines. Research on curriculum design (designing, selecting, and planning curriculum) is 
conducted in the spirit of psychologizing the curriculum when it represents students as resources 
to inform the process.  

Some ways that students have been represented as resources in the process of curriculum 
design or planning to implement tasks has been in the form of local instruction theories 
(Gravemeijer, 2004) or students’ “funds of knowledge” (Bartell et al., 2010). Local instruction 
theories (Gravemeijer, 2004) describe a reflexive relationship between hypotheses about how 
students learn, think, and reason about a given topic and the means of instructional support to 
help students understand that topic. Students’ thinking is a resource for task design with the goal 
of moving students’ thinking toward a particular mathematical learning goal. Some researchers 
promote a view of curriculum design that draws upon home and community-based funds of 
knowledge (knowledge, skills, and experience found in students’ homes and communities). 
Bartell and colleagues (2010) describe how pre-service elementary teachers designed lessons that 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

74



 

built on their own students’ funds of knowledge after learning more about the students’ lives 
(e.g., participating in a tour of the students’ communities led by community members). In this 
research, students play a role in curriculum construction because the opportunities to learn in 
these pre-service teachers’ classrooms would differ or be adjusted depending on what they 
learned about their students’ lives outside of school. 

Additionally, students could be represented in research on the process of curriculum design 
in settings where curriculum materials (or tasks or content goals) were chosen (at least in part) 
based upon students’ input. How frequently are students consulted as stakeholders in the process 
of selecting and designing opportunities to learn? After all, education is for students (Levin, 
2000), so their voices about the materials and tasks could be represented by research and 
considered when making instructional decisions. For instance, researchers could investigate the 
criteria students use to select mathematics curriculum materials or tasks. 

 
Students as Resources when Implementing Lessons 

Teachers’ interactions with students could influence how teachers implement tasks in the 
classroom. For instance, teachers “read” their students when implementing mathematical tasks, 
which can lead to improvised curriculum construction, such as changing tasks or ending a task 
early (Remillard, 1999). Additionally, mathematical tasks have been observed to either maintain 
their level of challenge and difficulty (maintain cognitive demand) or become less challenging 
(cognitive demand decreases) as teachers and students interact (Henningsen and Stein, 1997). 
Students may pressure teachers to reduce ambiguity in order to reduce their anxiety about being 
successful on a challenging task. Students shape their learning opportunities as they influence 
teachers’ implementation of tasks. 

Future research could examine whether and how students can play a role in raising the level 
of cognitive demand of a task. It is possible that students could push the level of cognitive 
demand higher if teachers are open to students’ mathematical wonderments. As students have 
opportunities to pose their own mathematical problems (Brown & Walter, 2004), they may start 
asking increasingly challenging questions. Students may make connections that the teacher had 
not intended, perhaps even during a lesson that was not headed toward making connections, 
taking a lesson that was initially focused on procedural fluency toward a lesson that examines 
meanings behind and connections between procedures. 

 
Students’ Implementation of Mathematical Tasks during Lessons 

Prior research has examined how students engage differently with tasks from the same 
curriculum materials. Two studies of seventh grade students in classrooms that used NCTM 
Standards-based curriculum materials (Lubienski, 2000; Jansen, 2008) illustrate variations 
between how different students take up the same mathematical tasks. SES differences appeared 
to moderate how students engaged with open, contextualized mathematical tasks as set up by the 
researcher-teacher (Lubienski, 2000). Higher SES students engaged with more confidence and 
with an eye toward the intended mathematical ideas when working on open, contextual tasks. 
Lower SES students preferred more external direction and approached problems in a way that led 
to missing some of the intended mathematical points. Jansen (2008) examined how students’ 
beliefs moderated their participation in classrooms with Standards-based curriculum materials. 
Students who believed whole-class discussions were threatening avoided talking about 
mathematics conceptually, yet these students participated by talking about mathematics 
procedurally. Additionally, students’ beliefs about appropriate behavior during mathematics 
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class appeared to constrain whether they critiqued their classmates’ solutions. Waddell (2010) 
investigated African-American elementary school students’ engagement in classrooms that 
implemented Standards-based materials over three years and identified ways in which the 
student’s engagement converged with and diverged from the patterns of engagement promoted 
by their teachers’ instructional practices. These studies illustrate that students’ engagement and 
participation, as moderated by SES, cultures, or their beliefs, influences their opportunities to 
learn from mathematical tasks. 

It is helpful to examine a range of patterns in student engagement with mathematical tasks, 
because teachers would benefit from increased awareness of variations in students’ engagement 
with tasks. Teachers can more effectively support students’ engagement if they have knowledge 
of how students might engage. When researchers investigate student engagement, one dilemma 
involves how to discuss ways to improve students’ engagement without placing blame upon 
students for not participating productively. (Henningsen and Stein (1997) appear to navigate this 
dilemma by focusing upon how teachers can influence students’ engagement.) Future research 
should continue to uncover different ways in which students engage with the same mathematical 
tasks, especially highlighting positive qualities of students’ engagement that lead to productive 
learning opportunities. Results of such studies could support more teachers as they read their 
students while implementing tasks. Knowledge about how students engage can help teachers as 
they intervene to support students to engage productively (or encourage students when they do 
engage productively). 

 
Students as Resources when Revising Lessons 

Teachers can use their knowledge of their students to revise their lessons based upon their 
curriculum materials. Referring back to Gravemeijer’s (2004) local instruction theories, these 
theories are considered to be revisable. Teachers can develop and take these theories as 
conjectures about how and why curriculum materials or mathematical tasks (and instructional 
moves to use when implementing the tasks) are effective, then test and modify them in their own 
classrooms. When teachers learn or develop new understandings about students’ mathematical 
thinking, evidence suggests that they may change their instruction (Fennema et al., 1996). Thus, 
students are represented in the process of research on mathematics curriculum revisions by 
descriptions of their mathematical thinking and their influence on curricular (and instructional) 
decisions. 

It is also possible to imagine research in which opportunities for students’ learning are 
revised based on students’ feedback. Some researchers have attempted to solicit students’ 
perspectives about their experiences with particular curriculum materials. In a report written by 
high school students and their teacher (Holt et al., 2001), students shared their perspectives on 
their experiences in classrooms with Standards-based curriculum materials. These students 
reported an appreciation of the participatory aspects of these classrooms and reports that the 
teachers’ supportive stance toward the materials improved their experience. Bay, Beem, Reyes, 
Papick, and Barnes (1999) assessed over 1,000 middle school students’ reactions to Standards-
based curriculum materials after a year of use by asking students to write letters about their 
experiences with the materials. Students were generally positive about the materials and 
appreciated the hands-on activities, real-life applications, and collaborative work. Students’ 
perspectives on curriculum materials have been investigated, but researchers could follow up on 
this line of work by studying the effects of implementing students’ recommendations or the 
selection of materials chosen with students’ input. 
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Discussion 
Just as complex representations of how teachers use curriculum materials provide insight on 

creating opportunities for students to learn, additional representations of students are needed in 
research on mathematics curriculum. Currently, students are represented primarily as outcomes 
of curriculum use. Researchers could continue to investigate the role of students as a factor that 
influences teachers’ planning and implementation of curriculum, as a factor that influences 
revisions of lessons, and as a diverse group that engages differently with similar tasks. Advances 
in research on mathematics curriculum could include studies of students as active participants as 
decision-makers about curriculum and representations of students’ strengths when engaging in 
mathematical tasks (including ways in which students play a role in raising the cognitive 
demands of tasks). 

Explicitly investigating and highlighting students’ roles in the process of curriculum 
construction can provide insight into social processes of learning to consider not only whether 
but how the use of curriculum materials shapes learning. Although there are political pressures to 
use curriculum materials that are proven to be “effective,” it is important to understand the 
conditions that lead to productive uses of these materials. Students’ roles in the process of 
constructing opportunities to learn are conditions that mathematics educators need to understand 
more fully to gain a broader perspective on how curriculum materials support students’ learning. 
For these reasons, I hope for more complex representations of students to play an increasingly 
central role in future research on mathematics curriculum materials. 
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This study presents a model of three conceptual advances in understanding quadratic functions 
based on a teaching experiment with 6 8th-grade students. Using a covariation approach, 
students investigated quadratic growth as a coordinated change of x- and y-values. Qualitative 
analysis yielded three major shifts in students’ understanding: a) developing an understanding of 
the first and second differences for y as rates of growth with !x implicit; b) explicitly 
coordinating !x with the constant second differences; and c) coordinating covariation and 
correspondence views through meanings for the parameter “a” in y = ax2.   

Objectives 
Calls for “algebra for all” have grown in frequency in recent years, influencing district 

policies nationwide. For instance, the National Mathematics Advisory Panel (2008) recommends 
that districts prepare to enroll increasing numbers of students in algebra by Grade 8. Similarly, 
the NCTM (2000) Principles and Standards calls for including algebraic ideas throughout the K-
12 curriculum and recommends that middle school students in particular focus on learning 
concepts in algebra. Successful implementation of “algebra for all”, however, depends on finding 
ways to help students understand fundamental algebraic concepts such as equality, the use of 
variables, and functions. Research suggests that traditional courses focused on strategies for 
manipulating symbols, simplifying expressions, and solving equations yield poor results in 
overcoming students’ well-documented difficulties in understanding algebraic relations (e.g., 
Knuth et al., 2006). These limitations have led to efforts to expand notions of what constitutes 
school algebra, and one major set of recommendations emphasizes a functional perspective as a 
central concept for organizing algebra instruction (Schliemann, Carraher, & Brizuela, 2007), 
with the early introduction of functional relationships in the elementary and middle grades. 
Placing functions at the center of algebraic reasoning can support students’ abilities to make 
sense of quantitative situations relationally and provide an important foundation for future 
success in mathematics. 

Given the importance of functional understanding for developing algebraic reasoning, one of 
the critical challenges remains better understanding how students’ early function conceptions 
develop. As Asquith et al. (2007) noted, the challenges in learning more about students’ 
reasoning “are particularly relevant at the middle school level, at which time the transition from 
arithmetic to algebraic thinking is arguably most salient” (p. 250). This paper presents an 
investigation of middle school students’ emerging understanding of quadratic growth, presenting 
a model of three conceptual advances students experienced when studying quadratic function. It 
closes with a discussion of the implications for algebra understanding. 
Students’ Understanding of Quadratic Functions 

Quadratic functions represent the basis of the more advanced mathematics to come at the 
secondary level and as such can act as a transitional topic for supporting students’ developing 
algebraic reasoning. However, attempts to effectively introduce quadratic relationships have 
proved difficult. Students struggle to understand the role that the parameters “a”, “b”, and “c” 
play in y = ax2 + bx + c, and have difficulty describing the effects that changing the parameters 
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can have on a function’s graph (Zazkis, Liljedahl, & Gadowsky, 2003). Studies have also 
documented students’ tendencies to inappropriately generalize from linearity in order to make 
sense of quadratic relationships (Chazan, 2006), including using linear interpolation and attempts 
to find a slope and a point (Ellis & Grinstead, 2008; Eraslan, 2007). The phenomenon of 
generalizing from linearity suggests a need to consider introducing non-linear functions earlier in 
students’ algebraic reasoning. One aim of this study was to identify the concepts that middle 
school students developed when investigating quadratic relationships from the perspective of 
reasoning about quantities.  

Conceptual Analysis and the Development of Models of Students’ Thinking 
Conceptual analysis as a tool in mathematics education can be employed to satisfy a number 

of different goals. One can develop a conceptual analysis in order to specify the mental 
operations required to obtain a particular set of concepts or to analyze ways of understanding a 
body of ideas based on describing the coherence between their meanings (Glasersfeld, 1995; 
Moore, 2010). Thompson (2008) identified four uses of conceptual analysis: a) to build models 
of what students actually know at a specific time and in specific situations, b) to describe 
propitious ways of knowing for students’ mathematical learning, c) to describe ways of knowing 
that might be problematic to students’ understanding of important ideas, and d) to analyze the 
coherence of various ways of understanding a body of ideas. The purpose of this study is 
compatible with (a); its aim is to build a model of what students understand about a particular 
type of quadratic growth. In so doing, the model introduces advances in understanding quadratic 
growth that may be favorable for fostering a deeper understanding of functional relationships.  

Following Glasersfeld’s theory of radical constructivism (1995), the analysis presented here 
is based on the understanding that a student’s knowledge is fundamentally unknowable, and thus 
any conceptual model is simply a researcher’s tool for making sense of the student’s 
mathematics. From this perspective it becomes important to refine tentative models over time. 
The use of the teaching-experiment methodology (Steffe & Thompson, 2000) supported the 
creation, testing, and revision of models of students’ mathematics over multiple iterations. One 
aim of the teaching experiment was to investigate the viability of an introduction to quadratic 
function that emphasized the covariation approach (Confrey & Smith, 1995) within a 
quantitatively-rich setting. Within this approach, students examine quadratic growth as a 
coordinated change of x- and y-values. An open question was whether students could make 
quantitative sense of the phenomenon of constant second increases for y coordinated with 
uniform increases for x, and whether this understanding could support a more robust view of 
quadratic function that could be meaningfully connected to the correspondence rule y = ax2.  

Methods 
Participants and the Teaching Experiment 

The study occurred at a public middle school with 6 8th-grade students, whose teachers 
identified them as high performers (2 students), medium performers (2 students), or low 
performers (2 students). Students across a range of performance were included in order to create 
a heterogeneous group in terms of mathematical backgrounds, knowledge, and skills. The 
students participated in a 15-day teaching experiment, which met for 1 hour a day. The students 
worked with a computer simulation of growing rectangles in Geometer’s Sketchpad, in which 
they could manipulate the size of the rectangle. By adjusting the rectangle’s height, the length 
would adjust automatically, preserving the height/length ratio (Figure 1): 
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Figure 1: Image Capture of a GSP growing rectangle script 

The students explored relationships between the heights, lengths, and areas of various rectangles 
by using scripts in Geometer’s Sketchpad and by creating their own drawings, tables, graphs, and 
equations. The author taught the sessions, which were observed by two project team members 
who offered reactions and commentary after each session.  
Data Sources and Analysis 

All sessions were videotaped and transcribed, and additional data sources included students’ 
written work and the author’s written reflections on each session. Data were analyzed via the 
constant comparison method with an open and axial coding technique. Retrospective analysis 
(Steffe & Thompson, 2000) of the videotapes supported the creation of an initial model of each 
student’s evolving understanding of quadratic growth. The development of the initial models of 
conceptual change led to the identification of 4 major categories of interest across all students: 
(a) students’ meaning for the first differences; (b) students’ meaning for the constant second 
differences; (c) the coordination of the increases in height with the increases in area; and (d) the 
relationships between the constant second differences, the rectangle’s dimensions, and the 
parameter “a” in y = ax2. Identifying the students’ operations for each category led to the 
development of the model presented below. 

Results: A Three-Stage Model of Students’ Conceptual Development 
Three major conceptual advances occurred during the teaching experiment that shifted the 

students’ evolving understanding of quadratic growth. Figure 2 provides an overview of each of 
the conceptual advances and the sub-categories of shifts that occurred within each stage. 
 
Stage 1: Understanding 
differences as rates of 
growth with !x implicit 

1a: 1st Differences as the rate of growth of the area 

1b: 2nd Differences as the rate of rate of growth of the area 

Stage 2: Understanding 
differences as rates of 
growth with !x explicit 

2a: There is a relationship between !x and the 2nd differences 
2b: Connecting the 2nd differences to the rectangle  
2c: Identifying how !x is related to the 2nd differences 

Stage 3: Coordinating the 
covariation and 
correspondence views 

3a: Viewing “a” as change in length per 1-unit change in height 
3b: Viewing “a” as the ratio of the change in length to the change 
in height 
3c: Understanding “a” as " the 2nd differences (!x implicit) 
3d: Understanding “a” as " the 2nd differences (!x explicit) 

Figure 2: Three stages and sub-categories of conceptual advances 
The following table is one student’s record of a 2 cm by 3 cm rectangle: 
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Figure 3: Table of length/width/area values of a growing rectangle 

All of the students’ discussions about quadratic growth relied on the growing rectangles context. 
The students created tables of data to record the height, length, and area values they observed in 
Geometer’s Sketchpad such as the one seen in Figure 3. The students’ propensity to represent 
data in well-ordered tables in which the height or the length values increased by uniform 1-cm 
increments encouraged a focus on what is often referred to in textbooks as the “first differences” 
and the “second differences” for y. The first transition the students experienced was one in which 
they shifted from understanding these values as differences to understanding them as rates of 
growth.  
Stage 1: Understanding Differences as Rates of Growth With !x Implicit 

1st differences. The students initially focused only on the differences between successive area 
values without coordinating with the way the height or the length grew. For instance, when 
describing the first differences for height/area table of a square that grew by 1-cm increments, 
Jim explained, “it goes 1 and then 3 and then 5 and then…and then you go to 3, 5, 7,…just keeps 
going.” Attention to coordinating the growth in area with how the height grew was absent from 
Jim’s description. The teacher-researcher asked the students to draw diagrams of growing 
rectangles that depicted the increases in area. Figure 4 shows Ally’s 2 x 3 rectangle that grew to 
become a 3 x 4.5 rectangle and then a 4 x 6 rectangle:  

      
Figure 4: Ally’s depiction of the additional area produced as the rectangle grows 

Ally explained, “So we added 7.5 to this part [pointing to the 2 x 3 rectangle], we added 10.5 to 
this part [the 3 x 4.5 rectangle], and then, because it’s the difference, it’s [the second differences] 
how many more squares you had to add to this one [the 3 x 4.5 rectangle], instead of compared 
to this one [the 2 x 3 rectangle].” In this depiction Ally began to coordinate the number of 
squares making up the additional area to each time the rectangle “grew”. The increments were 
not explicit for Ally, but she and the other students began to attend to the fact that the first 
differences represented the growth of the area for each increase in the rectangle’s size. The next 
day, Jim more generally stated that the first differences represented “How many new squares it’s 
gaining every time it grows.” Jim’s use of the term “every time” suggests that he was 
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coordinating the growth in area with some growth in height and length, but did not explicitly 
attend to the unit of growth.  

2nd differences. The students initially described the second differences as “the second level 
sort of thing”, or “the new outside area.” Ally’s picture in Figure 4 helped her explain that “every 
time it grows it adds 3”, but it was unclear whether she saw this as the rate at which the rate of 
growth of the area grew.  

A continued emphasis on creating drawings helped the students clarify the meaning of the 
second differences. For instance, Bianca explained that they represented “the area of the next 
shape minus the area of the previous shape”, or the “amount added to the amount added to the 
area.” Jim noted that the students should name this value, stating, “I think we should give it 
names, like, the amount added to the amount added is so confusing!” Ally suggested “Difference 
in the Rate of Growth” and the students settled on this term, eventually shortening it to the 
“DiRoG”. Jim characterized the DiRoG as, “So the rate of rate of growth is how many square 
units it’s gaining from the rate of growth.” 

When the students created a table for the height, length, and area of a 1 x 2 growing 
rectangle, Jim found the DiRoG to be 4 square units, and then exclaimed, “it’s going up by the 
rate of the rate…the rate that the rate of growth is growing!” Elaborating, he said, “When I add 
that new shelf thing [referring to increasing the size of the rectangle], there’s 4 left over instead 
of 3.” At this point Jim began to connect the DiRoG to an increase in the rectangle’s size, but the 
unit of increase remained implicit. The connection to the manner in which the rectangle grew 
was limited to conceiving of how the area grew “each time”, rather than for a specific value for 
which the height or length increased.  
Stage 2: Understanding Differences as Rates of Growth With !x Explicit 

!x and the 2nd differences. If the students were not coordinating the DiRoG with the value of 
!x, they would likely not anticipate that the DiRoG would change for a table in which !x was 
something other than 1. In order to test this prediction, the teacher-researcher asked the students 
to create tables for a 2 cm x 5 cm growing rectangle, anticipating that some students would 
increase the height value increased by 1 cm, and others would increase the height value by 2 cm. 
This did occur, for instance, Daeshim created a table in which !x was 2 cm, and Jim created a 
table with !x as 1 cm.  

The students argued about whether the DiRoG should be 5 cm2 or 20 cm2 until Jim realized 
that it depended on !x: “He’s [Daeshim] going by 2’s, but I’m going by 1’s.” After a class 
discussion in which the students agreed that the DiRoG could legitimately be 5 or 20, Jim asked, 
“So your rate of growth can change no matter what?” At this stage the students understood that 
the DiRoG depended on how the rectangle grew, but had not yet determined how the DiRoG was 
dependent on !x.  

Connecting the 2nd differences to the rectangle. Because the students struggled to determine 
how !x would predict the DiRoG, they decided to consider the DiRoG in relationship to the 
rectangle’s dimensions. Daeshim drew a picture to show that the DiRoG would be twice the area 
of the original rectangle for a 4 cm by 14 cm rectangle (Figure 5): 
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Figure 5: Daeshim’s drawing of a growing 4 cm x 14 cm rectangle  
 
Daeshim iterated the height so that the next rectangle became an 8 cm by 28 cm rectangle. He 
explained that this effectively created an additional area equivalent to 3 of the original 
rectangles, and repeating this process again would produce an additional area equivalent to 5 of 
the original rectangles, so the DiRoG, representing the difference in the rate of growth of the 
area, would be equivalent to the area of two of the original rectangles. Daeshim produced a 
corresponding table in which the !x value was 4, and the DiRoG was 112 cm2.  

In contrast, Jim decided that the DiRoG would be equivalent to twice the length of the 
rectangle when the height was 1 cm: in this case, that would be 7 cm2. He explained, “You 
reduce the height until 1, and then you can just multiply the area, or length, by 2. Because at 1, 
length and area are the same.” He was aware that this depended on the rectangle growing in 1 cm 
increments for the height. Bianca agreed with Jim’s method, but characterized it differently, 
stating “It’s the length when the height is 2.” Jim and Bianca imagined a rectangle that was a 1 
cm x L cm rectangle. In this case reducing a general H x L rectangle to 1 cm for the height would 
produce a length of L/H. The area of that rectangle would be L/H, and thus the DiRoG would be 
2 ! L/H, which is equivalent to twice the length (or area) of a rectangle when its height is 1 cm.  

!x and the 2nd differences. The different table configurations for the 4 cm x 14 cm rectangle 
led to the two DiRoG values, 7 cm2 and 112 cm2. Tai explained that both values were correct, 
“Because one the height is growing by 4, and for the other one, height’s growing by 1.” Daeshim 
then explained that when the DiRoG, 7, is multiplied by the square of the !x value in the other 
table, 4, the result is 112: 7 ! 42 = 112. In general terms, if the !x value increases by h units 
instead of 1 unit, the DiRoG must be multiplied by h2. After working with many different table 
configurations, the students decided that this relationship was true, but were not able to explain 
why. It was at this point that shifting to a correspondence view became necessary to move the 
students’ thinking forward. 
Stage 3: Coordinating the covariation and correspondence views 

Viewing “a” as the change in length per 1-unit change in height. The students examined a 
table of height and area values and had to predict the area when h = 82 (Figure 6).  

           
Figure 6: Student’s work on a far prediction problem 

The students introduced a third length column and found length values by dividing the area 
by the height. Tai explained, “The area divided by the height is the length. And if you can find 
out the length, then for this then you can find out the area.” The constant increase of 4.5 cm in 
the length helped the students create a general strategy. Jim explained, “It would go over 4.5 for 
every time you go up the height 1.” Jim determined that he could find the area by multiplying the 
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length by the height, i.e., “n ! 4.5 ! n”, which the students then shortened to 4.5n2. Jim and the 
other students’ ongoing attention to coordinated changes even as they identified a general 
correspondence rule marked the beginning of their coordination of the covariation view and the 
correspondence view. 

Viewing “a” as the ratio of the change in length to the change in height. Once the students 
created equations in the form y = ax2, they began to examine connections between “a” and the 
quantities height and length. The parameter “a” can be thought of as the ratio of the rectangle’s 
length to its height. However, this view did not gain purchase with the students, who were 
entrenched in a dynamic view, preferring to think about how the heights, lengths, and areas 
changed as the rectangle grew. Tai explained, “The number in the front is always the difference 
in the length divided by the difference in the height.” Daeshim formalized this as “dL/dH”, 
where “dL” and “dH” referred to the constant differences in successive length and height values. 
The students’ ability to relate “a” to a coordinated change in height and length values served to 
further connect the covariation and correspondence views. 

Understanding “a” as " the 2nd differences (!x implicit). The students noticed that the “a” in 
y = ax2 was half the DiRoG. This is true only for tables in which !x is 1, but the students did not 
initially attend to this limitation. After creating the correspondence rule A = 0.75h2, Jim 
explained, “The difference of the rate of growth, half of that is here [points to .75].” After 
working with multiple tables, the students agreed with Jim’s conclusion and Bianca formalized it 
as “DiRoG/2 = a”. At this point, the students understood the parameter “a” in two ways: as half 
the DiRoG (although this depends on the height growing in 1-cm increments), and as the ratio of 
the change in length to the change in height. This led Bianca to realize that they could determine 
the DiRoG by finding !L/!H and multiplying it by 2. However, the students could not easily 
explain why their generalizations were true, and they were not aware of the fact that their 
generalizations were limited to the case in which height increased by 1 cm. 

Understanding “a” as " the 2nd differences (!x explicit). In order to help the students re-
focus their attention on the change in height values, the teacher-researcher introduced tables with 
varying !x values. The students examined a new table with a !x value of 4 in which the 
correspondence rule was y = 4.5x2. The students were instructed to consider, “What does the 4.5 
have to do with the DiRoG?”  

It was through a re-consideration of the quantities height, length, and area that the students 
eventually began to connect the DiRoG, the “a” value, and the !x value. The students initially 
predicted that “a” would be equal to DiRoG/2. They quickly determined that this was incorrect 
and at that point recalled Daeshim’s conjecture that if the !x value increases by h units instead of 
1 unit, the DiRoG must be multiplied by h2. Bianca realized, “Length over height! It’s length 
over height, times DiH (!x) squared, times 2 equals the DiRoG of the area.” Bianca realized that 
“a” was the ratio of the length to the height of the rectangle. She knew that typically, twice this 
value is the DiRoG, but she also realized she needed to compensate for the !x value being 4 
instead of 1. Multiplying by !x2, which she called “DiH”, provided the correct compensation. 
Eventually, the students formalized this connection as “a = (DiRoG/2) ! DiH2”.  

Discussion 
The students experienced little difficulty transitioning to tables that did not increase by 

uniform height values. The images of the changing height and length values in the growing 
rectangle supported their ability to make sense of these tables and create correspondence rules. 
Moreover, the students were able to make meaningful connections between correspondence rules 
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and graphical representations by relying on images of coordinated changes between height, 
length, and area. For instance, all of the students correctly predicted that the parabola for y = 5x2 
would be narrower than the parabola for y = 0.5x2, because the former represented a larger 
rectangle at each specific height value that would add more area with each increase in height.  

The students’ conceptions about quadratic growth were not without limitations. It was 
challenging for them to coordinate the growth in area with corresponding growth in height and 
length, and the students did not appear to reach a point at which they viewed the quantities as 
varying continuously rather than in repeated discrete increments. Nevertheless, the students 
developed a number of important threshold concepts (Meyer & Land, 2003) during the course of 
their investigations. They conceived of the first and second differences as rates of growth, and 
coordinated the growth of area with growth in height and length values. Their coordination of the 
covariation view with the correspondence view also fundamentally changed their understanding 
of the role of the parameter “a”, and aided their abilities to create meaningful correspondence 
rules to represent data.   

Lobato et al. (2009) remarked that a common view of conceptual analysis is that it should be 
based on analyzing the understanding of mathematically sophisticated adults, if participants are 
included at all. When student thinking is mentioned, its value is relegated to providing a window 
into the psychology of mathematics rather than as a source for articulating the substance of 
mathematics. But analyzing student reasoning, particularly at the middle-school level when 
students confront complex functional relationships for the first time, can inform the construction 
and refinement of a set of conceptual learning goals. The results of this study suggest that a 
covariational approach to quadratic relationships can provide a foundation for understanding the 
nature of quadratic growth and can support a meaningful transition to correspondence 
relationships.  
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To better support students’ conceptual understanding of algebra in the information age, we need 
an improved understanding of how students interpret connections between multiple 
representations using CAS as a representational toolkit. This research centers on the 
development of an analytic framework for categorizing students’ connections between multiple 
representations, an indicator of students’ representational fluency. Videotaped task-based 
interviews with high school algebra students solving equations using CAS were analyzed to 
generate the proposed analytic framework, which has a hierarchical structure based on the 
direction and purpose of students’ translations between representations. 

Purpose of the Study 
Each mathematical representation is a glimpse into a version or phase of a particular 

mathematical object, and when taken together, multiple representations offer complementary 
perspectives of a mathematical object, which can help to reveal its structure. Flexibility in 
multiple representational approaches is an indicator of more sophisticated mathematical 
competencies (Brenner et al., 1999). Despite an emphasis on multiple representations in 
standards and curricula, school algebra students’ difficulties with translating between multiple 
representations have been well documented (e.g., Dreyfus & Eisenburg, 1996). In technology-
intensive approaches, some researchers have found that school algebra students can use multiple 
representations in solving tasks and are successful in translating between multiple 
representations (Ruthven, 1990) while others attest to the persistent difficulties students face in 
using multi-representational approaches with flexibility (Huntley & Davis, 2008). 

CAS-intensive trends in school mathematics, and algebra in particular, that were pioneered in 
the late 1980s and 1990s have finally infiltrated contemporary curricula and classrooms (e.g., 
Davis & Fonger, 2010). Congruous with the perspective that the coordination of multiple 
representations is an indicator of conceptual understanding, issues of linking or connecting 
mathematical representations are significant concerns. Indeed, although CAS environments can 
act as representational toolkits, Heid and Blume (2008) report that, “students do not necessarily 
connect representations when operating in a multiple representation environment” (p. 98). 
Indeed, Heid and Blume (2008) articulate a “need to better understand how students move 
between, connect, and reason from multiple representations” (p. 98). 

With the integration of CAS in school algebra, researchers and practitioners alike need to 
know how high school students link multiple representations while using CAS technology 
(Arbaugh, et al., 2010). In addressing this gap, the purpose of this study is to gain insight into the 
ways in which students connect multiple representations during task-based partner interviews 
using TI-Nspire CAS. Specifically, this study seeks to answer the following research question: 
When solving equations using CAS as a representational toolkit, how can students’ connections 
between multiple representations be characterized? 
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Theoretical Framework 
Janvier (1987) defines the psychological conversion made from one type of representation to 

another as a translation process. In other words, the meaning of a source representation is 
interpreted in reference to a target representation perspective. Adapted from Huntley, Marcus, 
Kahan, and Miller (2007), a useful framework for investigating multiple representations is the 
“Rule of Four” model, which involves symbolic, verbal, graphic, and numeric representation 
systems, with arrows indicating translations between them. Morgan, Mariotti, and Maffei (2009) 
posit, “converting between different systems of representation is a critical cognitive activity for 
developing understanding of a mathematical object” (p. 247). 

 
Figure 1: Rule of Four illustrating translations between representations. 

The design of the TI-Nspire CAS Touchpad (OS v2.0) houses representations on separate 
types of "Pages" with a pre-determined structure and main representation for each (including 
Calculator, Notes, Graphs, Table). For clarity in determining students’ use of representations, the 
Page type and corresponding prominent representation are integrated: symbolic-calculator (S), 
verbal-notes (V), graphical-graphs (G), and numeric-table (N). 

In this context, the construct of representational fluency serves as a tool to characterize 
students’ multi-representational activity. Inspired by Sandoval and colleagues (2000), 
representational fluency (RF) is the ability to construct, interpret, translate between, and link 
multiple representations. It is implicit in this definition that both the construction of 
representations on CAS (inscriptions) and discourse about these representations (e.g., 
interpretations) are of importance for accessing students’ RF. Specifically, I focus on the 
connections (links) students make between representations to be an indicator of students’ RF. 

For purposes of this study, a student(s) is said to make a connection between multiple 
representations using CAS as a representational toolkit if they give a correct interpretation of 
multiple, mathematically equivalent, representations that are evident in their CAS activity or 
reflection on CAS activity or inscription(s). In other words, for a student to make a connection 
they must verbalize that they are coordinating information (i.e., invariant features of the object in 
question as evident in mathematically equivalent representations) in their interpretation of one 
representation in terms of another, or a pair of representations. 

Methodology 

Participants and Context 
The study was conducted at a Midwest high school that drew accelerated students from 

several area high schools for mathematics and science coursework only. The school and 
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classroom context was chosen based on the requirement that students have access to TI-Nspire 
CAS technology, and use this technology regularly in their second year algebra classroom. Of 
the 25 students in the targeted class, four volunteered to participate in the study and were 
interviewed. These ninth grade students had taken algebra in middle school and would take 
geometry after passing their current algebra class. By the beginning of the data collection for this 
study, students had been using CAS as a regular part of their mathematics instruction for seven 
weeks. 

On three separate occasions prior to interviews with students, the researcher observed the 
enacted curriculum of students’ classroom and took field notes on students’ and teachers’ use of 
CAS with regards to multiple representations and use of the adopted textbook, the third edition 
of the University of Chicago School Mathematics Project Advanced Algebra (Flanders et al., 
2010). The main purpose of these site visits was to inform the design of instrumentation for the 
CAS-based task structured interviews; it was necessary to understand the enacted and written 
curriculum in this classroom to design tasks that involved accessible yet non-routine 
mathematics and familiar CAS functionality. The classroom observations, reviews of the written 
curriculum, and conversations with the teacher verified that all student participants had 
opportunities to learn mathematics through a variety of representations. Moreover, through the 
use of hypothetical or imperative language, the teacher and textbook often recommended or 
expected that students use CAS to create representations. 

Data Sources and Instrumentation 
The main data sources were digital video recordings of task-based interviews conducted with 

two pairs of students. The teacher determined pairs of students based on students’ ability to work 
well together while engaged in mathematics tasks. Coincidentally, same sex pairs were formed 
(one male, one female), and the teacher reported that despite the high-ability of all students at 
this school, there was some variability in these four students’ mathematical abilities. On two 
separate occasions during Fall 2010, each pair was interviewed for 50-minutes during class time. 
Partner interviews were conducted based on the rationale that richer data would be generated 
than what might transpire in interviews with individuals. In partner situations, students’ 
interactions with each other and their CAS were perceived to be more authentic to their 
classroom experiences in which tablemates were observed to regularly communicate about 
mathematics and CAS technology. 

During the interviews, students were prompted to solve two equations, Task R and L (see 
Figure 2). Both tasks were presented in an initial verbal representation, while Task L also 
included a graphic representation. These tasks were designed so that various constraints and 
affordances of the initial representation(s), the context, the mathematics, and/or the technology, 
might prompt students to construct and/or translate between representations. 

     
Figure 2. Tasks presented to pairs of students on CAS and in paper form. 
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Each task was stored and saved as a TI-Nspire document that each student accessed 
electronically on a handheld CAS. Participants were encouraged to use CAS for the entire 
interview, but they were also provided pencils and paper copies of screen shots of the tasks (as 
shown in Figure 2). Data from saved electronic documents of completed tasks and paper and 
pencil work (if any) were collected at the close of each interview. 

During the task-based interviews, participants were encouraged to follow a “think aloud” 
protocol, openly conversing with one another throughout the interview, providing verbal 
explanations to accompany their CAS activity as they completed each task. To guard against the 
researcher changing the cognitive demand of the tasks, a collection of interview prompts was 
prepared to provide parameters for the interactions between the researcher and participants. The 
overall intent of these prompts was to elicit further explanations from the students regarding the 
meaning of their solution approaches with respect to multiple representations. 

For instance, “Linking Probes” were given after students had considered the solution and/or 
solution process from multiple representations (e.g., “How is what you see/did here the same or 
different from what you see/did here?”). In some cases, students considered multiple 
representations on their own; in other cases, the researcher encouraged the use of multiple 
representations through probes (e.g., “Could you solve this in another way?”). In other words, if 
the students did not self-prompt the use of multiple representations or got stuck in an approach 
for several minutes, the researcher suggested students consider an alternative approach. Although 
it is possible that these prompts encouraged students to elicit connections between multiple 
representations that would not have otherwise been verbalized, this was deemed appropriate 
because the focus of the study was on the connections students were able to make, rather than on 
those they chose to verbalize. 

Data Analysis 
Two video files per interview—one per student in a pair that captured each student’s CAS 

screen—were synchronized into one timeline for video analysis using Studiocode (SportsTec, 
1997-2010). The merging of video files allowed for a data analysis method that accounted for 
both individual and taken-as-shared understandings (cf. Cobb & Yackel, 1996) of the pair of 
students while they solved equations using CAS. Seed ideas for an analytic framework for 
linking multiple representations were developed a priori to data analysis, yet the cyclical process 
of coding, developing, and refining an analytic framework occurred in several stages. 

Initial rounds of analysis involved coding and memoing using a grounded-theory inspired 
approach in which the code categories and descriptions were developed in response to student 
data. Instead of inventing new terminology in all cases, a conflation of existing terminology was 
determined to be more beneficial. Specifically, the analytic framework was shaped by the 
analysis of data and was also purposefully crafted as an amalgamation of existing categorizations 
and descriptions of students’ connections from the literature. A mathematics educator who was 
familiar with the study and related literature critiqued a refined version of the analytic 
framework. The entire data set was then reexamined and all instances of connections were coded, 
memoed, and transcribed, allowing segments of data to be revisited as the analytic framework 
was being developed. With all connections instances coded, emerging categories, sub-categories, 
and definitions for the framework were further refined into a hierarchical structure. 

Results 
The proposed framework for representational fluency is hierarchical in terms of the direction 

and number of students’ translations between representations and the nature of their connections 
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with respect to the perceived goals of students’ problem solving activity. Specifically, 
connections are categorized to be uni-directional, bi-directional, multi-directional, or abstract. 
Both bi-directional and multi-directional connections necessarily involve uni-directional 
connections. The difference between bi-directional and multi-representational connections is that 
the former involve a pair of representations (to and from two distinct representations), and the 
latter involve more than two different representations (and may include a bi-directional pair). 
Abstract connections go beyond specific reference to types of representation to generalizing the 
underlying mathematical objects/principles (e.g., equations/equality). Table 1 outlines the 
framework levels with brief descriptions; connections can be categorized as one of: I, IA, IB, II, 
IIA, IIB, IIC, III, or IV. Transcript excerpts are discussed next to exemplify select levels and 
sub-levels including: uni-directional justification, bi-directional reconciling, multi-directional 
connection, and abstract connection. The examples were chosen to distinguish between 
justification and reconciling codes, and also to give more detail on each of the four directional 
categories, highlighting the hierarchical nature of the framework. 
Level of Connection Brief Description 
I. Uni-directional 
Connection 

Translation; interprets meaning of a given source representation in 
reference to a target representation (Janvier, 1987). 

IA. Representational 
Resourcefulness 

Uses a representation to overcome a barrier (Jon Davis, personal 
communication, 11/18/2010). 

IB. Uni-directional 
Justification 

“Use representations as justifications for other claims” (Sandoval 
et al., 2000, p. 6). 

II. Bi-directional 
Connection 

Translation and complementary translation (Janvier, 1987). 

IIA. Bi-directional 
Justification 

Pair of representations are used to (dis)confirm an approach 
(Sandoval et al., 2000). 

IIB. Bi-directional 
Reconciling 

Coordinated activity; checking the solution between two 
representations (Kieran & Saldanha, 2008). 

IIC. Reflection on 
Reconciled Objects  

Reflection on the compatibility of a result between a pair of 
representations (Kieran & Saldanha, 2008). 

III. Multi-directional 
Connection 

More than two representations are related by translation processes. 

IV. Abstract Connection A generalization is made across different representations. 

Table 1. An analytic framework for representational fluency based on sophistication of 
connections between multiple representations. 

In a uni-directional justification connection type, students “use representations as 
justifications for other claims” (Sandoval et al., 2000, p. 6). In other words, a representation is 
used to confirm or disconfirm a conjecture or solution approach in another representation. This 
code is not the same as checking the end result or product of a solution approach against another 
(i.e., reconciling), instead, the emphasis is that some information from a source representation is 
used to inform the solution approach in a target representation before the solution is obtained. 
For example, students from the first interview, attempted to solve Task R using the graph and 
relate the points where the graph crosses the x-axis to the verbal problem situation in which it 
only makes sense to have a positive value for time. 

Researcher: So how can you use this graph to solve?  
Student A: …There are there's two points where it crosses the x-axis [taps finger on desk 
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twice]. 
Student B: Right. 
Student A: So it'd have to be the positive number and not the negative number because you 
can't have a negative time. 
Student B: True. 

In the exchange above, a contextually-based verbal representation is used to justify what is 
reasonable for a solution on the graph. This is not considered representational resourcefulness 
because the students were not stuck in using the graph, thus the reference to the verbal 
representation was to inform their graphic solution. 

At the second level of the framework, instances of bi-directional reconciling are specific 
events of coordinated activity in which the student(s) is moving back and forth between two 
representations. For example, the results of equation solving processes are reconciled between a 
pair of representations in the second interview while students completed Task L. 

(1) Student C: Oh, wow, there's more to the equation. [re-executes solve command on 
calculator page: solve(1/(x+2)=3*(x-1)^2+0.3,x), ENTER, yields x=-1.96245 or x=0.873499 
or x=1.08895]  
(2) Student C: … [traces x=1.09 on graph] Yeah look at that, it works now. I got, I got them 
to equal at 1.09 just like it does in the equation [looks at calculator page, mistakenly points to 
x=-1.96245]. 
(3) Student D: At x=1.09? [traces on graph] 
(4) Student C: Oh wait. It's very close to 1.09, it just rounds up [comparing approximated 
values on calculator screen, x=1.08895 and rounded values on graph; continues to compare 
other values] 
(5) Student D: [traces near x=1.11…x=1.08 on graph] So they're basically the same. 

In the above excerpt, both students reconciled the results between the symbolic and graphic 
representations. Student C reconciled the solution from symbolic to graphic (lines 1-2), back to 
symbolic (line 4), a complementary translation. The utterance from Student D in line 5 is 
interpreted to mean that the solution of 1.09 was reconciled to be the same in both the graphic 
and the symbolic representations, taken as evidence of a bi-directional connection in which the 
solution is checked between two representations. 

A student(s) is said to make a multi-directional connection when more than two different 
representations are related by translation processes. The example below from the first interview 
is a taken-as-shared multi-directional connection between graphic, verbal, and symbolic 
representations. 

(1) Student B: It's [the graph] actually telling you it would hit the ground at 3 seconds, where 
as with the calculator you can make so many mistakes when figuring out the problem … 
(2) Student A: I'm going back and I'm putting three in for the answer and I'm seeing if it 
comes out zero [typing 0=-16(3)^2+46(3)+6 then ENTER in the calculator page yields 
“true”]. Which it says it's true, so— 
(3) Student B: [types h(3), ENTER, yields 0] Yep. 
(4) Researcher: So what does that help you to understand about the problem? 
(5) Student A: That the point that we got is the time it took for it to hit the ground. 
(6) Student A: And then when we plugged it back into the calculator it told us that the 
equation is equal to zero and that's what we were looking for. 
(7) Student B: Yup, and it basically reassured the fact that the graph, that that point was right. 

Consistent with the definition, lower levels in the framework are evident within the dialogue of 
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the above example. Student A interprets the graphical solution in terms of the verbal 
representation, a translation (line 1). Both students reconcile the solution obtained from the 
graphic representation with a symbolic representation (lines 2-3, 7). Third, the students reflect on 
the results that had been reconciled between the graphs and calculator pages and relate this to the 
verbal representation (lines 4-6). In sum, the students have related more than one pair of 
representations by a translation process. The fact that uni-directional and bi-directional 
connections are identified within the multi-directional connection is also evidence of the 
hierarchical nature of the framework, yet instances were not double-coded. 

A student(s) is said to make an abstract connection when they make a generalization across 
different representations. In particular, a student demonstrates flexibility in solving equations 
from multiple representations and is able to generalize the process of solving equations from a 
functions-based perspective in which an equation is viewed as two expressions, interpreted as 
functions, which can be viewed from symbolic, graphical, and/or numeric representations. At 
this level of a connection, the notion of equality is understood from multiple representations. For 
example, the students in the first interview were asked to reflect on the fact that they had 
obtained a solution using the graphs page, but hadn’t obtained a solution using the calculator 
page for Task R. This led Student B to generalize that “Because the graph is just a symbol of the 
equation [switches from Graphs page to Calculator page] or like the diagram of the equation so 
you should have been able to get the same thing.” Moreover, when solving a given equation, 
Student B articulated that, “If you did it correctly you should have gotten the same answer.” So 
at this point in the interview, even though the students had only successfully solved the task 
using the graphic representation, Student B was able to articulate that the same solution should 
be obtainable using a symbolic representation. This is evidence of a generalization across 
different representations. 

Discussion 
Students’ difficulties in connecting representations of algebraic objects have been well 

documented. The definition of a connection and the analytic framework for representational 
fluency proposed here are the building blocks for future research aimed at understanding 
students’ strengths in connecting representations and for instruction designed to foster richer 
connections among multiple representations using CAS. Using connections between multiple 
representations as an indicator, students’ representational fluency can be categorized in a 
hierarchical manner per the direction and purpose of students’ translations between 
representations. The results and examples discussed above can be illustrated using the Rule of 
Four framework, showcasing the four distinct levels in the proposed analytic framework (see 
Table 2). By teaching topics in algebra using pairs and sets of representations, and emphasizing 
bi-directional and multi-directional connections through the use and reflection on CAS 
inscriptions, students may develop representational fluency and in turn come to a more robust 
conceptual understanding of the mathematical object(s) in question. 

Uni-directional Bi-directional Multi-directional Abstract 

 
 

  
Table 2. Illustrations depicting levels of connections using Rule of Four framework. 
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The proposed framework and schematic representations mask some of the intricacies of the 
nature of students’ connections as others have studied them. It would serve well to use the 
framework for analyzing data from a larger sample size. Specifically, the multi-directional 
connection category might be expanded to account for students’ problem solving goals, 
analogous to the subcategories for the bi-directional level. Additionally, future research might 
employ the use of the analytic framework to elucidate types of opportunities afforded by written 
curricula to make connections between multiple representations with CAS. This framework 
would also be useful in the design of instructional intervention or tasks aimed to foster 
sophisticated connections between representations through the use of directionally linked 
dynamic technology environments. 
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We report findings of research that deals with secondary students’ interaction with a digital 
microworld, eXpresser. eXpresser is designed to support students in constructing general figural 
patterns of square tiles and expressing the algebraic rules that underlie them. Our focus is on the 
sense production that emerges as students use eXpresser. In order to analyze student 
productions, we adopt a semiotic perspective based on a broad notion of mathematical sign 
systems. We identify in the analysis, critical moments that illustrate the emergence of algebraic 
expression in eXpresser’s alternative sign system. These moments are constituent elements of the 
process of deriving a general rule and support the development of the notions of dependent and 
independent variable. 

Introduction 
The findings of various studies that deal with pattern recognition and expression have led to 

conceiving of mathematical generalization as a gateway to learning algebra for pre-algebraic 
students. This approach seeks not only for students to become competent in recognizing 
regularities in numerical or figurative sequences, but that they also can imbue the corresponding 
algebraic expressions with meaning and sense (Noss & Hoyles, 1996, Mason, 2008; Bednarz, 
1996; Kieran, 2007; Lee, 1996). Many research experiments have used this generalization 
approach to algebra while working with digital learning environments, and these have been 
shown to help students along that path, such as studies undertaken using Logo (Hoyles & 
Sutherland, 1989) and using spreadsheets (Sutherland & Rojano, 1993). Yet one of the greatest 
obstacles reported concerns the move from recognizing and analyzing a pattern to expressing it 
symbolically. The MiGen project (1) has developed a microworld, eXpresser, designed 
specifically to support students in generalizing rules based on structure, in this case of the 
structure of figural patterns of square tiles (Noss et al., 2009). The eXpresser microworld 
includes construction objects and a set of actions that can be carried out on them so that students 
can build models made up of these patterns and test their generality through animation.  

In this paper we focus on the potential of students building a rule that represents the 
structural regularities of a pattern, while also being able to exploit a symbolism for exploring the 
performance of the pattern in general. This symbolism is closely tied to the nature of the sign 
systems made available by eXpresser for rule-building. The affordances of eXpresser features 
were directly used in the study reported here in order to design generalization and symbolization 
activities, which were investigated with groups of secondary school students, aged 11-13, in 
England and Mexico (2). The study aims to analyze the sense production processes that were 
triggered when students were on the path toward building a rule, which represented the structure 
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of the patterns that together made their model. Episodes of in-class experimental sessions in 
which the students were interacting with eXpresser were analyzed from the basis of a semiotic 
perspective in which the notion of Mathematical Sign System (MSS) plays a central role (Puig, 
2008). 

Theoretical Perspective: Mathematical Sign Systems and Sense Production 
Since mathematical texts are produced with a heterogeneous set of signs, the notion of 

Mathematical Sign System (MSS) dealt with in Filloy et al. (2010) and used in our analysis 
entails not only the signs considered as specifically mathematical, but also those pertaining to 
natural language, figures, diagrams, as well as the signs of digital learning environments. Hence 
that notion of MSS does not refer to a set of mathematical signs organized in a system, but rather 
to a system of signs –specific to mathematics or not- that is of a mathematical nature (i.e. the 
system is conceived as of a mathematical nature rather than the individual signs). It is crucial to 
take the system as a whole because the use (or uses) of the system is the responsible for meaning 
and sense making. Moreover the notion is not limited to socially established sign systems, but 
includes signs, sign systems or strata of sign systems that students produce in order to make 
sense of what is presented to them in a teaching model, in an interview situation or in a 
mathematics task.  

Thus, sense production in mathematics activity comes about by way of chains of reading and 
transformations of actions that are undertaken on texts expressed in an MSS (Puig, 2003). Thus 
in the particular case of work with eXpresser, our interest lies in analyzing the sense production 
of students related to the expression of rules that correspond to figurative models built in an 
environment in which they interact with its MSSs through reading and transformation actions. In 
eXpresser, students have access to increasingly abstract set of MSSs, as evident below.  

eXpresser: A Digital Microworld to Express Generality 
In eXpresser, students are asked to construct a general model and to develop a rule that 

determines the total number of tiles in the model. The students construct the model by 
visualizing its structure and determining appropriate patterns of repeated building blocks that 
together make up the model. The students have to make explicit rules to calculate the number of 
tiles in each pattern, which are colored if and only if the rule is correct and then combine the 
rules for the different patterns to obtain the total number of tiles in the model. Of course there is 
more than one way to construct a model, each of which leads to a "different" rule for the same 
model.  

Figure 1 shows a snapshot of the eXpresser with what is known as the Train-Track model 
already constructed (shown top left of the screen labelers My World). A C-shaped building block 
(A) has been created (by dragging and dropping separate tiles and grouping them) and is 
repeated by placing each repetition two squares across and zero places down (When making a 
pattern, the translations across and down for each repetition of a building block, as well as an 
initial number of repetitions has to be specified). When the C-shaped building block (A) is made, 
its properties are shown in an expression (B). The building block is repeated as many times as 
the value of a variable called ‘Model Number’ (D), in this case 4.  

Patterns are colored by calculating and then allocating the exact number of colored tiles to its 
construction. In the case of the pattern made of C-shapes, using the expression for construction 
(B) and the number of times the building block is repeated, the rule for the total number of tiles 
in this pattern is ‘7(Model Number’, in Figure 1 (E). As students build their constructions in 
‘My World’, a second window is seen alongside (the ‘General World’). This mirrors exactly My 
World until the student unlocks a number in their model, the metaphor for making a variable, at 
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which point the General World chooses randomly a 'general' value for the variable. In Figure 1, 
the value of the Model Number in the General World is randomly set to 9, resulting in a different 
instance of the model (F). The General World is only colored when students express correct 
general rules in the ‘Model Rule’ area of the screen (G). Students cannot interact directly with 
the General World. They are, however, encouraged to click the play button (H) to animate their 
general model to test its generality. 

 
Figure 1. Constructing a model and expressing its rules in eXpresser. (A) Building block. 

(B) Expression of construction of the building block. (C) The number of tiles of the 
building block. (D) The number of repetitions of the building block. (E) Number of tiles 
required for the pattern, with general rule. (F) Any variable used in ‘My World’ takes a 

random value in the ‘General World’. (G) A general rule that expresses the total number of 
tiles in the whole model. (H) Play button for animating patterns. 

The construction objects in eXpresser are structurally related to the elements of the symbolic 
rule as follows: a) the number of building blocks is associated with the variables and constants; 
b) the number of tiles in each block is associated with the coefficients of the variables in the 
expression; c) the patterns constitute the terms of the expression; d) and the model is associated 
with the complete expression. In particular terms in the task referred to in this article, the 
students were asked to build a model associated with a symbolic expression that had linear and 
constant terms. In other words, the model had to be made up of several patterns that together 
would serve to represent a Train-Track model, which, if properly built, could be “extended” as 
student wanted. The students were asked to use different colors for each of the patterns that made 
up the model, in order to highlight the way they perceived the structure. The students were also 
required to answer questions that are aimed at provoking reflection on the model-formula 
structural relations that they had constructed. 

Experimental Work with eXpresser 
The data presented in this paper refer to the work of 11 to 13 year old students (14 Mexican 

and 22 English students) who began to study algebra in secondary school. Although the students 
worked on several activities throughout the study, this report only includes an analysis of the 
Train-Track activity. Data was compiled from videotapes of classroom sessions, written reports 
of the students on worksheets and computer files produced by the students registering their 
interactions with the software. Our attention was focused on analyzing the role of the different 
sign systems proposed in eXpresser in the sense production processes. In England, the task was 
presented fully computerized and students answered some reflective questions presented through 
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digital worksheets. In Mexico, the students worked with eXpresser and with paper and pencil 
worksheets.  

Results – MSSs in eXpresser 
In building models, the students moved from working with MSSs associated with visual 

perception to more abstract MSSs, such as numerical and in some cases algebraic MSSs. During 
the process it was possible to see how the students made sense of the elements of a symbolic 
expression by associating them with the specific elements that made up their figurative model. 
Thus the generalization processes consisted of searching for a structure that could be transformed 
from the figurative model to a symbolic expression by means of the structure of the task-pattern, 
and then a rule could be derived based on the perceived structure. Data analysis made it possible 
to identify critical moments of generalization activity, which characterized aspects of work in 
eXpresser related to the nature of the different MSSs available in the setting. These aspects 
include, inter alia: a) constructing building blocks from unit tiles; b) unlocking numbers in order 
to vary them; c) numerical articulations among the different patterns that make up the model; d) 
building model rules using the eXpresser language; e) building different patterns based on the 
perceived structure to produce different models; f) analyzing the relations between the particular 
construction and the general models that it is possible to see in eXpresser. In this paper we focus 
only in the affordances of eXpresser that were designed to aid the transition from pattern 
construction to arithmetic expression and its transformation to algebraic expression (aspects b) 
and d), for which we have used analyses of student working on the Train-Track activity.  

Building Blocks, Patterns and Models 
A building block is an object that belongs to a MSS that is more abstract than that of 

individual tiles, albeit both are of a figurative nature. First, the students must become aware of 
the need to determine a building block in order to make a pattern. Analysis of the videotapes and 
of the files saved automatically by the software when the user interacts with it enabled us to 
follow up on student actions in their attempts to build their patterns and models. Although the 
students had no trouble defining the building blocks, records of their work in both countries 
showed that some had a tendency to simply produce the pattern tile by tile. In this case, they 
were helped by redirect their attention to the building block they had been in fact implicitly 
repeating while dragging tiles, thus helping the students identify their own building blocks (see 
Noss et. al., 2009). Ten different forms of constructing the Train-Track model were identified, 
see Table 1.  
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A B C D E 

1Mexican & 2 
English students 

4 Mexican & 3 
English students 

3Mexican 
students 

1Mexican 
student 

1Mexican & 9 
English students 

     

Two patterns: 
5n + 2(n - 1) 

Three patterns: 
3n + (2n – 1) + 

(2n – 1) 

Three patterns: 
5n + (n – 1) + 

(n – 1) 

Five patterns: 
3n+ (2n+1) + 
(2n+1) + 5 + 5 

Two patterns: 
7n + 5 

F G H I J 
1 English 
student 

1 English 
student 

1 English 
student 

4 English 
students 

1 English 
student 

     
Three patterns: 

5n + 2n + 5 
Three patterns: 
4n + 3(n+1) + 2 

Three patterns: 
6n + n + 5 

Three patterns: 
4n + 3n + 5 

Two patterns: 
7n + 12 

Table 1. Different forms of constructing the Train-Track by students participating in the 
study. To better communicate each model’s structure, in the bottom line the corresponding 

algebraic rules are shown (n is the number of one of the building blocks in the model). It 
should be noted that this not mean that the participant students could produce such an 

expression in the algebra MSS. 

From Arithmetic Expressions to Algebraic Rules 
One important step in the generalization process toward the use of an abstract MSS is that of 

deriving a symbolic rule (arithmetic or algebraic) that makes it possible to obtain the overall 
number of tiles in a pattern (dependent variable) in terms of the number of building block 
repetitions (independent variable). The microworld provides immediate visual feedback when, 
for a given pattern, the production rule is correct: that is by coloring all of the tiles used in the 
particular construction (see Figure 2).  

  
Figure 2. Arithmetic rules for the three patterns that constitute the model (top (red) line), 

bottom (red) line and vertical (green) line) 

Different types of numerical expressions (texts) can be seen in the image on the left of Figure 
2, including: locked numbers (constants) and unlocked numbers (generalized numbers) in which 
the values can change. Identification of the role played by these types of numbers in the 
figurative model is essential to the construction of algebraic rules. Although indicating the 

Unlocked numbers 
Locked numbers 
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overall number of tiles that constitutes a pattern is sufficient for it to be colored, a rule must be 
provided in order for the pattern to remain colored for any number of repetitions of the building 
block (so that the Train-Track can, in turn, be extended or reduced). Most students in both 
Mexico and England used initially a specific number to indicate the number of tiles in each 
pattern. Despite introductory tasks in eXpresser, the persistence of this student strategy shows 
(unsurprisingly given previous research) a common reluctance to articulate a relationship and to 
express it in a general way. To overcome, the teacher (3) had to intervene and encourage students 
to use a building block. The intervention relies on repeatedly changing the variable in the number 
of repetitions of the building block and therefore ‘messing-up’ the coloring of the pattern–
drawing on the vocabulary used by students in a dynamic geometry setting. The visual feedback 
challenged students to find a general rule that according to Gregg (one of the students in the 
English trials) “tells it [the eXpresser] how many tiles it needs for any number in the pink 
[unlocked] box”. However, some students (9 in Mexico) when answering the worksheets 
sometimes but not always made a numerical formula for some of the patterns in the model. For 
example, Figure 3 shows the work of Sofia indicating two formulas: one with an operation (7!5) 
and other with a constant number (6) in the case of model C in Table 1. Sofia also forgot to 
indicate the arithmetic expression for one of the patterns, since the last one was not built with the 
pattern construction tool, she used the tool copy-paste to include it in the model. 

 
Figure 3. Construction of one numerical formula and one constant to indicate the number 

of tiles in two patterns (Verde – Green; Rojo – Red) 
Eventually, most of the students managed to make symbolical formulae for their patterns, 

though many were isolated and not interrelated. For example, in the worksheet in Mexico, Diego 
constructed a formula with two variables (a!5 + 2b), for the model (C) in Table 1 he did not 
seem to see the relationship between a and b (b = a – 1) and it was only after teacher intervention 
that he (and another two students) were able to construct a formula with one independent 
variable (see Figure 4).  

 

 
Figure 4. A student’s work on expressing the formula to calculate the number of tiles in the 

Train-Track model. Student writing: “With this formula I get the model and many more 
when I change the numbers of the letter” 

An effective intervention capitalizes on drawing students’ attention to the General World. 
Models that use patterns with more than one independent variable, are ‘messed-up’ in the 
General World since, for each variable, the microworld chooses random values likely to be 
different so the models do not maintain their structural coherence. Figure 5 shows Connor’s 
work, an English student; he has unlocked both the 5 and the 3 as the number of repetitions in his 
two patterns, but has not specified any explicit relationship between them. The teacher asked him 
many times to choose several different random values for the number of green building blocks 
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and find the number of red building blocks. Connor painstakingly repaired the model each time 
when it was no longer colored. He had implicitly identified a relationship but could not express it 
in general terms. After several repetitions of the same prompt, when the value of repetitions of 
the green block was 8 and that of the red had to become 15 (2!8 – 1), Connor verbalized his rule: 
“You times the 8, you times the number of green tiles by 2 […] and then take away 1”, and used 
eXpresser to represent explicitly the relationship between the two patterns in his model. 

 
Figure 5. Connor’s model is messed-up in the General World 

In eXpresser, numbers are perceived as objects to which a value can be assigned, that can be 
locked or unlocked and given a name. Hence, in their capacity of being concrete objects, 
numbers are associated with one single screen position. If that number is required in order to 
construct a rule (simply being represented by the same variable is sufficient in the MSS) then it 
must be a part of two different relations, thus forcing the student to make a copy of it and not 
simply defining another number (or variable) that has the same value. As such, in Figure 2, the 
object-number shown with a numerical value of 7 was copied five times in order to construct and 
relate the rules for the three patterns that make up the model. Determining this fact is one of the 
most important characteristics of building a formula in the MSS of algebra because the 
subsequent symbolization only consists of assigning a name to that number. 

Differentiating specific numbers from general numbers and number-objects means that 
eXpresser substantially changes the activity of mathematical expression of patterns and thus 
makes the passage from generalized numbers to use of letters more natural within the digital 
environment. As such, students are able to reflect upon establishing relations among objects that, 
despite belonging to different strata of MSSs, all have a figurative referent that enables the 
students to imbue those relations with sense. We assert that this characteristic made it possible 
for the majority of students participating in the study to express a rule corresponding to the 
Train-Track model in an algebra like MSS. Figure 4 shows part of the worksheet of Diego on 
which he has expressed the formula for calculating the overall number of tiles in the Train-Track 
model, as well as his interpretation of that formula (expressed in words). 

Students in England were asked to reflect on their derived rules in eXpresser by writing some 
arguments to support their rules’ correctness or not. A 12 year old student, Nancy, whose 
model/rule is shown in Figure 6, wrote: “My rule is correct because each “block” has 7 squares. 
So however many blocks there are, there are 7 squares for each one so you multiply the number 
of blocks by 7. But, at the end there is another block to finish the pattern off. In this block there 
are 5 squares so you add the number of squares (the blocks multiplied by 7) to the final block 
(the 5 squares). This rule should apply to this pattern each time”. Nancy showed a good 
understanding of each term in her derived rule and seemed to understand the generality of her 
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rule. She was able to identify how the coefficients in her rule were derived and expressed clearly 
what her variable was, i.e. the number of blocks. In her own words, the term ‘any’ was referred 
to as ‘however many’.  

Model General Rule 1 General Rule 2 

   

Figure 6. Nancy’s model and rules in eXpresser 

Another 12 year old student, Connor (model (B) in Table 1), wrote: “My rule is correct 
because it worked without fault and the color stayed on the General World. (6(3) + [(6(2)–1] (2 
this is my rule. The 6(3 is the green tiles and how many of the green blocks we need times the 
how many tiles are in each block. The 6(2–1 is the red tiles and the -1 because otherwise the red 
tiles would go over how many you need and (2 at the end is because I’ve got 2 lots of the red”. 
Even though Connor might think generally, he still used the specific value 6 for his variable 
when he wrote down his general rule- a generic example maybe.  It is evident that he also had a 
clear understanding of each term in his rule supporting his rule’s correctness by reference to the 
feedback from the eXpresser, i.e. his model stayed colored for any model number. 

Discussion 
The availability in the environment of an increasingly abstract set of MSS strata to work with 

specific numbers, general numbers and number-objects made it possible for the students 
participating in the study to formulate rules that generated different patterns and to inter-relate 
them by way of one single independent variable. This was we argue a critical moment in a 
generalization task and helped students to develop and distinguish the notions of independent 
and dependent variable. We assert that the relationship among these generative rules is the result 
of the acts of reading and transforming that the students undertake on their own productions in 
eXpresser when trying to formulate one single rule to calculate the total number of tiles in the 
figurative model that was made up of different patterns. Production of sense arises in those acts 
with respect to expression of the rule in an algebra-like MSS. Nonetheless some of the students 
were able express generality in their own and eXpresser’s language, but still found it difficult to 
express it algebraically, a move supported by later collaborative tasks.  

Endnotes 
1. The MiGen project is funded by the ESRC/EPSRC Technology Enhanced Learning 
programme; Award no: RES-139-25-0381). For more details about the project see 
http://www.migen.org. 
2. The experimental work in Mexico is funded by CONACYT (Grant No. 80359). 
3. In England, the students were supported by either the teacher or the intelligent support 
component of the MiGen system, which provides prompts based on students’ interactions and 
helps them reflect and decide about their next step in solving the task 
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Third- through fifth-grade students participating in a classroom teaching experiment 
investigating the impact of an Early Algebra Learning Progression completed pre- and post-
assessments documenting their abilities to represent or describe unknown quantities. We found 
that after a sustained early algebra intervention, students grew in their abilities to represent 
related unknown quantities using letters as variables. 
 

Algebra has historically served as a gateway to higher mathematics that—due to high failure 
rates—has been closed for many students. These failures have been due in large part to a narrow 
treatment of algebra as an exercise in symbol manipulation without much regard for the symbols’ 
underlying meanings (Kaput, 1998). Mathematics education researchers (e.g., Davis, 1985; 
Kaput, 1998; Olive, Izsak, & Blanton, 2002) have argued that addressing this issue requires us to 
view algebra not as an isolated eighth- or ninth-grade course, but as a continuous strand spanning 
the entire K-12 curriculum. This is not to be interpreted as a call to shift traditional instruction in 
symbol manipulation to earlier grades, but rather as one to consider broadening our notions of 
what it means to think algebraically and introducing elementary school students to important 
ideas of algebra in the context of their study of arithmetic. 

In response to this call, we are presently drawing from research findings and curricular 
resources in the area of early algebra to develop an Early Algebra Learning Progression (EALP) 
organized around five “big ideas”: 1) Generalized Arithmetic, 2) Equations, Expressions, 
Equality, and Inequality, 3) Functional Thinking, 4) Proportional Reasoning, and 5) Variable. 

We are conducting a one-year classroom-based study in grades 3-5 to gather initial efficacy 
data regarding the impact of EALP-based classroom experiences on elementary students’ 
developing understandings of these big ideas. The focus of this paper will be our initial findings 
regarding students’ developing understandings of particular aspects of variable. We will share 
pretest and mid-year assessment data documenting students’ performance using variables to 
represent unknown quantities. We will additionally have end-of-the-year posttest data ready to 
share at the conference. 
 

Theoretical Framework 
While traditional treatments of algebra often present the subject as one about “manipulating 

symbols that do not stand for anything” (Kaput, 1999, p. 134), we must acknowledge that much 
of algebra’s power comes from the ability to represent unknown and varying quantities 
succinctly and manipulate these expressions without constant reference to their underlying 
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meaning. The concept of variable must thus play a critical role in early algebra (Schoenfeld & 
Arcavi, 1988). Schoenfeld and Arcavi argue that rather than asking students to practice symbol 
manipulation and solving for unknowns, teachers should encourage students to view variables as 
shorthand tools for expressing already-understood ideas about varying quantities. 

Despite its importance, variable is a concept with which many students struggle. Documented 
difficulties include believing that variables stand for names, labels, or attributes (e.g., h stands 
for height, w stands for weight) (Booth, 1988; Clement, 1982; Knuth, Alibali, McNeil, 
Weinberg, & Stephens, 2005; MacGregor & Stacey, 1997; Weinberg et al., 2004) and being 
unable to operate with or even consider unknown quantities rather than specific values (Blanton, 
2008; Carraher, Schliemann, & Schwartz, 2008). 

While variables can take on several meanings in different mathematical contexts (Kieran, 
1991; Küchemann, 1978; Usiskin, 1988), in this paper we focus on students’ abilities to use 
variables to represent unknown quantities. We draw from Carraher et al.’s (2008) work, in which  
third-grade students were asked to represent the number of candies in two sealed boxes—one of 
which had three additional candies resting on top. The majority of the students initially assigned 
particular values to the amounts in each box (e.g., 3 and 6), suggesting they were unable to work 
with indeterminate amounts. Given a similar context, Blanton (2008) found that the presence of 
unknown quantities led students to consider such problems unsolvable. By drawing attention to 
multiple possible solutions to the Candy Box problem and encouraging students who refrained 
from assigning particular values to contribute to the discussion, Carraher et al. found that 
students’ representations—which included drawings, tables, and verbal comments—were 
enriched and that eventually variable representations (e.g., N and N + 3) were accepted. 

Kinzel (1999) asserts that students’ difficulties with algebraic notation originate from narrow 
conceptions of variable (e.g., viewing the symbol as a label) and that if algebra is to be viewed as 
a meaningful representational tool, further attention should be given to symbolizing and 
interpreting variables in classrooms. Carraher et al.’s (2008) work illustrates that young 
elementary students are capable of representing unknown quantities in sophisticated ways when 
these representations build on their informal representations and understandings. 
 

Method 
 

Participants 
Participants include 301 students in grades 3-5 from two elementary schools in southeastern 

Massachusetts. The school district in which these schools reside is largely white (91%) and 
middle class, with 17% of students qualifying for free or reduced lunch. Six classrooms (two 
from each of grades 3-5 and all from one school) are serving as experimental classrooms and 10 
classrooms (four grade 3, four grade 4, and two grade 5, all from both schools) are serving as 
control classrooms.  
 
Classroom Intervention 

Students in the experimental condition are participating in an EALP-based classroom 
teaching experiment for approximately one hour each week for the majority of one school year. 
A member of our research team—a former third-grade teacher—is serving as the teacher during 
these interventions. Additionally, each lesson is observed by a member of the research team as a 
way to identify characteristics of students’ thinking and issues of instructional design. The 
project team also meets twice weekly, once on-site to discuss initial observations about the 
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teaching experiment, and once off-site to connect initial findings to the proposed EALP and 
revise the EALP.  A typical one-hour lesson consists of a “jumpstart” at the beginning of class to 
review previously-discussed concepts, followed by group work centered on research-based tasks 
aligned with our EALP (see Figure 1 for an example). These tasks are designed to encourage 
students to reason algebraically in a variety of ways and justify their thinking to themselves and 
their classmates.  All classroom tasks and assessment items presented in this paper are adapted 
from Carraher et al. (2008).  

Jack and Ava both have a box of candy. Each box contains the same number of pieces of 
candy, but we don’t know how many in each. Ava is given four more pieces of candy.  
 
a) How could you represent the number of pieces of candy Jack has?  
b) How could you represent the number of pieces of candy Ava has? 

Figure 1. The Candy Boxes task 
 

Students in the control condition are participating in their usual classroom activity with their 
regular classroom teachers. District-wide, all classroom teachers are using “Growing with 
Mathematics” (Iron, 2003) curriculum materials. This curriculum does not include a particular 
focus on early algebra or tasks similar to the ones included in our intervention.  
 
Data Collection 

A pretest and (identical) posttest along with a shorter “mid-year” review were designed to 
measure students’ understandings of algebraic topics identified across the five “big ideas” in the 
EALP. The constructs measured on our assessments are closely linked to the EALP. Item 
construction was research-based where multiple internal reviews of all assessment items were 
conducted by the authors in order to ensure consistency, coherence, and fidelity to that of the 
constructs mentioned in the EALP.  

From these assessments, we will focus in this paper on two tasks—the Piggy Bank task from 
the pretest/posttest (see Figure 2) and the Silly Bands task from the mid-year review (see Figure 
3)—that investigated students’ abilities to represent unknown quantities in relation to other 
unknown quantities. 
 

Tim and Angela each have a piggy bank. They know that their piggy banks each contain the 
same number of pennies, but they don’t know how many. Angela also has 8 pennies in her 
hand. 
 
a) How would you describe the number of pennies Tim has? 
b) How would you describe the total number of pennies Angela has? 

Figure 2. The Piggy Bank task 
 

Carter and Jackson each have the same number of silly bands, but we don’t know how many 
they have. Carter earns 3 more silly bands for cleaning her room. 

 
a) How would you represent the number of silly bands Jackson has? 
b) How would you represent the total number of silly bands Carter has? 

Figure 3. The Silly Bands task 
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The pretest was administered to all participants prior to the start of the teaching intervention 

in early September 2010. The posttest will be administered at the intervention’s conclusion, in 
May 2011. In this paper, we will be able to share results of the pretest and the mid-year review 
administered in late November 2010, after eight intervention lessons. Because the purpose of this 
mid-year review was to offer the research team formative feedback on the impact of the 
intervention, it was only administered in the experimental classrooms. As such, our focus in this 
paper will be exclusively on the experimental students’ growth representing unknown quantities 
as evidenced in their performance on the aforementioned assessment items. A more complete 
experimental-control comparison will be included in the presentation as we will have posttest 
results to share by that time.  
 
Data Analysis 

Each item on the pre-test and mid-year review was first scored dichotomously (i.e., correct or 
incorrect). A response was scored as correct if a variable expression was written that correctly 
conveyed the given relationships (e.g. Jackson has J silly bands; Carter has J + 3 silly bands), if a 
correct statement was made about the relationship between the items in question (e.g., “Carter 
has 3 more silly bands than Jackson” or even “Carter has more silly bands than Jackson”), or if a 
student stated a need to use a variable but did not specify a particular one (e.g, “I would represent 
Tim’s number of pennies with a letter”). In addition, there were a few instances in which 
students wrote equations rather than just expressions that were scored as correct (e.g., “Jackson 
has a + 3 = b”). Equations such as a + 3 = a were scored as incorrect because the same variable 
was used to represent two different quantities.  

Next, each item on the pre-test and mid-year review was given an appropriate strategy code. 
For part a on both assessments, responses were assigned the code Letter if a student used a 
variable to represent the unknown quantity (e.g., “Tim has x candies”), Value if a student 
assigned a specific value to the unknown quantity (e.g., “4 candies”), and Picture if a student 
drew a picture to represent the unknown quantity. Student responses in which the quantities in 
the task were compared using words and specific quantities (e.g. “Tim has 8 fewer pennies than 
Angela”) were coded as Comparison with Quantity. Responses in which comparisons were made 
using words but no specific quantities (e.g., “Tim has fewer pennies than Angela”) received a 
Comparison without Quantity code.  

Responses to part b were coded in the same way as part a, with additional attention paid to 
whether the responses were related to part a or independent of part a. For example, if a student 
responded that “Tim has x pennies” in part a and “Angela has x + 8 pennies” in part b, this 
second response would receive the code Related Letter. If, instead, a student responded that 
“Angela has y pennies,” this second response would receive the code New Letter. “I don’t know” 
or blank responses received a No Response code, and all other responses were coded as Other. A 
chi-square analysis was conducted to check for a significant association between the correctness 
of responses on the pre-test as compared to the related mid-year review item. 

To assess reliability of the coding procedure, a second member of the research team coded a 
randomly selected 20% sample of the pre-test data. The mid-year review data was fully scored 
by two coders. Pre-test scoring agreement between coders was 92% for both correctness and 
strategy on part a and 90% for correctness and 92% for strategy on part b. Mid-year scoring 
agreement between coders was 87% for correctness and 82% for strategy on part a and 81% for 
correctness and 84% for strategy on part b. All differences in scoring were discussed by the 
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coders and resolved. 
 

Results and Discussion 
In this section, we report experimental student results from the Piggy Bank task (see Figure 

3) and the Silly Bands task (see Figure 4). There was a significant association between the 
correctness of responses for all items on the pre-test as compared to the mid-year review. For 
part a, ) 2(1) = 85.85, p < .001 where it was 15.08 times more likely for a participant to get Silly 
Bands part a correct on the mid-year review than to get Piggy Bank part a correct on the pre-test. 
For part b, )2(1) = 52.33, p < .001 where it was 7.46 times more likely for a participant to get 
Silly Bands part b correct on the mid-year review than to get Piggy Bank part b correct on the 
pre-test. Both results were statistically significant. 
 
Percent of students who gave correct response and percent of students who used a variable 
correctly on part a on Piggy Bank and Silly Bands tasks 
! "#$%&!'! "#$%&!(! "#$%&!)!
*+,,-!.$/0!1*#&23&435! 1/!6!'75! 1/!6!(85! 1/!6!(85!
"$9&!:;##&:3!#&4<;/4&! )=>?! 8'=@?! ''='?!
A4&%!9$#+$BC&!:;##&:3C-! D?! D?! D?!
E+CC-!.$/%4!1F+%2-&$#5! 1/!6!'75! 1/!6!(>5! 1/!6!(>5!
"$9&!:;##&:3!#&4<;/4&! G7=)?! @D=)?! @D=)?!
A4&%!9$#+$BC&!:;##&:3C-! H>=)?! H'=(?! H@='?!

Table 1. Part a results 
 
Percent of students who gave correct response and percent of students who used a variable 
correctly on part b on Piggy Bank and Silly Bands tasks 

 
 

 
 
 
 
 
 

Table 2. Part b results 
 
From Tables 1 and 2, one can see that students initially struggled to produce correct 

representations or descriptions of unknown quantities, even with very liberal criteria. None of 
those students who did produce a correct representation or description used variables to represent 
the unknown. However, a majority of participants at all grade levels were able to use a variable 
correctly on part a and close to over half were able to use a variable correctly for part b by the 
time of the mid-year review. Furthermore, participants tended to use the same variable in part b 
of the Silly Bands task that they used in part a, showing an ability to consider the relationship 
between two unknown quantities. Tables 3 and 4 show the percent of students using the 
previously-discussed strategies in response to the pre-test and mid-year review tasks. 
!
"#$%#&'!()!*'+,#&'*!+*-&.!#/%0!*'$/'#.1!-&!$#*2(&*#!'(!2/$'!/!(&!"-..1!3/&4!/&,!5-661!3/&,*!'/*4*!

! "#$%&!'! "#$%&!(! "#$%&!)!
*+,,-!.$/0!1*#&23&435! 1/!6!'75! 1/!6!(85! 1/!6!(85!
"$9&!:;##&:3!#&4<;/4&! )=>?! 8'=@?! ')=G?!
A4&%!9$#+$BC&!:;##&:3C-! D?! D?! D?!
E+CC-!.$/%4!1F+%2-&$#5! 1/!6!'75! 1/!6!(>5! 1/!6!(>5!
"$9&!:;##&:3!#&4<;/4&! HH=H?! GD=G?! H@='?!
A4&%!9$#+$BC&!:;##&:3C-! )>='?! (@=7?! )@=)?!
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! "#$%&!'! "#$%&!(! "#$%&!)!

E3#$3&,-! "-..1!3/&4!
1*#&23&435!

5-661!3/&,*!
1F+%2-&$#5!

"-..1!3/&4!
1*#&23&435!

5-661!3/&,*!
1F+%2-&$#5!

"-..1!3/&4!
1*#&23&435!

5-661!3/&,*!
1F+%2-&$#5!

I&33&#!1$4!9$#+$BC&5! 8=H?! @7=G?! D?! G)=H?! D?! @)=(?!
J$CK&! ''='?! )=>?! ()=8?! >8=8?! (8=7?! (=7?!
*+:3K#&! D?! D?! D?! 8=(?! D?! (=7?!
L;M<$#+4;/!
N+3O!PK$/3+3-! )=>?! )=>?! >>=7?! 7=@?! 8'=@?! (=7?!

L;M<$#+4;/!
N+3O;K3!PK$/3+3-! D?! D?! >>=7?! D?! G=>?! D?!

Q3O&#! )=>?! D?! >(='?! D?! >H=G?! D?!
R;!S&4<;/4&! )'=7?! D?! >H=G?! D?! 7=)?! D?!

Table 3. Part a strategies 
 

First, in response to part a, note that participants demonstrated no prior knowledge of 
representing an unknown quantity using variables, preferring instead to assign specific values. 
However, by the time of the mid-year assessment, at least 75% of students at all grade levels 
attempted to represent the unknown quantities using a variable, with the majority of them doing 
so correctly. We had predicted that students would use a pictorial representation (e.g., a piggy 
bank) or an empty box to represent an unknown amount, especially prior to instruction. 
However, only a small number of these pictorial and box representations surfaced. The decline in 
No Response codes was dramatic, especially in grade 3. 
 
"#$%#&'!()!*'+,#&'*!+*-&.!#/%0!*'$/'#.1!-&!$#*2(&*#!'(!2/$'!7!(&!"-..1!3/&4!/&,!5-661!3/&,*!'/*4*!

! "#$%&!'! "#$%&!(! "#$%&!)!

E3#$3&,-! "-..1!3/&4!
1*#&23&435!

5-661!3/&,*!
1F+%2-&$#5!

"-..1!3/&4!
1*#&23&435!

5-661!3/&,*!
1F+%2-&$#5!

"-..1!3/&4!
1*#&23&435!

5-661!3/&,*!
1F+%2-&$#5!

S&C$3&%!I&33&#! 8=H?! )7=D?! D?! )'=G?! D?! H>=D?!
R&N!I&33&#! D?! 8@=8?! D?! 88=D?! D?! 8H=@?!
S&C$3&%!J$CK&! 8)=H?! 8=H?! ')=G?! 7=@?! ')=G?! (=7?!
R&N!J$CK&! >@=D?! )=>?! >>=7?! (=7?! 8=(?! D?!
S&C$3&%!*+:3K#&! D?! D?! D?! 8=(?! D?! 8=(?!
R&N!*+:3K#&! D?! D?! D?! D?! D?! D?!
L;M<$#+4;/!N+3O!
PK$/3+3-! )=>?! D?! >H=G?! G='?! 8>=(?! (=7?!

L;M<$#+4;/!
N+3O;K3!PK$/3+3-! D?! )=>?! G=>?! D?! 7=)?! D?!

Q3O&#! G=G?! D?! >(='?! D?! >H=G?! D?!
R;!S&4<;/4&! (>=D?! D?! >(='?! D?! >(='?! D?!

Table 4. Part b strategies 
 

In response to part b, we noted a shift in responses from assigning a specific value on the pre-
test (related or non-related to the response in part a) to using a variable on the mid-year review. 
Well over half of participants across the grades wrote an expression using the same variable used 
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in part a, with the majority doing so correctly. No students left this task blank or responded with 
“I don’t know” on the mid-year review. 

One particular category of response caught our attention. Some participants used variables 
but represented the unknown quantities with equations rather than expressions. For example, in 
response to the Piggy Bank task, one student represented the number of Angela’s pennies as n + 
8 = n. Such a response recalls Booth’s (1988) assertion and Carraher et al.’s (2006) similar 
finding that students may struggle with “lack of closure” and feel the need to “simplify” or come 
to a “single term” answer. Such students appear to have difficulty holding operational and 
structural views of expressions simultaneously. As Linchevski and Herscovics (1996) suggest, 
expressions such as n + 8 are difficult for students because the addition operation cannot be 
performed. The expression must be viewed as the result of the operation and not merely a 
process. This tendency among some students to write incorrect equations was present even after 
several months of our instructional intervention, with 10.3%, 4.9%, and 2.4%, in grades 3, 4, and 
5, respectively, answering in this manner on the mid-year review. 
 

Conclusion 
As Blanton (2008) asserts, “It is as children work with symbols that they acquire meaning for 

them. They will experience a natural progression in their thinking that begins with a limited 
understanding of symbols and symbolizing” (p. 66). While students initially exhibited great 
difficulty representing unknown quantities in a general way (i.e., without assigning a specific 
value), over half of our participants at each grade level exhibited the ability to use a variable to 
represent an unknown quantity by the time of the mid-year review. While we have indications 
that several students had difficulty viewing variable expressions as objects not in need of further 
simplification, overall the majority of students seem to be learning to use variables in meaningful 
ways that were unknown to them at the start of the school year. 

 
Endnotes 

1. The research reported here was supported in part by the National Science Foundation under 
DRK-12 Award #0918239. Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not necessarily reflect the views of 
the National Science Foundation. 
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The goal of this study was to understand errors that student make when simplifying exponential 
expressions. College students enrolled in four college mathematics courses were asked to 
simplify and compare such expressions. Quantitative analysis identified three persistent errors: 
interpreting negative bases, negative exponents, and parentheses. Qualitative methods were used 
to examine why they made these errors. Analysis indicated that students frequently misinterpret 
the negative sign when attached to the base of an exponential expression. We theorize that 
students’ concept image of the negative sign must move beyond rule models to correctly interpret 
numbers in exponential expressions. 

 
Students entering post-secondary schools often need frequent reminders on how to use 

algebraic properties while solving problems in pre-calculus and calculus classes. Algebra 
provides the foundation to advanced mathematical thinking; and proficiency in algebraic 
manipulations is essential for students if they want to enter STEM careers (Liston & 
O'Donoghue, 2010). The terminology and rules of algebra contain little meaning to many 
students and appear arbitrary (Demby, 1997; Kieran, 2007). Rules are memorized and are 
considered to be similar to the rules of a game. Many students have difficulty keeping track of 
memorized rules that appear to be contradictory at times.  

Interpreting the equal sign is one example that has been studied extensively.  For example, 
Knuth et al. (2006) found that an operational conception of the equal sign, the idea that the equal 
sign was a signal to do something, was more commonly held among middle school students than 
a relational conception of the equal sign. Students with a relational conception understood the 
equal sign as representing congruence between the expressions on either side of the equal sign. 
They found middle school students with the relational understanding were much more successful 
at solving algebraic equations.  Thus, the misconception of the equal sign as a prompt to do 
something interfered with students’ mathematical development. 

Carraher and Schliemann (2007) described the difficulties students have bridging arithmetic 
to algebra and in particular interpreting mathematical symbols. Kieran (2007) expanded those 
notions by further discussing the development of algebraic thinking in middle and high school. 
She noted that considerable research exists that describes the ways in which students use 
variables, expressions, and equations. However, there is relatively little research on students’ 
interpretation of the negative sign which is interpreted as either an operation (subtract) or a 
negative number. This research paper is part of an on-going study in which the authors are 
examining pedagogical approaches and interventions that increase precalculus students’ 
achievement. Here we investigate how college students interpret a negative sign that is 
embedded in exponential expressions. 

Previous Research  
Students must overcome numerous obstacles to become fluent in algebra, including the 

interpretation of operations implied by the positioning of symbols next to each other (Lee & 
Messner, 2000). Research (Chalouh & Herscovics, 1983) on concatenations indicated that many 
students had difficulty interpreting both mixed numbers where addition is implied or algebraic 
expressions of the form 3a. After many years of high school experiences learning that 
multiplication was implied in concatenations (3a), some college students applied multiplication 
with mixed numbers. They simplified  to be . Clearly, these students over 
generalized one set of meaning that is appropriate for expressions like 3a. Matz (1980) noted that 
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many students did not know how to interpret a negative sign and exponents. For example, 
students frequently confuse whether  is 9 or .  

Vlassis (2004) examined how middle school students interpreted negativity. The eighth-grade 
students conceptualized negativity as a process, linked to the binary operation of subtraction. 
Negative nine made sense to these students, for example, in an expression such as n – 9 but – 9 
was more difficult to explain. She concluded that the different uses of the negative sign are 
counterintuitive and an obstacle for students to overcome.  

Teachers often use a textbook to guide their instruction; Lee and Messner (2000) examined 
opportunities for students to work with the negative sign in sixth- through ninth-grade 
mathematics curricula. Lee and Messner found that textbooks typically provide multiple 
opportunities to work with positive and negative integers but seldom offer experiences with 
negative fractions, exponents, decimals, and mixed numbers. To support students’ understanding 
of – n, some textbooks use colored chips in which red is negative and black is positive 
(wikiversity, 2010). For example, to combine – 9 and +4, students take nine red chips and four 
black chips. The four black chips annihilate four of the red chips with the result of five red chips, 
negative five. Here, students develop the notion that the negative sign indicates an entity that 
neutralizes a positive chip with the net result of zero.  

We theorize that students encounter the notion of additive inverse but it is not always clearly 
articulated or connected to the idea of an identity. Without discussion on the different 
interpretations of the negative sign, many students have difficulty interpreting the negative sign 
in concatenations.  Kieran (2007) suggests that additional research is needed to understand the 
reasons for this difficulty. 

Theoretical Framework 
A mathematical concept can be thought of as a complex web of ideas constructed by each 

individual from mathematical definitions and mental constructs (Tall & Vinner, 1981; Vinner, 
1992). Tall and Vinner described these two components as concept definition and concept image. 
A concept definition is a set of words that is used to specify the concept. The definition may be 
phrased in language accepted by the mathematical community or in everyday language taught by 
teachers who create short mnemonics to help students remember procedures.   

For example, teachers and textbooks often use the phrase opposite of rather than the 
mathematical term additive inverse to describe the relationship between a number, its negative 
and the additive identity, zero. A concept image includes “all of the mental pictures and 
associated properties and processes.” (Tall & Vinner, 1981, p. 152). For additive inverse, the 
image may include  as (a) four jumps to the right and then 4 jumps to the left on 
a number line or (b) two numbers positioned equidistant but on the opposite side of zero on a 
number line. Thus, the concept of additive inverse is a synthesis of the concept definition and 
images associated with it. Vinner (1992) suggested that individuals create idiosyncratic images 
that may interfere with the development of new concepts. 

Concepts develop over time and are important for advanced mathematical thinking (Tall, 
1991). They allow for generalization, inference, different levels of abstraction, cognitive 
economy, and communication (Palmeri & Noelle, 2003). Palmeri and Noelle theorized that a 
concept image becomes more sophisticated through three stages: rule model, prototype model, 
and exemplar model. During the stage of the rule model, conceptual rules are carefully worded 
definitions that are internalized by students and used to carry out procedures or to determine 
whether an object is a member of a set. The prototype model indicates the stage in which an 
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individual recognizes nuances that distinguish individuality among the members of a set. For 
example, if we consider the set of all triangles, members may look quite different with different 
side lengths and angles; however, all have exactly three sides. These images become prototypes 
that allow the individual to check whether an object is a member of the set. Through the 
prototype model, the concept image becomes more sophisticated and includes both a concept 
definition and a variety of concept images that illustrate diversity.  The exemplar model enables 
individuals to synthesize information about both the commonality and variability of category 
exemplars and indicates a structural understanding of the concept. Through the exemplar model, 
the concept image becomes yet more complex and the concept definitions and images are 
intertwined. For example, students in this stage might recognize how changing the coefficients of 
a function changes features of its graph. The individual compares the symbolic representation 
with prototype images and manipulates the images in such a way to describe the effect of the 
new coefficients. The individual is aware of the nuances between different members and can 
modify them at will through an understanding of the underlying mathematical structure.  

Methods 
For this study, we assessed 904 students enrolled in college algebra, pre-calculus, and first 

and second semester calculus for their ability to simplify and compare exponential expressions. 
The assessment contained 19 problems involving exponential expressions. Quantitative methods 
were used to identify the problems that a large number of students missed across the four class 
levels. There were four problems in which more than 40% of students at all levels solved 
incorrectly. We labeled these problems as indicators of persistent errors.  

To understand why students consistently made these errors, we sought to interview 50 
students. However, only 19 students agreed to the interview with a $10 stipend paid for the half-
hour interview. These 19 students were enrolled in college algebra, pre-calculus or calculus 2. 
During the interview, students were asked to read and resolve each of the four problems and 
explain their reasoning aloud as they solved them. Questions were asked to help identify the 
concept definitions and images that students used while solving the problems. Conceptual cross-
case matrix analysis (Miles & Huberman, 1994) was used to characterize students’ explanations 
to identify commonalities among student explanations.  

Findings  
Through quantitative and qualitative analysis, three persistent errors emerged around the 

following concepts: interpretation of a negative sign preceding a base; the role of parentheses in 
an exponential expression; interpretation of a negative exponent. This paper is based on our 
qualitative analysis of the first two errors which are related. Students’ difficulty distinguishing 
between a negative number raised to a power and the additive inverse of a number raised to a 
power became evident by examining their explanations of three problems. Two of the problems 
required students to simplify exponential expressions and the third problem involved comparing 
two exponential expressions.    

Interpretation of a Negative Sign Preceding a Base   
Two problems on the assessment required students to simplify an expression where either a 

negative sign preceded the base or was part of the base. One asked students to simplify   
and the second to simplify . All of the students who incorrectly simplified the first problem 
read, “Negative eight raised to the   power.”  Most of the students who incorrectly simplified the 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

116



 

second problem read, “Negative nine raised to the  power.” Other variations of the second 
problem were, “I’m not sure how to read that [pointing to ]. It’s different from that 
[pointing to ] because it has parenthesis.” and “I never know whether the negative sign is 
included.” The reading of these two problems with a negative sign was similar. Students read 
both problems as if the negative sign was part of the base.  They did not differentiate when the 
negative sign indicated the additive inverse or a negative number.  Only one student who misread 
the expression proceeded to solve the problem correctly. She wrote on her paper, “

.” She did not finish simplifying the 
expression because she “always used a calculator.” It is interesting to note that she did not find 
the square root of nine before cubing it. We interpreted her solution strategy as a reliance on 
rules, first raise the base to the indicated exponent then find the root of the number.  

All of the other students who misread  and attempted to solve it made the same error.  
They interpreted the negative sign as attached to the nine before any power was taken. They 
wrote “ ” or stated that the answer was an imaginary number and could not be solved. Four 
students further simplified  and their answers resulted in: , , or  . 
Clearly, they made additional errors in simplifying the expression; however, the error we were 
most interested in was the initial one of interpreting  as  rather than the additive 
inverse of . 

Two students correctly interpreted the expression, . One pre-calculus student correctly 
stated the steps to follow to simplify it, “Take nine then cube it, then square root it, then make it 
negative.” She read the problem by translating it into the procedure to simplify the problem 
rather than the more precise reading that a calculus student made, “Take the negative of nine to 
the  power.” Both of these students recorded the correct answer. 

Only one student we interviewed recognized that taking the square root first and then cubing 
the result would make the computation easier. It appears most students learned an order of 
operation that begins with applying the power indicated by the numerator in the exponent 
followed by computing the root indicated by the denominator in the exponent regardless of the 
efficiency of this order. 

Role of Parentheses in Exponential Expressions  
The assessment required students to compare two expressions,  and . Five of the 

19 students interviewed had a correct answer and gave a similar explanation, “Negative 17 to the 
eighth [pointing at ] is larger than negative 17 raised to the eighth power [pointing at 

] because the [even] power of a negative number is positive. Negative 17 to the eighth 
[pointing at ] is a positive number and larger than negative 17 to the eighth [pointing at 

].”  
In contrast, the students who were incorrect read both expressions as “negative 17 to the 

eighth” claimed that these two numbers were equal. Six students stated, “Parentheses don’t 
matter.” When probed, they explained that parentheses matter only when there are more terms. 
With additional terms, the parentheses indicate what operations should be completed first. One 
student reasoned, “Parentheses tell you the order of operation, what needs to be done first. You 
only need them for something like . They tell you that you have to subtract before 
multiplying.” The other students who gave incorrect answers explained that both expressions 
were raised to an even exponent and thus both were positive and that –17 and 17 were the same 
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distance from zero, thus the same. Clearly, the concept image of  and  were 
identical because –17 and (–17) had identical meaning.  

The probing questions that we asked about whether the two numbers were the same prompted 
one calculus student to retrieve a kernel of forgotten mathematics. Reflecting, he explained that 

 could be thought of as . Thus it was a negative number and smaller than the 
other expression. Immediately after completing this problem, he said, “I made a mistake. I don’t 
know why I did that. I saw the negative sign in that problem [pointing to ] and the square 
root and automatically wrote it off.” At this point, he went back and correctly simplified the 
previous expression, . We suspect that the reason for his mistake was not an oversight, 
rather it indicated an important misconception that was linked to his concept image of negative 
numbers. The negative sign was irrevocably linked to a number and was interpreted as an 
indicator of a negative number unless it followed a number or variable.  

Discussion 
Consistent with findings of previous researchers (Chalouh & Herscovics, 1983; Lee & 

Messner, 2000; Matz 1980), college students in this study had difficulty interpreting the negative 
sign in concatenations.  Many students did not distinguish a negative number raised to a power 
from the additive inverse of a number raised to a power. Their concept image was limited to a 
rule model in which they carried out a procedure to interpret any number with a negative sign, 
regardless of other mathematical symbols that were next to it. The concept image of –n was 
limited to a negative number and its meaning did not change when it was raised to an 
exponential power.  

Parenthetically, none of the students that we interviewed used the language of additive inverse 
when discussing problems on the assessment. Conceptualizing   as an additive inverse of  
suggests a relational interpretation; however, students frequently failed to extend this relational 
understanding to more complex expressions.  In particular, they failed to recognize the symbol 

 as the additive inverse of . However, in an operational context such as , 
students recognized that  was to be subtracted from the number one. In this mathematical 
context, students first simplified the exponential expression then found the difference.  

When asked if there is an inconsistency between these two interpretations, these college 
students explained that “…the minus sign means to minus when a number precedes it.” Here it is 
clear that many students may not think of the negative sign as indicating an additive inverse that 
can be applied to more complex expressions. Without recognizing the mathematical meaning of 
an additive inverse that is linked to the concept of an additive identity, these students did not 
develop a more sophisticated concept image of the negative sign. In addition, this may explain 
why students do not recognize n-1 as the multiplicative inverse of n. 

Removed from a procedural context, students tend to misinterpret the symbol .  
Negative numbers become mathematical objects that are located on the number line. The 
associated concept image of a negative number is a dot on the number line to the left of zero, 
equidistant from zero as its positive counterpart. Students fail to separate the negative sign and 
the base, it becomes an inseparable object.  This was made explicit by several of the students as 
they explained the meaning of  and . Students interpreted both expressions as a 
negative number that is raised to the power . To them, the parentheses were unnecessary 
because the negative sign and  are combined to form an inseparable object, .  They 
correctly recognized  and  as the same mathematical object but erroneously extended 
this to  and . The rule for interpreting a negative sign was resistant to recognizing 
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that its meaning can change when other mathematical symbols are added. 
The concept image that these college students developed was different from the eighth-grade 

students in Vlassis’s (2004) study. Vlassis found that the eighth-grade students interpreted 
negativity as the operation of subtraction. They saw the negative sign as an indication to conduct 
a procedure. In contrast, the college students in our study interpreted negativity as a 
mathematical object or entity with a distinct location on a number line. These students associated 
the negative sign as an operation when it was preceded by a number. In this case they interpreted 
it differently. Thus, in one sense, these college students were moving toward a concept image 
with two definitions. We theorize that simultaneous recognition of these two concept rules would 
lead to a prototype model in which students recognize similarities and differences in the concept 
images. Thus, they could select the appropriate concept image for a given context. Integration of 
these images would lead to an exemplar model and students could flexible apply these images in 
different concatenations. Students using an exemplar model would understand the function of the 
negative sign to indicate the multiplicative or additive inverse of a number and extent this 
meaning to more complex situations. 

We theorize that students’ concept image of negative numbers is not sufficiently well 
developed to enable them to recognize the negative sign as a relational concept (additive inverse) 
when the number in question involves an exponent. However, if the number is embedded in an 
operational context, they generally interpret it correctly.  

From our experience, this problem continues to show up in advanced mathematics classes. 
Students interpret  as a negative number regardless of the value of . For example, if students 
are told that  is a point in Quadrant II then asked, “In which quadrant does the point 

 lie?” they fail to interpret  as a positive number. We theorize that it is critical for 
students to develop a more sophisticated concept image of  that includes the concept 
definitions of a negative number and the additive inverse to correctly interpret the negative sign 
in concatenations. 

Implications 
The goal of this research project was to understand the fundamental reasons why students 

have difficulty simplifying exponential expressions. We found that a limited concept image of a 
negative number was a confounding factor. This inflexible image led students to misinterpret the 
negative sign in concatenations. We suggest that teachers need to introduce the language of 
“additive inverse” and “multiplicative inverse” into the class room to help student develop a 
more sophisticated understanding of the negative sign. In addition, students need more time 
investigating the interpretation of the negative sign in different concatenations.  

We found it interesting that eighth-grade students in Vlassis’s (2004) study created a concept 
image of negativity as an operation. As students mature this image seemed to be replaced by 
negative numbers as entities unless it was preceded by another mathematical expression . 
Additional research is needed to understand how students’ concept of negativity develops over 
time. The goal is to help students create more sophisticated concept images that are based on 
exemplar models rather than rule-based models. We agree that colored chips can be helpful to 
students as they investigate the meaning of the negative sign but over reliance on one 
interpretation of the negative sign can hinder students’ development of a more sophisticated 
concept image. They need to spend more time on different interpretations of the negative sign in 
concatenations. This can be accomplished by creating mathematical contexts that produce 
cognitive conflict forcing students to reexamine their prototypes for consistency. Continued 
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research is needed to better understand the reasons behind persistent errors that students make 
when interpreting the negative sign in this and other contexts. 
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A STUDENT TEACHER’S SUPPORT FOR COLLECTIVE ARGUMENTATION 
  

 
We observed a student teacher’s practice as she taught one unit of instruction. Using a 
modification of Toulmin’s (1958/2003) diagrams, we analyzed her support for collective 
argumentation by examining questions she asked, parts of arguments she contributed, and the 
kinds of warrants her students contributed. Our findings suggest reasons she was identified as an 
exemplary student teacher and support moves that may be applicable to other teachers’ practice.  
 

As part of a larger study, we observed several student teachers as they each taught one unit of 
instruction. Our research team identified one of the student teachers, Bridgett (a pseudonym), as 
exhibiting practices more commonly seen in experienced teachers. Bridgett’s facility for 
engaging in frequent, prolonged, and mathematically significant discourse with her students 
presented an opportunity for investigation into how collective argumentation might be supported 
by teachers. In this paper, we characterize her teaching moves in support of collective 
argumentation to answer the following question: In what ways did an exemplary student teacher 
support collective argumentation as she taught a geometry unit?  
 

Background  
Recent work in mathematics education has highlighted argumentation as an important part of 

classroom discourse. Building on Toulmin’s (1958/2003) model of argumentation, mathematics 
educators, following Krummheuer (1995), examined collective argumentation in classroom 
settings. Collective argumentation involves people arriving at a conclusion, often by consensus. 
This avenue of research is an extension of Toulmin’s work, as he examined argumentation in the 
traditional sense of one person convincing an audience of the validity of a claim. Some work in 
mathematics education examines individual construction of arguments (e.g., Hollebrands, 
Conner, & Smith, 2010; Inglis, Mejia-Ramos, & Simpson, 2007), but we build on studies 
addressing collective argumentation. Current work in collective argumentation involves 
examining student learning through this lens (Krummheuer, 2007) as well as examining how 
ideas become “taken as shared” (Rasmussen & Stephan, 2008).  

An argument, as described by Toulmin (1958/2003) and currently used in the field, involves 
some combination of claims (statements whose validity is being established), data (support 
provided for the claims), warrants (statements that connect data with claims), rebuttals 
(statements describing circumstances under which the warrants would not be valid), qualifiers 
(statements describing the certainty with which a claim is made), and backings (usually unstated, 
dealing with the field in which the argument occurs). Toulmin conceptualized an argument as 
occurring with a specific structure (see Figure 1) in which these parts of arguments relate to one 
another in specific ways. In practice, arguments are often more complicated in that, for example, 
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statements offered as data may also need support, thus functioning as both data in one argument 

and a claim in a sub-argument
1
.  

Figure 1: Diagram of a Generic Argument (adapted from Toulmin, 1958/2003)  
Our research answers Yackel’s (2002) call to examine the teacher’s role in collective 

argumentation by focusing on both the parts of arguments he or she provides and the teaching 
moves that prompt or respond to parts of arguments provided by students. Previous research has 
shown that facilitating mathematical discussions, of which collective argumentation is a part, is 
difficult for teachers, particularly when students have been engaged in tasks that may have 
multiple solution paths (Hufferd-Ackles, Fuson, & Sherin, 2004; Stein, Engle, Smith, & Hughes, 
2008). Hufferd-Ackles et al. suggested creating a “math-talk learning community”  
(p. 81) in a classroom as one way to ameliorate the difficulties of facilitating productive 
discourse, while Stein et al. described five practices that are useful when facilitating discourse 
particularly around cognitively demanding tasks. Our research examines the role of one student 
teacher as she and her students engage in collective argumentation.  
 

Methodology  
We observed and videotaped one exemplary student teacher, Bridgett, for seven consecutive 

class periods, covering the bulk of a geometry unit within an integrated and accelerated 
freshman mathematics course. Members of the research team transcribed each of the video 
recordings. Field notes, class video recordings, and relevant written class materials 
supplemented the transcripts. We identified and diagrammed episodes of argumentation within 
the transcripts, purposefully ignoring non-mathematical classroom talk and arguments that were 
largely definitional (such as deciding how many sides a nonagon has) or pedagogical in nature. 
Individual or paired members of the research team created diagrams, and the entire team vetted 
each proposed diagram after intense discussion and frequent  
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Figure 2: Diagram of Argument about Regular Polygons  
We used a modification of Toulmin’s (1958/2003) diagrams to document the collective 

argumentation. We color coded
2 

the diagrams to record whether Bridgett, the students, or both 
Bridgett and students together contributed a given component (as in Conner, 2008) and recorded 
Bridgett’s actions in support of argument components. These practices allowed for a finer nuance 
in identifying who contributed a specific part of an argument and how that contribution came 
about. See Figure 2 for an example of Bridgett’s support for argumentation. In addition, when a 
part of an argument was implied but not directly stated by the class, we included it in the 
diagram, labeling it as an implicit part. Most of these parts were warrants (see the “cloud” in 
Figure 2 for an example of an implicit warrant.  

We categorized Bridgett’s questions, other support and direct contributions across all the 
diagrams. We analyzed Bridgett’s supportive acts in light of the structure of the arguments and 
their mathematical context. Our identified patterns of support constitute the core of the present 
results.  
 

Results  
Bridgett engaged in many different activities to support the collective argumentation in her 

class. She asked questions that prompted students to provide various parts of arguments, she 
responded to students’ contributions in various ways (sometimes verbally acknowledging the 
contribution, sometimes recording the contribution on the board for future use), and she directly 
contributed parts of arguments. On a more global scale, she negotiated norms in her class that 
applied to all members that involved supporting claims with data and warrants. Our analysis of 
Bridgett’s support for argumentation is ongoing; this report focuses on the parts of arguments 
prompted by Bridgett’s questions, the particular kinds of warrants that were contributed by 
students, and the parts of arguments that Bridgett herself contributed. Through the analysis of 
these aspects of Bridgett’s support for argumentation, we aim to provide a description of what is 
possible, even in a student teacher’s classroom, and to describe the moves that Bridgett used that 
might be productive in other teachers’ classes.  

The episode of argumentation chosen to illustrate our points in two of the following sections 
(Figure 2) occurred during a whole class discussion about polygonal angle formulas. The class 
was engaged in an attempt to derive the formula for the measure of the interior angles of 
(regular) polygons. The class had already discussed various ways to partition particular polygons 
into triangles, in order to sum all the interior angles, and the observation was made that each 
angle in the polygon needed to be congruent if a general formula for the interior angle measures 
was to be found. Bridgett recognized that many of the students had only an intuitive 
understanding of regular polygons, and that the definitional properties of regularity were not 
explicit in some of the students’ minds. Therefore, she explored with the class what should be 
true of “regular” polygons.   
Questions as Support for Collective Argumentation  

As a method to analyze Bridgett’s support, our research team identified the various questions 
Bridgett posed that supported collective argumentation within the classroom. Examining her 
questions across the collection of arguments, we recorded 290 questions from Bridgett that 
directly supported a part of an argument. We then analyzed who contributed the various parts of 
the arguments and found that her questions prompted a total of 156 student contributions, 119 
contributions from both the students and Bridgett, and 15 contributions from Bridgett. This first 
level of analysis reflects two important norms within Bridgett’s support for collective 
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argumentation. First, Bridgett’s support facilitated a significant amount of student contribution. 
Second, due to the significant amount of student contribution, Bridgett rarely needed to respond 
to her own questions; rather, the support she provided by asking appropriate questions elicited 
meaningful student participation. These findings seem to substantiate our assumption that 
classified Bridgett as an exemplary student teacher.  

To further our analysis, we differentiated among the various parts of arguments prompted by 
Bridgett’s questions. For example, her questions prompted more contributions of data than any 
other part of the argument. She asked 82 questions that prompted students to provide data, 67 
that prompted data to which both Bridgett and her students contributed, and 6 that resulted in 
Bridgett herself providing data. Included in these numbers are parts that were coded as data alone 
and parts that were coded as both data and claim, as illustrated in Figure  
2. The statement, “Both squares are regular polygons” was coded as both data and claim because 
it first was a claim, made by Bridgett and her students together, that the squares on the board 
were regular polygons. It was then used, together with “You don’t have to have a certain size 
square” as data for the main claim in the argument. Although this large proportion of data 
supported by Bridgett’s questions corresponds to the proportion of data provided within the 
arguments, this finding demonstrates how Bridgett’s questions required students to provide the 
facts needed to support their development of mathematical claims. Bridgett’s questions prompted 
many of the parts of arguments that were contributed, but not all contributions were prompted by 
questions. In the next section, we explore similarities and differences in student contributions of 
warrants prompted and unprompted by Bridgett.  
Student Contributions of Warrants  

Many of the questions posed by Bridgett supported students in making their reasoning 
explicit. Bridgett also supported students’ reasoning in other ways, such as marking a diagram or 
encouraging the students to continue their thought processes. Of the 57 instances in which 
Bridgett provided any support for a warrant, 48 of the warrants were explicit and only 2 could be 
attributed solely to Bridgett. In contrast, of the 175 warrants that were unsupported, 63 warrants 
were explicit and Bridgett provided 15 of the explicit warrants. Thus, when Bridgett provided 
support for a warrant, students were more likely to make their reasoning explicit, either in 
collaboration with the teacher or on their own. However, when Bridgett did not provide support, 
the students were less likely to make their reasoning explicit, and Bridgett may have contributed 
the appropriate reasoning. These conclusions align with Toulmin’s (1958/2003) suggestion that 
warrants are typically left implicit unless specifically requested, or, in our case, supported by the 
teacher. In addition, these conclusions speak to the importance of the teacher’s role in collective 
argumentation; specifically, assisting students in making their reasoning available to the class.  

Although it was typical for students to leave their reasoning implicit in the absence of 
support, there were 25 instances in which the students made their reasoning explicit without 
specific support from Bridgett. For this reason, we focused our analysis on the types of warrants 
provided by students with and without Bridgett’s support. Our analysis yielded three categories 
of warrants: mathematical concepts (i.e., definitions, theorems, and properties), procedures, and 
observations. Of the 24 explicit warrants provided exclusively by students in conjunction with 
support from Bridgett, 8 were categorized as concepts, 12 were categorized as procedures, and 4 
were categorized as observations. One example of an argumentation episode in which Bridgett 
provided support for a students’ warrant was made while the class was reviewing homework. 
Bridgett posed the question to the class, “Is it possible to have a triangle with side lengths 3, 4, 
and 7?” The class responded, “No.” Bridgett then asked, “Okay, why not?” One student 
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reasoned, “[Be]cause the two smallest sides have to be as long as the longest side. [Be]cause 3 
plus 4 equals 7 and 7's not larger than 7.” This argument is illustrated in Figure 3a. The student’s 
warrant was categorized as concepts because the student’s reasoning made use of the triangle 
inequality theorem although it was not precisely stated. Bridgett supported the warrant by asking 
the question, “Why not?”  
 

 
Figure 3: Arguments about (a) Triangle Side Lengths and (b) Polygon Angle Sum  

In comparison, when students provide explicit warrants in the absence of support from 
Bridgett, 8 were categorized as concepts, 12 were categorized as procedures, and 5 were 
categorized as observations. For example, one episode (see Figure 3b) in which Bridgett did not 
provide support for a student’s explicit warrant was made while the class determined the function 
for the sum of the measures of the interior angles of a polygon given the number of sides. A 
student was at the board explaining how he developed his formula. Claims that had entered into 
the collective up to this point include the linearity of the function, the slope of the function is 
180, and 180(3) = 540 but the sum of the interior angles of a triangle is 180 degrees. The student 
claimed the function needed to have 180 as the slope, but 180 “doesn’t work out right.” He then 
stated, “But then I just subtracted 180 from 540 and it equals 360. Yeah. So, subtract 360.” 
While making this statement, he wrote on the board f(s) =180s –  
360. The student’s warrant was categorized as a procedure. Although Bridgett provided support 
for the claim, she did not provide support for his warrant.  

Students provided the same types of warrants with the same approximate frequency, 
regardless of the presence of support. We draw two conclusions from this comparison. First, it 
appears that Bridgett negotiated classroom norms regarding the appropriate types of justification 
and provided support for warrants involving each of the types of reasoning. Second, the minimal 
amount of variation in the number of warrants in each category suggests Bridgett was not 
selective in the types of warrants she supported. Her choice of when to provide support may be 
due to many factors, including the complexity of the argument, the perceived mathematical 
abilities of the student(s) providing the claim, or the context of the argument. Further analysis is 
warranted and ongoing. Although we can only speculate as to why Bridgett may have chosen to 
provide support in particular circumstances, we can analyze the contributions she makes to an 
argument.  
Bridgett’s direct contributions  

Bridgett directly contributed only 100 parts of arguments (out of more than 800 parts), 
slightly less than one per episode of argumentation, during the seven days included in this 
analysis. In addition, we attributed an additional 15 parts of arguments to her (coded as implicit 
contributions). Of her 100 explicit contributions, 59 were coded as data, with only seven of these 
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being coded as both data and claim. When a part of an argument serves as both data and claim, it 
is either presented as an intermediate claim that serves as data for a later claim, or it serves as a 
claim’s support (data) that is later challenged. It is significant that most of Bridgett’s data 
contributions were coded exclusively as data because it is indicative of the purposes they served 
in the arguments. In many cases, when Bridgett introduced a problem to the class, her 
contribution was coded as data because it included information necessary to solve the problem 
(and/or specified what the problem was). For instance, in the argument diagrammed in Figure 2, 
Bridgett started the episode of argumentation by asking, “What is different between these two 
squares?” after she had drawn two squares on the board. The two squares drawn on the board 
were coded as data because they were used in this way in the argument; they were attributed to 
Bridgett because she drew them. In fact, without these two squares, the argument would not have 
occurred. It is different in contribution than the student’s contribution that is coded as claim/data. 
The student’s claim/data used Bridgett’s data to make a claim that was then used as data for the 
final claim. Thus, while Bridgett’s drawings of squares initiated the argument, the crux of the 
argument depended on claims and data contributed by students.  

The other data attributed to Bridgett in this argument was more aligned with the data 
provided by the students and was characteristic of the other kind of data provided by Bridgett. 
Bridgett pointed out that their definition required that all angles were congruent and all sides 
were congruent. This was not challenged by anyone. Perhaps in this simple case there was no 
possibility of a challenge, but in general, when Bridgett contributed a piece of data, there was no 
challenge by students that would provoke a sub-argument. The one major exception to this rule 
was an argument initiated by Bridgett after a student disagreed with her claim that a circle was 
not a polygon. In this one episode, in which almost all of Bridgett’s data/claim contributions 
occurred, Bridgett engaged the class in a proof by contradiction, a proof method with which the 
students were not particularly familiar, and she was challenged at various points in the argument 
by her students. This episode, although different in several respects from typical classroom 
discourse in Bridgett’s class, showed us several important things. First, students were not afraid 
to challenge Bridgett’s statements, even though they chose not to do so under normal 
circumstances. Second, when the class was doing something that was clearly unfamiliar, Bridgett 
contributed more parts of the argument. Finally, norms in this class applied to both the teacher 
and the students. The students held Bridgett to the same standards of argumentation, in 
particular, justifying claims. This unusual episode shows the consistency of the kinds of data 
contributed by Bridgett. Bridgett’s data remained unchallenged except when students were very 
unfamiliar with the method of argument and strongly disbelieved her claim.  
 

Discussion and Conclusions  
The expansion of Toulmin’s (1958/2003) model provides researchers an effective tool for the 

examination of collective argumentation (Conner, 2008). Through the systematic dissection and 
classification of what often feels like “messy” discourse, we are able to more clearly discern 
patterns and recognize the contributions of the various actors in collective argumentation. 
Important considerations, such as by whom claims are made, who provides justification for those 
claims, and the extent of student and teacher contributions, are quantified, which allows for a 
more focused qualitative analysis. It is through this analysis method that we are able to pinpoint 
characteristics of Bridgett’s teaching that suggest that it is exemplary.  

Though defining “good teaching” is beyond the scope of this paper, Bridgett’s student-
centered classroom aligns with the view of effective mathematics teaching espoused by many 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

126



 

teacher preparation programs and policy documents (Wilson, Cooney, & Stinson, 2005). She is 
unusual in this regard, as previous studies have found that such practices, and the beliefs that 
drive those practices, often diminish once prospective teachers enter the classroom (e.g., 
Eggleton, 1995). Bridgett’s emphasis on and willingness to flow with students’ contributions 
greatly enriched the mathematical discourse in her classroom. The students eagerly participated 
in discussions by making claims and providing data, and they also demonstrated their acceptance 
of the resulting learning style by holding Bridgett to the same standard of justification by 
demanding warrants and providing rebuttals to claims they considered dubious. In short, 
Bridgett’s teaching was exemplary from many points of view, especially in light of her status as 
a student teacher.  

An important characteristic of good mathematics teaching is the ability to develop a 
classroom environment that engages students in doing mathematics (Wilson et al., 2005). 
Lampert and Cobb (2003) explained the importance of mathematical discourse within such an 
environment, “classrooms [can] not be silent places where each learner is privately engaged with 
ideas… [learners] need to talk or write in ways that expose their reasoning to one another and to 
their teacher” (p. 237). Lampert and Cobb emphasized the important role of the teacher in 
facilitating and supporting such productive mathematical discourse; however, the authors 
contend that much less is understood regarding the teacher’s role. The case of Bridgett provides a 
glimpse into some of the important aspects of the teacher’s role in supporting mathematical 
discourse through collective argumentation. Our detailed analysis of the collective argumentation 
within Bridgett’s classroom introduces examples of teacher moves that promote student 
engagement in doing mathematics. The questions Bridgett posed as well as the additional support 
she provided encouraged her students to significantly contribute to the development of 
mathematical arguments. Therefore, Bridgett’s teacher moves promoted collective argumentation 
in the truest sense of the word collective, for the entire classroom continually worked together to 
arrive at mathematical conclusions.  

The foregoing analysis has revealed many aspects of Bridgett’s mathematical discourse with 
her students. The types of data she provided and the situations in which she required warrants 
seem consistent with a high level of student-centered discourse. However, it is worth asking if 
the relationship is causal. Would mimicking Bridgett’s argumentation style lead to similar 
outcomes for other teachers with other students? A definitive answer to this question is currently 
unknown, as there are several other characteristics that might reasonably have contributed to 
Bridgett’s teaching style and subsequent classroom interaction. Two possible mechanisms not 
examined here, but included as part of the larger study whose final results are forthcoming, are 
Bridgett’s belief structure (Cooney, Shealy, & Arvold, 1998) and her beliefs about mathematics, 
teaching, and proof (Conner, Edenfield, Gleason, & Ersoz, 2011). Nevertheless, Bridgett’s 
propensity to request and expect warrants from her students, as well as her reluctance to directly 
provide intermediate data and claims in arguments, are practices that could conceivably enhance 
the mathematical discourse in other classrooms by encouraging fuller student participation, 
resulting in more authentic argumentation. Further research on the transferability, as well as the 
causality, of argumentation mechanics is needed in order to confirm or disprove this hypothesis.  
 

Endnotes  
1.  Toulmin (1958/2003) called these “preliminary arguments” or “lemmas” (p. 90). We use 

sub-argument to indicate that these may not come before the other argument in terms of time 
and to avoid lemma, which has a specific mathematical meaning.  
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2.  Color is represented by line style in diagrams in this paper.  
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In this paper we report on a study examining how teacher perspectives on mathematics content 
and pedagogy changed after the teachers’ schools participated for one year in the Mathematics 
Coaching Program. Teacher narrative responses to questions about student work samples 
provided qualitative data for analysis. Questions asked for teacher input on student thinking and 
instructional decisions. Responses reveal teacher change in the area of the program goals of 
movement toward an integrated procedural/conceptual perspective on content and a learner 
responsive perspective on pedagogy. 
 

Purpose of the Study 
We know that teachers bring to their classroom practice many factors that influence their 

pedagogy. They bring knowledge, skills, and understandings of mathematics that impact student 
learning (Adler & Davis, 2006; Ball, Lubienski, & Mewborn, 2001; Fennema & Franke, 1992; 
Hill & Ball, 2004; Hill, Rowan, & D. Ball, 2005). They also bring into their classrooms 
perspectives on the nature of mathematics and how it should be taught. Perspectives on 
mathematics include whether it is a procedural or a conceptual activity, whether it is necessary to 
know mathematics both conceptually and procedurally, and whether there is some combined way 
to know mathematics (Baroody, Feil, & Johnson, 2007; Star, 2005). Perspectives on mathematics 
pedagogy include whether it is better taught with a teacher-directed or more learner-responsive 
approach, or if one can use and apply both approaches. In this paper we report on a study 
exploring teacher change in terms of perspectives on mathematics and pedagogy with teacher 
participation in a professional development project. We examine these particular perspectives 
because the program serving as the context for this work has among its goals to support teacher 
movement along a continuum from a strict and superficial procedural perspective on content to a 
more richly connected and integrated procedural/conceptual perspective; and along the pedagogy 
continuum from a teacher-directed to a learner responsive perspective.  

In the following paragraphs, we define the perspectives on mathematics and pedagogy that 
are central to this work, and review the literature on which those definitions are based. We then 
describe the methods utilized in our study, including the context of the work, the nature of the 
data, and data analysis procedures. Finally, we discuss findings and closing thoughts. 

 
Theoretical Framework 

Supporting teachers’ practice toward students’ mathematics learning necessitates 
consideration of multiple concepts brought to the teaching of mathematics.  The area of teacher 
mathematics content knowledge already has a deep base in the literature. What we bring to the 
discussion are teachers’ perspectives on mathematics content and pedagogy is a distinction 
between perspectives and what is generally understood in the literature as ‘disposition’.  
Scholars define dispositions as traits that lead a person to follow certain choices or experiences 
(Damon, 2005) or as tendencies to exhibit frequently a pattern of behavior directed to a broad 
goal (Katz, 1993). For Gresalfi and Cobb (2006), the word “disposition” encompasses ideas 
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about, values of, and ways of participating with a discipline, identifying with it, and how it is 
realized in the classroom. A dictionary definition of disposition describes it as “a person's 
inherent qualities of mind and character” (New Oxford American Dictionary, 2005). Similarly, a 
perspective is defined as “a particular attitude toward or way of regarding something; a point of 
view; the state of one’s ideas” (Oxford Dictionaries, 2010). Perspective, although sometimes 
related to attitudes and beliefs in the literature, is usually recognized as being a result of 
experience, and that it can change, and that it influences practice. (e.g. Ross, 1986; Ross & 
Smith, 1992; Zeichner & Tabachnick, 1983). 

In our work we did not chose to name the mathematics and pedagogy concepts we study 
dispositions because definitions of dispositions as cited above suggest less the likelihood that 
they can change than does the meaning of perspective. As educators, we believe that the 
perspectives teachers bring to bear on mathematics and pedagogy are not “inherent” but have 
been learned through lived experiences in and out of school. Additionally, our work in 
professional development relies in part on the belief that professional development can result in 
teacher change in terms of perspectives on content and pedagogy.  

 
Mathematics Content and Pedagogy Perspectives  

Contrary to what many in the general public believe, the content of mathematics is much 
richer than only arithmetic or computation; and learning mathematics content with understanding 
is a more complex endeavor than merely knowing the “how to do” of mathematics (Heibert et 
al., 1997). These and other perspectives are on the opposing “sides” of what Jon Star (2005) calls 
the “so-called math wars” (p. 404), about which he cites Judith Sowder’s statement that 
“Whether developing skills with symbols leads to conceptual understanding, or whether the 
presence of basic understanding should precede symbolic representation and skill practice, is one 
of the basic disagreements” (1998, as cited in Star, 2005). Star clearly advocates for procedural 
understanding, but does so from the position that both procedural and conceptual understandings 
are viewed too simplistically: Conceptual understanding as rich and concrete and procedural as 
superficial and lacking connections. Star suggests a framework where both knowledges are 
studied for their rich, connected, and deep relationship and integrated qualities. 

Baroody, Feil, and Johnson (2007) suggest a conceptualization that is consistent with Star’s 
“recommendation to define knowledge type independently of the degree of connectedness” (p. 
123). Baroody et al. propose the following definitions of procedural and conceptual knowledge: 
a) Procedural knowledge refers to “mental ‘actions or manipulations’, including rules, strategies, 
and algorithms, for completing a task” (de Jong and Ferguson-Hessler, p. 107 as cited in 
Baroody et al., p. 123); b) Conceptual knowledge is “knowledge about facts, [generalizations], 
and principles” (de Jong and Ferguson-Hessler, p. 107 as cited in Baroody et al., p. 123). 

Baroody et al. (2007) distinguish their conceptualization with degrees of depth/superficiality, 
connectedness, and mutual dependence/independence and note: “depth of understanding entails 
both the degree to which procedural and conceptual knowledge are interconnected and the extent 
to which that knowledge is otherwise complete, well structured, abstract, and accurate” (p. 123). 
We take our content perspectives from this literature, and assign a range of conceptualizations, 
from procedural to integrated procedural/conceptual, to form a continuum of perspectives on 
mathematics content for our study. 

The NCTM, particularly by way of its standards publication (2000), puts forth a vision of 
school mathematics “where all have access to high-quality, engaging mathematics instruction. 
There are ambitious expectations for all … Knowledgeable teachers have adequate resources … 
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The curriculum is mathematically rich, offering students opportunities to learn important 
mathematical concepts and procedures with understanding” (NCTM, 2000, p. 3). This vision, 
which includes learning mathematics with understanding (Heibert et al., 1997), has been 
embraced by much of the mathematics education community. It is in direct contrast to what one 
might describe as traditional teacher-directed mathematics instruction that often includes less 
visible engagement in the learning process. That is not to say that students are not cognitively 
engaged; but it does mean that students are not communicating mathematical ideas, not drawing 
on reflective practices and deep understanding. Instead, the teacher directs students on what to 
do, on what and how to learn, playing the dominant role; and students respond to the teacher by 
following instructions (Eccles, Midgley, & Alder, 1984; Gmitrová & Gmitrov, 2003).  

Student-centered instruction is that which is “[d]esigned to elicit and build on students’ ways 
of understanding mathematics” (Empson & Junk, 2004, p. 122) and is often problem-based (Ma 
& Zhou, 2000). Student-centeredness includes the teacher talking less and the learner talking 
more, with the learner doing the mathematical thinking and having opportunities to self-correct 
and generate knowledge through rich mathematical practices. 

The project context of our work had a goal to move teachers beyond student-centered 
instruction to learner-responsive pedagogy (LRP). As in student-centered pedagogy, the LRP 
teacher makes decisions based on the learner’s interests and focused on the learner’s active 
engagement in the lesson. But LRP includes two additional distinctive qualities a) a shift, or 
expansion of each constituents’ responsibilities and roles in the learning process from teacher as 
authority to authority shared by teacher and learner; and b) action: a resulting and deliberate 
instruction based on teacher knowledge of learner thinking and understanding. On-going analysis 
of student thinking is a fundamental component of LRP so instructional decisions can be made in 
direct response to the learners’ understanding and action in making pedagogical choices based on 
the learner’s needs is an intentional move. These pedagogy perspectives form a continuum from 
teacher-directed to learner responsive perspectives in our study. 

 
Methodology 

Participants, Sampling, Context, and Data Source 
Participants in this study are teachers in schools enrolled in a mathematics coaching program 

during the 2008-2009 academic year. All are certified or licensed teachers, and are credentialed 
to teach in any of grades one through eight; some also are credentialed to teach kindergarten. 
They teach in elementary, intermediate, or middle schools served by the coaching program. 
Teachers were free to choose whether or not to participate in the research, and are solicited to 
allow access to their data from the coaching program for research and evaluation purposes.  

In the 2008-2009 project year, 143 teachers consented to participate in the research. Of the 
143 consenting teachers, 100 responded to student work items in the autumn and again in the 
spring of the academic year, as pre- and post responses. From the set of 100 participants with 
both pre and post responses, we created a purposeful, random sample (Patton, 2002) of 20 
participants for analysis. We based our sampling strategy on the following principles: 
a) Include all responders with narrative responses on all items making the sample purposeful in 

its inclusion of only full sets of extended responses (Patton, 1990).  
b) Randomize within the purposeful sample to assured a representative set.  
c) Limit participation to 20 participants: 20 participants, each with 20 response in each of two 

administrations generated 800 data points for analysis, a significant number of data points 
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for qualitative analysis, given the practicalities of time constraints, collaborative coding, and 
inter-rater reliability goals of the work (Patton, 2002).  

The context of the study is the Mathematics Coaching Program, a statewide program training 
mathematics coaches to work in elementary, intermediate, and middle schools. Program goals 
include teaching movement : a) toward richly connected procedural/conceptual perspective on 
mathematics and away from a strict (and superficial (Star, 2005)) procedural perspective; and b) 
toward a learner-responsive and less teacher-directed pedagogy perspective.  

The data source used for our analysis is a questionnaire generating teacher analyses of 
student work. Participants provided narrative responses to two questions for each of ten student 
work samples. One question asked for teacher interpretation of the student’s thinking and the 
second asked for teacher suggestion of next instructional moves. For example, one item provides 
the following student work: Bobby was given the problem 17 – 9 = __ and solved it as follows: 
17 – 9 = 17 – 10 – 1. Teachers were asked to a) Provide a rationale to describe what Bobby was 
thinking; and b) provide an explanation of what to say or do to help Bobby further his thinking.  
 
Data Analysis 

Participant extended responses were coded through two lenses on the autumn (pre) and 
spring reviews (post), and also compared for pre and post results. Responses on student thinking 
were coded for content on a continuum from Procedural to Conceptual to Integrated Procedural/ 
Conceptual perspectives. Responses about instruction were coded on a continuum from Teacher 
Directed to Problem/activity-based and Student Centered to Learner Responsive Pedagogy. See 
the abbreviated codebook of Table 1 for the list of codes. One or more content codes was 
assigned to each student thinking response; and one or more pedagogy codes to each instruction 
response. Multiple researcher reviews of sample responses, collaboration on coding assignments, 
and comparisons to coding by an outside reviewer (Morse, Barrett, Mayan, Olson & Spiers, 
2002) helped reach inter-rater reliability goals of 85% in the analysis. 
 

Code  Mathematics Content Perspective  
IPC Integrated procedural/conceptual perspective  
C Conceptual perspective  
P Procedural perspective  

IO Incorrect/other  
Code  Mathematics Pedagogy Perspective 
LRP Learner Responsive Pedagogy  
PSC Problem/activity-based and Student-Centered instruction  
TD Teacher Directed  
O Other does not clearly belong to any of the other categories  

Table 1. Abbreviated Codebook 
 

Results: Movement in Content and Pedagogy Perspectives 
Table 2. includes results of the coding analysis of participant perspectives on mathematics 

content, showing movement or lack thereof on a P to C to IPC continuum. Data points are best 
viewed as clustered around or tending toward a particular position, allowing for some variance in 
the content and pedagogy perspectives, while still describing a location.  

As the data in Table 2 shows, 25% of the participants tended to exhibit positive movement 
from P to IPC. Consider an example teacher response: Jenny uses the following method to find 
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28% of 60,000 mentally.  20% is 1/5 and 1/5 of 60 is 12, so 20% of 60,000 is 12,000.  One 
percent of 60,000 is 600, and that times 8 is 4800.  So the answer is 12,000 + 4,800, which is 
16,800. We coded a teacher’s response of “When finding answers to problems mentally it is 
easier to break it down into easier chunks,” as P because the response only commented on what 
one would do. Later in the year, that same teacher responded “Jenny broke apart the problem into 
easier chunks.  She understands the relationships between percents and fractions and understands 
that you can divide 60 by 5 to show 1/5” coded IPC because it included both procedural and 
conceptual component; and that conceptual and procedural components are connected.  

Another problem showed a toothpick aligned with a ruler between 8” and 10.5” and a 
student’s response that the toothpick measured 10.5” in length. We coded a response of “I think 
she doesn't understand that you start at the beginning of the ruler to measure” as a P response, 
while a second response of “She seems to be able to read the ruler but is struggling to understand 
how to measure when an object doesn't begin at 0” was coded as an IPC response because of the 
teacher’s analysis that notes the concept of the starting point of a measure.  

On a division of fraction problem where the student used a mathematically valid alternative 
algorithm to find a correct answer, negative movement is exampled by a teacher’s analysis of “It 
seems she made common denominators.” This was coded C because it simply mentioned a 
conceptual component. It did not suggest a procedure, and thus could not be P or IPC. Later, that 
same teacher responded with “Common denominators are used for adding or subtracting 
fractions. She doesn’t understand that you divide fractions by multiplying the reciprocal of 
second fraction,” coded as P because it focused on the procedure, without explaining meaning. 
Positive 
Movement 

Percent of 
participants 

Negative 
Movement 

Percent of 
participants 

No movement Percent of 
participants 

P to C 5% IPC to P 15% Remain P 20% 
P to IPC 25%   Remain IPC 10% 
    Remain P & IPC 25% 

Table 2. Participant Movement on Mathematics Content Continuum  
Table 3 includes the proportional results of the coding analysis of the qualitative data on 

participant perspectives on mathematics pedagogy. These results show percentages of movement 
on the TD to PSC to LRP mathematics pedagogy continuum. In Table 3 25% of the participants 
revealed positive movement from TD to PSC, and PSC to LRP. An example of such positive 
movement from Bobby’s 17-9= __ problem cited above starts with “By using his own 
explanation I could: 1. verify his mistake as I see it and 2. allow him to discover his own error 
and then he could recognize his error in the future” which is coded PSC because it does focus on 
helping the student realize his error. Later in the year that same teacher’s response becomes “I 
would have him solve both sides using pictures or models and compare his answers.  Using this 
method Bobby could see that his process is wrong. He can visualize the need to add that 1 back 
in the equation.” This end of the year instructional suggestion is coded LRP because the teachers 
knows and helps the student discover his errors, by having the student compare and reflect upon 
his own work. The teacher and the student share the authority in the experience. 

An example of the 15% of the participants who showed negative pedagogical movement is as 
follows: A teacher’s first response about Bobby’s problem was, “Bobby I like how you rounded 
the 9 to 10.  Now we have to subtract 17-10=7 and add 1 back to get to the 9. Let me show you 
with our cubes what I would do.” We coded this response TD, but with expectation of movement 
at the post administration because of the potential in the use of manipulatives. However, at the 
post administration, the same teacher responded, “If Bobby explains his answer to me then I 
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would correct him when he explains -1 and tell him he needs to +1 because the problem was 17-
9 and show him with base 10 blocks - 9 cubes is less than 10 cubes or 1 long (10 cubes).” 
Bobby’s use of manipulatives was clearly still from a teacher directed perspective, and perhaps 
even more TD in the language of “I would correct him,” “tell him,” and “show him.” 
Positive 
Movement 

Percent of 
participants 

Negative 
Movement 

Percent of 
participants 

No movement Percent of 
participants 

TD to PSC 20% LRP to PSC 10% PSC 40% 
PSC to LRP 5% More TD 5% TD 15% 
    LRP 5% 

Table 3. Participant Movement on Mathematics Pedagogy Continuum  
 
Analysis by Mathematics Content Strands 

An additional review of the data by mathematics content strand revealed interesting results 
for two different NCTM content standards: number and operations; and data analysis and 
probability. Two of the items drawn from the number and operations content standard provided 
student work showing unusual solutions.  The first was one in which the student reduced the 
fractions to common denominators and divided along the numerators, using a mathematically 
valid approach. Seventeen out of twenty teachers did not accept this as a valid method, insisting 
that the student should have used the “invert and multiply” strategy. One other responded that the 
student “got lucky.” The second item is a three-digit subtraction problem for which the student 
developed his own alternate algorithm. Thirteen of the twenty teachers refused to accept this 
student’s mathematically valid solution as a legitimate solution. In both of these items, although 
the teachers who doubted the solutions did not necessarily lack content knowledge, they were 
unwilling to accept the alternative strategies. This suggests a reluctance to value student 
thinking, which would hinder the use of a learner-responsive pedagogical approach. 

Two items in the sample drawn on the data analysis and probability standard also revealed 
interesting findings. One item included student interpretation of a graph that had no labels or 
numbers. The student explanation described a representation of distance against time, but every 
teacher in the sample of 20 viewed the graph as representing only speed against time. Hence no 
teacher interpreted the student’s explanation as correct. On a different problem, focusing on 
probability, 20% of the teachers responded with thorough explanations revealing an 
understanding of the mathematics; but most offered responses that were clearly incorrect or with 
what we might call “non-answers” circumventing the topic and suggested little to no knowledge 
of the relevant content. In both cases, data suggest that even those with overall PSC or LRP 
pedagogical perspectives did not know this particular mathematics well enough to question 
students through explorations or help students come to a mathematically valid understanding. 

 
Closing Discussion 

As noted earlier, the MCP context for this research study has among its goals to support 
teacher movement in mathematics content and mathematics pedagogy perspectives. We find that 
the program impacts teacher perspectives and that our coding helps document and describe that 
movement. That we can capture even small movement with data on only one year in the MCP 
suggests a useful methodology in capturing the subtleties of incremental change. As opposed to 
definitive, consistent, permanent positions, teachers are positioned in-between categories, tend 
toward a position, or contribute data that shows only slight movement toward a position. In the 
day-to-day work that the MCP coaches do with teachers, being able to identify subtle changes 
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and the nuances of individual teacher’s perspectives is critical to the coaches’ work. That a set of 
teachers may fill in many different positions on the continua does not suggest more codes are 
needed, but, rather, that the continua represent the realities of teacher growth. They are practical 
and useful tools for describing fluid movement, being flexible enough to capture the teachers’ 
sometimes daily and often small, incremental changes in perspectives. Many teachers also are 
likely to be positioned differently for some content than for others, so connecting this work to 
teacher content knowledge can reveal additional directions for professional development.  

Finally, this work has implications for equity pedagogy (Erchick, Dornoo, Joseph, and 
Brosnan, 2010). A teacher’s strict and superficial procedural perspective on mathematics limits 
students’ opportunities for the rich mathematical learning of the integrated procedural/conceptual 
perspective; and examples of limitations of content knowledge that emerged in this work also 
hinder students’ access to the mathematics. A teacher directed perspective as we define it in this 
study is akin to Friere’s “ ‘banking’ concept of education” (1973; 1989, p. 58), where the teacher 
transmits, deposits, and “the scope of action allowed to the students extends only as far as 
receiving, filling, and storing the deposits” (p. 58) and does not allow for the shared authority, 
and the accompanying learning, that is necessary for Learner Responsive Pedagogy.  
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In this paper, we discuss how a teacher’s decentering moves influence the discourse in her 
classroom. Research has revealed decentering to be a valuable construct in characterizing the 
interactions in a professional learning community. Our research explores the role of decentering 
in a teacher’s ability to support student learning in the classroom. Specifically we focus on how 
a teacher’s decentering moves influences her students’ propensity to reflect on their thinking and 
solutions. Our findings illustrate how a teacher’s improved decentering ability supports student 
reflection and achieving a conceptually oriented classroom.  

Introduction 
Researchers have found the construct of decentering to be a useful construct in analyzing a 

facilitator’s ability to support mathematical discussions in a professional learning community 
(PLC) of secondary teachers (Carlson, Moore, Bowling, & Ortiz, 2007). The authors observed 
that as a facilitator increased her or his propensity and ability to discern the thinking of her or his 
peers, the mathematical discourse in the PLC became more substantive and conceptual. In this 
paper we adapt decentering to analyze a Precalculus teacher’s interactions with her students. We 
discuss how a teacher’s decentering actions relate to her students’ opportunities for reflecting on 
their responses and thinking. We also characterize transitions in students’ tendency to engage in 
reflective thinking in relation to the teacher’s decentering actions. 

Theoretical Framework 
Piaget (1955) described decentering as the act of adopting a perspective that is not one’s 

own. Steffe and Thompson (2000) built on Piaget’s work in describing how one individual 
adjusts his or her behaviors in order to influence another individual, or a group of individuals, in 
a particular manner. Specifically, Steffe and Thompson used decentering to characterize the 
interactions betweens teachers and students. 

 A teacher decentering assumes that the student’s behavior has a rationality of its own and 
tries to discern the mental actions driving the student’s behaviors. As the teacher decenters, they 
build a model of the student’s thinking, and then base his or her actions on this model. To 
contrast, a teacher not decentering interacts with students assuming that her or his thinking and 
the student’s thinking are identical. Over the course of a conversation, a non-decentering teacher 
may notice that the student’s thinking is different, but the teacher does not construct a model of 
the student’s thinking, therefore acting in a non-decentered way. 

Researchers (Carlson, et al., 2007) found decentering to be a key tool for facilitators to 
achieve successful discourse in secondary mathematics and science PLCs. When characterizing 
the PLC facilitators’ decentering actions, the authors determined various Facilitator Decentering 
Moves (FDMs) in order to classify the PLC interactions. The decentering moves ranged from the 
facilitator acting entirely in a non-decentered way (FDM1), representing the lowest end of the 
spectrum, to the facilitator building a model of PLC members’ thinking and how the members 
were interpreting her or his actions while adjusting her or his actions based on these models 
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(FDM5), representing the highest end of the spectrum. 
Teuscher, Moore, and Carlson (2011) made further connections between a teacher’s level of 

decentering and the student discourse in the classroom. In studying one teacher’s use of research 
based curriculum, the authors noted that the teacher’s question types and purposes changed as 
the teacher began to focus on her students’ thinking and understanding of the concepts 
independently of her way of thinking about the tasks (decentering). We believe that student 
knowledge is unique to each individual and we conjecture that a decentering teacher will support 
her or his students’ learning by enabling the students to build and reflect on their thinking and 
actions. We predict that classroom discourse will also shift toward more opportunities for student 
reflection as a teacher is decentering. When teachers promote student reflection and thinking, the 
students are placed in situations that Hiebert and Grouws (2007) call opportunities to learn.  

Hiebert and Grouws (2007) suggested that the type of curriculum influences opportunities for 
students to learn and we conjecture that the curriculum may influence teachers’ pedagogical 
decisions. A curriculum emphasizing a conceptual orientation may influence a teacher’s 
pedagogical goals to promote an environment of conceptual discourse. On the other hand, a 
curriculum emphasizing a procedural orientation places value in students gaining procedural 
fluency. In characterizing these two goals of learning, procedural and conceptual, Hiebert and 
Grouws (2007) note two types of teaching patterns: teaching for skill efficiency and teaching for 
conceptual understanding. Teaching for skill efficiency means providing students with 
opportunities to practice and master mathematical procedures quickly and accurately. Teaching 
for conceptual understanding means providing students with rich mathematical tasks that support 
them making mental connections between mathematical ideas, procedures, and facts. Teaching 
orientations impact the nature of classroom discourse, promoting either a calculational or 
conceptual orientation (Thompson, Philipp, Thompson, & Boyd, 1994). 

Stigler and Hiebert (1999) noted that even though an element in the system (in this case the 
teacher) may change, the system itself resists sudden change and will “rush to repair itself” due 
to cultural scripts. The system they refer to includes teachers, students, administrators, and 
parents. Cultural scripts are unwritten “rules” or behaviors that are shared by members of a 
society; in the context of teaching and learning, it is the expected role of teachers and students. 
Due to these constraints in achieving classroom shifts, we hypothesize that a teacher’s 
decentering ability and corresponding changes in her or his students’ activity will occur in 
gradual shifts. 

For the present study, we investigate the following research questions: 
1. How does students’ discourse shift toward more opportunities for reflection as a teacher’s 

decentering levels increase? 
2. How does the nature of student reflection change when the teacher promotes and the 

curriculum supports a conceptual orientation in mathematics? 

Methods 
Claudia is a secondary mathematics teacher at Rover High School. Previous to the study, 

Claudia had a total of 20 years teaching experience including elementary, junior high and high 
school. At the time of this study, Claudia was assigned to teach Precalculus for the second time 
in her career. All mathematics and science teachers at Rover High School participated in a 
National Science Foundation Math and Science Partnership (MSP) project (No. EHR-0412537) 
designed to support secondary mathematics and science teachers in improving their instruction 
and their students’ learning. The project leaders designed and implemented school-based 
interventions including graduate courses, workshops, and leadership for school-based PLCs at 
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Rover High School to support teachers in using inquiry-based instructional methods and a 
conceptually oriented curriculum. To support Claudia’s efforts, the project leaders gave Claudia 
the opportunity to use a newly developed research-based conceptually oriented Precalculus 
curriculum (Carlson & Oehrtman, 2010), which we will refer to as the Pathways curriculum. In 
this curriculum, covariational reasoning, rate of change, proportionality, and problem solving are 
emphasized.  

Claudia’s two Precalculus classes used the Pathways curriculum and were videotaped daily 
to observe the interactions and discourse between Claudia and her students. Videos were 
digitized and viewed by the research team, with select videos analyzed to examine shifts in 
Claudia’s interactions with her students. Three exemplary videos were selected for coding: one 
from the first week of class (August), one from five weeks into the school year (September), and 
one from five months into the school year (December). The research team coded the teacher-
student interactions for students’ mathematical reflections and the degree to which Claudia was 
decentering while interacting with her students.  

To code student opportunities for reflection, the last two levels of descriptor C.9 “The teacher 
encouraged students to reflect on the reasonableness of their responses” from the Middle Tool 
Observational Tool was used (Reys, 2004; Tarr, et al., 2008). We first coded each teacher-
student interaction that provided students’ the opportunity to reflect on the reasonableness of 
their or someone else’s responses. The second level of coding was within each interaction, the 
teacher moves depending on the whether the teacher encouraged or discouraged conceptual 
understanding (see Table 1) by either promoting a calculational or conceptual orientation 
(Thompson, et al., 1994).  

 
Student Opportunity Teacher moves 
Student reflection on answers 1. The teacher asked students if they checked 

whether their answers were reasonable but did 
not promote discussion that emphasized 
conceptual understanding, or 
2. The teacher encouraged students to reflect 
on the reasonableness of their answers, and the 
discussion involved emphasis on conceptual 
understanding. 

Table 1. Student Opportunities (adapted from Reys, 2004) 

To characterize Claudia’s decentering, we used the construct of the facilitator decentering 
moves (Carlson, et al., 2007) in the context of interactions between Claudia and her students. 
Table 2 displays the construct of facilitator decentering moves (FDM); in the context of our 
study we referred to the teacher-student interactions as teacher decentering moves (TDM). 
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Decentering Codes Description  
TDM1 The teacher shows no interest in understanding the thinking or 

perspective of a student with which he/she is interacting. 
TDM2 The teacher appears to build a partial model of a student’s 

thinking, but does not use that model in communication with the 
student. The teacher appears to listen and/or ask questions that 
suggest interest in the student’s thinking; however, the teacher 
does not use this knowledge in communication. 

TDM3 The teacher builds a model of a student’s thinking and recognizes 
that it is different from her/his own. The teacher then acts in ways 
to move the student to her/his way of thinking.  

TDM4 The teacher builds a model of a student’s thinking and acts in 
ways that respect and build on the rationality of this student’s 
thinking for the purpose of advancing the student’s thinking 
and/or understanding.  

TDM5 The teacher builds a model of a student’s thinking and respects 
that it has a rationality of its own. Through interaction the teacher 
also builds a model of how he/she is being interpreted by the 
student. He/she then adjusts her/his actions (questions, drawings, 
statements) to take into account both the student’s thinking and 
how the teacher might be interpreted by that student. 

Table 2.  Characterization of Teacher Decentering Moves (adaption from Carlson, et 
al., 2007) 

Results 
In this section we discuss the quantitative and qualitative results from the analysis of 

Claudia’s three classroom videos. Each classroom session lasted 50 – 54 minutes. Table 3 
displays the number of minutes of class time that was coded as a teacher-student interaction in 
which students reflected on their responses. The percentage of student contribution to these 
reflective interactions is listed after the minutes, measured as the time Claudia was not speaking 
during the interaction. Each instance of student reflection was coded according to whether or not 
the discourse promoted conceptual understanding (e.g., making connections between 
mathematical ideas). 

 
Reflection type August 

(minutes) 
September 
(minutes) 

December 
(minutes) 

Did not empathize 
conceptual understanding 4.43 (28.91%) 0.00 (0.00%) 0.00 (0.00%) 

Emphasized conceptual 
understanding 1.87 (28.91%) 5.39 (46.62%) 12.69 (52.10%) 

Table 3. Teacher-student interactions categorized by reflection type 

The percentage of total class time in which interactions included student opportunities to 
reflect on answers was 11.50% in August, 9.90% in September, and increased to 25.3% in 
December. The percent increase of time spent in these interactions, determined as the difference 
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in minutes between August and December relative to the total class time in August, was 11.93%. 
The increase in student reflection on their mathematical responses is evident, but the table only 
conveys the percentage of class time for which this occurred. In August, the 11.50% spent in 
reflection was based on interactions that consisted of Claudia questioning her students during a 
whole class discussion. When students worked in small groups during the same lesson, the 
research team did not observe opportunities for student reflection. In both the September and 
December videos all student reflections occurred during work in small groups as the teacher 
circulated and visited with groups.  

Although the time in which opportunities for student reflection increased from August to 
December, this data alone does not illustrate the quality or nature of these questions. In an 
attempt to provide a deeper characterization of Claudia’s questioning, we analyzed her classroom 
videos to determine the role of decentering in her questioning, as well as transitions in the nature 
of her questioning and student thinking elicited by her questioning. The following three excerpts 
give examples of student reflection in the context of Claudia’s interactions with her students. 

In Excerpt 1a (August) Claudia read student responses to a recent quiz on average rate of 
change and asked students to determine what was missing or incorrect in the responses. In the 
transcript, ‘…’ is used to indicate one speaker interrupting another speaker. 

Excerpt 1a 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

C:  Listen to this one and I'm going to tell (you?) the comment I wrote. Average rate 
of change is the overall distance, divided by the amount of time that tells you the 
average amount of miles per minute from p1 to p2. Now what's wrong with this 
answer? What is it actually telling me? 

S1: How to find it. 
C: So it's telling me the what?  How to find it, but what about how to find it?  
S2: The math. 
C:  The math, the formula, okay? So when it says what's the meaning of the average 

rate of change? It doesn't mean tell me in words what the formula is, it means:  
tell me what it means. 

In Excerpt 1b (August) Claudia discussed with the class the meaning of the average rate of 
change of a diver's height from the water with respect to time using a table of values. Claudia 
and her students changed the time interval to half a second on the calculator and discussed the 
meaning of a rate of change of zero between two successive values in the table. 

Excerpt 1b 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

C:  Okay, so that would mean that what would happen, the person jumps off the 
board? 

S1: Floats there for a second. 
C: Okay, so is the diver suspended in mid-air for a half a second?   
(Some students in class say no.) 
S2: He wasn't suspended but… 
S3: …went back in. 
(Some students in class are making gestures of a concave down parabola.) 
C: Oh, so he went up and back down, okay, but we're not seeing that right here in 

this table. But the way you could find out is change your interval again and what 
could we change it to this time? 

S4: One-quarter. 
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13 C: Point two five, or you could do smaller, you could do point two, whatever. 
In Excerpts 1a and 1b, we characterize Claudia’s actions at the TDM1 level because she was 

focused on students arriving at a specific answer with no indication that she was interested in the 
thinking or perspective behind the students’ responses (Excerpt 1a: lines 6, 8-10; Excerpt 1b: 
lines 9-11, 13). Although she initiated the opportunity for student reflection (Excerpt 1a: lines 1-
4; Excerpt 1b: lines 1-2, 4), meaningful discussion did not follow (Excerpt 1a: lines 5-7, Excerpt 
1b: lines 5-8) and Claudia proceeded without pushing the students for further explanation 
(Excerpt 1a: lines 8-10, Excerpt 1b: lines 10-11). The opportunity for student reflection in 
Excerpt 1a did not promote conceptual understanding (lines 6-8). Although Claudia made an 
attempt to promote conceptual understanding in Excerpt 1b (lines 1-2, 4), she did not try to 
create a model of student thinking. Claudia instead questioned her students in ways that 
suggested she was seeking an answer, which did not promote deep or meaningful reflection. 

In Excerpt 2, which occurred during a September class, students were in groups of three to 
four students. Claudia gave her students a task stating: “A local hotel currently rents an average 
of 28 rooms per night. The hotel management estimates that for every $5,550 spent on hotel 
renovations they will be able to rent an additional 6 rooms each night. Sketch a graph that 
represents the relationship between the number of rooms that can be rented in terms of the 
amount of money spent on renovations.” (Carlson & Oehrtman, 2010, Module 2) This question 
was part of a unit on linearly and proportionality. Claudia circulated the room monitoring the 
students’ activity and asked questions of students in different groups as they engaged in the task. 
Claudia’s conversation with two students is presented in Excerpt 2.  

Excerpt 2 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

C: So if you can pay for one room at a time that would mean, as soon as you pay the 
next 925 dollars you would get an additional room. Right? 

S1: Correct. 
C: Okay, what kind of relationship is that? 
S1: (thinking) 
S2: Step function. 
C: (Laughing) No. 
S2: It is not proportional. 
S1: It is not proportional and it is not linear because… 
C: Okay, why is it not proportional? 
S1: Because you start at 28, and you can’t spend negative money on the next room. 
C: Are the changes proportional though? 
S1: No. 
C: So for each additional room built are they always going to pay nine hundred? 
S1: I don’t know, we are trying to think about how to describe this. 
S2: Well you presume, because they’re not only going to build half a room. 
S1: If for every apple you need one orange and you have half an apple then you need 

half an orange, but this is not the case here because you spend half the money 
here you are still going to get one, or you can’t spend half the money here. 

C: Okay, are you assuming that you have to spend the 5,550 dollars in your graph, is 
that what you are assuming? 

In Excerpt 2, we characterize Claudia’s interactions with her students as TDM3 level because 
she made moves to guide Student 1 to her own way of thinking (lines 1-2, 4, 10, 12, 14). 
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Specifically, she was prompting the students to describe that there was a proportional 
relationship between the two quantities.  Although her questioning (lines 1-2, 4, 10, 12), initiated 
opportunities for her students to reflect on their solution it did not support their reflections. In 
providing these opportunities, however, the students’ utterances indicated that their thinking was 
different than Claudia (lines 6, 8, 9, 11, 13), and they persisted because they were convinced of 
the reasonable of their response. As the interaction progressed, Claudia’s question in line 14 gave 
the students another opportunity to more fully verbalize their thinking. They justified why the 
situation with the hotel renovation was not proportional based on their understanding of 
proportionality (lines 16-19). By the end of the excerpt, Claudia began to reflect on the 
rationality of the student’s thinking (lines 20-21).  Immediately after Excerpt 2, Claudia allowed 
her students to describe their way of thinking, and this led her to accept their solution as a viable 
alternative to be respected (TDM4). She then asked Student 1 to present her solution to the class 
as one of the acceptable approaches to solving the problem.   

In Excerpt 3 (December), students were in groups of three to four students discussing a 
problem about the relationship among the arc length, radius and angle. The context of the 
problem is a bug traveling on a fan blade with the unit of measure in radians and students are to 
explore the relationship between arc length, radius, and angle. The concept emphasized in the 
previous lesson was that one radian of angle measure corresponded to the arc measure of one 
radius length. Claudia circulated the classroom monitoring students’ discussions as they engaged 
in the task. In Excerpt 3 Claudia was conversing with students in one group regarding the 
question: How does the angle measure change if the radius of the fan is changed, but the distance 
the bug travels (0.765 radians) is not changed? 

Excerpt 3 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

C: Okay, in radians is not changed though. You are thinking of the arc length, you 
are thinking of the distance the arc length. 

S2: That’s not a distance the bug traveled that’s the angle of the distance. 
C: But can we take an arc length and change it to a radian measure? 
S1: Yeah. 
C: Okay, so? 
S2: But that isn’t the distance that the bug traveled. 
C: But if the arc length of an angle is given, can we find the distance the bug 

traveled? 
S2: If it is given in radians. 
C: Yes, if you have a radius and an angle you can, so you are just saying that the 

way the question reads, how does the angle measure change if the radius of the 
fan is changed, but the distance the bug travels in radians is not changed? Is 
because of how it is worded, he is thinking the arc length. Okay so if the… 

S2: But the bug travels would be, they say the units that they give you to use and the 
quantity they ask you to measure do not match.  

C: True. 
S2: That would be like, what is the gas mileage in liters, and it’s like (inaudible). 
C: (laughs) Okay yeah, okay so let me look at this for a minute – how does the angle 

measure change if the radius of the fan is changed, but the distance the bug 
travels, 0.765 radians, is not changed? Well can you say that a linear 
measurement is 0.765 radians? Can I say that? 

S1: No, but that is what it says here. 
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24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

C: What is 0.765 radians, what does that represent for any circle? 
S1: The openness of the angle. 
C: But what does the actual 0.765 radians measure, what does that mean? 
S1: How– it’s proportional to the radius so it is that much of the radius around the 

circle. 
C: Okay, so we could say that this is 76.5% of one radian in length? Could we say 

that?  
S1: Yeah. 
C: S2 what do you think? So if the measurement is 0.765 radians then the length of 

the arc is 76.5% the length of the radius. 
In Excerpt 3, we characterize Claudia at the TDM4 level. She acknowledged understanding 

how Student 2 interpreted the question and made moves to help both Student 1 and Student 2 
reach a common understanding of the question, based on her model of the students’ thinking 
about the question (lines 1-2, 11-14). Claudia’s questioning (lines 4, 6, 8-9, 21-22, 24, 26, 29-30, 
32-33) initiated opportunities for student reflection (lines 3, 5, 7, 10, 15-16, 18, 23, 25, 27-28, 
31). Specifically, she prompted the students to reflect on a misconception that the radius length 
could be only used to measure the angle subtended by an arc, as revealed through the comments 
of Student 2 (lines 15-16, 18).  Claudia made moves to resolve this misconception by linking 
mathematics concepts from the prior lesson in regards to the correspondence between radian 
measure of the circle and its radius. The questions Claudia asked (lines 21-22, 24, 26, 29-30, 32-
33) required the students to continue to reflect on reasonableness of their thinking until both 
students reached a common understanding (which was reached after this excerpt).  

Conclusions 
Hiebert and Grouws (2007) identified two critical features of classroom teaching that foster 

conceptual understanding : (1) explicit attention must be made to the connections between facts, 
procedures, and ideas of mathematics; and (2) students must “struggle” with mathematics, not in 
the literal sense, but in the sense that they need to put an effort in making sense of the 
mathematics. Excerpts 2 and 3 display Claudia supporting her students’ thinking by questioning 
them in ways that led to their reflecting on the mathematics (Excerpt 2: lines 6, 8, 9, 11, 16-19, 
Excerpt 3: lines 3, 5, 7, 10, 15-16, 18, 23, 25, 27-28, 31). In these excerpts Claudia modeled a 
higher level of decentering (TDM3, TDM4) when compared to Excerpts 1a and 1b (TDM1), in 
which no decentering was present. Claudia’s higher level decentering actions enabled 
mathematically rich conversations emphasizing conceptual understanding while generating more 
opportunities for student reflection. Also, classroom discourse shifted from a calculational 
orientation towards a conceptual orientation as students were asked to explain their thinking. 
Stigler and Hiebert (1999) had noted a system resists sudden changes due to cultural scripts. We 
had hypothesized that the changes in classroom norms would be gradual. Just as Claudia’s 
progression in decentering was gradual as the semester progressed, so too was the students’ 
propensity to reflect on their thinking.  

Future studies should continue to investigate teachers’ decentering abilities and how these 
abilities support student learning. Such studies should also include a focus on the attributes (e.g., 
content knowledge, attitudes, and beliefs) of a teacher that support shifts in her or his decentering 
abilities. Although one of the observational scale descriptors was adapted from the Middle 
School Observational Tool (Reys, 2004), the other descriptors should offer further insight in the 
decentering actions of a teacher and the learning and actions of students. 
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Teacher Educator’s questioning strategies are essential in maintaining the level of cognitive 
demand of tasks for preservice teachers’ learning of mathematics for teaching. Classroom 
discourse has been known to maintain the level of cognitive demand of tasks. However, 
qualitative differences exist in the use of discourse. This study focuses on comparing instructors’ 
questioning strategies with two groups of preservice elementary teachers using the same 
cognitively challenging task on surface area, where in one group the level of the cognitive 
demand of the tasks is maintained while in the other it is lowered.  We highlight effective 
questioning strategies during whole group discussion. 

Introduction 
The purpose of this study is to investigate the role of instructor’s questioning strategies in 

facilitating discourse in mathematics methods classes for preservice elementary teachers.  We 
analyze the role of questions used by teacher educators in setting up a classroom community that 
emphasizes justification and explanation (evidence and warrants). Our analysis targets specific 
types of discourse that teachers use and how they affect the flow of the discourse within the 
whole class discussion. While classroom norms have been found to affect the quality of 
discourse (Cobb, 1999), the role of the teachers is key to orchestrating the whole class 
discussion. What and how the teachers ask questions affect the course of the discussion, whether 
building towards key mathematical understandings as opposed to merely sharing ideas. This 
paper contributes to the literature in extending our understanding in supporting teacher educators 
to facilitate whole-class mathematical discussions with preservice elementary teachers. We share 
an analysis of two instructors who were using the same cognitively demanding task designed to 
support preservice elementary teachers’ understanding of surface area and generalized across 
prisms and cylinders. 

Theoretical Framework 
The theoretical framework of this study is derived from a sociocultural perspective, whereby 

mathematics teaching and learning is inherently social and embedded in active participation in 
communicative reasoning process (Lerman, 2001). Lerman (2001) deems that learning is a 
consequence of social interactions, which “along with physical and textual interactions can cause 
disequilibrium in the individual, leading to conceptual reorganization” (p. 55). He argues that 
“consciousness is constituted through discourse” (p.88) and associates speaking mathematically 
with learning mathematics and learning to think mathematically. Communication in mathematics 
classrooms provides opportunities for students to engage with ideas, refine understandings, and 
share insights and strategies. Walshaw and Anthony’s (2008) review of current literature on 
discourse indicates that “students’ active engagement with mathematical ideas will lead to the 
development of specific student competencies and identities” (p. 516).  Rich mathematics 
discourse is at the center of constructing and connecting knowledge in mathematics.  In 
classrooms where students explain and defend their ideas, analyze and evaluate the ideas of 
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others, justify solutions, and explore multiple perspectives through conversations with peers, 
students deepen their own conceptual understandings and further their learning in mathematics. 
Classroom discourse has the potential to develop and deepen students’ conceptual understanding 
of mathematics. The quality and type of discourse are crucial to helping students think 
conceptually about mathematics (Kazemi & Stipek, 2001; Lampert & Blunk, 1998; Nathan & 
Knuth, 2003; van Oers, 2002; Van Zoest & Enyart, 1998).  

Teacher discourse, i.e. what teachers say and how they say it, has a significant influence on 
how and what students learn (Knott et al., 2008). Teacher discourse can influence both the 
amount and the quality of learning that takes place, and may often inadvertently lower the level 
of the mathematical task from cognitively demanding to one of rote application of procedures 
(Stein et al., 2000). Particularly during whole class discussion, in the collective act of abstraction 
that occurs for students during the course of the lesson, the teacher facilitates and choreographs 
the mathematical discourse through the use of a wide range of meta-mathematical discourse 
moves (Knott et al., 2008). They are meta-mathematical in a sense that “they do not directly 
supply mathematical content but rather they are about mathematics, and employ the language or 
‘register’ of mathematics” (Knott et al., 2008, p. 95). For example, teachers use moves such as 
steering, probing, redirecting, clarifying, validating, prompting, rephrasing, re-voicing, and 
generalizing during the interaction with students engaging in the mathematical tasks. Although 
these discourse moves are not directly mathematical content discourse, they are important in 
making mathematics learning happen in the classroom, by encouraging students to participate in 
shaping their own learning.  

The use of discourse with preservice teachers poses additional challenges to mathematics 
educators.  Specifically, preservice teachers have experienced mathematics lessons throughout 
their schooling and often enter their preparation program with an expectation of learning to 
become better at what they think mathematics teachers do (Nichol, 1999). One recommendation 
to rectify this problem is to focus on using problems and dilemmas of practice “as springboards 
for investigation of mathematics teaching and learning” (Nichol, 1999, p. 48). Morrone et al. 
(2004) found that instructors who consistently pressed for understanding and used scaffolded 
discourse to facilitate preservice elementary teachers’ learning when using a series of 
challenging tasks were able to generate mathematical knowledge about content and teaching.  

In this study we analyze how these discourse types might be associated with the development 
of preservice elementary teachers’ mathematical explanation and justification. We attend to 
instructors’ tactical moves that encourage preservice elementary teachers to attend to the content 
by tracking teacher educators’ questioning strategies and noting the kinds of opportunities to 
engage with content that are offered to students during whole class discussion (Gresalfi & 
Williams, 2009). 

Methods 

Participants and Setting 
This study is part of a larger project, the Elementary Preservice Teachers Mathematics 

Project (EMP), developing a series of cognitively demanding mathematical tasks (Stein et al., 
2000) for preservice elementary teachers. The tasks were developed across several mathematical 
topics (Number Theory, Fractions, Ratios and Proportions, Geometry, and Geometric 
Measurement) where the questions were appropriately scaffolded and supported by classroom 
discourse in both small group and whole class discussion. In the pilot study, participants 
consisted of 32 undergraduate students at a major New England University, majoring in 
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elementary education, special education, or deaf studies. The participants were in two classes 
taught by two different instructors, who were doctoral candidates in mathematics education in 
their third year of the program.  Both instructors strove to develop their students’ understanding 
but used different methods. Preservice teachers in the two classes first worked on the 
mathematical tasks in small groups followed by whole class discussions.  However, the two 
sections differed during the whole class discussion.  In one section, the instructor only went over 
answers whereas in the other section, the instructor also included a discussion about the big ideas 
of the key concepts and procedures.   

The study was conducted midway through the second semester of a two-course sequence for 
elementary education majors. Both sections had previously experienced using discourse and 
sense-making to discuss mathematical problems in small groups and to work toward 
justification. The task being used in this study was part of the EMP geometric measurement 
strand.  It focused on surface area and covered two class periods. The preservice teachers 
examined the lateral and total surface area of prisms on the first day and examined similar ideas 
around cylinders with an emphasis on drawing connections between prisms and cylinders on the 
second. Specifically, the participants were introduced to a different way of finding the surface 
area of prisms and cylinders by considering the lateral surfaces and bases separately.  They 
discovered the perimeter of the base of a prism or cylinder multiplied by the height of the figure 
is equivalent to the area of the lateral surface area. This study focuses on a question (Figure 1) in 
which the preservice teachers were asked to determine which of three figures (two prisms and 
cylinder) had the largest surface area. By this point, they should have noted that the lateral 
surfaces areas had the same dimensions and so the base areas were the only difference. Prior to 
the whole class discussion, the preservice teachers had explored and discussed the questions in 
their small groups both with and without the instructor. 

 

Figure 1. Question 15 from the EMP Task on Surface Area 
All lessons were videotaped and transcribed.  The tasks were coded using the Instructional 

Quality Assessment Academic Rigor (IQA-AR) Rubric for Potential of the Task (Boston & 
Smith, 2009) to assess the levels of cognitive demand of the mathematical tasks as they were 
intended to identify questions at a high level.  The transcripts were coded using the Instructional 
Quality Assessment Academic Rigor (IQA-AR) Rubric Implementation of the Task (Boston & 
Smith, 2009) by pairs of coders to ensure inter-rater reliability.  

Using the rubrics, we identified questions that have high levels of intended cognitive 
demand. We then analyzed the transcripts for instances when the level of cognitive demand was 
maintained or dropped during the implementation. Question 15’s level of cognitive demand was 
high but then was dropped in the first group and maintained in the second group.  

In order to analyze and compare instructors’ discourse moves, we adapted existing analytical 

15. The following nets show the lateral surface rectangle but not the bases of a triangular prism, a square prism, and 
a cylinder, respectively.  Which one has the greatest surface area? Explain. 
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frameworks (Fraivillig, Murphy, & Fuson, 1999; Knott, Sriraman, & Jacobs, 2008) to attend to 
teachers’ discourse moves, especially the use of questioning strategies. We deemed it necessary 
to adapt these frameworks because there are differences in context between K-12 and preservice 
education settings. Table 1 shows the analytical framework used in our study. 

Table 1. Analysis Framework for Teacher Educator’s Discourse Moves 

Purpose of 
Move 

Questioning Strategy Description 

Eliciting Probing 
Rephrasing/Re-voicing  
Prompting 

To elicit students’ prior knowledge 
To validate students’ mathematical thinking  
To provide background knowledge 

Supporting Steering  
 
 
Re-directing  
 
 

To move the discourse in a particular direction 
based on students’ engagement in and 
demonstrated level of understanding of the task 
To steer the discourse back when the discourse is 
moving towards irrelevant or incorrect 
mathematical assumptions 

Extending Challenging 
 
Generalizing 

To demand explanation and justification of 
students’ claim 
To push students to move beyond the particular to 
the general case 

Findings 
Comparing the transcripts from the two instructors orchestrating the whole class discussions 

around question 15, we identified differences in their use of tactical moves in framing the whole 
class discussion, orchestrating discourse, and connecting and extending the preservice teachers’ 
thinking. Table 2 shows the frequencies of each of the discourse strategies used by each 
instructor during their whole class discussion around question 15. Both instructors used moves 
that elicit and support preservice teachers’ thinking, but the second instructor included moves 
that extend preservice teachers’ understanding (Challenging and Generalizing) to think beyond 
what was explicitly asked in the question, and pushed them to explain and justify their 
mathematical thinking. 

 
Table 2. Frequencies of whole class discourse moves for question 15 

Discourse Moves Instructor 1 Instructor 2  
Probing 13 17 
Rephrasing/Re-voicing 1 0 
Prompting 0 0 
Steering 1 3 
Re-directing 0 0 
Challenging 1 6 
Generalizing 0 1 

Framing of the Whole Class Discussion 
The way an instructor frames a whole class discussion affects how the discourse that follows 
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will unfold. The first instructor (I1) in this study immediately steered the preservice teachers’ 
attention to the shapes of the bases and dismissed the lateral surface area to be unimportant. 
Instructor 2 (I2) begins the discussion with an open question, “What did you guys discover in 
question number 15?” setting up a tone of inquiry, followed by a probing question, eliciting 
preservice teachers’ knowledge of the three lateral surface rectangles. 

 
 

Instructor 1 Instructor 2 
On question 15 let’s start and just talk about 
how we would go ahead and find the bases of 
those 2 shapes. Before we do that, we were 
asked which has the greater surface area. 
Was it necessary for us to find the lateral 
surface area of each of those shapes? 

Let’s talk about question number 15, where 
maybe I think the difference in calculating 
the bases comes out. What did you guys 
discover in question number 15? We had 3 
lateral surface rectangles. What was the first 
one? What kind of prism was the first one? 

Orchestrating the Whole Group Discussion 
Both instructors led preservice teachers in a whole class discussion as they validated 

solutions for finding the area of the bases in question 15. They used discourse to help preservice 
teachers synthesize the information. Although both instructors were eliciting preservice teachers’ 
solution methods and leading similar discussion, Instructor 2 used tactical moves that established 
important norms for discussion in the classroom, which maintained the level of cognitive 
demand of the task and pushed for clarity.  Instructor 2 employed the Challenging and 
Generalizing tactical moves which led preservice teachers to make claims and provide 
justifications.  Instructor 1 relied more on Probing and Steering moves that led to brief preservice 
teacher responses, often without justification.   

In one episode, Instructor 1 asked a closed question that led to an answer, without 
justification, and steered the discussion back to question 15 and asked, “So which one of our 
three shapes is going to have the largest surface area?” The preservice teachers responded to his 
question with a one-word answer, “cylinder,” followed by the instructor providing them with an 
explanation, in which he was relating and connecting the mathematics ideas that emerged from 
the problem. 

Instructor 2 led the preservice teachers to step back and think about the purpose of the task 
by asking, “What’s the big idea here? Why did I have you guys calculate the area of these bases? 
What do you notice?” The emphasis on the “big idea” and the push for explanations encouraged 
the preservice teachers to consolidate their ideas.  

I2: So, what’s the big idea here? Why did I have you calculate the area of 
these bases? What do you notice? 

Generalizing 

S9: In order to find the area of each of the bases, you have to find out 
which one has the greatest surface area or the greatest lengths of total 
surface area. 

 

I2: Oh, why is that? Challenging 
S9: Because the prisms and cylinders that we’re making out of paper, they 

all have the same lateral surface area. And so the only differences are 
the area of the bases. 

 

I2: Can someone just repeat what S9 just said? She just made a really 
good point.  

Re-voicing 
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S10: You only need to find the area of the bases because all of the prisms 
have the same lateral surfaces rectangle, so that measurement is going 
to be the same. So by finding the measure of both of the bases or just 
one of the bases, you can find out which one has the biggest surface 
area. 

 

Connecting/Extending Preservice teacher Thinking 
We found that the instructors’ questioning strategies played an important role in extending 

preservice teachers’ thinking and leading them to make connections.  In both of these classroom 
exchanges, the instructors encouraged preservice teachers to make connections to their past 
experiences in working with the idea of determining the figure with the greatest area with fixed 
perimeter. Instructor 1 steered the preservice teachers to make the connection, and when a 
preservice teacher was unsure of her connection to the geoboard to explain why, with a fixed 
perimeter, a circle would have the largest area, there was no push for clarity. There was no clear 
indication that the preservice teachers were able to generalize that the circle would have the 
greatest area given that the perimeter was fixed. When the preservice teacher (S2) suggested that 
a square would have the largest area, the instructor steered the conversation to address that the 
figure should not be limited to rectangles (including squares), but could extend to circles.  

I1: If we have a fixed perimeter, which rectangle has the largest area? Probing 
S2: The one that’s closest to a square.  
I1: The one that’s closest to square if we are using tiles. If we are not 

using tiles then we would want to find the perfect square. So in a 
similar case here we are looking for the most ideal shape here, 
which is a circle. …if I’m taking my piece of paper, pretend this is 
a 6 by 32 piece of paper for a second [folds paper], we want to find 
the smallest surface area possible, we could just fold this in half and 
have the surface area on the top and bottom have zero right here. 
As we think about it and get further and further away from this line 
we are going to a circle, we are getting a larger and larger surface 
area as we move forward from that direction.  

Re-directing 

However, another preservice teacher’s (S11’s) choice of using a geoboard for the explanation, 
presented a challenge to explain why the circle would have the greatest area, but the instructor’s 
choice of discourse move failed to provide support to push for clarity in the preservice teacher’s 
explanation and justification. 

S11: One way I thought about it was like if you were using a geoboard, 
the closer it got…I don’t know it’s hard for me to explain, but you 
could tell with something that has the same perimeter as a circle it’s 
not going to be as large of an area because it won’t fill up the space 
as much. I don’t know, maybe that doesn’t make any sense at all. 

 

I1: So you’re saying that a circle wouldn’t be as large? Rephrasing 
S11: No, a triangle wouldn’t be as large because it wouldn’t fill up the 

same…I don’t know. I mean it makes sense in my head. 
 

In contrast, the preservice teachers in Instructor 2’s class connected their past experiences and 
suggested several strategies (using strings, physically fitting prisms and cylinder, and using 
drawings) to explain why the circle would have the greatest area.  

S5 I was thinking the day we were doing strings, for all of them we  
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have to form the base, we have the same length of string and we 
form it in 3 different shapes. So it’s cool that even though the 
perimeter is always going to be the same, the circle is always going 
to have the greatest area according to like the way we set it up… 

 

I2: Interesting. What do you guys think about what S5 just said? Do you 
think she’s correct? 

Challenging 
 

S1: We took the cylinder and put the rectangular prism in it…it should 
fit inside it and there should be the square with little arcs, pieces 
missing from it, showing that it would have the same perimeter or 
circumference, but with a bigger area for the circle because the 
square can fit inside of it. 

 

The instructor further challenged them to generalize the idea by introducing a hexagonal prism 
and pressed the preservice teachers to provide justification. 

I2: S3 has the circle drawn around the square, and the square is drawn 
around the triangle. So what does this imply? What if I gave you 
guys the same lateral surfaces rectangle here, another 6 by 32, and I 
said make me hexagonal prisms? Where do you think its total 
surface area would fall amongst these 3?  

Generalizing 

S3: Between the square and the circle.  
I2: Why must it be this way?  Challenging 
S4: We discussed that it must go between the square and the circle 

because the more sides you add to the figure, the closer it gets to a 
circle. So whereas the square has 4 sides, the hexagon has 6, and it 
just keeps breaking down the paper into closer of a circle. 

 

S2: So if you would fit the hexagon into the cylinder, like the hexagonal 
prism into a cylinder, there would be less area left over on the 
outside than the square. 

 

Finally, the instructor steered back the conversation to highlight the connections that the 
preservice teachers had made. 

I2: Okay … S5 mentioned something that kind of relates back to a task 
we did in the beginning with area and perimeter, do you remember 
with string? How does this connect to that, some of the big ideas we 
did in that task with the string? S2 had mentioned it and I want to 
make sure everyone kind of makes that connection because making 
that connection is really important. 

Steering 

S4: Is the connection just that we’re dealing with a fixed length [makes 
string with hands], like with a fixed length of string, and forming it 
into different shapes? The same thing with the fixed length of the 
piece of paper? 

 

I2: S5 what do you think, you brought it up? Is what S4 saying what you 
were trying to say?  

Challenging 

S5: Yeah. I mean it’s a general idea. They kind of brought up the same 
idea with fitting the paper. It’s interesting that clearly constructing 
the figure with the exact same shape and as we said the lateral 
surface area is the same but…and the perimeter is the same but 
we’re using one of the lengths from the lateral surface, but it creates 
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a completely different area for each figure. 
These interactions led preservice teachers to make claims and warrants about their solutions.  Big 
ideas and connections were emphasized.  The discourse in Instructor 2’s classroom maintained 
the level of cognitive demand of the task. 

Conclusions 
When working on mathematical tasks, preservice teachers tend to focus too much on getting 

the “correct answer” and fail to step back and look at the big ideas for which the tasks are 
intended. This is especially true because of their familiarity and experiences with certain 
procedures or algorithms. It is the role of the instructor to draw out the idea that getting only the 
correct answer is not sufficient and that it is more important to examine the mathematical 
structure and the ideas behind the tasks.  Teacher educators can accomplish this goal by focusing 
on questioning strategies built around challenging student assertions and creating generalization 
rather than simply steering and rephrasing student responses (Knott et al., 2008). By emphasizing 
this ideal, preservice teachers in Instructor 2’s class were involved in more active engagement 
with mathematical ideas (Walshaw & Anthony, 2008) and participation in a communicative 
reasoning process (Lerman, 2001). Instructor 2’s questioning strategies led to preservice teacher 
discourse that maintained the high level of cognitive demand of the surface area task. Preservice 
teachers’ own educational backgrounds often lack sufficient mathematical understanding, 
therefore it is critical that the cognitive demand of tasks remain high so that they can provide 
effective instruction in the future. Questioning strategies that elicit strong discourse among 
preservice teachers is one way to ensure rigorous learning of mathematics content and 
specialized content knowledge in preservice elementary teacher classrooms.  
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When instructional designers develop content-targeted pedagogical situations, their practice can 
be theorized as engineering students’ development of conceptual schemes. To account for the 
contributions of students’ prior schemes and situated experiences towards their development of 
conceptual schemes, I suggest a distinction between the evocation of schemes and enactment of 
situations. The former suggests that the design of an instructional situation can activate students’ 
prior schemes. The latter suggests that the structure of students’ activity in an instructional 
situation determines the nature of newly constructed schemes. I contextualize my views using 
empirical data from a case study of early fraction instruction. 

Background and Objectives 
An established principle of reform mathematics education is to foster students' understanding 

of mathematical concepts and reasoning skills through problem-solving activities (e.g., NCTM, 
2000). These activities are often designed as scaffolded interactions between teacher and student, 
whereby the teacher presents students with an instructional situation and attempts to guide them 
to realize a particular instructional goal (e.g., Newman, Griffin & Cole, 1989). In many cases, 
instructional artifacts are also introduced to support students’ appropriation of a particular 
mathematical concept/scheme (e.g., Dienes, 1964). 

For better or worse, the measure of a successful instructional activity is often defined by 
whether or not the interaction leads students to successfully appropriate the targeted learning 
objective. While this statement should appear self-evident, various national performance 
indicators (e.g. National Mathematics Advisory Panel, 2008), as well as the research literature on 
students’ ‘misconceptions’ (e.g., Smith, diSessa, & Roschelle, 1993) can be interpreted as 
indirect evidence that our collective understanding of design practice remains underdeveloped. 

Indeed, the challenges that students have learning fraction concepts have been well 
documented (see Lamon, 2007), and a major concern in early rational-number instruction is that 
many students cope with the topic’s inherent challenge by progressively learning to rely 
primarily on their ability to perform procedural algorithm, enacted as symbol manipulation, 
which they apply as a means of demonstrating their competence in this mathematical subfield 
(e.g., Freudenthal, 1983, Chapter 5). The pitfalls and limitations of relying on purely procedural 
fraction knowledge are poignantly demonstrated in the case of Liping Ma’s (1999) elementary 
school teachers: While perfectly capable of performing the appropriate arithmetic procedures for 
solving fraction-division problems, these teachers were unable to explicate their solution 
procedures in the form of mathematically accurate scenarios. 

Consequentially, more work is needed to explicate the rationales underlying the otherwise 
tacit design choices that inform instructional practice, as well as to understand the effects that 
these choices can have upon students’ cognition and learning outcomes. A primary objective of 
this paper will be to explore how the design of an instructional situation can influence students’ 
mathematical cognition, so as to inform a general framework for both fostering and analyzing 
students’ interactions with instructional artifacts and/or activities. 
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The claim to be advanced is that an instructional activity may be designed so as to 
purposefully and productively evoke students’ existing funds of knowledge, and/or to enact 
situations that support students’ development of targeted concepts/schemes. 

This thesis emerged from, and will be supported by empirical data from a number of case 
studies involving the implementation of an experimental unit that leverages multimodal activity 
to support students’ learning of fraction concepts (Charoenying, 2010). The specific pedagogical 
content area involves fundamental notions of rational numbers (specifically, part-to-whole 
conceptualizations of the a/b fraction form). My analysis will explore how the material 
embodiment of a mathematical task (in the form of an instructional activity) contributes to 
students’ subjective cognitive schema. The functional unit of analysis guiding this examination is 
the interplay between students’ schemes, and the instructional situations that both influence and 
give rise to them (Vergnaud, 2009). 

Theoretical Framework 

Expanding our Notions of Inter-Subjectivity 
A socio-cultural perspective of learning is that instructors mediate the speech, actions and 

perceptions of learners (Vygotsky, 1978; see also Newman, Griffin, & Cole, 1989). Through this 
process, the learner appropriates and internalizes the socially established meanings of cultural 
forms such as mathematical signs and concepts. 

Bartolini Bussi and Mariotti (2008) have elaborated upon the notion of mediation by 
characterizing the artifact mediated interactions between instructor and learner as a ‘didactic 
cycle,’ whereby the instructor progressively guides the learner to understand the link between the 
artifact used to complete a task and the formal mathematical meanings. 

Although the inter-subjective dialectic between instructor and learner is clearly a vital 
component of teaching and learning, this framing essentially constrains any analyses along two 
dimensions—the knowledge, goals, and beliefs of the instructor (Schoenfeld, 1998; see also Ma, 
1999); and the prior knowledge and cognition of the learner. Given the fact that not all 
instructional interactions are successful in supporting students’ development of a targeted 
concept/scheme, a purely socio-cultural analyses would imply some failing on either the part of 
instructor or learner. 

Rather than continue to problematize unsuccessful teaching and learning interactions in terms 
of the participants, I believe it may be more productive to problematize our existing theoretical 
frameworks for analysis (Smith, diSessa, Roschelle, 1993). Here, I suggest that a potential gap in 
socio-cultural accounts of learning is that they do not adequately address the contributions of 
learners’ tacit multimodal activity underlying action and expression to cognition, or their prior 
knowledge to learning (cf., Abrahamson, 2009). A potentially more productive approach towards 
designing and understanding learning interactions, would be to incorporate a more nuanced 
examination of how the intra-subjective contributions of students’ multi-modal perceptions and 
prior-funds of knowledge interact within a designed, instructional situation. 

Evoking Schemes and Enacting Situations 
I would begin by highlighting that whereas learners may experience some activities as 

conceptually “meaningless” and others as “meaningful,” what can be common to these activities 
are the material objects students encounter, the operations they conduct upon and with them, and 
the discernable results of these actions. 
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Here, I propose utilizing the verb “to evoke” to refer to the activation of students’ prior 
schemes. It is widely accepted that familiar artifacts, symbols, and signs can evoke an 
individual’s pre-existing schemes. Similarly, students’ schemes may be evoked upon their 
discovery of familiar features present in an instructional situation. Understanding and 
anticipating the schemes that are likely to be evoked by particular design features would position 
designers and educators to better interpret and address students’ responses as they guide them 
towards the desired learning objective. 

In tandem, I propose utilizing the verb “to enact” to describe how students’ experience of a 
situation can be purposefully designed so as to support a particular learning objective. Bruner 
(1966) had originally used the term “enactive representation” to elucidate how children’s actions 
and activities in the world contribute to their development of iconic and/or symbolic forms of 
representation. Bruner had suggested that only after “something” is first acted upon and 
experienced in the world, can it be referenced; first as an object of thought, and later as an icon 
and/or symbol (see also Hutchins, 2006). Following this reasoning, I argue that the 
educator/designer can guide students to enact a situation— to act upon, observe, and/or produce 
situated phenomena —the experience of which can form the basis from which students can 
subsequently “reverse-engineer” the targeted instructional schemes/concepts the educator wishes 
for them to develop. 

In summary, given the prominent and established role that artifacts play in supporting early 
fraction instruction, it is important to understand how the design and utilization of these objects 
can influence students’ mathematical cognition. I have proposed the constructs of evocation and 
enactment in order to further elucidate the relationship between the schemes that are activated 
when students’ notice particular features of a design, the forms of interactions that the design 
supports, and ultimately, the contributions of situated activity towards mathematical learning. 
Finally, the instructional design presented herein is influenced in part by theoretical claims that 
cognition in general (Barsalou, 1999), and mathematical reasoning in particular (Lakoff & 
Núñez, 2000; Núñez, Edwards & Matos, 1999), are grounded and tacitly instantiated in real-
world experiences. Therefore, an explicit design consideration was to provide students with 
activities that leveraged their multi-modal perceptions and embodied actions in situ to help 
mediate and modulate the appropriation of mathematical forms and modes of reasoning 
(Abrahamson, 2009). 

Methods 
Given the dual objectives of this project: to better understand student learning, and improve 

instructional materials, design-based research (Brown, 1992; Confrey, 2005) was selected as an 
appropriate investigative approach. 

This work draws on a series of case studies conducted during an ongoing design-based 
research study examining how students learn through interacting with tangible mathematical 
objects. I acted as teacher–researcher-designer. Students from two grade general-education 
classes (n=54) and from a Grade 3-5 self-contained special-education class (n=7) participated in 
a series of small group and one-on-one, video-taped teaching interactions. 

My design rationale for building the instructional artifacts was as follows: First, I sought a 
familiar physical object rather than a diagrammatic or computational illustration. I felt it would 
be important for students to be able to interact with the objects so as to experimentally create, 
confirm, and reverse mathematical conjectures. A second criterion aimed to encourage broad 
dissemination was that the design be inexpensive, easily procured, and simple to use. 
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The resulting instructional design is a tutorial session that engages students in problem 
solving activities involving water and standard kitchen measuring cups (see Figure 2a). 

Through a premeditated sequence of problem posing and facilitated hands-on inquiry, 
students are guided to perform and report perceptual judgments, measure quantitative aspects of 
the situation, uncover patterns, and so doing reformulate their initial judgments of part-to whole 
relationships as aligned with mathematical algorithms and vocabulary. Along the way, the 
teacher challenges students to warrant/evaluate their claims using the available materials. 

As with traditional instructional representations, such as area models and number lines, a key 
affordance of measuring cups is that they enable students to harness their visual modality to 
support their mathematical judgments. Thus, to compare the unit fractions 1/3 and 1/4, one could 
place the respective measuring cups side-by-side (see Figure 2b). More importantly, the 
measuring cup activities provide a tangible means for teachers to guide students to physically 
enact situations they believe are analogous to the mathematical schemes they wish students to 
develop. For example, to help students develop a part-to-whole scheme, students could be guided 
to enact a situation in which they iterated the same volume from a unit-fraction cup into a one-
whole cup measurer until it was filled (see Figure 2c). These activities also provide opportunities 
for teachers to observe and assess student reasoning. 

!
!

!
Figure 2a. Standard kitchen 

measuring cups. 
 

Figure 2b. A side by side 
visual comparison of two 

unit fraction measures. 

Figure 2c. Enacting a part-to 
whole scheme by iterating * 

cup measures into 1 cup. 
 

The specific case study presented in this paper is from a one-on-one tutorial session with a 
Grade-3 special education student, hereafter referred to by the pseudonym “Manny.” Pre-
assessment data and consultation with the classroom teacher revealed that Manny was 
performing far below grade level in mathematics.  

Results and Discussions 
The pedagogical objective of the tutorial session was to guide Manny (age=8) to formulate a 

qualitative understanding of individual unit fractions and the part-to-whole scheme by using the 
measuring cups to physically enact mathematically analogous situations. 

Enacting Mathematically Analogous Situations 
After allowing him to familiarize himself with the measuring cups, I ask him how many 

scoops from the 1/2 cup measure are needed to fill the 1 cup measure. Manny correctly guesses 
two scoops. I then instruct him to enact his conjecture by iterating 1/2 cup measures of water into 
a one cup measure. While this instructional sequence would seemingly suggest some 
understanding of the part-to-whole scheme, his haphazard response to a similar question posed 
with the 1/4 cup measure reveals otherwise. 

 
R:  How many scoops do you need with this one [the 1/4 cup measure]? 
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M:  Three, No four. 
R:  You need four of these? Why? 
M:  [Manny looks at the symbol for 1/4] It’s one-half 
 

His utterances suggest he has yet to understand the mathematical meaning signified by the 
fractional notations inscribed on the measures. I write 1/4 onto a slate. 
 

R:  No. Can you read one over four. Or you can say one fourth. 
 

I then instruct Manny to iterate four scoops of water from the 1/4 measure directly into the 
one whole cup measure. He then reverses the operation by scooping water directly out of the one 
whole cup measure (into a separate reservoir of water) using the 1/4 measure. 

 
R:  How many of these guys? [I show him the 1/3 measure] 
M: Three. 
R:  What do you call this one [the one third measure]? 
M:  I don't know. 
R:  One over three. Wait. Before you scoop, you have to write it. [Manny writes 1/3, 

and iterates the 1/3 cup measure into the one whole cup (figure 3)]. 
 

!
Figure 3. Manny iterating water iterating from the 1/3 measure into one cup 

A Conflict Between Prior Knowledge and Perceptions 
Having guided Manny to enact two situations I believe will support his understanding of the 

part-to-whole relationship of unit fractions, I purposefully attempt to dis-equilibrate his existing 
number scheme. I write 1/3 and 1/4 onto a slate. 

 
R:  Alright, question Manny. Which fraction is bigger? One third or one fourth? 
M: That one [indicating the 1/3 cup measure]. 
R:  You are correct, but why is this one bigger? Can you explain it to me. This is  

a one third cup [I  hold the 1/3 cup next to its numerical inscription] this is a one 
fourth cup [I hold up the 1/4 cup next to its numerical inscription]. Why is it 
bigger? [I point again to the 1/3 cup] Why is one-third bigger? 

M:  Wait. [He matches the cups to the inscription. So this one's bigger! [M points 
back to the 1/4th cup measure]! No. This is!? [points again to the 1/3 cup 
measure] I don't know! 

R:  What do you mean you don't know? You can see with your eyes! 
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Interestingly, the prior number schemes that the numerical inscriptions evoke for Manny 
overrule his perceptual judgment. He picks up the 1/4 cup measure, physically nests it into the 
1/3 cup, and again tentatively concludes that 1/3 is “bigger.” 

Evoking a Recently Enacted Situation 
To reinforce Manny’s intuitions and help him to appropriate a part-to-whole scheme, I guide 

Manny to reflect upon his earlier enactment of the mathematically analogous situations. 
 

R:  Okay. How many times do you need to scoop this one [How many times 
must the 1/3 measure be iterated to fill 1 cup?] 

M:  Three 
R:  And how many times do you need to scoop this one to fill this one.[How 

many times must the 1/4 measure be iterated to fill 1 cup?] 
M:  Four. 
R:  Do you understand why one third is bigger than one fourth yet? Let's see if you 

can explain why this fraction [inscription for 1/3 written on a whiteboard] is 
bigger than this one [inscription for 1/4 written on a whiteboard] 

M:  Because this one doesn't put too much water in it. [simulates scooping of 
water using the 1/4 measure into the 1 cup measure] And this one [points to 
the 1/3] can scoop a lot of water [more than the 1/4 measure]. 

 
Manny then examines each measurer in turn again, including the 1/2 measure. He physically 

simulates the pouring action with each into the one whole cup measure. I remove the measures 
and inscribe the fractional notation for 1/5 and 1/10 onto a board. 

 
R:  Which one would be bigger? [1/5 versus 1/10] Which one is going to be a bigger 

fraction? If these were cups, which would be bigger? [Manny attempts to locate a 
1/5 cup and 1/10 cup measure] We don't have these cups... 

M:  Oh this one [he points to the 1/5 inscription] 
R:  Why? If this were a scooper… 
 

Manny is initially unable to articulate an answer. He looks to the inscription of 1/10 and 
utters 11, which could suggest that the arrangement of numbers evoked his addition scheme. He 
looks again to the inscription of 1/5 before suddenly exclaiming: 

 
M:  Wait now I know! This one [the inscription for 1/5] only needs 5 cups, the  

small one [the inscription for 1/10] needs 10 cups! 
 
Strikingly, the prior enactment of the mathematically analogous situation—which is arguably 

a function of the concrete, physical properties of the instructional artifact— provided an 
embodied point of reference for Manny’s generalization (see also Pratt & Noss, 2002 on 
‘situated abstraction’). Manny’s statement suggests that he has begun to build an experiential 
resource commensurate with the mathematical law that a * 1/a = 1. A generalized scheme has 
been abstracted from the situation. One is left to infer that the utility of an instructional situation 
is contingent on its capacity to support students’ enactment of situations that are analogous to the 
scheme to be learned. 
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In many respects, Manny’s initial interpretation of the 1/a form for fractions is typical of 
students his age, his learning disabilities notwithstanding. What differentiates this particular 
instructional activity from more traditional approaches involving drawn representations such as 
area models or number lines for example, is that Manny is able to physically enact both the 
composition and decomposition of fractional parts into wholes, and so doing, construct an 
understanding of fractions that is directly grounded in experience. Additionally, the physical 
medium allows me as teacher to design an activity I believe corresponds to the mathematical 
concepts/schemes I wish for him to appropriate. Just as importantly, it allows me to indirectly 
infer the changes in his conceptual understanding by directly observing his actions. 

Summary and Conclusions 
It is widely accepted that mathematical concepts can emerge through guided acts of 

representation, as students attempt to articulate emerging schemes in language and any other 
available means of objectification. While the contributions of a more knowledgeable other are 
instrumental to this process, I would argue that an analysis of an instructional interaction is 
incomplete unless one also accounts for the interplay between the instructional situation, and the 
cognitive and multi-modal perceptual resources that learner student brings to bear. 

I have proposed two mechanisms for characterizing learners’ interactions with an 
instructional artifact or activity. First, I highlight the fact that instructional activities are 
situations that can evoke pre-existing schemes in the mind of the learner. Awareness of this 
mechanism is arguably of vital importance for instructional designers. As a design heuristic, this 
notion of evocation leads the designer to consider how students might perceive and experience 
an instructional situation. Vitally, it prepares designers to better account for the otherwise 
unexpected ways that a student might make sense of a novel instructional situation. Knowing a 
priori that a particular design feature is likely to evoke a particular scheme for students (e.g., how 
the discrete units of an area model evoke counting schemes), would help to inform how an 
educator/designer chooses to mediate students’ learning activities. 

Second, I use the term “enact” to describe how students’ situated activity can be structured so 
as to help facilitate their construction of a given scheme. Schemes are not constructed ex nihilo, 
but from students’ encounters with, and assimilation of, new situations. 

It stands to reason then that the manner in which students’ situated activity is organized and 
orchestrated is central to their conceptual development. Instructional designers can selectively 
determine the experiences students have, and thereby influence the trajectory of students’ 
cognitive development. Students’ enactment of an instructional situation furnishes them with a 
set of experiences that may form the cognitive bases for the instructor’s targeted learning 
objective. 

Although evidence from only a single, brief case study episode is provided, the full corpus of 
data suggest that the Water Works design appeared to support students’ articulation of their 
mathematical ideas by allowing them to physically enact a variety of representative situations. 
On the other hand, situations involving fractions for which there was no corresponding 
measuring cup such as 1/5, 1/100 etc., could not be directly modeled with the set of measurers. 
The students in the study did not appear to immediately transfer their newly constructed schemes 
(e.g., four scoops from the 1/4 measure to fill one cup) to the purely symbolic representations for 
which there had been no situation-specific analog. This is a clear limitation of the present design. 
In such cases, an abstract, drawn or computationally modeled representation of the 
scheme/situation might have been much more practical. 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

162



 

In conclusion, the argument advanced by introducing the constructs of evocation and 
enactment is this: Educator/designers effectively determine the actions and outcomes that arise 
from students’ interactions with a particular situation. Therefore they influence in large part the 
schemes students construct. Conceptualizing instructional practice in terms of structuring 
learning situations may provide educators, designers, and researchers alike with new productive 
insights for anticipating and evaluating the effectiveness of a proposed instructional design. 

Finally, the instructional design presented in this study is a low-cost, low-tech example of an 
embodied representational context that can be adapted by teachers in any classroom. 
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We examined how a student with learning disabilities (SLD) in mathematics constructed a 
scheme for differentiating, selecting, and properly operating on/with units that constitute a 
multiplicative situation, namely, singletons (‘1s’) and composite units (abbreviated UDS). 
Conducted as part of a larger teaching experiment in a learning environment that synergizes 
human and computer-assisted teaching, this study included 12 videotaped teaching episodes with 
a 5th grader (pseudonym-Sam), analyzed qualitatively. Our data provide a window onto the 
conceptual transformation involved in advancing from absence, through a participatory, to an 
anticipatory stage of a UDS scheme—a cognitive root for the distributive property. We postulate 
this scheme as a fundamental step in SLDs’ learning to reason multiplicatively, and highlight the 
transfer-empowering nature of constructing it at the anticipatory stage. 

Introduction 
This study examined how students with learning disabilities (SLD) may construct a scheme 

for reasoning about multiplicative situations. Learning to reason multiplicatively is a major feat 
for elementary age children (Harel & Confrey, 1994; Kamii & Clark, 1996; Sowder, et al., 1998; 
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Steffe, 1994), whether or not they are identified as having learning disabilities/difficulties in 
math. Fostering it in all children is critical, because it provides a basis for understanding and 
properly using not only multiplication and division, but also fractional, proportional, and 
algebraic reasoning (NCTM, 2000, 2006). Lacking such a basis seems a key hurdle in SLDs’ 
progress toward the latter, advanced concepts (Xin, 2008; Xin, Wiles, & Lin, 2008) and a cause 
for being and feeling ‘stuck’ in mathematics. 

This study, a part of the NSF-funded Nurturing Multiplicative Reasoning in Students with 
Learning Disabilities1 (NMRSD) project, examined SLDs’ construction of a scheme for 
operating on, and coordinating, not just one but two sets of composite units (Steffe & Cobb, 
1998) at a stage conducive to solving novel tasks (‘transfer’). Such tasks may call for finding the 
sum or difference between two quantities (e.g., ‘You have 7 boxes, 8 crayons each; I have 3 
boxes, 8 crayons each; How many more crayons do you have?’). To solve such tasks in the 
absence of tangible 1s, a solver must identify and coordinate the units involved additively and 
multiplicatively. She either first multiplies (7x8=56, 3x8=24) to find the total of 1s in each set 
and then subtracts (56-24=32)—a Totals-First method, or first subtracts to find the difference in 
composite units and then multiplies the resulting, new set of composite units by the number of 1s 
in each (7-3=4; 4x8=32)—a Difference-First method. Our research question was how SLD may 
learn to differentiate, select, and operate on those quantities while forming a cognitive basis for 
what adults refer to as the distributive property (e.g., 8x(7-3) = 8x7 - 8x3). 

Conceptual Framework of this Study 
The NMRSD project is developing a software that draws on three research-based 

frameworks: a constructivist view of learning from mathematics education, generalization of 
word-problem underlying structures (‘story-grammar’) from special education, and machine (or 
statistical) learning from computer sciences. For this study the constructivist scheme theory 
(Piaget, 1970, 1985; von Glasersfeld, 1995) and its recent extension into the reflection on 
activity-effect relationship (Ref*AER) account (Simon et al., 2004; Simon & Tzur, 2004; 2004; 
Tzur, 2007, 2008) provided the cognitive lens. In particular, we used Tzur & Simon’s (2004) 
distinction between the participatory and anticipatory stage in the construction of a new 
mathematical conception for designing instructional tasks and for assessing Sam’s ways of 
operating. This stage distinction drew on von Glasersfeld’s 3-part notion of scheme: (a) 
recognition of a situation, which sets the student’s goal, (b) a mental activity associated with that 
situation and goal, and (c) an expected result. At the participatory stage, a learner forms a novel 
anticipation—an invariant relationship between the activity and a newly noticed/linked effect it 
brings forth. However, this AER is yet to be linked to a scheme’s first part, and the learner can 
only access it if prompted for the activity, which regenerates the link (see Roig & Llinares, 
2009). At the anticipatory stage, the learner links the novel AER with a host of ‘structurally 
similar’ situations, thus abstracting spontaneous (prompt-less) access to it across contexts (see 
Woodward, et al., 2009). We built on Tzur and Lambert’s (in press) recent articulation of prompt 
features to guide decisions about sequencing tasks that could foster, and help assessing, 
transition to the participatory and then anticipatory stage of UDS. 

The content-specific constructs of our framework draw on the Initial, Tacitly Nested, and 
Explicitly Nested Number Sequences (Steffe & Cobb, 1988)—three schemes a child uses in 
assimilating and operating on abstract composite units (CU). In the latter, the child conceives of 
smaller CUs as embedded within larger CU. For example, 3 CU of 8 singletons (3 boxes of 
crayons) and 4 CU of 8 singletons (4 boxes) are embedded within 7 CU of 8. Coordinating such 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

165



 

same-size CU is key for early multiplicative reasoning in general and for children’s construction 
of a UDS scheme in particular.  

Methodology 
Within the NMRSD project, this case study consisted of 12 videotaped teaching episodes in 

which Sam, a 5th grader, was jointly taught by the software and the second author. Sam was a 
strategic case, because RTI-like, problem-based pre-intervention assessment by the software and 
researchers indicated his ‘readiness’ for UDS. He had formed anticipatory stages of operating on 
CU multiplicatively to find the total of 1s (e.g., How many cubes are in 6 towers of cubes, 3 
cubes each? Denoted 6T3 here) and additively to find CU sums/differences (e.g., You have 7T3; I 
have 4T3; how many more T3 do you have?).  

The software was designed based on results of previous (Tzur et al., 2009; Woodward et al., 
2009; Xin et al., 2009; Zhang et al., 2009) and on-going teaching experiments with SLD. It 
presents students with problems in an interactive environment, and collects and analyzes data 
from the student’s work (e.g., prompts needed, solution processes used) to select and present the 
next problem. This includes assessing if a student is ready to start the next level of problems. 
During our work with Sam, human teaching played a significant role to gain insight into software 
improvement—studying its impact (or lack thereof) on SLD learning of the intended 
mathematics. 

Typically, software tasks commence within a context of producing, actually and/or mentally, 
a CU in the form of a tower made of several cubes (e.g., 7T8). One type of UDS problems asks 
the child to compare two different sets of same-size towers (e.g., 7T8 and 3T8). For example, the 
software may initially present those towers, then cover them, and pose the tasks: “Jacqueline has 
a collection of 7 towers with 8 cubes in each. Mercedes has a collection of 3 towers with 8 cubes 
in each. How are these collections similar? How are they different? Who has more cubes and 
how many more? A second type of problems switches the quantities, so two equal sets are made 
of different-size CU (e.g., 7T8 and 7T3). In teaching sessions in which the software was the 
primary source of UDS tasks, we often suggested to Sam to use one of the mini-tools available in 
the software (e.g., a calculator, a simulation of fingers that depict ‘double-counting’). We also 
frequently asked Sam about the referent units of his solutions and how he figured these out.  

We also used two interventions outside the software. First, Sam’s work indicated that he did 
not have a conventional meaning for “more”. For him, this term referred not to the difference 
between two quantities, but to the total of units in the larger quantity. Thus, we asked Sam to 
place two groups of Lego cubes (12 and 9), and then pair-off (1-to-1) as many cubes as possible. 
The researcher then clarified that (a) the number of non-paired cubes is the difference between 
the two sets (which Sam knew already) and (b) “more” refers to this number. This intervention 
seemed to create a shared, proper meaning for “more”. The second intervention, which preceded 
Excerpt 2 (see Results), took place during the third UDS episode, as the software continued 
posing the first type of UDS problems. Sam seemed to struggle with operating on the various 
units, so we asked him to draw the two sets of towers on a paper. We said that a drawn tower 
could show each individual cube or just a schematic line/bar that Sam would label with the 
number of cubes it signified. Importantly, Sam felt the need to draw each cube in every tower 
(i.e., producing 1s), a need that was later diminished. 

Data analysis occurred throughout the study. In our on-going analysis we discussed and 
recorded significant events after each teaching episode. We paid close attention to possible 
indicators (prompts needed) that Sam was in the participatory or anticipatory stage of UDS, and 
used our observations to plan for the next episode(s). In our retrospective analysis we began with 
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those teaching episodes in which we previously identified segments when Sam was working in 
either stage of UDS. We transcribed and analyzed those episodic “snapshots” line-by-line to 
articulate advancements in Sam’s mathematical thinking.  

Results 
In this section, we first briefly summarize data pertaining to Sam’s lack of unit 

differentiation-and-selection (UDS) scheme. We then present and analyze data in support of 
claiming his transition to (a) the participatory stage and (b) the anticipatory stage of UDS. This 
includes his learning of a conventional meaning for ‘more’ or ‘less’, and a task in which he 
applied (‘transferred’) anticipatory UDS to a novel context. 

Absence of a UDS Scheme 
Once the NMRSD software determined that Sam has constructed an anticipatory stage of 

multiplication, and of additively operating on the same composite units (SUC scheme, e.g., you 
have 7T8 and I have 5T8; how many T8 do we have altogether?), it moved to a UDS task: 
“Jacqueline has a collection of 12 towers with 8 cubes in each. Mercedes has a collection of 7 
towers with 8 cubes in each. How are these collections similar?” He selected ‘They both have 8 
cubes in each tower’. Then, asked about difference, he selected ‘Jacqueline (J) has more towers’. 
The software asked, “Altogether, who has more cubes?” Sam responded not with a name, but 
with an attempt to compute how many cubes J has (calculator). First, he multiplied 7x7=49, 
followed by 49x8=392, and noted “That’s not right.” The researcher (R) prompted, “Why did 
you do 49 times 8?” Sam calculated 7x8=56 (his available multiplication scheme) and stated that 
M has 56 cubes in each tower (unit conflation). Then, R said that the task asks who has more 
cubes, J or M. Sam responded by finding (calculator) 12x7=96 and stating, “Jacqueline.” R asked 
if this makes sense; Sam nodded (yes), “Because J has more towers”.  

The software proceeded, “How many more cubes does Jacqueline have?” and R said that 
Sam could use the calculator. Sam re-read the task, stated he does not see how the calculator 
could be used, and after some thinking said, while inserting the numbers into the computer: “96 
divided by fifty … (looks at R) Was it 58 or 56?” R, after saying “56,” asked Sam why dividing. 
Sam said that this will give him the number he’s looking for (clarifying this was “how many 
more cubes,” and that multiplication would not work as it gives too high-a-number). R noted that 
Sam could have also used addition or subtraction. After a short pause to think of these options 
Sam keyed 96÷56, saw the answer (1.7142…) and responded in big surprise: “Whoa!” He noted 
that multiplication and division would not work, contemplated “96 minus … No,” and added 
(calculator) while saying: 96+56=152. R asked him again why adding would be proper and 
explained to Sam the importance of his reasoning about the operation. In response, Sam stated 
that multiplication, addition, and division (!) gave him too large a number, calculated 96-56=40, 
and claimed this seemed correct. 

The entire exchange indicated to us that Sam was not using an operation based on a reasoned 
choice (about difference). Rather, he tried one operation after another and judged the answer’s 
plausibility on the basis of size/form. He also did not indicate any consideration of finding the 
difference in CU (towers) as a first step to be followed by multiplication (e.g., 12T8-7T8=5T8, 
5x8=40 cubes). Thus, R began working with Sam on such a method and its link to the transposed 
one (e.g., 12x8–7x8), that is, on constructing UDS.  
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Participatory Stage of UDS 
To foster Sam’s construction of UDS, we realized he would first need to attribute a proper 

meaning—difference—to the terms ‘more’ and ‘less’. An alternative meaning he seemed to 
attribute was evident in his responses to SUC tasks. For example, in the above situation (J has 
12T8, M has 7T8), if asked how many more towers did J have, Sam would most often respond 
‘12’. We briefly note that (a) such a meaning was found in other SLDs during the larger study 
and (b) it made sense to him because J has more and she has 12 so ‘12-is-the-more’. Sam quickly 
adopted the conventional meaning that R introduced through tasks about Lego singletons (1s). 
Thereafter, he consistently applied the terms to the difference between two quantities, either 
singletons or composite units, and strategically selected subtraction to find it. He seemed ready 
to construct UDS, which was fostered via tasks with ‘easy’ numbers. 

The software stated: “John has a collection of 12 towers with 3 cubes in each, Sarah has a 
collection of 8 towers with 3 cubes in each.” Sam playfully built the 12T3; he was asked and 
properly responded that both John and Sarah have 3 cubes in each of their towers. Asked how 
many towers each child had, he responded 12 and 8 respectively, responded that John and Sarah 
do not have the same number of towers, and that John has more cubes-in-all than Sarah. Excerpt 
1 below provides what transpired next (C=computer, S=Sam, R=researcher). 
Excerpt 1 (September 22, 2010) 
S: [Reads the task in C out loud] “So, how many more cubes does John have than Sarah has?” 

and continues: Okay, so, take [away] 8. That’s going to leave me with 4. 
R: Four what? 
S: Four towers; [and] 4 times 3 is 12.  
R: You know that one, right? 
[A little later, after R asked S to open the software Toolbox and use the calculator.] 
R: If you do 12 x 3 and 8 x 3 … just to check the other way.  
S: (Inserts 12 x 3 = while saying) 12 times 3 equals 36. 
R: That’s how many cubes - who has? [Pause] That’s John, right? 
S: (Inserts 8 x 3 = while saying) 8 times 3 equals 24. (Appears to think what’s next) Twen … 

Twenty … Twenty-four (Inserts 24 and the symbol for multiplication, ‘*’, while saying) 
times … [no] subtract, minus … [Clears calculator screen.] 
[At this point, after R suggested to subtract the smaller number from the larger, S found 36-
24=12 and, with a ‘high-five’ from R, they noted that it is, and must be, the same answer as 
Sam obtained by first subtracting the towers and then multiplying.] 
Excerpt 1 indicates Sam’s learning to operate in a UDS situation. He (a) differentiated the 1s 

(cubes) and unit-rate (3 cubes/tower) from the CU (towers), (b) selected the latter and operated 
on it to find the difference (via subtraction), (c) selected the unit-rate and used it as operand for 
(d) multiplying by the difference (4 towers) to figure out the number of cubes (12) that John had 
more than Sarah. Once prompted for solving the task in the alternative method, Sam’s attempt to 
use multiplication indicated he was yet to establish UDS.  

We argue that Sam’s construction of UDS was at the participatory stage for a threefold 
reason. First, his execution of the Difference-First method, while proper and independent, 
followed R’s teaching of using such a method earlier in that session. Thus, theoretically, the 
claim about anticipatory stage is not possible. Second, a fully established (anticipatory) UDS 
would consist of adeptly using either method. Excerpt 1 provides evidence that, initially, Sam 
thought of multiplying the totals in each collection (36x24) instead of subtracting. Third, data 
from the following two sessions showed that, when the software opened an episode with a UDS 
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task Sam was unable to solve it via the Difference-First method without being prompted by R, 
although Sam himself stated it was easier. Excerpt 2 shows his choice of initial method (Totals-
First) and incorrect operation (multiplying totals) after properly answering what’s 
similar/different about J’s and A’s collections (13T9 and 3T9 respectively). Because Sam’s 
single, wrong method/answer was sufficient to self-prompt him for shifting to the alternative, 
Difference-First method, we consider his work as indication of high participatory stage. 

Excerpt 2 (October 20, 2010) 
C: Altogether who has more cubes? 
S: (Selects ‘Jacqueline’.) 
C: How many more cubes does Jacqueline have? 
S: (Pulls up the calculator tool. Inputs: 13 x 9 = 117; 3 x 9 = 27; 117 x 27 = 3159. He then 

clears the calculator screen and inputs: 13 – 3 = 10; 10 x 9 = 90.) Ninety! 

Anticipatory Stage of UDS 
We culminate with data that show Sam’s UDS at the anticipatory stage. As Ref*AER stresses, 

a participatory and anticipatory stage differ not in the nature a scheme’s parts (situation/goal, 
activity, effect), but rather in the learner’s access to it—with or without prompt. Excerpt 3 shows 
Sam’s prompt-less solution to a task presented outside the computer at the start of an episode 3 
weeks after he indicated the high participatory stage (Excerpt 2). In the previous episode, he 
solved a tower/cubes UDS task without a prompt; here, we show how he applied (‘transferred’) it 
to a novel, realistic word problem with larger numbers. 

Excerpt 3 (November 10, 2010) 
S: (Reads the problem): “Evan’s daughter (Sarah) needs to prepare 18 birthday bags. In each 

bag she plans to put 8 candies. Ron’s daughter (Lihi) needs to prepare 7 birthday bags. She 
also plans to put 8 candies in each bag. Who needs more candies, Sarah or Lihi? How many 
more candies does that daughter need?” (He writes, ‘Sarah needs’) 

R: Do you need a calculator? 
S: (Nods yes): Hm-hmm. (Opens the calculator, inserts 18x8=144, comments it is the same as 

12x12, clears the calculator and uses it for 18-7=11.) Eleven? Hmm. They are candies 
(clears screen). So what do I need to do here? I found the difference, which is 11. (Pauses, 
then shifts method again) Seven times … (calculates 7x8=56, then 18x8=144, and finally 
144-56=88, so he exclaims): Eighty-eight!! 

R: [After asking Sam to explain why he solved it this way, what did he find in each calculation, 
and Sam’s writing ‘Sarah needs 88 more candies’ and stating he subtracted to find the 
difference in candies] Is there a different way to solve the problem? 

S: [Appears to be thinking] Hmm …  
R: I think you almost started one … Anything in your mind that you could have done?  
S: Well, I did 18 minus 7, which is 11, and then 8 times 11 is 88! (Looks at R proudly.) 

Excerpt 3 provides evidence that Sam has established the UDS scheme as an invariant way of 
operating in multiplicative situations where two quantities of the same unit rate (e.g., 8 candies 
per bag) are compared to find the total difference in singletons (1s). Establishing UDS at the 
anticipatory stage allowed assimilation of and operation on quantities given in a realistic 
situation. Interestingly, he considered solving the novel situation via the Difference-First 
method. However, he seemed to lose track of the second step (as he later explained to R’s 
question). Yet, the anticipatory scheme empowered his resourceful, independent shift to and 
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successful completion of the Total-First method. In turn, he could return to and successfully 
complete the alternative method, with proud awareness of the answer identity. 

Discussion 
This study makes a twofold contribution. First, it portrays cognitive changes in forming a 

unit differentiation-and-selection (UDS) scheme. UDS was articulated while studying how 
multiplicative reasoning evolves in students with learning disabilities/difficulties (SLD) in 
mathematics. For these students, and likely for their normal achieving peers, UDS serves as an 
intermediate cognitive step. It builds on a student’s assimilatory scheme of multiplicative double 
counting, used for the goal of quantifying a total of 1s via distributing the given numerosity 
(unit-rate) of a composite unit over a number of such units (Steffe, 1994; Steffe & Cobb, 1998). 
It is constructed through and applied to solving problems in which the learner’s goal is to 
compare two such quantities, each consisting of so many composite units (e.g., How many more 
marbles are in 11 bags with 7 each than in 6 bags with 7 each?).  

Articulating UDS shows the need to foster SLDs’ intentional identification of how two 
quantities are similar/different in terms of 3 types of units of a multiplicative situation. Sam, and 
often other SLD, could initially operate on just one level of units, that is, 1s. However, to 
strategically and effectively employ mental activities for finding the difference in total, one must 
distinguish singletons from composite units and operate on the latter while using two or three 
levels of units (Steffe & Cobb, 1988). The UDS scheme involves anticipating and coordinating 
Difference-First and Total-First methods. In the former, the child first selects and compares the 
two quantities in terms of the numerical difference between composite units (e.g., 5 more bags in 
the situation above). To this end, as Sam taught us, a child may have to re-learn a proper 
meaning for ‘more’ and ‘less’. Then, the child has to re-select the numerosity of each composite 
unit (unit-rate) and anticipate multiplicatively distributing it over the difference found (e.g., 7 
marbles/bag x 5 bags of the difference only = 35 singletons in the difference). This process 
requires simultaneous operation on at least two levels of units. In the latter, Total-First method, 
the child first selects and multiplicatively computes the total of 1s in each quantity—a step that 
may involve two levels of units (e.g., 7x11=77 marbles, 7x6=42 marbles). This turns the 
situation into an additive comparison, for which subtraction is called upon as a second step (e.g., 
77-42=35 marbles). Our study shows that the anticipatory, well-coordinated stage of a UDS 
scheme empowers its application (transfer) to novel situations. We postulate it as a conceptual 
root of what knowledgeable adults call ‘the distributive property of multiplication over addition’ 
(e.g., 7x(11-6) = 7x11-7x6). 

Second, our study shows that computer-assisted learning opportunities can be designed by 
using ongoing analysis of student understandings as a basis for task selection. In the NMRSD 
software, tailoring tasks to student assimilatory schemes is achieved by operationalizing 
constructs of the Ref*AER framework (Simon, et al., 2004; Tzur & Simon, 2004). In particular, 
software programming draws on Tzur and Lambert’s (in press) work of linking the participatory 
stage to Vygotsky’s notion of ZPD and identifying three parameters of a prompt: (a) its locus—
whether self-generated within a learner’s mental processes or by an outside entity, (b) its 
focus/essence—ranging along the continuum from generic (e.g., could you solve the problem in a 
different way) to specific (e.g., could you begin by finding how many more towers does J have?), 
and (c) number—ranging from one, to a few, to many prompts. Using these parameters, as well 
as the time it takes a student to solve each problem and the computer actions she or he is using 
(e.g., typing 11 and then hovering with the mouse over ‘*’ before typing ‘-’ and ‘6’ followed by 
‘=’), the NMRSD software successfully determined and fostered Sam’s progress. He started 
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when seemingly not yet having constructed a basic scheme of multiplicative double counting. 
The software taught him that scheme and determined he had constructed it at the anticipatory 
stage, as well as a scheme for additively coordinating same-size composite units (SUC). It then 
shifted to UDS, gradually changing the prompts given to Sam to engender his progress to 
participatory and then anticipatory stage (including situations with different unit-rates, such as 
comparing 7T3 with 7T5, or all units differing, such as 7T3 and 9T2). While the software 
‘progressed’ based on assessing Sam’s thinking, its work was synergized with human teaching 
(e.g., detect non-conventional meaning for ‘more’, introduce novel, realistic tasks, provide 
social-emotional support). This synergy empowered not only transfer to novel situations, but also 
Sam’s quite effortless learning of a more advanced, pre-algebraic scheme (e.g., “You have 9T7; 
you receive 28 more cubes; how many towers will you have once all cubes are put into T7?”). 

Endnotes 
1. This research is supported by the US National Science Foundation grant DRL-0822296. The 
opinions expressed do not necessarily reflect the views of the Foundation. 
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In this paper we report on a project integrating social justice pedagogy in a professional 
development program training mathematics coaches to work in grades kindergarten through 
eight. The goal of our research was to study the coaches’ growth in understanding of and 
commitment to social justice pedagogy in the mathematics classroom after participation in the 
social justice component of the three-year coaching training program. Findings reveal six 
progressions of coach growth. 
 

Goals 
Research, theory and practice around equity and diversity in mathematics education has 

grown to include more work in recent years that addresses liberatory education and social justice 
from both US and international perspectives (Burton, 2003; de Freitas, 2008; Frankenstein, 1987; 
Gutstein, 2003, 2006, 2008; Gutstein & Peterson, 2006, Sriraman, 2008). Within the scholarship 
we also find a body of work addressing the concept of resistance in social justice work (Gutstein 
2006; Satterthwaite, Atkinson, and Martin, 2004; Filax, 1997). In this framework, action against 
the inequities, injustices, and oppressions in the world in which one lives is the resistance of 
social justice.  

In this paper we report on a project integrating social justice pedagogy in a professional 
development program training mathematics coaches to work in grades kindergarten through 
eight. The coaches are trained to provide support and professional development opportunities for 
the mathematics teachers in their buildings. Most of the schools in the project are low-achieving 
schools representing a variety of groups underrepresented in mathematics education. Social 
justice is a component of the conceptual framework for the project, and is therefore an 
appropriate topic to be integrated into the training and support of the coaches. The goal of our 
research was to study the coaches’ growth in understanding of and commitment to social justice 
pedagogy in the mathematics classroom after participation in the social justice component of a 
three-year mathematics coaching training program.  

In the following pages we put forth the theoretical framework for our study; explain the 
research project, its methods and findings; and discuss the findings and their implications for 
mathematics education professional development around social justice. 

 
Theoretical Framework 

The goal of social justice education is to enable people to develop the critical analytical 
tools necessary to understand oppression and their own socialization within oppressive 
systems, and to develop a sense of agency and capacity to interrupt and change 
oppressive patterns and behaviors in themselves and in the institutions and communities 
of which they are a part. (Adams, Bell, & Griffin, 2007, p. 2). 

The first topic we have to acknowledge is that there is such a phenomenon as social justice 
and conversely that social injustice exists. A claim that we are teaching for social justice 
positions us at a point of recognizing sites of social injustice and teaching toward a goal of social 
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justice. Given society’s dynamic nature and the obscure manifestations of injustice, a condition 
of social justice is not easily obtainable; nor does working for social justice have a fixed end. 
Thus our goal is not necessarily to reach a state of social justice. Rather it is to develop the 
ability to identify social injustice, address it within school and community settings, and take 
actions to create change leading toward social justice. When we talk about developing ourselves 
as socially conscious catalysts for change, we acknowledge that we have a responsibility to play 
an active role in working toward social justice (DeVries & Zan, 1996; Green, 1971; Tom, 1984).  

The second acknowledgement we make is that the nature of injustice in our society results in 
school-age students facing “persistent and profound barriers to educational opportunity” 
(Darling-Hammond, 1995, p. 465). Social injustice means that children are denied opportunities 
to learn and grow. When we work toward social justice, we acknowledge these barriers and 
make a commitment to transform the educational fabric toward a more fair and inclusive 
educational setting. “Without acknowledgment that students experience very different 
educational realities, policies will continue to be based on the presumption that it is the students, 
not their schools or classroom circumstances, that are the sources of unequal educational 
attainment” (p. 465).  

According to Bell (2007), “The goal of social justice is full and equal participation of all 
groups in a society that is mutually shaped to meet their needs” (p. 1). Teaching for social justice 
means that in addition to using “good teaching strategies,” we use these strategies within a 
context of working toward social justice. When we talk about socially just teaching the focus is 
on pedagogical practices to help all students succeed.  

In mathematics education, indentifying issues of social injustice with links to curriculum 
topics is not necessarily difficult for the informed professional. However, for the teacher in 
development, moving social justice perspectives into practice can be a challenge. In the content 
disciplines, mathematics among them, content traditionally takes center stage and becomes the 
focus of pedagogy and the unit of analysis in assessing student learning. Thus, for teachers, 
attention to social justice is often interpreted as a shift away from the content, an uncomfortable 
position when one is accountable for student mathematics learning. These challenges for teachers 
to identify, explore and understand social injustices, to apply the practices of socially just 
teaching, and to see themselves as agents of change to address injustices in their world(s) was an 
influence in the development and implementation of the coaching program.  

 
Methods 

Participants, Context, and Data Sources  
The participants in our study were twenty mathematics coaches who participated in the study 

across three years of their involvement in a MSP-funded mathematics coaching training 
program. All are licensed or certified teachers who are hired by school districts to serve as full 
time mathematics coaches, one per building, for the duration of the coaching training. Schools 
enrolled in the coaching program may be primary, elementary, intermediate or middle schools, 
and the project supports coaches across all of grades kindergarten through grade eight. Not all 
coaches continued in the program for all three years of available training, with funding issues 
being the primary reason schools dropped out of the program.  

During the three years of the study, in addition to the mathematics education sessions in the 
coaching program, the coaches also engaged in nine professional development sessions focused 
on equity, diversity and social justice. The conceptual framework for the project includes 
pedagogical elements, mathematics content elements, and contextual elements; it is in the 
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contextual elements that the equity, diversity and social justice component of the project rests. 
The goal of the social justice curriculum in the project is to teach the coaches about social 
justice, and to motivate them to bring social justice perspectives to bear on their daily work with 
teachers.  

It is important to note three particular factors of this project in terms their impact in on the 
reliability of our data. Throughout the research project, the coaches were open and honest in 
revealing the limits of their knowledge of social justice in mathematics education. Given the 
potentially sensitive nature of the discussions, discomforts of revelations of non-awareness and 
acknowledgements of racism, we might have questioned the degree of honesty. But we trust the 
honesty and credit their openness to three factors:  

• The nature of the professionals in the coaching program, 
• The nature of the program as a whole, and 
• The style of pedagogy practiced in the social justice lessons. 

The professionals who participate in the coaching program are teachers who have chosen to 
enter a new field in mathematics education in its early stages of development. Taking a risk in 
leaving their classroom positions to embark on this professional growth opportunity suggests a 
strength of mind that distinguishes them from many of their peers. Additionally, the coaching 
program in which they are being trained is an intensive internship model where the coaches are 
coaching from the first day of their training. Participation includes a three-year expectation of 
training, involves whole group meetings for two days monthly, and small group meetings for two 
additional days monthly. The coaches come to know each other well, and bond to each other 
early in the program over the challenges of the work and the learning curve they experience. 
Finally, the social justice pedagogy responded at all times to the participants’ needs and 
emerging growth, never judging, always understanding of the lack of awareness, the fears, and 
the resistances. Together these three factors made for group dynamics that resulted in trustworthy 
data. 
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Curriculum Work products Feedback/Survey Tools 
Introduction to equity and 
diversity 

 Equity and diversity in the 
schools 

Introduction to Social 
Justice 

What does social justice mean 
to you? Documentation of 
group discussion. 

Pre-SJ: Does Social Justice 
belong in the coaching program 
conceptual framework?  

Video: The House We 
Life In 

Reflective Writing on The 
House We live In. 

Post-SJ: Does Social Justice 
belong in the coaching program 
conceptual framework? 

We are the World and 
We Are Hungry lesson.  

We Are the World And We 
Are Hungry activity sheet. 

Final year descriptive narrative 
on growth in terms of growth 
regarding social justice in 
mathematics education. 

Video: The Color of fear  

Color of Fear Follow-up 
Discussion 

Assistant’s notes from Color 
of Fear discussion 

 

Table 1. Data Sources 
Our data sources included open response survey instruments administered prior to the 

project, part way through the project, and after the last lesson. Coach work products from 
sessions and researcher reflections on curriculum and teaching served as data sources as well. 
One particular discussion session was documented with verbatim notes because there was no 
other product from the session to capture the coaches’ understandings. See Table 1. for all data 
sources. In this discussion of data sources, in order to distinguish this work from the work of the 
rest of the coaching program, we use the word project to refer to the social justice in mathematics 
research part of the training program, and program to represent the coaching training overall. 

Near the end of year one in the program, coaches participated in a lesson introducing equity 
and diversity in mathematics education and were asked at that time for their feedback on equity 
and diversity efforts in their schools. Once the group started in year two of the project, they 
began a six-session series intended to teach them about social justice, and to motivate them to 
integrate social justice into their work with teachers and students in their schools. In year 3 of the 
project, the coaches participated in two follow-up lessons addressing their on own struggles and 
reflections upon their growth.  
 
Data Analysis 

Our data analysis focused on document analysis in reviews of the curriculum, coach 
responses on multiple surveys, observation captured in a transcript of a discussion, coach work 
products, and researcher field notes that included our reflections, notes from the sessions, and 
planning discussions. We should note here how every session included from four-six observers 
from the program, providing a kind of reliability check on our interpretations of the events. 
Follow-up discussion with these observers became a part of our researcher reflections. 

To begin analysis we progressed through all documents that were coach work products, 
survey responses, and transcripts and researcher notes. We reviewed each coach’s documents  
chronologically through all lessons. We compared coach perspectives, language, and quality of 
work products progressively coach-by-coach, looking for indications of the coaches’ 
understanding of and commitment to social justice pedagogy. As is customary in qualitative 
research, successive readings across the data allowed the coaches’ growth patterns to emerge.  
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Results 
Our analysis allowed us to identify the initial positions of the twenty participants and six 

different progressions in the coaches’ growth. We found that the coaches were clear about what 
they did not know from the first days of the project. Reflecting back to the methodological note 
about the reliability of the data, we believe coach revelations to be honest. As a whole, the group 
started with varying degrees of naiveté, some believing they were attentive to equity and 
diversity in their work, only to realize later how far they needed to come. However, there were 
three particular cases that were distinctive within the group. One coach, Marjani*, who we 
discuss later, was the most informed at the outset, and credited that to her lived experience of 
injustices. Another coach, Margaret, began the project as a disconnected spectator and was one 
of only two coaches from whom we saw no growth. A second from whom we saw no growth 
was Mitch, who also started with an articulation of a connection to mathematics that suggested a 
potential and particular barrier to accepting social justice pedagogy. Mitch wrote early in the 
project “Honestly, I don’t know how it will impact me as a math coach. I teach all children who 
make up a classroom, so I am not consciously aware of social justice per se, while teaching 
mathematics or working with a fellow teachers.” At the end of his experience with us, he wrote 
that the social justice work did not belong in the coaching program because it “took a lot of our 
time away from the [coaching] material.” Nadine, whose growth is clear in the data we discuss 
below, started with the following perspective: 

I don’t believe the mathematics classroom is the place to have this debate. The study of 
mathematics supersedes socio-political, cultural conditions. For me it explains and uncovers 
the wonders of the universe, the responses of humankind, the nature of mankind and the 
predictions of the future. It confirms the idea of intelligent design. 
The overall results in terms of coach growth were encouraging to say the least, as all but two 

of the coaches demonstrated growth. That growth was individualized per coach, both in terms of 
the amount of growth and the nature of it. Through our analysis, we identified the following six 
growth progressions, where data reflected movement as follows: 

• From mathematics to students and teachers to consideration of the context  
• As a pivoting center (reference) from self to student to student within the context  
• From spectator to participant  
• From naiveté to deeper understanding  
• From the self within a social justice context to expanding boundaries of social justice  
• From validation to expansion into mathematics 

 
A Shift in Paradigm 

The first three examples of movement listed above collectively represent a shift in paradigm 
for each participant. For one coach, Jessie, the shift was one that moved her focus from 
mathematics to students and teachers and eventually to consideration of the context. She wrote,  

To be honest, social justice and mathematics education wasn’t even on my radar when we 
first began this discussion… I was more concerned about treating all students with respect 
and trying to meet their academic and social needs… I now look at students and teachers and 
try to understand where they have come from and where they are now….Although I knew 
about social justice or thought about it in the past, I didn’t think about how it plays a part in 
mathematics education.  
Valarie’s case is an example of paradigm shift representing a change in her pedagogical 

center from herself as a person and teacher to the student in context. “I always thought I was 
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helping children be all that they can be, but it was in my eyes, not in each child’s eyes….I am … 
more aware of children’s backgrounds and what they bring socially and educationally… I 
believe I got here by our discussions and being able to see others’ point of view.”  

Susan examples a shift from spectator to participant. She revealed her spectator status when 
she wrote “I have always thought that everyone regardless of background, race, economics etc. 
should have an equal opportunity to education. I never really thought (I know this now) how that 
was going to happen.” She then wrote that she also did not know “how to make it make it 
happen. It just should” suggesting a shift to her role as a participant. Finally, she writes “Where I 
am now, there are so many things to learn about with regards to where people come from, 
background, economics, and to learn and know how to help provide this equal opportunity.”  

 
Deeper/Broader Understanding 

The last three examples of movement listed above collectively represent movement to a 
deeper or broader understanding on the part of each participant. In her writing, Nadine 
characterizes a change from naiveté to deeper understanding, progressing from a starting with a 
naïve belief that she was aware to knowing how she has much to learn. She wrote: 

My definition for equity on the first day was ‘equity means every child gets what he or she 
needs.’ I was so proud thinking ‘I really nailed this’ and I was surprised when I shared my 
answer with the group that Cynthia didn’t jump right up and say, ‘Yes yes. That is a great 
answer.’ Instead, she said ‘Hmmmm’ and without another word moved on to the next 
person… It was the movie about the group of men who came together to confront the issue of 
race that had the most significant impact on me. I was embarrassed for the Caucasian man 
and ashamed to see a little of myself in his naiveté about the disparity that exists even today 
between races, and how that disparity continues to live today in part because of ignorance 
that it exists at all. Today, at least I am aware that it exists to a greater degree than I fully 
understood and it is something I need to work on. 
Rita’s data revealed a case of broader understanding, moving from the self within a social 

justice context to expanded boundaries that now include a broader world of social justice 
understanding. She wrote, 

When we first began this discussion of social justice I considered myself to have already 
begun a self-reflective process prior to our start. Even knowing at that time I still had much 
growing to do, I had no idea how much growth that would entail… Discussions we have had 
… have overflowed to discussions with Nadine and Marjani outside of [the coaching 
program]… I appreciate the discussions greatly and feel I have gained a broader sense of 
humanity and equity, as my current beliefs are challenged by new information. I appreciate 
the fact that awareness of social justice has been heightened as I feel it has impacted my own 
perceptions of my self. 

Rita’s major growth was from a place of comfort in her definitions and the process. She became 
“much more analytical of actions, beliefs, etc., not only in the educational setting but in all areas 
of my life.”  

Finally, Marjani was a special case of a coach whose broadening and deepening change 
included an expansion into mathematics as a context. Additionally, she was the only coach who 
actually was comfortable taking her learning into her role of a coach. She found the social justice 
readings and pedagogy validating from the start.  

As an African American woman teaching in a racially diverse urban school district, Marjani 
found the films, readings, and discussion validating. She wrote: 
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The film was very informative and served to validate my experiences and the experiences of 
other people of color. I have been in conversation about racism and its effects for as long can 
remember. My career has been impacted by my choices to work with inner city youth and 
their instructors…Raising 3 African American young men with the help of my husband, and 
experiencing the difficulties of racism as it tried to hinder our success, makes me very 
sensitive to the issues… I thought and reflected on the film when I read chapter 3 of Eric 
Gutstein… As I work with my teachers I encourage them to reflect on their 
treatment/reaction to various students. I also try model respect and relationship-building with 
them. 

 
Discussion 

Each mathematics education professional development provider designs and delivers 
programs to meet the needs of their constituents. Those programs often include combinations of 
experiences with mathematics, viewing films, and engaging in activities, readings and 
discussions. Our project was no different in that regard. But the growth found in this project does 
suggest the value of three contextual elements. One contextual element was the on-going review 
of the data, and the revised curriculum that resulted from that. Significant to the changing 
process was the risk-taking that was necessary on the part of the project, to push discussions in 
very uncomfortable directions, especially in the context of mathematics, which many believed to 
be value free and socioculturally neutral. 

A second contextual element contributing to the growth in this project was the intensive, 
prolonged, and community-like engagement of the coaches described earlier. That context 
provided us the opportunity to integrate our project over a longer period of time than we would 
have had in typical professional development projects or university coursework. With the growth 
we found taking all of the three years to become realized by the coaches, it is clear that summer 
and holiday breaks way from their work, time between social justice lessons, and a project that is 
sustained and coherent provided allowed room and time for reflection and growth in nearly all of 
our coaches. 

The coaches had assignments to talk to someone outside of our sessions about some element 
of our work together. One group of coaches took that a little further, suggesting a third 
contextual element contributing to growth. Three coaches, Rita, Nadine and Marjani worked in 
the same urban school district, spent time together as colleagues outside of their schools, and 
became friends. On the long, monthly drives to and from the coaching program trainings, and in 
their additional sessions two more days each month, they talked to and challenged each other 
regarding social justice pedagogy. They became critical friends (Nieto, 2000; Zeichner and 
Hoeft, 1996), referencing in written reflections those drives and the friendship that developed 
over their growth around social justice pedagogy in mathematics.  

We close with comment on one final growth element that relates to the social justice work to 
the coaches’ role as professional development leaders in their schools. As the coaches entered 
the third year of the project, Marjani was the only one showing any evidence of taking her social 
justice learning into her role as a coach. Since that application of their learning was a goal in our 
teaching, and because we had so little time left in the project, we made an assignment to the 
group to push them to think more about that aspect of their coaching work. The coaches stopped 
us; they could not do what we were asking them to do, and clearly articulated the ways in which 
they were not ready for it, and what they needed to do before they could apply their 
understanding to their coaching work. They revealed self-regulatory and self-directed behaviors, 
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an aspect of growth we had hoped for, had not seen, and had not planned for. They needed from 
us only the space to reflect upon, synthesize, and name what they found to be incredible personal 
growth. They believe that only then could they – and would they – take their growth into their 
work as coaches.  

 
Endnotes 

* All names used in this paper are pseudonyms. 
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This paper presents our initial work to develop trajectories of preservice teachers’ knowledge of 
teaching algebra for equity.  We have developed two overlapping hypothetical learning 
trajectories (HLTs) for teachers’ learning to engage and motivate diverse students to solve 
algebra problems.  These HLTs are being used to guide the development of assessments, 
interviews, and learning activities for a pilot group of preservice teachers. The HLTs also serve 
as learning materials to help the preservice teachers understand how their future middle grade 
students learn to solve algebra word problems. 

This paper describes work in the first phase of an NSF funded project whose goal is to 
enhance preservice teachers’ knowledge for teaching algebra to diverse students. Specifically, 
the project focus is to design, develop, and test technology-enriched teacher preparation 
strategies to address equity in algebra learning for all students. The foundation for this work is a 
set of Hypothetical Learning Trajectories (HLTs) for teaching algebra for equity, which will be 
described in the paper. 
 Moses and Cobb (2002) stated that “the most urgent social issue affecting poor people and 
people of color is economic access. In today's world, economic access and full citizenship 
depend crucially on math and science literacy” (p. 5). Ladson-Billings (2009), citing Haberman 
(1996), notes that “a serious effort toward preparing teachers to teach in a culturally relevant 
manner requires a rethinking of the teacher preparation process” (p. 143). We agree with Moses 
and Ladson-Billings and we concur with researchers who conclude that traditional teaching 
methods are one source of difficulties that students of color have in school-based learning. 
Weiner (2005) found that success in the classroom only came after a shift in teachers’ attitudes 
about teaching, learning, and culture. Research  (Irvine, 1990; Lewis, 2009) has found that White 
teachers are sometimes not sensitive to the cultural needs of African-American students in the 
classroom. Both verbal and nonverbal interactions between the student and teacher are often 
misinterpreted and can lead to negative consequences for the African-American student (Lewis, 
2009). 
 The gap in mathematics achievement between White, Hispanic, and African-American 
students has been documented since 1973. Data from the past 30 years show that White students 
have consistently outperformed students of color for each of the testing points (Cooper & 
Schleser, 2006). Although there has been recent improvement among Hispanic and African-
American students, the achievement gap is still an issue (The Nation’s Report Card, 2007). 
Furthermore, several “national and international comparisons of student achievement indicate 
that it is between fourth and eighth grade when U.S. students in general, and minority students in 
particular, fall rapidly behind desired levels of achievement” (Balfanz & Byrnes, 2006, p. 144). 
There are several probable causes for the continuation of the achievement gap in mathematics, 
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including, “weak and unfocused curricula, shortage of skilled, trained, and knowledgeable 
mathematics teachers, unequal opportunities to learn challenging mathematics, and unmotivated 
students” (p. 144).  
 The importance of teacher quality has been identified as a key element to closing the 
mathematics achievement gap [now known as the opportunity gap] and increasing achievement 
of all students (Ladson-Billings & Tate, 2006, The Education Alliance, 2006). Teachers who are 
highly qualified and certified to teach mathematics have stronger pedagogical and mathematics 
knowledge, and therefore are more likely to have a better understanding of how students best 
learn mathematics. Highly qualified teachers will have better instructional practices than less 
qualified teachers (Darling-Hammond & Sykes, 2003). Teachers who are highly qualified and 
who have the ability and knowledge to effectively teach mathematics can “produce as much as 
six times the learning gains produced by less-effective teachers” (Singham, 2003, p. 589). 
Preservice education is the starting point for developing high quality teachers for all students. In 
a review of research on preparing teachers for diversity, Sleeter (2001) noted that while many 
White preservice students expect to work with children of another cultural background, most 
have little knowledge of or experience in cross-cultural settings. Preservice teachers 
acknowledge family support as a factor in their own previous success in mathematics education, 
but also hold the beliefs that mathematics ability is inherited from the parents, and that socio-
cultural factors can restrict or promote learning (de Freitas, 2008). Sleeter stated that "the great 
bulk of the research has examined how to help young White preservice students (mainly women) 
develop the awareness, insights, and skills for effective teaching in multicultural contexts. 
Reading the research, one gains a sense of the immense struggle that involves" (p. 101). She 
concludes that many of the programs and courses aimed at general multicultural awareness and 
knowledge have had limited success, partly due to the limited opportunities for direct and 
relevant experience that preservice teachers have in confronting real issues of diversity in the 
classroom. 
 Teachers in Ladson-Billings’ (2009) Dreamkeepers project offered these suggestions for 
teacher preparation programs: recruit teacher candidates who have expressed an interest and a 
desire to work with African-American students; provide educational experiences that help 
teachers understand the central role of culture; provide teacher candidates with opportunities to 
critique the system in ways that will help them choose a role as either an agent of change or 
defender of the status quo; systematically require teacher candidates to have prolonged 
immersion in African-American culture; provide opportunities for observation of culturally 
relevant teaching; and conduct student teaching over a longer period of time and in a more 
controlled environment (Ladson-Billings, 2009).   
 In designing the HLTs, we reviewed the research literature to examine effective strategies for 
equity both for preservice teachers and for middle grades learners. Cognitive, affective, and 
cultural factors were included as primary criteria for identifying strategies that might be 
effective. An important underlying goal is to explore and develop activities and strategies that 
are effective both for preservice teachers and the students they will eventually teach in the 
classroom.  
 

Teaching and Learning Algebra 
 Specific learning models for algebraic thinking are being identified and used to guide the 
development and design of HLTs. We began by identifying research-based learning trajectories 
for specific emergent algebraic thinking at the middle grades (Chazan & Yerushalmy, 2002). 
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Although there is considerable research on teaching algebra, the nature of preservice teachers’ 
learning trajectories for developing deep algebraic thinking is less well known. Our research 
focuses on identifying, describing, and documenting these trajectories so that knowledge of 
algebra, often found to be deficient in preservice teachers (You & Kulm, 2008), can be addressed 
during preservice work. Learning activities will be constructed around the strategies for 
providing access and encouraging student engagement in challenging mathematical problems.  

There are many studies on teachers’ knowledge for teaching function concept. For example, 
Norman (1992) found that the secondary teachers tended to have inflexible images of the concept 
of function that restricted their abilities to identify functions in unusual contexts and to shift 
among representations of functions. The sampled teachers were able to give formal definitions of 
function, were able to distinguish functions from relations, and were able to correctly identify 
whether or not a given situation was functional but did not show strong connections between 
their informal notions of function and formal definitions. Consistent with Norman’s findings, 
Chinnappan and Thomas (2001) found that all four pre-service secondary teachers in their study 
had a preference for thinking about function graphically, weak understanding of representational 
connections, and limited ability to describe applications of functions. Difficulty in constructing 
functions was also observed by Hitt (1994), who found that teachers had difficulty in 
constructing functions that were not continuous or were defined by different algebraic rules on 
different parts of the domain. Even (1993) found that many prospective secondary teachers did 
not hold a modern conception of a function as a univalent correspondence between two sets. 
These teachers tended to believe that functions are always represented by equations and that their 
graphs are well-behaved. None of the teachers had a reasonable explanation of the need for 
functions to be univalent and over-emphasized the procedure of the “vertical line test” without 
concern for understanding. On the other hand,  Chazan, Yerushalmy, and Leikin (2008) found 
that teachers who were provided an opportunity to discuss and use alternative approaches were 
able to rethink their ideas about functions and equations. 

 
Description and Specifications of Learning Trajectories. 

 The first phase of the project focuses on two interrelated research questions: What are the 
trajectories of middle grade students’ knowledge and skill in algebra? and What are the 
trajectories of preservice teachers’ knowledge of teaching algebra for equity? We believe that the 
basis of preservice teachers’ knowledge for teaching algebra for equity rests on their knowledge 
of students’ learning and motivation. We have developed two separate but overlapping 
hypothetical learning trajectories (HLTs) for solving algebra problems. One HLT characterizes 
the learning development of middle grades students. The second HLT characterizes teachers’ use 
of strategies to engage and motivate diverse students in learning algebra. The trajectories follow 
the model of Simon and Tzur (2004), who provided the following set of assumptions about the 
characteristics and use of a hypothetical learning trajectory (HLT): 

1. Generation of an HLT is based on understanding of the current knowledge of the students involved. 
2. An HLT is a vehicle for planning learning of particular mathematical concepts. 
3. Mathematical tasks provide tools for promoting learning of particular mathematical tasks and are, therefore, 

a key part of the instructional process.  
4. Because of the hypothetical and inherently uncertain nature of this process, the teacher is regularly 

involved in modifying every aspect of the HLT (p. 93). 
The HLTs facilitate building on existing knowledge and developing deeper knowledge of the 
topics.  In order to describe how this knowledge is built, we began with the model of Lamberg 
and Middleton (2009) in constructing HLTs.  This model contains (a) descriptions of the 
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conceptual scheme at each level of learning, (b) summaries of the cause/effect mechanisms that 
characterize students’ current knowledge, (c) cognitive interpretations of current knowledge, 
including possible misconceptions, and (d) intermediary understandings that are necessary for 
bridging to the next level of the learning trajectory (p. 237).  Figure 1 provides a first version of 
the HLT for solving algebra problems. The trajectory, based on findings from research and best 
practice, begins with a direct translation scheme and provides rationales and cognitive 
interpretations of reasons for students using this approach. The last column provides possible 
steps to bridge to a more sophisticated scheme for solving problems. The intermediary schemes 
represent increasingly sophisticated problem solving strategies. The highest level scheme in this 
hypothetical model is a heuristic approach based on Polya’s (1945) work and subsequent 
research that has applied that scheme.  
 

Conceptual 
Schemes 

Cause/Effect Cognitive Interpretation Bridging Steps 

Direct Translation 
Scheme: Translate 
directly from 
words into 
expressions or 
equations. 

Students have been taught that 
certain words stand for 
operations or equivalence. 
(Koedinger & Nathan, 2004; 
National Council of Teachers 
of Mathematics, 2000). 
Textbook word problems often 
to support this strategy.                

Students who can read and 
comprehend text may be successful 
using this strategy for some word 
problems.  
(Chapman, 2006) 
However, errors in translation are 
common, and many problems do 
not lend themselves to the approach. 
(Pape, 2004) 

Practice using heuristics to 
understand problems, such 
as draw picture or diagram, 
make a table, identify the 
data and unknowns 
(Johanning, 2004, 2007). 
Delay writing equations, 
then write the equations in 
words. 

 Textbook Four-
Step Scheme: 
Read, identify 
data, identify 
unknowns, write 
the equation. 

 In an attempt to reflect 
Polya’s four step approach 
Polya (1945), yet keep a 
simple procedure, textbooks 
often use this strategy with 
simple word problems that 
provide reasonable success in 
applying this approach. 

Students can use the strategy with 
simple word problems, as an aid in 
analyzing the data and assigning 
variables to the unknown(s) 
(Johanning, 2004, 2007). The 
approach does little to support 
finding relationships needed to 
write an equation (Greer 1993, 
Johanning, 2004).  
 

Practice using heuristics to 
understand problems, such 
as draw picture or diagram, 
think of a similar problem, 
use numbers to find 
examples. 

Generalized 
Pattern Scheme: 
Generate numbers 
and generalize the 
pattern. 

In early grades, students learn 
to “plug in” numbers to verify 
statements. Since numbers are 
concrete and familiar, they can 
be used to generate data that 
satisfy the conditions in a 
word problem. 

Students are familiar with numbers 
and can use them to satisfy problem 
conditions. They can use inductive 
reasoning to generalize familiar 
patterns or arithmetic sequences. 
(Zazkis & Liljedahl, 2002) 

Practice using heuristics to 
understand problems, such 
as draw picture or diagram. 
Use differences to identify 
the type of pattern (linear, 
etc.) 

Heuristic Scheme: 
Apply heuristics 
to understand, 
plan, carry out, 
look back (Polya) 

An heuristic approach 
addresses the need to focus on 
understanding the 
relationships and conditions in 
a problem and the need to plan 
how to solve it before 
attempting to write equations 
(Johanning, 2007, Polya, 
1945). 

Students can begin to use heuristics 
for identifying the data and 
unknown, drawing diagrams, and 
tables. (Bednarz & Janvier, 1996; 
Kieran, Boileau, & Garancon, 
1996). 
Then can use subproblems, special 
cases and develop strategies such as 
remembering similar problems 
(Kieran, 1996).  

Reflect on the solution to 
find another one, or a better 
or generalized solution. 
Think about other similar 
problems previously solved.  
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Figure 1. HLT for writing symbolic representations for verbal or non-routine problems. 
 
The HLT presented in Figure 2 addresses the issue of equity through the use of conceptual 
schemes that have potential to engage diverse students in learning algebra and problem solving. 
A central focus of our current research is to collect and analyze data in order to further 
understand and revise the proposed schemes. 
 

Conceptual Schemes Cause/Effect Cognitive Interpretation Bridging Steps 
Situated learning scheme: 
Provide an instructional 
context that allows 
students to have concrete 
and hands-on experiences  
with math knowledge and 
skills. Build math 
learning on realistic, 
open-ended, culturally 
relevant problems that 
students solve using a 
variety of skills, 
concepts, and tools. 

Traditional math 
instruction focuses on 
symbolic representations 
exclusively, or moves too 
quickly from concrete to 
abstract lessons. This kind 
of transition results in poor 
skill development and 
limited conceptual 
understanding.   (Hollar & 
Norwood, 1999; Karsenty, 
2002; O'Callaghan, 1998) 

 Students develop math 
understanding by constructing 
their own culturally relevant 
knowledge (Ladson-Billings, 
1994), building from more 
concrete to abstract ideas.   
Activities that apply math in 
contexts support effective 
learning (Pellegrino, 
Chudowsky, & Glaser, 2001). 
Student engagement in planning 
and carrying out the activity 
builds “ownership” and 
understanding (Silva & Moses, 
1990). 

Use concrete materials such 
as balances, algebra tiles, 
and everyday objects to 
provide concrete (Their, 
2001) and hands-on 
experiences, before 
introducing formal symbols, 
definitions and rules. 
Problem solving activities 
can be used that gradually 
are more open-ended and 
provide opportunities for 
students to devise solution 
strategies. 

Culturally relevant 
context scheme: Use 
contexts for activities that 
are based in and relevant 
to students’ cultures and 
lives. 

Many students do not see 
the relevance of math and 
have low self-expectations 
for learning math. 
Providing interesting and 
relevant contexts can be 
motivational. (Ladson-
Billings, 1997) 

 Learning does not take place 
unless students are engaged in 
the lesson (Their, 2001). A 
“zone of proximal 
development” is necessary in 
which students can learn which 
enhances motivation for 
learning math.  

Adapt math activities and 
problems that have relevant 
contexts, individualized to 
the interests of a particular 
class, group, or individual 
student (Ladson-Billings, 
1995).   

Critical pedagogy 
scheme: Provide learning 
activities in which 
students investigate the 
sources of mathematical 
knowledge, identify 
social problems and 
plausible solutions, and 
react to social injustices. 

Many students do not see 
the social relevance of 
math. Providing interesting 
and relevant social 
contexts can be 
motivational. (Ladson-
Billings, 1995) 

Problem-based learning 
engages students in using math 
to address and solve problems 
that are drawn directly from 
possible social or community 
issues. The context can 
motivate and engage students 
(Boaler, 2000). 

Adapt math activities and 
problems that have social 
contexts, individualized to 
the interests of a particular 
ethnic or interest group, or 
individual student 
(McLaughlin, Shepard, & 
O’Day, 1995; Stinson, 
2004).  

Figure 2. HLT for engagement in meaningful, interesting, and culturally relevant algebra 
problems. 
 These HLTs are being used by the project in two ways. They serve as frameworks to guide 
the development of assessments, interviews, and learning activities for a pilot group of 
preservice teachers. These data will inform the revision and further development of the HLTs 
and the learning activities aimed at developing preservice teacher knowledge of teaching algebra 
for equity (KATE). The HLTs also serve as learning materials, along with problem solving 
activities, to help the preservice teachers understand how their future middle grades students 
learn to solve algebra word problems. The teachers develop activities and lessons that address 
the bridging steps necessary to progress in the trajectories. Finally, they present lessons in 
Second Life to a simulated class of diverse middle grades students. 
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This study explores preservice teachers’ beliefs about the mathematics education of English 
language learners. In all, 164 preservice teachers responded to an online survey designed by the 
researchers. Through the use of descriptive statistics, the data shows that preservice teachers 
are open to the use of native language; believed that mathematics was devoid of culture; and 
were more empathetic to the experiences of English language learners if they themselves had 
experienced trying to learn a second language. 

This pilot study sought to expand on research that examined teachers’ beliefs regarding the 
instruction of English Language Learners (ELLs1) (e.g. Reeves, 2006; Torok & Aguilar, 2000). 
Our goal was to understand preservice teachers’ (PSTs) beliefs about the mathematics education 
of ELLs; specifically we considered the following research question: What are elementary 
preservice teachers’ beliefs toward (a) the use of language in the school context; (b) the 
interconnection of language and mathematics; and (c) teaching mathematics to ELLs?  

With the increased number of ELLs that are currently mainstreamed into classrooms (Costa, 
McPhail, Smith, & Brisk, 2005), along with the projected 40% of school students that will speak 
a language other than English at home by 2030 (AACTE, 2002, as cited in Lucas & Grinberg, 
2008), it is vital to prepare teachers to work with this specific population.  Within mathematics 
education, this need is magnified when one considers how ELLs have fared on national high 
stakes tests.  Historically a large percentage of ELLs have performed below the basic2 
achievement level on the National Assessment of Educational Progress (NAEP) mathematics 
exam. This trend continued in the latest iteration of the assessment. In 2009, 72% of the eighth-
grade ELLs tested were below the basic level compared to just 25% for non-ELLs.  At the 
twelfth-grade, the numbers were 80% and 35% respectively, and at the fourth-grade the numbers 
were 43% and 16% respectively.   

While these percentages indicate that the assessments should be analyzed with a focus on 
accessibility for ELLs (Kieffer, Lesaux, Rivera, & Francis, 2009), they also support the argument 
that teachers at all levels need to understand and be willing to incorporate into their teaching 
practice specific methods of helping ELLs learn mathematics deeply. The National Center for 
Educational Statistics (2002) reported though that of the 41% of teachers working with ELLs in 
their classroom, only 13% received adequate preparation. While there are many avenues in 
which to strengthen this preparation, one important component is for teacher preparation 
programs to consider the beliefs that PSTs have regarding the mathematics education of ELLs. 
As Philipp (2007) defined, beliefs can be thought of as “lenses that affect one’s view of some 
aspect of the world or as dispositions toward action” (p. 259). Thus, how a PST views the 
mathematics education of ELLs will affect how they design and implement mathematical 
experiences for ELLs in the classroom.  By understanding what PSTs believe, teacher 
preparation programs can design meaningful experiences that will promote a critical analysis of 
their beliefs.  
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Theoretical Perspective 
We used an on-line survey to ascertain PSTs’ beliefs about the mathematics education of 

ELLs. While admittedly there are downsides to using surveys (as discussed in Ambrose, 
Clement, Philipp, & Chauvot, 2004), our reasoning for the use of a survey was two-fold.  First, 
we were concerned that PSTs might answer in a manner they thought was expected of them if we 
used an interview setting.  As Sapsford (1999) noted, “a straightforward question can all too 
easily evoke a rhetorical or ideological response” (p. 106). We hypothesized that through an 
anonymous, on-line survey, PSTs would be more honest about their beliefs. Second, a more 
qualitative approach (such as interviewing or observations) would have been more time-
consuming.  As such, fewer PSTs would have been able to participate in the study.  This was an 
important consideration since we were interested in understanding the beliefs of a population of 
PSTs and not just a select few. 

The survey instrument was constructed by the researchers due to the lack of appropriate 
instruments found.  At the beginning of another study (Fernandes, Anhalt, & Civil, 2009), which 
sought to understand how PSTs’ beliefs were challenged as a result of conducting two task-based 
interviews with ELLs and reflecting on the interviews in a structured report, the second author 
could not find any surveys that would be appropriate to use in the context of mathematics. While 
survey instruments that focused on teachers’ beliefs about working with ELLs or teaching 
diverse students were found (e.g. Reeves, 2006; Tatto, 1996; Torok & Aguilar, 2000), none 
focused specifically on the beliefs of PSTs regarding the mathematics education of ELLs.  This 
lack of direct focus was a point of contention for us as the context of mathematics was just as 
important as the context of working with ELLs. As Cooney, Shealy, and Arvold (1998) noted, 
beliefs that are central in one domain are not necessarily central in another. Thus we conjectured 
that framing the statements in the context of the mathematics classroom would encourage the 
PSTs to consider the nuances of working with ELLs in the domain of mathematics as opposed to 
in general.  

The survey consisted of 14 questions. Each of the statements measured the strength of 
agreement or disagreement of PSTs’ beliefs related to the mathematics education of ELLs with a 
5-point Likert-type scale. Each respondent was asked to choose from one of the following 
choices: Strongly Disagree; Disagree; Undecided; Agree; Strongly Agree. Each of the statements 
used in the survey was based on research and/or adaptations from items found in other surveys3.  
Respondents also answered questions relevant to their demographic information such as gender, 
years of teaching experience, years of experience working with ELLs, spoken languages, and 
ethnicity.  

Methods 
We piloted the survey with elementary PSTs from a university in the south east of the 

country in spring 2010.  All of the PSTs were working toward their teaching certification through 
an accredited teaching certification program and were enrolled in one of the two mathematics 
methods courses offered that semester. All students enrolled in both methods courses were 
invited to participate in the study.  The second author discussed the study with the two methods 
teachers and asked each of them to announce the survey to their students.  The PSTs were 
provided a web link that directed them to the survey that was hosted on http://surveyshare.com. 
At the beginning of the survey, individuals were asked to read a consent form detailing the 
specifics of the study.  If the individual indicated consent, they were then provided access to the 
survey questions. Participants were not asked any identifying information such as name or 
address.  Overall, 164 PSTs participated, a return rate of almost 100%.   
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To ensure the validity of the survey, the participants were asked at the end of the survey to 
answer questions pertaining to the readability and clarity of the survey.  In particular, participants 
were asked the following questions:  

1. Were there any ambiguous questions? 
2. Was there anything that you did not understand? 
3. Was there anything that we did not ask that we should have asked? 

Comments from the PSTs about what they did not understand indicated that three were unsure 
about questions related to their knowledge of teaching and three wanted an option of student 
teaching/clinical experience to be included in the “Years of experience teaching ELL students.” 
Related to the former, one respondent commented, “I’m not in the classroom full time, so how 
am I supposed to know about teaching [ELLs]?”  This type of comment was echoed in answers 
to question 1.  Here respondents discussed less the ambiguity of the wording of the questions and 
more that they were unsure of how to answer the questions based on their experience.  All of the 
PSTs noted that in these cases, they clicked the choice ‘undecided.’  These responses from the 
PSTs did not reveal any obstacles to their understanding or ability to answer any of the survey 
items. 

The survey results were imported into an MS Excel file that was used to do the analysis. We 
calculated the percentage of PSTs who agreed with an item by adding the percentage of those 
who either strongly agreed or agreed with a statement.  Similarly, we calculated the percentage 
of PSTs who disagreed with an item.  These percentages are shown in Table 1 for each item. To 
further understand the alignment of the PSTs’ beliefs with the literature, we obtained a total 
score for each PST by attaching a numerical value for a response in the Likert-type scale: 1 for 
strongly disagree; 2 for disagree; 3 for undecided; 4 for agree; and 5 for strongly agree, while 
reverse coding some items if needed. For us, a score of 1 represented a response that was least 
aligned with the research literature regarding ELLs and 5 was the most aligned. For example, the 
statement “Students in the US should be taught in English only” was reverse coded with a PST 
strongly agreeing scoring 1 and strongly disagreeing scoring 5. Since beliefs can only be 
inferred, we conjectured that a PST who believed that all students should be taught in English 
only would be less open to the use of native language as a resource in the classroom. Items 1, 2, 
5, 6, 7, 8, and 12 from Table 1 were reverse coded. In this survey, a PST could have obtained a 
minimum of 14 and a maximum of 70.  Our next step was to order the scores and use quartiles to 
partition the 164 students into four groups, where G1 represented the lowest quartile and G4 
represented the highest. Finally we compared the means of the scores from the PSTs in the upper 
quartile (G1) to those in the lower quartile (G4) 

Results 
We examined the results of the survey descriptively as we sought to answer our research 

questions and interpret the results in light of the existing literature. First we report on the 
demographic information collected about the participants to contextualize the population who 
responded to the survey.  We then report on the percentages of participants that agreed, were 
undecided or disagreed with the individual statements by considering three main categories of 
belief statements related to our research questions: (a) beliefs about language in the school 
context; (b) beliefs about the interconnection of language and mathematics; and (c) beliefs about 
teaching mathematics to ELLs.  These percentages are summarized in Table 1. Finally we report 
the findings from the comparison of different groups based on the quartile calculations. 
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Demographic Information 
Of the 164 participants, 153 were female and 11 were male.  Of the choices ‘European 

American,’ ‘African American,’ ’Hispanic,’ ‘Asian,’ or ‘Other,’ 85% of the PSTs reported being 
European American/Caucasian/White.   (Note that some PSTs chose the ‘other’ category and 
filled in Caucasian or White.)  Of the other 15% of respondents, 7.32% self-reported as African 
American, 1.22% as Hispanic and 3.05% as Asian. Most of the PSTs either indicated no formal 
teaching experience or reported classroom observations and clinical teaching required in 
coursework as their only teaching experience. Finally, over 85% had limited to no experience to 
working with ELLs prior to the study.  

 
Belief  % Agree % Undecided % Disagree 

Language in the School Context    
1.  Students in the US should be taught in English only. 21.37 13.4 65.2 
2.  It is more important for immigrants to learn English 
than to maintain their native language. 41.4 19.5 39 

3.  In a mathematics classroom, ELLs should be allowed 
to discuss course material with each other in their native 
language. 

76.83 12.8 10.37 

4.  ELLs should be assessed in their native language on 
the State tests. 35.98 37.80 26.22 

Interconnection of Language and Mathematics    
5.  Mathematics uses symbols and ideas that are not 
associated with any language or culture. 52.44 23.17 24.39 

6.  Mathematics is an ideal subject for transitioning recent 
immigrant students into English. 55.49 33.54 10.98 

7.  If ELLs can hold a conversation in English, they 
should have no more of a problem, than non-ELLs, 
learning mathematics in an English only classroom. 

29.88 21.34 48.78 

8.  Mathematics is not language intensive. 25 15.85 59.15 
Teaching Mathematics to ELLs    
9.  Whenever possible, ELLs should receive instruction 
in their native language until they are proficient enough to 
learn via English instruction. 

67.07 15.24 17.68 

10. When working with ELLs in a mainstream classroom, 
teacher lesson plans should incorporate content objects as 
well as language objectives. 

69.52 33.54 5.49 

11. Teacher should incorporate explicit language learning 
strategies in the mathematics lesson if they have ELLs in 
the class. 

66.47 25 8.54 

12. Teachers should use the same standards in evaluating 
the work of all students in the class.  48.18 18.29 33.54 

13. It is important to incorporate aspects of the students’ 
culture into mathematics teaching. 84.15 9.15 6.71 

14. Culture plays a significant role in the learning and 
teaching of mathematics. 56.1 28.05 15.85 

Table 1. PSTs’ beliefs about the mathematics education of ELLs 

Beliefs about Language in the School Context 
A majority of the PSTs (65.2%) disagreed or strongly disagreed with the statement “Students 

in the US should be taught in English only.” Moreover, 76.83% agreed or strongly agreed with 
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allowing ELLs to use their native language when discussing mathematics content in the 
classroom. Given that most of the PSTs surveyed were monolingual in English (83%4), these 
results point to the PSTs being open to languages other than English being used in the 
mathematics classroom. However, even though PSTs seemed open to the use of native language 
for teaching and small group discussions in the class, they seem split on the importance ELLs 
should give towards learning English rather than maintaining their native language. Namely, 
41.4% of the respondents agreed that it is more important for ELLs to learn English while 39% 
felt that learning English should not come at the expense of the ELL’s native language. This 
agrees with the literature (e.g. Walker, Shafer, & Iiams, 2004; Reeves, 2006) where teachers may 
assume that the use of native language may interfere with ELLs learning English and thus, more 
importance should be given to learning English. Finally, the PSTs were about evenly divided 
when asked about the use of native language on exams, with 35.98% agreeing, 26.22% 
disagreeing, and 37.8% undecided when responding to the statement “ELLs should be assessed 
in their native language on the State tests.” There are a number of possibilities for the large 
percentage of students who are undecided. For example, it is possible that PSTs had difficulty 
deciding between whether it was a beginning ELL or a more advanced ELL that was allowed to 
take the tests in their native language.      

Beliefs about the Interconnection of Language and Mathematics 
A little more than half (52.44%) of the PSTs agreed with the statement, “Mathematics uses 

symbols and ideas that are not associated with any language or culture,” with 23.17% being 
undecided and 24.39% disagreeing. This is in line with beliefs about mathematics being a 
universal language that is structured and the same for everyone regardless of country or region 
(Kloosterman, 1999). Indeed, both authors have regularly had informal interactions with PSTs 
who claim that “2+2=4” is true in any language or culture.  This view of universality may 
account for why a majority of PSTs (55.49%) agreed that mathematics would be ideal to 
transition recent immigrant students into English. About a third (33.54%) of the PSTs, however, 
were undecided.  It is possible that the PSTs that comprised this percentage see mathematics as 
inherently difficult and challenging and thus felt that mathematics would not be ideal for any 
student, regardless of language ability.  When asked to consider if ELLs who could hold a 
conversation in English would have no more of a problem that non-ELLs learning mathematics 
in an English only classroom, a little less than half of the PSTS (48.78%) disagreed.  Moreover, 
almost 60% of the PSTs disagreed with the statement “Mathematics is not language intensive.”   

Beliefs about Teaching Mathematics to ELLs  
More than two-thirds of the PSTs agreed that ELLs should receive instruction in their native 

language until they are proficient enough to learn via English.  This view is in-line with research 
(e.g. Moschkovich, 2000) that suggests that educators should draw upon resources ELLs bring 
with them, such as their native language. Just about or above two-thirds of the PSTs also agreed 
that teachers should focus on language when working with ELLs be it through focusing on 
objectives related to language or enacting explicit language learning strategies.  Of the PSTs that 
did not agree with these ideas, a majority (85.9% for objectives and 74.5% for enacting) were 
undecided suggesting perhaps that the PSTs might be unsure of how or why a mathematics 
teacher should focus on language. Less than half of the PSTs (48.18%) believed that teachers 
should use the same standards in evaluating the work of all students, with about a third 
disagreeing and 18.29% undecided.  This distribution points to the fact that while PSTs want to 
be fair in assessing what their students know and can do, a majority at least question how that 
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fairness should play out in the classroom.  In regards to how culture should impact the teaching 
of mathematics, a large number (84.15%) of PSTs felt that it is important to incorporate aspects 
of the students’ culture into mathematics teaching.  While we cannot know for certain from this 
statement alone, it seems that PSTs did not consider the depth to which a student’s culture should 
be incorporated.  Instead, they may have felt that, for example, using a context with which an 
ELL may be familiar in a story problem constitutes incorporating a student’s culture.  Indeed, 
when asked if culture should play a significant role in the learning and teaching of mathematics, 
the percentage of respondents who agreed dropped to 56.1, a 33% decrease.  

Comparison of Groups 
The total scores of the PSTs were divided into quartiles, with Min=33, Quartile 1= 51, 

Median=55, Quartile 3=58, and Max=62. A box-plot of the scores is shown in Figure 1. 
Comparing PSTs in G1 (or the scores in upper quartile) to PSTs in G4 (or the scores from the 
lower quartile), we found the biggest differences in the means of items 1 (G1=3.93, G4=2.71), 7 
(G1=3.66, G4=2.49) and 2 (G1=3.32, G4=2.27). This indicates that PSTs in G4 tended to put 
more emphasis on English only education and were also more likely to mistake conversational 
proficiency for academic language fluency than PSTs in G1. Items 6 (G1=2.63, G4=2.37), 9 
(G1=3.78, G4=3.22) and 5 (G1=2.95, G4=2.32) had the smallest differences of means between 
G1 and G4. The means in item 6 and 5 were closer to 1 indicating that the PSTs may have felt 
that mathematics is a difficult subject for all students, independent of language and culture. Item 
9 showed that PSTs from G1 and G4 believed that ELLs should receive mathematics instruction 
in their native language until they are proficient enough to learn via English instruction. Given 
the beliefs of PSTs from G1 towards language (as seen in items 1, 7 and 2), it is possible that 
these PSTs view the teaching of ELLs as the exclusive responsibility of the ESL teachers in the 
school and may be less open to making accommodations in their own classrooms. 
Demographically, PSTs from G1 and G4 were similar in terms of gender, ethnicity, and previous 
experience with ELLs, however, the two groups differed in their exposure to a second language. 
There were 18 PSTs in G1 that spoke English only, compared to 28 in G4; and 23 that spoke an 
additional language at varying levels of fluency in G1, compared to 13 in G4. Considering this 
difference, the alignment of the PSTs’ beliefs seen in items 1, 7, and 2 to the research could be 
attributed to their experience in learning a second language. 
 
 

 

 

 

 

 

 

Figure 1. PSTs’ overall scores on belief survey 
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Discussion 
The calculation of percentages of PSTs who agreed or disagreed with a particular statement 

revealed some interesting connections among the PSTs’ beliefs.  One in particular concerns how 
PSTs may see culture within mathematics and mathematics teaching.  An overwhelming 84% of 
PSTs agreed that a student’s culture should be incorporated into mathematics teaching, with 
about 56% stating that culture should play a significant role in the teaching of mathematics.  
However, about 75% of the PSTs either agreed or were undecided that the symbols and ideas 
used in mathematics are not associated with any language or culture.  These numbers indicate a 
possible disconnect for PSTs in the teaching of mathematics.  One strategy for teaching ELLs 
suggested from research (e.g. Short & Echevarria, 2004) is to contextualize mathematics through 
the use of realia and the culture of ELLs in meaningful ways.  The possible belief structure of the 
PSTs based on the percentage calculations suggests that even though PSTs may agree with the 
strategy suggested in the research, they may not understand how it is feasible to do so in the area 
of mathematics given that mathematics itself is devoid of context.  If this is indeed the case, it 
sheds light on why teachers (both at the preservice and inservice levels) incorporate culture 
sometimes in seemingly superficial ways (e.g. changing the names of a story problem).   

Finally, as seen in the comparison of groups, the PSTs who had beliefs that fell in the upper 
quartile (meaning that these PSTs had beliefs which were most consistent with findings from 
research) reported more experiences learning a language other than English than those PSTs who 
fell into the lowest quartile. It seems then that by experiencing the learning of another language, 
PSTs may have empathy for the experience that ELLs go through on a daily basis.  However, 
this empathy may not translate into their teaching practice, as it is possible that they do not see it 
as their role as a classroom teacher to provide ELLs the type of support called for in research. If 
this empathy is cultivated, challenged, and nurtured though, PSTs that display the beliefs seen in 
this survey may develop the habit of mind and teaching practices that are consistent with best 
practices for teaching ELLs.   

Closing Thoughts 
 While we acknowledge that beliefs are not static and in fact are affected by many factors at 

any given point in time, it is important that teacher preparation programs take into account what 
a PST is thinking regarding the mathematics education of ELLs.   As can be seen through the 
findings and discussion from this pilot study, the use of a survey can provide a window into how 
PSTs may view the inclusion of language in the school context, the interconnection of language 
and mathematics and the teaching of ELLs.  Mathematics teacher educators can use the valuable 
insight gained from the survey to design meaningful, relevant, and engaging experiences that 
challenge and confront PSTs’ beliefs in an intellectual and respectful manner. 

Endnotes  
1. We consider English Language Learners (ELLs) as those students who are still developing a 

proficiency in English and consist of students who speak a language other than English at 
home. 

2. The basic level is the lowest of the three levels a student can obtain on a NAEP assessment 
and is defined as “mastery of prerequisite knowledge and skills that are fundamental for 
proficient work” (NCES, 2009). 

3. Proper credit was given in all cases where items from other surveys were adapted. 
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4. This percentage includes those respondents who either reported ‘English’ or ‘English’ plus 
an elementary/limited/brief amount of a different language when asked, “What languages can 
you speak? Please explain.” 
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This article examines mathematics opportunities at two urban high schools in the context of 
high-stakes standardized testing. Case studies were conducted at two urban high schools in 
low-income neighborhoods. Data includes opportunities in mathematics offered to students at 
the school level, in terms of mathematics course sequencing, and at the classroom level in 
terms of task cognitive demand and participation modality.  In particular, this article focuses 
on two related questions: 1) Do high-stakes standardized testing set high standards for all 
students? and 2) Do mathematics teachers “teach to the test” and if so, how? 

Educational equity is often framed as a significant rationale for high-stakes standardized 
testing (Diamond & Spillane, 2004). Proponents of high-stakes standardized testing argue 
that the tests hold schools and teachers accountable to providing all students with a high 
quality education (No Child Left Behind Act, 2008). Others (e.g., Au, 2007; Koretz, 2008) 
contend that an emphasis on testing prompts schools and teachers to adapt their curricula to 
“teach to the test.” The primary goal of this paper is to explore the two sides of this argument, 
in the context of mathematics education at two urban high schools that serve Black and 
Latino/a students from low-income families. While other studies explore the impact of 
standardized testing on teachers’ instructional practice by strictly using a methodology of 
surveying or interviewing teachers (e.g., Barksdale-Ladd & Thomas, 2000), this study 
examines the potential relationship between high-stakes standardized testing and equity in 
mathematics education empirically, with data from classroom observations. 

The paper begins with a presentation of the research context and description of data 
sources. It continues with a presentation of results organized around the dual themes of 
standardized testing as promoting high standards for all students and teachers “teaching to the 
test.” The discussion section summarizes the study’s findings and poses questions for further 
research. 

Methods 
Research Context  

Urban school districts, because of their size, typically serve a diversity of students, along 
racial, linguistic, religious, and socioeconomic dimensions. However, while a city may be 
diverse across many dimensions, it is typically an aggregate of smaller neighborhood units, 
which are often homogenous in terms of race and socio-economic class. African American 
and Latino/a students from the lowest income families tend to be clustered in schools in 
particular urban neighborhoods (Lipman, 2004). The research described in this paper is 
conducted in two such neighborhoods in New York City, each with about 130,000 residents: 
Bushwick is primarily Latino/a (split among Puerto Ricans, Dominicans, Mexicans, and 
Ecuadorans), and Brownsville, about a mile away, is primarily African American. These 
neighborhoods are among the ten lowest income neighborhoods citywide; more than half of 
families in Bushwick and more than 2/3 of families in Brownsville are in the bottom two 
quintiles of city income levels (Furman Center, 2008).  

Harwood and Carver are pseudonymously named high schools located in these two 
neighborhoods.  At Harwood, in 2009-2010, just over two-thirds of students self-identified as 
"Hispanic or Latino/a," and the other nearly one-third self-identified as “Black or African 
American.” About 90% of the school's families were recipients of public assistance.  Carver 
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also serves students from low-income families; about 81% of its families were recognized as 
recipients of public assistance. In 2009-2010, about 90% of Carver’s students self-identified 
as "Black or African American,” and the remainder of students self-identified as “Hispanic or 
Latino/a” (statistics cited in this paragraph are from New York State Education Department, 
2010).    

Harwood and Carver were the two partner schools for the Centering the Teaching of 
Mathematics on Urban Youth (CTMUY) professional development project in 2009-2011. 
CTMUY is an NSF-funded, integrated research and professional development project, 
focused on improving classroom-level opportunities to learn mathematics provided to 
students at high schools in underserved urban neighborhoods (for more details about the 
professional development project, see Rubel, in press and Rubel & Chu, accepted for 
publication).  

Data Sources  
Data for this analysis includes school-level data, teacher-level data, and classroom-level 

data, described in more detail below. 
School data. Ethnographic school visits were conducted at Harwood and Carver in 2008-

2009 and 2009-2010 as part of the schools’ participation in CTMUY. Interviews were 
conducted with assistant principals and principals, as part of the data collection for that larger 
project about each school’s course offerings in mathematics and rationale for those offerings. 
In addition, student standardized testing data was gathered from annual state report card.  

Teacher data. Three focal teachers at Carver and four focal teachers at Harwood 
completed a Likert-scale survey which included items, among others, about the degree to 
which they emphasize a variety of objectives, such as preparing for standardized tests, 
increasing students’ interest in mathematics, or preparing students for further study in 
mathematics.  

Classroom observations. As part of the teachers’ participation in CTMUY, each of three 
focal teachers at Carver and four focal teachers at Harwood were visited for ten classroom 
observations across the 2009-2010 school year. Observations were conducted in four 
clustered rounds across the school year. Each teacher’s set of ten observations was conducted 
in the same class period, with the same group of students. Fieldnotes were taken during the 
classroom observations and were then expanded into detailed narrative descriptions. Two 
teachers each had single observations that were highly atypical, either because of teacher 
illness or student attendance, and those two observations were dropped from the data set.  

Each lesson’s main mathematical task was identified and then classified in terms of its 
cognitive demand, using categories from Henningsen & Stein (1997). Cognitive demand can 
be low-level, if the task presented to students relies strictly on memorization or if it is a 
strictly procedural task, that does not offer connections to concepts, understanding or 
meaning. Tasks that have a high level of cognitive demand might be complex and non-
algorithmic (“doing mathematics) or procedural in nature, however, the task’s procedures 
connect explicitly to concepts, understanding or meaning.  

A second quantitative measure of each observed lesson pertains to the various 
participation modalities offered to students. I utilized a set of categories adapted from Weiss, 
Pasley, Smith, Banilower & Heck (2003): listening; investigating or problem solving; 
discussing; reading, writing, or reflecting; using technology; or practicing skills. Each lesson 
was subdivided according to the various participation modalities offered to students, and 
those modailities were quantified in terms of relative minutes of instruction.  
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Results 
Results are presented in terms of two themes. First, I explore the notion of high-stakes 

testing as a mechanism that promotes high standards for teachers and students, using the 
examples offered by Carver and Harwood. Next, I analyze project data to investigate if and 
how teachers at Carver and Harwood “teach to the test” in the context of high-stakes 
standardized testing.  

High Standards and/or Gatekeeper? 
In New York, to graduate from high school, students must pass a state standardized 

exam in mathematics that corresponds with state courses in Algebra, Geometry, or Algebra 
2/Trigonometry. However, because of the actual, or perceived, nature of mathematics as a 
strictly cumulative discipline, in practice, the state’s entry-level algebra exam plays the dual 
role of functioning as the ‘high standard for all students’ and as the gatekeeper of high school 
graduation. Table 1 contains the percentage passing rates on the state’s entry-level algebra 
exam, for the classes of 2009 and 2010 at Carver and Harwood at the end of their four years 
of high school. As shown, at Harwood, in both the classes of 2008 and 2009, only about half 
of its students passed the entry-level algebra exam by the end of high school. As a result, 
Harwood did not meet the Adequate Yearly Progress (AYP) thresholds determined by the No 
Child Left Behind Act in either year. After two years of not meeting AYP, Harwood was then 
labeled a “school in need of improvement (SINI)” and was subject to a state quality review of 
their mathematics program. In 2010, their results improved significantly and exceeded the 
AYP threshold, with 72% of the graduating class passing the state’s entry-level algebra exam.  

Carver High School, on the other hand, had relatively stable frequency of passing the 
algebra exam: 65% of students in the class of 2008, 72% of students in the class of 2009, and 
66% of students in the class of 2010 passed the algebra exam by the end of high school. 
Carver’s results exceeded the AYP threshold in 2008 and 2009. Although a higher percentage 
of students in the class of 2010 passed a mathematics exam than the class of 2008, in 2010, 
because of the changing nature of the AYP thresholds, Carver did not make AYP in 
mathematics (all data is from New York State Education Department, 2008, 2009, 2010). 

 
 Class of 2008 Class of 2009 Class of 2010 
Carver 65% (98) 72% (93) 66% (92) 
Harwood 48% (105) 52% (102) 72% (97) 

Table 1. Percentage of students passing entry-level algebra exam 

As we see in Table 1, the percentage of seniors at Carver who passed the state algebra 
exam remained roughly constant, with a slight increase in 2009 and a corresponding decrease 
in 2010. Harwood, on the other hand, showed dramatic improvement in 2010. One 
interpretation of these results is that, after two years of low performance on the mathematics 
exams, the sanctions imposed on Harwood pushed the school and teachers to focus their 
efforts on preparation for the algebra examination. In fact, at Harwood, in 2009-2010, the 
school structured their staffing resources so that the eleventh and twelfth graders who had not 
yet passed the algebra exam had mathematics class two periods each day. This evidence 
suggests that the mechanism of the state standardized test, and the sanctions that come with 
poor performance, pushed Harwood to focus its resources on its struggling students, by 
offering them double the amount of instructional minutes in mathematics.   

A second interpretation of this data focuses on the mathematics opportunities that result 
from an institutional emphasis on a minimal requirement. In other words, the accountability 
system does not rate schools in terms of the learning opportunities they provide to all 
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students. Instead, the accountability system sanctions schools whose students do not meet a 
minimum requirement, in this case, passing an entry-level algebra exam. So at Harwood, in 
the 2008-2009 and 2009-2010 school years, students who did not pass the algebra exam at the 
end of their ninth grade year were placed in remedial “repeater classes” to retake the algebra 
course. Many students continued to cycle through the remedial classes all the way through 
their four years of high school. For instance, in the fall semester of 2009-2010, nearly 67% of 
all Harwood general education students were taking or re-taking the New York State entry-
level Integrated Algebra course. So by the end of their four years of high school, while 72% 
of Harwood’s students from the class of 2010 passed the state’s algebra exam, many of these 
students (and of course, the 28% of the class who did not pass the algebra exam) were not 
given the opportunity to study geometry or any other mathematics as part of their high school 
education. 

The case of Carver High School strengthens the interpretation of high stakes standardized 
testing functioning as gatekeeper. At Carver, during the 2008-2009 and 2009-2010 school 
years, students progressed through a sequence of Algebra, Geometry, Algebra 
2/Trigonometry, irrespective of whether they passed the entry-level algebra exam. Those 
students who did not pass the exam were assigned to before school, after school, or Saturday 
sessions to continue to practice for that exam. However, once Carver did not make AYP in 
mathematics in 2010, Carver changed their course sequencing policy for their students in 
2010-2011. While all students progressed from 9th grade algebra to 10th grade geometry, any 
eleventh or twelfth grade student who had not passed the entry-level algebra exam was 
removed from the mathematics course progression and tracked into a designated remedial 
“test-prep” mathematics class.  

The analysis in this paper has, thus far, focused on school-level processes of course 
sequencing in the context of high-stakes standardized testing. In the next section, the analysis 
zooms in to the classroom level to examine the issue of if and how teachers at Carver and 
Harwood “teach to the test.”  

“Teaching to the Test” 
One way to examine the potential relationship between high stakes standardized testing 

and teachers’ pedagogical practices is to survey teachers. At the start of the CTMUY project, 
for example, all seven focal teachers at Carver and Harwood reported that they place 
moderate or heavy emphasis on preparing students for standardized tests. On the same 
survey, only three of the seven focal teachers indicated that they place moderate or heavy 
emphasis on preparing students for further studies in mathematics. Similarly, only three of 
the seven focal teachers indicated that they place moderate or heavy emphasis on increasing 
students’ interest in mathematics. Even though this is an extremely small sample of teachers, 
these results suggest that these teachers take the accountability system of high-stakes 
standardized tests seriously, mirroring findings of Barksdale-Ladd & Thomas (2000). I 
expand upon these findings to illuminate how a teacher’s emphasis on preparing students for 
standardized tests might be expressed in mathematics instruction. I build upon the definition 
of curriculum as presented by Au(2007) as including a) subject matter content knowledge; in 
this case, the mathematics content that is included in a curriculum, 2) structure or form of 
curricular knowledge; how mathematics is structured and presented within a curriculum, and 
3) pedagogy; how that mathematical knowledge is communicated.  

Mathematics content of curriculum. The high stakes standardized tests and the 
mathematics learning standards are both created and endorsed by the state and the school 
district, and they are therefore, assumedly, in direct correspondence. In the case of New 
York, high schools and their teachers are accountable to aligning the mathematical content of 
their 9th grade curriculum to the state’s algebra standards. Proponents of high-stakes testing 
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argue that this standardizes the opportunities offered to students. So even in low-income 
neighborhoods like Bushwick and Brownsville, students are studying the same set of 
algebraic concepts and skills as everywhere else in the state. Seen in this way, “teaching to 
the test” pushes teachers to maintain high mathematics standards for their students by using 
the state’s mathematics standards to guide the mathematical content of their curriculum.  

Form of curriculum. In schools like Harwood and Carver, where students enter high 
school with a history of poor test scores, teachers are under enormous pressure for their 
students to achieve good results on high-stakes tests. Another interpretation of “teaching to 
the test,” especially in contexts like these, is, therefore, that teachers will pattern the actual 
mathematical tasks they pose to students in the classroom, or the structure or form of 
mathematical knowledge, to precisely reflect the tasks that are offered on the standardized 
exams. By their very nature, standardized test tasks are limited to the types of questions that 
can be expressed in multiple-choice or short-answer form, have a single correct answer, and 
perhaps most importantly, can be completed in a very short time. These tasks typically 
require low-level forms of knowledge in that they tend to either require recalling a term or a 
executing a well-defined procedure (Williams, 2010).   

I analyze this issue of “teaching to the test” first by examining the cognitive demand level 
of the mathematical tasks in the 68 observed classes at Carver and Harwood. Table 2 contains 
the distribution of cognitive demand level of these mathematical tasks in the 29 observed 
lessons at Carver and the 39 observed lessons at Harwood.  

 

 Low-Level  High-Level  

 Memorization Procedures 
without 

connections 

Other  Procedures  
with  

connections 

Doing  

mathematics 

Carver  10 10  8  

Harwood  1 27 2 9 1 

Total 11 37 2 17 1 

Table 2. Task Cognitive Demand 

As shown in Table 2, 50 of the 68 tasks were rated as low-level tasks, indicating that they 
were either memorization tasks (11), focused on procedures without connection to concepts, 
meaning or understanding (37), or were otherwise low-level (2). Only 18 of the 70 tasks were 
rated as high-level tasks, indicating primarily that they were tasks that focused on procedures 
with connection to concepts, meaning or understanding (17). In addition, 17 of these 18 high-
level tasks were limited to only two of the seven focal teachers. In other words, the students 
in the classes of four focal teachers were offered only low-level tasks, in the 40 observed 
lessons of those teachers. These results strengthen the claim that teachers “teach to the test” 
by offering students low-level mathematical tasks, which correspond to the types of tasks 
found on standardized tests.  

Pedagogy of curriculum. Another means of analysis as to if and how teachers are 
“teaching to the test” is to consider the forms of participation opportunities they make 
available to students in their mathematics classes. Table 3 contains the relative frequency of 
each participation modality offered to students in the 29 observed mathematics classes at 
Carver and the 39 observed mathematics classes at Harwood.  
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Teacher-centered modes of participation, such as listening to the teacher, practicing skills 
and “housekeeping” (taking attendance, collecting homework, distributing textbooks) 
dominated the observed lessons at both Carver and Harwood, as shown in Table 3. In fact, in 
the observed classes of four of the seven focal teachers, these teacher-centered modes of 
participation occupied more than 80% of the instructional time (not shown in Table 3). 
Notably, teachers organized classes, on average, for students to participate by “practicing 
skills” 37% of the mathematics time at Carver and 32% of the time at Harwood. At both 
schools, the “practicing” consisted of teachers distributing worksheets with tasks modeled 
specifically on previous state test items. Teachers created these worksheets using a free, 
Internet-based application, which consists of a search engine that generates such worksheets 
in printable form. Student-centered modes of participation, like whole-class discussion, 
listening to other students, problem solving or investigating, using technology, or writing 
were offered much more infrequently in the observed lessons, on average: only 26% of the 
time at Carver and 42% of the mathematics time at Harwood.  
 

Forms of Participation Carver  
29 classes 
60 min each 

Harwood  
39 classes 
48 min each 

Teacher-centered    
Listening to teacher 29% 22% 
Practicing 37% 33% 
“Housekeeping” 8% 3% 
Total 74% 58% 
Student-centered    
Discussing 10.% 12% 
Listening to students 2% 3% 
Investigating 9% 22% 
Writing  4% 4% 
Using technology 1% 1% 
Total 26% 42% 

Table 3. Frequency of Participation Modalities 

There is a relationship between the cognitive demand of a lesson’s task and the 
participation modalities offered to students to complete that task. Low-level tasks, which 
typically require memorization of facts or execution of steps of a well-defined procedure, 
lend themselves to listening and practicing. The teachers in this study who exclusively 
offered low-level tasks to their students also nearly exclusively offered the teacher-centered 
forms of participation of listening to the teacher and practicing. In contrast, tasks with higher-
level cognitive demands, in which students are challenged to detect patterns or make and 
communicate connections across mathematical representations, afford more varied 
opportunities for students. The teachers in this study who offered high-level tasks to their 
students also offered student-centered participation modalities like investigating or 
discussing. 

Discussion 
In this paper, I have presented dual themes related to mathematics education in a context 

of high-stakes standardized testing. In some ways, the current accountability system in New 
York forces high schools to maintain high standards for all students. While in the past, high 
school students could earn “local diplomas” without passing any state mathematics exams, 
current state mandates require that students pass a state mathematics exam in order to 
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graduate from high school. In the context of schools in low-income neighborhoods, this 
mandate has had an impact in that schools are now required to place their 9th grade students 
in algebra courses, as opposed to primarily placing students in remedial level courses in “pre-
algebra” or “consumer mathematics.” 

Although most of the students at Carver and Harwood pass their schools’ 9th grade 
mathematics courses, most of the 9th grade students do not pass the corresponding state exam. 
This presents the schools with a dilemma: should the students retake a course that they have 
already taken and passed, should the students proceed through the high school mathematics 
curriculum, or should the school restructure its entry-level course to stretch over multiple 
years? The accountability system does not reward schools for having students take more or 
more challenging mathematics courses, and instead, sanctions schools for having students not 
meet the minimum requirement. Therefore, I argue that the accountability system encourages 
schools to follow the first option, i.e. cycle students through remedial courses, with a test-
preparation emphasis, until they pass the test. The effect that this has had at Carver and 
Harwood is that this entry-level mathematics examination is positioned as a “finish-line” 
towards graduation, instead of a starting point for continued success. Students need 
knowledge in geometry and algebra 2/trigonometry to succeed in college placement tests or 
in college courses, so this inversion of a minimum requirement to function as an end goal 
ultimately does students a great disservice.  

Others have claimed that “the weight of the high stakes testing environment falls heaviest 
on the shoulders of low income students and students of color” (Au, 2009, p.3). More 
specifically, Jones, Jones & Hargrove (2003, p.115) posit that low income students “are hit 
doubly hard (by high-stakes standardized testing) – not only do they tend to have lower 
scores on high stakes tests that may block them from subsequent opportunities, but the 
instruction that they receive might actually be worse than the instruction that they received 
before the testing policy was implemented.” This claim is substantiated, perhaps, by this data 
and analysis.  

While it remains hypothetical, of course, as to what the mathematics instruction at Carver 
and Harwood might resemble without high-stakes standardized testing, the observed structure 
and pedagogy of the curriculum at both Carver and Harwood are in alignment with 
standardized testing in several ways. Focal teachers most often presented students with tasks 
of low-level cognitive demand whose form corresponds to the low-level form of the state 
exams, typically involving recalling a vocabulary term or short, well-defined procedure. In 
addition, these low-level tasks were presented in a classroom pedagogical environment that 
privileges teacher-centered forms of participation. Students were typically expected to 
participate in mathematics, throughout the school year, by listening (to the teacher) and 
practicing, using worksheets created from a bank of test items readily available to teachers on 
the Internet. Opportunities for students to investigate patterns, to solve non-routine problems, 
to use technology to discover relationships, or to write or reflect about a mathematical 
concept or process were far more limited in the observed classes.  

This preliminary analysis suggests that the context of high-stakes standardized testing is 
complex and merits analysis with an equity lens. A common perspective is that high-stakes 
standardized testing promotes equity by setting and enforcing high standards in mathematics. 
This analysis has demonstrated that we also need to consider the ways in which high-stakes 
standardized testing “exacerbates inequities” (Diamond & Spillane, 2004). This study has 
demonstrated the particular ways that high-stakes standardized testing also functions as a 
gatekeeper in urban high schools. In addition, this study provides description and nuance to 
how teachers “teach to the test” by providing students with low-level mathematical tasks 
using teacher-centered forms of participation.  
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Notes  
 This material is based upon work supported by the National Science Foundation under 
Grant Nos. 0742614 and 0119732. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author and do not necessarily 
reflect the views of the National Science Foundation.  
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Using an innovative recruitment tool, the social network site Facebook, survey data were 
gathered from samples of the Australian general public and from around the world. Views on the 
gendering of mathematics, science, and ICT were gathered. In this paper we report the findings 
from six of the 15 questions on the survey, and only from respondents in predominantly English-
speaking countries. The findings reveal that the majority was not gender-stereotyped about 
mathematics and related careers. However, if a gendered view was held, it was overwhelming to 
endorse the male stereotype. Male respondents’ views were more strongly gendered than were 
females’. 

Prologue 
The new focus on nature seems to be encouraging parents to indulge in sex differences even 
more avidly.... From girls’ preschool ballet lessons and makeovers to boys’ peewee football... the 
more we parents hear about hardwiring and biological programming, the less we bother 
tempering our pink and blue fantasies. (Freeman-Greene, 2009, p.11) 

Providing a Context 
Publication of student achievement data from large scale testings ensures that gender 

differences in mathematics learning continue to attract sustained attention from both the research 
and broader communities. Results from the Organisation for Economic Co-operation and 
Development’s [OECD] Programme for International Student Assessment [PISA], for example, 
receive considerable media attention on their release. Such media reports on performance may 
include comments on gender differences. Often, however, simplified summaries of complex data 
are presented (Forgasz & Leder, 2011). This is not altogether surprising, given reporters’ time 
and space constraints. That such media accounts often shape and sway public opinion, including 
views on gender issues, is well documented (e.g., Barnett, 2007; Jacobs & Eccles, 1985). 

Possible Explanations for Gender Differences in Mathematics Achievements 
Multiple explanations have been put forward for the persisting patterns of gender difference 

in mathematics achievement. After a detailed review of relevant literature, Halpern et al. (2007) 
concluded that the reasons for the overlap and differences in the performance of males and 
females were multifaceted, could not be explained by a single factor, and that “[e]arly 
experience, biological constraints, educational policy, and cultural context” (p. 41) could all play 
a part. Geist and King (2008) referred to pervasive societal beliefs about gender linked 
capabilities and their impact: 

Many assumptions are made about differing abilities of girls and boys when it comes to 
mathematics. While on the 2005 NAEP girls lag only about 3 points behind boys, this is only a 
recent phenomenon. In the 1970’s, girls actually outperformed boys in all but the 12th grade 
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test.... assumptions about differing levels of ability pervade not just the classroom, but home. (pp. 
43-44) 

In their detailed model of achievement motivation, and implicitly of academic success, 
Wigfield and Eccles (2000) highlighted the influence on students’ learning and behaviours not 
only of learner-related variables but also of the overall context in which learning occurs, that is 
the attitudes, actual and perceived, of critical “others” in the students’ home, those at school, and 
societal expectations more generally.  

Societal Expectations - Public Views about Mathematics: Gauging Public Opinion  
Attempts to measure directly the general public’s views about mathematics, science, or ICT, 

or the teaching of these subjects, or their impact on careers, are rare. With respect to 
mathematics, for example, more than two decades have passed since a genuine attempt was made 
by the Victorian (Australia) state government to gauge parents’ attitudes towards their daughters’ 
education and career (McAnalley, 1991). This exercise was linked to the state-wide media 
campaign, Maths Multiplies Your Choices, a program introduced to encourage parents to think 
more broadly about the likely influence of mathematics on their daughters’ careers. Since that 
time, in Australia there has been no similar concerted, large scale, and appropriately funded, 
attempt to measure the general public’s views about school mathematics, its link with 
technology, and possible career options.  

A decade ago in the UK, Sam and Ernest (1998, p. 7) noted that “there are relatively few 
systematic studies conducted on the subject of myths and images of mathematics. We need an 
answer to the question: What are the general public’s images and opinions of mathematics?”  
Lucas and Fugitt (2007) similarly argued that the public’s views on mathematics and 
mathematics education were rarely sought. Yet, they found that Mid-West USA residents 
responding to a 10-item survey were generally interested in, and often well informed about, the 
way mathematics was taught in schools. The respondents generally believed that a good 
mathematics education offered young people a better and successful future; schools failed to 
offer effective mathematics education because too much emphasis was placed on technology and 
not enough on the basics; teachers often exerted too much pressure and criticism to the detriment 
of their students’ attitudes to mathematics; and teachers should make learning mathematics more 
enjoyable. Issues such as these were also explored in the study reported in this paper. The 
general public’s views about aspects of mathematics were explored. Also examined was whether 
or not the views expressed were gender stereotyped. 

The Study 
In the present study, data from respondents in countries in which English is the dominant 

language – Australia, Canada, Ireland, New Zealand, UK, and USA – were analysed. While data 
were also gathered from participants living in many other countries around the world, in this 
paper we focus predominantly on countries where English is the most commonly spoken 
language for the following reasons: 

! In broad terms, cultural differences are small among citizens across these countries 
! Almost without exception, the mathematics achievements of males in these countries 

are found to be superior to females’ 
All six countries participated in PISA 2009. The gender differences in the mean scores for 

these countries are shown in Figure 1 – the data were drawn from Thomson, De Bortoli, 
Nicholas, Hillman, and Buckley (2010).  
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Figure 1. PISA 2009 results by country and gender difference in mean scores 
From Figure 1 it can be inferred that there is much overlap in the performance of males and 

females. However, it is also apparent that males outperformed females in each country. As noted 
by Thomson et al. (2010), the differences in the mean scores were statistically significant for 
Australia, Canada, UK, and USA.  

For many countries participating in the Trends in Mathematics and Science Study [TIMSS] 
in 2007, females’ mean scores in mathematics were higher than males’. However, there were 
several countries, including all participating English-speaking countries, for which the reverse 
was true. Gender differences in favour of males were noted as follows at the Grade 4 and Grade 
8 levels respectively: Australia (6 points, 16 points*), New Zealand (1 point, did not participate), 
England (1 point, 5 points*), Scotland (did not participate, 3 points) and USA (6 points*, 3 
points) – see Thomson, Wernert, Underwood, and Nicholas (2008, pp. 59, 61). [NB. * indicates 
statistically significant gender differences.] 

In this study, it was of particular interest to determine if members of the general public in 
English speaking countries held views that might support the hypothesis that performance 
differences are consistent with the perceptions of society at large with respect to the gendering of 
mathematics learning outcomes. 

The data presented in this paper are a subset of a larger study which involved gathering data 
from 12 different heavy foot-traffic sites throughout Victoria (see Leder & Forgasz, 2010 for 
details) as well as from an ‘advertisement’ to recruit participants placed on the social network 
site, Facebook (http://www.facebook.com). Facebook was selected as the recruitment site to 
reach a more diverse international group of participants. The overall aim of the study is 
expressed concisely in an excerpt, provided below, of the “explanatory statement” made 
available to Victorian participants and required for obtaining ethics approval for the study.  

We have stopped you in the street to invite you to be a participant in our research study. ...We 
are conducting this research, which has been funded by [our] University, to determine the views 
of the general public about girls and boys and the learning of mathematics. We believe that it is 
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as important to know the views of the public as well as knowing what government and 
educational authorities believe. 

A modified version of this statement was used in the online survey that was directly linked to 
the Facebook advertisement. That is, Facebook users who clicked on the advertisement were 
directed to the online survey.  

The Instrument 
To maximize cooperation and completion rates, the surveys used (in the street and on 

Facebook) were limited to the same 15 core items. These focused on personal background data; 
the learning of mathematics at school; perceived changes in the delivery of school mathematics; 
beliefs about boys and girls and mathematics, and their perceived facilities with calculators and 
computers; and careers. In this paper we focus on six questions related to the importance of 
mathematics and the gendering of mathematics. The six items analysed and discussed are: 

! Should students study mathematics when it is no longer compulsory?   
Yes/No/Don’t know/Depends 

! Who is better at mathematics, girls or boys? 
Girls/Boys/Don’t know/Depends 

! Do you think studying mathematics is important for getting a job?  
Yes/No/Don’t know/Depends 

! Is it more important for girls or boys to study mathematics? 
Girls/Boys/Don’t know/Depends 

! Who are better at using calculators, girls or boys? 
Girls/Boys/Don’t know/Depends 

! Who are better at using computers, girls or boys? 
Girls/Boys/Don’t know/Depends 

Respondents had the option to explain their responses to each question. However, only 
quantitative data analysed are presented and discussed here.  [Space constraints precluded the 
reporting of findings from the open-ended responses and from quantitative analyses by 
respondent gender.] 

Participant Recruitment, Online Survey, and the Social Networking Site, Facebook 
The social network site, Facebook (http://www.facebook.com), was the avenue adopted to 

recruit the participants from whom data are reported in this paper. With the rapid advancement of 
internet technology, online surveys have become a viable method for data-collection in research 
(e.g., Sue & Ritter, 2007). Social network sites (SNS) such as Facebook are rapidly gaining 
worldwide popularity. “As of March, 2010, Facebook is the second ranked site on the Internet 
traffic metrics on alexa.com, accounting for almost 5 percent of all global page views” (Hull, 
Lipford, & Latulipe, 2010, p.1).  

Except for research in which SNS users’ profiles and SNS usage are investigated, studies 
using Social Network sites [SNS] as a method of recruiting participants are relatively rare. In one 
such study, Howell, Rodzon, Kurai & Sanchez (2010) administered a well-being and happiness 
survey to participants recruited from a college and from the SNS, Craigslist. Incentives were 
offered for both data gathering methods. Although the completion rate was lower for those 
recruited via SNS (68.5%) than from the college (93.6%), the quality of data obtained by the two 
methods was comparable. 
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The Sample 
There were 314 participants who completed surveys via Facebook. The advertisement was 

designed through Facebook’s commercial advertising campaign system. The system allows 
particular groups to be targeted. Countries targets were changed on a weekly basis, but at all 
times, only those over 18 were sought. The advertisement appeared randomly on individual 
Facebook users’ homepages in the targeted countries. Clicking on the advertisement was 
voluntary, as was completion of the survey. Thus the respondents were considered to represent a 
random sample of Facebook users over the age of 18 from a range of countries. The respondents 
represented 57 different countries around the world. Six were countries in which English is the 
dominant language: Australia, Canada, Ireland, New Zealand, the United Kingdom, and the 
United States. The composition, by gender (M=male, F=female), of the sample from each of 
these six countries is summarised in Table 1. 
 

Country N (M, F)  Country N 
Australia 74 (39M, 35F)  New Zealand 1 (OM, 1F) 
Canada 12 (5M, 7F)  United Kingdom 22 (12M, 10F) 
Ireland 2 (0M, 2F)  United States 6 (4M, 2F) 

Table 1. Sample size, by gender, for English speaking countries 

Results and Discussion 
Since the Australian sample was the largest, we decided to explore if the combined data from 

the five other countries differed significantly from the Australian data. Chi-square tests were 
conducted on the responses to the six questions and no statistically significant differences were 
found in the response distributions for any item. This allowed us to confidently combine the data 
from all six countries. The valid percentage frequency distributions of the 117 participants’ 
responses to the six questions are illustrated in Figure 2. 

The data in Figure 2 indicate that the respondents generally agreed that: 
! Students should study mathematics when it is no longer compulsory (65%), and that 
! Studying mathematics is important for getting a job (72.2%) 

For each of the questions to which respondents were asked to indicate whether boys or girls 
were more proficient, the majority of respondents claimed that there was no difference. This 
indicates that the majority is not gender-stereotyped in their views on boys’ and girls’ 
mathematics capabilities or their proficiency with calculators and computers, and that 
mathematics is considered equally important for both boys and girls. 

However, a less positive pattern is also discernible in the data. If respondents held a gendered 
view on mathematics capability, calculator or computer proficiency, or for whom mathematics 
was considered more important, they were much more likely to indicate that it was boys rather 
than girls: 

! Better at mathematics: 31.1% said boys, 10% said girls 
! Studying mathematics is more important: 2.2% said boys, none said girls 
! Better at using calculators: 14% said boys, 1.2% said girls 
! Better at using computers: 34.5% said boys, 3.4% said girls 

The data re-inforce earlier reported research findings. That is, there appears to be little 
difference between the perceptions of the general public and those of stakeholders (e.g., students, 
teachers, or parents) that boys are more talented mathematically and more able with technology 
than are girls (see Leder, 1992 with respect to views on mathematical talent; see Forgasz, 2009 
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with respect to teachers’ views on technology for mathematics learning). There is also no 
evidence of a change in these perceptions over time – disappointing and pessimistic outcomes. 

 
  

 
 

 
 

 
 

 
 

  
Figure 2. Valid percentage responses to the six survey items 

Final Words 
As noted above, gender differences favouring males in mathematics achievement are evident 

in large scale international testing results (PISA and TIMSS) in English speaking countries. In 
Australia, results from the National Assessment Program for Literacy and Numeracy [NAPLAN] 
reveal a similar pattern (see Leder & Forgasz, 2010). What is particularly alarming about the 
NAPLAN results is that the gender differences in favour of males are found at each grade level 
being tested: grades 3, 5, 7, and 9. This appears to be a retrograde trend since when Fennema was 
writing about gender differences in the 1970s (e.g., Fennema, 1974), there was little evidence of 
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gender differences emerging prior to about grade 7. Gender differences in mathematics learning 
continue to attract media attention (see Forgasz & Leder, 2011). If the stories are not carefully 
crafted, the public will come away with views and beliefs shaped by the basic (simplistic) words 
they read (and interpret) and the images they see.  

The data presented in this paper suggest that the general public from the targeted English 
speaking countries who engage with Facebook hold views that resonate with contemporary 
mathematics achievement data that they will have had thrust at them by way of the popular 
media and press. When the age profile of the respondent group is considered – no respondent 
was older than 60 and 85% was under 40 – the data become of even greater concern. It would 
appear that there is a critical mass of the younger generation who are reverting back to holding 
gender-stereotyped beliefs in favour of males with respect to mathematics and with the 
technology associated with mathematics learning. Their parent generation, mainly “Baby 
Boomers”, lived through the era of feminist agitation that happened in the 1970s and 1980s. 
Their views were tapped by way of the street-based survey; many over 60s are in the streets 
during weekday hours. It was clear from the data that “[C]ompared to older respondents, the 
younger cohort was more likely to consider boys to be better than girls at mathematics and also 
better with calculators” (Leder & Forgasz, 2011). 

The data presented here, although limited to a relatively small group of Facebook users in 
English speaking countries, lend weight to the contention that we may have come full circle and 
are now confronted with a young adult group holding traditionally gender-stereotyped beliefs 
about the domains of mathematics and the technology associated with mathematics.  
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AN ELEMENTARY 3D VISUALIZATION LEARNING TRAJECTORY 
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This research team has developed a learning trajectory on 3D visualization for elementary 
children. This paper focuses on the interchange among the three Spatial Operational Capacity 
framework representations, namely, 3D models, 2D conventional diagrams, and semiotic 
abstract representations, and the critical role of a dynamic computer interface that simulates the 
representations. The trajectory is described through an actions-on-objects (Connell, 2001) lens 
and the project’s strong problem-solving approaches that are critical to its successful enactment. 
 

The National Research Council’s report, Learning to Think Spatially (2006), identifies spatial 
thinking as a significant gap in the K-12 curriculum, which, they claim, is presumed throughout 
but is formally and systematically taught nowhere. They believe that spatial thinking is the start 
of successful thinking and problem solving, an integral part of mathematical and scientific 
literacy. The importance of visual processing has been documented by researchers who have 
examined students’ performance in higher-level mathematics. For example, Tall et al (2001) 
found that to be successful in abstract axiomatic mathematics, students should be proficient in 
both symbolic and visual cognition; Dreyfus (1991) calls for integration across algebraic, visual 
and verbal abilities; and, Presmeg (1992) believes that imagistic processing is an essential 
component in one’s development of abstraction and generalization. 

The National Council of Teachers of Mathematics’ Principles and Standards for School 
Mathematics (NCTM, 2000) recommends that in their early years of schooling, students should 
develop visualization skills through hands-on experiences with a variety of geometric objects and 
use technology to dynamically transform simulations of two- and three-dimensional objects. 
Later, they should analyze and draw perspective views, count component parts, and describe 
attributes that cannot be seen but can be inferred. Students need to learn to physically and 
mentally transform objects in systematic ways as they develop spatial knowledge.  

Using design-research (Cobb, et al, 2003) principles this research team has developed a 
learning trajectory on spatial development for elementary children guided by the Spatial 
Operational Capacity (SOC) framework developed by van Niekerk (1997) based on 
Yakimanskaya’s (1991) work. This paper focuses on the interchange among SOC representations 
and the critical role of a dynamic computer interface, through an actions-on-objects (Connell, 
2001) lens. The project’s strong problem-solving approaches make this possible. It is conducted 
in a dual-language urban elementary school within one of the largest public school districts in the 
mid-southwestern United States. More than 70% of its students are designated “At Risk” and at 
least 50% of its students are English Language Learners.  

Theoretical Frameworks 
The spatial operation capacity (SOC) framework (van Niekerk, 1997; Sack & van Niekerk, 

2009) that guides this study exposes children to activities that require them to act on a variety of 
physical and mental objects and transformations, as prescribed by the National Council of 
Teachers of Mathematics (NCTM, 2000) to develop the skills necessary for solving spatial 
problems. The framework (see Figure 1) uses: full-scale figures, that, in this study, are created 
from loose cubes or Soma figures, made from 27 unit cubes glued together in different 3- or 4-

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

215



cube arrangements (see Figure 2); conventional 2D pictures that resemble the 3D figures; 
semiotic representations such as front, top and side views or numeric top-view codings that do 
not obviously resemble the 3D figures; and, verbal descriptions that may be accompanied by 
gestures using appropriate mathematical language (Sack & Vazquez, 2008).  

 
Figure 1. Multiple representations within 3-D visualization 

 
Figure 2. The Soma set can be made by gluing unit cubes together. 

The project utilizes a dynamic computer interface, Geocadabra (Lecluse, 2005). Through its 
Construction Box module, complex, multi-cube structures can be viewed as 2-D conventional 
representations or as top, side and front views or numeric top-view grid codings (see Figure 3). 
These options can be (de)selected according to instructional goals. The Control-line-of-view 
option allows the user to move the figure dynamically using the mouse or by clicking on the 
arrows at the ends of the space’s triaxial system. 

 
Figure 3. The Geocadabra Construction Box 

Connell’s (2001) action on objects metaphor guides the discussion section of this paper. 
Through carefully designed activities, children act strategically upon manipulative objects as 
they solve problems. Computer images that replicate the attributes of the physical objects then 
behave as real objects in the mind of the learner. The Geocadabra Construction Box interface 
integrates the SOC representations in the form of a dynamic image that can be moved to provide 
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the same views as if moving about a 3-D object; a 2-D image when the figure remains static; and 
if selected, simultaneous semiotic top-view numeric, or face view representations. Follow up 
problems or questions require the child to relate to the newly instantiated and defined object of 
thought, which becomes the basis upon which later mathematical thinking occurs. This model 
extends as the child develops his or her own problems based upon the objects that were recently 
defined. “This ability, to pose one’s own problems and to then successfully solve these problems, 
provides further opportunity for growth in mathematical thinking and problem solving” (p. 161). 

Methodology and Context 
Since the project’s inception in 2007-2008, a university-based researcher and two teacher-

researchers have formed the research team working with a group of children weekly for one hour 
in teacher-researcher, Vazquez’ 3rd-grade classroom within the school’s existing after-school 
program. English and Spanish parent/guardian and student consent-to-participate forms are sent 
home to parents of all 3rd grade children. All respondents are accepted into the program. The 
research team uses socially mediated instructional approaches to support a problem-solving 
environment that fosters students’ creativity according to readiness and interest. 

Design research methodology (Cobb, et al, 2003) guides this study’s instructional decisions 
based on learning trajectories developed from an instrumentalist standpoint (Baroody, et al, 
2004). This conceptual and problem-solving approach aims for “mastery of basic skills, 
conceptual learning, and mathematical thinking” using any “relatively efficient and effective 
procedure as opposed to a predetermined or standard one” (p. 228). Each lesson is part of a 
design experiment followed by a retrospective analysis in which the research team determines 
the actual outcomes and then plans the next lesson. This may be an iteration of the last lesson to 
improve the outcomes, a rejection of the last lesson if it failed to produce adequate progress 
toward the desired outcomes, or a change in direction if unexpected, but interesting, outcomes 
arose that are worthy of more attention. Data corpus consists of formal and informal interviews, 
video-recordings and transcriptions, field notes, student products and lesson notes.  

Results and Discussion 
During the learning trajectory’s introductory lessons, children interact with loose cubes and 

the Soma figures initially solving problems with the 3D models and with 2D task cards (e.g., see 
Figure 4a). These illustrate a variety of assemblies of two Soma combinations in different 
orientations requiring figure identification and classification. Thus, learners become familiar 
with the SOC framework’s 3D and 2D conventional graphic representations before they are 
introduced to the Geocadabra virtual interface. By the middle of the second month, children 
begin to digitally reproduce figures printed in a customized manual (e.g., see Figure 4b). These 
activities provide the children opportunities to coordinate numeric top-view codings with 2D 
pictures. In addition, there is a strong focus on enumeration of cubes in the manual’s figures. 
Whereas beginning learners generally are able to determine the numbers of cubes in relatively 
simple figures (such as the left-most task card in Figure 4a), very few can do so with figures 
containing hidden cubes (as in Figure 4b). Battista (1999) has shown that many learners count 
visible faces when asked to find the number of unit cubes in 3D rectangular arrays, often double 
counting edge cubes and triple counting vertex cubes. This research team’s pre-program 
interviews, September, 2010, using both 3D rectangular arrays and multi-level structures as in 
Figure 4b, yielded similar results. Some children recognize that cubes are hidden but lack the 
mental structuring capacity to determine precisely how many in a logical fashion.
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Figure 4a. Task cards increasing in level of difficulty  Figure 4b. Task 1f 

By working systematically with increasingly more complex figures and by enabling the 
Geocadabra Construction Box’s Control-line-of-view function has developed children’s capacity 
to solve such enumeration problems. The learner’s ability to see the digital figure in the same 
way as a 3D model enhances the digital experience. This way, since a stack of cubes grows by 
repetitive clicks on the corresponding position on the number grid, the children know that the 
computer figures can have no holes beneath any visible cubes. The ability to rotate the digital 
image allows them to see the sides, back and bottom views of the figure. Thus, movement from 
conventional 2D graphical images to virtual 3D models via the numeric top-view semiotic 
representation is realized.  

After developing reasonable proficiency with the Geocadabra Construction Box through the 
manual’s tasks, more open-ended problems are posed to further develop children’s mental 
imaging capacity with respect to volume concepts. They are expected to correlate the numbers in 
the Geocadabra Construction Box grid with the height of each stack of cubes in each 2D picture; 
and, to verify that the number of cubes in the 2D picture is the same as the sum of the numbers in 
the Geocadabra Construction Box grid. Children create their own structures consisting of 24 unit 
cubes, using the Geocadabra Construction Box. Initially, they may choose to build the figure 
using 24 loose cubes, but most discard the loose cubes almost immediately. Conventional 2D 
images of these digital figures are converted by the researcher into new task cards essentially 
created by the children. The creator then draws the numeric top-view code and a peer decodes 
and re-creates it on the computer, first hiding the visual figure, and then showing it to check that 
it matches the task card figure. In addition, the peer checker ensures that the figure consists of 
exactly 24 cubes by adding the numbers in the top-view numeric grid on the computer. Examples 
of student-created task cards are shown in Figure 5. Enumeration of these figures using 
symmetry and slicing is encouraged and shared during whole class discussions when verbal 
language is developed. The research team has noted that children seem to have more difficulty 
enumerating 3D rectangular arrays than the types of figures shown in Figure 5. However, with 
practice, they are able to represent 3D rectangular arrays using numeric top-view coding grids. 
This is a critical step in their understanding of formula-based volume concepts (see Sack, & 
Vazquez, 2010). 

 

 
Figure 5. Students’ 24-cube figures 
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Numeric top-view coding Peer solutions Original task figure 
A 

 

Soma #1 and Soma #5 
OR 
Soma #1 and Soma #6 

 

B 

 

Soma #6 and Soma #7 

 

C 

 

Soma #5 and Soma #6 
OR 
Soma #2 and Soma #3 

 

D 

 

Soma #4 and Soma #1 
OR 
Soma #2 and Soma #1 
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Numeric top-view coding Peer solutions Original task figure 

E 

 
 
 

E1 
Soma #7 and Soma #4 

 

E2 
Soma #3 and Soma #5 
OR 
Soma #6 and Soma #2 

F 

 
 

Table 1. Examples of student-made semiotic puzzles and peer solutions 

The discussion now moves to Connell’s (2001) notion of deepening mathematical 
understanding through self-developed problems that encompass all of the visual SOC 
representations. Using a complete set of seven Soma figures, children first select two to create a 
3D assembly structure that can be reproduced on the Geocadabra Construction Box, unlike the 
rightmost structure in Figure 4a. The following week, without the aid of the computer interface, 
each child draws the numeric top-view coding from the picture of his or her own structure that 
the research team has formatted into a task card. Regardless of whether the children remember 
which Soma figures were used they know that the figures were assembled from two different 
ones since these pictures are their own creations. These semiotic codings become puzzles for 
their peers to decode using only the set of seven Soma figures. Examples are shown in Table 1. 
Some students drew 4-by-4 grids (as in C and D), which is a throwback to the grid provided by 
the Geocadabra Construction Box interface. Others (as in A, B and E) understood that rows or 
columns containing zeros were not needed. The child who created grid B enumerated the cubes 
in her structure, reflecting on work that had been done some weeks prior to this activity, to verify 
the volume of her structure. 

To begin some puzzle solvers use enumeration strategies. A sum of 7 must mean that Soma 
#1, the only figure with 3 cubes, is used in combination with a 4-cube Soma figure, as in puzzles 
A and D. Some children are able to directly state which two Soma figures can be used to solve 
the puzzle. Others mentally visualize at least one Soma figure in the coding. The children 
quickly realize that selecting two random Soma figures is a time-consuming and ineffective 
strategy. A more effective scaffolding strategy discovered by some children is to use Soma #1 
together with a loose cube. For example, in Puzzle B, the left side appears to be Soma #7 (see 
Figure 6). Then, the child places Soma #1 on the right side and holds a loose cube to its left as 
shown in Figure 6, to create Soma #6. Some children use one or two loose cubes in their interim 
solutions before they arrive at the assembly solution. 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

220



 
Figure 6. Using Soma #1 to solve puzzle B 

While the 2D task cards were created with a 3D stimulus via the Geocadabra Construction 
Box computer interface, the reverse process, using the semiotic puzzle as a stimulus and the 3D 
model as a product, is performed without the aid of the computer interface. The capacity to 
visualize develops further when children are able to find more than one Soma figure combination 
to solve these particular problems as shown in puzzles A, C-E (Table 1). Two different children 
solved puzzle E using three different Soma figure combinations (solutions E1 and E2).  

These examples are evidence of problem situations created and solved by the children based 
on the objects that were previously used as stimuli. Puzzle F is particularly interesting because 
this child created a unique extension of the original task using his two solutions, shown as E2. 
He realized that the two Soma figures were the same as the ones he had used for his own 
assembly shown in F to the far right. He stated that with “two movements” of the Soma figures 
he needed for puzzle E he could re-create his own assembly.  

Following the puzzle posing activity, the teacher researcher displayed for the first time the 
formal SOC framework as shown in Figure 1 in order to elicit metacognitive interpretation of 
this graphic organizer from the children. She asked if anyone recognized any of the project’s 
activities within the figure. One child pointed out that the puzzle creation activity (Table 1) 
started with the 3D model to create 2D pictures on the computer. Another recognized that the 
numeric top-view codings that they created from their 2D pictures belonged to the semiotic or 
abstract representation. She also stated that the class had moved from the semiotic to the 3D 
figures directly without the computer. When asked about the verbal description, one child said 
that they do it all the time when they think and share solutions together. The participating 
children have made sense of the SOC framework through the myriad of hands-on experiences 
over the past 5-6 months without prompting from more-knowledgeable adults. This is strong 
evidence that through carefully designed activities, using strategically chosen manipulatives, 
deep mathematical knowledge (Connell, 2001) and generalized abstraction (Presmeg, 1992) can 
develop in unprecedented ways. Furthermore, this occurrence demonstrates how the instructional 
team attends to and accommodates child-centered contributions to the development of the 
learning trajectory. 

Conclusions 
The capacity to move among the three SOC visual representations, namely, 3D models, 2D 

conventional pictures and semiotic representations, was developed through the Geocadabra 
computer interface. However, through extended problems created by the learners themselves, it 
is remarkable that they are able to move from the semiotic representation to the 3D model 
independently of the computer (Connell, M., personal communication, September, 2010). The 
research team considers this to be evidence of the children’s growing ability to visualize as they 
move between semiotic and 3D assembly models. Through their different configurations the 
Soma figures provide a high degree of complexity to the instructional tasks and force the 
children to engage in mental transformations in ways that would not be possible if they used 
loose cubes.  
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The actions on objects (Connell, 2001) occur concretely with the 3D models, virtually 
through the Geocadabra interface and ultimately as mental imaging through the powerful 
problem-solving approaches developed by the research team. These evolve through the reflective 
practices enacted by the team immediately following each lesson (Sack, & Vazquez, 2011). The 
team has a very strong child-centered philosophy, coupled with the belief that children learn best 
when engaged in problems of their own creation (see also Connell, 2001). 
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The developing pedagogical content knowledge of elementary-certified teachers was supported 
in a course on concepts in algebra and calculus.  Engineering thermodynamics was used as a 
domain through which participants could model rate-of-change for a variety of functions.  The 
design of the professional development course is examined, and teachers’ struggles and triumphs 
with course content described. Results show teachers’ backgrounds in elementary algebra 
proved a barrier to their ability to treat relationships among variables as mathematical objects. 
Once these barriers were overcome rate-of-change served as a powerful support to model 
complex thermal applications that utilized rate-of-change as an index of efficiency. 

This paper describes a design-research project that focuses on developing the mathematical 
knowledge for teaching of elementary-certified teachers who are interested in becoming STEM 
specialists in the middle grades.  The case described is of the design of a graduate-level course 
focusing on the mathematics of change and how it relates to engineering thermodynamics.  We 
first describe our approach to teacher knowledge, and why pedagogical content knowledge is the 
key lever for practical change in the classroom.  Then we address design-theory and why it is an 
appropriate paradigm for studying teachers’ mathematical learning at the same time as we 
attempt to improve it.  Next, we describe the course design, dwelling on modeling as the 
pedagogical approach to the course, the mathematical content and its sequencing, and 
engineering thermodynamics as an ideal context for the development of essential concepts of 
calculus.  Lastly, we describe the ways in which teachers interacted with this content, and 
particularly how they grappled with their “fuzzy” prior knowledge of algebra, attempting to 
repair holes in their understanding, even while continuing to move forward on more advanced 
content. 

 
Pedagogical Content Knowledge 

 Teachers’ knowledge has long been promoted as a lynchpin variable, connecting standards 
and curricular innovation with classroom practice and student learning.  Ostensibly, teachers’ 
understanding of content, pedagogy, students, and curriculum enables them to better design 
instructional environments, tailor activities to the needs of their students, and to assess and 
improve their practice for the purpose of increasing student learning outcomes. 

Lee Shulman and colleagues are generally credited with the initial promotion of teacher 
knowledge in this lynchpin role (e.g., Grossman et al., 1989; Shulman, 1986; Wilson, Shulman, 
& Richert, 1987). They generated a number of descriptions of teacher knowledge as an attempt 
to show teachers’ knowledge as multi-faceted, drawing from a number of experiences in their 
early lives as well as university coursework, teacher education, and practice (Shulman, 1986, p. 
9). In general, research has focused on three categories of teacher knowledge: (a) subject matter 
knowledge, (b) pedagogical content knowledge, and (c) curricular knowledge. Content 
knowledge refers to both subject matter knowledge and its organization or lack thereof, while 
pedagogical content knowledge involves content knowledge as it is directly related to the 
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teaching of specific subject matter. Finally, curricular knowledge attunes to knowledge of the 
programs of study and instructional materials and technology used by teachers and students. 

There is some evidence from certification studies as well as large-scale surveys and quasi-
experimental studies that indicates that teachers’ knowledge has a significant impact on student 
gains in achievement over time (Darling-Hammond, 2000; Hill, Rowan, & Ball, 2005). This 
information is mixed, showing mathematical content knowledge as only moderately correlated 
with student achievement gains.  Pedagogical Content Knowledge also shows a significant 
moderate correlation with student gains separable from mathematical content knowledge. This 
separability supports Shulman and colleagues’ initial assumptions that several funds of 
knowledge interact to impact instruction and subsequent learning. 

More recently Hill, Ball, & Schilling (2008) argue that the knowledge required for teaching 
mathematics, Mathematical Knowledge for Teaching (MKT), is multifaceted, incorporating 
aspects of: 1) common content knowledge held by all mathematically sophisticated occupations, 
2) content knowledge specialized to the teaching of mathematics, 3) knowledge of student 
learning of mathematical content, 4) knowledge of the practices of teaching mathematics, and 5) 
knowledge of mathematics-related curriculum.  Each of these knowledge components has some 
effect on teachers’ ability to develop, select, and deliver tasks at an appropriate developmental 
level at the appropriate time in mathematical sequence and student learning.  Moreover, each of 
these components supports and updates the other components as teachers’ learning of 
mathematics and mathematics-relevant pedagogy grows.  It is likely that, unless each of these 
aspects of MKT is addressed, and their interdependence emphasized, that professional 
development for mathematics improvement will result in only modest student gains over only a 
short term (Ball & Bass, 2000). 

Of these facets of MKT, pedagogical content knowledge is of primary concern because it lies 
at the confluence of the content and the curriculum; it is the knowledge base of mathematics 
education: PCK comprises the knowledge and skills required for one to transform the other 
facets of MKT (like mathematical content, knowledge of curriculum, knowledge of students) 
into a set of experiences, activities, and environments that optimize the likelihood of students 
learning.  In our program, we attempted to improve elementary teachers’ content knowledge 
related to fundamental concepts in algebra and calculus utilizing Modeling Instruction as the 
pedagogical theory for both teacher learning and for student learning. It was by integrating 
Modeling Instruction with teachers’ own content learning experiences that we hoped to impact 
their ability to understand and apply this content in an appropriate pedagogical manner with their 
own classrooms—hypothetically connecting new content with new knowledge of curriculum and 
pedagogy—addressing three of the five aspects of MKT through PCK. 

 

Modeling as an Integrative Construct 
One of the key goals for professional development is for teachers to develop new models of 

content, teaching, and curriculum.  Models are conceptual structures—mental (and oftimes 
physical or inscriptional) representations of real things, real phenomena.  Modeling as it refers to 
content knowledge, involves building, testing and applying conceptual models of natural 
phenomena and is a practice that is central to learning and doing science and mathematics 
(Hestenes, 1992). In fact, it can be accurately stated that Mathematics, Science, and Engineering 
are all fundamentally modeling enterprises. Educationally, modeling has been touted as a 
unifying theme across science and mathematics education as recommended by both the National 
Science Education Standards (1996) and the Common Core Standards for Mathematics (2010). 
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In sum, we think with models, we think through models, and we think about models. Our 
approach to instruction attempted to embody this fact and exploit this facet of human cognition. 

Modeling Instruction as an instructional theory aims to correct many weaknesses of the 
traditional lecture/demonstration method in science and mathematics education, including the 
fragmentation of knowledge, student passivity, and the persistence of naive beliefs about the 
physical world. Modeling Instruction objectives begin with the goal to engage students in 
understanding the physical world by constructing and using scientific models to describe, to 
explain, to predict and to control physical phenomena. To do this, students must gain proficiency 
with basic conceptual tools for modeling real objects and processes, especially mathematical, 
graphical and diagrammatic representations.  This is the underlying curricular model we employ 
at all levels in the reported program: Build and use models of important scientific content, 
utilizing important mathematical and representational tools.   

It has been shown in a variety of studies of student learning that context is critical for coming 
to understand mathematical concepts and skills.  Moreover, the capacity to create models of 
scientific phenomena, and to test those models is dependent on the development of mathematical 
ways of thinking about the phenomena, including the ability to make sense of patterns in data.  
For this reason, modeling truly is an integrative construct, connecting mathematics and scientific 
content through meaningful activity.   

Unfortunately, teachers are not exposed to mathematical modeling of scientific phenomena 
during their undergraduate careers to any great extent.  This is especially true for middle school 
teachers.  With typically one course in mathematics at the College level, and only one non-
calculus-based science course, middle school teachers trained as generalist elementary education 
majors are just not equipped to handle the traditional mathematics curriculum let alone Algebra I 
and Geometry which are currently common offerings in US schools. The same can be said for 
middle school science, where teachers may teach life science, physical science and earth and 
space science in any given year. It is therefore imperative that the curriculum and instruction that 
takes place for teachers closely resembles that which they are expected to provide for their 
students—yet not be so prescriptive as to squelch personal style, initiative and inspiration. We 
structured our classroom tasks and pedagogy based on the past 20 years of research on modeling 
(citations from Lesh, Hestenes here). 

 
Design Research and Curriculum Development 
 Lamberg & Middleton (2009) describe how design theory can provide a rigorous paradigm 
for disciplined inquiry in learning and instruction, and a pragmatic framework for defensible 
change in curriculum and instruction.  Briefly, this theory outlines seven “phases” through which 
a research program progresses, beginning with more grounded methods, where the researcher 
attempts to understand a little-researched area of inquiry, consolidating evidence about learning 
and practice, until a local theory of change can be generated that seems to explain and predict 
positive movement along a trajectory of change.  This theory, then is used to design curricular 
tasks, which serve as operational definitions of that theory.  Through iterative testing and 
revision, tasks are made more effective, while at the same time, the theory is refined, refuted, and 
made more useful and explanatory (Author, 2008). Design research, thus has two primary 
outcomes:  A theory of change that describes how learning progresses across a defined set of 
topics, and a mechanism for at least partly driving that change—curriculum materials or other 
supports that have been refined over time to be optimally (or at least reasonably) effective. 
 Design theory is a kind of modeling theory that focuses on the development of systematic 
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knowledge about teaching and learning. As such, it is consistent with the theory of learning and 
instruction we employed in the reported research: Modeling Instruction.  The study reported here 
is situated in Phases 2 and 3:  Development of the Artifact (in this case, the course curriculum 
and activities), and Feasibility Study (initial trialing and iterative improvement of the course).  
 

Description of Modeling Course 
Participants 
 The focus teachers in this study were 11 elementary certified teachers.  Two additional 
students (masters’ degree graduate students in mathematics education with no prior teacher 
training) participated as well.  Of the teachers, two had a calculus course early in their collegiate 
experiences, but the rest had no mathematics beyond basic College Mathematics and 
Mathematics Methods for Elementary Teachers. All were female, and all were teaching 
elementary grades subjects. On a pre-Calculus assessment, none scored higher than 50%, and the 
majority scored around the 20% or chance level. 
 
Course Foci 

The modeling course for teachers focused on developing key mathematical content related to 
modeling scientific and engineering concepts. We emphasized discussing the most common 
linear, polynomial, exponential, and inverse square functions and their representations, focusing 
especially on the analysis of change in the context of applied problems. We focused on these 
concepts in the context of modeling situations of thermodynamics, which is the study of energy 
transformation.  We chose thermodynamics because we hypothesized that most of the teachers 
had everyday experience with heat and temperature, energy, pressure and work, whether 
formally in a classroom or informally solving problems in their daily lives.  We emphasized 
convection and conductance as key ideas in thermodynamics because they were the most 
accessible concepts in thermodynamics while also providing convenient ways to talk deeply 
about rate of change: Newton’s law of cooling for convection and thermal exchange in 
conductance both are examples of exponential functions, while radiation follows the classic 
inverse-square law. Our goal was to formalize the in-service teachers’ knowledge while 
exploring applications of thermodynamics in engineering contexts, environmental science, and 
biology such as passive solar heating and cooling, properties of insulators, and heat capacity of 
materials.  

Thermodynamics is an area of science where several key variables, such as entropy, cannot 
be measured directly; one can only measure them by examining related variables and doing the 
algebra.  So in this case the mathematics is absolutely critical for understanding the science—
thermodynamics cannot be understood at even a basic level without it. In general, we wanted to 
emphasize the deep connections between mathematics and science, and help the teachers 
understand how one can better understand science by knowing the mathematics. 
 
Structure of Course 
 We attempted to structure the course so there was a common substrate of activities in each 
homework assignment and weekly meeting of the course. Each week, teachers were engaged in 
the following tasks: 

Book club write-ups. Students read 1 to 3 chapters from Calculus Made Easy (Thompson, 
1914) each week. To get them to reflect deeply on the content of that book, students were 
required to write a review of the chapter(s). In their review, we asked them to focus on what they 
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know, what they wanted to know, and what they had learned:  1) What you know: A description 
of the reading, as if you were describing the concepts to an 8th grade algebra student; 2) What 
you want to know: Analysis and insights you have about the study of change, and especially 
those things you feel confused about; and 3) What you have learned:  Students listed those ideas 
and ways of thinking they had that they didn’t have prior to reading the text. 

Weekly Modeling Problem. In each class session, we presented the students with a new 
thermodynamics problem to model. Following class, they were required to do a formal lab write-
up of their model.  Their analyses addressed the following points: 1) A description of the 
relationship they attempted to model; 2) A description of the methods they used to model the 
relationship; 3) The problem solution presented in a general form (e.g., a rule, procedure, or 
symbolization, which was often a combination of formulae, graphs, and data tables); and 4) An 
analysis of why the problem solution was correct. 

Problems emphasized convection rates, conductance/insulative properties of materials and 
radiation rates, which mathematics paralleled the content being developed in the Book Review 
assignments, but required application in messy, data-rich situations. 

 
Weekly Mathematics Problems. Finally, based on the modeling problem and ideas 

introduced in the book club, we presented students with a set of algebra and calculus problems 
to attempt. Their response to each problem included all their work, including mistakes, and their 
answer, if they arrived at one; and a reflective statement describing the core mathematical idea 
the problem was addressing. 

For the reported course, we organized the mathematics content into 7 modules: 
! Proportional Reasoning: Direct, Inverse, and Joint Variation 
! Average Rate of Change:  +y/+x, Analyzing Functions Qualitatively, Rational 

Expresssions 
! Families of Functions: Linear, Polynomial, Exponential/Logarithmic/Power 
! Comparing Functions within Families: Coefficients, Exponents, Bases, Local 

Maxima/Minima, Inflection Points 
! Derivatives as local average rate of change 
! Derivatives at a point; Derivatives as Functions; Limits 
! Accumulations; Area under a curve 
 

Structure of Daily Sessions 
Each 4.5-hour class session was broken into three 1.5 hour activities.  One activity focused 

on discussion of the week’s readings and calculus concepts.  The second activity focused on 
discussing any difficulties participants had with understanding and completing homework 
activities. The third activity engaged teachers in modeling thermodynamics problems and 
applying the readings and problems. 

Each modeling session was organized into modeling cycles which move students through all 
phases of model development, evaluation and application in concrete situations –– attempting to 
promote an integrated understanding of modeling processes and acquisition of coordinated 
modeling skills (Lesh & Yoon, 2007).  Typically, the instructor set the stage for classroom 
activities, ordinarily with a demonstration and class discussion to establish common 
understanding of a question to be asked of nature. Then, in small groups, students collaborated 
in planning and conducting experiments, collecting and analyzing data to answer or clarify the 
question. Teachers were required to present and justify their conclusions in oral and/or written 
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form, including a formulation of their own models for the phenomena in question and an 
evaluation of the set of models by comparison with data. Technical terms and concepts were 
introduced by the instructor only as they were needed to sharpen models, facilitate modeling 
activities and improve the quality of discourse. 

Additionally, in 3 of the 8 sessions, we carved out an hour to examine the Common Core 
Standards for Science and Mathematics for middle grades, and map the key content they were 
learning in the course to the key mathematical ideas emphasized by the Standards. Teachers 
developed maps of the content to show how it fit together in an integrated fashion in science and 
mathematics classes. 
 
Analysis of Sessions and Course Revision 

The research team consisted of three mathematics educators with engineering backgrounds, 
and an expert in teacher professional development.  The research/teaching team met each week 
following the daily sessions.  In the manner of Cobb et al (1997), we reviewed student work, 
planned subsequent sessions, and revised tasks and assignments based on the discourse 
engendered in the daily sessions.  In particular, we reviewed the difficulties students had in their 
conceptual understanding of the algebra, and their facility with its manipulative skills, and 
developed new tasks to help them bridge this knowledge, while still forging ahead thinking about 
derivatives and rate-of-change as a function. 

Sources of data included their homework, book club reflections, modeling problems, and 
their posts to the class discussion group, which we developed to be able to handle ad-hoc 
questions just-in-time. 

 
Results and Discussion 

We set out to focus on a mathematically rich course focused on thermodynamics, and 
eventually we were able to talk about difficult mathematical concepts to explain and model 
scientific phenomena. However, the level of resistance and frustration the teachers exhibited in 
the first three weeks of the course was palpable. Their homework reflections and midterm course 
evaluations suggested that they were not thinking about modeling phenomena. Instead, they were 
highly frustrated or confused about concepts like algebraic field properties and representation of 
proportional quantities using fractions. We used their class discussions, homework assignments, 
and book reviews to gain insight into what sense they were making of modeling thermodynamics 
ideas using mathematics. 

We found that the majority of students’ ways of thinking about the mathematics was not at a 
level where discussions about rate of change could be interesting or productive to the teachers. 
Given our data and feedback from the teachers, we concluded there were two major obstacles to 
their understanding. First, a chief barriers we faced was the confluence of factors associated with 
teachers’ knowledge and the nature of disciplinary knowledge and how these factors could be 
made compatible and even complementary. Second, there was a real disconnect between the 
community of mathematics and that of the sciences regarding what was being modeled and what 
its conceptual substrate is.  With motion and mechanics the connections between the particular 
functions being modeled is pretty close, but when there is no macroscopic motion to serve as a 
grounding metaphor (i.e., in thermodynamics), students must rely on more abstract 
understanding of variable quantity, function, rate, direct and indirect proportions, and the 
combinations of these ideas as they are manifest in the typical power functions and exponential 
functions we see in science applications not derived from motion examples.   
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Teachers’ Content Knowledge 

Most of our students had not taken a course in mathematics, or had significant content 
professional development since their 1st or second year of college. Most teachers, because they 
are elementary certified, took required courses up through college mathematics, and therefore 
have little experience with algebraic methods, functions and functional reasoning, the 
mathematics of change, or geometry and its relationship to algebraic relations. As a result, 
teachers’ knowledge of and understanding of variable, function, field properties and their tie to 
the manipulative skills of algebra, basic concepts of exponents, factors and multiples, and 
proportional reasoning was generally poor and uneven across the cohort. 

Nearly all teachers possessed poor mathematical self-efficacy. Reasons for this include poor 
prior performance resulting from poor prior learning experiences, knowledge that their 
coursework was not sufficient for a developed conceptual understanding and procedural skill, 
and the fact that much time has passed in which they have not continued mathematical learning 
nor practiced mathematical skills previously learned. As a result, teachers’ confidence in their 
conjectures and insight appeared to be tentative; their ability to judge their learning and 
understanding (meta-cognition) was under-developed. 

Given the breath and depth of these problems, we took steps taken to deal with these issues. 
We immediately stepped back from a pre-Calculus level of instruction to a high school algebra II 
level, to an 8th-grade pre Algebra/Algebra I level with some high school ideas integrated. We 
focused on scaling back on the quantity of homework to allow for students to focus on ideas 
discussed in class, and developed homework activities based on class discussion the day 
following, so that teachers can do relevant work the following week. We used 3 of 8 to focus on 
the most basic ideas of quantities, algebraic manipulative skills and their conceptual basis in the 
field properties, recognizing the form of familiar functions (linear, polynomial, exponential). 
Once we helped the teachers construct a foundation of basic mathematical concepts, we used rate 
of change as an integrative concept to help students look at different regions within the same 
curve, and the same regions across different curves, to examine the behavior of these functions, 
and their similarities and differences. 
 
Teachers’ Disciplinary Knowledge 

In science, the mathematical models developed can be derived from specific circumstances to 
assist the student to be able to describe their behavior. In mathematics, mathematical models 
must have a generality across applicable situations—this implies that, if an idea is developed 
within a context, there must be other application contexts where the student is expected to 
transfer their knowledge, and some opportunity to make the mathematical abstractions explicit 
and their transferable structure overt. 

Much of school science is done without any mathematics or any significant mathematics. 
This make students not lazy per se, but the teachers were disinclined to mathematize or to frame 
scientific questions or conjectures in mathematical terms other than just basic correspondence 
relations. Functional reasoning was not a habit of mind. Overreliance on solving for a number 
detracted the teachers from the examination and description of relationships. We believed that 
the general practice of making science “conceptual” typically eliminates the critical 
mathematical structure of the concepts in favor of more qualitative or general depictions of 
phenomena 

The use of software for scientific data analysis was tremendously helpful to both the teachers 
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and us. However, the learning curve for students to learn the software takes a lot of time and 
focus away from the mathematical content itself. Graphing Calculators are excellent tools, but a 
distinct effort had to be made to develop some proficiency with these tools. Excel was also 
excellent, but the teachers had little to no experience with spreadsheets or other data systems, so 
this also took much of their time and energy. The important aspects of these programs are to 
allow students to see the form of relationships, to create an explicit algebraic relationship by 
manipulating cell formulae (excel) and lists (graphing calculators). As the semester progressed, 
the teachers moved from viewing technology as a barrier to understanding to using it as a tool for 
thinking about modeling complex thermodynamic situations. 
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 An interview with a sixth-grade student illustrates how her number sense and understanding of 
variability relate to her ability and proclivity to apply a frequentist (statistical) approach to 
probability tasks. A general suggestion for teaching about mathematics of uncertainty through 
the gradual strengthening of estimation, as per the historical development, is also discussed.  

Theoretical Background 
The Three Views of Probability 

There are three main views of probability: classical, frequentist, and subjective 
(Shaughnessy, 1992). Using the classical view, one first partitions a sample space into equally 
likely outcomes. The probability of an event is simply the ratio of the number of outcomes in 
which that event occurs to the total number of outcomes. In contrast, the frequentist approach to 
probability involves repeated trials. A person using a frequentist approach might conduct a 
simulation with a large number of trials, examine the data, and assert probabilities based on the 
observations. If the number of trials is large enough, and if the results are repeated in other 
contexts, then the probability is judged reliable. A classical approach examines a priori how 
different arrangements of events could happen in order to develop a uniform distribution model. 
The frequentist approach is mathematically more related to statistics, since it involves the search 
for a distribution and subsequent application of the distribution's properties. Thus the 
mathematics behind the frequentist approach tend more to the notions of limits and convergence, 
as relating to the law of large numbers (Shaughnessy, 1992). The third view of probability, the 
subjective view, also takes into account an individual's own knowledge, opinions, or feelings. 
Reliance upon subjective reasoning may signal misconception, lack of confidence, or uncertainty 
of the relevant mathematics, but its use is not necessarily irrational. A child might always 
express a favorite color to be most probable on a spinner, while some situations, such as the 
probability of a Mars landing in the next century, can only be estimated by a subjective approach 
(Jones, Langrall, & Mooney, 2007).  

Development of the Mathematization of Statistics and Probability 
The oldest examples of statistical thought each related to the concept of estimation (Bakker, 

2003).  Examples from Indian, Egyptian, and Greek stories contained phenomena similar to the 
mode, mean, and a measure called the midrange. For data that has a symmetric distribution, the 
mean, median, mode, and midrange all coincide, so there is no need for their distinction. Bakker 
(2003) found, using classroom teaching experiments, that modern-day students also benefited 
from beginning with estimation while learning measures of center. It was not until students were 
faced with the task of computing an average with non-symmetric data that they felt the need to 
develop and formalize other methods of average. 

The parallel between the historical development of average and the historical development of 
probability is the original expectation of symmetry (or uniformity), the subsequent adjustment to 
increase the accuracy (or number of successes), and the reliance upon estimation. The oldest 
manuscript describing observed frequencies and non-uniform distribution was written in the 13th 
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century, while the first known and solved probability problem (by Galileo) took place about 
1620 (Batanero, Henry & Parzyz, 2005). The conflict between theoretical calculation and 
observed frequencies is what led to the development of more rigorous combinatorics methods 
(Batanero et.al., 2005). A teaching experiment using non-uniform dice by Nilsson (2009) showed 
that students went through a similar process when their previous conception of uniformity was 
challenged by observation. When the amount of variation was too great, the students reexamined 
their assumptions based on empirical data and modified their theoretical model.  

Probability and Statistics Frameworks 
Jones, Langrall, Thornton, and Mogill (1999) developed a framework for the development of 

probabilistic thinking through the middle grades by observing students’ responses to tasks that 
could be solved using classical probability. The framework consists of four levels: subjective, 
transitional, informal quantitative, and numerical. At level one, a student might only be able to 
recognize certain or impossible events; at level two, most or least likely events. By level three, 
students’ quantitative reasoning and measures are used to describe likelihood. By level four, 
students are able to assign numerical probabilities (Jones et al., 1999). As a student's level 
increases, the tendency to use subjective judgments decreases. Polaki (2002) validated this 
framework in a study in South Africa, and found that the highest levels of probability thinking 
require part-whole reasoning, while students without even part-part reasoning generally operate 
in the subjective level. 

 Watson, Collis, and Moritz (1997) describe a complementary framework of probabilistic 
thought. There is a hierarchy of four levels: prestructural, unistructural, multistructural, and 
relational, and students must pass through two cycles within the levels to achieve the highest 
realm of probabilistic thinking. The first cycle involves the development of probability as a 
measure, while the second cycle involves the development of that measure. Considering that the 
second cycle requires part-part reasoning for the multistructural level and part-whole for the 
relational level (Watson et al., 1997), this view is compatible with that of Jones et al. (1999). The 
additional levels of the framework more clearly describe the phenomena of students' 
demonstrating a relational level of reasoning for a single task, while a subjective level for a 
multiple-part task.  

Both of these frameworks support the view that probabilistic instruction should begin with 
part-part comparisons instead of part-whole relationships. However, the classical view of 
probability necessitates part-whole comparisons in order to declare a uniform distribution (at 
least implicitly). Since comparing frequencies of outcomes is essentially performing a statistical 
task, perhaps further insight into the requisite knowledge for learning probability can be obtained 
by studying existing frameworks for the learning of statistics. According to Shaughnessy, “there 
are important connections between probability and statistics, particularly when repeated trials of 
probability experiments generate a distribution of possible outcomes'' (2007, p. 981).  

A relevant connection is the interaction between students' understanding of expectation and 
variability. Watson, Callingham, and Kelly (2007) developed a framework for the understanding 
of expectation and variation with six levels ranging from idiosyncratic, with little or no 
appreciation of either variation or expectation, to comparative distributional, in which links 
between variation and expectation are established in comparative settings with proportional 
reasoning. To compute simple probabilities with the frequentist approach, only the fifth level of 
statistical reasoning is needed: understanding of the relationship between variation and 
expectation within a single context. It is at this level that students can articulate an expectation; 
at levels four and below, they are able to articulate only comparative aspects such as more or less 
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likely. Thus the higher levels of this framework are distinguished by the use of part-whole 
reasoning, as was the case with the probability frameworks. In order to use the frequentist 
approach to develop a theoretical distribution, one must determine a permissible amount of 
variance between observed frequencies and a theoretical distribution, i.e., a search for a signal of 
variability (Shaughnessy 2007). This requires the highest level of statistical reasoning, for it 
necessitates the comparison of distributions across two groups: the observed frequency and the 
expected frequency (Watson et al., 2007).  

Purpose 
The purpose of this study was to examine the relationships between students' understanding 

of probability and statistics. The frequentist approach to computing probabilities relies on an 
understanding of what constitutes an acceptable level of variance. On the other hand, students' 
expectations for variance may be influenced by an assumption of uniform probability. Thus we 
sought to ascertain whether the students' level of statistical understanding could help explain 
their level of probabilistic understanding, and consequently further understand the role of the 
teaching of statistics and variability in teaching probability. 

Methods 
An extended clinical interview was conducted with one sixth-grade female from Virginia. 

The interview was divided into two sessions, each lasting approximately thirty minutes, 
involving a total of nine tasks. The first session, consisting of the first seven tasks, was designed 
to gauge the student's level of probabilistic thinking as per the frameworks of Jones et al. (1999) 
and Watson et al. (1997); questions and activities similar to their released items were used to 
assess the student’s probability thinking. In order to ascertain the student’s level of statistical 
thinking, tasks similar to those described by Watson et al. (2007) and Bakker (2003) were used. 
Each task was presented orally by the first author who served as the teacher researcher 
throughout the study. Manipulatives available to the student included physical dice, pencil and 
paper, and virtual spinners. Following are the tasks presented to the student in the first session. 

1. If you were to roll this die (student is presented with a six-sided die), do you think it's 
easier to roll a one or a six? 

2. In mathematics class, there are 13 boys and 16 girls. If a teacher were to write the names 
of the students on slips of paper and draw one out of a hat, would it be more likely that 
the name would be that of a boy, that of a girl, or is it equally likely? 

3. There are two boxes, Box A and Box B. Box A has six red marbles in it. Box B has 60 
red marbles. Box A has four blue marbles, while Box B has 40 blue marbles. If you want 
to pick a blue marble, from which box should you choose? 

4. Create a possible graph depicting the monthly high temperatures in your hometown, 
given that the average yearly high temperature was 69 degrees. 

5. A game is played where two spinners, each 50% black and 50% white, are spun. If they 
are both black, then person A wins; if they are different colors, person B wins. Which 
person would be more likely to win? 

6. Estimate the number of penguins in a photograph in which the penguins are not of 
uniform size. 

7. Ten Twizzlers of different colors are placed in a bag, and the student is asked to guess 
which color is most likely to be drawn out. 

Each session was videotaped, and the authors planned additional tasks after discussing their 
individual interpretations of the video. The second session consisted of an extension of Task 4 
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and a new task that merged two dice throwing tasks, the first by Watson and Kelly (2007) and 
the second by Nilsson (2009). These were designed to explore the role of variance in the 
student's perception of the likelihood of outcomes.  

The focus of the first session was that of a clinical interview: both the questions and the 
sequence of tasks were chosen in advance, and no attempt to teach the student was made. The 
second session was more of a teaching experiment (Steffe, 1991), as the student was encouraged 
to examine her notions of variance and expectation in the following tasks. 

8. Create and critique possible graphs depicting the average yearly temperature. 
9. Predict the results of rolling a six-sided die 60 times. The dice in question were (a) fair, 

(b) had two ones and no sixes, (c) were “loaded” in favor of ones. 

Results 

Probability Tasks Results 
The student response to the first task was that it was equally likely to roll a one or a six: 

"because there are the same number of sides, so I don't think it really matters the number."  
The second task response was "a girl, because there's more girls than boys." This correct 

response using part-part reasoning indicates achievement of the multi-structural level of 
Watson's framework (Watson et al., 1997) and the transitional level of Jones' framework (Jones 
et al., 1999). 

According to Watson et al. (1997), a correct response to the third task is associated with the 
relational level of reasoning. The conversation associated with this task proceeded as follows: 

Student: I would think they would be the same, but, ... maybe Box B just because it has a 
bigger number? 

Interviewer: What makes you think they might be the same?  
Student: Because that has 10 and that has 100, so out of, like, 100 percent would be 60 

percent for both of them, to 40 percent.  
Interviewer: What made you think that maybe Box B would be the one to pick? 
Student: Ummm...maybe because it has the bigger number. I don't know.  
 The student's initial correct response to the task was based on proportional reasoning, which 

is requisite for the higher levels of probabilistic thinking in both Jones' and Watson's 
frameworks. The fact that she thought that Box B having a bigger number might make it the one 
to pick suggested that there might be some confusion over the law of large numbers. It was 
suspected that the student might believe that having “large numbers” is desirable when 
computing probabilities, but that she had not yet conceptualized a justification.  

 The teacher researcher then presented her with the option of simulating the task using 
Probability Explorer (Lee, 2005) because he wanted her to become familiar with the program for 
a future task and also wanted to see her reaction to the result of an experiment. Specifically, he 
wanted to see if the result of the experiment would help her make a decision. The conversation 
continued: 

Interviewer: Which do you think is more likely to come up, red or blue? 
Student: Red. 
Interviewer: Why? 
Student: Because there are more reds than blues. 
Interviewer: [Clicking the button to simulate a grab, which was blue.] Why do you think it 

came up blue instead of red? 
Student: I don't know, I'm not sure. 
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Interviewer: What if I click it again, do you think it will come up blue again, or do you think 
it will come up red? 

Student: I'm gonna guess red. I guess it's a fifty-fifty chance because there's two colors. I 
don't know. 

The inconsistency in the responses here is indicative of the transitional level in Jones' 
framework. The simulation didn't help her decide an answer - in fact, it encouraged her to even 
question the part-whole reasoning with which she earlier seemed comfortable. Here the term 
“fifty-fifty” seemed to mean that it could be either of two outcomes rather than a rejection of the 
part-part reasoning earlier displayed. This language pattern has often been noted by researchers 
(e.g., Jones et al, 1999; Shaugnessy & Ciancetta, 2002). The uncertainty of her response seems to 
indicate a lack of knowledge or confidence in the relationship between her theoretical model and 
empirical trials.  

The student again said that there was a “fifty-fifty” chance that each person would win when 
faced with the fifth task on spinners. This was not surprising, since it involves a compound event 
and hence would require the higher levels of probabilistic thinking (Jones et al., 1999). When 
presented with a simulation in which the spinners came up differently seven times out of ten, the 
student decided that choosing different colors probably had an advantage. This aligns with 
Shaughnessy and Ciancetta’s (2002) results which indicated that playing this game and seeing 
variation could help students reject their equiprobable hypothesis.  

The seventh task was also aimed at understanding the student’s level of probabilistic 
thinking. She estimated that blue would be most likely to be drawn out since there were more 
blues than any other color. A blue was drawn and not replaced, leaving 2 green, 2 blue, and 2 
yellow. She was asked again what color was most likely to be drawn, and she said "blue, green, 
or yellow" because they had the highest number. When the blues were replaced, she said that the 
chance of a blue would increase because the number of blues increased. This is evident of a 
relational understanding (comparing the possibility across two sample spaces).  

Overall, the student's level of probabilistic reasoning appeared to be “informal quantitative” 
in the framework of Jones et al. (1999). She displayed use of part-part reasoning throughout and 
at times exhibited part-whole reasoning such as percentages. She was able to compare sample 
spaces and make relational judgments such as “more or less likely,” while at the same time used 
subjective judgments for compound events. This indicated that she was in the first-cycle 
relational stage or second-cycle idiosyncratic stage in the framework of Watson et. al. (1997).  

Statistics Tasks Results 
When creating a scale for her graph in Task 4, the student made the lowest value 30 degrees 

and the highest 80 degrees “because I think the coldest it would get is around thirty” and “eighty 
is probably about the highest it gets around here.” Bakker (2003) observed similar behavior 
when asking students to explain their understanding of “average,” in which several students gave 
a response indicative of a mid-range concept.  

The student seemed to display an expectation for variation in temperatures, as the 
temperature trends cooler in the winter months and warmer in the summer, but the overall mean 
of the temperatures she displayed was much lower than 69 degrees. It appeared that she was 
focused on the variation and the range but not the mean. Based on these initial findings, it was 
decided to follow up in the next session with other graphs to compare to hers in order to 
determine her level of understanding of variability and expectation via the framework of Watson 
et al (2007). 
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When judging the number of penguins in the sixth task, she originally did not want to guess, 
but said “two million” upon encouragement. I believe that the hesitation toward calculation was 
due to the fact that the penguins were not uniform in size and were in rows of non-uniform 
width. She was offered a ruler, and encouraged to create a way to estimate using proportional 
reasoning. She counted the number of penguins in the bottom row, estimated visually the number 
of rows, and multiplied to get an estimate of 1,200 penguins. This was similar to the method that 
Bakker (2003) found children using to estimate the number of elephants in a picture, although 
the students in his study first found an “average” block. She made no mention of the fact that the 
penguins in the row she chose were larger than the penguins in the other rows, even after that 
error led her to a much smaller estimate than she had originally guessed. Her behavior in this 
task was opposite of her behavior in the temperature-graphing in which she initially focused on 
the mean and subsequently on the variation. In the penguin counting she was initially focused on 
the variation (causing the difficulty in counting) and subsequently ignored the variation when 
performing the calculation. 

In preparation for Task 8, the student was introduced to four graphs of supposed student 
work and asked to critique them as possible graphs for the average high temperature. The first 
graph depicted a uniform temperature of 69 degrees, which she decreed unlikely since “February 
was too warm…and August is too cold.”  The second graph was also unlikely, for although the 
temperatures varied, they did so linearly, which was “too perfect.” However, she did express that 
the first two graphs were possibilities. The third and fourth graphs both had varying 
temperatures, and neither graph increased or decreased linearly. However, by putting a pencil 
across the graph at 69 degrees, the researcher showed her that graph 3 had substantially more 
data below the line than above the line (this would technically be comparing to the median, but 
the data is nearly symmetric and hence the mean and median are close). It was thought that this 
would have led her to believe that it was not a possible graph of the data with mean 69 degrees, 
and she did make the observation that “it was too low.” She drew a similar line using the fourth 
graph, and found about the same number of temperatures above and below the line. But when 
asked whether the third or fourth graphs were more likely, she chose the third because in the 
fourth graph the change in temperatures was closer to linear. She seemed to value the observed 
variance and high probability of “randomness” from month to month more than the presence or 
absence of the desired overall mean.  

When faced with the die rolling tasks, the student was first asked to write down her 
prediction of how many of each number would come up. She said that she expected an equal 
number, 10, of each of the six values on the dice, which is indicative of level 2 on the scale of 
variation used by Watson and Kelly (2007), a “strict probabilistic prediction”(p. 3). When she 
rolled a standard die, six came up 17 times, which she attributed to chance. When asked if she 
would like to revise her prediction, she declined and indicated that she still thought each number 
would come up ten times if she rolled again. 

The results of sixty throws of the second die (biased in favor of one) included a total of 21 
ones and zero sixes. It was expected that the student would think that having no sixes was very 
unusual, and that she might wonder about the fairness of the die. She said that she thought it was 
“weird,” but once again attributed the outcome to “chance” and declined to revise her prediction. 

The roll of the third die (weighted) resulted in 29 ones, this time with two sixes. Once again, 
the student was not surprised by the result, attributing it to chance. It was expected that she 
would immediately question the die, for Nilsson (2009) found that students noticed unexpected 
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frequencies with non-uniform dice and resolved the conflict between theoretical and empirical 
probability by developing an empirical model.  

 The teacher researcher felt that it might not occur to the student that some of the dice might 
be unfair, so she was encouraged to examine the second die more closely. After she noticed that 
there were two ones and zero sixes, she explained that she was no longer surprised about the 
presence of 21 ones. “The ten from the sixes went to the ones and 21 is near 20.” She was then 
asked what might explain the 29 ones in the third trial. She ruled out the possibility that there 
were any numbers missing with the third die, because she had rolled at least one of each number. 
The teacher researcher encouraged her to watch the die as it spun, and she noticed that it was 
“loaded” by the way it landed. When asked to predict the way it was loaded and determine how 
many ones would be expected, she first suggested that we should expect to get 20 ones, just as in 
the second problem, but was unable to articulate a reason for this prediction. She was then asked, 
“If I were to roll this die a million times, how could you predict how many ones would come 
up?” She suggested that we had rolled “almost 50 percent ones,” in the first 60 rolls, so we could 
“roll it another 100 times, and see if it came up about half ones.” When asked why she chose 100 
times instead of more or less than 100, she said “maybe do more, like 300.” She had suggested 
the use of a frequentist approach to compute probability. 

Discussion 
The student's performance on the probability tasks showed initial understanding and 

preference for part-part comparisons and the occasional use of part-whole reasoning when faced 
with classical probability tasks. However, when engaged with actual events, she showed a lack 
of confidence in the application of such comparisons to make predictions by rejecting the results 
of her comparisons and relying instead on subjective judgments. While her performance fell into 
the “informal quantitative” stage (Jones et al. 1999), the reliance on subjective probability in 
simulation showed the value of also considering the student's statistical understanding. Her initial 
demonstration of a “purely probabilistic” approach to variance shows her view of the calculation 
of probability as a deterministic exercise. Without further statistical understanding of variance, 
average, and the law of large numbers, she was inconsistent with both the application of 
probabilities to make predictions beyond a single event and the reconciliation of her prediction 
with a contrary outcome.    

The interactions with this student led us to believe that after the second session, she became 
more likely to consider a frequentist approach to calculating probabilities of events that can be 
simulated. This mirrors the historical development of probability, in which theoretical notions of 
expectation are strengthened or rejected based on the observation of the frequency of outcomes. 
Because the student had been exposed to classical probability, she originally focused on the 
mathematical task of comparing outcomes in a uniform sample space. The performance on the 
tasks showed consistently that her probabilistic reasoning was in transition between focusing on 
part-part relationships and focusing on part-whole relationships. The statistical tasks also showed 
that she had difficulty gauging what was a reasonable level of variation, resulting in her 
subjectivity in and hesitation toward the rejection of a theoretical model based on trial outcomes. 
When tasks involved calculations, she ignored variation, and when tasks did not involve 
calculations, she focused on the variation.  

Conclusions 
Statistics and probability understanding are connected, for the evaluation of probabilistic 

claims with the frequentist approach requires one to both understand and expect variance in 
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situations of uncertainty.  Students who are taught to calculate probabilities using the classical 
approach may have difficulty reconciling empirical evidence that differs from their calculations.  
By exposing children to probabilistic situations in which their intuitions and theories are 
challenged, teachers can encourage them to evaluate their own and then others' claims. Future 
research may explore in more detail the relationship between the transitions that students make 
between levels of probabilistic understanding and understanding of variation and expectation.   
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The main objective of this article is to contribute to the limited research on teachers’ knowledge 
of probability. In order to meet this objective, we presented prospective mathematics teachers 
with a variation of a well known task and asked them to determine which of five possible coin flip 
sequences was least likely to occur. To analyze particular normatively incorrect responses we 
utilized a brand new lens – the composition fallacy – instead of the traditional lenses and models 
associated with heuristic and informal reasoning about probability. In our application of the new 
lens we were able to determine that fallacious reasoning, not just heuristic reasoning, can 
account for normatively incorrect responses to the task. Given the success of the new lens, we 
contend that logical fallacies are a potential avenue for future investigations in comparisons of 
relative likelihood and research in probability in general.  

The general purpose of this article is to contribute to the paucity of research on (prospective) 
teachers’ knowledge of probability (Jones, Langrall & Mooney, 2007; Stohl, 2005). More 
specifically, the purpose of this article is to merge the established thread of investigations into 
comparisons of relative likelihood (e.g., Borovcnik & Bentz, 1991; Cox & Mouw, 1992; Hirsch 
& O’Donnell, 2001; Kahneman & Tversky, 1972; Konold, Pollatsek, Well, & Lohmeier, & 
Lipson, 1993; Rubel, 2006; Shaughnessy, 1977; Tversky & Kahneman, 1974; Watson, Collis, & 
Moritz, 1997) with a developing thread of investigations into prospective teachers’ comparisons 
of relative likelihood (e.g., Chernoff, 2009, 2009a, 2009b). 

In order to achieve the general and specific goals detailed above, prospective teachers, as has 
been the case in past research, were presented with five different sequence of heads and tails – 
derived from flipping a fair coin five times – and were asked to declare which sequence was least 
likely to occur. However, unlike previous research, we utilize a brand new lens to account for 
certain responses; we demonstrate that certain responses fall prey to the fallacy of composition 
(i.e., because parts of a whole have a certain property, it is argued that the whole has that 
property). Further, we contend that informal fallacies, in general, create a new research 
opportunity for those investigating comparisons of relative likelihood. 

A Review of the Literature 
In mathematics education (and psychology) research, comparative likelihood responses are 

categorized, in a broad sense, into two particular categories: correct responses and incorrect 
responses. While correct responses are, for the most part, associated with normative reasoning, 
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different individuals account for incorrect responses differently. In particular, two types of 
reasoning – heuristic (Tversky & Kahneman, 1974, LeCoutre, 1992) and informal (Konold, 
1989) – have dominated the research literature. 

Heuristic reasoning 
Psychologists Daniel Kahneman and Amos Tversky (1972) asked a group of individuals 

whether there would be more families with a birth order sequence (using B for boys and G for 
girls) of BGBBBB or GBGBBG. Further, the same individuals were asked whether there would 
be more families with a birth order sequence of BBBGGG or GBGBBG. Kahneman and Tversky 
argued that individuals who declared one sequence as less likely were reasoning according to the 
representativeness heuristic, where one “evaluates the probability of an uncertain event, or a 
sample, by the degree to which it is: (i) similar in essential properties to its parent population; 
and (ii) reflects the salient features of the process by which it is generated” (p. 431). In other 
words, the BGBBBB sequence of births was seen as less likely than the sequence GBGBBG 
because the ratio of boys to girls (in the parent population) is one to one and the BBBGGG 
sequence of births was seen as less likely than the sequence GBGBBG because BBBGGG did 
not appear random. The representativeness heuristic, in essence, provided a new interpretation of 
normatively incorrect responses to comparisons of relative likelihood. 

Informal reasoning 
Building upon certain task developments introduced by Shaughnessy (1977) (i.e., including 

the equally likely option and providing a response justification), Konold et al. (1993) introduced 
a different version of the relative likelihood task than had been seen in the past. For example, 
Konold et al. asked individuals “which of the following is the most likely result of five flips of a 
fair coin?” and provided them with the following options, “a) HHHTT b) THHTH c) THTTT d) 
HTHTH e) all four sequences are equally likely” (p. 395). Further, the researchers gave students 
a most likely version of the task followed by a least likely version. They found, for the most 
likely version, certain participants answered using the outcome approach – “a model of informal 
reasoning under conditions of uncertainty” (Konold, 1989, p. 59) – and for the least likely 
version subjects answered using the representativeness heuristic. The outcome approach 
represented, as had the representativeness heuristic earlier, a new interpretation of normatively 
incorrect responses to comparisons of relative likelihood.  

Theoretical Framework 
With a few exceptions (e.g., Abrahamson, 2009), there has been a lull in the past number of 

years in the creation and development of fresh perspectives and interpretations of normatively 
incorrect responses to comparisons of relative likelihood. Inspired by the notion that novel 
perspectives and interpretations to normatively incorrect responses to comparisons of relative 
likelihood have, in the past, established new domains of research (e.g., Konold’s most likely 
version leading to the outcome approach), we introduce the fallacy of composition to account for 
certain responses to comparisons of relative likelihood. In doing so, contend that informal 
fallacies, in general, may provide a original research domain; however, given pagination 
limitations associated with the present article, we decided to limit our scope and, further, our 
theoretical framework. As such, our impending analysis of results will consist of one particular 
fallacy: the fallacy of composition.  

Put simply, the fallacy of composition occurs when an individual infers something to be true 
about the whole based upon truths associated with parts of the whole. For example: Bricks (i.e., 
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the parts) are sturdy; buildings (i.e., the whole) are made of bricks; therefore, buildings are 
sturdy (which is not necessarily true). Applying the fallacy of composition framework to existing 
research (for example, and more specifically, Kahneman and Tversky’s (1972) research 
involving the birth of boys and girls where participants deemed the sequence BGBBBB less 
likely than the sequence GBGBBG): the birth of a boy or a girl (i.e., the parts) occurs at a ratio of 
1 to 1; birth order sequences (i.e., the whole) are made of births of boys and girls; therefore, birth 
order sequences should have a 1 to 1 ratio of boys to girls, which is not necessarily true. Beyond 
the application of the fallacy of composition framework to existing research, as presented, we 
will also demonstrate, in the analysis of results, certain participants in our research associated 
certain properties of individual coin flips (e.g., the ratio of heads to tails) to be true for sequences 
derived from individual coin flips – demonstrating our new perspective for normatively incorrect 
responses to relative likelihood comparisons. 

The Task 
As presented in Figure 1 below, the task given to participants was both similar and different 

to the task utilized by Konold et al. (1993), which we will comment on, in turn. 
Which of the following sequences is the least likely to occur from flipping a fair coin five times: 

a) HHTTH 
b) HHHHT 
c) THHHT 
d) HTHTH 
e) THHTH 
f) all five sequences are equally likely to occur 
Justify your response... 

Figure 1. The relative likelihood task 

Fundamentally, and is the case with all subsequent research since Konold et al.’s version of the 
task (e.g., Cox & Mouw, 1992; Chernoff, 2009; Hirsch & O’Donnell, 2001; Rubel, 2006), the 
structure of our task is similar Konold et al.’s. For example, participants are asked to pick out a 
particular sequence as more or less likely or to declare that all sequences are equally likely to 
occur and, subsequently, are asked to justify their response. The minor differences, however, 
between our current version of the task and Konold et al.’s version lie in the number of 
sequences available to choose from and certain sequences have been replaced with others.  

Participants 
Participants in our research were (n =) 147 prospective mathematics teachers enrolled in a 

methods course designed for teaching elementary school mathematics. More specifically, the 147 
participants were comprised of five classes, each containing approximately 30 students, which 
were all taught by the same instructor. Of note, the topic of probability had not been covered in 
the course they were taking part in at the time of the research and, further, it was determined, 
afterwards, that none of the individuals involved in the research had ever answered an alternative 
version of the relative likelihood task. Individuals were given as much time as necessary to 
complete the task. 

Results and Analysis 
As presented in Figure 2 below, the majority of participants’ responses fell into three 

different categories.  
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 Students HHTTH HHHHT THHHT HTHTH THHTH equally likely 
Total (147) 1 38 (26%) 1 15 (10%) 1 91 (62%) 

Figure 2. Breakdown of responses from the 147 participants 

Most participants, that is, 91 of the 147 (or 62%), responded correctly, that each of the five 
sequences were equally likely to occur. (However, not all 91 participants who answered correctly 
provided proper or, for that matter, normatively correct response justifications.) Fifteen (or 10% 
of the) participants responded incorrectly that the sequence HTHTH was least likely to occur and 
38 (or 26% of the) participants declared that HHHHT was least likely to occur. For the analysis 
of results and in order to bolster the claim that the fallacy of composition can be used to account 
for particular responses to comparisons of relative likelihood, certain response justifications from 
the 38 individuals that responded HHHHT as least likely to occur are analyzed in detail. 

The Ratio of Heads to Tails 
As seen in the responses of Dave and Jerry, presented below, they both reference the ratio of 

heads to tails in the sequences they are presented and, further, declare that the sequence B (i.e., 
HHHHT) is least likely to occur because it has a heads to tails ratio of 4 to 1, whereas all other 
sequences have a ratio of 3 to 2.  

Dave: I think B is least likely to occur because the others are all 2 only B is 1. 
Jerry: B, it’s the only one with one T and four Hs, the rest have 3Hs and 2Ts. 

However, neither Dave nor Jerry elaborate beyond “that” one sequence has a different ratio of 
heads to tails, which leaves one to infer as to “why” they would think a 4 to 1 ratio of heads to 
tails is less likely. Based upon previous research (e.g., Tversky & Kahneman, 1974), one may 
argue that Dave and Jerry find the equally likely sequences to not be equally representative and, 
further, that the sequence with a heads to tails ratio of 4 to 1 is less representative, because the 
parent population of coin flips would have a ratio of 1 to 1, and, thus, less likely. However, the 
eight responses presented below tell a slightly different story. 

Emboldened in the response justifications below, three individuals mention, in one form or 
another, that the 4 to 1 ratio is less likely because of the notion of equiprobability. 

Gustav: It’s more unlikely to have 4 heads and one tail because there is a 50% chance. 
Igor: Because the likeliness of both is the same. It’s unlikely that out of 5 the ratio 

would be 4:1 instead of something like 2:3. 
Farhan: because it’s 50/50 so it will probably be 3H2T or 3T2H so B has the least 

likelihood of happening (4H1T). 
However, none of the three individuals explicitly reference where the equiprobability they are 
using is coming from, which is not the case with the justifications of Hermine, Keanu, and 
Ferdinand. 

Hermine: Because the chance for H and T are both !. So it will be least likely to have 
H, H, H, H, T. 

Keanu: Both heads and tails have an equal chance for getting flipped. I think B as in 
B H had more chance. 

Ferdinand: I think that HHHHT is the least sequence that is more likely to occur, 
because the chances are when you flip a coin once, the possibility of getting a tail 
is ! because there are 2 sides on a coin. 

From the responses above, the notion of 50-50, 1/2, 1 to 1 ratio or equiprobability used in their 
justifications is derived from an individual coin, which, as Keanu declares, “ha[s] an equal 
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chance of getting flipped.” 
Taking their justifications one step further, Duncan and Andrew make reference to individual 

coin flips, which each have a 50-50 chance of landing heads and tails.  
Duncan: I chose B because there are more H’s than T’s and they are not spread out. A 

likely guess would be a 50/50 chance for each, eg: H, T, H, T,... 
Andrew: b is least likely because if each flip gives a 50/50 chance of resulting in 

heads/tails, it is more likely that in five flips more tails would result than one. I mean 
it is not as likely that one result would dominate over the other (but possible). 

For both individuals, since each individual coin flip has a 50-50 chance of heads or tails, the 
sequence with a 4 to 1 ratio of heads to tails is least likely to occur because the ratio is furthest 
away from 50-50 or 1 to 1. 

As found in past research, responses reference the ratio of heads to tails as the reason why the 
coin flip sequence with a 4 to 1 ratio (i.e., HHHHT) is least likely to occur; however, we break 
tradition from previous research and demonstrate that the fallacy of composition – not just 
Tversky and Kahneman’s (1974) sample to parent population determinant of representativeness 
– can account for the above ten responses. For example, all responses declare that the ratio of 
heads to tails for flips of a fair coin is 1:1 (i.e., the bricks); further, they note that the sequence 
(i.e., the building) is comprised of five flips of a fair coin; therefore, the sequence (i.e., the 
building) should also have a heads to tails ratio of 1:1 (i.e., the bricks), which, simply, is not true. 
As such, the expectation of a 1:1 ratio of heads to tails for individual flips of a fair coin (not the 
sample to parent population) leads the individuals to declare that the sequence with a head to 
tails ratio of 4:1 (the furthest “away” from 1 to 1) is least likely. A similar situation is revealed 
when looking at those responses, which traditionally would have been analyzed according to 
Tversky and Kahneman’s reflection of randomness determinant. 

The Appearance of Randomness 
Aaron, Candy, Zoni, and Geena, declare that the sequence HHHHT is least likely to occur 

because of the “long” run of heads. However, the responses do not get into detail as to why the 
run of 4 heads in a row make the sequence less likely. 

Aaron: The chances of getting the same one four times is least. 
Candy: because the chances of getting 4 same sides are small. 
Zoni: B. It’s more unlikely to flip four of the same sides 4 times in a row. 
Geena: B. Because that has the most of one side of the coin, which makes it less likely. 

Peter, on the other hand, provides some insight, in his response below, as to why the sequence 
with a run of 4 heads is less likely.  

Peter: There is less of a chance of getting the same answer four times in a row. It’s more 
likely to get a variety of answers. 

Peter, and perhaps Aaron, Candy, Zoni, and Geena are expecting some mixture of heads and tails 
and not a run of 4 heads in a row. Presented in terms of previous research, Peter and the other 
individuals are focusing on the sequences appearance of randomness (Tverksy & Kahneman, 
1974). More specifically, the run of 4 heads in a row is not locally representative, which demotes 
the sequences appearance of randomness and, further, demotes its likelihood. 

A large number of responses, however, provide a very particular reason for the why the run 
of 4 heads in a row in less likely to occur than the other sequences. Chiefly, the sequence 
HHHHT is not likely to occur because the fair coin, which is used for individual flips that make 
up each of the sequences, is equally likely to result in heads or tails. References to the 
equiprobability (i.e., the 1 to 1 ratio of heads to tails) associated with the coin (and the flip of the 
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coin) are emboldened in the response justifications below. Further, the response justifications are 
categorized in two different (sub) groups. 

The first group, made up of the responses from Velma, Wally, Nina, and Carol, all reference 
that the four heads appear in the sequence. Further, they argue that it would be less likely to have 
four heads in the sequence because, as Wally mentions, “each side has an equal chance.” 

Velma: Because there are 2 sides the percentage is 50-50 so that means it is more likely 
to have 3 tails or 3 heads. 4 heads is possible, but if you flip a coin, I think 4 heads 
isn’t going to happen a lot. 

Wally: B because each side has an equal chance. Therefore, it’s very hard to flip a coin 
and get the same side 4 times. 

Nina: I first thought the answer was F, but my gut feeling was telling me the correct 
answer was B. To consistently flip heads when you have equal opportunity to flip 
tails has made me chose B. 

Carol: B is least likely because it would be hard to flip a coin 5 times in a row and have it 
land on heads because coins are pretty much equally weighted throughout and 
there is just as much chance of it landing on tails as heads and heads is probably 
heavier since the design has got more metal on it. 50/50 chance. 

The above four responses, we contend, fall prey to the fallacy composition. For example, all four 
responses declare that the coin, which has two equally likely sides, has a 50-50 chance of landing 
on heads or tails (i.e., the bricks); further, all participants note that the sequence (i.e., the 
building) is made of flips of that fair coin; therefore, the sequence (i.e., the building) should also 
have a heads to tails ratio of 1 to 1. As was also seen in the ratio of heads to tails responses 
earlier, the equiprobability of the coin and coin flips (i.e., the bricks) correlates with an 
expectation of “heads to tails equiprobability” for the sequence, which is not found in the 
sequence with four heads and, as such, is deemed less likely. 

The second group, made up of the response justifications from Quinn, Reno, Susan, Terry, 
and Uma, also reference the number of heads, that is, four, found in the sequence. They do, 
however, also reference that the four heads occur in a row. Further, all five individuals declare 
that the sequence with four heads in a row is less likely to occur because, as Quinn declares, 
“there is a fifty-fifty chance it will land on heads or tails.” 

Quinn: Because there is a fifty-fifty chance it will land on heads or tails. So for it to 
land on head four times straight is possible, but the least likely to happen. 

Reno: I think HHHHT is least likely to occur because there is a 50% chance to land on 
H or T so you probably wouldn’t get H 4 times in a row. 

Susan: B is least likely to occur because there is a very low chance to get 4 head in a row. 
It is a 50% chance to get H or T so it is the most unlikely sequence. 

Terry: The reason why is because a coin has 2 sides, so there is a 50/50 chance of one 
or the other, so it is unlikely for so many heads to appear in a row. It would be more 
likely to have 3 or 2 heads (or tails). 

Uma: I believe this is because there is a fifty-fifty percent chance that it will land 
heads or tails and 4 head in a row is very unlikely to happen. 

All five responses above – which, in the past, would have been accounted for with the 
reflection of randomness determinant of the representativeness heuristic – we contend, are also 
falling prey to the fallacy composition. All responses declare that the coin, which has two 
equally likely sides, has a 50-50 chance of landing on heads or tails or has a heads to tails ratio of 
1 to 1 (i.e., the bricks); further, the sequence (i.e., the building) is derived from flips of a fair coin 
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(i.e., with a heads to tails ratio of 1 to 1); therefore, the sequence (i.e., the building) should also 
have a heads to tails ratio of 1 to 1 and, as such, the sequence with too many heads is deemed 
least likely to occur. As was seen in the ratio of heads to tails and in the “four of one side 
responses,” the heads to tails ratio of the coin (i.e., the bricks) correlates with an expectation of 
the same heads to tails ratio for the sequence, which is not found in the sequence with four heads 
(in a row). 

Concluding Remarks 
Demonstrated in the analysis of results, the fallacy of composition accounts for certain 

responses (i.e., certain normatively incorrect responses) to the relative likelihood task (which we 
have introduced in this article). Also as demonstrated in the analysis of results above, all 
responses presented can be framed within the fallacy of composition. In particular, participants: 
make note of the 1 to 1 ratio of heads to tails of the coin (alternatively expressed throughout as: 
“fifty-fifty,” “equiprobable,” “the possibility of getting a tail is 1/2”); note that sequence is made 
up of flips of said fair coin; and, as such, determine (fallaciously) that the sequence of coin flips 
should also have a heads to tails ratio of 1 to 1. In other words, the properties associated with the 
fair coin (i.e., the brick), which make up the sequence (i.e., the building), are expected in the 
sequence. Subsequently, when looking at potential responses, the one sequence with a heads to 
tails ratio furthest away from 1 to 1 (i.e., the only sequence with a heads to tails ratio of 4 to 1 
when compared to all others sequences with a heads to tails ratio of 3 to 2) is deemed the least 
likely to occur. The respondents are taking their knowledge of equiprobability in one context and 
transferring it to another without validation of equiprobability in the new and expanded context. 
It is in this reasoning that the fallacy of composition lays.  

Discussion 
Research involving comparisons of relative likelihood has, historically, been focused on 

accounting for individuals’ responses – both correct and incorrect. Through investigating 
normatively incorrect responses, research has developed a variety of theoretical models (e.g., the 
representativeness heuristic, the outcome approach, and the equiprobability bias) to account for 
incorrect, sometimes incomprehensible, responses. In a more general sense, the incorrect 
responses have, in the past, been accounted for by contending that individuals were employing 
heuristic or informal reasoning in their justifications. In more recent years, there has been a lack 
of developments and new perspectives to response justifications associated with comparisons of 
relative likelihood.  We have, however, in this article, presented a fresh perspective, the 
composition fallacy, to account for certain response justifications. This novel perspective, we 
contend, opens a new area of investigation for future research on comparisons of relative 
likelihood: the use of logical fallacies. While, in this article, we have demonstrated the 
descriptive power of the fallacy of composition, more research in the new domain will lead 
researchers to determine to what extent informal logical fallacies can describe response 
justifications to comparisons of relative likelihood and, in doing so, determine to what extent 
logical fallacies are a part of teachers’ knowledge of probability. Through the identification of 
these logical fallacies within teachers’ probabilistic knowledge, teacher educators can assess the 
origins of teachers’ non-normative (e.g., heuristic, informal, fallacious) probabilistic reasoning. 
Once assessed, educators can then address the teachers’ knowledge and model effective 
strategies for assessing and responding to their future students’ non-normative probabilistic 
reasoning. 
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This paper argues for a renewed focus on statistical reasoning in the elementary school years, 
with opportunities for children to engage in data modeling. Data modeling involves 
investigations of meaningful phenomena, deciding what is worthy of attention, and then 
progressing to organizing, structuring, visualizing, and representing data. Reported here are 
some findings from a two-part activity (Baxter Brown’s Picnic and Planning a Picnic) 
implemented at the end of the second year of a current three-year longitudinal study (grade 
levels 1-3). Planning a Picnic was also implemented in a grade 7 class to provide an opportunity 
for the different age groups to share their products. Addressed here are the grade 2 children’s 
predictions for missing data in Baxter Brown’s Picnic, the questions posed and representations 
created by both grade levels in Planning a Picnic, and the metarepresentational competence 
displayed in the grade levels’ sharing of their products for Planning a Picnic.   
 

Introduction 
The need to understand and apply statistical reasoning is paramount across all walks of life, 

evident in the variety of graphs, tables, diagrams, and other data representations that need to be 
interpreted. Elementary school children are immersed in our data-driven society, with early 
access to computer technology and daily exposure to the mass media. With the rate of data 
proliferation has come increased calls for advancing children’s statistical reasoning abilities, 
commencing with the earliest years of schooling (e.g., Franklin & Garfield, 2006; Langrall, 
Mooney, Nisbet, & Jones, 2008; Lehrer & Schauble, 2005; National Council of Teachers of 
Mathematics [NCTM], 2006; Shaughnessy, 2010). We need to rethink the nature of young 
children’s statistical experiences and consider how we can best develop the important 
mathematical and scientific ideas and processes that underlie statistical reasoning (Franklin & 
Garfield, 2006; Langrall et al., 2008; Watson, 2006). One approach in the beginning school years 
is through data modeling (English, 2010; Lehrer & Romberg, 1996; Lehrer & Schauble, 2007; 
Lehrer & Schauble, 2000).  

Data modeling is a developmental process, beginning with young children’s inquiries and 
investigations of meaningful phenomena, progressing to identifying various attributes of the 
phenomena, and then moving towards organising, structuring, visualising, and representing data 
(Lehrer & Lesh, 2003). As one of the major thematic “big ideas” in mathematics and science 
(Lehrer & Schauble, 2000, 2005), data modeling should be a fundamental component of early 
childhood curricula. Limited research exists, however, on such modeling and how it can be 
fostered in the early school years. Indeed, the majority of the research on mathematical modeling 
has been confined to the secondary and tertiary levels, with the assumption that elementary 
school children are not able to develop their own models and sense-making systems for dealing 
with complex situations (Greer, Verschaffel, & Mukhopadhyay, 2007).   

In this paper, I first consider briefly the core components of data modeling relevant to the 
present activity, namely, structuring and representing data, and informal inference (specifically, 
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making predictions). I also consider the role of task context in data modeling. Specifically, I 
address the following questions:    

• What was the nature of the three grade 2 classes’ predictions for the missing values in a 
table of data for Baxter Brown’s Picnic?  

• What questions were posed and representations created by one second-grade and one 
seventh-grade class in Planning a Picnic?   

• How was metarepresentational competence displayed in the sharing of products between 
the second-grade class and the seventh-grade class? 
  

Structuring and Representing Data 
Models are typically conveyed as systems of representation, where structuring and displaying 

data are fundamental—“Structure is constructed, not inherent” (Lehrer & Schauble, 2007, p. 
157). However, as Lehrer and Schauble indicated, children frequently have difficulties in 
imposing structure consistently and often overlook important information that needs to be 
included in their displays or alternatively, they include redundant information. Providing 
opportunities for young children to structure and display data in ways they choose, and to 
analyze and assess their representations is important in addressing these early difficulties. 

Constructing and displaying data models involves children in creating their own forms of 
inscription. By the first grade, children already have developed a wide repertoire of inscriptions, 
including common drawings, letters, numerical symbols, and other referents. As children invent 
and use their own inscriptions they also develop an “emerging meta-knowledge about 
inscriptions” (Lehrer & Lesh, 2003). Children’s developing inscriptional capacities provide a 
basis for their mathematical activity. Indeed, inscriptions are mediators of mathematical learning 
and reasoning; they not only communicate children’s mathematical thinking but they also shape 
it (Lehrer & Lesh, 2003; Olson, 1994). As Lehrer and Schauble (2006) emphasized, developing a 
repertoire of inscriptions, appreciating their qualities and use, revising and manipulating invented 
inscriptions and representations, and using these to explain or persuade others, are essential for 
data modeling. In a similar vein, diSessa has argued for the development of students’ 
metarepresentational competence, which includes students’ abilities to invent or design new 
representations, explain their creations, and understand the role they play (e.g., diSessa, 
Hammer, Sherin, & Kolpakowski, 1991).    

 
Informal Inference: Making Predictions   

There has been limited research on young children’s abilities to make predictions based on 
data, an important component of beginning, informal inference. Although young children 
obviously do not have the mathematical background to undertake formal statistical tests, they 
nevertheless are able to draw informal inferences based on various types of data (Watson, 2007). 
Predictions can be based on aspects of the problem scenario and context, and children’s 
understanding of the data presented. As pointed out by Watson (2006), one of the aims of 
statistics education is to help students make predictions that have a high probability of being 
correct. Yet in the real world, decisions are required where there is uncertainty and where several 
alternatives might be reasonable. Hence, young children’s exposure to informal inference 
involving uncertainty is an important learning foundation if a meaningful introduction to formal 
statistical tests is to take place in secondary school. 
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The Role of Context 
The nature of task design, including the task context, is a key feature of data modeling 

activities. Children need to appreciate that data are numbers in context (Langrall, Nisbet, 
Mooney, & Jansem, 2011; Moore, 1990), while at the same time abstract the data from the 
context (Konold & Higgins, 2003). Moore emphasised that a data problem should engage 
students’ knowledge of context so that they can understand and interpret the data rather than just 
perform arithmetical procedures to solve the problem.   

The need to carefully consider task design is further highlighted in research showing that the 
data presentation and context of a task itself have a bearing on the ways students approach 
problem solution; presentation and context can create both obstacles and supports in developing 
students’ statistical reasoning (Cooper & Dunne, 2000; Pfannkuch, 2011). In designing the 
present activities, literature was used as a basis for the problem context. It is well documented 
that storytelling provides an effective context for mathematical learning, with children being 
more motivated to engage in mathematical activities and displaying gains in achievement (van 
den Heuvel-Panhuizen & van den Boogaard, 2008).   

 
Methodology 

Participants 
The participants were from an inner-city Australian school, situated in a middle socio-

economic area, with an enrolment of approximately 500 students from Prep (K) -7. The three 
first-grade classes (2009, mean age of 6 years 8 months) continued into the second year of the 
study, the focus of this paper (2010, mean age of 7 years 10 months, n=68). The grade 7 class 
(n=24), who participated in the Planning a Picnic activity, described below, had an age range 
from 12 to 13 years.    
Research Design 

A teaching experiment involving multilevel collaboration (English, 2003; Lesh & Kelly, 
2000) was adopted here. This approach focuses on the developing knowledge of participants at 
different levels of learning (student, teacher, researcher) and is concerned with the design and 
implementation of experiences that maximise learning at each level. The teachers’ involvement 
in the research was vital; hence regular professional development meetings were conducted. This 
paper addresses aspects of the student level. 
Activities and Procedures 

The final activity implemented in the second year of the study continued the story context 
(purposely created) from the first year of activities. The context involved the adventures of 
Baxter Brown (a “westipoo”—West Highlander X toy poodle). The children requested more 
stories about Baxter Brown in the second year of the study; hence a story about Baxter Brown’s 
picnic was created as the context for the first part of the activity (Baxter Brown’s Picnic). For the 
Planning a Picnic Activity, two story picture books about foods and picnics were read to the 
grade 2 classes prior to their planning their own picnic.  

For the Baxter Brown’s Picnic Activity, the children (as a whole class) were presented with 
a table of six different items that he and each of his five canine friends chose to take on their 
picnic. The final column of the table was left blank, as indicated in Table 1 below. After 
discussing what they noticed about the values and variation in values across the table, the 
children were invited to predict the number of Oinkers that Baxter Brown and each of his friends 
might take on the picnic. 
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 Table 1. Items Taken to Baxter Brown’s Picnic 

 Liver 
Straps Beef Discz Dentastix 

My Dog 
Gourmet 

Beef 
Bones Oinkers 

Baxter B. 3 5 2 1 3  
Monty 2 7 1 2 1  
Fleur 4 0 3 4 5  
Daisy 3 1 4 3 2  
Lilly 5 3 0 2 4  
Pierre 7 5 2 6 10  

For Planning a Picnic (grades 2 and 7), an initial whole-class discussion focused on 
questions the children might ask about planning a class picnic. In their groups, the children then 
listed five items they would like to take on the picnic, which were recorded by the teacher in a 
table on an interactive whiteboard. The children were subsequently asked what might be done 
with the data and what questions they might ask about the data. Each group’s question was 
recorded on the board, with brief discussion on how some of the questions might be refined. In 
their groups, the children proceeded to answer their question and were to display their findings 
using whatever representation they liked. They were provided with a range of recording material 
including blank chart paper, grid paper, and chart paper displaying a circle shape. The children 
could use whatever of these materials they liked; no encouragement was given to use any 
specific recording material. On completion of the activity, the groups reported back to their class 
peers on how they answered their question. The grade 2 children were subsequently asked how 
their responses might compare with those of the other grade two classes, and were then asked to 
consider how the grade 7 classes in their school might respond to the activity. On the suggestion 
of one of the second-grade teachers, we administered the Planning a Picnic activity in one 
seventh-grade class. We then brought together the teachers and students from the second-grade 
class and the seventh-grade class for a sharing of how they worked the activity.  
Data Collection and Analysis 

In each of the second-grade classrooms, all whole-class discussions were videotaped and 
audiotaped; likewise, in each class, two focus groups (of mixed achievement levels and chosen 
by the teachers), were videotaped and audiotaped, with all tapes subsequently transcribed. There 
were 17 groups of second-grade children (3-4 per group), five in one class and six in each of the 
remaining two classes. For the seventh-grade class, the teacher chose mostly two-member 
groups, making 11 groups in total. The sharing of products between the two grade levels was 
videotaped and transcribed. All artifacts were collected and analyzed along with the transcripts. 
Where appropriate, iterative refinement cycles for analysis of children’s learning (Lesh & 
Lehrer, 2000) were used, together with constant comparative strategies (Strauss & Corbin, 1990) 
in which data were coded and examined for patterns and trends.  
 

Selection of Findings 
Grade Two Children’s Predictions for Baxter Brown’s Picnic 

In contrast to the children’s use of informal inference in the first year of the study (English, 
in press), where they used the variation and range of values in a table of data to predict unknown 
values, the context of the present activity appeared to inhibit the children’s ability to abstract the 
data from the context (Konold & Higgins, 2003). Each class initially identified the blank column 
as the first feature they noticed, with one child explaining, “Nobody wants Oinkers.” In 
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predicting how many Oinkers each of the dogs might take to the picnic, the children predicted 
small values less than 10, with their reasoning mainly based on the total number of other items 
each dog was bringing and the fact that if a larger number of Oinkers were brought to the picnic, 
the dogs “might get sick,” “get a tummy ache,” or “get fat.” One child suggested zero, “because 
there has to be something that he doesn’t like.” There were some responses however, indicating 
an awareness of the need to consider the nature of the existing values, such as, “Because he 
(Monty) doesn't eat that much of anything else so he mustn’t eat that much.” In response to a 
child who predicted that Baxter Brown would take zero Oinkers, because he already has many 
other items, the teacher accepted the response as a reasonable prediction. Another student, 
however, disagreed, stating, “I don’t think it’s reasonable because he’s pretty of a greedy guts so 
I think he would have more” (basing her decision on the existing item values for Baxter Brown). 

On asking each class to consider the scenario of Baxter Brown taking 26 Oinkers, Monty 33, 
Fleur 50 etc., the majority of children used the task context to decide that these values were 
inappropriate. Comments such as, “They’re um too big, the dogs would probably get a tummy 
ache and get sick” and “It’s too heavy for them to carry to the picnic,” were common. On the 
other hand, other responses suggested that some children were aware of the need to focus on the 
data itself, for example, “They would be bigger than all the numbers,” “Ten is the highest 
number you can go up to,” There’s only one two-digit number,” and “Because there would be 
too much.”  
Children’s Questions and Representations for Planning a Picnic 

The findings reported in this section focus on the responses of the selected second-grade 
class and the seventh-grade class. The table created by the grade 2 class appears below; a 
comparable table was developed by the grade 7 students.  
Table 2. Picnic Items Chosen by the Grade 2 Class  
Group1  Group 2 Group 3 Group 4 Group 5 
choc chip 
cookies 

sandwiches  blanket food  cup cakes 

fruit fizzy drinks fruit picnic basket cake  
sausage rolls cookies cake sunscreen juice 
cordial fruit esky drinks fruit soft drink 
sandwiches fruit pudding soft drinks chairs carrots 
The questions posed by each class are listed below. These questions addressed the table of data 
displaying the items each group would take on their picnic.  
Grade 2 

• Did everybody choose healthy items? 
• Is there a most popular food? 
• What are the different types of items?  
• Did everybody choose the same items? 
• Is there a most popular item? 

Grade 7 
• What percentage of foods are in each food group? 
• How many different picnics brought 2 or more healthy foods? 
• What percentage of foods are unhealthy? 
• What is the most popular item on the list, soft drink or sandwich? 
• How many items are processed foods in each picnic? 
• What percentage of groups brought fruit on their picnic? 
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• What was the most popular food? 
• What percentage of groups chose sandwiches compared to groups who chose fruit to    
bring on their picnic? 
• Is there more healthy than unhealthy food? 
• What food group does the majority of food from all of the picnics come from? 
Not surprisingly, the grade 2 students’ questions were less sophisticated than their older 

counterparts, resulting in a few difficulties in answering their question and representing their 
findings. Nevertheless, the younger children displayed a wider range of representations, albeit 
less sophisticated than their older counterparts. Each grade 2 group made use of the table of 
chosen items given to them (Table 1) and displayed a range of inscriptions in analyzing their 
data. For example, one group who addressed their question, “Did everybody choose healthy 
items?” placed a X on what they considered to be unhealthy items, a * on healthy items, a 0 on 
“things that aren’t food,” and a created symbol of mixed shapes for “fruit/sugar.” This group also 
drew a food pyramid, with a focus on healthy and unhealthy items, and followed this with a third 
representation, a circle divided into halves displaying drawings and labels of “junk food” and 
“healthy foods.” Four of the grade 2 groups made a list of selected items, before constructing a 
bar graph (3 groups) or a pie graph (cut into thirds; 1 group). One of the groups explained how 
their construction of a bar graph made them change their initial answer to their question:   

Our question is, “Is there a most popular food?” There is, there is, the answer was, there 
is not any popular food because there were, there’s 3. We, um, our finding things out was 
that all the things, we’ve made all the things that go together on the graph here and then 
we found out, we recorded how many different stuff there was and on one square it means 
that um, it means that there was one thing, on two squares it means that’s there’s two 
things and it keeps on going up to 6. And then we found out that there was no most popular 
food. There were 3 tying, drinks, cakes and picnic stuff…We wrote first that there was a 
popular thing but then when we ended up doing the graph, it ended up that there was, um, 
three populars.  
In contrast to the grade 2 children, all but one of the 11 grade 7 groups chose only one 

representation, with vertical bar graphs and pie graphs being equally popular (each chosen by 5 
groups, with the display of percentages prominent). One group who created a pie graph also 
made a tally chart first. The remaining group created a line graph. When asked why they selected 
a line graph in preference to a bar graph, this group explained, “Well we thought because there 
are so many foods, drawing bars to make them seeable would be quite squishy; we just thought it 
would be easier to read if it was a line graph.”  

The children’s foregoing explanations indicate a metarepresentational competence where 
they were able to explain and justify the representations they generated and also understand the 
role these played. Further evidence of such competence was evident in the sharing of products 
between the two grade levels.    
Children’s Metarepresentational Competence in Sharing Products for Planning a Picnic 

As indicated in the methodology section, one grade 2 class and one grade 7 class came 
together to share their products for the Planning a Picnic activity. The grade 2 teacher initially 
asked her class to recall how they predicted the grade 7 students might work the activity. The 
children responded that “They won’t have the same ideas,” and “We said that they might be 
better because they’d had more years.”   

As the grade 7 class presented their products to their younger counterparts, there were several 
displays of metarepresentational competence at both grade levels. One grade 7 group reported 
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that they solved their question using a bar graph that showed percentages of the particular items 
targeted in their question. When asked why they chose this representation, the group explained, 
“We tried a pie graph but we couldn’t like split it into the right amount of groups.” When invited 
to define a pie graph for the grade 2 children, one group member explained, “A pie graph is a 
circle that you put lines into and then color sections which is what, yeah, is what you chose.” 
When the grade 2 children were asked to compare their bar graph representations with the grade 
7 group, they responded that theirs was easier to read as “They (grade 7) used percentages and 
we don’t know about percentages yet.” However, the younger children were able to interpret the 
grade 7 representation when asked what the most popular and least popular item was:“Cause it’s 
got the names at the bottom (labels under X axis). I was looking at the fruit one and I knew that it 
was the most…cause it’s got the highest thing (bar) that goes up.” In answering their question, 
“How many different picnics brought two or more healthy foods?” another grade 7 group 
justified their selection of a bar graph in preference to a pie graph by explaining, “Cause if you 
did like a pie graph… you wouldn’t really show each group and how many items each individual 
group brought.”  

A follow-up grade 2 class discussion on how their working of the activity compared with the 
grade 7 students included comments such as: “We took more healthy food than they did;” “They 
were really bad choices;” “They did pie graphs and we didn’t know like how to;” and (they did) 
“The line graph.” In a follow-up question, the grade 2 children commented that 100% means “all 
of it” (circle) and “to understand the pie, we can look at it and see if it adds up to 100%.”  

 
Discussion and Concluding Points  

Three main issues arising from the children’s responses are worth highlighting here—the role 
of task context in the grade 2 children’s predictions, the nature of the questions and 
representations created by the grade 2 and 7 classes, and the metarepresentational competence 
displayed in their sharing of products.  

As previously noted, children need to appreciate that data are numbers in context, while at 
the same time abstract the data from the task context. Although context provides meaning in 
statistics (Garfield & Ben-Zvi, 2008), it can create both obstacles and supports in student’s 
statistical reasoning (Pfannkuch, 2011). The purposefully created context of Baxter Brown and 
his canine friends organizing a picnic appeared to hinder the children’s analysis of the table of 
data (Table 1). Only a few children justified their predictions by considering the nature (range 
and/or variation) of the values displayed, with the majority making contextual inferences such as 
the need to consider the dogs’ health. The role and impact of task context require careful 
consideration in designing statistical activities; clearly a good deal more research is needed here 
to guide the development of data modeling in the early years.    

Posing questions about the class selection of picnic items was a comparatively new learning 
experience for the second-grade children and did present some difficulties, resulting in 
discussion on how some of the questions might be refined. Such difficulties can be expected—
transforming initial questions into more specific statistical questions is not an easy step, 
especially for young children (Konold & Higgins, 2003). Not surprisingly, the grade 7 students 
generated more sophisticated questions, applying mathematical understandings they had 
developed during their additional years of schooling. Nevertheless, both grade levels displayed 
metarepresentational competence in generating, describing, explaining, and justifying their 
representations. Interestingly, most of the grade 2 children, in contrast to their grade 7 
counterparts, created more than one representation and could identify the links between their 
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representations. The sharing of products was a rich learning experience for both grade levels, 
providing opportunities for appreciating different approaches to dealing with data and for 
questioning, explaining, and interpreting the data models of others. Consideration should be 
given to creating such sharing opportunities across grade levels.    
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Probabilistic misconceptions are common among students and teachers alike. This study 
involved 18 preservice secondary mathematics teachers and documents some of the common 
probabilistic misconceptions held by these preservice teachers. Data was collected through a 
survey involving eight probability problems and two semi-structured interviews. Findings 
indicate that the most common misconception held by these preservice teachers related to time 
axis, compound events, and availability. 
 

Many people struggle with probabilistic misconceptions in situations of uncertainty. A 
misconception is more than just a mistake. Mistakes are easy to make and can be made for a 
number of different reasons: e.g., carelessness or distractions from another classmate. A 
misconception, however, is an incorrect concept held by a person that leads to a systematic 
pattern of errors (Khazanov, 2008). Teachers’ practices and beliefs play an extremely important 
role in student learning (Beswick, 2006, 2008; Thompson, 1984), therefore identifying and 
addressing probabilistic misconceptions held by preservice teachers is important because they 
may pass those misconceptions on to their future students. This study examines and documents 
some of the probabilistic misconceptions held by preservice teachers.  
 

Theoretical Framework 
Shaughnessy (1992) argued that people need to “learn about probability and statistics just to 

be able to make reasonable decisions (as consumers or voters or even in choosing a career) on 
the basis of the mounds of data and probabilistic statements that confront them” (p. 95). Any 
well-informed citizen or consumer should have a good understanding of probabilistic statements 
– free from misconceptions. However, probabilistic misconceptions are common among students 
of all ages – elementary students, secondary students, college students, and even adults 
(Shaughnessy, 1992; Fischbein & Schnarch, 1997). 

Fischbein and Schnarch (1997) explored common probabilistic misconceptions of students at 
various ages. A seven-item questionnaire was developed and administered to five groups of 
students: 20 students in fifth-grade, 20 students in seventh-grade, 20 students in ninth-grade, 20 
students in eleventh-grade, and 18 preservice mathematics teachers. The seven items on the 
questionnaire were each related to seven common probabilistic misconceptions. Each of these is 
briefly discussed below (for further discussion see Fischbein & Schnarch, 1997; Kahneman, 
Slovic, & Tversky, 1982). Misconceptions related to the use of the representativeness heuristic 
involve an individual estimating the likelihood of an event based on how similar that event is to 
the population that it comes from. Misconceptions associated with negative and positive recency 
effects involve a person relating the probability of an event to the most recent similar events 
(e.g., flipping a coin a certain number of times). Misconceptions related to compound and simple 
events involve a misunderstanding of all possible outcomes for two events occurring 
simultaneously (e.g., rolling two dice). Misconceptions related to the conjunction fallacy involve 
a person believing that, under certain conditions, the probability of an event appears to be higher 
than the probability of the intersection of the same event with another. Misconceptions related to 
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sample size involve individuals neglecting the importance of the size of a sample when 
estimating probabilities. Misconceptions related to the availability heuristic involve a person 
estimating the likelihood of an event based on how easy it is to think of an example or recall a 
particular instance of the event. Finally, the time-axis fallacy involves a person inverting the time 
axis of cause implying effect.  

Fischbein and Schnarch (1997) hypothesized that all of the probabilistic misconceptions 
would decrease with age, and specifically, that they would stabilize during what Piaget labeled as 
the formal operational period (ages 12 and above). However, the actual findings of the study 
were extremely varied. Some of the misconceptions decreased with age, some remained 
constant, some increased with age, and some were absent altogether. Misconceptions dealing 
with the representativeness heuristic, negative recency, and the conjunction fallacy all decreased 
with age. Misconceptions dealing with compound and simple events were frequent among the 
students in the study and stable across all ages. Misconceptions dealing with the effect of sample 
size, the availability heuristic, and the effect of the time axis all increased with age. Only one of 
the misconceptions, positive recency, seemed to be absent from the students. 

In summary, probabilistic misconceptions are common among students, teachers, and 
citizens (Fischbein & Schnarch, 1997; Wilkins, 2007; Shaughnessy, 1992). The purpose of this 
study is to identify and discuss probabilistic misconceptions of secondary mathematics 
preservice teachers.   
 

Methods 
Participants 

Eighteen preservice secondary mathematics teachers participated in the study. All of the 
preservice teachers were graduating seniors in a five-year teacher preparation program. The 
preservice teachers graduate with an undergraduate degree in mathematics after four years and a 
master’s degree in education after one additional year. The preservice teachers’ undergraduate 
degree in mathematics included at least one course in probability or statistics, which they had all 
already taken. At the time of the study all of the preservice teachers were enrolled in a senior 
capstone course in which one of the researchers was the instructor. 

One limitation of the study is the dual relationship that one of the researchers had with the 
participants in the study. The researcher personally knew all of the participants because they 
were students in her class. However, the researcher and the participants had never before 
discussed probabilistic misconceptions. Participation in the study was voluntary and was in no 
way linked to course credit. 

 
Data Collection 

The study consisted of an initial survey and two follow-up semi-structured interviews. The 
initial survey was designed to identify probabilistic misconceptions held by the preservice 
teachers. All eighteen of the preservice teachers in the study completed the initial survey. The 
initial survey included eight problems, each of which focused on one of the seven common 
misconceptions outlined previously by Fischbein & Schnarch (1997) with two of the problems 
focused on the effect of sample size.  

Preservice teachers completed the eight problems by selecting the correct answer from three 
or four answer choices. In addition, preservice teachers were asked to explain their thinking for 
each of the eight problems. It was extremely important to have the preservice teachers explain 
their problem solving process for each of the eight problems. In this way the researchers were 
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able to more accurately determine whether or not the preservice teachers actually held a 
particular probabilistic misconception.  

From the results of the initial survey, six preservice teachers who demonstrated probabilistic 
misconceptions were selected. Of these six preservice teachers, only two of them participated in 
the follow-up interview sessions. The semi-structured interviews were especially beneficial 
because they allowed the researcher to “experience, firsthand, students’ mathematical learning 
and reasoning” (Steffe & Thompson, 2000, p. 267). Both of the follow-up interview sessions 
were video recorded for future analysis. 

This first semi-structured interview consisted of a short background interview and a time for 
the preservice teacher to work on two probability problems. The background interview focused 
on the preservice teachers’ prior experiences with mathematics in general and with probability 
and statistics in particular. The background interview also focused on the preservice teachers’ 
attitudes about teaching probability and statistics in the future. The preservice teacher then 
engaged with two probability problems that related directly with two common probabilistic 
misconceptions, the availability heuristic and compound and simple events. 

The second semi-structured interview consisted of a probability activity that dealt 
specifically with the representativeness heuristic. The activity combined a hands-on experiment 
in which the preservice teacher flipped six fair coins 50 times in order to find experimental 
probabilities and also created a theoretical model for the same situation. While completing the 
probability activity, the interviewer probed the mathematical and probabilistic understanding of 
the preservice teacher by asking questions such as: “What is your reasoning for this?” and “Why 
did you choose this approach?” 

 
Data Analysis 

The analysis of the data included both quantitative and qualitative methods. From the initial 
screening survey, the percentage of preservice teachers who demonstrated the various 
probabilistic misconceptions was calculated. The video recording from the two semi-structured 
interviews was transcribed and analyzed for rich evidence of probabilistic misconceptions held 
by the preservice teachers. 

 
Results 

The percentage of teachers who held the various probabilistic misconceptions is presented in 
Table 1. The most common misconception held among these preservice teachers is related to the 
effect of the time axis (72.2%). Interestingly, after all eighteen participants completed the initial 
survey they animatedly debated their answers to this particular problem. The second most 
common misconception held among these preservice teachers is related to compound and simple 
events (44.4%). The third most common misconception held among preservice teachers is related 
to the availability heuristic (33%). The specific problems dealing with these three probabilistic 
misconceptions from the initial survey can be found in Table 2 below. 
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Effect of time axis 72.2% 
Compound and simple events 44.4% 

Availability 33.3% 
Effect of sample size  27.7% 

Effect of sample size 22.2% 
Conjunction fallacy 11.1% 

Negative recency 5.5% 
Positive recency 0% 

Representativeness 0% 
Table 1. Percent of preservice teachers who demonstrated misconceptions (N = 18) 
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Effect of the time axis 

Jack and Jill each receive a box containing two white marbles and two black marbles. 

a) Jack extracts a marble from his box and finds out that it is a white one. Without replacing the 
first marble, he extracts a second marble. Is the likelihood that his second marble is also 
white smaller than, equal to, or greater than the likelihood that it is a black marble? 

b) Jill extracts a marble from her box and puts it aside without looking at it. She then extracts a 
second marble and sees that it is white. Is the likelihood that the first marble she extracted is 
white smaller than, equal to, or greater than the likelihood that it is black? 

 
Explain your thinking. 

Compound and simple events 

Suppose Cathy rolls two dice simultaneously. What of the following has a greater chance of 
happening?  

a) Obtaining two sixes. 
b) Obtaining a five and a six. 
c) Both have the same chance. 

 
Explain your thinking. 

Availability 

When choosing a committee comprised of 2 members from among 10 candidates, the number of 
possibilities is: 

a) Smaller than… 
b) Equal to… 
c) Greater than… 

the number of possibilities when choosing a committee of 8 members from among 10 candidates. 
 
Explain your thinking.!

Table 2. Initial survey problems 
Semi-Structured Interviews 

For the purposes of this paper, the results from the semi-structured interviews will focus 
primarily on Amanda, one of the two preservice teachers who participated in the follow-up 
interviews. During the first interview, Amanda was given two tasks. These tasks were related to 
availability and compound and simple events. The misconceptions associated with these two 
types of problems were among the most common in the initial survey. On the initial survey, 
Amanda did not seem to hold a misconception related to availability, but she did seem to hold a 
misconception related to compound and simple events. 

The first task related to availability (see Figure 1). Amanda’s initial approach was to draw all 
the possible paths in each of the grids. This turned out to be a daunting task and led Amanda to 
some confusion. She eventually took a step back and tried to relate the paths in each of the grids 
to a more concrete example. She exclaimed, 

Trying to figure out the number of paths in the grid is like trying to pick out a pizza. If 
you have to choose a certain kind of crust, a certain kind of cheese, a certain kind of 
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meat, and a certain kind of vegetable to put on the pizza, then you would just multiply the 
number of each to get the total number of possible pizzas. 

Amanda related this back to the number of possible grids by saying, 
For the first x, you’ve got one, two, three, four, five, six, seven, eight possibilities to go to 
the next row. And then from whatever x you pick there, you’ve got eight more ways to go 
to the next row… yeah, that would give you all the paths because it would be just like 
making a tree. 

This reasoning convinced Amanda that she had developed a correct method to find the possible 
paths in each grid by multiplying the number of rows in the grid by the number of symbols in 
each row. Based on Amanda’s final answer to the problem and her reasoning supporting that 
answer, Amanda did not seem to demonstrate a misconception related to the availability 
heuristic.  
 

Consider the grid below. A path is a polygonal chain of line 
segments, starting at the top row and proceeding to the bottom row 
and meeting one and only one symbol in each row. 
 

Grid A 
xxxxxxxx 
xxxxxxxx 
xxxxxxxx 

Grid B 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
 

a) Are there more paths possible in Grid A? 
b) Are there more paths possible in Grid B? 
c) Are there about the same number of possible paths in each grid? 

Figure 1. Availability task 
 
The second task related to compound and simple events (see Figure 2). For the first question 

in this task, Amanda’s response was, 
It’s one-half…it doesn’t matter…this reminds me of genetics…and it doesn’t matter what 
your first child is, I mean, we know that his first child is a son, but that has no bearing on 
what the [other child is]. Every time you have a child, you have a one-half probability of 
it being a boy or a girl. So it’s one-half because they are completely independent events. 

Amanda’s response was especially interesting because she is a double major in both mathematics 
and biology. Because of her focus on biology and her past experience in genetics classes, 
Amanda was very passionate to say that no matter what we know about a situation (such as the 
gender of one child) the probability of the other child being a boy will always be one-half. 
Amanda was confident that the probability of the second child being a boy was one-half. In 
response to the second question in this task, she said that it still did not matter what the gender of 
the eldest child was. She said, “even if you ask the probability that…the other child is a girl, it’s 
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still one-half.” Based on her response to this task and her reasoning for her response, it seems as 
though Amanda does hold a probabilistic misconception related to compound and simple events. 
More specifically, Amanda’s misconception hinges on the idea that the events are “independent” 
of each other. Amanda’s misconception also suggests that she does not take into consideration 
the fact that there are four different possibilities for Mr. Smith’s two children; the two children 
could either be a boy and a boy, a boy and a girl, a girl and a boy, or a girl and a girl.  
 

1) Mr. Smith is the father of two. We meet him walking along the 
street with a young boy whom he proudly introduces as his son. 
What is the probability that Mr. Smith’s other child is also a boy? 

2) We meet Mr. Smith (who we know to be the father of two) in the 
street with a boy. He is very elaborate with his introduction, 
presenting the boy as his eldest child. What is the probability that 
Mr. Smith’s other child is also a boy? 

Figure 2. Effect of time axis task 
 
During the second interview, Amanda engaged with a task that had both an experimental and 

a theoretical component (see Figure 3). The hands-on experiment required that she flip six coins 
50 times and record the number of heads (out of six) for each of the 50 flips. Before starting the 
experiment, Amanda hypothesized that “three heads would come up the most…there’s just more 
ways to get three heads than six heads.” This shows that Amanda had a notion of which 
combinations of heads and tails would be the most common. Also, when flipping the coins, 
Amanda observed, “one head is coming up more than one tail.” This surprised her. She thought 
that she should have about the same number of flips when there was only one head showing as 
when there was only one tail showing. This observation shows that Amanda also understood the 
notion of symmetry in the distribution of the number of heads out of six.  

Based on the experiment, Amanda developed an experimental probability model. This model 
described the probability of getting x number of heads when six coins were flipped at one time. 
These beginning observations seem to indicate that Amanda has a good understanding of the 
distribution and sample space she is dealing with and that she does not hold a misconceptions 
related to the representativeness heuristic. 
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1) Flip 6 coins 50 times and record the number of heads in the chart 
below.  
 6 H 5 H 4 H 3 H 2 H 1 H 0 H  

 
 

      

2) Based on your data, what is the probability of getting 6 heads? 5 
heads? 4 heads? 3 heads? 2 heads? 1 head? 0 heads? 
3) Make a list of all possible outcomes for flipping 6 coins. 
3) Based on your list, develop a mathematical model to find the 

theoretical probability for the outcomes of flipping 6 coins. 
Figure 3. Experimental and theoretical probability task 

 
The theoretical component of the task required that Amanda develop a theoretical probability 

model, again describing the probability of getting x number of heads when six coins were flipped 
at once. Amanda initially used a tree diagram to list out all the possible outcomes for flipping six 
coins. From her tree diagram, Amanda quickly articulated that a flip of TTTTTH is very 
different from a flip of HTTTTT. She then explained that you could “move around” the one head 
to get all the possible ways that the flip of six coins could have one head. Because Amanda had 
an intuitive notion of symmetry, she knew that this was similar to one tail (which she also 
explained was the same thing as looking at five heads). Amanda also explained that there would 
be a lot more ways to “move around” three heads than just one head. Because it would have been 
difficult to count all the theoretical ways of getting x number of heads on a flip of six coins based 
on her tree diagram, Amanda switched to using her understanding of combinations to develop 
the theoretical model.  

Throughout this activity, Amanda did not seem to demonstrate that she held any probabilistic 
misconceptions associated with the representativeness heuristic. She did demonstrate that she 
held intuitive notions of symmetry and combinations related to the activity based on her 
observations during the experiment and the ease in which she calculated her theoretical model.  
 

Discussion and Conclusions 
The purpose of this study was to explore and document some of the common probabilistic 

misconceptions of preservice teachers. Although all of the preservice teachers in this study are 
undergraduate mathematics majors who have taken at least one course in probability and 
statistics, these preservice teachers still demonstrate probabilistic misconceptions. The most 
common probabilistic misconceptions of the eighteen preservice teachers were related to the 
effect of the time axis, compound and simple events, and availability.  

Most secondary mathematics preservice teachers are required to take at least one probability 
and statistics course, similar to the preservice teachers in this study.  However, because data 
analysis and probability is one of the National Council of Teachers of Mathematics’ five content 
standards for pre-kindergarten through grade 12 mathematics education (NCTM, 2000), it might 
be necessary to examine both the probability and statistics courses and methods courses of 
secondary mathematics preservice teachers in order to discuss any potential probabilistic 
misconceptions of preservice teachers.  

Based on Amanda’s responses during the second interview, it was clear that she valued the 
theoretical model over the experimental model. Amanda developed both an experimental and a 
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theoretical model for finding the probability of x number of heads when flipping six coins. Both 
models accurately described the probabilities. However, Amanda trusted her theoretical model 
over her experimental model. She compared the experimental model to the theoretical model and 
found that the experimental model was not “off by that much.” This is most likely due to the fact 
that Amanda had little experience with experimental probabilities; she was much more familiar 
with theoretical probabilities. This is typical for many preservice teachers like Amanda; they do 
not often have meaningful experiences with activities in which they find both the experimental 
and the theoretical probabilities and compare the two models.  

One benefit of a task like this – developing both an experimental and theoretical model for 
finding probabilities and then comparing the two models – is to show preservice teachers that 
both models are valuable. It is important to explicitly explore the connections between both 
models to enforce the validity, usefulness, and power of the experimental model.  

Identifying and discussing probabilistic misconceptions of preservice teachers should be an 
important part of the teachers’ methods courses as preservice teachers will have an influence on 
their future students’ understanding of probability. Further, having preservice teachers engage in 
hands-on experiments involving well-designed tasks may be one way to help them address their 
own misconceptions (Shaughnessy, 1982; Wilkins, 2007, Khazanov, 2008) and better prepare 
them to help their future students develop sound probabilistic conceptions. 
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This study examined a random stratified sample (n=62) of prospective teachers' work across 
eight institutions on three tasks that utilized dynamic statistical software. Our work was guided 
by considering how teachers may utilize their statistical knowledge and technological statistical 
knowledge to engage in cycles of investigation. Although teachers did not tend to take full 
advantage of dynamic linking capabilities, they utilized a large variety of graphical 
representations and often added statistical measures or other augmentations to graphs as part of 
their analysis. 
 

Purpose of Study 
 Dynamic statistical software tools have become more common in schools in the past decade, 
and mathematics teacher educators are beginning to use these tools in courses for prospective 
mathematics teachers. Although the tools are available, teachers’ effective use of these tools in 
classrooms is influenced by their own understanding of how to use the tools to explore statistical 
ideas. In this paper we examine how prospective teachers use representations of data when 
solving statistical tasks using Fathom (Finzer, 2002) or TinkerPlots (Konold & Miller, 2005). 
 

Theoretical Framework and Background 
Lee and Hollebrands (2008, in press) proposed a framework that characterizes the important 

aspects of knowledge needed to teach statistics with technology (see Figure 1). In this 
framework, three components consisting of Statistical Knowledge (SK), Technological 
Statistical Knowledge (TSK), and Technological Pedagogical Statistical Knowledge (TPSK) are 
envisioned as layered circles with the inner most layer representing TPSK, a subset of SK and 
TSK. Thus, Lee and Hollebrands propose that one’s TPSK is founded on and developed with 
teachers’ technological statistical knowledge (TSK) and statistical knowledge (SK).   

Within Statistical Knowledge is prospective teachers' ability to engage in transnumeration 
(Wild & Pfannkuch, 1999) as a process of transforming a representation between a real system 
(real-world phenomena) and a statistical system (ways of modeling the phenomena statistically) 
with an intention of engendering understanding (Pfannkuch & Wild, 2004). Thus, teachers 
should be able to collect data, represent them meaningfully with graphs and computed statistical 
measures, and translate their understandings of the data back to the context. Often times, 
transnumeration occurs when data is represented in some way that highlights a certain aspect 
related to the context that can afford new insights into the data. 

 Within TSK, our focus is on how prospective teachers can take advantage of technology's 
capabilities to automate calculations of measures and generate graphical displays, and the ways 
they use these graphs and measures to explore data and visualize abstract ideas (Chance, Ben-
Zvi, Garfield, & Medina, 2007). For example, how do prospective teachers visualize measures 
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(e.g., mean) and graphical augmentations (e.g., shade a region of data, showing squares on a least 
squares line), and how do they take advantage of ways to link multiple representations? 
 

 
Figure 1. Components of Technological Pedagogical Statistical Knowledge (adapted from 
Lee & Hollebrands, in press). 
 

Several researchers have studied teachers' use of dynamic statistical tools, usually focused 
within a single professional development experience or course at a specific university (e.g., 
Doerr & Jacob, 2011; Hammerman & Rubin, 2004; Makar & Confrey, 2008; Meletiou-
Mavrotheris, Paparistodemou, & Stylianou, 2009). Overall these studies have shown that 
dynamic tools can provide opportunities for teachers to increase their approaches to statistical 
problem solving, moving beyond traditional computational based techniques and utilizing more 
graphical based analysis. Teachers using TinkerPlots and Fathom in these studies often 
combined graphical and statistical measures by either adding a measure to a graph or using a 
graph to make sense of a statistical measure computed separately. Such analysis by teachers 
often affords opportunities to consider an aggregate view of a distribution that incorporates 
reasoning about centers and spreads (Konold & Higgins, 2003). Although prior research 
discussed how teachers analyzed data where a link among representations can be inferred, 
researchers often did not focus their analysis on how teachers utilized linked representations.  
 

Method 
The overarching research question for the study was: When teachers use technology tools to 

solve data analysis tasks, in what ways do they use representations (dynamic and static) to 
investigate these problems? To further research teachers' use of dynamic statistical tools beyond 
small samples and limited contexts, data were collected from eight different institutions in which 
faculty were using materials (Lee, Hollebrands, & Wilson, 2010) developed by the PTMT 
project1. What is reported here is based on analysis of teachers’ work on three tasks that use 
similar statistical concepts and tools in either TinkerPlots or Fathom (see Table 1).  

The faculty implementing the materials attended a week-long summer institute to become 
familiar with technologies, specific tasks and data sets, and pedagogical issues. Across 
institutions, materials were implemented in a variety of courses, some focused on using 
technology to teach middle or secondary mathematics, and others on statistics for elementary or 
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middle school teachers. The courses predominately enrolled prospective teachers, with a few 
practicing teachers or graduate students. Each teacher worked individually and created a 
document that described his or her work, including illustrative screenshots of ways they used 
technology in solving the task. A total of 247 documents were collected across institutions and 
blinded to protect teacher, faculty, and institutional identity. 

 
Table 1. Research tasks 

 Task as Posed in Materials 

Ch 1 Task 
TinkerPlots 

[Note: Faculty had a choice of two similar data sets to use of state level school data from two 
regions of the US. Data included attributes such as average teacher salary, student per teacher 
ratios, expenditures per student] 
Explore the attributes in this data set and compare the distributions for the South and West 
[Northeast and Midwest]. Based on the data you have examined, in which region would you 
prefer to teach and why? Provide a detailed description of your comparisons. Include copies of 
plots and calculations as necessary. 

Ch 3 Task 
Fathom 

Explore several of the attributes in the 2006Vehicle data set. 
a) Generate a question that involves a comparison of distributions that you would like your 
future students to investigate. 
b) Use Fathom to investigate your question. Provide a detailed description of your comparisons 
and your response to the question posed. Include copies of plots and calculations as necessary. 

Ch 4 Task 
Fathom 

Explore several of the attributes in the 2006Vehicle data set. 
a) Generate a question that involves examining relationships among attributes that you would 
like your future students to investigate. 
b) Use Fathom to investigate your question. Provide a detailed description of your work and your 
response to the question posed in part a. Include copies of plots and calculations as necessary. 

 
 

To begin analysis, four documents were randomly selected from each chapter. Through 
iterative discussions by the research team2, examining documents and making sense of 
prospective teachers' work, both top-down methods of Miles and Huberman (1994), and 
grounded theory (Strauss & Corbin, 1990) were used to develop and apply a coding instrument. 
The coding instrument that emerged was based on theory from research on statistical problem 
solving, particularly cycles of exploratory data analysis and typical phases (ask a question, 
represent data, analyze/interpret, and make a decision, e.g., Wild & Pfannkuch, 1999) and use of 
static and dynamic representations in statistics and other domains of mathematics; and on 
categories and codes that emerged from analyzing an initial random sample of teachers' work. In 
the coding procedures, each teacher's work was chunked into smaller cycles of investigation that 
included four phases (Choose Focus, Represent Data, Analyze/Interpret, and Make Decision). 
Within each phase, several categories were used to characterize the work (e.g., number of 
attributes, type of representations, what was noticed, interpretations, type of claim). 

In the second phase of analysis, we examined a larger randomly chosen subset of documents. 
From an initial review of the 247 documents it was obvious that some responses were more 
detailed than others, contained more statistical investigation cycles, and used more 
representations. Thus, each document was classified as either short or long. Short responses were 
typically 1 page and included 1-2 screenshots with minimal explanation. Others were classified 
as a long response. We then conducted a stratified random sample to have proportional 
representation of short and long responses, and to select about 25% of our documents (Table 2). 
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Table 2. Design of stratified random sample 
 Chapter 1 Chapter 3 Chapter 4 
 Short Long Total Short Long Total Short Long Total 
Total Documents Collected 52 50 102 12 29 41 38 66 104 
Stratified Random Sample 13 12 25 4 8 12 9 16 25 

 
Pairs of coders were assigned 8-12 documents to code. All documents were initially coded 

individually, then the pair met to discuss, compare, record inter-rater reliability, and come to 
consensus for each document. During early stages, several coding categories were clarified and 
new categories emerged that were then adopted into the coding procedures by all coders. For 
several categories of codes discussed in this paper, the overall IRR across documents was 0.923 
for coding representations used, and 0.94 for coding measures added to representations. There 
was low initial agreement about coding an augmentation to a graph (0.523), which led to 
discussions to establish agreed upon coding and a better definition of a graphical augmentation. 
 

Results 
A major advantage of dynamic statistical software is the ability to link representations and 

view different representations and statistical measures or graphical augmentations that can 
perhaps lead to interpretive insights. Thus, to organize our cross-document and cross-chapter 
analysis, we first focused on whether or not a teacher provided evidence of linking 
representations (see Table 3). We considered a teacher was dynamically linking two or more 
representations if there was evidence they had to interact (e.g., click on or drag a data point, 
select a region of data) with data in one representation and use information linked (often 
highlighted) about data in another representation. A teacher was coded as using static 
representations if he coordinated two or more representations without direct interactions. With 
differences noted across chapters, we carefully examined use of representations within chapters. 
 
Table 3. Number of responses providing evidence of linking representations 
 No Evidence of Linking Dynamic Linking Static Coordination 

*Chapter 1 (TinkerPlots) n= 25 13 (52%) 11 (42%) 3 (12%) 

Chapter 3 (Fathom) n=12 8 (66.67%) 2 (16.67%) 2 (16.67%) 

*Chapter 4 (Fathom) n=25 14 (56%) 7(28%) 6 (24%) 

*Totals (n=62) 35 (56.5%) 20 (32.3%) 11 (17.7%) 
*Percents do not sum to 100 since 2 cases in Ch1 and 2 cases in Ch4 were coded as both static and dynamic.  
 
Representation Use in Chapter 1 Task 

In coding Chapter 1 documents, we did not specifically list a data card of a collection as a 
representation of that data, as it was automatically available in TinkerPlots. Data cards look like 
a stack of index cards, with each card representing a case (e.g., the state of Virginia) and 
containing the values for that case for each attribute (e.g., Average salary, Census region) in the 
dataset. Thus, we considered this as a representation of data readily available. Data Tables and 
Plots, however, were considered representations as teachers needed to drag down a Data Table to 
view a different numerical representation, or use a Plot and construct a visual representation. The 
most common Plots created were dotplots and box plots. When teachers engaged in dynamically 
linking or statically coordinating information in more than one representation, they could have 
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been explicitly using or attending to a data card as a representation in that process. This focus 
was typically evident with those who used dynamic linking. The most common purpose for 
dynamic linking was to identify a particular value for a specific case of interest (e.g., clicking on 
a particular case icon in the graph and using the data card to determine the value of an attribute) 
or to click on a different attribute in the data card that would augment the graph by recoloring the 
data icons for a new attribute of interest. In the first type of linking, teachers were often focused 
on special cases such as those that appeared to be outliers and often situated these cases in 
comparison to the aggregate (see Figure 2 as an example of this type of linking). It was also 
inferred that teachers linked the data card and graphical displays in order to report specific values 
(e.g., data point at Q1) or compute measures such as the range. In the latter type of dynamic 
linking, the addition of a second or third attribute in the plot often increased the complexity of 
analysis as teachers considered relationships among attributes. 

 

 
Figure 2. Using dynamic linking to identify state names of data points considered outliers. 

 
In considering ways teachers may have used their TSK, we further examined relationships 

among their actions of augmenting graphs, adding statistical measures to graphs, and whether 
they linked representations. All teachers who dynamically or statically linked representations 
also augmented their graph. Teachers who interacted more with a graph through augmenting 
tended to also engage in linking representations (66.6% of teachers who augmented also linked). 
This pattern was not as strong when considering a relationship between adding a statistical 
measure to a graph and linking representations. Only 50% of teachers who added statistical 
measures to a graph also linked representations, and 3 of the 7 teachers who did not add any 
statistical measures to a graph still engaged in linking representations.   
 
Representation Use in Chapter 3 Task 

In Chapter 3, teachers were asked to explore several attributes in the data and to determine 
questions for their future students to compare distributions. More than half of the examined 
documents were done and submitted within Fathom, rather than in a Word document, so they 
could leave many of their representations viewable in Fathom and write their responses in a text 
box. Those that did their response in a Word document interspersed their text responses with 
purposeful screenshots of their work in Fathom. The data table was not specifically listed as a 
representation in Chapter 3 documents as teachers used this as a primary view of the data in 
Fathom and for grabbing the label for attributes to graph, similar to how teachers used the 
TinkerPlots data cards in Chapter 1. In one case a teacher used the data table as a dynamically 
linked representation; it was thus coded as a representation. Chapter 3 documents tended to be 
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long (71%) yet had the smallest percentage of teachers across all chapters who showed evidence 
of linking representations. The two teachers that linked dynamically did so to examine particular 
cases and clicked on data points in a graph to locate specific values for attributes in a data table. 
The two teachers that demonstrated evidence of static linking did so near the end of their 
problem solving to examine trends across cycles. Both purposes are the same as in Chapter 1.  

Teachers working on the Chapter 3 task used a wide variety of representations, and often 2-3 
representations per cycle of investigation. They seemed to take advantage of the ability to 
generate multiple graph types (box plots, dot plots, scatterplots), and used Summary Tables 
extensively (many had more than one). Several teachers also added statistical measures (e.g., 
mean, median) to the graphs in Fathom; however in two cases, it seemed they were mainly using 
a graph window as a place to compute a statistical measure (e.g., IQR, StDev) whose location in 
the distribution did not add a way to reason about the measure in relationship to the aggregate.    
 
Representation Use in Chapter 4 Task 

In coding representations in Chapter 4 documents, again we did not specifically list the data 
table as a representation, as it was used as a primary view of data in Fathom. Six of the 25 
documents sampled from Chapter 4 were completed entirely within Fathom rather than as a 
Word document. Of the 25 teachers, only 44% (n=11) linked their representations statically or 
dynamically. Overall, the most common purpose for linking was to compare the position of 
groups of cases across graphical representations and to make statements about their relationships. 
Of the four teachers that statically linked representations, three linked between two or more 
graphs. This linking typically occurred as a teacher noted the shape of a graph and commented 
whether or not a second graph using a different attribute was similarly shaped. Furthermore, of 
the four teachers that statically linked representations, two linked numerical measures with a 
graphical representation. One of these teachers linked the standard deviation to a histogram in an 
attempt to make sense of magnitude of the standard deviation. There was no evidence that the 
other teacher attempted to make sense of, or interpret the slope of the least squares line that was 
explicitly linked. Five teachers either implicitly or explicitly linked their representations 
dynamically. Three of these teachers linked two graphs, one linked a graph with the data table, 
and another linked the numerical values of sliders (controlling values of coefficients in a model) 
to characteristics of a graph of the model. Two teachers that linked dynamically and statically did 
so by linking several univariate graphs, and one teacher also linked a boxplot to a scatterplot. 

In considering the ways teachers may have used their TSK, we further examined 
relationships among their actions of augmenting graphs, adding statistical measures to graphs, 
and the ways in which they did or did not link representations. Six out of 11 teachers who 
dynamically or statically linked representations also augmented their graph; whereas, 40% of 
teachers neither augmented their graph, nor engaged in any type of linking among 
representations, and 66% of teachers who did not augment their graph also did not link 
representations. Five of the 11 teachers who linked representations also added statistical 
measures to their graphs. Out of 16 teachers who only displayed data graphically, two-thirds (11 
of 16) did not link their graphs. In contrast, all teachers who either statically or dynamically 
linked representations (n=11) used graphical displays.  

 
Cross-chapter Representation Use 

Teachers in Chapter 3 tended to use several more and unique types of representations of data 
in their response than those in Chapter 1 or 4. This may be an artifact of more than 50% of 
teachers in the Chapter 3 sample submitting their work in a Fathom document. Using Fathom as 
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an analysis and reporting environment may give better insight into all the representations 
teachers used. When reporting work in a separate document and asked to supply screenshots of 
their work, teachers may not report all their representations used. The lack of evidence of linking 
representations may be an artifact of the task posed for Chapter 3 or may be due to the difficulty 
of illustrating linking when many representations are in a single Fathom document. 

The graphs teachers created in Chapter 1 and 3 (tasks about comparing distributions) were 
typically double box plots or dot plots, with a few bar charts and scatterplots in Chapter 3. While 
Chapter 1 teachers most often used one graph per investigation cycle, teachers in Chapters 3 and 
4 typically used more than one graph per cycle. A much wider variety of representations (simple 
box plots and dot plots, double box plots and dot plots, histograms, and scatterplots) were used in 
Chapter 4 (questions about relationships among attributes), and almost always there was more 
than one representation per cycle. In Chapters 1 and 3, the most common use of dynamic linking 
was to coordinate a single graph with either a data card or data table to find out details about a 
specific case of interest. Only occasionally in solving the Chapters 1 and 3 tasks did teachers use 
dynamic linking to look at an interval of data. However, teachers who linked representations in a 
dynamic way in Chapter 4 often were comparing the position of groups of cases across graphical 
representations and using such noticing to make statements about relationships. Static linking 
was done across chapters to compare trends in graphs of different attributes across cycles. This 
was often done towards the end as teachers reflected on their work and made a final decision. 

Teachers who dynamically linked representations tended to also augment a graph (75% 
across all chapters). Most of the teachers (71%) who either did not link representations or only 
statically linked representations did not augment a graph. Chapter 3 teachers added more 
summary statistics to provide detail to fully answer the questions they explored. In Chapter 3, 
75% of teachers added statistical measures to summary tables as compared to 28% in Chapter 4. 
A similar percentage of teachers from Chapter 3 and 4 (58% and 56% respectively) added 
statistical measures to graphical representations as compared to 72% of the teachers in Chapter 1. 
This may be attributed to features of TinkerPlots and Fathom. Whereas, Fathom offers the ability 
to summarize statistical measures in a summary table, TinkerPlots affords being able to easily 
incorporate summary statistics, such as measures of center, on graphical representations.  
  

Discussion 
Given the dynamic nature of Fathom and TinkerPlots, and emphasis in the materials on using 

dynamic linked representations, it was somewhat surprising how few teachers' responses 
provided evidence of either dynamic or static linking among representations. We recognize, 
however, that lack of evidence of linking does not mean that teachers did not engage in this 
activity, just that they did not report their work or findings in a way that we could infer that 
linking had occurred. In addition, it was apparent that those who linked in the Chapter 1 and 3 
tasks did so for similar purposes, often focused on specific individual cases, whereas the Chapter 
4 teachers who linked often did so to examine group propensities. We wonder if this difference is 
related to the nature of the tasks (comparing distributions versus relationships among attributes). 
In the next phase of analysis, it will be important to have a better way of capturing how a 
teachers' use of representations is connected with the complexity of their statistical problem 
solving (i.e., what is a relationship between their SK and TSK). Based on our cross-institutional 
sample, teachers educators may need to provide many opportunities to engage teachers in tasks 
that explicitly encourage dynamic linking. This may facilitate teachers understanding and using 
dynamic capabilities in their statistical work, and hopefully their work with students. 
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THE TEMPORAL CONCEPTION: STUDENT DIFFICULTIES DEFINING 
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This article discusses results from interviews investigating students’ understanding of 
probabilistic independence and mutual exclusivity. Three students compared several sets of 
events in various sample spaces. Data collected from these interviews gives evidence of a 
temporal conception wherein students think of independence as reliant on a chronological 
sequence of events and conditioning. With this approach, students may see some sample spaces 
(e.g. spinners) as having pair-wise independence for all events. In other sample spaces, (e.g. 
decks of cards) students see pairs of events as both independent and not independent, this being 
determined by whether replacement occurs.  

Introduction 
Probability and Statistics have been increasingly emphasized in elementary and high school 

education over the past two decades (National Council of Teachers of Mathematics [NCTM], 
1989; NCTM, 2000). This emphasis has also extended into post-secondary education. Mutual 
exclusivity and independence have gained such emphasis, making it important to accurately 
gauge students’ conceptualizations of these two ideas. This article discusses results from 
interviews aimed to better understand how students think about independence and mutual 
exclusivity in turn contributing to the theoretical framework of how we approach learning in this 
area. 

Manage and Scariano (2010) found that an alarmingly high percentage of undergraduate 
students who were enrolled in a course in probability and statistics had fundamental 
misunderstandings about the relationship between the ideas of independent events and mutually 
exclusive events. They found this by directly assessing students’ understanding of this 
relationship through a non-scientific, multiple-choice survey of 217 students.  

The researchers explored student responses to two questions.  In each question, two events, A 
and B, are assumed to have nonzero probabilities in the same sample space. The first question 
presented a Venn diagram of the sample space with non-intersecting areas, labeled “A” and “B,” 
within a rectangular sample space. The question stated that A and B are mutually exclusive and 
gave four responses: “A and B are independent events,” “A and B are not independent events,” “A 
and B may or may not be independent events,” and “I really don’t know how to do this problem” 
(Manage & Scariano, 2010, p. 18). The second question presented the fact that A and B are 
independent, have nonzero probabilities, included no diagram, and gave four responses: “A and B 
are mutually exclusive events,” “A and B are not mutually exclusive events,” “A and B may or 
may not be mutually exclusive events,” and “I really don’t know how to do this problem” 
(Manage & Scariano, 2010, p. 19). 

In the first question, 68.3% of students incorrectly chose the first answer choice, namely “A 
and B are independent events.” In total, 88% of students incorrectly answered this question. With 
respect to the second question, 36% of students gave the incorrect first response, “A and B are 
mutually exclusive events” whereas 23.3% of students responded correctly. By the results of the 
first question, students seem to think that these two ideas have a direct relationship, that mutual 
exclusivity implies independence. This misconception seems less prevalent in the second 
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question, since the responses were more evenly distributed than they were in the first (Manage & 
Scariano, 2010). 

D’Amelio (2009) found that most participants could not correctly identify a method for 
calculating the probability of the union of mutually exclusive events. Most students mistook the 
product, rather than the sum, of the two events’ respective probabilities for the proper 
calculation. These results suggest students’ confusion about the use of such a product when 
calculating certain probabilities. They also point to a similar misconception to that found in 
Manage and Scariano (2010), particularly a misunderstanding of the distinction between 
independent and mutually exclusive events. Confusion between calculating the probability of the 
intersection of two events rather than their union provides an alternative explanation for this 
mistake. 

Shaughnessey (1992) identifies two equivalent definitions of independent events given that 
the two events A and B are in the same sample space and have nonzero probabilities: 

 
Table 1. Definitions of Independence 

Both D’Amelio (2009) and Manage and Scariano (2010) use Definition 2 in their research. Each 
of these researchers also define two events A and B as “mutually exclusive if and only if (A and 
B) = A"B = #” (p. 15). From this definition, if A and B are mutually exclusive then P(A"B) = 0. 
So, by the zero product property, it cannot be the case that P(A"B) = P(A) ! P(B) and P(A"B) = 
0 when A and B have nonzero probabilities.  

Of the research deliberated, the explicit relationship between independence and mutual 
exclusivity was found in only three articles (Keeler & Steinhorst, 2001; Kelly & Zwiers, 1988; 
Manage & Scariano, 2010). Manage and Scariano use the reasoning discussed above whereas 
Kelly and Zwiers address this relationship in the context of student misunderstanding. They 
provide several examples of how each of these ideas can be explored separately in a classroom. 
Kelly and Zwiers contend that, “most of the confusion arises because we, as instructors, do not 
take the time to relate the two concepts.” They then blatantly state the relationship between the 
two ideas- “mutually exclusive events are (almost) never independent.” They attribute the 
“almost” in this last quote to the “pathological cases” when one or both events considered have 
zero probability (Kelly & Zwiers, 1988). Keeler et al., however, acknowledge the relationship as 
a common misunderstanding among students.  

In considering pedagogical implications for this research, we find that students have many 
difficulties with both conditional probability and independence (Shaughnessey, 1992). This 
research goes on to say that students’ “misconceptions of conditional probability may be closely 
related to students’ understanding of independent events and of randomness in general” 
(Shaughnessey, 1992, p. 475). He points out that many researchers “advocate introducing the 
concept of independence via the conditional probability definition (Definition 1), as they believe 
this is more intuitive for students” (1992, p. 475). This intuition comes in the context of without-
replacement problems. If the sample space remains unchanged, then the first experiment bears no 
affect on the second experiment.  

Other pedagogical research in this area discusses students’ misconceptions related to 
independence almost exclusively with respect to conditional probability (Tarr & Lannin, 2005). 
Tarr and Lannin (2005) justify their concentration on these types of misconceptions, citing 
Shaughnessey (1992), and focus on replacement and non-replacement situations because of the 

Definition 1- P(A|B) = P(A)        Definition 2- P(A " B) = P(A) ! P(B). 
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prevalence of these types of problems in the typical curriculum. Tarr and Lannin state that 
“within this context [that of with-replacement situations], an ‘understanding of independence’ is 
demonstrated by students’ ability to recognize and correctly explain when the occurrence of one 
event does not influence the probability of another event” (2005, p. 216). There is also an 
emphasis that students understand the change of an event’s probability in non-replacement 
conditional probability problems is due to the change of the sample space.  

While Shaughnessey (1992), Tarr and Lannin (2005), and Keeler and Steinhorst (2001) 
suggest conditional probability as a context for independence D’Amelio (2009), Kelly and 
Zwiers (1988), and Manage and Scariano (2010) each explore student misconceptions outside of 
the conditional probability setting. This could provide some reasoning into why D’Amelio 
(2009) and Manage and Scariano (2010) had such disturbingly low numbers of correct responses. 
Supposing that the students’ previous curricula addressed independence in the context of 
conditional probability, the students may not have been able to correctly reason about the 
relationship between independence and mutual exclusivity without such a context. Perhaps this is 
what Kelly and Zwiers are arguing when they say that, “we, as instructors, do not take the time 
to relate the two concepts,” referring to mutual exclusivity and independence (1988, p. 100). 

Since independence can be defined outside of a conditional probability setting, it is not 
limited to an order of experiments. This can be seen in a standard deck of cards. The event of 
drawing a spade is independent of the event of drawing an ace. We can see this since P(spade) = 
,, P(ace) = 1/13, and P(ace " spade) = 1/52 = 1/4 ! 1/13. This example demonstrates that 
independence can be accessibly thought of outside the context of conditional probability. This 
can prove useful since mutual exclusivity is also defined without respect to time. For instance, in 
the above case, it can quickly be demonstrated that P(heart"spade) = 0 since this intersection is 
empty; so these two events are mutually exclusive.  

Altogether, we see that different researchers emphasize two different contexts for the 
independence of two events. Some focus on conditional probability for the definition of 
independence (Definition 1), while others focus on the product definition (Definition 2). 
Shaughnessey (1992) provides an explanation of why educators and some researchers focus on 
conditional probability when dealing with independence in that it is more intuitive for students to 
explore independence in the context of conditional probability. Regardless, students’ 
misconceptions about the relationship between independence and mutual exclusivity prevail.  

Methods 
Interviews were conducted with three undergraduate students who were enrolled in a Junior-

level Proofs course (Alex, Betty, and Caroline). Betty had recently taken an undergraduate 
course in probability and statistics, whereas Alex and Caroline had not. In these interviews, the 
students were asked to give definitions of independent events and mutually exclusive events as 
well as provide examples of each. The students were then given various sample spaces and 
events within those sample spaces and asked to determine whether pairs of events were 
independent. The purpose of these interviews as part of broader research was to gauge the 
students’ understanding of these concepts and the relationship between the two. Two initial 
sample spaces were discussed and then others were explored as students and the interviewer 
responded to situations throughout the interviews. 

The first sample space consisted of a standard deck of cards and a fair six-sided die. The 
events discussed were the simultaneous drawing of a card and rolling of the die. For example, 
event A was “drawing a spade and rolling any number on the die.” Event B was “drawing any 
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card and rolling a three on the die.” This sample space is made up of two smaller sample spaces 
(let’s call them “subsample spaces”) that are often considered individually. Each of these 
subsample spaces is independent of the other, as the card drawn would have no effect on the die 
and vice versa. The second sample space was similar to the first in that it consisted of two 
subsample spaces. In this sample space, an event consisted of tossing a fair coin (heads and tails) 
and spinning a spinner with five colors (blue, red, green, orange, and yellow) with given 
probabilities (.3, .2, .2, .2, and .1, respectively). So, for example, event A was tossing a head and 
spinning blue.  

These sample spaces were chosen to observe how readily students identified the subsample 
spaces as independent and how they thought of the events in these sample spaces with respect to 
independence and mutual exclusivity. The complexity of each sample space also provided 
somewhat familiar situations, the combination of which prevented the participants from simply 
remembering probabilities from previous experience. After several pairs of events in each 
sample space were discussed, the interviewer and participant each introduced different sample 
spaces in discussion. For instance, Betty discussed a deck of cards without a die and the 
interviewer brought up the sample space of a die without the deck of cards when interviewing 
Caroline. This allowed the interviewer and participant to discuss caveats and nuances of the 
concepts of independence and mutual exclusivity in their own terms.  

Results 
Alex defined independence as, “[when] the outcome of one event does not affect the outcome 

of a subsequent event.” This definition implies an emphasis on a sequence of events, where one 
of the events being considered must occur prior to the other. With regard to mutual exclusivity, 
however, Alex was less certain of a formal definition- changing his phrasing twice throughout 
the interview and eventually declaring, “Performing an event or series of events causes a 
subsequent event to have zero probability of happening.” Again, Alex implies that this 
relationship is defined over a period of time. When prompted for an example of independent 
events, Alex gave the example of a die. He stated that rolling a six on the first roll of a die does 
not affect rolling a six on the second roll of a die. This example is consistent with his definition, 
implying that the two events in consideration take place at separate times.  

Betty stated that, “Two events are independent if the probability of A occurring does not 
affect the probability of B occurring.” Betty also described the independence of events A and B 
using the equation P(A) = P(A|B). In comparison to Alex, this definition of independence does 
not necessarily imply that one event must occur before the other. But, when prompted for an 
example of independent events, Betty described the act of picking a card from a deck of fifty-two 
cards, and putting it back so that the probability of picking a second card is not affected. 
Similarly, when asked for an example of events not being independent, Betty provided the case 
of picking a card and not replacing it. These examples are consistent with the notion of 
independence in the context of a “with replacement” and “without replacement” conditioning 
event. In contrast, Betty defined mutually exclusive events with the statement, “you can’t have 
both at the same time.” This definition explicitly states that the events can be compared 
instantaneously. Here, Betty gave the example that the queen of hearts and jack of diamonds are 
mutually exclusive, since they cannot both occur when one card is drawn.  

Caroline’s definition for independence was similar to the other two participants, stating, 
“Two events are independent if they do not affect each other.” Caroline’s example of 
independent events was different from both Alex’s and Betty’s in that Caroline described 
“everyday events” rather than “artificial” events (such as dice or cards) that are typically 
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investigated in the classroom setting. Caroline described how “the probability of someone 
wearing a red shirt is independent of their age.” Similarly, when prompted for an example of 
events that are not independent, Caroline provided the example of someone who is forgetful is 
less likely to win a student lottery for a football ticket, since they are less likely to enter the 
lottery. This example implies a directly causal relationship, where the lower probability of the 
first event (entering the lottery) decreases the probability of a later event (being selected in said 
lottery). 

It should be noted that all three participants showed initial difficulty in differentiating 
between the concepts of independence and mutual exclusivity, although each did eventually 
distinguish between the concepts. Alex, for instance, initially stated that the two concepts are 
“more or less the same thing” and “pretty much synonymous.” Betty’s first definition for 
mutually exclusive events, which she quickly changed, was P(A"B) = P(A)*P(B), the 
mathematical definition of independence. Caroline had greater difficulty defining mutual 
exclusivity, stating, “It sounds like they would be independent of one another.” From this, we see 
at least initial difficulty distinguishing between these two concepts among all the participants, 
consistent with the literature (Manage & Scariano, 2010). 

Independence in the Sample Spaces 
In the first sample space, the participants explored two pairs of events (Table 2). All three 

participants reacted in similar ways to the question, “Are these events independent?” In each 
case, all three students established various cases, beginning with some form of the question, “Do 
you put the card back?” In the first case, the participant described successfully performing one 
event, putting the card back, reshuffling (or resetting) the deck, and then successfully performing 
the other event in question. In each interview, the participant claimed that the events would be 
independent in this case. In the second case, the sequence of events was identical, except that the 
card was not replaced and the deck was not reshuffled.  

Answers were slightly more varied in this second case. For instance, Alex thought that 
neither pair of events was independent, since you “change the context,” but only considered 
event A before event B and event C before event D. Betty considered whether A came before B 
or vice versa and similarly for events C and D. In the first pair, Betty responded that A before B 
gave independence, but B before A did not. With the second pair, each event would change the 
probability of the other, causing C to always be not independent of D. Caroline generalized all 
pairs of events under this case, explaining that without replacement you affect the probability of 
the second event, so that no two events will be independent without replacement.   

  Card Die 

Pair 1 Event A Spade “Any Number” 
Event B “Any Card” 3 

Pair 2 Event C Spade 3 
Event D Heart 4 

Table 2. Events in Sample Space 1 

Event B produced the most diverse explanations. Alex seemed to think of event B as 
impossible after drawing any card without replacing it. He attributed this to the fact that the first 
card would be a member of “any card,” so that drawing any card would not be possible, since 
you will have removed one of them. Betty thought of Event B as always successful and 
independent. Caroline thought of event B as always successful as long as a card was remaining, 
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but independent only when the first card was replaced. It should be noted also, that explanations 
of whether events on the die were independent were almost nonexistent. All three participants 
focused on whether the card was replaced. Alex even said, “With the die, it really doesn’t matter 
what you do… If you’re just rolling dice over and over, those are always independent.” 

The second sample space provided much more homogeneous responses among the 
participants. Most of the events discussed were single outcomes from each subsample space (i.e. 
one color from the spinner and one side of the coin). A few events discussed were similar to 
events A and B from the first sample space, where a compound event from one of the subsample 
spaces was considered. When asked to compare any two events in the sample space, all three 
participants thought of every pair of events as independent from each other. This reflects the lack 
of emphasis on the die in the first sample space. Successfully completing an event on both a coin 
and a spinner does not physically remove an object from the sample space. This fact has strong 
implications about the students’ understanding of the relationship between independence and 
mutual exclusivity. 

Mutual Exclusivity in the Sample Spaces 
The participants seemed to struggle much more with determining two events’ mutual 

exclusivity than with their independence. Alex changed his definition of mutually exclusive 
events twice, each time after encountering examples that challenged his definition. Initially, 
Alex’s definition seemed consistent with the mathematical definition. He explained a scenario of 
it raining or not raining, saying, “It couldn’t be raining and not raining at the same time.” This 
phrasing alludes to an empty intersection. Throughout the interview, Alex changed his definition 
to more closely align with how he discussed independence, so that one event would cause a 
subsequent event to be impossible. Interestingly, as a corollary to his last definition of mutual 
exclusivity, Alex pointed out that two mutually exclusive events couldn’t be independent. He 
made this connection before the interviewer discussed any relationship between the two terms. 

Because he changed his definition, Alex’s responses in the beginning of the interview convey 
a different conceptualization of mutual exclusivity than do his later responses. When comparing 
events C and D he determined that these two events are not mutually exclusive since drawing a 
spade does not cause drawing a heart to have zero probability. In his exploration of the second 
sample space, Alex concludes that no two events are mutually exclusive. This relies on his 
responses regarding independence, since no event in the second sample space changed the 
probability of a subsequent event, no event could cause a subsequent event to have zero 
probability.  

Betty’s responses to questions of mutual exclusivity were consistent with the correct 
mathematical definition in both sample spaces. This is because her definition of the concept was 
a typical translation into “everyday” language, “You can’t have them both at the same time.” 
This is not too surprising since Betty was the only participant to have had recent instruction in 
probability, even though Betty showed early confusion about the distinction between 
independence and mutual exclusivity.   

Caroline also had difficulty establishing a definition for mutual exclusivity. Her final 
definition, “Two events that do not include parts of each other,” is very similar to the 
mathematical definition. Most of Caroline’s responses in each sample space were consistent with 
correct responses, except two responses in the second sample space. Event A in this sample 
space was “spinning blue on the spinner and tossing heads on the coin” and event E was 
“spinning blue or yellow and tossing heads.” Caroline concluded that event A is not mutually 
exclusive of event E, since it was a subset of event E. But Caroline claimed that event E is 
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mutually exclusive of event A, since you could successfully perform event E and not event A by 
spinning a yellow and tossing heads.  

The Temporal Conception 
We see from these results that students think about independence of two events by assuming 

the occurrence of one event and then considering whether this changes the probability of a 
second event that occurs chronologically after the first. The tendency for students to think of 
independence in this way causes a temporal conception. With all three participants, questions of 
events’ independence were answered with students considering sequences of events. With Alex, 
though not in the case of Betty or Caroline, this temporal conception was also evident in his 
definition of mutually exclusive events.  

It should be noted that, had the interviewer asked the participants to determine if the first 
event in a sequence of trials had changed the probability of a second event, the responses that the 
participants gave would have been generally correct. The misconception is that examples of 
chronological dependence and independence generalize to the standard definition of probabilistic 
independence. For instance, in the second sample space, Alex viewed all events as independent 
and not mutually exclusive. Meanwhile, Betty and Caroline viewed all events in the second 
sample space as independent, with some pairs being mutually exclusive and some not. In reality, 
the majority of the events discussed were mutually exclusive of each other (e.g. blue/heads, 
red/tails, orange/heads, etc.) and therefore not independent since most had nonzero probabilities. 
Furthermore, in the first sample space all participants found at least some pairs of events to be 
both independent (with replacement) and not independent (without replacement). This allows 
students to think of independence as a consequence of time and therefore allows the 
misconception that the same two events can be both independent and not independent.  

Discussion 
Understanding this temporal conception could provide insight into how students confuse the 

concepts of independence and mutual exclusivity. For instance, under this conception, a student 
could conclude that mutually exclusive events can be both independent and not independent, as 
was seen in the first sample space with events C and D. One may suggest that the phrase 
“mutually exclusive” and the word “independent” are somewhat synonymous in their everyday 
context, as hinted in the literature (Manage & Scariano, 2010). This was evident in the initial 
responses by each participant. This explanation, however, only helps to explain the responses of 
those students who mistakenly thought that one term implied the other. The temporal conception 
could potentially help explain how students thought events could be “mutually exclusive and 
maybe or maybe not independent” or “independent and maybe or maybe not mutually 
exclusive.” 

Kelly and Zwiers (1988) touched on the notion that students had temporal conceptions about 
independence. The authors discuss statement, “events A and B are independent if knowledge 
about whether A has occurred provides us with no knowledge about whether has occurred,” 
(1988, p. 98) noting that, “In a very subtle way an element of time is hinted at in such a 
statement and it often confuses students.” (1988, p. 98) They then emphasize the importance that 
students understand that independent events are independent regardless of time. While I agree 
with the importance of such a concept, it is not entirely obvious that understanding this will help 
students avoid the temporal conception. It is equally important that students understand that 
knowledge of whether events are independent is calculable without any element of time, 
assuming that one knows the theoretical probability of each event and of their intersection.  
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It can be argued that this subtle element of time is also present when discussing conditional 
probability. This is important since much of the research suggests that independence be taught in 
the context of conditional probability (Shaughnessey, 1992; Tarr & Lannin, 2005; Keeler & 
Steinhorst, 2001). For instance, the phrase “given that the other event has occurred” implies that 
perhaps the first event’s occurrence was chronologically prior to the second. Further research 
could investigate what relationships exist between these concepts with respect to this element of 
time. It is also important to understand how we as educators can overcome this temporal 
conception. Analysis of current school mathematics curricula could allow insight into how 
students build notions of independence. For instance, repeatedly seeing without replacement 
scenarios of conditional probability as a context for how two events can be “not independent” 
could enable students to develop the temporal conception with independence.   
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The likelihood-to-act (LtA) survey measures impulsive and analytic dispositions in solving 
mathematics problems. The current version has 16 impulsive and 16 analytic items. Its validity 
was assessed using a sample of 27 in-service and 92 pre-service teachers. Both the impulsive 
and analytic subscales were found to have internal consistency reliability, but they were not 
correlated with one another. The impulsive subscale was predictive of correctness in classifying 
the LtA items. The analytic subscale was predictive of how well a participant would perform in 
Part 2 of a math test after taking Part 1 and being warned that some items could be tricky.  

 
Many pre-service teachers for elementary and middle grades appear to have an impulsive 

disposition—a proclivity to spontaneously proceed with an action that comes to mind without 
analyzing the problem situation and without considering the relevance of the anticipated action 
to the problem situation (Lim, 2006). For example, Lim (2009) found that 22 out of 28 pre-
service middle-school teachers used the same strategy to solve two superficially-similar but 
structurally-different problems.  

As mathematics educators, we want to help students advance from impulsive disposition to 
analytic disposition—where one analyzes the problem situation (Lim, 2006). An instrument that 
can identify problem-solving disposition will be valuable to both students and teachers. With this 
purpose in mind, we developed the likelihood-to-act survey (LtA). Based on our analyses of the 
data collected using the original 18-item version (Lim, Morera, & Tchoshanov, 2009), we 
increased the number of items from 18 to 32 and revised some of them. To establish the validity 
of this enhanced version, we developed and administered an open-ended questionnaire, a 
classification exercise, and a multiple-choice mathematics test.  

 
Constructs Related to Impulsive-Analytic Disposition 

Impulsive disposition can be viewed from various perspectives. From a cognitive 
perspective, impulsive disposition is related to the Einstellung effect—the phenomenon of 
solving a given problem in a fixated manner even when a better approach exists (Luchins, 1942). 
Ben-Zeev and Star (2001) used the term spurious correlation to account for students’ 
association-based behavior: “when a student perceives a correlation between an irrelevant feature 
in a problem and the algorithm used for solving that problem and then proceeds to execute the 
algorithm when detecting the feature in a different problem” (p. 253). Einstellung effect, 
spurious correlation, and impulsive disposition emphasize different aspects of the same 
phenomenon: (a) Einstellung effect refers to a mental fixation, (b) spurious correlation refers to a 
feature-algorithm association, and (c) impulsive disposition refers to a cognitive tendency. 

From a problem-solving perspective, problem-solving disposition is related to metacognition. 
Actively monitoring one’s progress in relation to a goal is an indicator of analytic disposition. 
Impulsive disposition, on the other hand, is inferred when students “read, make a decision 
quickly, and pursue that direction come hell or high water” (Schoenfeld, 1992, p. 356). We 
consider impulsive disposition to be an externalization of certain beliefs such as “there is only 
one correct way to solve any mathematics problem—usually the rule the teacher has most 
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recently demonstrated to the class” (p. 359). 
From a psychological perspective, impulsive disposition can be viewed as a personality trait. 

Kagan et al. (1964) regard a child as (a) impulsive if the child responds to a question with an 
inaccurate answer but in a short response time, and (b) reflective if the child has an accurate 
answer but long response time. Nietfeld and Bosma (2003) found that college students’ 
impulsive-reflective style is consistent across three types of tasks: verbal, mathematical, and 
spatial.  

From a teaching-learning perspective, impulsive-analytic disposition can be viewed as ways 
of thinking (Harel, 2008) or habits of mind (Cuoco, Goldenberg, & Mark, 1996). In addition to 
helping students develop mathematical understanding, teachers can help students to develop 
desirable habits of mind such as being analytic in solving a problem instead of being impulsive 
by applying the first idea that comes to mind. Self-awareness is a crucial first step towards 
transforming habits of mind from undesirable to desirable. A way to create awareness is to have 
an instrument that can accurately assess one’s own impulsive-analytic disposition. 

 
Means to Assess Impulsive-Analytic Disposition 

A reliable way to investigate students’ problem solving behaviors is through task-based 
interviews (Clement, 2000; Goldin, 1998) and think-aloud protocols (Ericsson & Simon, 1993). 
Ways of thinking such as impulsive anticipation and analytic anticipation can be identified from 
the analysis of students’ responses to interview tasks (see Lim, 2006). Although well-suited for 
uncovering problem-solving disposition in individual students, this mode of data collection is not 
practical for large-scale assessment of students’ problem-solving disposition.  

Well-designed mathematical problems can be an effective and efficient means to assess 
impulsive-analytic disposition. Frederick (2005) designed a three-item test for assessing 
cognitive reflection. One of the items is: “A bat and a ball cost $1.10 in total. The bat costs $1.00 
more than the ball. How much does the ball cost?” (p. 27). The most common wrong answer, 10 
cents, is considered impulsive. A reflective person, on the other hand, is likely to realize that the 
difference between $1.00 and 10 cents is not $1.00 but 90 cents. Other problems, such as 
missing-value problems involving non-proportional situations, can also be used to elicit 
impulsive behaviors.  

An efficient way to measure cognitive and psychological constructs is through the use of 
questionnaire. For example, the Need for Cognition Scale (NfCS; Cacioppo & Petty, 1982) 
measures one’s desire to engage in a complex thought. In the context of mathematics problem 
solving, Lim et al. (2009) developed the LtA survey to measure problem-solving disposition 
along the impulsive-analytic dimension. The LtA survey consists of six-point Likert items where 
participants are asked to indicate how likely they are to respond to a given mathematical problem 
in the described manner. The LtA survey, like most Likert-scale questionnaires, can be used for 
self-assessment. 

The purpose of our study was two-fold. First, we sought to improve internal consistency 
reliability by lengthening the LtA survey to a 32-item measure. We then examined the validity of 
the LtA survey by determining whether the LtA scores were related to accuracy in classifying the 
LtA items and performance on a two-part mathematics test. 

 
Method 

Participants 
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There were three groups of participants: (a) 27 in-service teachers and 10 pre-service 
teachers in a program for improving mathematics and science education in El Paso; (b) two 
mathematics classes for pre-service EC-8 (Early Childhood to Grade 8) teachers with 33 and 22 
students respectively; and (c) one class of 27 pre-service EC-8 teachers. Because this round of 
data collection was designed for testing and piloting the instruments, a convenience sample of in-
service teachers was used. Data collection involving the first group was integrated into a 2.5-
hour lesson on problem-solving disposition. The participants first took the LtA survey and an 
open-ended questionnaire. They then experienced their own problem-solving disposition via a 
three-problem activity involving clickers which are remote units for a personal response system 
that records student responses. They were introduced to impulsive and analytic dispositions via a 
PowerPoint Presentation and were then asked to classify each of the 32 LtA items based on 
whether they considered the act described in the item analytic or impulsive. The activities for the 
second group of participants differed slightly from that for the first group in that the three-
problem clicker activity was excluded because of shorter class time. The third group of 
participants took the LtA survey and the two-part math test.  
Instruments  

Likelihood-to-Act survey. The current version of the LtA survey has four categories: algebra, 
fraction, word problem, and non-mathematically-specific description. In each category there are 
four impulsive items and four analytic items. A pair of items for each category is presented 
below. 

aA3 (x – 7)(x – 4) = 0. When asked to solve for x, how likely are you to study the equation 
and predict the solution? [analytic, algebra] 

iA3 (x – 5)(x – 8) = 0. When asked to solve for x, how likely are you to multiply out the 
terms (i.e., FOIL) and then solve x2 – 13x + 40 = 0 using the quadratic formula? 
[impulsive, algebra] 

aF1 12
1

12
11

5
3 ++ !

!
! !!

!"
! !

!"
. When asked to find the answer for the above arithmetic 

expression without using a calculator, how likely are you to begin by studying the 
fractions to see if you can predict the answer? [analytic, fraction] 

 iF1 10
9

10
1

4
3 ++ !

!
! !

!"
! !

!"
. When asked to find the answer for the above arithmetic 

expression without using a calculator, how likely are you to begin by finding the 
common denominator? [impulsive, fraction] 

aW3 Paula is cycling from home to school. At 8 o'clock she has already cycled 2.4 miles. 
When asked to find her rate of cycling, how likely are you to analyze the problem 
situation instead of dividing 2.4 by 8? [analytic, word problem] 

iW3 Jimmy is walking from home to school. At 7 o'clock he has already walked 1.4 km. 
When asked to find his rate of walking, how likely are you to use the d = rt or r = d/t 
relationship and obtain 0.2 km/hour? [impulsive, word problem] 

aG1 In solving a problem in mathematics, how likely are you to interpret and understand 
the problem thoroughly before deciding what to do? [analytic, general] 

iG1 In solving a problem in mathematics, how likely are you to use the first idea that 
comes to mind? [impulsive, general] 

Three measures can be derived from the LtA survey: (a) the analytic subscale is based on the 16 
analytic LtA items, (b) the impulsive subscale is based on the 16 impulsive items, and (c) the 
analytic-impulsive difference is computed based on the difference between the analytic score and 
the impulsive score for each pair of items.  

Open-ended Questionnaire. In this questionnaire, six open-ended questions were posed to 
uncover participants’ initial approaches for solving selected impulsive items in the LtA survey. 
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The following question, for example, is associated with Item iA3: “What are the first few actions 
that you would take when asked to solve (x – 5)(x – 8) = 0 for x?” Two versions were created to 
cover the 12 non-general impulsive items (i.e., iA1-iA4, iF1-iF4, and iW1-iW4). The first author 
and two first-year graduate students coded all the responses in one version. Another team of a 
full-time research assistant and a final-year doctoral student coded all the responses in the second 
version. Members from both teams met to analyze the responses in a training set and to discuss 
general principles for analyzing. The inter-rater reliabilities for the two teams were 0.91 and 0.97 
respectively. For each written response, two codes were assigned: (a) disposition code using a 
five-point scale to indicate whether the response has a strong or weak indication of analytic (A+ 
or A-) or impulsive (I+, I-) or is inconclusive (U); and (b) correctness code (1 = correct or no 
indication of misunderstanding, and 0 = presence of misconceptions or non-trivial errors). The 
analysis of students’ written responses was reported in the 2010 PMENA conference (Lim & 
Mendoza, 2010). 

Classification test. The classification test was designed to assess the accuracy in determining 
whether the act described in each LtA item is analytic or impulsive. For each of the 32 LtA 
items, participants were asked to label the item as analytic or impulsive, and then to rate whether 
they were confident or not confident in their answer.  

Belief survey. On a 10-point scale (1 = Impulsive; 10 = Analytic), participants were asked 
which point on the scale best describes their own problem-solving and that of their peers, high-
school (HS) math students, HS science students, HS math teachers, and HS science teachers. On 
a five-point scale (1 = strongly disagree; 5 = strongly agree), participants were asked whether 
they agree with statements about their problem-solving disposition, the lesson/presentation on 
impulsive-analytic disposition, and the U.S. mathematics education with regards to impulsive 
disposition. Listed below are representatives of the statements in the survey.  

• I consider myself more impulsive than analytic. 
• Today’s lesson has helped me appreciate the importance of differentiating between impulsive 

disposition and analytic disposition.  
• U.S. high school mathematics curricula promote impulsive disposition. 

Two-part mathematics test. The test was divided into two parts to test the effect of warning 
about trickiness of problems on performance. The test items in both parts are structurally 
equivalent. Each part has 12 problems: 6 involving non-proportional situations and 6 involving 
fractions, ratios, or percents. The problems were designed such that students with an impulsive 
disposition would be more likely to choose a wrong answer choice. Below are two test items:  

• When a candle has burned 23 mm of its original length, its height is 82 mm.  
What is the candle’s height when it has burned 46 mm of its original length? 
(a) 41 mm  (b) 59 mm  (c) 164 mm  (d) None of the above 

• Benito needs to increase the money he has now by 20% so that he can buy a $540 
laptop. How much more money does he need? 
(a) $90    (b) $108    (c) $432    (d) $2700.  

After completing the first part and before beginning the second part, an example (see Figure 1) 
was presented to caution participants that “some of the items in this test may be considered 
‘tricky’ for some students.” 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

287



 

 
Figure 1: An example to warn students to be cautious prior to working on Part 2 

 
Results and Discussion 

Reliability of the Various Measures  
The internal consistency reliability estimates for the various measures in each instrument 

were calculated using Cronbach’s alpha. Table 1 presents for each measure the number of items 
in the measure, the mean value, the standard deviation, the --value, and the 95% confidence 
interval. The reliability values for most of the measures are relatively high, except for the Coded-
correctness score from the open-ended questionnaire and Part 1 of the mathematics test. The 
reliabilities for the analytic and impulsive subscales, 0.81 and 0.74 respectively, were greater for 
this version of the LtA survey than those in the previous version, 0.63 for the 7-item analytic 
subscale and 0.64 for the 7-item impulsive subscale (Lim et al., 2009).  

Table 1: Descriptive and Reliability Measures for the Various Instruments 
 No. of 

Items 
Mean Standard 

Deviation 
Cronbach 

- 
95% Conf. 

Interval for - 
LtA Survey (N = 119)      
      Analytic Subscale  16 3.96 0.71 0.81 0.76 , 0.86 
      Impulsive Subscale  16 4.45 0.63 0.74 0.67 , 0.81 
      Analytic-Impulsive Difference  16 -0.49 0.83 0.77 0.71 , 0.83 
Open-ended Questionnaire (N = 92)      
      Coded-disposition Score 6 1.86 0.31 0.71 0.61 , 0.79 
      Coded-correctness Score 6 0.77 0.26 0.29 0.38 , 0.49 
LtA Classification Test (N = 92)      
      Classification-accuracy Score  32 0.59 0.12 0.76 0.69 , 0.83 
      Classification-confidence Score 32 0.75 0.09 0.86 0.81 , 0.90 
Belief Questionnaire (N = 92)      
      Self-disposition Beliefa 2 2.88 0.38 0.84 0.75 , 0.89 
      Lesson-on-disposition Opinionb 4 4.43 0.05 0.93 0.90 , 0.95 
Two-part Math Test (N = 27)      
      Math-Part1 Scorec 10 0.28 0.22 0.57 0.28 , 0.76 
      Math-Part2 Score 12 0.32 0.22 0.67 0.46 , 0.83 
aThe 10-point scale item was transformed into a 5-point scale. The 5-point item was reverse coded. 
bAll the four items about the lesson used a 5-point scale. 
cTwo items had zero variance (all 27 students got them wrong) and were removed from the scale. 

A mean value of -0.49 for analytic-impulsive difference indicates that the participants in this 
study chose lower values for analytic items than for impulsive items in the LtA survey. A mean 
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value of 1.86 for the coded-disposition score on a 5-point scale (1 = impulsive; 5 = analytic) also 
indicates that the 92 participants were generally more impulsive than analytic in their open-
ended responses. A mean value of 2.88 for the Self-disposition Belief score on a five-point scale, 
on the other hand, indicates that the participants view themselves as more analytic than 
impulsive. Mean values of 0.23 (12 items; 0.28 is Table 1 was based on 10 items) and 0.32 (12 
items) for the two parts of the math test indicate that the 27 pre-service teachers on average 
responded correctly to 23% and 32% of the 12 items. These findings suggest that participants are 
generally more impulsive than analytic although they might view themselves as more analytic 
than impulsive.  

A mean value of 4.43 on a 5-point scale indicates that the participants have a favorable 
opinion about the lesson on impulsive and analytic dispositions. A mean value of 0.59 for the 
classification-accuracy score indicates that the 92 participants (Groups 1 and 2) have a 59% 
accuracy in classifying the 32 LtA items. The 27 participants (Group 3) showed a 9% gain from 
Part 1 to Part 2, suggesting that students performed better when they were warned to be cautious. 
Correlations among the Various Measures  

The correlation between the analytic subscale and impulsive subscale was -0.014, not 
statistically different from zero. In other words, the analytic and impulsive subscales were 
independent of one another. Interestingly, the difference score between the two subscale scores 
for each pair of items had a relatively high reliability of 0.77 (see Table 1).  

Table 2 presents the correlation between the measures from the LtA survey and other 
measures that might be related to impulsive-analytic disposition. The disposition scores derived 
from coding of the six open-ended responses were positively correlated (r = 0.373) to the 
analytic subscale and negatively correlated (r = -.0488) to the impulsive subscale. These 
significant correlations were probably due to the similarity between the items in the open-ended 
questionnaire and the LtA items. In addition, their initial exposure to the LtA survey first might 
have influenced their subsequent written responses. 

Table 2: Correlations between LtA Subscales and Other Measures 
 Analytic 

Subscale 
Impulsive 
Subscale 

Analytic Subscale  1  
Impulsive Subscale  -0.014  1 
Analytic-Impulsive Difference  0.745**  -0.678** 
Coded-disposition Score  0.373**  -0.488** 
Coded-correctness Score  0.256*  -0.205* 
Classification-accuracy Score  0.107  -0.286** 
Classification-confidence Score  0.183  -0.048 
Self-disposition Belief Score  0.418**  -0.275* 
Lesson-on-disposition Score  0.011  -0.041 
Math-Part1 Scorea  0.075  -0.205 
Math-Part2 Score  0.595**  -0.140 
*p < .05, **p < .01.  

Participant accuracy in classifying items was negatively correlated to impulsive subscale 
(r = -0.286) but not correlated to analytic subscale. This finding suggests that students who have 
an impulsive disposition tended to make more mistakes in classifying items. Participant 
confidence in their classification was not correlated to either of the LtA subscales.  

Participant self-reported disposition score was correlated to both the LtA subscales. The 
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lesson-on-disposition score was not correlated to either of the LtA subscales.  
Participant performance in Part 1 of the mathematics test, prior to the warning, was not 

correlated to the LtA subscales. On the other hand, student performance in Part 2 was correlated 
significantly to the analytic subscale but not to the impulsive subscale. This suggests that the 
warning about problems being tricky had an impact on students with an analytic disposition but 
not those with an impulsive disposition.  

In summary, the two LtA subscales were reliable and uncorrelated. Other measures in the 
study were reliable and were appropriately associated with the LtA constructs. 
Concurrent Validity  

In addition to the above analyses, we were also interested in determining whether the LtA 
subscales could be used to predict the following variables: (a) self-reported GPA, (b) 
classification-accuracy score, (c) lesson-on-disposition score, (d) Math-Part1 score, and (e) 
Math-Part2 score. To perform these analyses, a hierarchical multiple regression was performed. 
In the first step of the multiple regression, variables representing participant characteristics 
(years of teaching experience, sex, grade band and subject area currently teaching or planning to 
teach) were entered into the regression model. In the second step, we typically entered the two 
LtA subscales (except for predicting Math-Part2 score). None of the variables mentioned above 
could statistically explain variability in self-reported GPA, the lesson-on-disposition score, and 
the Math-Part1 score. In other words, the LtA scores could not predict these three variables, but 
the LtA scores did predict classification-accuracy score and the Math-Part2 score. 

Predicting Classification-accuracy Score. The variables entered in the first step of the 
regression model explained 3.3% of variability in the classification-accuracy score. None of 
these predictors was statistically significant. When the LtA subscales were added, the fraction of 
variance explained, R2, increased by 10.3% to 13.6%. The impulsive subscale (# = -.316, 
p = 0.011) accounted for a significant portion of the variance. In other words, increased 
impulsivity was associated with worse item classification. 

Predicting Math-Part2 score. This regression consisted of four steps instead of two. In the 
first step, participant sex and indicator variables representing grade band were entered and 
accounted for 3.5% of variability in the Math-Part2 scores. None of these predictors was 
statistically significant. In the second step, Math-Part1 score was entered and accounted for an 
additional 27.8% of variability. Increased Math-Part1 scores were associated with increased 
Math-Part2 scores (# = .556, p = .010). In the third step, the LtA subscale scores were entered 
and accounted for an additional 37.8% of variability. Increased analytic disposition (# = .652, p = 
.000) was associated with increased Math-Part2 scores. In the final step, values representing the 
interaction between Math-Part1 and the LtA subscales were entered into the regression model. 
These interactions explained an additional 13.1% of variability. The interaction between Math-
Part1 and analytic disposition was statistically significant (# = 1.75, p = .004) in that individuals 
who had both high Math-Part1 scores and high analytic scores had higher Math-Part2 scores.  

 
Concluding Remarks 

The results obtained in this research phase indicate that a measure of problem-solving 
disposition along the analytic-impulsive dimension could be created using the LtA survey. The 
LtA scales demonstrated adequate internal consistency reliability. In addition, we found that the 
analytic and impulsive subscales were independent of one another, replicating the result of an 
earlier study in the behavioral decision theory on types of decision making styles (Morera et al., 
2006).  
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In this round of data collection, participants were also asked to complete a series of other 
measures. The analytic and impulsive LtA scores were found to be correlated to certain scores 
derived from the open-ended questionnaire, the belief survey, and the two-part mathematics test. 
In particular, the impulsive score was found to be predictive of correctness in classifying the LtA 
items, and the analytic score was predictive of how well a participant would perform in Part 2 of 
the math test after the warning, while controlling for the effects of Math-Part 1 scores. In 
summary, these findings represent a first step in demonstrating the utility of the LtA measures. 

The data we obtained were used to refine the LtA survey (see Lim & Mendoza, 2010) and the 
two-part mathematics test. The revised versions of the two instruments have been administered 
to more than 450 pre-service teachers. The Barratt Impulsiveness Scale Version 11 questionnaire 
(Patton et al., 1995), the NfCS questionnaire (Cacioppo & Petty, 1992), and the Cognitive 
Reflection Test (Frederick, 2005) were administered concurrently to determine how well the LtA 
survey correlates with these three instruments and how well the LtA scores predict students’ 
performance in the two-part mathematics test.  
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In this work we investigated the problem solving behaviors of 3 highschool students as each 
solved four common non-routine problems with the goal to trace performance constancy across 
different subject areas and problem types.  Additionally, we aimed to identify possible factors 
that influenced children's choices of heuristics in different problem contexts. The results 
suggested the individual's confidence and preference for the use of certain strategies. 
Inconsistency in the same individual's mathematics problem solving behaviors across different 
subject areas was revealed. 

Introduction 
The development of problem-solving ability among school children has been a persistent 

goal of mathematics education community for over a century; however, the issue of how to 
develop problem solving skills among learners continues to be a major dilemma. This is, in part, 
due to lack of specific knowledge about mathematical problem solving practices of children and 
factors that influence their choices and actions (English, 2010). Indeed, previous research studies 
on problem solving have primarily focused on effective implementation of problem solving 
instruction by examining students' problem solving performance on tasks (Anderson & White, 
2004). These studies have identified some key factors for the success or failure of 
implementation of problem solving approaches in mathematics teaching; however they do not 
provide detailed accounts of individuals' problem solving behaviors. Muir, Beswick, and 
Willamson (2008) suggested that researchers must focus on understanding what successful 
problem solvers do and use that knowledge to help individuals develop their problem solving 
skills. They further argued that instead of focusing on whether particular strategies should be 
taught or not and how, greater attention must be devoted to understanding processes that 
individuals use when engaged in problem solving. In support of this suggestion we argue that 
knowledge about children's problem solving behaviors and factors that influence their 
mathematical practices while solving problems can better assist teachers in helping nurture 
mature problem solvers. Such knowledge is currently not well developed. The goal of the 
research we report here was to address this need. 

The purpose of this study was to examine mathematical problems solving practices of three 
students in an attempt to determine whether the individuals' performances were consistent across 
different subject areas and problem types. Moreover, we were interested in identifying those 
factors that influenced children's choices of heuristics used in different problem contexts. Lastly, 
we intended to isolate common and unique patterns of behaviors that children exhibited as well 
as those factors that seemingly contributed to the institution of those patterns.  

Context and Background Literature 
Nearly two decades ago Lester (1994) summarized the research community's perspectives on 

qualities that distinguish successful problem solvers from those characterized as poor problem 
solvers, and concluded that good problem solvers: know more and their knowledge is well 
connected and composed of rich schemata, focus more on structural features instead of literal 
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features of problems, are more aware of their own strengths and weakness in terms of problem 
solving, monitor and regulate their problem-solving efforts more routinely and, are more 
concerned about obtaining best solutions to problems. More recently however, English and 
Sriraman (2010) argued for a reconsideration of this list, indicating that since previous research 
had focused mainly on solving word problems emphasized in school textbooks, primarily routine 
and procedural then results concerning quality of problem solving and nature of problem solving 
performance of children should be more critically examined. The authors attributed the lack of 
success of school based practices for fostering problem solving skills among children to 
community's inadequate knowledge about how individuals come to make decisions about when, 
where, why, and how to use heuristics and strategies when faced with novel problem contexts. 
Naturally, focusing on applying these strategies, without understanding how and why individuals 
make decisions about pathways for solving problems is non-productive (English, Lesh, & 
Fennewald, 2008).  Despite these criticisms several fundamental factors regarding effective 
mathematical problem solving have been identified.  First, knowledge of heuristics and their 
appropriate use are recognized as fundamental to mathematical problem solving (Schoenfeld, 
1992). There is evidence indicating that students' use of heuristic strategies is positively related 
to success in problem solving, although the effect may not always be significant (Kantowski, 
1977). Yet a number of studies have shown the deficiencies that students exhibit when applying 
heuristics and metacognitive strategies to their problem solving processes (Schoenfeld, 1992).  

Flexibility in strategy use has also been referenced as a key aspect of successful problem 
solving. Flexibility refers to the quantity of variations that can be introduced by an individual in 
the concepts and mental operations one already possess (Demetriou, 2004). Elia, Heuvel-
Panhuizen, and Kolovou (2009) discussed two methods for studying strategy flexibility usage: 
inter-task flexibility (changing strategies across problems) and intra-task flexibility (changing 
strategies within problems). They used three non-routine problems to study the strategy use and 
strategy flexibility by 4th grade high achievers. An implicative statistical method was performed 
to determine whether the strategies used by students to solve the three problems were successful 
or not. Guess-and-check strategy was found to be the most crucial strategy that led to the success 
of the three pattern/algebra problems. An important finding was that higher inter-task strategy 
flexibility was displayed by more successful problem solvers, while intra-task strategy flexibility 
did not support the problem solvers in reaching a correct answer. An intra-task strategy 
flexibility study showed that the understanding to the problem influenced the correctness of the 
answer, instead of the flexibility of the strategies.  

A study of four 6th grade students' problem solving behaviors was conducted by Muir, 
Beswick, and Williamson (2008). The strategies students used in solving 6 problems were 
analyzed and three categories of performance were proposed to associate with the levels of 
problem solving behaviors students exhibited including, naive, routine and sophisticated. The 
consistency of approaches across problems for each individual was also studied, and the 
conclusion was that most individuals consistently exhibited behaviors characteristic in one 
category. Since all 6 problems used in this research concerned number and number sense, the 
consistency in performance across different content areas was not revealed. Our goal in the 
current study was to contribute to the existing literature on mathematical problem solving by 
examining the mathematical problem solving practices of 3 children on 4 tasks selected from 
different content areas in order to identify ways in which children's choices of heuristics and 
orientation may have influenced their mathematical problem solving performance. 
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Methodology 
A task-based interview methodology was used to closely observe and study three students as 

they worked on non-routine mathematical tasks. A case study report was developed for each 
student, describing, in detail, their actions during interview sessions. These case study reports 
were used, first, to identify and analyze the processes students used and patterns of problem 
solving behaviors they exhibited while solving problems; second, to describe and analyze the 
problem solving strategies children utilized, their choice of representations and metacognitive 
behaviors they accessed and used.  

Although the major research project from which the data for the study was selected involved 
interviews with nearly 60 children, only three participants, Jazzy in 8th grade, Liza and Yoni in 
9th grade (all pseudo names), were selected to serve as case subjects for the current study. This 
selection was due to several important considerations as described below.  

First, all three participants had signed consent forms to participate in the longitudinal 
research project. Second, all three had worked on the same four tasks used as data collection 
sources. This would allow us to draw inferences regarding comparisons among their thinking and 
orientations, processes they used during problem solving episodes and metacognitive behaviors 
they exhibited. Additionally, the three participants offered a wide range of backgrounds and 
habits that would strengthen the potential for generalizability of the results. Despite their 
differences, the participants shared similar attributes; they were characterized as "successful" 
students of mathematics as measured by grades they had secured in their mathematics courses 
and results of the State mandated standardized exams. Lastly, each of the subjects displayed 
distinct behaviors when interacting with problems during the enrichment sessions: Liza exhibited 
flexible explorations when tackling problems, Jazzy showed strong reliance on calculator and 
numbers, and Yoni possessed the most sophisticated mathematics technique learned in school 
curriculum. Diverse performances were expected among the three participants.  

Data Sources  
The data sources consisted of two interviews with each of the participants. Each interview 

consisted of approximately 35-40 minutes. Each interview was tape–recorded and used in 
analysis. The first interview consisted of two parts: the first part was assessing participants' 
mathematics background information, their beliefs about mathematics, and their views on value 
of mathematics for their lives. The second part of the first interview the children contained 
problem solving episodes. During the second interview it was reassured that the participants 
solved the remaining problem selected for data analysis.  

The participants were interviewed individually. The protocol for problem solving interviews 
suggested the least interruption from interviewers during students' problem solving work. The 
protocol also suggested that interventions be made only when a clear understanding what 
children were doing was not evident or if reasoning and justification was not shared by them. 
The children were not restricted by a specific amount of time or their representational systems 
they could use.  

Four non-routine problems were selected to access participants' problem solving 
performances in patterns, functions, and geometry (Table 1 illustrates two of the interview 
questions). The problems were selected so to elicit different heuristics. The diversity of subject 
areas and heuristics served the aim of studying the consistency of individual problem solving 
behaviors/performances across problem types and subject matter contexts.  
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1. Joe gives Nick and Tom as much money as each already has. Then Nick gives Joe and 
Tom as much money as each of them then has. If at the end each has 8 dollars, how much 
money did each have at the beginning? 
4. What relationships exist among the areas of triangles and rectangle? 

 
Table 1. Description of problems 

Data Analysis 
Using Mason's mathematical problem solving model, mathematical practices of each child 

were analyzed and modeled. Mason (1985) divided the process of problem solving into three 
phases: entry, attack, and review. The entry phase includes thinking about "what do I know," 
"what do I want," and "what can I introduce." The review phase further contains "checking," 
"reflecting," and "extending." However, a typical problem solving activity is seldom linear; an 
individual always goes back and forth when proceeding to the desired outcome. Also it is 
possible that the attack phase is difficult to observe or the review phase is missing. Generally 
speaking, this perspective could provide an overview of the entire problem solving process so 
that a clearer relationship between steps could be identified and studied. Mason's model, 
however, does not indicate the internal or external forces that impact the movement from one 
phase of process to next. Between each process, distinct motives/stimuli might exist, initiated by 
the individual or outside information that can either facilitate or prevent making progress 
towards a more general understanding and ultimately, more efficient problem solving 
performance. Mason's model as used in this research was modified in order to demonstrate 
certain internal (self-initiated) and external (interviewer-initiated) forces influencing 
mathematical work of the children.  

Each interview episode was videotaped. We first reviewed each episode repetitively to track 
the distinct problem solving phases of each of the children on each of the tasks during each 
problem solving episode. A problem by problem performance model was developed for each 
child and then a cross problem performance analysis was completed. 

A detailed description of the processes each child used, strategies they employed and 
metacognitive behaviors they exhibited was completed. Every strategy and representation used 
by the participants was identified and recorded. Following the completion of each case study 
analysis, the three cases served as data sources for the overall analysis. 

 
Results 

Table 2 provides an overview of particular behaviors and performances of children as they 
relate to average amount of time they spent on tasks, average number of instances of self-
initiated questions, average number of times they switched strategies, average number of self-
initiated testing and justifying episodes. As the data illustrate, although the three participants 
varied greatly in the average amount of time they spent on tasks, their performance along the 
self-initiated constitutive elements of the problem solving process was consistent, suggesting 
potential patterns of thinking and actions. The average numbers of self-initiated questions and 
times shifts in strategy usage had the least variety of items, indicating a less diverse use of these 
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two behaviors. The average numbers of justifying answers, which included self-initiated 
justification and interviewer-initiated justification, varied more than the previous two items. The 
average number of scaffolding questions that the interviewers asked was the item with the most 
variety, which was also the least natural item for participants. A detailed cross case analysis of 
subjects' mathematical practices is offered in the following section. 
  Average 

length of PS 
episode 

Average 
number of 
self initiated 
questions 

Average 
number of 
shifts in 
strategy 
usage 

Average 
number of 
justifying 
episodes 

Average 
number of 
interviewers' 
scaffolding 
questions 

Liza 10'54" 0 1 1.5 1.75 
Jazzy 9'57" 0.5 1 0.75 5.25 
Yoni 7'57" 0.5 0.5 0.25 0.5 

Table 2. Overview of participants' particular behaviors and performances 
 

Patterns of Mathematical Problem Solving Performance among Children 
Based on each student's problem solving episodes, Liza, Jazzy, and Yoni's general problem 

solving practices (despite content and heuristics) are illustrated in Figures 1, 2, and 3 
respectively.  

 
Figure 1: Liza's general problem solving orientation 

Compared to the other two students, Liza's general problem solving process had a unique 
feature: sense-making. Sense-making was her way of self-monitoring, which was presented 
throughout all problem solving episodes. After she reached an answer, sense-making was her 
premier way to justify her response. It was one of the factors that could influence her switch of 
strategy. Liza had a belief that she could solve most problems eventually, thus she was more 
likely to deliberately re–enter the problem in order to gain a better understanding of the problem.  

Jazzy's problem entry phase was different from other students. She always started her activity 
with manipulating numbers in order to get a sense of the problem. Her intra-task strategy usage 
depended largely on whether the strategy she used was by numerical or non-numerical. She 
tended to switch strategy instead of modifying information when she was not using a numerical 
strategy.  
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Yoni's general problem solving orientation was to stick with one method regardless of 
success or failure. He seldom justified his answers and assumed a problem was solved when he 
arrived as an answer (either right or wrong). His low intra-task strategy flexibility could be due 
to his self-confidence regarding his mathematical ability.  

All three participants showed a high degree of involvement in solving the assigned problems 
during the interviews. They took ownership of the tasks and attempted to attack, review and 
solve them. The intensity of their involvement in tasks was reduced or diminished if they failed 
to see patterns, fully understand the information given, or make connections between what they 
knew and the contexts under study. An additional inhibitive factor included their ability to define 
mechanisms for gauging their own success in solving problems when using strategies most 
familiar to them.   

The children's ability to identify relevant from irrelevant data, either embedded in the 
problem or deduced as the result of their own work, was a pivotal influence on their successful 
problem solving as evidenced by their willingness to reflect on options or reconsider approaches. 
Preoccupation with using familiar techniques learned in school curriculum served as a primary 
motive for participants' reluctance to focus on extending their understanding of the problems, 
reflecting systemically on what was given, or to even test and justify their answers.  
  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

298



 

 
 

 
Figure 2: Jazzy's general problem solving orientation 

  

 
Figure 3: Yoni's general problem solving orientation 

The children's particular orientation and their personalities influenced how they entered the 
problems during the initial phase, the degree of persistence they showed in solving them, and 
whether they tried to access additional strategies or engaged in metacognitive actions. The one 
subject with the least amount of interest in school mathematics and its content seemed most 
flexible in changing strategies. Her need for understanding and sense-making, as articulated 
during both interview sessions, may have been the primary force behind her natural desire to 
constantly examine the context at hand and to switch her approaches. On the other hand, the 
most academically successful student among the three, and the one with most sophisticated 
mathematical tools, appeared least flexible in his thinking and choices. Indeed, his attempts to 
use procedures he had learned in school prohibited him from taking the initiative to justify or 
verify his own answers or monitor his progress reflectively. 

All three participants showed the tendency to enter problems using the technique of testing 
numerical values. They made, or refused to make modifications to their initial choices of 
numerical values to understand the problem better. Once, and if a deeper understanding of the 
problem was achieved, they were more willing to switch strategies. Most notably, they were also 
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more successful in the use of newly adopted approaches. Despite this, those with greater control 
over numerical manipulation tended to remain loyal to the use of this approach. A shift from one 
strategy to another was the result of either a significant change in their level of understanding of 
the problem, or provoked by interviewers' questions.  

All three subjects showed the tendency to use concepts and procedures most recently 
addressed in school at the time of data collection, regardless of whether these concepts were 
relevant to the problem under study. This was most notable when they worked on the geometry 
task. With the exception of Jazzy, the two other participants experienced difficulty when 
abstractions of specific knowledge became a focus of work.  

The children's ability to access different representational modes was also driven by the 
contexts they had previously experienced in school experiences. The use of drawing a picture for 
illustrating the problem became only natural for two of the participants (Jazzy and Liza) when 
their initial attempt at using numerical data for answering questions seemed too cumbersome to 
be practical. Even when they were successful in use of the strategy they remained skeptical of 
the accuracy of their own responses. Formalizing and authenticating the final answer derived 
using this approach was endorsed to an outside authority (the interviewer), as opposed to self 
conviction. 

Discussion 
The results of this work provide additional evidence suggesting that self-monitoring is 

positively correlated with success in performance on certain mathematical activities (Cohors-
Fressenborg, Sjuts, & Sommer, 2004; Cohors–Fressenborg et al., 2010).  Liza used sense-
making as a way of self-monitoring her progress on tasks and towards gauging her problem 
solving process accordingly. Jazzy used numerical computation as a way to self-regulating her 
actions and increasing her control over tasks, performed better. Yoni, who did not exhibit self-
monitoring/regulating consistently during his problem solving processes, was not always 
successful in solving problems. Hence, we highlight that self-monitoring/regulating could be a 
significant influence on successful problem solving on both routine and non-routine tasks, 
consistent with findings of previous. 

Our results also indicate that intra-task strategy flexibility usage does not imply success at 
reaching correct answers on tasks (Elia, Heuvel-Panhuizen, & Kolovou, 2009). However, we 
posit further that the level of intra-task strategy flexibility usage might depend largely on the 
individual's level of confidence and preference for the use of certain strategies. These constructs 
may not ensure that correct answers across different subject areas and heuristics might be 
reached. Instead, they may prevent the individuals from moving forward in securing an enhanced 
level of understanding of the problem.  

Our data also revealed inconsistency in the same individual's mathematics problem solving 
behaviors across different subject areas and/or heuristics usage. This result is distinct from the 
conclusion of previous research that indicates most individuals exhibit consistent problem 
solving behaviors (Muir, Beswick, & Williamson, 2008). The factors that may impact the 
consistency in behaviors include the preference for the use of specific approaches and 
orientations (visual, graphical, pictorial, etc.), experience with specific subject area (number 
theory, algebra, geometry), familiarity with the heuristic needed to solve the problem, and 
personal belief about one's own mathematical ability and confidence in problem solving.  

Personal orientation could largely impact one's problem solving behaviors throughout the 
entire process (i.e. Jazzy's numerical orientation). Personal belief about one's own knowledge 
and ability could impact one's confidence: Liza believed she could eventually solve all problems 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

300



 

and Yoni believed he was good at mathematics; both of them exhibited noticeable confidence 
during their problem solving episodes. On the other hand, Jazzy's belief about problem solving 
("the only right answer") influenced her attitude during the problem solving process: she asked 
for the right answer even when she was convinced by visual evidence.  

Lastly, perhaps a puzzling finding of the study is the relationship between children's claimed 
level of confidence with mathematics and their problem solving performance. In virtually all past 
literature focused on the connections between affect and problem solving performance of 
children, the conclusion had been drawn that confidence and success in problem solving are 
directly related: the more confident an individual was in his/her mathematical ability, the better 
performance on problem solving was observed. Our research provides conflicting results. As 
described earlier, the most mathematically confident individual in this study, Yoni, showed the 
lowest degree of flexibility in thinking or control over tasks. It is not quite clear at this point 
what measures were used in previous work for determining the problem solvers' levels of 
confidence and whether claims were carefully studied. This issue merits further study.  
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REFERENTIAL COMMUTATIVITY: PRESERVICE K-8 TEACHERS’ 
VISUALIZATION OF FRACTION OPERATIONS USING PATTERN BLOCK 

 This paper examines ten K-8 preservice teachers’ visual representations of fraction operations 
using the four main pattern blocks. Data consist of figures made using the pattern blocks, drawn 
colored representations, and detailed written comments and algebraic formalism. The 
theoretical framework is drawn from representational theories and analyses of fraction 
operations, and work on coordination of different levels of units. The main result is that only 
those teachers meaningfully coordinating the different referent units in the fraction situations, 
were the ones consistent in their representations and reasoning, and in successfully establishing 
referential commutativity for multiplication of fractions. 

Introduction 
The usual way of representing a fraction numerically, is the expression 

b
a  where a is a whole 

number and b is a nonzero whole number. This representation has several interpretations such as 
part-whole, quotient, operator, and measurement (Kieren, 1980; Skemp, 1986; Olive, 1999; 
Olive & Steffe, 2002). In the part-whole meaning, the referent unit 1 is defined, the denominator 
indicates the number of congruent pieces into which the unit 1 is partitioned, and the numerator 
indicates how many of those congruent parts are selected. In the sharing equally (partitive) 
division model, the fraction is interpreted as the equi-partitioning (Olive & Steffe, 2002) of the 
quantity, a, into b congruent parts (shares), with the fraction, 

b
a  being the share of one person, 

relative to the referent unit for quantity, a. For example, if we share 3 chocolate bars among 5 
friends, each friend gets 3/5 of ONE chocolate bar.  

The repeated subtraction (measurement or quotitive division) interpretation attends to the 
instruction “How much (or how many) of quantity b is (or are) there in quantity a?” or “What is 
the measure of quantity a in units of size b?” 

Children need to be aware of how the same quantity can be represented by many fractions 
(i.e. fraction equivalence) before the exploration of +, $, !, and ÷ operations with fractions. 
Children should be able to recognize and create fractions equivalent to a given fraction, because 
they will frequently need to determine an equivalent fraction in order to add, subtract, multiply, 
or divide, in a way that makes sense to them (Sowder et al., 1998). For example, in adding or 
subtracting fractions, in the process of obtaining fractions of equal denominator, students must 
be able to refer to their knowledge about fraction equivalence. 

In dealing with multiplication of two fractions, the understanding of what the multiplier, the 
multiplicand, and the product refer to is of paramount importance. The referent units for the 
multiplier, the multiplicand, and the product respectively are the multiplicand, the whole unit, 

and the whole unit. The algorithm 
db
ca

d
c

b
a

!
!

=!  is effortless to memorize and to perform; 

however, to render fraction multiplication meaningful, children must be aware of the referent 
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units for these fractions and what the product really indicates. Moreover, while both 
d
c

b
a
!  and 

b
a

d
c
!  yield the same numerical answer, the order matters if we want to conceptualize the 

referent units involved, namely the fact that the referent units are being swapped between the 
multiplier and the multiplicand. As will be explained in the results section of this study, although 
fraction multiplication is algebraically commutative, that commutativity is definitely not so 
obvious to construct referentially. Construction of referential commutativity requires proficiency 
in simultaneously coordinating various fraction relations and different levels of units 
meaningfully. 

As for the division of fractions, the understanding that the referent unit for both the dividend 
and the divisor is the same unit whole, is necessary in order to make sense of the division 
operation. Moreover, it is equally important to realize that the quotient has no reference to the 
original unit whole; the quotient must be seen as a relation between the dividend and the divisor 
in order to develop an in-depth understanding of fraction division. For example, when dividing / 
by * in order to find out how many * lb-bags of coffee we could make from / lb of coffee, the 
answer is one and a half bags (not pounds of coffee). While fraction division has traditionally 
been related with the crude invert and multiply algorithm, most children and adults do not make 
sense of how this algorithm works (NCTM, 2000). Awareness of referent units for fraction 
division is crucial in order to develop any meaning for the algorithm.  

This study investigates the above assertions (with special emphasis on referential 
commutativity of fraction multiplication) by analyzing the work of ten pre-service K-8 teachers.  

Theoretical Framework 
The theoretical framework of this study is drawn from the work by Steffe and Olive 

involving representations of operations with fractions and referent unit coordination (Olive & 
Steffe, 2002; Steffe & Olive, 2010). These researchers postulated a series of fractional schemes 
as a foundation for the construction of fraction operations (Olive & Steffe, 2002, p. 436). They 
also reported facility with whole-number sense as one of the main prerequisites of fractional 
thinking and reasoning (the Reorganization Hypothesis, Steffe, 2010). Their work with children 
in grades three through five involved children’s representations and actions in fractional 
situations using electronic manipulatives called TIMA (Tools for Interactive Mathematical 
Activity)(Olive, 2000).  

The idea of a representational system is also relevant to the research presented in this paper. 
This construct comprises written symbols, thinking aloud, physical manipulatives, and drawn 
representations (Behr et al., 1983). In what follows, we focus on K-8 pre-service teachers’ drawn 
and physical representations of five main fraction operations modeled with pattern blocks, and 
on their abilities to connect their visual and written formalism. 

Context and Methodology 
This study investigates pre-service K-8 teachers’ construction of fraction operation problems 

(equivalence, addition, subtraction, multiplication, division) using physical manipulatives (the 
four main pattern blocks). Ten pre-service K-8 teachers, whom the first author met weekly for 
two weeks in two-hour sessions, were selected from his “algebra for teachers” class to participate 
in this study. They demonstrated their solutions for each problem with both the actual pattern 
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blocks and colorful drawings on a triangular grid (Figure 1). They also explained their reasoning 
in detail for each task with reference to their physical and drawn representations.  

 

 
Figure 1 - The Four Main Pattern Blocks on Isometric Grid 

Our data consists of photographed physical representations, and scanned drawn 
representations along with written arithmetic formalism and detailed comments. The purpose of 
creating these scanned versions was to conduct a retrospective, preliminary thematic analysis in 
order to find possible themes for a detailed analysis. The dataset was then revisited multiple 
times in order to generate a thematic analysis (using constant comparison methodology) from 
which the following results emerged. 

Results & Analysis 
For the equivalence problem 

3
21

3
5
! , all ten teachers pretty much came up with the same 

physical and drawn representations. Several of them even clarified their construction using a 
counting the thirds strategy (see Figure 2). We can infer that Edie relied on this strategy by 
explicitly labeling the thirds that are being counted and also by referring to the whole unit, the 
yellow (or orange) hexagon, at each step of her counting. Lauren used a similar reasoning by 
writing 3 “one thirds” equal one, so 5 thirds will have 2 “one thirds” left over with one yellow 
whole.  
 

 
2a 

 
2b 

 
2c 

Figure 2: Edie’s Physical (2a) & Drawn (2b) Representations & Written Work (2c) 

For the addition and subtraction tasks, not all teachers were as explicit with reference to the 
referent unit, the yellow hexagon, at each step of their construction. Moreover, although the 
instructions required explanation for each step, not all teachers, for instance, thought about using 
the idea of common denominator and involving that in their physical and drawn representations. 
As depicted in Figure 3, both Lauren and April arrive at the correct final answer; however, 
April’s thinking seems to be more sophisticated than Lauren’s in that she not only refers to the 
referent unit yellow hexagon (for the addends in the addition task, and for the minuend and 
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subtrahend in the subtraction task), but she also decomposes each fraction into smaller pieces 
(green triangles representing sixths), thus making sense of the situation. She also clarifies both in 
her writing and her physical and drawn representations that the referent unit for those sixths is 
once again the yellow hexagon. 

 
3a 

 
3b 

 
3c 

 
3d 

Figure 3: Lauren’s (a b) and April’s (c d) Drawn Representations for the + and $$  Tasks 
All teachers succeeded in establishing the referential commutativity of addition in dealing 

with the problems 
2
1

3
1
+  and 

3
1

2
1
+  in constant comparison of their physical and drawn 

representations. They also invalidated the commutativity of subtraction with very creative 
constructions. Multiplication and division tasks, on the other hand, were rather cumbersome for 
many of the participants. There were some who overcame this difficulty by appropriately relating 
the multiplier, the multiplicand, and the product (the dividend, the divisor, and the quotient in the 
division tasks) to their referent units. Only two participants were able to induce a referential 
commutativity for fraction multiplication, the most sophisticated behavior resulting from this 
research study. For the multiplication problems 

2
1

3
1
!  and 

3
1

2
1
! , many teachers constructed and 

drew both the multiplier and the multiplicand, the former being irrelevant, a non-operative 
interpretation of the problem situation. Several teachers swapped the role of multiplier and 
multiplicand. We begin the discussion on multiplication with these problematic representations. 
Emma modeled the first multiplication problem as the product of a red trapezoid and of a blue 
rhombus (Figure 4a). Kristie not only included both 

2
1  and 

3
1  in her constructions, but also 

swapped their roles as well (Figure 4b-c). Her referent units for 
2
1  and 

3
1  respectively were the 

whole unit (yellow hexagon) and 
2
1  (the red trapezoid). Her interpretation of 

3
1

2
1
!  is actually 

2
1

3
1
! , and vice versa. While she is very clear in establishing the referent unit of the product 

6
1  

(green triangle) as the yellow hexagon, we postulate that Kristie failed to establish referential 
commutativity of multiplication due to the interchange of referent unit roles. Both Kristie and 
Emma used their same approaches for the other multiplication problem as well. 
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4a 

 
4b 

 
4c                                         4d 

Figure 4: Emma’s (4a) and Kristie’s Constructions for 
3
1

2
1
!  

Lauren was one of the few who established the referential commutativity of multiplication in 
a meaningful and appropriate manner. For the half of a third problem, she started by constructing 
the third as the blue rhombus. She then bisected this third using a dashed line, as depicted in 
Figure 5a. She was aware of the fact that constructing a half (red trapezoid) was irrelevant in the 
problem situation. She also understood that the referent unit for the multiplier (the half) was the 
multiplicand (the third). It is also worth noting that she did not specify whether the product (the 
sixth) has the whole unit as the referent unit. She followed a similar approach for the third of a 
half problem, as depicted in Figure 5b. 
 

 
5a 

 
5b 

 
5c 

 
5d 

Figure 5: Lauren’s (a, b) and April’s Constructions for Fraction Multiplication Tasks 

We can say that April followed a reasoning pattern similar to Lauren’s, in that she was aware 
of the fact that constructing a half (red trapezoid) was irrelevant in the problem situation (Figure 
5c). She also successfully interpreted the referent units of the multiplier and the multiplicand. As 
can be detected in Figures 5c-d, April took the whole thing one step further by also specifying 
the referent unit of the product “the sixth” as the yellow hexagon unit. Both Lauren and April 
established referential commutativity, but April’s representations can be considered to be more 
sophisticated than Lauren’s. 

Teachers overall seem to have successfully applied the “How many of … are there in …” (or 
“how much of … is there in …”) view in their representations of fraction division problems. 
Some teachers were very explicit in their reference to the yellow hexagon as the referent unit for 
the dividend and the divisor. Some others perhaps over-generalized this reference for the 
quotient by attempting to construct the quotient using the physical or drawn representations. 
What was the quotient’s referent unit then? Was it the yellow hexagon, the dividend, or the 
divisor? Or something else? We begin our discussion on fraction division with Emma’s drawn 
representations for the problems 

6
1

2
1
÷  and 

2
1

6
1
÷ . Emma not only constructed both the dividend 
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and the divisor, but she also drew the quotient as well (Figures 6a-b). She basically arrived at this 
construction with reference to her purely algebraic formalism using the invert-and-multiply 
method. In her interpretation, the quotient of the first problem, 3, is referred to the 3 yellow 
hexagon whole units. In fact, this corroborates our theory about Emma’s view of fraction 
multiplication in which she constructed both the multiplier and the multiplicand (Figure 4a). For 
Emma, all these elements have to be represented using a pattern block. 

Edie, on the other hand, seemed to have meaningfully constructed all the constituents in 
fraction division task. She explained “How many sixths are there in a half? Equivalently, how 
many green triangles are in a red trapezoid? There are three sixths in a half.” In her drawing, 
she also illustrated her way of counting those three sixths by labeling them as 1, 2, and 3, 
respectively (Figure 6c). Edie followed a similar reasoning for the other division problem by 
stating ““How many halves are in a sixth? There is 

3
1  of a half in a sixth.” In her drawing, Edie 

used the idea of labeling, in an attempt to count, for which this time she used a fraction (Figure 
6d). And that fraction, 1/3, the quotient, has nothing to do with the blue rhombus. It is true that 
the blue rhombus represents one third of the yellow hexagon whole unit, but in the context, as 
constructed by Edie, it refers to the quotient 1/3 with referent unit 1/2 (the red trapezoid), which 
also happens to be the divisor. We also observe that Edie meaningfully divides both the half by 
the sixth, and the sixth by the half algebraically, without reference to the invert-and-multiply 
algorithm. 

 
6a 

 
6b 

 
6c 

 
6d 

Figure 6: Emma’s (a, b) and Edie’s (c, d) Constructions 
We conclude our findings with April’s performance on fraction division tasks. We consider 

April’s reasoning as the most sophisticated one in that she makes use of a variety of 
meaningfully connected fraction ideas. April was one of the few making sure to refer to the 
yellow hexagon whole unit and including it in her drawn and physical representations, whenever 
relevant (Figures 3d, 5c-d). For the division (of the half by the sixth, and the sixth by the half) 
problems, she proceeds in a manner very similar to Edie’s (Figure 6c-d). The only difference is 
that April also includes the yellow hexagon in her drawing, which is an indication that she is 
aware that the dividend’s referent unit is the yellow hexagon whole unit (She also uses the idea 
of labeling the sixths the same way Edie does). This stacking approach, which can be thought of 
coordination of referent units at different levels, is a powerful tool in making sense of fraction 
division. We look at April’s coordination of referent units through her physical and drawn 
representations for the multiplication task 

3
2

2
1
!  and the division task 

2
1

6
1
÷  simultaneously. For 

the multiplication task, she explains “There are two 1/3 portions in 2/3; 1/2 of that is one 1/3 
portion.” She also relates the multiplier, namely the 1/2, to its referent unit 2/3 (two blue 
rhombi); the multiplicand, namely the 2/3, to its referent unit yellow hexagon; and the product, 
namely the 1/3, to its referent unit yellow hexagon (Figures 7a-b). For the division task, she 
explains “Division is how many or how much of a given will go into another given portion. 1/3 of 
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1/2 will divide into 1/6 of a whole. Therefore 1/6 ÷ 1/2 = 1/3.” She also relates the dividend, 
namely the 1/6, to its referent unit yellow hexagon; the divisor, namely the 1/2, to its referent 
unit yellow hexagon; and the quotient 1/3 to its referent unit red trapezoid (Figures 7c-d). 

 
7a 

 
7b 

 
7c 

 
7d 

Figure 7: April’s Constructions 
April’s referent unit coordination scheme for the fraction multiplication and fraction division 

tasks can be tabulated as follows: 
Fraction Multiplication Fraction Division 
Components Referent Units Components Referent Units 
Multiplier Multiplicand Dividend Whole 
Multiplicand Whole Divisor Whole 
Product Whole Quotient Divisor 

Table 1. April’s Referent Unit Coordination Scheme 

Conclusions and Discussion 
This study aimed to investigate the visual representations of five main fraction operations 

(equivalence, addition, subtraction, multiplication, and division) created by K-8 pre-service 
teachers using pattern blocks. Analysis of these participants’ physical and drawn representations, 
accompanied by their algebraic formalism and verbal reasoning, helps us to determine important 
insights into their sense-making of the mathematics they are exploring. These insights have 
direct implications for the teaching of fractions in a hands-on-activity based environment. 
Mathematics teachers should be more conscious and explicit in modeling problems because their 
models may lead to a misinterpretation of the problem situation, or even the solution to the 
problem, as depicted in this present study. For example, although some students were confident 
with their algebraic solutions for the multiplication tasks (using the multiply the numerators and 
denominators algorithm) and division tasks (using the invert-and-multiply algorithm), their 
interpretation of the processes differed considerably, when they were asked to represent these 
tasks using the drawn and physical representations.  In particular, Emma’s representations of 
fraction multiplication and fraction division indicate that she may not have a meaningful concept 
for these operations with fractions.  She appears to lack the necessary three levels of units (Olive 
& Steffe, 2010) to mentally coordinate the relations among multiplier, multiplicand and product, 
with respect to their roles in the situation and their respective referent units. This lack of 
coordination is even more apparent in her representation of fraction division (see Figure 6a-b). 
These necessary relations are depicted in April’s referent unit coordination (Table 1 above). 

Although fraction multiplication is algebraically commutative, the representation of that 
commutativity requires sophisticated reasoning. Construction of referential commutativity 
requires proficiency in simultaneously coordinating various fraction relations meaningfully. 
Awareness of the referent units for each component (multiplier, multiplicand, multiplier), ability 
to recognize which fractions are operators and which are quantities, and ability to connect the 
representations of these to the written explanations and algebraic formalism are essential in 
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establishing referential commutativity of multiplication within a representational system (Behr et 
al., 1983). 

Research indicates that the multiplicative conceptual field is very complex and includes 
many concepts of mathematics, other than multiplication itself (Behr, Harel, Post, & Lesh, 1992; 
Harel & Behr, 1989; Harel, Behr, Post, & Lesh, 1992). “Additive reasoning develops quite 
naturally and intuitively through encounters with many situations that are primarily additive in 
nature” (Sowder, Armstrong, Lamon, Simon, Sowder, & Thompson, 1998, p. 128). Building up 
multiplicative reasoning skills, on the other hand, is not obvious; schooling and teacher guidance 
are essential to acquire a profound understanding and familiarization with multiplicative 
situations, especially with respect to fractions (Hiebert & Behr, 1988; Resnick & Singer, 1993). 
This present study indicates the importance for teachers (and students) to develop three levels of 
units structures and the skill to coordinate those units (Olive & Steffe, 2010). 
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To understand relationships between students’ quantitative reasoning with fractions and their 
algebraic reasoning, a clinical interview study was conducted with 18 middle and high school 
students. The study targeted a balanced mix of students with 3 different multiplicative concepts, 
which are based on how students coordinate composite units (units of units). Students 
participated in two 45-minute semi-structured interviews and completed a written fractions 
assessment. This paper reports on how students with the second and third multiplicative concepts 
demonstrated the use of a distributive operation in fraction and algebraic problem solving. 
 

Fractional knowledge is regarded as important for algebraic reasoning (Kilpatrick & Izsak, 
2008; National Mathematics Advisory Panel [NMAP], 2008; Wu, 2001), in part because such 
knowledge is a basis for typical algebra topics such as ratios and slopes of lines. More generally, 
fractional knowledge is important for learning algebra because it helps students advance their 
multiplicative reasoning (cf. Thompson & Saldanha, 2003). For example, generating strategies 
for multiplying fractions can help students develop a distributive operation (Hackenberg & 
Tillema, 2009): to determine 1/5 of / of a yard a student can take 1/5 of each of the three one-
fourths of the yard. So, 1/5 of / is 1/5 of (, + , + ,). Thinking of 1/5 of / in this way might be 
considered algebraic because it highlights how the distributive property emerges from reasoning 
and is powerful for solving problems. However, little research has focused on how students’ 
ways of operating with fractions may influence their algebraic reasoning (Lamon, 2007).  

The purpose of this paper is to examine the distributive reasoning with fractions and 
unknowns of 18 middle and high school students who participated in a clinical interview study. 
The study was designed to investigate relationships between students’ quantitative reasoning 
with fractions and their algebraic reasoning in the area of equation solving. In this paper we 
assess whether students with different multiplicative concepts demonstrated the use of a 
distributive operation in their quantitative reasoning with fractions and their algebraic reasoning.  

The research questions addressed in this paper are: 
1) Do middle and high school students show evidence of a distributive operation in solving 

problems that involve sharing multiple units fairly? If so, how do they reason distributively? 
2) Do middle and high school students show evidence of a distributive operation in solving 

problems involving unknowns and fractions? If so, how do they reason distributively? 
3) What differences are there in the distributive reasoning of students with different whole 

number multiplicative concepts? 
 

A Quantitative and Operational Approach 
Quantitative Reasoning 

Following Thompson and colleagues (1993; Smith & Thompson, 2008), we conceive of 
quantity and quantitative reasoning as a basis for helping students build fractional knowledge 
and algebraic reasoning. A quantity is a property of one’s concept of an object, and to conceive 
of a quantity requires a person to conceive of a measurement unit, of the property as subdivided 
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into some number of these measurement units, and of a way to enumerate the number of these 
units to find a value of the quantity (cf. Thompson, 1993). 

Approaching fractions as quantities means that we pose problems to students in which 
fractions are measureable extents, or lengths; these lengths may represent other quantities as well 
(e.g., weight). Approaching algebraic reasoning from a quantitative perspective means that 
unknowns are quantities for which a value is not known, but for which a value could be 
determined. So unknowns are potential values of quantities. In working with students we 
routinely ask them to make drawings of quantitative relationships, and we aim for students’ 
fraction and algebraic notation to reflect the quantitative reasoning in which students engage. 
Operations and Schemes 

Our work is also based on conceiving of mathematical thinking in terms of people’s mental 
actions, or operations (von Glasersfeld, 1995). Operations that are critical for fractional 
knowledge include partitioning, or marking a part into some number of equal pieces, as well as 
iterating, or repeatedly instantiating a part to make a larger fraction. The operation under 
investigation in this paper is a distributive operation. At the start of the study we characterized 
this operation as applying a process to a composite unit (a unit of units) by applying that process 
to some segmentation of the units that make up the composite unit. For example, to take 2/5 of 3 
pounds a student could take 2/5 of each of the unit pounds that make up the 3 pounds. Our 
findings address whether this conceptualization of a distributive operation is sufficient. 

Operations are the components of schemes, goal-directed ways of operating that consist of an 
assimilated situation, activity, and a result (von Glasersfeld, 1995). For example, if a student has 
constructed a partitive fraction scheme, then a situation of the scheme is a request to make a new 
length that is 2/5 of a foot. The activity of the scheme involves partitioning the foot into five 
equal parts, disembedding one of those parts, and iterating the part twice. The student then 
assesses this result in relation to what she expected. We take students’ reasoning to be the 
functioning of their schemes and operations in on-going interaction in their experiential worlds. 
Multiplicative Concepts 

For us, a concept is the result of a scheme that people have interiorized—i.e., reprocessed so 
that the result is available prior to operating. We use students’ whole number multiplicative 
concepts as a tool for understanding differences in how students build fractional knowledge (e.g., 
Hackenberg, 2010). These multiplicative concepts are based the number of levels of units a 
student has interiorized; to progress from one concept to the next requires a major reorganization 
of operations. Although this study included students with three different multiplicative concepts, 
this paper reports only on students with the second and third multiplicative concepts, as derived 
from prior research (Hackenberg & Tillema, 2009; Steffe, 1994), because students with the first 
multiplicative concept did not show evidence of a distributive operation. 

Students with the second multiplicative concept (MC2 students) have interiorized two levels 
of units. These students have the potential to treat a length as a unit containing some number of 
equal units, and they can do so prior to operating in a situation. For example, these students can 
treat a length that represents one foot as a unit containing five units—a unit of units structure—
without having to actually make the partitions. These students can also make three levels of units 
in activity. For example, they can insert three parts into each of the five parts in the 5/5-foot 
segment and determine that they have made 15 parts in all. However, once they do so, the 15/15-
foot segment is not likely to retain its structure as unit of five units each containing three units 
(Hackenberg, 2010; Hackenberg & Tillema, 2009). 

Students with the third multiplicative concept (MC3 students) have interiorized three levels 
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of units. Prior to operating, these students can treat lengths as a unit containing some number of 
units, each of which contains some number of units—a unit of units of units structure. So, in the 
example above, MC3 students can do what MC2 students do, but they can also retain views of 
the 15/15-foot segment as a unit of 5 units each containing 3 units, and they can switch to 
viewing the segment as a unit of 3 units each containing 5 units. Being able to flexibly switch 
between such unit structures can be useful for constructing a variety of fraction schemes (e.g., 
Hackenberg, 2010; Steffe & Olive, 2010). 

 
Methods 

A clinical interview study was chosen as appropriate methodology to explore the research 
questions because a strength of clinical interviewing is “the ability to collect and analyze data on 
mental processes at the level of a subject’s authentic ideas and meanings, and to expose hidden 
structures and processes in the subject’s thinking that could not be detected by less open-ended 
techniques” (Clement, 2000, p. 547). Interview studies are a tool for generating scientific 
knowledge because dynamic, on-going discussion is a basis for formulating explanatory models 
(Clement, 2000; Steffe & Thompson, 2000) for experienced phenomenon. 

Seven seventh grade students, 10 eighth grade students, and one tenth grade student 
participated in the study. Participant selection occurred via classroom observations, consultation 
with students’ teachers, and one-on-one, task-based selection interviews to assess students’ 
multiplicative concepts. Six students with each multiplicative concept were invited to participate. 
Four of the MC2 students were enrolled in an 8th grade pre-algebra class; one was taking an 
advanced 7th grade mathematics class; and one was taking a 7th grade mathematics class for 
struggling students. Four of the MC3 students were enrolled in an algebra class, and two were 
taking an advanced 7th grade mathematics class. 

Students participated in two 45-minute semi-structured interviews, a fractions interview and 
an algebra interview. All students completed the fractions interview prior to the algebra 
interview, but the time between interviews varied from about 3 weeks to 4 months. The 
interview protocols were refined in a prior pilot study (Hackenberg, 2009), and quantitative 
situations were used as a basis for all problems. The protocols were designed so that the 
reasoning involved in the fractions interview was a foundation for solving problems in the 
algebra interview. For example, in the fractions interview students were posed this problem:  

F2. Fair Sharing of Multiple Identical Bars Problem: Here are five candy bars (congruent 
rectangles). Can you show how to share them fairly among seven people, and determine the 
fair share for one person? Draw the amount one person gets.  

In the algebra interview, students were posed a similar problem but with each bar assigned a 
weight of h ounces:  

A1. Weight of Multiple Identical Bars Problem: Here are five identical candy bars (congruent 
rectangles). Each candy bar weighs some number of ounces. Let’s say that h = the weight of 
one bar. How much does 1/7 of all the candy weigh? Write an expression for this result. 

In working on A1, students were also encouraged to draw a picture to demonstrate how they saw 
their expression. In addition to the two interviews, students completed a written fractions 
assessment (Norton & Wilkins, 2009) to triangulate claims about their fractional knowledge. 

Each interview was video-recorded with two cameras, one focused on the interaction 
between the researcher and student, and one focused on the student’s written work. The videos 
were mixed into one file for analysis, which occurred in two overlapping phases. First, the 
researchers viewed video files and took detailed notes (Cobb & Gravemeijer, 2008). The aim of 
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this phase was to formulate a model of each student’s fraction schemes and equation solving 
activity, to the extent possible over two interactions. To develop these models the researchers 
built on constructs from prior models (e.g., Hackenberg, 2010; Steffe & Olive, 2010; Tzur, 
2004). These models provided the basis for responding to the first two research questions. 

In the second phase of analysis, the researchers looked across the students to articulate 
differences in how students with different multiplicative concepts solved the problems in each 
interview. This phase included assessing differences in students’ distributive reasoning with 
knowns and unknowns and writing syntheses of differences for students with each multiplicative 
concept. This phase allowed the researchers to address the third research question in this paper.  

 
Analysis and Findings 

Four of the MC2 students demonstrated some evidence of a distributive operation in the 
fractions interview, while only one of the MC3 students did so. In this section we present data 
and analysis to support this finding, which was surprising, since prior to the study we 
conjectured that a distributive operation required the third multiplicative concept. Then we 
examine the students’ work on the algebra interview to help illuminate the finding.  
Distributive Reasoning in the Fractions Interview 

MC2 students. Of the four MC2 students who demonstrated evidence of a distributive 
operation in the fractions interview, two demonstrated it immediately upon sharing three 
identical candy bars fairly among five people, which we’ll call problem F1, as well as in working 
on F2. The other two students showed some evidence of a distributive operation over time in 
working on F1 and F2. We present an example of each of these two types of evidence. 

In work on F1, Lisa immediately divided each of the three bars into five equal parts and said 
that each person would get one-fifth from each bar. She seemed certain, and she called the fair 
share that she drew three-fifths. When asked whether the share was 3/5 of all the candy or 3/5 of 
one bar, she said it was 3/5 of all the candy. Upon further questioning, she said 3/5 referred to 
“kind of both” (all the candy and one bar), because the share was 3/5 from one bar and 1/5 from 
each of three bars. Twenty seconds later, when asked if each person got 3/5 of all the candy, she 
said no. She noted that there were five people so one share was one-fifth of all the candy. She 
solved F2, directly following F1, in the same say. She said, “Each person will get one-seventh of 
all the candy, because there are seven people. And they will get one-seventh of each [bar].” She 
said each person would get five-sevenths. 

This data excerpt demonstrates that Lisa has constructed a distributive operation of some 
kind, in that to take find 1/5 or 1/7 of multiple identical units she took 1/5 or 1/7 of each of those 
units. However, for some time in working on F1 she named the fair share 3/5 of all the candy. 
Our interpretation is that to determine a share, Lisa made a unit of units of units in activity: All 
of the candy was a unit of three units, and she partitioned each of those units into five units. 
Once she determined a share, she continued to view all the candy as the referent for the result, 
even though she also she viewed each bar as a unit of five units. Lisa said that one person’s share 
was 1/5 of all the candy only after she thought again about five people sharing all of the bars; 
then she viewed the share as 1/5, consistent with viewing all of the bars as a length partitioned 
into five equal parts (a unit of units). So, she appeared to view the results of her activity as 
different two-levels-of-units views, but not as a three-levels-of-units view. A second MC2 
student operated similarly to Lisa. 

In contrast with Lisa, Sheila was one of the two MC2 students who seemed to develop a 
distributive operation in the process of the interview. Her fractions interview was one of the first 
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in the study, and the interviewer inadvertently posed F1 with four people instead of five. Sheila 
solved this version of F1 by partitioning each of the first two bars in half, and then she 
partitioned the third bar into fourths. She said that each person would get “one-half plus one-
fourth.” In working on F2 Sheila first partitioned each of the five bars into fourths, and she 
numbered the fourths from 1 to 7 sequentially, as if trying to determine whether the there would 
be an equal number of parts for each of seven people. She then tried again but partitioned each 
bar into fifths, again numbering sequentially. On her third try, she partitioned each bar into 
sevenths, numbered them sequentially, and said that each person would get “five-sevenths.” That 
is, each person would get all the pieces with the same number on them (person 1 gets all the 1’s). 

So, Sheila’s work on F1 and F2 is not evidence of a distributive operation. However, in the 
course of the interview, she introduced the idea of numbering the pieces to try to pull out an 
equal amount for each of the seven people. This idea seems to be a possible root for a 
distributive operation, in that through it Sheila determined that she could make fair shares by 
taking one part out of seven from each of the five bars. 

MC3 students. In contrast, the only MC3 student to demonstrate a distributive operation in 
working on F1 and F2 was Liam. In working on F1, Liam immediately said that you could divide 
each bar into five parts, but “that would be kind of cumbersome.” So, he drew his three bars 
stacked vertically and then partitioned them vertically, all at once, into fifths. He then drew out 
one column (consisting of three parts) as the share for one person. He called one share 3/15 and 
then 1/5 of all the candy. When asked for the size of the share in relation to one bar, he paused 
and appeared to do some calculation. He justified his answer of 3/5 of one bar by saying that one 
column was the same as three parts horizontally, which was 3/5 of a bar. He solved F2 similarly, 
although he determined the size of one share in relation to one bar, 5/7, first. To determine the 
fraction of all the candy, he calculated 5/7 x 1/5 and found 5/35, or 1/7. He said he had 
multiplied because one share was 5/7 of a candy bar, and a candy bar was 1/5 of the total. 

Although his process is somewhat different from Lisa’s, it still implies the construction of a 
distributive operation because one column consists of one part from each bar. However, Liam 
may not have been aware of this pattern in his thinking. For example, when asked in F2 whether 
his result of his calculation to determine the fraction of all the candy, 1/7, made sense, he pointed 
out that the seven shares in the five bars could be seen in five horizontal rows (5/7 of each bar) 
and then two more columns, each containing five parts. He did not point to each column. 

The other MC3 students did not reason distributively in the fractions interview, although 
some of them made sophisticated solutions. For example, Suzanne tried out a fractional amount 
of each bar as the share for one person and then looked to see what was leftover. In F2 she first 
tried a share of 2/3 of a bar, and knew she could give that to 5 people, because there were 5 bars. 
She then saw that she had five-thirds leftover, which left an extra one-third after two more 
people each got 2/3 of a bar. So, then she tried a share of /, followed by 4/5, followed by 5/7. 
Distributive Reasoning in the Algebra Interview 

In working on A1, five of the MC2 students did not demonstrate distributive reasoning with 
unknowns. Only Sheila’s work on this problem indicates that she was continuing to develop the 
distributive reasoning that had emerged in the fractions interview. First we present Lisa’s 
response to A1, followed by an analysis of Sheila’s response. Then we discuss the ways of 
operating of the MC3 students on A1, again highlighting the work of Liam and Suzanne. 

MC2 students. After being posed A1, Lisa again demonstrated a possible distributive 
operation by partitioning each of the five bars into seven equal parts and saying that she would 
take “one from each.” However, when asked to draw out that amount, she believed that it would 
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be a whole bar. After she had insisted on this result for over two minutes, the interviewer 
counted the pieces when taking one from each bar, and Lisa said that the result would only make 
5/7 of a bar. When asked how she knew that result was one-seventh of all of the candy, she 
repeated her process (taking 1/7 of each, and that will be 5/7). The interviewer pressed for 
another fraction name for the result in relation to all of the candy, and she said 5/7. Then the 
interviewer asked whether the result would be more or less than the weight of one bar, h. She 
said less, because it was less than one bar. When asked for an expression, she said she did not 
know how to write it, and she wrote down “H <”.  

This piece of data sheds more light on the nature of Lisa’s distributive operation. Her initial 
response to A1 was similar to her initial response to F2, allowing us to corroborate that Lisa has 
constructed a mental action—accompanied by material manifestations—for taking 1/7 of all of 
the bars by taking 1/7 from each bar. However, in working on A1 she did not appear to realize 
for some time that that her action would of necessity produce five pieces; she thought it would be 
a whole bar. So she appeared to lack awareness of the result of her operation. In addition, once 
she had made the result, she did not appear to have any way outside of her initial action to justify 
that the share she produced was one-seventh of all the candy. In fact, in A1 it’s not clear that 
Lisa viewed the result as one-seventh of all the candy. It was almost as if the initial problem of 
finding one-seventh of all of the bars became lost to her once she arrived at her result, five-
sevenths. We account for this as we did with her work on F2, by appealing to her multiplicative 
concept. Lisa made three levels of units in activity by partitioning each of the five bars into 
seven. However, once she did that, she did not appear to retain the structure of the bars as a unit 
of five units each containing seven, and we have no evidence that she switched to a view of the 
entire collection as a unit of seven units each containing five. 

In working on A1, Sheila operated similarly to Lisa in that she immediately divided each bar 
into seven equal parts and colored the first part of each bar. When asked for the weight of that, 
she said “There are five, so five-sevenths of one candy bar.” The interviewer asked her to write 
an expression using h to show the weight of this amount. Sheila wrote 5/7h. In explanation, she 
said that she had multiplied five-sevenths and h.  

Because Sheila had worked so swiftly on A1, the interviewer posed A2: 
A2. Weight of Three Different Bars Problem: There are three candy bars on the table, each of 
different weight (three non-congruent rectangles). The first bar weighs a ounces; the second 
bar weighs b ounces; and the third bar weighs c ounces. How much does three-fifths of all 
the candy weigh? Write an expression to show your result. 

Sheila partitioned each of the three bars into five equal parts, colored the first piece of each bar, 
and wrote “3/5b”. Then she tried to fit the bars together in some way. The interviewer clarified 
that the bars had no particular relationship to each other and decided to pursue finding just one-
fifth of the weight. Sheila then wrote that the weight was “3/15b.” When asked what 1/5 of the 
first bar weighed, Sheila answered “1/5a.” The interviewer asked similar questions for the other 
two bars, and Sheila answered similarly. When asked about the weight of all three parts together, 
Sheila pointed to her expression “3/5b.” The interviewer then asked her to write an expression 
that included a, b, and c, using her ideas about the weights of one-fifth of each bar. Sheila wrote 
“3/5·c·b·a” and said, “multiplying 3/5 by the third bar, by the second bar, and by the first bar.” 

Sheila’s work on A2 helps illuminate the nature of her distributive operation that appeared so 
fluidly in her work on A1. Like Lisa, Sheila had constructed a mental action that we refer to as 
distributive. Unfortunately, on A1 the interviewer did not press Sheila for the fraction name of 
the result in relation to all the candy, so we cannot draw conclusions about whether she could 
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justify that 5/7 of the weight of one bar was 1/7 of the weight of all of the bars. However, in 
working on A2, like Lisa, Sheila did not appear to be aware of the result of her activity. 
Furthermore, in A2 Sheila’s work does not indicate that she viewed 1/5 of the weight of all the 
candy either as the sum of 1/5 of the weight of each bar, or as 1/5 of the sum of the three 
weights. We account for this by appealing to Sheila’s multiplicative concept: Once she had 
partitioned each bar in A2, the problem likely became a unit of 15 units, and so a response like 
“3/15b” was a reasonable response for the weight of 1/5 of those units. 

MC3 students. In contrast with the MC2 students, four MC3 students demonstrated 
distributive reasoning with unknowns in the algebra interview. Liam’s work on A1 showed a 
distributive operation more clearly than his work on F2. He wrote the result as (5h)/7 and 5h • 
1/7. When asked to show that in the picture, he partitioned each bar into sevenths and said to take 
one from each, gesturing to the first part from each bar. He drew out this amount, and when 
asked how much that was of h, he said 5/7. However, in his work on A2, Liam only arrived at (a 
+ b + c) • 3/5 to express 3/5 of the weight of three bars of different weight. Despite several 
opportunities, he did not ever articulate 3/5 of the weight of the bars as 3/5a + 3/5b + 3/5c. 

In her work on A1 and A2, Suzanne seemed to develop her distributive reasoning even more 
than Liam. On A1 she first wrote 5h • 1/7 as her expression. To make her drawing, she 
partitioned each bar into seven equal parts and marked the last part of each bar. She said you 
could put all of those parts together to make 1/7 of all the candy. She drew out that amount and 
wrote 5/7h for its weight. When asked whether the two expressions were the same, she noted that 
multiplying 5 times 1/7 produced 5/7. On A2, Suzanne wrote two expressions for the weight of 
the three different bars and explained that the first one, 3/5(a + b + c), meant that you added all 
the bars together and took 3/5 of it. The second one (3/5a + 3/5b + 3/5c) meant that you took 1/5 
of each weight and then added. Based on this work, we attribute a distributive operation to 
Suzanne in which she had developed awareness of the result of the mental action. 

 
Discussion and Conclusions 

In this section we summarize our responses to our three research questions. First, MC2 
students can develop a distributive operation in which they take a fractional amount of each unit 
to make a fractional amount of multiple units, and they may believe that this action accomplishes 
this goal. However, these students do not necessarily distinguish the fractional meaning of the 
result in relation to the unit versus the multiple units. In addition, they do not necessarily have a 
way to justify that their method works. We attribute this to their interiorization of two, but not 
three, levels of units, as we have discussed above. The main issue is that after partitioning 
multiple units, the multiple bars becomes a unit of units for these students, rather than a three-
levels-of-units structure. This finding causes us to refine our definition of a distributive operation 
to include being able to distinguish different referent units in the results of operating.  

Second, our study supports the conclusion that MC3 students have constructed the means for 
constructing a distributive operation. Our analysis of what is required to develop awareness of 
the result of the action, and a way to justify that the action produces a correct result, relies on 
being able to switch three-levels-of-units structures—a hallmark of the third multiplicative 
concept. However, third, our study also shows that even though MC3 students have this kind of 
power at their disposal, they will not necessarily use it to construct a distributive operation unless 
given opportunities to do so, i.e., unless instruction and tasks are organized favorably for this. 

So, one implication of this study for teaching is to work on sharing multiple units in such a 
way that students construct a distributive operation that they can further develop in algebraic 
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contexts. This can make it possible for discussions of whether 5h * 1/7 is the same as (5/7)h to 
have quantitative, not just numerical, meaning—an issue that appears to be within the cognitive 
powers of MC3 students. Although such work may be challenging for MC2 students, an open 
question is whether it may be influential in helping them advance their multiplicative concepts.  
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Three clinical interviews were conducted with each of 15 sixth grade students to test conjectures 
about the relationship between their level of multiplicative reasoning and their solution of 
combinatorics problems that could involve single and multi-digit multiplication. The problems 
that involved multi-digit multiplication were designed with the intent of investigating whether 
students engaged in binomial multiplication. The conjectures about the relationship between 
students’ multiplicative reasoning and their solution of combinatorics problems that could 
involve multi-digit multiplication were refined as a result of students’ problem solving activity:  
Students who had not constructed the most advanced multiplicative concept were able to engage 
in a form of binomial multiplication.  

 
Curriculum writers have responded to recommendations to incorporate combinatorics 

problems into K-12 curricula (e.g., Lappan, Fey, Fitzgerald, Friel, & Phillips 2002). These 
recommendations have been based on arguments that such problems have the potential to 
support both process and content standards outlined by the National Council of Teachers of 
Mathematics (Srirman & English, 2004). In response to these changes in curricula, researchers 
have produced a small body of research that has investigated students’ combinatorial reasoning 
(Jones, Langrall, & Mooney, 2007). However, this body of research remains small, and so 
relatively little is known about when particular problems are appropriate to introduce to students, 
how teachers can support students’ understanding of these problems, and how such problems are 
compatible with extant goals of the curricula. Therefore, research that aims to address these 
issues is critical for successfully and coherently incorporating such problems into extant 
curricula.  

The study reported on in this paper addresses these issues by investigating how 15 6th grade 
students at three different levels of multiplicative reasoning solved two-dimensional 
combinatorics problems and how they used such problems to reason about multi-digit 
multiplication. The study involved three clinical interviews—one unrecorded selection interview 
and two hour-long video recorded interviews. Each interview was conducted one-on-one with 
study participants. In the first video recorded interview, students solved two-dimensional 
combinatorics problems that could involve single digit multiplication like the Outfits Problem. 

The Outfits Problem: You have three pairs of pants and four shirts. An outfit is one 
shirt and one pair of pants. How many different outfits could you make? 

In the second video recorded interview, students solved combinatorics problems that could 
involve multi-digit multiplication like the Card Problem. 

 Card Problem: You have the ace through king of hearts (13 cards). Your friend has 
the ace through king of clubs (13 cards). Use an array to show all of the possible 2-
card hands you could make that consist of one heart and one club. On your array 
show the number of 2-card hands that have two face cards (Jack, Queen, King), that 
have exactly one face card, and that have no face cards. Use the sections of your array 
to determine the total number of 2-card hands you can make. 
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In both interviews, students were encouraged to use arrays to symbolize the solution of these 
problems. The following research questions guided the study: 

1) How do students at different levels of multiplicative reasoning reason about two-
dimensional combinatorics problems that can involve single digit multiplication?  

2) How do students at different levels of multiplicative reasoning reason about multi-digit 
multiplication in the context of solving combinatorics problems? 
 

Literature Review 
English (1991, 1993) has studied kindergarten through 8th grade students’ understanding of 

two-dimensional combinatorics problems like the Outfits Problem. She concluded that many 6th 
grade students were ready to begin analyzing the structure of such problems, whereas younger 
students were less ready to do so, even though they could solve the problems with concrete 
materials. However, English has exclusively studied how students could use two-dimensional 
combinatorics problems as a basis for reasoning about single digit multiplication. 

Researchers who have studied students’ understanding of multi-digit multiplication have 
primarily used repeated groups problems not combinatorics problems (e.g., Ambrose, Baek, & 
Carpenter, 2003). Moreover, they frequently have not used array representations for these 
problems (Verschaffel, Greer, & De Corte, 2007), even though array representations are often 
included in researchers’ classification of situations involving multiplication (e.g., Greer, 1992).  
Izsak (2004) is one of the few researchers to investigate elementary grade students’ use of arrays 
to represent multi-digit multiplication problems (although he did not use combinatorics 
problems). Izsak found that students in the 4th grade classroom he studied were more successful 
in solving multi-digit multiplication problems than U.S. students in earlier large-scale studies 
(e.g., Mullis, Martin, Beaton, Gonzalez, Kelly, Smith, 1997). This finding suggests that array 
representations may be fruitful for helping students develop an understanding of multi-digit 
multiplication. However, because Izsak’s study is one of the few that has investigated how 
students use arrays to understand multi-digit multiplication, further research is needed 
(Vershcaffel, Greer & De Corte).  

A second finding of Izsak’s (2004) study, which is supported by Ambrose, Baek, & 
Carpenter’s  (2003) findings, is that students tended not to partition both the multiplier and 
multiplicand when computing multi-digit multiplication problems. For example, to solve 13 x 
13, some students partitioned either the multiplier or multiplicand into 10 and 3, but they did not 
partition both 13s into (10 + 3). When students partition both numbers into two parts, they are 
multiplying two binomials together, as opposed to multiplying a monomial times a binomial. 
Problems like the Card Problem were designed for this study to open the possibility for students’ 
to solve the problems using the multiplication of two binomials.  

 
Methodological and Analytic Framework  

Methodology  
The study used clinical interview methodology (Clement, 2000). Clinical interviews allow 

“the ability to collect and analyze data on mental processes at the level of a subject’s authentic 
ideas and meanings, and to expose hidden structures and processes in the subject’s thinking that 
could not be detected by less open-ended techniques” (Clement, p. 547). When using this 
methodology, a researcher formulates conjectures about these mental processes (Confrey & 
LaChance, 2000; Steffe & Thompson, 2000). These conjectures are formulated based on 
conceptual analysis of the mathematical domain and prior research with students in this domain. 
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Problem sequences are then carefully designed so that they allow for testing these conjectures 
(Cobb & Gravemeijer, 2008). During data collection and analysis, conjectures are refuted or not 
refuted based on how students operate to solve problems. When a conjecture is refuted, the 
conjecture becomes open to being refined so that it can be tested in future studies.  

 
Analytic Tools 

The two primary analytic constructs used to characterize students’ mental processes were 
schemes and the mental operations that constitute these schemes. A scheme is a goal-directed 
way of operating that has three parts—an assimilatory mechanism, an activity, and a result (von 
Glasersfeld, 2001). When a student is presented with a problem situation, the problem situation 
may trigger records of prior operating, and in doing so the student may come to recognize the 
situation (assimilate it) as one that involves a particular type of activity. The activity of a scheme 
involves mental operations like partitioning, disembedding, and uniting (three mental operations, 
which will be discussed below). Finally, the student’s activity produces a result (i.e. a solution to 
a problem). 

 
Framework for Participant Selection 

Steffe (1994) has identified three distinctly different levels of multiplicative reasoning for 
elementary grade students. These different levels of multiplicative reasoning are a result of 
learning and development, and they open possibilities for, as well as constrain how, students 
operate mathematically. The different levels of multiplicative reasoning have been used as a 
framework to study students’ reasoning as it pertains to the solution of problems involving both 
whole numbers and fractions. However, these levels have not been used as a basis for studying 
students’ combinatorial reasoning. In this section, I give a brief overview of how students 
operating at the different levels typically solve repeated groups multiplication problems. 

Students operating at the first level of multiplicative reasoning are able to coordinate two 
levels of units in activity. That is, to determine the number of doughnuts a person has if the 
person has 4 packages, with 8 doughnuts in each package, these students coordinate two 
counts—one count tracks the number of doughnuts and the other the number of packages. This 
coordination of two levels of units often involves double counting like the following: one, two, 
three, four, five, six, seven, eight, that is one package; nine, ten, eleven, twelve, thirteen, 
fourteen, fifteen, sixteen, that is two packages, etc. The two units that these students are able to 
coordinate are the number of doughnuts and the number of packages, but they have to make this 
coordination as part of the activity they use to solve a problem.  

Students operating at the second level of multiplicative reasoning are able to take the 
coordination of two levels of units as given, which means that they do not have to make a 
coordination between two counts as part of their activity. Instead, a number word like 8 
automatically means both 1 package and 8 doughnuts. Students who operate with the second 
multiplicative concept are likely to solve the doughnut problem by reasoning that 8 and 8 is 16 
because 8 and 2 is 10 and 6 more is 16. Here the number word 16 would mean 16 doughnuts and 
2 packages. In reasoning in this way, these students are able to operate on 8 by partitioning it into 
two parts (i.e., breaking 8 into 2 and 6), and disembedding both of the parts in order to 
strategically unite them with another group of 8 (e.g., 8 and 2 makes one group of 10, and 6 more 
makes one group of 10 with 6 ones). To finish solving the problem they would likely continue 
this sequential process of adding 8 more onto the previous amount, using strategic ways of 
partitioning the numbers to help them calculate the total amount.  
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Students operating at the third level of multiplicative reasoning are no longer constrained to 
sequentially combining amounts and using addition to solve repeated groups multiplication 
problems. Instead these students might determine the number of doughnuts a person has if the 
person has 12 packages of 8 doughnuts by reasoning that 10 packages of doughnuts would be 80 
doughnuts and that 2 more packages of doughnuts would be 16 doughnuts, which would yield a 
total of 96 doughnuts. In solving the problem in this way, these students are able to reason that 
12 groups of 8 is composed of 10 groups of 8 and 2 groups of 8, and they can use that to 
determine the total amount. In doing so, they treat the 12 groups of 8 as a unit of 12 units each 
containing 8 units. That is, they treat the 12 groups of 8 as itself a unit that can be operated on, 
which means that they are reasoning with a third level of unit. Reasoning with the third level of 
unit enables them to partition 12 groups of 8 into two parts, a unit of 10 units each containing 8 
units and a unit of 2 units each containing 8 units. Then they disembed each part, evaluate each 
part using multiplication (i.e., ten 8s is 80 and two 8s is 16), and subsequently unite the two parts 
together (i.e., 80 and 16 is 96). 

 
Students’ Schemes for Solving Two-Dimensional Combinatorics Problems 

In a prior study with three eighth grade students, all of whom were operating at the third level 
of multiplicative reasoning, Tillema (under review a) identified a scheme that students used to 
solve basic two-dimensional combinatorics problems. The scheme entailed students assimilating 
such situations using two composite units (two input quantities). In the case of the Outfits 
Problem, the two composite units were 4 shirts and 3 pants. The activity of their scheme involved 
two key mental operations—ordering and pairing. Students used an ordering operation when 
they supplied a qualitative property that they used to differentiate the units of a composite unit. 
For example, in the Outfits Problem when a student used colors, a qualitative property, to 
differentiate among the three shirts, the student ordered the shirts. Students then used a pairing 
operation when they created a correspondence between one unit of each composite unit and 
applied their unitizing operation to this correspondence. That is, to be engaged in pairing a 
student created a correspondence between a shirt and pants and then applied her unitizing 
operation to this correspondence to create an outfit, an output unit.  

Students produced the output units by following a lexicographic ordering (cf. English’s, 
1991, 1993 odometer strategy). A lexicographic ordering is similar to a dictionary ordering—the 
word “aa” appears before the word “ab” and all words that begin with “a” appear before all 
words that begin with “b”. So, for example, in the Outfits Problem students followed a 
lexicographic ordering when they created the outfit that contained the first shirt and first pants 
prior to creating the outfit that contained the first shirt and the second pants, and they created all 
outfits that contained the first shirt prior to creating any outfits that contained the second shirt. 
For these reasons, students’ schemes for solving these problems were called a lexicographic 
units pairing scheme (LUPS).  

To differentiate the extent to which students carried out the pairing operations as part of the 
activity of their scheme, two ways that students treated the units of an input quantity were 
defined. A student treated the units of an input quantity as particular units when she repeated the 
pairing operations that she used with one of the units with all of the other units of that quantity. 
For example, in the Outfits Problem, a student treated the pants as particular units when she 
paired the first shirt with the first pants, the first shirt with the second pants, and the first shirt 
with the third pants because she repeated the pairing operations between the first shirt and each 
particular pants. In contrast, when a student did not need to repeat the pairing operations with 
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one or both input quantities, the student operated with a representative unit. For example, a 
student might operate as described above, and then say, “you could do that with all of the other 
shirts.” In this case, the student treated the first shirt as representative of how all of the other 
shirts would function, which enabled her not to carry out all of the pairing operations with the 
other shirts. Based on this distinction between particular and representative units, four different 
levels of the LUPS were identified.  

 
Study Design and Guiding Conjectures 

Selection Interviews 
The selection interviews were used to identify at least three 6th grade students at each of the 

three different levels of multiplicative reasoning, and involved a total of fifteen students. The 
students all attended a magnet school in an urban school district in the Midwest. They were 
selected from a pool of 65 possible students all of whom had the same 6th grade teacher.  

During the selection interviews, I presented problems to students with the intent of 
determining whether a student were able to coordinate two levels of units in activity (the first 
level of multiplicative reasoning), take the coordination of two levels of units as a given (the 
second level of multiplicative reasoning), or take the coordination of three levels of units as 
given (the third level of multiplicative reasoning). The interview protocols involved both whole 
number and fraction problems that were intended to elicit this information, but none of the 
problems involved any type of combinatorics problem.  

 
Design of the First Interview 

During the first interview, students were presented with two-dimensional combinatorics 
problems like the Outfits Problem. They introduced themselves or the researcher introduced to 
them three ways—lists, tree diagrams, and arrays—to represent these initial problems. During 
students’ solution of these initial problems, the researcher emphasized the use of arrays as a way 
to symbolize such problems. The intent of posing these problems was to test three conjectures 
about the relationship between the different levels of multiplicative reasoning and the different 
levels of the LUPS. 

Conjecture 1: Students operating at the first level of multiplicative reasoning will be 
constrained to the second level of the lexicographic units pairing scheme 
(LUPS).  

Conjecture 2: Students operating at the second level of multiplicative reasoning will be 
constrained to the third level of the LUPS.  

Conjecture 3: Students operating at the third level of multiplicative reasoning will operate 
at the fourth level of the LUPS. 

 
Design of the Second Interview  

During the second interview, students were initially presented with problems like the 
Restaurant Problem. 
The Restaurant Problem: A meal at a local restaurant consists of one salad and one 
entrée. The restaurant serves 6 different kinds of salad and 14 different kinds of entrées. 
10 of the entrees have meat. Illustrate with an array the total number of meals that are 
vegetarian and the total number of meals that are non-vegetarian. 
These problems all involved one two-digit number (14 in the case of the Restaurant Problem) 
and one one-digit number (6 in the case of the Restaurant Problem), and again the researcher 
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emphasized using arrays as a way to symbolize these problems. These problems were used to test 
the following conjecture. 

Conjecture 4: Students operating at the third level of multiplicative reasoning will be the 
only students to solve these problems using distributive reasoning.  

If students were able to solve problems like the Restaurant Problem, then they were 
presented with problems that had the potential to involve the multiplication of two binomials like 
the Card Problem, which is symbolized below using an array (Figure 2). 

 
Figure 2: An array for the Card Problem. 

In the Card Problem, 132 can refer to the total number of 2-card hands a person could make, 
while (10 + 3)2 refers to this same total once a person has thought about breaking the hearts and 
clubs into non-face and face cards. Similarly, each of the following, 102, (10 x 3), (3 x 10), 32, 
refers to parts of the array: 0 face cards, 1 face card, or 2 face cards. This reasoning can lead to 
the development of the following equivalences: (13)2 = (10 + 3)2 = 102 + (10 x 3) + (3 x 10) + 32 
= 102 + 2 x (10 x 3) + 32 = 100 + 30 + 30 + 9 = 169. Problems like the Card Problem were used 
to test the following conjecture. 

Conjecture 5: Students operating at the third level of multiplicative reasoning are the only 
students who will experience these types of problems as involving the 
multiplication of two binomials. 

Initial Findings and Discussion 
Based on preliminary data analysis from this study there was no evidence that refuted 

conjectures 1, 2, 3. That is, all students in the study operated as the conjectures predicted they 
would operate. However, conjectures 4 and 5 needed to be refined as a result of this study. 
Providing data exemplars of students’ reasoning that provides evidence for these claims will 
comprise a major component of the presentation of this paper. Here, I present exemplars of data 
to discuss how conjecture 5 has been refined as a result of the study.  

Conjecture 5 stated that students operating at the third level of multiplicative reasoning 
are the only students who will experience the Card Problem as involving the multiplication of 
two binomials. The findings from the study indicate that students at both the second and third 
level of multiplicative reasoning were able to solve problems like the Card Problem. However, 
there were qualitative differences between the students’ solutions of the Card Problem depending 
on whether they were operating at the second or third level of multiplicative reasoning.  

Students who were operating at the second level of multiplicative reasoning solved the 
problem by first pairing a particular card (e.g., the two of clubs) with a representative card from 
the other suit (e.g., the two of hearts), and could take that as indication of producing the first 
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thirteen pairs (i.e., all pairs that could be made with the two of clubs). They repeated the pairing 
operation with each of the thirteen clubs (i.e., treated the clubs as particular units), and could 
then state that the total number of two-card hands would be 13 x 13 and symbolize this 
multiplication problem using an array. Students could then find in their array the four sections 
shown in Figure 2, but to quantify each of these sections they had to re-engage in pairing 
operations for each section of the array. So, for example to determine the number of two-card 
hands that contained only face cards the students had to pair a particular face card (e.g., the king 
of clubs) with a representative face card from the other suit (e.g., the king of hearts), which they 
took as indication of producing the first three two-card hands that contained only face cards. 
They engaged in this pairing operation again for the remaining two clubs that were face cards to 
establish that there would be a total of 3 x 3 or 9 two-card hands that contained only face cards. 
They had to repeat these operations to establish the multiplication problems for the other three 
parts of the array. In doing so, they established that the array could be quantified using one 
multiplication problem (13 x 13) or four multiplication problems (3 x 3, 10 x 10, 3 x 10, and 10 x 
3), but these two ways of quantifying the array remained two separate ways to view the array and 
were not integrated into a single structure (scheme). 

Students who were operating at the third level of multiplicative reasoning solved the Card 
Problem by pairing a representative unit (e.g., the two of clubs) with a representative unit (e.g., 
the two of hearts). Because they treated both one club as a representative unit and the one heart 
as a representative unit, they were able to take a single pairing operation as implying all of the 
two-card hands that they could make. That is, they reasoned, for example, that the two of hearts 
was representative of any of the hearts that could be paired with the two of clubs, and so 13 two-
card hands could be made with the two of clubs. Subsequently, they treated the two of clubs as 
representative of any of the clubs in the deck and so could take it as indicating the number of 
times that they would produce 13 two-card hands without actually having to make these two-card 
hands by pairing cards together. They could symbolize this pairing operation using an array. 
Once they produced the array they were able to determine the four sections of the array without 
having to engage in any further pairing operations. Rather they simply partitioned the two 
composite units they used in assimilation, 13 and 13, into two parts, and this implied to them 
partitioning the array into four sections. Moreover, they could identify a multiplication problem 
for each section of the array without having to use pairing operations to re-establish the 
multiplication problem for each part of the array. This enabled them to generate the equivalence 
that 13 x 13 = (10 + 3) x (10 + 3) = 10 x 10 + 3 x 10 + 10 x 3 + 3 x 3, and see these two ways of 
quantifying the array as part of a single structure (scheme).  

In the presentation, there will be a discussion of each of the 5 conjectures and video data will 
be used to support the statement of the conjecture or to discuss how the conjecture was refined as 
a result of the study.  

 
Endnotes 

1. This research was supported by IUPUI’s Research Support Grants Fund. 
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This study examined High School Geometry standards from recent individual states’ and the 
Common Core Standards (CCSSM) featuring reasoning and proof. We examined specificity of 
content and use of proof or reasoning as a process in the language of standards. Results 
indicated standards with proof as its primary process are more likely to have higher specificity 
of content, and vice versa. Further, the CCSSM were found to have higher content specificity and 
more consistent use of proof as a primary process than the vast majority of states’ standards. 

 
Background and Objectives 

 Since the publication of A Nation at Risk almost 30 years ago (NCEE, 1983), an ever 
increasing emphasis has been given to assessment and content standards. The publication of the 
Curriculum Standards for School Mathematics by the National Council of Teachers of 
Mathematics (1989) helped initiate development of content standards written by individual states 
(Porter, 1994). The NCTM Standards (1989) did not have a specific standard strand for proof but 
included it within the Reasoning Standard. Some noted this absence, noting that proof “is the 
backbone of mathematics” (Wu, 1996 p. 1534), and after many “mathematicians objected to 
what they considered…an under emphasis on proof” (Kilpatrick, 2003, p. 1), the following 
Principles and Standards for School Mathematics (NCTM, 2000) included a more prominent 
role to mathematical proof across the grades through the more explicit Standard on “Reasoning 
and Proof.” In spite of this greater emphasis on proof, some reports on individual states’ 
mathematics content standards have shown either a lack of emphasis on proof and reasoning or 
vague descriptions of its use by students (Klein et al., 2005; Raimi & Braden, 1998; Reys et al., 
2006). In 2010 yet a new set of standards is being put forth in the form of the Common Core 
State Standards for Mathematics (CCSSM) (CCSI, 2010b). These Standards uphold all of the 
NCTM Process Standards including Reasoning and Proof; they also underscore constructing and 
critiquing arguments as a mathematical practice for students to learn. Given past reports 
concerning the role of proof and reasoning in state content standards, and considering the 
implementation of this new set of standards across the nation, we argue that it is useful to 
examine both the emphasis and specification of proof and reasoning in the various states’ content 
standards, as well as those of the CCSSM. We have chosen to focus on standards concerning 
High School Geometry both for the historical importance proof has taken in American Geometry 
curriculum (Herbst, 2002) and for the sake of clarity in comparisons of both proof and reasoning 
in standards across the U.S.  
 

Theoretical Perspective 
 Content standards have been developed in the U.S. for at least a century (Porter, 1994), and 
since the publication of A Nation at Risk (NCEE, 1983), the pressure for standards has increased 
dramatically. Porter (1994) notes that the publication of the NCTMs’ Curriculum Standards for 
School Mathematics (NCTM, 1989) spurred states into writing their own content standards In 
addition to NCTM, various organizations have focused on developing and examining standards, 
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including the National Center on Education and the Economy (NCEE), Council for Basic 
Education (CBE), the Mid-continent Regional Laboratory (McRel), the Council for Chief State 
School Officers (CCSSO), the Thomas B. Fordham Foundation, and the American Federation of 
Teachers (AFT). These and other organizations provided specific standards, guidelines and/or 
evaluations of standards as various states continued to publish and edit their documents (Porter, 
1994). Of particular interest for the current investigation are the evaluations that have been 
conducted of different state mathematics standards, as these will provide a frame of reference to 
both the historical development and evolution of such evaluations as well as the development of 
reasoning and proof in mathematics content standards, with specific focus on secondary 
Geometry. 

The first evaluation of state standards was conducted by the AFT (Gandal, 1996): The report 
examined whether states were developing standards, how such standards were assessed and 
implemented, and the detail provided within the different standards. That report concluded that 
30 states had sufficiently clear and specific mathematics standards. The organization’s most 
recent report in 2001 concluded that 44 states had clear and specific mathematics standards 
(AFT, 2001). The CBE produced a similar finding in their 1998 report Great Expectations? 
(Joftus & Berman, 1998), suggesting that only three states (Alaska, Montana, and Nebraska) had 
a low level of rigor in their mathematics content standards. All of these reports have provided 
general descriptions of the mathematics standards and not details regarding specific topics, in 
particular, not specific accounts of the role of proof or mathematical reasoning in state standards.  
 In contrast, the Fordham Foundation sponsored a report on state mathematics standards that 
did provide detail on specific mathematics content. The first of these reports (Raimi & Braden, 
1998) examined the standards of 46 states and the District of Columbia. Contrary to reports by 
AFT and CBE (Gandal, 1996; Joftus & Berman, 1998), Raimi and Braden (1998) found that 
many states were not providing clear or specific standards. Specifically when focusing on 
mathematical reasoning, the report cited only five states as having a sufficient degree of clarity 
and focus. Further, the report notes that only 17 states explicitly indicate that proof should be 
taught in mathematics. A more recent report by Klein et al. (2005), suggests that this trend has 
not changed much in that “the majority of states fail to incorporate mathematical reasoning 
directly into their content standards…many state documents do not ask students to know proofs 
of anything in particular. Few states expect students to see a proof of the Pythagorean Theorem 
or any other theorem or any collection of theorems” (p. 21).  
 While not focusing on High School Geometry, Reys et al. (2006) provide a similar and 
concurrent finding to Klein et al. (2005), stating that “reasoning is not well articulated or 
integrated across K-8 standards documents…most state standards fail to address reasoning 
aspects in a thorough and comprehensive manner across grade levels and content strands” (Reys 
et al., 2006, p. 9). Given that Reys et al. examined specific elements of mathematical content in a 
comparable manner to Klein et al., it appears that many state standards do not provide clear or 
specific standards on mathematical reasoning.  
 The reports thus far referenced provide two types of reports, those that paid specific attention 
to the way mathematics was described in standards (e.g., Klein et al., 2005; Reys et al., 2006) 
and those that did not (e.g., Gandal, 1996; Joftus & Berman, 1998). This breakdown generally 
describes the reports that appear most prominent in the literature. Further, there tends to be a 
general depiction of standards as ‘mostly good’ in earlier years, and ‘mostly in need of 
improvement’ in recent years. These criticisms added to the lack of commonalities have led to 
the development of the Common Core Standards. 
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The Common Core Standards 
 In June 2009, the National Governors Association (NGA) and the Council of Chief State 
School Officers (CCSSO) announced a new initiative to develop a common set of standards for 
mathematics and language arts. This initiative was called the Common Core Standards Initiative 
(CCSI), and included 46 states, the District of Columbia, and two U.S. territories (CCSI, 2010a). 
As of June 2, 2010, this total included two additional states and a working draft of the standards 
had been developed. The standards were developed to be “fewer, clearer, and higher” (CCSI, 
2010b, p. 1) as compared to previous standards in many states. Among the criteria used in 
designing the standards are the NCTM process standards and the strands of mathematical 
proficiency from the National Research Council’s report Adding It Up (Kilpatrick, Swafford, & 
Findell, 2001; see also CCSI, 2010b). Yet, numerous citations to various reports, assessments, 
and standards are cited as works consulted (see CCSI, 2010b for a full description). A review of 
the documents and descriptions of the Common Core Standards by CCSI suggest a specific focus 
on a number of topics that have surfaced in mathematics education, including mathematical 
modeling and quantitative literacy. Continued reference to reform-oriented documents and 
sources also convey the notion that the Common Core Standards are reform-oriented. 
Additionally, some organizations, such as NCTM “diligently monitored the development of 
CCSSM and advised NGA and CCSSO throughout the process” (p. ix, NCTM, 2010). Yet, CCSI 
(2010c) specifically states that the Common Core Standards are a set of expected learning goals 
for students and do not constitute a curriculum nor do they advocate specific materials or 
teaching practices to be used. This appears to be a different goal for designing content standards 
than some states have used, where content standards were written as documents intended to 
reform teaching more so than specify content (see Thompson, 2001 for a relevant description). 
 As is customary with newly published standards documents, a large amount of skepticism 
and criticism has been levied against CCSI. For example, Zhao (2009) stated that “the Common 
Core Standards Initiative or any such movement to create national standards risks America’s 
future by destroying its traditional strengths in cultivating a diverse and creative citizenry” (p. 
52). Tienken (2009) expressed concerns that the Common Core Standards would only serve to 
increase an ‘achievement test drive mentality’ in the U.S. Providing a more even-handed 
critique, Porter, McMaken, Hwang, and Yang (2010) compared the Common Core Standards to 
the state standards in place and found that “the common core does represent considerable 
change…” but are not “…more focused as some might have hoped” (p. 8).  However, Porter et 
al.’s description of their analysis does not provide content-specific focus in regards to reasoning 
or proof. Therefore, it appears there is a need for a transparent and clear examination of the way 
that reasoning and proof are represented in the Common Core Standards as compared to the 
existing state standards.  
 A main objective of the CCSSM (2010b) is to provide mathematics standards that are clear, 
specific, and rigorous. According to some reports (Klein et al., 2005; Raimi & Braden, 1998) 
many of the states’ standards the CCSSM will be replacing, however, have not provided clear or 
specific standards regarding proof or reasoning in High School Geometry. Yet, since Klein et 
al.’s (2005) depiction of proof and reasoning in various states’ standards, many states have 
published revisions of their standards, and therefore may have provided more sufficiently clear 
and specific expectations of students regarding reasoning and proof. Additionally, there is 
currently no available examination of reasoning and proof in the High School Geometry 
standards in CCSSM. In this paper we provide a current and comparative account of the 
depiction of reasoning and proof in the CCSSM and various states for High School Geometry. In 
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order to accomplish this goal, the following research questions will be examined: 
1. To what extent do different state content standards describe reasoning or proof in 

association with specific mathematical content? 
2. To what extent do different state content standards characterize reasoning or proof as 

processes engaged by students? 
3. Is there a relationship between the extent to which reasoning or proof are characterized as 

processes that students engage in and the extent to which such reasoning and proof 
standards refer to specific mathematical content? 

 
Methods 

Standards documents from all 50 states were collected and coded for analysis. These 
documents were collected from the websites of each state’s department of education. However, 
various states have different formats for organizing their standards in High School mathematics, 
such as by course, by grade band or benchmark, or by specific grade level. Given our focus on 
High School Geometry, it was decided that standards in the format of a course would have the 
Geometry course standards examined. For those states with benchmarks or grade level formats, 
the standards for the Geometry strand (or equivalent) was used for the full range of High School 
standards provided by each state. In some cases, advanced level standards were provided. To 
ensure a fair comparison, we examined only those standards expected of every student. In 
addition to taking into account varying format and structure, different states may represent the 
same content with a different number of standards. In other words, one state may say in one 
standard what another state says in three. This phenomenon was taken into account by recording 
the number of High School Geometry standards each state had, and using this number to 
calculate mean emphasis on reasoning and on proof. 
 As our focus was on the presence and emphasis of standards outlining mathematical 
reasoning and proof in Geometry, we examined the standards documents for the presence of 
standards that referred to these mathematical processes. For proof, standards were identified 
through the use of words such as proof(s), proving, or prove present in a standard’s statement. 
Explicit use of these words was necessary for the standard to be counted as a “proof” standard, as 
this ensured that such a standard would be interpreted by those using the document in practice as 
referring to proof. A similar process was used for coding reasoning, by using words referring to 
logic as indicators of such standards. Words such as inductive, deductive, conjecture, logic, 
reason, and their cognates were used as indicators. Once standards were identified as being a 
proof and/or reasoning standard, they were coded for their specificity to which they referred to 
the mathematics concepts involved. 
 As noted by certain reports (e.g., Klein et al., 2005; Reys et al., 2006) many standards lacked 
a degree of specificity in descriptions of mathematical reasoning and proof. Rather, a state may 
provide a number of standards requiring that proof be taught, but may not specify what 
mathematical content should be associated with proof. Therefore, we developed three 
categorizations to distinguish the degree of content specificity in a standard. The first, low 
specification, is a standard that makes either no reference to a particular mathematical concept, 
or where such specification is vague, e.g., New York standard “Write a proof arguing from a 
given hypothesis to a given conclusion.” A standard with medium specification is a standard that 
makes reference to a set of mathematical concepts, but still lacks a degree of specificity, e.g., 
CCSSM standard “Use congruence and similarity criteria for triangles to solve problems and to 
prove relationships in geometric figures.” While this example indicates the action of proving 
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relationships in the area of triangle congruence and similarity, the standard does not specify any 
theorems or specific properties. Standards coded as having high specification were standards that 
make reference to a set of mathematical concepts with specific identification of such concepts, 
e.g., Michigan standard “Know a proof of the Pythagorean Theorem, and use the Pythagorean 
Theorem and its converse to solve multi-step problems.” This example makes reference to a 
specific concept, the Pythagorean Theorem, rather than a category or set of concepts.  
 In addition to coding for concept specification, each standard was examined for transitivity. 
In Systemic Functional Linguistics (Halliday & Matthiessen, 2004) transitivity is a system of 
linguistic resources with which language supports the ideational metafunction (i.e., the way 
language represents the world). Transitivity permits to represent the world as sequences of 
processes involving participants and circumstances. Canonically, processes are realized by verbs 
and participants by nominal groups. To illustrate our analysis of transitivity note, for example, 
Delaware standard “Reason deductively to justify a conclusion or to create a counter-example;” 
this contains three verbs (reason, justify, create), but reason represents the transitive process 
associated with this standard. Similarly, in Delaware standard “Use appropriate technologies to 
model geometric figures and to develop conjectures about them” the verb use represents the 
transitive process for the standard. What interests us here is the difference between these two 
examples in the way that reasoning is expressed as an expectation of students. Whereas to reason 
is the actual process students are expected to engage in the first standard, the second standard 
expects students to use technologies in specific ways, one of which is reasoning. Reasoning in 
the second standard acts as what Halliday and Matthiessen (2004) would refer to as a participant 
in the clause. As can be noted in the two examples given, other verbs can represent transitive 
processes for clauses nested within the main clause (clause complex). To account for such use of 
proof and reasoning terms as transitive processes and/or participants, we ranked such usages of 
identified words and terms in regards to the degree to which they were a primary process. 
 The Pennsylvania standard “Write formal proofs to validate conjectures or arguments” 
contains the primary process of to write, which we coded as having a distance of zero from the 
primary process. Proofs is a participant in this clause, as is to validate conjectures. However, 
proofs, while not a primary process, is relatively closer to the primary process than conjectures. 
Therefore, we coded proofs as being a distance of one away from the primary process, and 
conjectures as a distance of two away from the primary process. In this way, we accounted for 
the semantic emphasis placed on proof and reasoning in various standards.  

Results 
 The number of standards for High School Geometry varied dramatically from state to state, 
with some states having as few as 5 and others having as many as 74. The Common Core 
Standards included 42 individual standards for High School Geometry while the mean for states 
was 21.98 (SD = 15.47). This means that the Common Core Standards do indeed have more 
standards for Geometry than most states, although some states do have more.  
 Approximately 24% of the CCSSM Geometry standards (n = 10) featured proof while the 
average for states was 11.7% (SD = .118), indicating that CCSSM provided proportionally more 
standards featuring proof than the typical state document. The CCSSM had an average 
specificity score of 2.90 for proof standards while the mean specificity score for states’ proof 
standards was 1.88 (SD = .59). This indicates that the CCSSM standards featuring proof tended 
to be more specific in regards to mathematics content than the typical state document. The 
CCSSM proof standards had an average transitivity distance of 0.10, while the average 
transitivity distance for the various states’ standards featuring proof was 1.24 (SD = .60). This 
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indicates that the CCSSM proof standards tended to treat proof as the primary transitive process 
while various states did not do so as consistently. Taken altogether, the CCSSM provide a 
greater emphasis on proof in their Geometry standards than the most current state standards, and 
also provides more specific and clear standards with a strong emphasis on the action of proof. 
While some states showed stronger tendencies on at least one of the three criteria (overall 
emphasis, specificity of content, transitivity distance), no state showed higher scores on more 
than one indicator. Some states did appear somewhat comparable to the CCSSM proof standards: 
California, Florida, Indiana, and Michigan. With the exception of these states, the CCSSM in 
proof for High School Geometry show clear and definitive improvement in specification and 
increase in focus.  
 While the CCSSM show an increased focus on and specification of proof in High School 
Geometry, this trend was not as evident when examining other forms of mathematical reasoning. 
The CCSSM emphasized logical reasoning in mathematics in 5% of their standards. While the 
mean for states was a 14% emphasis, there was a large degree of variance (SD = .14). However, 
the CCSSM Geometry standards that featured reasoning showed a transitivity distance of 1.00, 
while the average for varying states was 1.26 (SD = .42). Further, only two states had lower 
averages than the CCSSM regarding transitivity distance, indicating that the CCSSM was similar 
to many states in regards to specifying reasoning as the primary process in its standards. 
Additionally, the CCSSM appear to provide more specificity (M = 3.00) than did the typical state 
(M = 1.68, SD = .81) regarding mathematics content in standards featuring reasoning for High 
School Geometry. Overall, the descriptive statistics for High School Geometry standards 
featuring reasoning indicates that CCSSM provides fewer relative standards, but with more 
specificity and a slightly stronger emphasis on the act of reasoning. 
 Correlation analysis between standards’ content specificity and transitivity distance indicated 
a strong and negative relationship for standards featuring proof (! = -.42, p < .05). This indicates 
that the closer the distance between proof and the transitive process, the more specific a standard 
tended to be regarding mathematics content. However, when examining the same relationship for 
standards featuring reasoning, virtually no relationship was found (! = .00, p = .98). This 
indicates that an excessive amount of variance is present in many of the states’ content standards 
regarding the specification of mathematics content and the use of reasoning as a transitive 
process. Practically speaking, the correlation found for proof standards indicates that standards 
which describe proof as the primary process students are expected to engage in tend to also 
provide more specific connections to mathematics content, and vice versa. However, the near 
zero correlation found for the same relationship in reasoning standards indicates little 
consistency in the way reasoning is described in various High School Geometry standards across 
the nation.  
 

Discussion 
 While many concerns have been expressed regarding the CCSSM (e.g., Porter et al., 2010; 
Tienken, 2009; Zao, 2009), the results presented here may give cause for some mindful 
consideration of potential benefits of the CCSSM in regards to reasoning and proof, at least as it 
concerns High School Geometry. The results presented here indicate that the CCSSM provide a 
greater emphasis on proof with more specificity to the content and a clearer representation of the 
process than the vast majority of states’ standards. Further, while the CCSSM does not have, 
proportionally, as many High School Geometry standards featuring forms of reasoning other 
than proof, the standards tend to be more specific to the content and have a clearer representation 
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of the process than the majority of states. Therefore, in regards to proof and reasoning in High 
School Geometry standards, the CCSSM appear to show an improvement over state standards in 
general.  
 By articulating specific aspects of mathematics content, the CCSSM provide a clearer 
message to what teachers are expected to have High School students prove and reason about. For 
example, the CCSSM provides a list of theorems for students to prove regarding triangles (e.g., 
base angels of isosceles triangles are congruent; the medians of a triangle meet at a point). The 
CCSSM do not indicate how teachers are expected to engage students in such proofs or in what 
format students should write those proofs. Teachers are provided not with a blanket expectation 
of having students “construct proofs about triangles” that might be met with token proof 
exercises whose conclusions are not memorable (Herbst, 2002); rather they are provided clear 
guidelines that tie proof practices to important content that students need to learn. As such, we 
consider this a general improvement over many of the state content standards currently in use. 
 Another aspect of the CCSSM High School Geometry standards featuring proof that we 
consider beneficial to both teachers and students is the predominate use of prove as the primary 
transitive process. With the exception of one out of ten standards featuring proof, the CCSSM 
are consistent in emphasizing proof as the primary process. The benefit of writing “prove 
theorems about lines and angles” rather than “write proofs about lines and angles” is the activity 
conveyed by one wording over the other. Many states use words such as write, construct, know, 
or use as the primary process for standards featuring proof, and this leads to potentially different 
interpretations of what students are expected to do. Do students memorize proofs when the 
primary process is know? Does their engagement in proof come in the form of writing when the 
primary process is write? While these questions are rhetorical, they demonstrate the bias that can 
come when using words other than prove as the primary process for standards concerning proof. 
As such, the CCSSM does not convey bias in the way students are expected to engage in proof, 
but only in the content they are expected to prove.  
 The results of the present study provide evidence in support of the adoption of the CCSSM in 
regards to High School Geometry standards featuring reasoning and proof. However, the present 
analysis is narrow in focus, and several other mathematical strands and grade levels might need 
to be examined in a similar manner to properly understand both the potential benefits and 
drawbacks of implementing CCSSM. For example, while the present results concerning proof 
standards were generally positive, the results concerning reasoning standards indicate a need to 
use reasoning as the primary transitive process in CCSSM. 
 The results of the current study do support the implementation of CCSSM in regards to High 
School Geometry standards featuring proof and reasoning, but our discussion and conclusions 
should not be taken as a wholesale endorsement of the CCSSM document. Rather, as specified, 
further examination of CCSSM is needed. Further, by examining specific aspects of the CCSSM 
document, rather than an overarching depiction of the document as a whole, we are better able to 
either validate or make recommendations for improvement out of a solid base of knowledge. 
 

Author Note 
The work reported in this paper was supported by NSF grant DRL-0918425 to Patricio Herbst. 
All opinions are those of the authors and do not necessarily represent the views of the 
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Research suggests that the enhanced role of proof in mathematics classrooms presented in 
current standards and reform policy poses great challenges for teachers and will require 
substantial teacher learning.  However, to date there is little research detailing what 
mathematical knowledge might be useful for teaching proof or how professional development 
might afford such learning.  This paper presents a framework for Mathematical Knowledge for 
Teaching Proof that couples research on justification and proof in mathematics and mathematics 
education with Ball and colleagues’ (2008) conceptualization of Mathematical Knowledge for 
Teaching (MKT). An empirical study of teachers’ proof-related activity in professional 
development demonstrates the utility of this framework and provides further insights into 
mathematical knowledge for teaching proof. 

 
Few can dispute the increased attention that reasoning and proof have been afforded in 

mathematics education research and practice (Hanna & deVilliers, 2008; National Council of 
Teachers of Mathematics, 2009).  Both NCTM (2009) and the Common Core State Standards 
(2010) recommend that all students learn to construct and evaluate mathematical arguments and 
demonstrate a variety of reasoning and proof techniques.  More notably, these documents call for 
an enhanced notion of proof that elevates proof beyond a topic of study in advanced mathematics 
courses, to a tool for learning mathematics at all levels.   

However, the research summarizing students’ difficulties constructing proofs and their 
reliance on authority or empirical arguments to justify a general claim suggests that these 
recommendations are not easily accomplished (Harel & Sowder 2007; Healy & Hoyles, 2000).  
Similar research has shown that teachers often rely on ritualistic aspects of proof and fail to 
distinguish between non-proof arguments and valid deductive reasoning when both constructing 
and evaluating proofs (Martin & Harel, 1989; Knuth, 2002; Simon & Blume, 1996).  Moreover, 
recent classroom studies show that teachers struggle to support students even when using a 
curriculum designed to promote reasoning and proof (Bieda, 2010). For example, teachers’ 
methods of grouping and sequencing proof strategies or inability to follow up on students’ ideas 
often inhibit students’ ability to construct a valid proof (Martin & McCrone, 2003; Bieda, 2010).  
Other studies have linked teachers’ methods of questioning and providing examples to students’ 
development of authoritarian or empirical proof schemes (Harel & Rabin, 2010).     

Clearly, supporting all students to learn about and engage in mathematical proof poses great 
challenges for teachers and will require substantial teacher learning.  However, to date there is 
little research detailing what mathematical knowledge might be useful for teaching proof or how 
professional development might afford such learning. 

Purpose 
The purpose of the larger study was to detail Mathematical Knowledge for Teaching Proof  

(MKT for proof) and to investigate MKT for proof in professional development (PD). To 
advance the construct of mathematical knowledge for teaching proof, research on proof and 
mathematical knowledge for teaching was coordinated with an empirical study of teachers’ 
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engagement with proof in professional development.   Specifically, the study aimed to address 
the following questions:  

1. What does research suggest teachers need to know about proof and proving that would be 
useful for their work with students? 

2. What mathematical knowledge for teaching proof is evidenced in professional 
development focused on justification and proof? 

This paper describes how an initial framework for MKT for proof was developed based on an 
extensive literature review.  A sample of findings from one segment of the larger investigation of 
teachers’ proof activity in PD is then provided to further highlight elements within this 
knowledge framework.  

Theoretical Considerations 
Two ideas underlie the conceptualization of mathematical knowledge for teaching proof 

developed through this study: (i) an enhanced notion of proof as a means to support 
mathematical understanding at all levels and (ii) the important role of teachers’ mathematical 
knowledge-in-use (knowledge accessed when engaging in acts of teaching) for considering a 
knowledge base for teaching. 

Recognizing the critical importance of proof in learning mathematics, recent reform efforts 
call for proof to be a regular and ongoing part of students’ K-12 mathematics experiences 
(NCTM, 2000).  To support proof as a sense-making activity, there is a need for a definition that 
promotes a consistent meaning of proof throughout the grades. For this reason, Stylianides’ 
(2007) definition of proof was adopted for this study.  Put simply, proof refers to a mathematical 
argument that is based on accepted statements, valid modes of argumentation, and 
representations that are known by or are within the conceptual reach of the classroom 
community.  Further, to identify and describe the mathematical knowledge teachers need to 
engage students in practices consistent with this reform-oriented view of proof, the entire range 
of activity associated with proving must be considered.  These proving activities include 
identifying patterns, making conjectures, testing examples, and providing non-proof arguments, 
as well as constructing proofs.  

Secondly, a situative perspective on learning informs both the conceptualization of 
mathematical knowledge for teaching proof and the ways in which it might be investigated in PD 
settings. This perspective takes seriously the ways in which mathematical knowledge is attuned 
to the specific demands of teaching (Adler & Davis, 2006). Defining mathematical knowledge 
for teaching proof thus involves consideration of what, when, and how knowledge is required 
and used to meet the demands of the classroom.  Central to a situative perspective is the 
recognition that cognition is situated in particular contexts, social in nature, and distributed 
across the individual, other persons, and tools (Putnam & Borko, 2000).  Accordingly, 
mathematical knowledge evidenced in interaction as teachers participated in proof-related 
activities was the focus of the qualitative analysis. 

 
Methods 

Developing MKT for Proof Framework 
To develop a framework for MKT for proof, research on mathematical proof, students’ 

difficulties with proof, and classroom studies of teaching practices related to proof were 
reviewed, coordinated and synthesized.   Proof ideas drawn from the literature were categorized 
using four domains of MKT introduced by Ball and colleagues (2008). Tables 1 and 2 below 
provide a snapshot of elements included in this MKT for proof framework. Common Content 
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Knowledge (CCK), the subject matter knowledge held in common with others who use 
mathematics, includes the ability to construct a valid proof as well as common understandings of 
the nature of proof.  Elements within CCK reflect essential proof knowledge and skills desired of 
students but also directly address findings that teachers often attend to the form of proof rather 
than substance and fail to see the generality in an argument (Dreyfus & Hadas, 1987; Martin & 
Harel, 1989). 

For their work with students, teachers need more than CCK.  Fundamental understandings of 
proof must be developed, “unpacked,” and explicitly connected to the work of teaching. This 
Specialized Content Knowledge (SCK) is pure mathematical knowledge uniquely needed for 
teaching proof.  While mathematicians may know how proofs depend on previously known 
definitions, to deal with issues that arise in the classroom, teachers also need to know a range of 
possible definitions and understand how an argument might look different depending on the 
definitions that are accepted.  To guide their instruction, teachers also need to understand the 
relationship between the proving task and valid or efficient methods of proof such tasks evoke 
(Stylianides & Ball, 2008).  Thus, knowing that a claim about a finite number of cases can be 
verified through a systematic list, but that a generic example or deductive argument would be 
needed to prove a more general claim would be considered SCK. 

Table 1. Subject Matter Knowledge for Teaching Proof 

Common Content Knowledge Specialized Content Knowledge 

Ability to construct valid proof 

Use definitions, theorems to build a logical 
progression of statements 

Analyze situations by cases & use 
counterexamples   

Nature of Proof  

A theorem has no exceptions  

A proof must be general 

The validity of a proof depends on its logic 

Explicit Understanding of Proof Components 

•Accepted Statements: range of definitions or key 
theorems, role of language & defined terms 

•Modes of Argumentation: recognize range of valid 
methods, distinguish between empirical and deductive 
arguments 

•Modes of Representation: variety of visual, symbolic, 
verbal methods to express general argument 

Relationship between proving tasks & activity 

 
 Elements within pedagogical content knowledge arose from studies documenting students’ 

typical responses when asked to produce or evaluate mathematical proofs as well as classroom 
studies that illustrated where proof instruction fell short.  Although these studies did not 
specifically explore teachers’ knowledge, inferences can be made regarding knowledge or 
resources teachers might have drawn upon to support students’ understanding of proof.  As 
indicated in table 2, Knowledge of Content and Students (KCS) includes detailed knowledge of 
students’ thinking as well as attention to the proof-related resources available to students.  
Knowledge of Content and Teaching (KCT) intertwines knowledge of proof from the other 
domains with methods of representing or drawing out key proof ideas in classroom instruction.  
For example, knowing that students typically rely on authority or empirical justification (Harel & 
Sowder, 2007) guides instructional decisions and questions or examples teachers may use to 
encourage students’ progression toward deductive arguments.  

Clearly, no one idea within MKT for proof is unique, nor is this meant to be a comprehensive 
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list of everything a teacher needs to know.  However, this framework provides a rare synthesis of 
research and begins to detail the mathematical knowledge of proof that would be useful for 
teachers’ work with students.  As described next, delineating knowledge of proof in this way 
provided a common analytic tool to make sense of teachers’ proof work across different 
professional development activities.  
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Table 2. Pedagogical Content Knowledge for Teaching Proof 

Knowledge of Content and Students Knowledge of Content and Teaching 
Detailed knowledge of student thinking 
• Explicit knowledge of proof schemes  
• Recognizing characteristics of external, 

empirical, and deductive proof schemes  
• Students’ tendency to rely on authority or 

empirical examples 
• Progression from inductive to deductive 

proof 
 
Developmental aspects of proof 
Ability to size up arguments in terms of: 
• Definitions & statements available to 

students 
• Representations within students conceptual 

reach 
• Forms of argumentation appropriate for 

students’ level 

Relationship between instruction and proof 
schemes 
 
Questioning strategies 

•  To elicit justification beyond procedures 
•  To encourage thinking about general case 

 
Pivotal examples or counterexamples 

•  To extend, bridge or scaffold thinking 
•  To focus on key proof ideas 

 
Explicit knowledge of proof connections 

•  Linking visual, symbolic or verbal proofs of 
same concept or theorem  

•  Comparing proofs in terms of accepted 
definitions and argument structure 

•  Lifting general argument from numerical 
example or specific diagram 

 
Investigating MKT for Proof in Professional Development 

The empirical study used to test and refine this framework, drew upon an existing research 
project designed to support teacher leaders’ understanding and facilitation of mathematically rich 
PD.  Although teachers’ knowledge of proof was not the central project purpose, the focus on 
generalizing patterns and number concepts and explicit attention to norms for justification and 
explanation made the project an ideal site to investigate MKT for proof.  Within this project, K-
12 teacher-leaders participated in either three or four two-day seminars during the school year.  
During these seminars, teachers worked on a number of mathematics tasks, analyzed videocases 
of PD sessions centered on the same mathematical tasks, and engaged in additional activities 
designed to connect these experiences to their own practice.  

Given the goal of detailing MKT for proof, all math tasks, discussion prompts, video data 
logs, and seminar agendas were reviewed to select tasks in which teachers were asked to make 
conjectures, prove claims, and engage in explicit conversations about proof in the context of 
teaching.  Two mathematical tasks, Consecutive Sums and Halving and Doubling, were selected. 
This paper reports on teachers’ seminar work associated with the Halving and Doubling task.  In 
particular, video data of two small groups and one whole group discussion for each of eight 
activities directly related to the Halving and Doubling task were analyzed.  These activities 
included teachers 1) doing the math task; 2) viewing PD video to compare two teacher 
justifications; 3) viewing video to consider an additional conjecture 4) discussing MKT in 
relation to video; 5) revisiting video to consider facilitation of the task; 6) planning PD session 
using task; 7) discussing justification article (Lannin, 2005); 8) reflecting on their own PD 
enactment of task with colleagues.  

Analysis 
To address the second research question, what MKT for proof is evidenced in PD, all 
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Halving and Doubling video was reviewed to develop a coding scheme that would capture the 
nature of teachers’ conversations in relation to proof.  Initial coding indicated when teachers 
referred to visual or algebraic models, tested specific examples, explicitly used the terms 
“conjecture,” “generalization,” or “proof,” as well as when discussions moved to student or 
teaching concerns.  Studiocode (2010), a video analysis software, was used to facilitate the 
coding and analysis of each of the small group and whole group discussions. The data matrix 
features of Studiocode then allowed for both in-depth analysis of a proof topic as well as an 
indication of how and if this proof idea was evidenced across the range of seminar activities.  For 
example, all instances of teachers using the word “proof” or attempting to understand a generic 
example could be gathered and viewed in succession to facilitate more focused coding.  As 
patterns emerged from this analysis, integrative memos (Emerson, Fretz & Shaw, 1995) were 
written to summarize elements of proof consistent across teachers’ discussion.  It was only at this 
stage that proof ideas emerging from seminar activity were mapped back to the MKT 
framework. 

Results 
To illustrate this mapping, findings from analysis of teachers’ seminar activity provided here 

are organized around the four domains of teacher knowledge: CCK, SCK, KCS, and KCT, 
within the MKT for proof framework.  Elements in tables 1 and 2 corresponding to these 
reported findings have been italicized to further highlight the relationship between the teachers’ 
proof activity within Halving and Doubling and categories of MKT for proof. 

CCK: Nature of Proof 
Teachers Recognized the Need for Proof to be General   

Across all small and whole group conversations teachers used phrases that clearly related to 
the general nature of proof. Teachers recognized flaws in arguments that were based on a few 
specific cases or did not explicitly demonstrate that the conjecture was valid for any numbers.   
When evaluating ways of verifying the conjecture, comments such as the following were typical:  

 “I like the algebraic model that you came up with and then also the area model because you can 
show that for any string of numbers if you half it and then add to the end - that is essentially what 
you are doing”  (sg1 – doing math)  
“In the rectangle the use of a and b is an attempt to generalize and regardless of what it looks like 
visually, the a and the b represent variables and therefore any case.” (wg - comparing videocase 
teacher work) 

Teachers both pressed for generalization in their own mathematical work and recognized 
attempts the teachers in the PD videocase made toward presenting general arguments.  

SCK: Explicit Understanding of Proof Components 
Teachers Connected a Variety of Visual, Symbolic, and Verbal Methods Used to Express 
Argument 

Teachers went beyond noting that a proof must be general to explore a variety of visual, 
symbolic, and verbal methods. In their own mathematical work small groups explored the 
problem through the use of numerical tables, array models, and algebraic expressions. More 
importantly, as illustrated in the two previous quotes, teachers considered how those 
representations could be used to express a general argument.  As teachers continued to evaluate 
and connect various methods of verifying the conjecture, they grappled with ways in which a 
visual diagram might move beyond a specific case to provide a generic example or connect to an 
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algebraic proof.  Discussions such as the ones prompted by the teacher comments below firmly 
situated teachers in the realm of SCK for proof.    

“I don't know that your method lends itself to an algebraic proof or justification because it is only 
showing concrete, discrete numbers its not showing me how I would connect a variable standing for 
any number… 
 So what would we need to add to my model, my proof to meet that criteria?” (sg2 – role playing after 
video viewing) 

KCS: Developmental Aspects of Proof 
Acceptable Proof Depends on Forms of Argumentation and Representations Appropriate to 
Grade Level 

In both teachers’ discussions and actions it was evident that when considering what might be 
an acceptable proof of the Halving and Doubling conjecture, teachers considered what 
knowledge and skills students at a given grade level typically possess.  Teachers made explicit 
statements that what constitutes a proof might depend on the grade level you were teaching and 
“where your students are at.”  In terms of representations, teachers asked questions about 
whether students had a grasp of variable, or were comfortable with area or array models to 
represent multiplication.  And in considering forms of argumentation that might be accessible to 
students, teachers acknowledged students’ ability to see generality in the array diagrams but 
wondered if elementary students would be capable of constructing a deductive argument. 

KCT: Explicit Knowledge of Proof Connections 
Teachers Discuss Scaffolding from Examples or Visual Proof to Symbolic Representations by 
Capitalizing on a Key Idea or Generality 

When discussing representations and forms of argument students may or may not understand, 
teachers often described specific teaching strategies they may employ. For example, in this 
statement below, a teacher is imagining how he might lead a class discussion of the problem by 
exploring patterns across numerical examples and then moving students toward the use of 
variables to make a more general argument:  

“I might bring up multiple examples, then say ‘what I'm hearing you say is no matter what numbers 
we use, the operation stays the same so let’s put a letter in’” (sg1 - doing the math) 

Teachers further explored ways in which visual array or area models might be introduced to 
make connections between a specific example and a more general argument using variables.  
Importantly, teachers were able to bring out key mathematical ideas underlying the 
generalization (reciprocal properties, conservation of area, commutativity, etc.) when suggesting 
strategies to move students from example-based proofs toward more general arguments.   

Discussion 
Two findings from the Halving and Doubling teacher discussions in particular shed light on 

previous research regarding teachers’ understanding of proof and what MKT for proof might 
entail.  First, it is worth repeating that although teachers recognized essential features of a valid 
proof, this was not always evidenced in their acceptance of a proof.  For example, as highlighted 
earlier, teachers made clear statements that proof must be general.  It must work for any number 
and testing only specific numbers was not enough to prove the general claim. And yet teachers 
also discussed how in 3rd grade, it might be okay to use specific numbers in an array diagram, or 
how they might begin instruction by having students look for patterns in a table.  Or, teachers 
might follow up on a valid general argument by asking how it would work for fractions, odd 
numbers, or negative numbers.  In other words, while empirical justification clearly was not 
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enough proof, teachers saw pedagogical value in posing questions about different classes of 
numbers or in exploring visual representations.  As teachers, they saw the value of testing 
examples or using specific visual representations for helping students make sense of the 
mathematics involved and providing a foundation for algebraic proof.   This finding makes us 
step back and reconsider the research on what teachers “understand” about proof.  While 
previous research has suggested that teachers fail to recognize the generality of proof, here we 
see a sophisticated understanding of generality that is clearly tied to the context of teachers’ 
work.  

A second, and closely related finding, is that teachers moved fluently across the four domains 
of knowledge. Teacher talk within all eight seminar activities took up multiple dimensions of the 
MKT for proof framework.  Interjections about what representations students have access to or 
what numbers to use in examples were intermingled with explanations of teachers’ own proof 
constructions.  Teachers’ genuine questions about generic examples or the difference between 
inductive and deductive reasoning led directly to issues of students and of teaching.  This finding 
further highlights the situated nature of teachers’ knowledge and calls to question PD models 
focusing on either mathematics or pedagogy.  As discussed next, this has implications for how 
the mathematics education field might begin to detail, research, and develop MKT.  

Implications  
First and foremost, this study contributes to the growing research on teacher knowledge by 

detailing critical aspects of mathematical knowledge of proof that support teachers’ work with 
students.  Recent research addressing teacher learning has identified mathematical knowledge for 
teaching as a key construct in teacher education (Ball, Lubienski & Mewborn, 2001).  However, 
most attempts to specify mathematical knowledge for teaching have focused on elementary 
content.  This investigation extends the work to mathematical knowledge useful for promoting 
proof, a key mathematical practice, K-12. 

Further, this research provides a common framework for analyzing MKT for proof in both 
classroom and PD settings.  The framework supports research on the teaching of proof by 
serving as an analytic tool to identify mathematical resources teachers access as they engage 
students in proof activity.  The framework can also be used to make sense of teachers’ proof-
related activity in PD by connecting specific teacher activity such as constructing proofs versus 
comparing proofs presented in a videocase to the domains of teacher knowledge evidenced in 
discussions.  This work supports further research on what “effective” PD to develop teachers 
MKT for proof might entail. 

Finally, the findings related to teachers’ fluent movement across knowledge domains help 
advance theory about the complex relationship between subject matter and pedagogical content 
knowledge.  Investigation of conversations in which teachers move fluidly from talking about the 
mathematical ideas embedded in a proof to thinking about students and teaching can help the 
field better understand those connections between the four domains of knowledge - CCK, SCK, 
KCS, and KCT.  This close relationship has implications for both researching and designing 
activities that might support teachers’ development of MKT.  
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As calls are made for reasoning-and-proving to permeate school mathematics, several textbook 
analyses have been conducted to identify reasoning-and-proving opportunities outside of high-
school geometry. This study looked within geometry, examining six geometry textbooks and 
characterizing not only the justifications given and the reasoning-and-proving activities expected 
of students but also the nature of the mathematical statements around which reasoning-and-
proving takes place. The majority of reasoning-and-proving exercises focused on particular 
mathematical statements, whereas the majority of expository mathematical statements were 
general in nature. Although reasoning-and-proving opportunities were numerous, it remained 
rare for reasoning-and-proving to be made an explicit object of reflection. 

Background 
Mathematicians and mathematics educators are calling for reasoning-and-proving2 to become 

a central component of the mathematical experiences of students (Hanna, 2000; Stylianou, 
Blanton, & Knuth, 2009). One argument behind this call is that reasoning-and-proving is integral 
to the discipline of mathematics and thus an essential piece of an “intellectually honest” (Bruner, 
1960) mathematics education. Such a perspective is reflected in the mathematical practices of the 
Common Core State Standards for Mathematics (2010), which include abstract reasoning, the 
construction of viable arguments, and the critique of others’ reasoning. Another argument for the 
inclusion of reasoning-and-proving throughout the school mathematics curriculum is that, by 
reasoning through and proving mathematical results, students can develop deeper conceptual 
understanding of mathematical ideas as well as greater procedural fluency (de Villiers, 1995; 
Dreyfus, 1999; National Council of Teachers of Mathematics, 2009). 

In the United States, however, reasoning-and-proving has not been ubiquitous in school 
mathematics but has traditionally been confined to a single geometry course in high school 
(Herbst, 2002). To document this current landscape and to prepare the way for a more 
comprehensive treatment of reasoning-and-proving, researchers have recently been studying the 
opportunities that exist for reasoning-and-proving in curriculum materials other than geometry. 
Kristen Bieda (personal communication, January 18, 2011) is in the process of coding a variety 
of elementary-level textbooks and Stylianides (2009) has examined an NSF-funded middle 
school series. At the high-school level, Davis (2010) explored an integrated textbook series and 
Senk, Thompson, and Johnson (2008) analyzed non-geometry courses, such as algebra, advanced 
algebra, and precalculus, from six different textbook series. Davis found that 12% of the 
problems in a particular integrated textbook related to reasoning-and-proving. Senk and her 
colleagues found this number to be only 6% in the textbooks they analyzed, even though their 
analysis focused on the chapters where reasoning-and-proving seemed most likely to occur. 
Senk, Thompson, and Johnson noted that the exposition sections of non-geometry textbooks 
gave more attention to reasoning-and-proving than the exercises; nevertheless, 40–50% of the 
stated mathematical properties were left unjustified. 

In this study we contribute to the efforts described above by characterizing the nature of 
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reasoning-and-proving opportunities in geometry textbooks themselves. Although we agree with 
the premise that it is important to understand the current state of reasoning-and-proving outside 
of geometry as efforts are undertaken to integrate reasoning-and-proving into those domains, we 
would add that it is equally important to understand reasoning-and-proving opportunities in 
geometry, where they are most plentiful. In other words, we should strive to understand and 
reflect upon the way we are handling reasoning-and-proving in geometry so that we may inform 
the process of expanding it to other courses and grade levels. 
 

Analytic Framework 
All of the curriculum analyses cited above have focused on the types of reasoning-and-

proving activities that students are expected to perform, presenting data on how often students 
are asked to notice patterns, make conjectures, test conjectures, or develop arguments. Although 
many of the documented difficulties that students have with reasoning-and-proving (see Harel & 
Sowder, 2007, for a review) may be attributed to insufficient opportunity to engage in such 
practices, it also seems to be the case that students have fundamental misunderstandings of 
reasoning-and-proving, even after significant exposure. For example, Chazan (1993) found that 
some geometry students do not understand what has been proven by a deductive argument. 
Soucy McCrone and Martin (2009) reported on students, also from geometry, who viewed the 
purpose of proof to be the mere application of recently learned theorems, similar to the way in 
which recently learned formulas are applied in subsequent student exercises. 

We employ the necessity principle as an interpretive frame to make sense of these 
phenomena and to guide our analysis. The necessity principle (Harel & Tall, 1989) is a standard 
for pedagogy that involves presenting subject matter in a way that encourages learners to see its 
intellectual necessity, “[f]or if students do not see the rationale for an idea, the idea would seem 
to them as being evoked arbitrarily; it does not become a concept of the students” (p. 41). The 
fact that many students do not understand the role of reasoning-and-proving in mathematics and 
view it as being required of them arbitrarily (Tinto, 1988) is evidence that the necessity principle 
is being violated with respect to reasoning-and-proving. Furthermore, the well-documented 
overreliance on empirical forms of argumentation (Harel & Sowder, 2007) suggests at least two 
possibilities: (a) students do not recognize the limitations of empirical reasoning or the 
intellectual necessity of deductive reasoning, or (b) students recognize the need for deduction but 
lack the resources or capabilities to successfully develop such arguments and so give an 
empirical argument rather than leave an item blank. If the latter is the case, then it is important to 
continue examining the opportunities that exist for students to engage in various reasoning-and-
proving activities. But if it is the former, we must push further and consider whether or not those 
reasoning-and-proving activities are necessitating deductive reasoning. 

With these considerations in mind, we developed our analytic framework by building upon 
past frameworks (particularly Senk et al., 2008) with the addition of a dimension for the 
mathematical statement around which the reasoning-and-proving activities are taking place. In 
particular, we distinguish between general and particular mathematical statements (see Figure 1). 
Our rationale is that general statements intellectually necessitate deductive forms of reasoning 
because empirical means cannot establish truth for an infinite class of objects. Thus, having 
students engage in reasoning-and-proving around general mathematical claims has the potential 
to better satisfy the necessity principle than particular mathematical claims. (This also happens to 
better align with the disciplinary practices of mathematicians.) We do not mean to imply that all 
reasoning-and-proving opportunities should be around general statements or that there is no 
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benefit to exercises of a particular nature; we are simply arguing for the value of including this 
dimension when examining reasoning-and-proving opportunities in textbooks. 
 

Type of Statement Definition Examples 

General A statement made about an infinite 
class of mathematical objects or an 
infinite number of mathematical 
situations. 

(1) All isosceles triangles have 
congruent base angles. 
(2) Any lines l and m that are 
perpendicular to the same line n are 
parallel to one another. 

(3) Let a, b, and c be natural 
numbers. Then ab+c = ab0ac. 

Particular A statement made about a single 
or finite number of mathematical 
objects or situations. 
 

 
 
Note: A particular statement may be 
easily translated into a general statement, 
as in (2) to the right which may be 
reinterpreted as a statement about any 
such overlapping segments. This 
awareness of generality is non-trivial, 
however, and thus statements such as (2) 
remain categorized as particular. 

(1) In the given diagram, angle 
ABC has a measure of 65 degrees. 

 
(2) If PR = QS, then PQ = RS. 

 
(3) If 2x+y=10 and y=4, then x=3. 

Figure 1. General and particular mathematical statements. 
 

Method 
This study focused solely on stand-alone high-school geometry textbooks and so did not 

include analysis of geometry units within integrated textbooks. The six textbooks included in our 
analysis were CME Geometry (CME Project, 2009), Glencoe McGraw-Hill Geometry (Carter, 
Cuevas, Day, Malloy, & Cummins, 2010), Holt McDougal Geometry (Burger et al., 2011), Key 
Curriculum Discovering Geometry (Serra, 2008), Prentice Hall Geometry (Bass, Charles, Hall, 
Johnson, & Kennedy, 2009), and UCSMP Geometry (Benson et al., 2009). These were chosen to 
overlap series as much as possible with previous analyses (i.e., Senk, Thompson, & Johnson, 
2008) so that comparisons would be possible. The six included series together span nearly 90% 
of the U.S. high school population (Dossey, Halvorsen, & Soucy McCrone, 2008). 

Within each chapter of the six student edition textbooks, we randomly selected for analysis a 
minimum of 30% of the canonical sections (i.e., not special exploration or technology 
investigation sections). Additionally, chapter review exercises were coded for each chapter as a 
representation of the textbook authors’ own identification of key ideas. This process resulted in 
an actual sampling of 44% of sections across the textbooks, totaling 285 sections and 12,468 
exercises. Within the sampled sections, both exposition and student exercises were coded by the 
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authors using the framework in Figure 2. Double-coding was performed on a 20% sample of the 
included sections yielding 95% agreement on statement-type and 91% agreement on 
justification-type within exposition sections, and 92% agreement on statement-type and 93% 
agreement on activity-type within student exercises. 

 
 Exposition Student Exercises 
 Properties, Theorems, 

or Claims 
Related to Mathematical 

Claims 
Related to Mathematical 

Arguments 

Mathematical 
Statement or 

Situation 

• General 
• Particular 

• General 
• Particular 
• General with particular 

instantiation provided 

• General 
• Particular 
• General with particular 

instantiation provided 

Expected Student 
Activity 

 • Make a conjecture or 
refine a statement 

• Fill in the blanks of a 
conjecture or statement 

• Investigate a conjecture 

• Develop a mathematical proof 
• Develop a rationale or non-

proof argument 
• Outline a proof or develop a 

proof given an outline 
• Fill in the blanks of an 

argument or proof 
• Evaluate or correct an 

argument or proof 
• Find a counterexample 

Type of Justification 
(or environment for 

exploration) 

• Deductive 
• Empirical 
• Outline 
• Past or future 
• Left to student 
• None 

• Deductive (explicit) 
• Empirical (explicit) 
• Implicit 

• Deductive (explicit) 
• Empirical (explicit) 
• Implicit 

 • Statements about 
reasoning-and-proving 

• Exercises about reasoning-and-proving 

Figure 2. An analytic framework for reasoning-and-proving in geometry textbooks. 
 

Results 
As shown in Table 1, student exercises involving reasoning-and-proving were much more 

prevalent in geometry textbooks than in even the most reasoning-and-proving focused units of 
non-geometry or integrated high-school textbooks. CME contained the most reasoning-and-
proving exercises with nearly 38% falling into at least one of the reasoning-and-proving activity 
categories from Figure 2. The other geometry textbooks ranged from approximately 20% to 27% 
of exercises related to reasoning-and-proving. 
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Table 1. Percent of student exercises involving reasoning-and-proving. 

Textbook Series 
Geometry Non-Geometry 

No. of Exercises 
Analyzed 

Reasoning-and-
Proving (%) 

No. of Exercises 
Analyzed 

Reasoning-and-
Proving (%) 

CME 1058 37.8 -- -- 
Glencoe 2730 24.3 2117a 3.7a 
Holt 2531 23.6 2042a 3.7a 
Key Curriculum 1489 26.7 916a 8.0a 
Prentice Hall 2479 19.5 2446a 5.6a 
UCSMP 2181 27.6 1739a 6.2a 
Core Plus -- -- 1114b 12.3b 

a Senk, Thompson, & Johnson (2008). 
b Davis (2010) differed from the other studies in this table by including patterns as reasoning-and-proving. 

 
The types of reasoning-and-proving activities expected of students are presented in Table 2. 

In four of the books, 13–15% of the reasoning-and-proving exercises (or 3–5% of the total 
exercises) involved students developing a mathematical proof. In two books, CME and Glencoe, 
such items comprised 25% and 28%, respectively (or approximately 7% of the total). The most 
common reasoning-and-proving activities were to investigate a statement (i.e., determine the 
truth-value of a mathematical claim) and to develop a rationale (i.e., to explain or justify an 
answer or result in a manner that is not necessarily a proof). 
 

Table 2. Nature of reasoning-and-proving activities expected of students. 

Textbook Series 
Type of Activity by No. of Reasoning-and-Proving Items (%) 

Develop a 
Proof 

Develop a 
Rationale 

Find a Counter-
example 

Investigate a 
Statement 

Make a 
Conjecture 

Other 

CME 25 36 7 45 16 3 
Glencoe 28 48 4 30 17 5 
Holt 13 42 4 39 8 16 
Key Curriculum 13 52 26 42 20 6 
Prentice Hall 15 54 1 46 19 11 
UCSMP 14 44 3 36 14 5 

Note: Rows sum to more than 100% because exercises often involved more than one activity. “Other” includes fill-
in-the-blanks of a proof, provide or argue from a proof outline, and evaluate a given proof. 
 

Table 2 does not answer the question, what sorts of mathematical claims do students have 
opportunities to reason about or prove? Figure 3 depicts the percentages of reasoning-and-
proving exercises that involved a general mathematical statement. This graph excludes general 
statements for which a particular instantiation was provided to the student, because in such cases 
the student may reason about the given object as they would any particular object without 
realizing the general implications (as was found by Chazan, 1993). Figure 3 compares the 
percentages of general statements in exercises with the percentages in textbook exposition. 
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Figure 3. Nature of mathematical statements in exposition versus student exercises. 
Most reasoning-and-proving exercises involved particular mathematical statements. In 

Glencoe, Holt, and Prentice Hall, approximately two-thirds of the reasoning-and-proving 
exercises were of a particular nature. In UCSMP, the number is 58%. CME and Key Curriculum 
had lower percentages of particular-type exercises—52% and 48%, respectively—but even in 
these textbooks, general statements were used in less than half of the reasoning-and-proving 
exercises. In textbook exposition, on the other hand, at least 66% of the statements containing a 
mathematical claim or result were of a general nature, with most textbooks falling above 70% 
(see Figure 3). Expository statements of a particular nature were especially infrequent in Key 
Curriculum and UCSMP, but were noticeably present in Glencoe (26%), Holt (24%), and 
Prentice Hall (20%). These particular statements that did appear in the exposition were almost 
always in the form of “worked examples.” From this perspective, particular statements 
essentially appeared in exposition only when the textbook authors were modeling the behavior of 
students, for whom reasoning-and-proving exercises around particular statements are common. 

Finally, we note results with respect to statements and exercises about reasoning-and-proving 
(see Table 3). For example, an exposition section may note that a deductive argument builds 
upon definitions or previously proved theorems, or an exercise may ask a student to write about 
the process of proof by contradiction. Within the 285 coded sections (out of 653 total sections), 
there were only 98 statements that made reasoning-and-proving an explicit object of reflection, 
and nearly half of these were found in a single book, UCSMP. Of the 12,468 coded exercises, 
only 67 asked students about the reasoning-and-proving process (as opposed to asking them to 
engage in that process). Therefore, although we saw in Table 1 that reasoning-and-proving is 
relatively common in geometry textbooks, opportunities are rare even in geometry to step out of 
the process and reflect on the core mathematical practice of reasoning-and-proving. 
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Table 3. Reasoning-and-proving not as an activity but as an object of discussion or reflection. 

Textbook Series 
No. of 

Statements about 
Reasoning-and-Proving 

No. of Exercises 
about Reasoning-

and-Proving 

Percent of 
Total Exercises 

Analyzed 
CME 13 4 0.38 
Glencoe 8 17 0.62 
Holt 15 17 0.67 
Key Curriculum 14 13 0.87 
Prentice Hall 7 2 0.08 
UCSMP 41 14 0.64 

 
Discussion 

In this paper, we have presented top-level results of an investigation of the reasoning-and-
proving opportunities in six different high-school geometry textbooks. Even in geometry, the 
traditional home of reasoning-and-proving, students were asked to develop a mathematical proof 
in less than 7% of the textbook exercises, and statements or questions about reasoning-and-
proving as a mathematical practice were rare. The most common reasoning-and-proving 
activities were to provide a rationale (not necessarily a proof) and to determine the truth-value of 
a mathematical claim. Interestingly, students were expected to make judgments about truth much 
more frequently than they were expected to provide deductive arguments—the disciplinary 
process by which truth is established. With respect to the prominence of rationale exercises, one 
might contend that an “explain” prompt provides students with an opportunity to develop a proof 
because a key function of mathematical proofs is explanation (de Villiers, 1995). However, the 
question remains: Do students realize that a proof would be an effective response to an “explain” 
exercise? Answering this question would take us beyond the realm of textbook analysis. 

The necessity principle (Harel & Tall, 1989) implies that it would be beneficial to help 
students recognize the intellectual need for deductive forms of reasoning by, for example, 
providing them with opportunities to reason around general mathematical claims for which 
empirical arguments falter. Our analysis has revealed that the majority of reasoning-and-proving 
exercises in geometry textbooks are around particular, not general, mathematical statements. In 
exposition sections, on the other hand, the majority of mathematical statements are general in 
nature. This discrepancy may shed light on such phenomena as geometry students believing that 
proof is merely an application of recently learned theorems (Soucy McCrone & Martin, 2009), 
because indeed students are applying the theorems presented in exposition sections to prove 
things about contrived, particular situations, or geometry students believing that mathematical 
knowledge is created by others and not themselves (Schoenfeld, 1988), because indeed the most 
significant mathematical results are general in nature and likely found in textbook exposition. 

Pursuing these potential connections requires further research, and one might be skeptical of 
the merits of this course of study. Perhaps it is necessary for key results to be explicated in 
exposition sections so that they may be officially established in the classroom canon. Moreover, 
one could argue that it is necessary to provide students with numerous particular statements to 
prove because practice is essential and there are not enough relevant general statements to allow 
for this practice. In response to these points, we would again cite the research literature which 
shows that the status quo of reasoning-and-proving in geometry is not producing the student 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

353



 

outcomes the mathematics education community hopes to see. Yes, it is important to establish 
important results into a collective space, but it is also important to reflect upon how the process 
of establishing those results may influence students’ notions of who is capable of generating 
mathematical knowledge. Yes, it is important to allow students to practice reasoning-and-
proving, but it is also important to consider whether the nature of the practice we afford them 
aligns with actual mathematical practice. In the end, our goal is for students to have success with 
reasoning-and-proving but also to see its intellectual necessity and value. 
 

Endnotes 
1. This work was supported by a grant from the College of Natural Science at Michigan State 

University. We thank Kristen Bieda and Sharon Senk for their insightful feedback. 
2. We join Stylianides (2009) in hyphenating reasoning-and-proving to emphasize the 

inseparability of the reasoning process that leads to a proof and the resulting proof product. 
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We explore ways that university students handle proving statements that have the overall 
structure of a conditional implies a conditional, i.e., (p # q) ! (r # s).  We structure our 
analysis using the theory of conceptual blending. We find conceptual blending useful for 
describing the creation of powerful new ideas necessary for proof construction as well as for 
describing the creation of blends that slow or hinder student efforts at proof construction. 

Introduction 
The purpose of this paper is to illustrate the power of the theory of conceptual blending to 

clarify issues that students have in proving statements having the overall structure of a 
conditional implies a conditional, i.e., (p 1 q) % (r 1 s). This logical structure occurs often in 
statements to be proven at the university level.  For example, since the definition of A  is a subset 
of B  ( A B! ) is a conditional statement ( x A!  implies x B! ), then a simple set theory 
statement such as “If A B! , then A B B! " ” has this logical form.  

The research literature indicates that students’ misunderstanding of logical rules and 
misinterpretation of logical statements result in their difficulty with structuring their proofs 
(Brown, 2003; Duran-Guerrier, 2003; Harel, 2001; Roh, 2010; Selden & Selden, 1995). Students 
tend to structure their proofs in terms of the chronological order of their thought processes 
instead of rearranging it with careful consideration of proper implications (Dreyfus, 1999). The 
literature also shows that students are often unable to bring useful syntactic knowledge to mind. 
Such knowledge includes formal definitions (Knapp, 2006) as well as theorems and properties 
(Weber & Alcock, 2004) of the mathematical concepts. Likewise, research calls attention to 
various forms of personal knowledge of mathematical concepts. Such knowledge is internally 
meaningful to an individual student (Pinto & Tall, 2002; Vinner, 1991), and helps a student 
recall conceptual ideas to apply when attempting to construct a proof (Knapp & Roh, 2008). 
Because of its private and informal nature, students’ personal knowledge is often insufficient for 
them to know how to get started on a proof (Moore, 1994). Raman (2003) suggested the key idea 
as a means of connecting personal intuitive ideas and procedural knowledge when constructing a 
proof. When students possess a key idea for a proof, it gives them conviction and the basis for 
the formal mathematical proof.  

Theoretical Background: Conceptual Blending  
Fauconnier and Turner (2002) posit conceptual blending as a powerful unifying theory to 
describe how people think across multiple domains. They argue that blending “makes possible 
… diverse human accomplishments … [in] language, art, religion, [and] science [as well as 
being] indispensable for basic everyday thought” (p. vi). This theory has begun to be used to 
describe student understanding of mathematical concepts (Gerson & Walter, 2008; Megowan & 
Zandieh, 2005; Núñez, 2005). In this section we give a brief example describing three of the 
main mechanisms of the theory of conceptual blending. 
Conceptual blending is a subconscious process that entails the blending of two or more mental 
spaces (inputs) to form a new stable conceptual model for use in reasoning (See Figure 1). A 
mental space consists of an array of elements and their relationships to one another, being 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

356



 

 

Input 
Space 1 

Input 
Space 2 

Blended 
Space Conceptual 

Frame 

Figure 1. Generic blending diagram  

Figure 2. Euclid’s Fifth Postulate  
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Figure 3. Playfair’s Parallel Postulate 

activated as a single unit. Two (or more) mental spaces are activated and crucial elements of 
each are integrated and mapped to a third space to form a blended space. As part of completing 
the blend, a conceptual frame may be recruited to 
help organize the information in the blend. Once 
the blend is complete it can be manipulated to make 
inferences or answer questions. This manipulation 
is referred to as running the blend. The blended 
concept is treated as a simulation that can be run 
imaginatively according to principles and properties 
that the input spaces bring to the blend. 
For example Coulson and Oakley (2001) consider 
the nursery rhyme “the cow jumps over the moon.” 
Children easily comprehend this statement by 
blending an input space of animals which includes 
cows, a second input space for the moon and sky, and a conceptual frame of jumping.  In the 
blended space the cow is mapped to the thing that jumps and the moon is mapped to an object 
which is jumped over. Whereas children easily construct this blend, adults might have to inhibit 
their notions of reality and instead bring to bear a “nursery rhyme” frame which allows them to 
think of real things, the cow and moon, in impossible situations. Running the blend might 
include imagining the cow taking off from the ground, being over the moon, and landing on the 
ground on the other side of the moon. 

Methods and Setting 
 The data for this study was originally collected as part of a semester long teaching experiment 
(Cobb, 2000) in an upper division geometry course at a university in the USA. Data consisted of 
videotape recordings of each 75 minute class session as well as copies of student written work. 
For the purpose of this paper we chose to analyze one day of class where we recognized 
something powerful was happening with student reasoning.  Maher and Martino (1996) refer to 
such occasions as “critical events.” The class period consisted of a brief introduction of the 
problem by the teacher (the first author), followed by small group work on the problem and 
whole class discussion. For the purpose of this paper we focus on the small group consisting of 
students we call Andrea, Nate, Paul and Stacey. The curriculum consisted of a series of activities 
in which students would need to define, conjecture, and prove results in geometry on the plane 
and the sphere (Henderson, 2001).  This study focuses on one day late in the semester in which 
students were asked to prove either Euclid’s Fifth Postulate (EFP) implies Playfair’s Parallel 
Postulate (PPP) or PPP implies EFP.  
 
 
 
 
 

Henderson (2001) states EFP as, “If a straight line intersecting two straight lines makes the 
interior angles on the same side less than two right angles, then the two lines (if extended 
indefinitely) will meet on that side on which are the angles less than two right angles,” (p. 123) 
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and PPP as, “For every line l and every point P not on l, there is a unique line l’ which passes 
through P and does not intersect (is parallel to) l” (p. 124).  The instructor told the students that 
the two postulates are equivalent and gave them the option to “use” EFP in order to prove PPP or 
vice versa. In her introduction of the task the instructor drew the two figures shown (see Figure 2 
and Figure 3) while explaining each of the postulates. The instructor’s initial drawing showed 
only the part of the statement that was given. For example, for the PPP picture (see Figure 3), she 
initially just drew the bottom line, l, and a point, P, not on that line. However, when she 
explained the conclusion of each statement she completed the picture and these completed 
pictures were left on the board for students to reference. A second visual reference was available 
to students. The two pictures in the book for these two statements were also completed pictures 
similar to what the teacher had drawn. 

Results and Analysis 
In our first pass through the data, we noticed that elements of conceptual blending occurred both 
in students structuring of their proof and in their combining of the pictures and statements of EFP 
and PPP.  We then read through the data looking to specify what blends the students were 
creating. We noticed the students were creating three types of blends: structural, geometric, and a 
combination of the two. We also noticed that the same blends occurred whether students were 
attempting to prove EFP implies PPP or PPP implies EFP. To better illuminate when each blend 
occurred in the data, each of the authors color coded a portion of the data and then all three 
authors came to a consensus on the coding for each of the following aspects:  

! How students were blending the pictures associated with EFP and PPP: the key 
geometric blend (KGB) used by most students or Stacey’s geometric blend (SGB). 

! The logical construct that the students were using to frame their proof: a simple 
proving frame (SPF) or a conditional implies conditional proving frame (CICF). 

! The direction of the proof: EFP implies PPP (EtoP) or PPP implies EFP (PtoE). 
As we coded the data it became clear that there were four combined blends each of which could 
be described as an episode. In Figure 4 we summarize the evolution of student thinking through 
the four episodes, highlighting the three aspects of the combined blend: a structural blend (SPF 
or CICF), a geometric blend (KGB or SGB) and the direction of the implication (EtoP or PtoE). 
In addition to the main blend, we note a secondary blend if there were contrasting remarks or 
questions from other students during the episode that seemed to refer to a different combined 
blend.   

As illustrated in Figure 4, we found conceptual blending useful for describing the evolution of 
student thinking while proving.  Using the three aspects of the combined blends, we were able to 
track the progression of the main thrust of the small group discussion as well as the contrasting 
voices in those discussions. In a longer paper (Zandieh, Roh, & Knapp, 2010) we describe the 
blends involved in each episode. Here we focus on three salient examples that illustrate the 
power of blending to describe student reasoning that moves the proof construction forward as 

Episode Main Blend Secondary Blend 
 Time Structure Direction Geometry Presenter Structure Direction Geometry Presenter 
E1 9:00-  SPF EtoP KGB Paul CICF EtoP KGB Nate 
E2 15:13- SPF EtoP SGB Stacey     
E3 17:48-  SPF PtoE KGB Andrea CICF EtoP KGB Nate 
E4 24:38- CICF EtoP KGB Nate  SPF EtoP KGB Paul 

Figure 4: Summary of the progression of student proving ideas. 
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Figure 5. Key Geometric Blend (KGB) 

well as student reasoning that slows proof construction.  

The Key Geometric Blend (KGB) 
From the beginning of Episode 1, students looked for a way to blend together the picture and 
statement of the two postulates geometrically and conceptually. They did this by creating the key 
geometric blend (KGB) which turned out to be the key idea of the proof for the students. 
Stacey: Because no matter what we can put any P out there [reaching out her arms to touch her 

finger tips together] at our point of intersection [pointing to Andrea’s notebook]. [Nate: 
That’s a good point.] And then we know that, that it is unique [tracing a line with her 
pen], that it is not going to come back and intersect somehow.  […] 

(Silence 1 minute -- Paul flips pages, Stacey flips pages (x2)) 
Paul: Well, if you assume the first one [EFP], would there be three cases that $ + % < &, $ + % 

= &, or $ + % > &? And then the uniqueness part of it would be proved by the $ + % = & 
and in that case they wouldn’t meet.  

As students flipped pages between the picture and statement for EFP and the picture and 
statement for PPP they began mapping to a blend.  The two figures in the text functioned as 
input spaces for a blended space (see Figure 5). Paul’s three cases take the EFP picture and lay it 
on the PPP picture such that the bottom line from each of the input spaces (m from EFP and l 

from PPP) is mapped into the bottom line of 
the blended space. The transversal (n) from 
the EFP input space is included in the 
blended space, and the top line from each 
space is mapped into a line in the blended 
space. Finally, the point P from the PPP 
space is mapped onto the intersection of the 
transversal and the top line from EFP in the 
blended space (see Figure 5). To complete 
the blend the students brought to bear their 
previous geometric knowledge of lines and 
angles. Notice that Paul imagined three 
different possible locations of the top line in 
the blended space and coordinated the 
different geometric positions with different 
sums for $ + %. We would say Paul’s idea of 

three cases comes from running the blend. After Paul’s comment, Andrea and Nate also 
contributed to running the blend by imagining that if $ + % > &, then the lines would intersect on 
the other side. 
The KGB was also involved similarly when the students attempted to prove the other direction, 
PPP implies EFP, in Episode 3. The main difference for the students in Episode 3 was that the 
blending of the two pictures was created by a slightly different mechanism.  Andrea started with 
the PPP picture and constructed a transversal to create line l of the EFP picture.  This 
construction does not change the basic content of the KGB, but it is significant in that it allowed 
students to see additional relationships in the geometric blend focusing on the case when the two 
lines are parallel transports of each other.  
Andrea: If we assume this [points to PPP picture] and draw a transversal through here, through 

P and through this line. So we know that since these are parallel that they add to 180, 
right? Because they are supplementary, whatever. 
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Having agreed upon the sum of the angles being 180 degrees, Andrea then made her full 
argument more clearly as follows:  
Andrea: So say that we rotate this line so that it makes it less than 180, the sum less than 180. 

[Nate: Yeah]… Oh, so, right! So that since we know that this is a unique line because 
we’ve assumed that there is only one line.  So we rotate it so that it is a different line, 
then we know that it is going to intersect because there is only the one line that won’t 
intersect.  

The students continued to discuss the issues involved in Andrea’s proof idea for a few more 
minutes, but ultimately returned to trying to prove EFP implies PPP. Although Andrea’s proof 
was not completed, the KGB was fundamental to this discussion as it was in Episode 1 when 
Paul introduced the idea. In addition, both discussions of the KGB (in Episodes 1 and in Episode 
3) played into Nate’s idea for the proof that was discussed in Episode 4.  Examples of this occur 
in the next two sections. The KGB was fundamental to discussions of the proof in Episodes 1, 3, 
and 4 and in the final write up of the proof. The KGB was the central idea of the proof, the key 
idea of the proof in the sense of Raman (2003). So the result of the blend was powerful for 
proving.  In addition, the students ran the KGB over and over imaginatively as they worked out 
issues in the proof. 

Simple Proving Frame (SPF) vs Conditional Implies Conditional Frame (CICF) 
We introduce and compare two proving structures that the students used in their proofs of 
statements of the form ( ) ( )p q r s! " ! : the Simple Proving Frame (SPF) and the Conditional 
Implies Conditional Frame (CICF). By SPF, we refer to a proving frame where there is a given 

statement (premise), then a 
series of implications, then 
a conclusion (see Figure 
6). There is nothing 
inherently wrong with the 
SPF or trying to apply it to 
a conditional implies a 
conditional statement. 
However, unless a student 
has particular theorems to 
work with that allow a 

direct proof from (p & q) to (r & s), then a simple proving frame (SPF) may be inadequate.  
The students began to work on the task by looking at the pictures and statements of the two 

postulates described on two sequential pages in their book. As they began to think about which  
direction might be easier to prove and how to prove it, three of the four students each flipped 

back and forth between the two pages multiple times. We describe their deliberations in terms of 
a simple blend in which the two input spaces are the two postulates (see Figure 7). The students 
then were bringing the SPF to bear on the problem by putting EFP in the place of what is given 
and PPP in the place of the conclusion. To the extent that there is resolution in this early 
discussion the students seem to have created a blended space that is structured by the SPF with 
EFP as the given and PPP in the conclusion.  

Case 1: (p ! q) 
Given p  

… 
Series of 

Implications 
… 

Then q 

Generic SPF 
Given  

… 
Series of  

Implications 
… 

Then  
 

Case 2:   
Given (p ! q)  
   … 

Series of Implications 
  

… 
Then (r ! s) 

Figure 6: Simple Proving Frame (SPF) 
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Generic CICF 
 
Given   

 … 
Use   

… 
Thus  
 

For the case of  
(p ! q) ! (r ! s)  
 
Given r       … 
Then p 
Since p and (p ! q)  
Then q       … 
Thus s 

Figure 8. The CICF  

On the other hand, the CICF is substantially 
different from the SPF that the students used in 
Episodes 1-3. By CICF we refer to proofs of 
statements of the form ( ) ( )p q r s! " ! , where 
one starts with r and uses a series of implications 
including p1q, to reach the conclusion, s (see 
Figure 8). In Episode 4 Nate began to lay out his 
case for the CICF more directly. 
 Nate:  […] If we assume this [points to a drawing 

of EFP] is true? [Andrea: Okay, so this 
way?] This [EFP] is true for a moment. 
[Andrea: Okay.] Now we have our little 
point over there and we draw this line. We 
know that if this line is such that the 
angles on the one side are less than 180, 
that it is not parallel based on this assumption [EFP]. We know that if they are greater 
than 180, we can apply this assumption again and show that they do [intersect] on the 
other [side].  Can we use our parallel transport proof to show that the boundary 
condition when they are equal to 180, that this angle is congruent to this angle and 
therefore they are parallel and therefore they don’t intersect? 

Nate first established that he was assuming EFP is true and therefore was proving PPP. Next, he 
hinted at the premise of PPP, “we have our little point over there and we draw this line,” 
suggesting that he was starting with r of the (p 1 q) % (r 1 s). He then stated how he could use 
EFP in the middle of the proof, “we can apply this assumption.”  This is the use of (p 1 
q) in the series of implications.  He also 
hinted at what else may be needed to get to 
the conclusion of PPP. As we will see in the 
next section, Paul, Stacey, and Andrea 
initially struggled with Nate’s proof 
structure. Towards the end of the discussion 
they began to think Nate’s idea might work. 
This was aided by the teaching assistant 
visiting the group and being supportive of 
Nate’s idea. Following her departure the 
group prepared a presentation for the class 
based on Nate’s idea. As the group began work on their presentation the three dissenters made 
contributions indicating that they understood Nate’s blend.  

Blending the Premise and Conclusion  
As explained above, students initially, from Episode 1, wanted to use a simply proving frame 
(SPF) that would start with EFP and end with PPP.  Since the SPF is a legitimate proof technique 
in many situations and one that students were very familiar with, this is understandable, and 
might have even led to a proof if the students had appropriate theorems for this. However, in this 
case, the problem with using SPF was compounded by students blending the premise and 
conclusion of EFP in a way that lost the implication structure.  We illustrate this with a transcript 
from Episode 4. As explained in the previous section, Nate had suggested his proof idea which 

EFP PPP ""  

SPF 

Given EFP 
Series of 

Implications 
… 

Then PPP 

Figure 7. A structural blend of SPF 
from EFP to PPP  
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used CICF. Other students in this group saw a similarity between their and Nate’s idea in the 
sense of using three cases (KGB). However, they struggled with Nate’s proof structure.  
Paul: So, we don’t even need to necessarily have the three cases, do we?  Just we need to prove 

that one case – uniqueness on that one.  Because we are assuming they meet on this side 
so I don’t think it really matters if. [Stacey: Exactly. Agreed.]  […] 

Nate: I disagree because you are applying EFP to your specific cases.  You’re not assuming 
that $ and % are less than.  In order to apply it, you have to show that $ and % are less 
than.  […] 

Paul: I think you are assuming that. 
Stacey: Yeah, it assumes.  Because we are assuming the whole EFP.   
Andrea: We’re assuming EFP. 
Stacey: We’re saying if we got two lines that are going to intersect on this one side, the interior 

ones right there are going to be, they have to be less than &. 
Nate: Right, right.  But now we are drawing a picture where we’re going to say that $ and % 

are less than and therefore we can apply EFP to show that they intersect.  […] 
Paul: If we’re assuming that, then how can we say that they are going to be equal to &?  Do you 

know what I am saying?   
Nate: Well, that’s my point.  You have to draw three cases. You have to draw when they sum 

less than, when they sum equal, and when they sum greater than. And you have to apply 
EFP to two of those cases. 

For Paul, Stacey and Andrea assuming EFP meant that they were assuming both the premise and 
the conclusion of EFP. In part, we see this as a faulty use of the SPF proof structure, the notion 
that we are starting with “all” of EFP and we will end the proof with the statement of PPP. In 
addition to the problem of using the SPF structure there is more specifically the idea that 
assuming “all” of EFP causes EFP to lose its implication structure.  We describe this as a 
blending of the premise and the conclusion of EFP. Using blending theory we would say that 
there is a blend with two input spaces, (1) the premise of EFP ($ + % < &) and (2) the conclusion 
of EFP (the two lines intersect on the same side as $ and %). The relationship between these two 
input spaces is that of an implication. However, when the two spaces are mapped to the blend, 
they are mapped to the same diagram with the implication having been compressed to an “and” 
or a simple coexistence without any implication structure. When the students were running this 
blend in the context of proving EFP to PPP using the SPF, they concluded that both the premise 
and conclusion of EFP were given, so it was not necessary to consider the cases when $ + % > & 
or the lines didn’t intersect, since students were assuming as part of EFP that the lines intersected 
and $ + % < &. 

Summary 
We find conceptual blending useful for describing the creation of powerful new ideas necessary 
for proof construction as well as for describing the creation of blends that slow or hinder student 
efforts at proof construction. We noted how students blended the two pictures of EFP and PPP 
and ran that blend in ways that allowed them to create a key idea (KGB) for the proof. This 
blending continued to serve as the foundation for the proof even through its final configuration. 
In addition, Nate’s use of CICF was eventually blended with the KGB to construct the final, 
correct proof that this group presented to the class. On the other hand, there were two cases of 
student blending that served to hinder or slow their proving. In the first case we saw that 
students’ initial use of an SPF structural blend hampered their efforts to structure their proof. The 
students did not have the necessary theorems to complete a proof of this conditional implies 
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conditional statement using an SPF. In a second case we saw students treating “all” of EFP as 
given. EFP was treated as a collection of parts without maintaining the appropriate implication 
structure between these parts. As a result, the students’ conceptual blends led them to blend the 
premise and conclusion in ways that obscured the implication relation between them. 
Consequently, their heavy reliance on this proof frame in the initial discussions slowed their 
efforts. It is our suggestion that instruction should be more explicit in contrasting the use of SPF 
and CICF.  

Acknowledgments  
This material is based upon work supported by the National Science Foundation under grants 
nos. REC–0093494 and DRL-0634099. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the authors and do not necessarily 
reflect the views of the National Science Foundation. 

References 
Brown, S. A. (2003). The Evolution of Students’ Understanding of Mathematical Induction: A 

Teaching Experiment. Unpublished doctoral dissertation, University of California, San Diego 
and San Diego State University. 

Cobb, P. (2000). Conducting teaching experiments in collaboration with teachers. In A. E. Kelly 
& R. A. Lesh (Eds.), Handbook of Research Design in Mathematics and Science Education 
(pp. 307–334). Mahwah, NJ: Lawrence Erlbaum. 

Coulson, S. & Oakley, T. (2001). Blending basics. Cognitive Linguistics. 11(3/4), 175-196. 
Dreyfus, T. (1999). Why Johnny can’t prove. Educational Studies in Mathematics, 38, 85-109. 
Durand-Guerrier, V. (2003). Which notion of implication is the right one? From logical 

considerations to a didactic perspective. Educational Studies in Mathematics, 53, 5-34. 
Fauconnier, G., & Turner, M. (2002). The way we think: Conceptual blending and the mind’s 

hidden complexities. New York: Basic Books. 
Gerson, H. & Walter, J. (2008). How blending illuminates understandings of calculus.  

Proceedings of the 11th Special Interest Group of the Mathematical Association of America 
on Research in Undergraduate Mathematics Education. Retrieved March 16, 2010, from 
http://rume.org/crume2008/Proceedings/Gerson%20LONG.pdf. San Diego, CA. 

Harel, G. (2001). The development of mathematical induction as a proof scheme: A model for 
DNR-based instruction. In S. Campbell, and R. Zazkis  (Eds.), Learning and Teaching 
Number Theory: Research in Cognition and Instruction (pp. 185-212). Westport, Conn: 
Ablex. 

Henderson, D. (2001) Experiencing Geometry: In Euclidean, Spherical, and Hyperbolic Space. 
Upper Saddle River, NJ: Prentice Hall. 

Knapp, J. (2006). Students’ Appropriation of Proving Practices in Advanced Calculus. 
Unpublished doctoral dissertation, Arizona State University. 

Knapp, J., & Roh, K. (2008). Students’ notions of convergence in an advanced calculus course.  
Proceedings of the 11th Conference of the Special Interest Group of Mathematics 
Association of America on Research in Undergraduate Mathematics Education. Retrieved 
from http://mathed.asu.edu/crume2008/Proceedings/RUME_paper_2008.pdf, San Diego, 
CA. 

Maher, C. A., & Martino, A. M. (1996). The development of the idea of mathematical proof: A 
5-year case study. Journal for Research in Mathematics Education, 27, 194-214. 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

363



 

Megowan, C., & Zandieh, M. (2005).  A case of distributed cognition (or, many heads make 
light work…).  In G. M. Lloyd, M. Wilson, J. L. M. Wilkins, & S. L. Behm (Eds.) 
Proceedings of the 27th annual meeting of the North American Chapter of the International 
Group for the Psychology of Mathematics Education. Roanoke, VA. 

Núñez, R. (2005). Creating mathematical infinities: Metaphor, blending, and the beauty of 
transfinite cardinals. Journal of Pragmatics, 37, 1717-1741. 

Moore, R. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 
29, 123-151.  

Pinto, M., & Tall, D. (2002). Building formal mathematics on visual imagery: A case study and a 
theory. For the Learning of Mathematics, 22, 2-10. 

Raman, M. (2003). Key ideas: What are they and how can they help us understand how people 
view proof? Educational Studies in Mathematics, 52, 319-325.  

Roh, K. (2010). An empirical study of students’ understanding of a logical structure in the 
definition of the limit of a sequence via the 2-strip activity. Educational Studies in 
Mathematics. 73, 263-279.  

Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statement. Educational 
Studies in Mathematics, 29, 123-151. 

Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall 
(Ed.), Advanced Mathematical Thinking (pp. 65-81). Dordrecht: Kluwer. 

Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational Studies 
in Mathematics, 56, 209-234. 

Zandieh, M., Roh, K., & Knapp, J. (2010). Conceptual blending: Student reasoning when 
proving “conditional implies conditional” statements. Unpublished manuscript. 

  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

364



 

LEARNING TRAJECTORIES: 
FOUNDATIONS FOR EFFECTIVE, RESEARCH-BASED EDUCATION 

 
Douglas H. Clements 

University at Buffalo, State University of New York 
clements@buffalo.edu 

Approaches to standards, curriculum development, and pedagogy are remarkably diverse; 
however, recent years have seen a growing movement to base each of these on learning 
trajectories. In this paper, I discuss and compare the various terms and conceptions of this 
construct, present our definition, differentiate between our conception and that of others’, and 
briefly review some of our recent evidence in the area of early childhood mathematics paper. 

Throughout history, approaches to standards, curriculum development, and pedagogy have 
been remarkably diverse. Recent years, however, have seen a growing movement to base each of 
these on learning trajectories. Examples include the National Council of Teachers of 
Mathematics' Curriculum Focal Points (2006) to the National Research Council's report (2009), 
and most notably the Common Core State Standards (CCSSO/NGA, 2010, for which the 
"progressions" of a learning trajectory were developed first—the standards followed). Here I 
compare and contrast different notions of this important concept and summarize results of recent 
empirical work illustrating its potential. 

The term “curriculum” stems from the Latin word for racecourse, referring to the course of 
experiences through which children grow to become mature adults. Thus, the notion of a path, or 
trajectory, has always been central to curriculum development and study. In his seminal work, 
Simon stated that a “hypothetical learning trajectory” included “the learning goal, the learning 
activities, and the thinking and learning in which the students might engage” (1995, p. 133). 

Building on Simon’s definition, but emphasizing a cognitive science perspective and a base 
of empirical research, “we conceptualize learning trajectories as descriptions of children’s 
thinking and learning in a specific mathematical domain, and a related, conjectured route through 
a set of instructional tasks designed to engender those mental processes or actions hypothesized 
to move children through a developmental progression of levels of thinking, created with the 
intent of supporting children’s achievement of specific goals in that mathematical domain” 
(Clements & Sarama, 2004, p. 83). The term “learning trajectory” reflects its roots in Simon’s 
constructivist perspective (in emphasizing students’ learning).  However, although the name 
appears to focus on learning more than teaching, both Simon’s and our definitions clearly 
involve teaching and instructional tasks. Some interpretations and appropriations of the learning 
trajectory construct emphasize only the “developmental progressions” of learning (what Simon 
calls hypothetical learning processes) during the creation of a particular curricular or pedagogical 
context. That is, they only describe levels of thinking through which students develop, which we 
believe is but one part of the learning trajectory construct. Some terms, such as “learning 
progressions” are used ambiguously, sometimes indicating only developmental progressions, and 
at other times, also suggesting a sequence of instructional activities. Although studying either 
psychological developmental progressions or instructional sequences separately can be valid 
research goals, and studies of each can and should inform mathematics education, we believe the 
power and uniqueness of the learning trajectories construct stems from the inextricable 
interconnection between these two aspects. Both these aspects (developmental progressions of 
thinking and instructional sequences) serve the most important, but often least discussed, aspect 
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of learning trajectories—the goal. Our learning trajectories base goals on both the expertise of 
mathematicians and research on students’ thinking about and learning of mathematics (Clements, 
Sarama, & DiBiase, 2004; Fuson, 2004; Sarama & Clements, 2009a). This results in goals that 
are organized into the “big” or “focal” ideas of mathematics: overarching clusters and concepts 
and skills that are mathematically central and coherent, consistent with students’ (often intuitive) 
thinking, and generative of future learning (Clements, Sarama, et al., 2004). Once the 
mathematical goals are established, research is reviewed to determine if there is a natural 
developmental progression (at least for a given age range of students in a particular culture) that 
can be identified within theoretically- and empirically-grounded models of children’s thinking, 
learning, and development (Carpenter & Moser, 1984). That is, researchers build a cognitive 
model of students’ learning that is sufficiently explicit to describe the processes involved in 
students’ progressive construction of the mathematics described by the goal across several 
qualitatively distinct structural levels of increasing sophistication, complexity, abstraction, 
power, and generality. 

What, if Anything, is “New” in the Learning Trajectories Construct? 
When we discuss learning trajectories, some (commendably) skeptical colleagues ask what is 

really different. If curricula have always been “courses” or paths (and frequently “horse races” 
through them), and if psychological and educational theories always postulated series of goals, 
then is this not simply renaming old (and palpable) ideas? At certain simple levels, the answer is 
positive. Most of these notions describe or dictate a series of educational goals. All have some 
theoretical perspective on why one goal might follow another. 

In contrast, these theories often differ markedly on the details, and the learning trajectories 
construct as we define it builds upon theories and research of years past, as any theory should, 
but is distinct from previous formulations and constitutes a substantive contribution to theory, 
empirical research, and praxis. For example, early educational psychology considered 
educational series or sequences  on the accumulation of connections. "We now understand that 
learning is essentially the formation of connections or bonds between situations and responses, 
that the satisfyingness of the result is the chief force that forms them, and that habit rules in the 
realm of thought as truly and as fully as in the realm of action" (Thorndike, 1922, p. v). Thus, 
curricular sequences could be logically arranged to establish connections between simple 
situations (addends) and responses (sum) and then later connect these and other bonds to 
complete more difficult tasks (e.g., multidigit addition) and even to develop mathematical 
reasoning. However, conceptual, meaningful learning was not the focus, but rather simple paired 
or associated learning. Also, potential differences and nuances of learning in different subject 
matter domains were not considered.  

Bloom’s taxonomy of educational objectives and Robert Gagné’s “conditions of learning” 
and “principles of instructional design” (Gagné, 1965; Gagné & Briggs, 1979) postulated that 
Thorndike’s theory was too simple and that there were “types of learning” and that certain types, 
such as stimulus-response learning (e.g., Thorndike’s “bonds”) were prerequisite to other types 
(e.g., discrimination learning, concept learning, rule learning, and last, problem solving). For a 
specific topic, or a specific domain within a topic such as mathematics, these could be assembled 
in “learning hierarchies”—sequences of pairs consisting of a subordinate skill whose acquisition 
is hypothesized to facilitate the learning of a higher-level skill. These, then, specified a “learning 
route”—certainly one early form of a learning trajectory. Such routes would be determined by 
logical analysis (logically identifying what subordinate competence is required by a 
superordinate competence) and empirical task analysis (Gagné, 1965/1970).  
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In a similar manner, others continued to promote task analysis as a way to develop complex 
hierarchies of skills. Some researchers similarly based these hierarchies on logical and task 
analyses, but gave more weight to extant findings in educational—and especially 
psychological—research to perform “cognitive” or “rational” analyses—with follow-up 
empirical validation studies whenever possible (Resnick & Ford, 1981). Work from this 
perspective increasingly used the computer metaphor (i.e., information-processing theories), and 
often actual computer models, in their analyses (Hoz, 1979; Klahr & Wallace, 1976).  

These approaches determined hierarchies of educational goals and were the basis of many 
“scope and sequences” in the educational literature (see Baroody, Cibulskis, Lai, & Li, 2004, for 
an extended discussion and somewhat different perspective). The view of learning of the earlier 
approaches was generally that of knowledge acquisition, with the environment providing input 
that was “received”—that is, imitated and mentally recorded by the student.  

Other researchers attended more to students’ thinking and cognitive development. Some 
devised developmental learning theories in attempts to integrate structural views such as those of 
Piaget with views based on task analysis and information-processing models. Later theoretical 
efforts in cognitive science extended these efforts to focus on the importance of domain-specific 
learning and development (Davis, 1984; Karmiloff-Smith, 1992). 

In historical parallel, several theories, from Piagetian (Piaget & Szeminska, 1952) to field 
theories (Brownell, 1928; Brownell & Moser, 1949) and later developmental and cognitive 
science theories (Case & Okamoto, 1996) emphasized students as makers of meaning. Similarly, 
cognitively- and constructivist-oriented research programs explicated the concepts and skills 
children build as they move from one level to the next within a mathematical domain (Baroody, 
1987; Carpenter & Moser, 1984; Steffe & Cobb, 1988). Unfortunately, those applying these 
studies practically often oversimplified and misconstrued their results and implications, 
emphasizing laissez–fair or outdated “discovery” approaches (Clements, 1997). 

Learning trajectories as we have defined them (and our overaching theory of Hierarchic 
Interactionalism, see Clements & Sarama, 2007a; Sarama & Clements, 2009a) owe much to 
these previous efforts, which have progressed to increasingly sophisticated and complex views of 
cognition and learning. However, the earliest applications of cognitive theory to educational 
sequences tended to feature simple linear sequences based on accretion of numerous facts and 
skills. This was reflected in their hierarchies of educational goals and the resultant scope and 
sequences. Learning trajectories include such hierarchies, but are not as limited as these early 
constructs to sequences of skills or “logically” determined prerequisite pieces of knowledge. 
Learning trajectories are not lists of everything children need to learn, as are some scope and 
sequence documents; that is, they do not cover every single “fact” or skill. Most important, they 
describe children's levels of thinking, not just their ability to correctly respond to a mathematics 
question. They can not be summarized by stating the mathematical definition, concept, or rule 
(cf. Gagné, 1965/1970). So, for example, a single mathematical problem may be solved 
differently by students at different (separable) levels of thinking in a learning trajectory. Levels 
of thinking describe how students think about a topic and why—including the cognitive actions-
on-objects that constitute that thinking. 

Further, the ramifications for instruction from earlier theories were often based on 
transmission views, which hold that these facts and skills are presented and then passively 
absorbed. In comparison, learning trajectories have an interactionalist view of pedagogy. 

To further elaborate these differences, consider the three components of learning trajectories.  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

367



 

Goal 
The explication of the goal is important and distinguished from previous theories of learning 

that tended to either (a) apply the same theories and procedures to all domains, ignoring subject 
matter, or (b) accept the goal as arbitrary or “given” by existing standards or curriculum. In 
contrast, as stated, our learning trajectories base goals on both the expertise of mathematicians 
and research on students’ thinking about and learning of mathematics. Thus, in contrast to earlier 
approaches, both domain-specific expertise and research on students’ thinking and learning in 
that domain play a fundamental role in determining the mathematical goal—the first component 
of learning trajectories. 

Developmental Progression 
The developmental progressions of learning trajectories are much more than linear sequences 

based on accretion of numerous facts and skills. They are based on a progression of levels of 
thinking that (as does the goal) reflects the cognitive science view of knowledge as 
interconnected webs of concepts and skills. It is important to describe the nature of these levels 
and differentiate them from ‘stages’ (such as Piaget’s). 

A level is a period of time of qualitatively distinct cognition, as are stages; however, there are 
at least four important distinctions between levels and stages. First and most important, they do 
not apply across domains but only within a specific domain. Second, the period of time is 
generally far shorter, and can be months or days (especially given efficacious instruction), rather 
than a period of years for stages. 

Third, although—like Piaget— Hierarchic Interactionalism postulates that subsequent levels 
are built upon earlier levels, there are two important differences. (a) The order of magnitude of 
difference in durations indicates a distinctly different cognitive “distance” between successive 
states. Informally, the “jump” between contiguous levels is far smaller than the jump between 
Piagetian stages (admittedly, measuring such distances, for this distinction and related theoretical 
notions such as Vygotsky’s Zone of Proximal Development, remains an open problem). (b) The 
Hierarchic Interactionalism theory of levels makes no commitment (as does the Piagetian theory 
of stages) that the actions-on-objects of level n + 2 must be built from those of level n + 1. In 
Piagetian theory (Piaget & Szeminska, 1952), for example, stages are long periods of 
development characterized by cognition across a variety of domains qualitatively different from 
that of both the preceding and succeeding stages. Further, in Piagetian theory, stage n + 2 
necessitated passing through stage n + 1 because stage n + 1 constructed the elements from 
which stage n + 2 would be built.  

Levels in Hierarchic Interactionalism are not “stages.” Rather, in many cases the cognitive 
material may be present at level n, requiring only a greater degree of construction or 
generalization to construct the pattern of thinking and reasoning defining level n + 2. We return 
to this issue when we discuss students “skipping” a level or “jumping ahead.” 

Fourth, although levels of thinking can be theoretically viewed as nonrecurrent (Karmiloff-
Smith, 1984), students not only can, but frequently do, “return” to earlier levels of thinking in 
certain contexts. Therefore, Hierarchic Interactionalism postulates the construct of nongenetic 
levels (Clements, Battista, & Sarama, 2001), which has two special characteristics. (a) Progress 
through nongenetic levels is determined more by social influences, and specifically instruction, 
than by age-linked development. (At this point, this only implies that progression does not occur 
by necessity with time, but demands, in addition, instructional intervention, although certain 
levels may develop under maturational constraints.) (b) Although each higher nongenetic level 
builds on the knowledge that constitutes lower levels, its nongenetic nature does not preclude the 
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instantiation and application of earlier levels in certain contexts (often, but not necessarily 
limited to, especially demanding or stressful contexts or tasks). There exists a probability of 
evoking each level depending on circumstances. Again, Figure 1 illustrates that earlier levels do 
not “disappear”; people do not “jump” from one type of thinking to a separate type, but rather 
build new ways of thinking upon the previous patterns of thinking. This process is codetermined 
by the probabilities of instantiation and conscious metacognitive control, which increases as one 
moves up through the levels, allowing more intentional application of various cognitive 
strategies. Therefore, students have increasing choice to override the default probabilities. The 
use of different levels is environmentally adaptive; thus, the adjective “higher” should be 
understood as a higher level of abstraction and generality, without the implication of either 
inherent superiority or the abandonment of lower levels as a consequence of the development of 
higher levels of thinking. Nevertheless, the levels would constitute veridical qualitative changes 
in thinking and behavior. 

Each level in Hierarchic Interactionalism’s developmental progressions is characterized by 
specific mental objects (e.g., concepts) and actions (processes) (e.g., Clements, Wilson, & 
Sarama, 2004; Steffe & Cobb, 1988). Specification of these actions-on-objects allows a degree of 
precision not achieved by previous theoretical and empirical works. Further, the research 
methods that generate and test these mental models are distinct from methods used in earlier 
research. Strategies such as clinical interviews are used to examine students' knowledge of the 
content domain, including conceptions, strategies, intuitive ideas, and informal strategies used to 
solve problems. The researchers set up a situation or task to elicit pertinent concepts and 
processes. Once an initial model has been developed, it is tested and extended with teaching 
experiments, which present limited tasks and adult interaction to individual children with the 
goal of building models of children’s thinking and learning—that is, transitions between levels 
are the crux of these studies—which is another way learning trajectories differ from many earlier 
research programs. Once several iterations of such work indicate substantive stability, it is 
accepted as a working model. Thus, the developmental progressions’ levels of thinking and 
explication of transitions between levels describe in detail the following: (a) what students are 
able to do, (b) what they are not yet able to do but should be able to learn, and (c) why—that is, 
how they think at each level and how they learned these levels of thinking. This distinguishes 
learning trajectories’ developmental progressions from earlier efforts to develop educational 
sequences that, for example, often used reductionist techniques to decompose a targeted 
competence level only into subskills, based on an adult’s perspective. 

Instructional Tasks 
The instructional tasks of learning trajectories are much more than didactic presentations or 

external “models” of the mathematics to be learned. They often include these elements, but they 
are fine-tuned to develop the level of thinking that a particular student needs. Learning 
trajectories differ from instructional designs based on task (or “rational”) analysis because they 
are not a reduction of the skills of experts but are models of students’ learning that include the 
unique constructions of students and require continuous, detailed, and simultaneous analyses of 
goals, pedagogical tasks, teaching, and children’s thinking and learning. Such explication allows 
the researcher to test the theory by testing the curriculum (Clements & Battista, 2000).  

This early interpretive work evaluates components using a mix of model (or hypothesis) 
testing and model generation strategies, including design experiments, as well as grounded 
theory, microgenetic, microethnographic, and phenomenological approaches. The goal is to 
understand the meaning that students give to the instructional objects and tasks. The focus is on 
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the consonance between the actions of the students and the learning trajectory; that is, does the 
instruction task engender, in a student at level n, the cognitive actions-on-objects that are 
described as accounting for the type of thinking and problem-solving at level n + 1. If not, other 
tasks can be tried, based on a detailed account of the students’ responses. (Discrepancies may 
also reveal a need to alter the developmental progression.) Questions such as the following direct 
the inquiry. Do students use the tools provided (e.g., manipulatives, tables or graphs, software 
tools or features) to perform the actions, either spontaneously or only with prompting? If 
prompting is necessary, which type is successful, and does this differ for different students? Are 
students’ observable actions-on-objects enactments of the desired cognitive operations in the 
way the model posits, or merely trial-and-error manipulation?  Are there indications of an 
internalization of these; that is, indications that students are building mental actions-on-objects 
and thus developing n + 1 level of thinking? In this way, the developer/researcher creates more 
refined models of the thinking of particular groups of students (the developmental progression) 
and describes what elements of the instructional tasks, including specific scaffolding strategies, 
are observed as having contributed to student learning. The objective is to connect the 
developmental progression with the instructional tasks. 

The tightly interwoven and interacting connections among the three components of a 
learning trajectory—goal, developmental progression, and instructional tasks—encompassing 
levels from the microscopic and individual student’s cognition to the cultural surround, are a 
major distinguishing features of the learning trajectory construct. There are not two different 
paths (see footnote 1)—a learning path and a teaching path—but one learning trajectory with 
three components borne of the same theoretical and empirical parents. 

Scientific experiments that examine, evaluate, and extend these connections and components 
include conceptual analyses and theories. They are tested and iteratively revised in progressively 
expanding social situations, which results in greater contributions to both educational theory and 
practice (Clements, 2007). 

Empirical Support 
We initially reviewed research in early mathematics because we believed that learning 

trajectories should be the backbone of our Building Blocks research-and-development curriculum 
project (Clements & Sarama, 1998), which was developed based on a Curriculum Research 
Framework (Clements, 2007) that itself puts learning trajectories at the core. Our work in that 
and several subsequent projects convinced us of the usefulness of the construct, with effect sizes 
from .72 to 2.12 (Clements & Sarama, 2007b; Sarama & Clements, 2009b; Sarama, Clements, 
Starkey, Klein, & Wakeley, 2008). The effect size of the Building Blocks Pre-K curriculum was 
.72. Longitudinal analyses with follow-up interventions focused only on learning trajectories 
(i.e., the teachers in kindergarten and first grade used their regular curriculum, but studied the 
research-based learning trajectories) continues these gains (Sarama, Clements, Wolfe, & Spitler, 
2011). We believe these results indicate that the use of learning trajectories in curriculum 
development and professional develop have consistent, substantial, benefits. 
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This systematic review of mathematics educational technology literature identified 1356 
manuscripts addressing the integration of educational technology into mathematics instruction. 
The manuscripts were analyzed using three frameworks (Research Design, Teacher Knowledge, 
and TPACK) and three supplementary lenses (Data Sources, Outcomes, and NCTM Principles) 
to produce a database to support future research syntheses and meta-analyses. Preliminary 
analyses of student and teacher outcomes (e.g., knowledge, cognition, affect, and performance) 
suggest that the effects of incorporating graphing calculator and dynamic geometry technologies 
have been abundantly studied; however, the usefulness of the results was often limited by missing 
information regarding measures of validity, reliability, and/or trustworthiness. 
 

Educational technology (i.e., digital technology, as opposed to other forms of educational 
tools such as overhead projectors or physical manipulatives) is promoted to mathematics teachers 
as a research-based strategy for improving student outcomes. Although research on mathematics 
educational technology appears at first glance to be ubiquitous, the usefulness of this research to 
practitioners and researchers is limited by lack of attention to research design and validity, 
reliability, and threats to validity (Rakes et al., 2011). Additionally, much of the research appears 
to be unorganized, with topics such as graphing calculators studied often, while other topics such 
as virtual manipulatives understudied (Ronau et al., 2010). The purposes of this systematic 
review were to (1) examine the evidence of technology impact on the teaching and learning 
mathematics in K-13, graduate, teacher development, and adult education using three 
frameworks (Comprehensive Framework of Teacher Knowledge [CFTK], Research Design, and 
Technology, Pedagogy, and Content Knowledge [TPACK]) and three supplementary lenses 
(Data Sources, Outcomes, and NCTM Principles) and (2) assess the utility of each framework for 
guiding the synthesis of mathematics educational technology research. 
 

Theoretical Framework and Background 
Three frameworks were applied to the analysis in the set of mathematics educational 

technology studies discovered by the systematic review: Research Design, CFTK, and TPACK. 
The research design framework was used to guide the investigation of the types of research 
approaches used in mathematics educational technology research. The complex nature of 
questions pertaining to educational technology effectiveness requires a variety of research 
designs such as (1) experimental or quasi-experimental studies, (2) large-scale studies, (3) 
studies with sufficient statistical information to be included in meta analysis and mixed-
methodology studies, (4) studies with rich analysis of student content knowledge, and (5) studies 
that address the complexities of learners, classrooms, and schools (Bell, Schrum, & Thompson, 
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2008; Means, Wagner, Haertel, & Javitz, 2003). However, without explicit attention to the 
alignment of the research design to the questions of interest, the validity and reliability of the 
measures used, and the threats to validity within the chosen design, the reported outcomes will 
be less likely to have been founded on scientific principles or to be replicable (Shadish, Cook, & 
Campbell, 2002). The usefulness of such studies to practitioners and researchers will be, 
therefore, limited without robust attention to research design issues. The Research Design 
framework (Ronau et al., 2010) was compiled from several sources to address pertinent issues 
across a wide range of research types (e.g., Creswell, 2009; Shadish et al., 2002; Shavelson & 
Towne, 2002; Teddlie & Tashakorri, 2009). For a detailed description of the Research Design 
framework, see Rakes, Wagener, and Ronau (2010). 

Within the past few years, two new teacher knowledge frameworks have been proposed that 
have the potential to support the research community in responding to questions on the impact of 
technology on learning. The Comprehensive Framework of Teacher Knowledge (CFTK; Figure 
1) provides a three-dimensional model for addressing multiple aspects of teacher knowledge and 
their interactions (Rakes, Ronau, & Niess, 2010; Ronau, Rakes, Wagener, & Dougherty, 2009; 
Ronau, Wagener, & Rakes, 2009). This model transforms current understanding of teacher 
knowledge from a linear structure to a three dimensional model, as shown in Figure 1, by pairing 
six inter-related aspects into three orthogonal axes: 1) Field, comprised of Subject Matter and 
Pedagogy; 2) Mode, comprised of Orientation and Discernment; and 3) Context, comprised of 
Individual and Environment. For a detailed description of the CFTK aspects and dimensions, see 
Ronau and Rakes (in press). 

 

 
Figure 2. CFTK framework of teacher knowledge as a three-dimensional 

structure. 

The Technology, Pedagogy, and Content Knowledge (TPACK) framework defines the 
knowledge needed by teachers to integrate technology into the pedagogy of particular subject 
matter (e.g., Mishra & Koehler, 2006; Niess, 2005). In its entirety, TPACK consists of a set of 
descriptive knowledge components embedded in an educational Context, Content Knowledge 
(CK), Pedagogical Knowledge (PK), and Technological Knowledge (TK), and a series of 
interactions, Pedagogical Content Knowledge (PCK), Technological Pedagogical Knowledge 
(TPK), Technological Content Knowledge (TCK), and TPACK. The initial TPACK framework 
has been extended to provide benchmarks of the development of this knowledge as shown in 
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Figure 2, including recognizing, accepting, adapting, exploring, and advancing (Niess, Lee, & 
Sadri, 2007). 

 
Figure 3. Model of teacher thinking and understanding as that knowledge develops 

toward the intersection identified as important by TPACK. 

Based on feedback through peer debriefing (Rakes et al., 2010), three additional lenses (Data 
Sources, Outcomes, and NCTM Principles) were added to provide a more comprehensive 
snapshot of the research landscape, guiding practitioners to choose best practices and for guiding 
future research directions. 

Using these frameworks and lenses, we began our investigation with two overall questions: 
(1) To what degree do the three frameworks, Research Design, CFTK, and TPACK, capture the 
scope of mathematics educational technology research? (2) What Data Sources, Outcomes, and 
NCTM Principles are addressed in mathematics educational technology research?  To what 
degree, and how, implicit/explicit?   

 
Method 

A research synthesis (Cooper & Hedges, 2009) was conducted to address the two overall 
questions. To identify the most representative sample that was relevant to the questions of 
interest (i.e., construct validity), a wide array of databases were searched using terms to restrict 
the sample based on three inclusion criteria: (1) The study needed to examine a technology-based 
intervention; (2) The intervention needed to target the learning of a mathematics concept or 
procedure; (3) The manuscript needed to be available in the English language. The database 
platforms and individual databases included EBSCOWeb (ERIC, Academic Search Premier, 
PsychInfo, Primary Search Plus, Middle Search Plus, Educational Administration Abstracts), 
JSTOR (limited to the following disciplines: Education, Mathematics, Psychology, and 
Statistics), OVID, ProQuest (Research Library, Dissertations & Theses, Career & Technical 
Education), and H. W. Wilson Web (Education Full Text). From these databases, 1356 
manuscripts (journal articles, book chapters, technical reports, conference proceedings, master's 
theses, and doctoral dissertations) were identified as being potentially relevant to the questions of 
interest.  

The initial coding database was pilot tested with three articles and two coders to help refine 
the coding database. Refinements based on the results of this pilot test were examined with all 
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six researchers coding the same, original three articles. This process was repeated through three 
more iterations of refinement and coding of 27 more articles (i.e., 30 articles were group coded). 

After the analysis of 473 manuscripts, a number of coding issues emerged that required 
attention. Extensive team discussions led to a number of coding clarifications to improve team 
alignment, including how to: code studies with meta-analyses and/or systematic reviews, mixed 
methodology designs and single subject designs, action research, and survey research; code 
purposive and convenience sampling, subject dialog data, and modified and validated 
instruments; and record evaluative comments when deemed necessary. Finally, a number of 
coding form issues was addressed. The existing database of 473 studies was aligned with this 
new set of procedures and understandings, and the team developed a new process of coding the 
remaining studies that paired each of the six coders with all the other coders to provide a mixed 
set of double coding for the remainder of the studies. The new coding design created a 
completely counter-balanced design with all six coders that provided greater inter-rater reliability 
and content validity of the coding. With this plan, every manuscript was coded by two members 
of the coding team, and each member coded 59 studies with every other member. Any 
discrepancies between coder and re-coder were recorded and discussed by the pair and by the 
full team as needed.  
 

Preliminary Results 
At the time of the writing of this paper, 473 manuscripts have been coded and cross-validated 

(i.e., double coded and checked for accuracy). Twenty four of these manuscripts were screened 
out because they were not relevant to the questions of interest (i.e., did not address the learning 
of mathematics concepts and procedures, did not involve technology, or was not available in 
English), leaving 449 manuscripts in the sample. Initial results were examined by grouping the 
manuscripts into four categories (not mutually exclusive) of outcomes: Student Achievement and 
Learning; Student Orientation, Discernment, and Learning Behavior; Teacher Knowledge; and 
TPACK. The manuscripts and their 449 characteristics were analyzed through descriptive 
statistics as an initial method for interpreting the landscape of mathematics educational 
technology research.  
The Role of Educational Technology in Student Achievement and Learning 

Of the relevant manuscripts, 218 addressed educational technology in mathematics with a 
view of improving student achievement and learning. As shown in Table 1, over half (N=113) 
were dissertations and many of the remainder (N=69) were journal articles. Over half (N=118) 
were purely quantitative studies. The remaining studies were qualitative (N=36), mixed methods 
(N=43), non-research (N=9), meta analysis/systematic review (N=6), literature driven (N=5), or 
single subject (N=1). Performance assessments (e. g., tests, performance tasks, grades, GPA, 
etc.) were the most common sources of data used in these manuscripts, while journals (all types), 
focus groups, and non self-report surveys were the least used.  

The manuscripts in this subsample most commonly addressed the Algebra NCTM Content 
Standard (N=159) and the Problem Solving Process Standard (N=89). Graphing calculators 
(N=43), tutorial software (N=39), and dynamic geometry software (N=25) were the more 
regularly studied technologies. In regards to information on measures of reliability and validity 
for the quantitative and mixed methods studies, approximately 41% of the manuscripts addressed 
reliability, 30% addressed validity, and 57% addressed threats to validity. For the qualitative and 
mixed methods studies, 60% attended to trustworthiness where approximately 62% of these 
studies attended to only one form of trustworthiness.  
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Type of 
Manuscript  
by Research 
Design 

Non-
research 

Quali-
tative 

Quanti-
tative 

Mixed 
Methods 

Single 
Subject 

Meta-
Analysis/ 
Sytematic 
Review 

Liter-
ature 

Total 

Book 
Chapter 

0 1 1 0 0 0 1 3 

Conference 
Paper 

1 2 1 2 0 0 1 7 

Disserta-tion 0 15 59 34 1 4 0 113 
Journal 8 16 35 6 0 1 3 69 
Master’s 
Thesis 

0 2 18 1 0 0 0 21 

Report 0 0 4 0 0 1 0 5 
Grand  
Total 

9 36 118 43 1 6 5 218 

Table 1. Student achievement and learning manuscripts by research design. 
 
The Impact of Educational Technology on Student Orientation 

Of the relevant manuscripts, 126 had examined the impact of educational technology on 
student orientation (i.e., the affective domain), discernment (i.e., the cognitive domain), and 
learning behaviors (e.g., student dialog and collaboration). The manuscripts consisted of 71 
dissertations and 39 journal articles. Of these, 62 used purely quantitative analyses, 28 used 
purely qualitative methodologies, and 27 used mixed methodology. Self-report orientation 
survey data and performance assessment data were the two most common types of data sources; 
the top seven data sources are listed in Table 2. The Algebra NCTM Content Standard (N=32) 
and the Problem Solving Process Standard (N=23) were the most commonly addressed NCTM 
standards. Graphing calculators (N=24) were the most common type of calculator-based 
technology, followed by non-scientific calculators (N=16). The three most frequently used 
nonweb-based software were tutorial software (N=15), dynamic geometry (N=13), and algebra 
(N=12). Distance learning stood out among the web-based technologies (N=10) as these other 
technologies were often not addressed or addressed in only one or two manuscripts. Only 27% of 
the quantitative and mixed methods studies addressed issues surrounding validity, 61% 
addressed threats to validity, and 42% addressed reliability. Of the qualitative and mixed 
methods studies, 73% attended to trustworthiness, with 55% that attended to only one form of 
trustworthiness. 
 

Data Sources Number of Studies  
Self-Report Orientation Survey Data 83 
Performance Assessment Data 76 
Observation Data 42 
Interview Data 37 
Content Analysis Data 28 
Self-Report Polls and Census Survey Data 13 
Researcher Journal Data 8 

Table 2. Top seven data sources for student orientation. 
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The Interaction of Teacher Knowledge Aspects in Educational Technology Research 

Teacher Knowledge was examined as an outcome in 72 manuscripts, of which 39 were 
journal articles and 26 were dissertations. The most common research design was qualitative 
(N=35), followed by non-research (N=15), mixed methods (N=11), and quantitative (N=8). The 
four most frequently used data sources were observation data (N=42), interview data (N=30), 
content analysis data (N=29), and self-report orientation survey data (N=24). Graphing 
calculators, dynamic geometry software, and spreadsheets were the most commonly studied 
technologies. The Algebra Content Standard (N=20) and the Problem Solving Process Standard 
(N=11) were the most commonly addressed NCTM standards. The distribution of CFTK aspects 
and interactions from this sample was compared to the distribution reported in Ronau and Rakes 
(in press) for teacher knowledge studies across multiple subject matter domains. The average 
number of aspects examined in mathematics educational technology ( x = 1.53, SE = 0.207) 
appeared to be smaller than the average number of aspects examined across multiple subject 
matter domains ( x = 2.16, SE = 0.119). This difference appeared to be statistically significant 
(tdf=71=3.74). This result may indicate that the research field in mathematics education 
technology may be considering less complex perspectives of teacher knowledge than other 
subject matter domains. Reliability was attended to in 32% of the quantitative and mixed 
methods studies, with validity and threats to validity attended to in 11% and 53%, respectively. 
Trustworthiness was addressed in 65% of the qualitative and mixed methods studies, where 60% 
addressed only one form of trustworthiness. 
 
 Graphing  

Calculators 
Dynamic 
Geometry 

Spread-
sheets 

Graphing 
Software 

Algebraic 
Software 

Statistics 
Software 

Tutorials 

Number 
of 
Studies 

22 19 14 7 5 5 5 

Table 3. Top seven technologies for teacher knowledge. 
 
The Use of TPACK to Guide Educational Technology Research 

TPACK, as a guiding framework of the knowledge teachers need for integrating educational 
technology in mathematics, was employed either explicitly or implicitly, in 219 manuscripts, of 
which 102 were journal articles and 85 dissertations. Of these manuscripts, 72 used purely 
quantitative methodologies, 48 used purely qualitative methodologies, 27 used mixed 
methodologies, and 61 did not employ any type of research design (i.e., anecdotal support of 
hypotheses or descriptions of techniques). Performance assessment was the most commonly used 
data source (N=86). The NCTM Content Standards considered most often were Algebra (N=67), 
Geometry (N=45), and Number & Operations (N=37), while Problem Solving (N=35) was the 
most commonly considered Process Standard. Graphing calculators (N= 54) and dynamic 
geometry software (N=49) were the two most common types of technology used. Only 24% of 
the quantitative and mixed methods studies addressed validity issues, 81% addressed threats to 
validity, and 39% addressed reliability. Of the qualitative and mixed methods studies, 65% 
attended to trustworthiness, with 63% that attended to only one form of trustworthiness. 

 
Summary  

Several patterns were common among all four outcome groups. Dissertations and journal 
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articles were the two most common types of manuscripts, with quantitative studies being the 
most prevalent research design among three of the four areas (all except teacher knowledge 
outcomes). Also among these three areas, performance assessment and self-report orientation 
survey were the two most often used data sources. The most common NCTM Content and 
Process Standards addressed in all four areas were Algebra and Problem Solving, respectively. 
Graphing calculators were consistently the most frequently used calculator-based technology, 
while dynamic geometry was either the most commonly used or second most commonly used 
non-web-based technology for all four areas. Web-based technologies were the least frequently 
used type of technology among all four areas.  

Missing information regarding measures of validity, reliability, and/or trustworthiness was 
prevalent. Overall, approximately 40% of the quantitative and mixed methods studies addressed 
reliability, 27% addressed validity, and 64% addressed threats to validity. Trustworthiness was 
attended to in approximately 65% of all qualitative and mixed methods studies.  
 

Discussion 
The completion of the study will provide a searchable database of educational technology 

studies from 1968 to 2010, containing key information organized by three frameworks and four 
lenses. With this data, we will be able to better describe the landscape of educational technology 
research in mathematics, providing significant detail about the type, quality, content, and 
alignment of the studies. Doctoral students and advisors will benefit from an analysis of the 600+ 
dissertations in the sample, providing a guide to over- and under-studied dissertation topics (e.g., 
impact of graphing calculators in algebra). The research team will be able to identify gaps in the 
research base with respect to a number of study characteristics organized by the frameworks and 
lenses described above, as well as the depth and quality of areas well-studied. Detailed coding of 
research design features will allow for rigorous examination of the evidence currently available 
to the field in the form of meta-analysis and qualitative research syntheses. The systematic nature 
of this review will provide a foundation for future investigations and replication. Additionally, 
once the initial coding is completed, the task of updating the database with newly released 
manuscripts can easily be accomplished. Finally, this study will also include an evaluation of the 
utility of each of the three frameworks and four lenses used in the analysis to capture the 
perspective and the critical details of educational technology research. 
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This study examined opportunities provided for students to conceptualize linear relationships, as 
reflected in five United States mathematics textbooks. Texts represented a broad spectrum of 
types: commercial, so-called “back to basics”, and NSF funded. Analysis of allocation, topic 
choice, presentation, context, and cognitive level was completed. Analysis results revealed that 
students are being asked to grapple with linear relationships at increasingly younger ages, limits 
in the models they are asked to use, limits on discussion of concepts and connections, lack a real 
world context for most problems, and lower levels of cognitive expectation. The results indicate a 
significant gap between learning goals from intended curricula, and the potentially implemented 
curricula contained in many current U.S. textbooks. Conclusions suggest ways in which the 
present curriculum may be transformed. 

 
Linear relationships are important because they measure a basic way in which one quantity 

changes in relation to another. Frequently expressed as equations, graphs of lines and tables, 
almost all are functions. Linear functions are one of the foundational types of functions for 
students to understand in mathematics. As early as the 1920s, it was recognized that “without 
functional thinking there can be no real understanding or appreciation of mathematics” (Breslich, 
1928, p.42). In the present day, calls for reform recognize that “the concept of function is an 
important unifying idea in mathematics (NCTM, 1989, p. 154).  

Along the same line, recently published Common Core State Standards (2010) makes it clear 
that 8th graders should be able to: “Construct a function to model a linear relationship between 
two quantities. Determine the rate of change and initial value of the function from a description 
of a relationship or from two (x, y) values, including reading these from a table or from a graph. 
Interpret the rate of change and initial value of a linear function in terms of the situation it 
models, and in terms of its graph or a table of values” (Common Core Standards, 2010, 
mathematics, grade 8, function, para. 4).  

This standard is noticeably written in terms of concepts: “rate of change”, “initial value”, and 
“situation it models” and puts the emphasis on connections between descriptions, tables, and 
graphs. Reasoning and sense making, highlighted here, are cornerstones of mathematics (NCTM, 
2009), and so must be integral to learning about linear relationships. Then how should linear 
relationships be presented in classrooms?  

Despite a robust link between instructional attention to concepts and students’ level of 
understanding, Hiebert and Grouws (2007) reported that “typical classrooms in the United States 
focus on low-level skills and rarely attend explicitly to the important mathematical 
relationships”(p. 2). Students tend to regurgitate “y = mx + b” and manipulate equations 
mechanically. Is it possible that textbooks have contributed to this problem by limiting 
expectations and opportunities for students? Have textbooks provided opportunities for students 
to learn about linear relationships in conceptual, connected terms? 

Textbooks, as potentially implemented curricula, give messages of what students might know 
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and be able to do. Although various factors influence student learning and teachers deviate their 
textbooks, Donavan, Bransford & Pelligrino (1999) reported that students’ learning, in fact, is 
highly correlated with curricular treatment of topics. Many researchers generally agree that the 
curriculum, especially the curriculum embodied in textbooks, has a large influence on learning 
and teaching (Son & Senk, 2010; Valverde, Bianchi, Wolfe, Schmidt & Houang, 2002). 
Therefore, recognizing the influence of textbooks on student learning, we sought to examine the 
following question: “What opportunities for students to learn about linear relationships are 
presented in five commonly utilized United States textbooks?” Various types of mathematics 
textbooks, such as commercial, so-called “back to basics”, and NSF funded were examined. 
Answering this question will help us find a better way to enhancing student learning about linear 
relationships through textbooks.   

Theoretical Framework 
A growing body of research has analyzed textbooks in order to understand their potential 

effect on students’ mathematical learning. While some studies focus exclusively on content 
analysis (e.g., Fuson, Stigler, & Bartsch, 1988), other researchers examined problems presented 
in textbooks (e.g., Li, 2002). This study examined both the content and problems presented in 
textbooks. In analyzing the content, we looked at allocation, and topics. In analyzing problems, 
we looked at context, response type and cognitive level, which were identified by researchers 
(e.g., Li, 2002; Son & Senk, 2010). In particular, to analyze cognitive level, we built on Webb 
(2000)’s framework as shown in Table 1, which will be discussed in Methods.  

Level Characteristics 
1: Recall Recall of a fact, information, or procedure 
2: Skill/Concept Use information or conceptual knowledge, two or more steps 

etc. 
3: Strategic thinking Requires reasoning, developing plan or a sequences of steps, 

more than one possible answer 
4. Extended thinking Requires investigations, time to think and process multiple 

conditions of problems 

Table 1. Depth of Knowledge Levels 
 

Methods 
In this study, we analyzed five textbooks, as addressed in Table 2. Similar to Slavin and 

Lake’s framework (2007), three categories of textbooks were selected: (a) “Back to Basics,” 
which originated in the 1970s and early 1980s, (b) “National Science Foundation (NSF) funded” 
texts, which originated in the 1990s in keeping with mathematics reform standards and (c) 
“Commercial Texts”, which are typically reissued every five to seven years.  In addition we 
selected, (d) a historic text, which was which originated in the 1960s.  We felt these categories 
allowed us to examine representative types of texts currently available to students and the 
historic text allowed comparison. Each textbook was part of a series and represented the point in 
the series where linear graphs were first introduced.  
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Code Name Origins Date of 
Edition 

Grade 
Level 

Categorical Description 
(quotes: Slavin & Lake, 2007) 

Historic 1960s 1965 9th Commonly used Algebra text: 1960s & ‘70s 
Back to Basics Early 

1980s 
2001 8th “A back-to-the-basics curriculum that 

emphasizes building students’ confidence and 
skill in computations & word problems.” 

NSF Funded 1990s 2003 9th “Textbooks developed under funding from the 
National Science Foundation (NSF), that 
emphasize constructivist philosophy… 
problem solving, manipulatives, and concept 
development …with relative de-emphasis on 
algorithms.” 

Commercial 
Text One 

various 2005 8th “Commercial textbook programs which 
include computational fluency but also are 
written to help students develop concepts.” 

Commercial 
Text Two 

various 2005 8th “Commercial textbook programs which 
include computational fluency but also are 
written to help students develop concepts.” 

Table 2. Textbooks Examined 
# Historic = Dolciani, M. P. (1965). Modern Algebra Book 1. Boston, MA: Houghton Mifflen. 
# Back To Basics = Saxon, J. H. (2001). Pre-Algebra. Norman, OK: Saxon Publishers, Inc. 
# NSF Funded = Fendel, Resek, Alper, & Fraser. (2003). Interactive Mathematics Program: 

Integrated High School Mathematics: Year 1. Emeryville, CA: Key Curriculum Press. 
# Commercial Text One = Larson, Boswell, Kanold, & Stiff. (2005). Pre-Algebra. Evanston, IL: 

Houghton Mifflen. 
# Commercial Text Two = Malloy, Boswell, Willard, & Sloan. (2005). Pre-Algebra. New York, 

NY: Glencoe/McGraw Hill. 
 
Analysis involved two broad foci: content analysis and problem analysis, as presented in 

Table 3. Content analysis included examination of (a) allocation and (b) topic presentation. 
Problem analysis included examination of (a) contextual features, (b) mathematical features, and 
(c) cognitive performance requirements.   
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Analysis Category Description 

Content   
# Allocation (a) What are the number of problems allocated to the topic?  

(b) What percent of the textbook does the topic occupy?  
(c) How much time do students spend on the topic? 

# Topics (a) Sub-topics presented including slope and y-intercept  
(b) Breadth of presentation of further topics 

Problem  
# Context (a) Real world context  

(b) Exclusively numeric exercises 
#  Response Type (a) Single response number, point, or vocabulary word  

(b) Equation only   
(c) Graph only  
(d) Table only    
(e) Extended response, such as “explain” or “describe”  
(f) Mixed response, i.e., some combination of the above 

# Cognitive Level (a) Recall  
(b) Skill/Concept  
(c) Strategic Thinking  
(d) Extended Thinking 

Table 3. Analytical Foci of the Study 

 
Summary of Results  

Content Analysis Results 
Results from Analysis of Allocation 

We examined allocation, which involved the number of problems, as well as the   proportion 
of time and text devoted to the topic. Table 4 shows both trends and some interesting constants 
from historic to current textbooks. 

  
Text Historic Back to 

Basics NSF Funded Commercial 
Text One 

Commercial 
Text Two 

Grade Level 9th 8th 9th 8th 8th 
Total Number of 
problems  315 44 44 304 305 

Percent of text devoted 
to linear relationships  7.3% 1.1% 8.7% 8.0% 9.6% 

Approximate class time  Under 3 
weeks N/A About 3 

weeks. 
About 3 
weeks. 

Just under 3 
weeks. 

Table 4. Results from Analysis of Allocation 

The historic textbook and two commercial texts have much in common with respect to the 
total number of problems given, percent of text devoted to the topic and approximate class time.  
Each used a very similar number of problems; about 310, and similar timing: about 3 weeks.  In 
fact, all but the “back to basics” text introduced linear relationships by spending about 3 weeks 
on them, devoting an entire unit (chapter) to the topic.  The percent of material showed a slight 
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general increase: from 7.3% in 1965 to 9.6% in 2005. This may indicate growing emphasis on 
linear relationships in modern and more technological times.  

The introduction to graphing linear equations has been “moved down” to the 8th grade level 
from historic to current textbooks.  This seems to be part of a general trend. Indeed, Common 
Core Standards now expect that students will see the material in 8th grade.  

Compared to other textbooks, the back to basics text did not use chapters, but reviewed many 
topics each day.  It was not possible to determine the exact amount of time focused on linear 
relationships, hence the “N/A” in the table above. 

 
Results from Analysis of Topics 

Table 5 summarizes the various separate objectives pertaining to linear relationships in the 
five textbooks. We further analyzed topics presented in textbooks, the breadth of presentation by 
answering the following questions: (1) Were a large number of sub-topics presented, stretching 
beyond such things as equation, slope, intercept, graphs and tables? (2) If so, this might affect the 
depth to which those more foundational conceptual topics could be covered. 

 
Textbook Objectives beyond points, equation, slope, intercept, graphs & tables 
Historic Text Equation of a line through two points, a line with a given slope through a given 

point, and a line parallel and/or perpendicular to a given line through a given 
point. Points where lines intersect.  Graphing parabolas. 

Back to Basics  Students do not go beyond plotting three points and sketching a line. 
NSF Funded  Students do not go beyond the topics above, though they explore these in 

conceptual depth. 
Commercial 
Text One 

Equation of a line through two given points, a line though one point, though a 
given parallel and/or perpendicular line. The equation of a line of best fit.  
Graphing inequalities. 

Commercial 
Text Two 

Direct variation and inverse variation. Lines of best fit.  Equation of a line 
through two points and equation of a line from a table.  Graphing systems of 
equations, and inequalities. 

Table 5. Breadth of Presentation: Topics  
As shown in Table 5, large numbers of sub-topics (objectives) were included in a majority of 

the texts. The back to basics text, however asked only that students produce a table with three 
points, graph the points, and draw a line through the graph in their initial foray into linear 
relationships. The commercial and historic textbooks  included numerous sub-topics.  

The United States curriculum has often been criticized as “a mile wide and an inch deep” 
(Common Core State Standards, 2010). We examined how this tendency toward broadness 
remains from historic to current textbooks. Surprisingly, a very large number of objectives are 
presented in the commercial texts, just as in the historic text of about forty to fifty years ago. A 
plethora of topics was not attempted by the back to basics and NSF funded text, however. 

 
Problem Analysis Results 

Results from Analysis of Context  
Table 6 shows the frequency of two categories of contextual features. Contextual features 

involve whether a setting is given for the problem, or whether it is devoid of real world context 
and merely in the form of an “exercise”.  
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Text With Context Without Context 
Historic 1% 99% 
Back to Basics 0% 100% 
NSF Funded 100% 0% 
Commercial #1 15% 85% 
Commercial #2 12% 88% 

Table 6. Problem Context 
There was a great deal of variation between texts when it comes to providing real world 

context.  The back to basics and historic texts essentially did not include it. In more recently 
published commercial texts, a middle ground approach was utilized, with an average of 12.5% of 
problems including some context.  In contrast, all problems in NSF funded reform texts were 
presented in regard to a real-life situation. In this case, the situation involved one over-arching 
unit theme problem.  Thus, students could relate all problems in this text to real life applications. 
This indicates that students with the NSF funded text will learn linear relationship differently 
from students with other textbooks. 

 
Results from Analysis of Response Type 

Response types were categorized as single number/word, equation, graph, table, written 
word, or mixed. Single point coordinates were coded with single numbers. Written words 
(plural) in response might have required a phrase or a sentence to explain or justify, but 
sometimes called for a longer response in the form of sentences or paragraphs. A mixed response 
was some combination of responses, for example, “Make a table, then plot a graph”.  

Text Single 
Number  Equation  Graphic Tabular 

Response 
Written 
Words  

Mixed 
Response 

Historic 50% 17% 19% 0% 6% 7% 
Back to Basics 0% 0% 39% 0% 0% 61% 
NSF Funded 34% 21% 9% 2% 30% 5% 
Commercial 

#1 
37% 20% 14% 1% 24% 4% 

Commercial 
#2 

48% 11% 18% 0% 11% 11% 

Table 7. Response Types 
Regarding limits on these models, it was striking that single numbers were the most common 

type of response in most of the texts.  Equations and graphs tended to be the second most 
common. Tables were rare as an exclusive response type, but were often included in a mixed 
response. The NSF funded text allowed for the greatest number of written word responses, which 
were almost entirely absent in historic and back to basics texts, and comparatively rare in at least 
one of the commercial texts.  Written word responses and mixed responses, the response types 
most oriented toward multiple representations and connections between models, were generally 
limited, except as noted. Kilpatrick, Swafford and Findell (2001) stress that multiple 
representations and connections are important for fostering understanding. Analysis of response 
type indicates that students with the NSF funded textbook will be provided more opportunities to 
learn linear relationships with multiple representations and connections.    
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Results from Analysis of Cognitive Expectation 
Cognitive Expectation refers to the type of problem solving required which consists of  four 

levels: recall facts (level 1), concepts (level 2), strategic thinking and evidence (level 3), and 
extended thinking (level 4). Table 8 shows the percentage of each cognitive expectation in each 
textbook.  

Text Level 1: 
Recall 

Level 2: 
Skill/Concept 

Level 3: 
Strategic thinking 

Level 4: 
Extended thinking 

Historic 83% 11% 7% 0% 
Back to Basics 100% 0% 0% 0% 
NSF Funded 0% 0% 0% 100% 
Commercial #1 61% 20% 16% 3% 
Commercial #2 71% 11% 17% 1% 

Table 8. Results on Cognitive Expectation 

The large numbers of problems devoted to recall were linked to a procedural presentation of 
how to do these problems in textbook examples.  Thus, the NSF funded textbook was able to 
attempt greater depth of presentation in comparison with other texts. It should be noted that all 
44 problems in the NSF funded text were grouped into a single theme, and so they were coded as 
one, single, extended problem with 44 parts. However, none of problems in the historic and back 
to basics texts were at Level 4, and thematic connections between problems, such as those in the 
NSF funded text, were rare.  

 Regarding Level 3 “Strategic Thinking,” there was an increase in problems of this level from 
the 1960s to the present. This shows that we may presently be moving toward problems of 
somewhat higher cognitive demand.   Even though an average of only about 34% of problems 
were conceptual and strategic in the commercial texts, these problems take more time than mere 
recall problems.  Thus, while it is impossible to say for sure, it is possible that students in 
commercial texts have the opportunity to spend well over half their time or more on conceptually 
oriented problems.  

It is striking, however, that a large percentage of problems in the four non-NSF funded texts 
were categorized into Level 1, demanding no more than ‘recall’.  Also, it is comparatively rare 
for students to work on extended thinking problems if teachers use the historic, back to basics, or 
commercial textbooks.   

 
Discussion and Implications 

 This study presents different student opportunities to understand linear relationships in a 
majority of texts examined from historic to current textbooks. There were numerous similarities 
between the historic textbook and the present day commercial texts.  These included the number 
of problems, and the time devoted to the topic. The method of presentation was either largely or 
moderately procedural in these texts. The NSF funded text, on the other hand, showed the 
greatest difference from the historic text.  All of its problems involved real world context and 
were geared toward extended thinking, in the form of a project, something the historic text did 
not include.   

Regarding content, students using commercial texts who are just being introduced to linear 
equations are expected to master a broad array of objectives, such as “find the equation of a line 
between two points” and “find the equation of a line through a given point with a given slope”. A 
deeper curriculum, providing more time for actual understanding of concepts such as slope and 
y-intercept, may be in order. This finding suggests that students may be limited with regard to 
models, timing, topics and expectations.  In contrast, however, students may be receiving an 
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overly broad a treatment of the topic, a treatment which lacks sufficient depth. 
In particular, this lack of depth can be seen in problem presentation. The back to basics and 

historic texts showed a high degree of orientation toward mere procedural presentation. The NSF 
funded text, in contrast, was highly oriented toward conceptual problems, with commercial texts 
somewhere in between.  Similarly, regarding real world problem context, historic and back to 
basics texts tended to provide little, commercial texts a moderate amount, and the NSF funded 
text provided real world context for all problems.  Finally, continuing this theme, cognitive 
expectations tended to be largely procedural in the historic and back to basics text, to include 
some mix of procedural and conceptual orientation in commercial texts, and to be almost entirely 
conceptually oriented in the NSF funded text. 

This study also revealed that there was a difference between a high degree of cognitive 
expectation and a high degree of symbol manipulation. A problem on finding the equation of a 
line between two points, for example, requires lengthy manipulation of equations, but can be 
done with little or no conceptual basis. Are we failing to give students enough problems with 
high cognitive expectation, all the while “feeling good” because we ask more of them in terms of 
what they do with symbols? It is important for future researchers to address such questions. None 
of the texts examined appeared to sufficiently address all five strands of mathematical 
proficiency articulated by Kilpatrick, Swafford and Findell (2001).  The NSF sponsored text 
came the closest, addressing adaptive reasoning, strategic competence, conceptual understanding 
and productive disposition.  However, it failed to address procedural fluency. 

This study has implications for curriculum developers, school administrators and teachers. 
All three groups can help students gain better opportunities to understand linear relationships. 
This study stresses the important role of teachers. Teachers need to recognize the gap between 
the intended and potentially intended curriculum and modify their textbook.  They can use 
supplementary materials for the NSF text, for example, providing practice with procedures. 
Supplementary materials for commercial texts might provide practice with extended thinking 
problems and additional real world context.  

  Curriculum developers also should recognize the gap between the intended deeper 
curriculum in such documents as the Common Core State Standards and the potentially 
implemented curricula in current textbooks.  They should try to minimize this gap by providing 
context, attending to depth of conceptual topic presentation, calling for a balance of response 
types, including sufficient procedural practice, and calling for appropriately deep levels of 
cognitive expectation.   

School administrators need to consider the types of textbooks they select. If they want to 
increase student understanding, reasoning and sense making, they need to choose textbooks 
which emphasize all five strands of mathematical proficiency, where possible, like those 
suggested above.  

Future research may reveal optimal blends for the factors examined in this study.  For 
example, while the study reports on the percent of problems with a real world context, it is up to 
future research to reveal whether or not it is helpful for all problems to be set in a context.   

To sum up, the data revealed some limited learning opportunities. They indicate that though 
students are being asked to grapple with linear relationships at increasingly younger ages, that 
they are limited in the models they are asked to use for linear relationships, that discussion of 
concepts and connections is often limited, that the majority of problems lack a real world 
context, and that a majority of problems address lower levels of cognitive expectation. Often, 
linear relationships are presented in textbooks in a way that, while very broad, in keeping with 
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detailed and lengthy individual state standards, does not aim for depth of understanding. The 
results therefore revealed a significant gap between learning goals as set forth in intended 
curricula, and the potentially implemented curricula contained in many current U. S. textbooks. 
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This cross case analysis synthesizes results from two qualitative studies on mathematics content 
courses for prospective elementary teachers: one from the U.S. interviewed instructors, one from 
Canada interviewed students.  Results were examined for common themes. Salient commonalities 
were found. Two will be discussed here: the role of affect in student learning and the role of 
connections to the elementary classroom. 

 
Pervasive concerns about the adequacy of the mathematical preparation of elementary teachers 

(Ball, Hill, & Bass, 2005; Rowland, Huckstep, & Thwaites, 2005) have prompted many 
institutions of higher education to require specialized mathematics content courses for prospective 
teachers. These courses, referred to here as Math for Teachers (MFT) courses, aim to provide deep 
understandings of elementary mathematics concepts  in order to develop prospective teachers’ 
confidence and flexibility in teaching  mathematics (Kilpatrick, Swafford, & Findell, 
2001;Williams, 2008). MFT courses are most often taught in mathematics departments by 
mathematics faculty.  

The research described in this paper presents results from a cross-case analysis of two existing 
studies on MFT courses. The two studies are briefly described here. 

The instructor-focused study examined ten instructors’ perspectives on a MFT course at 
several institutions in southwestern Canada (Oesterle & Liljedahl, 2009). The purpose of the study 
was to provide insights into the instructors’ approaches in the course and how their beliefs 
impacted pedagogical decisions. Data from the semi-structured, individual interviews (1 hour in 
duration) were analyzed for emergent themes using constant comparative analysis. These themes 
include: instructor identity, tensions, resources, student knowledge, student affect, orientation to 
mathematics, orientation to teaching, and classroom environment.  

The student-focused study explored the perspectives of 12 elementary education majors (i.e., 
prospective elementary teachers) who had completed MFT courses at a university in the 
southeastern United States (Hart & Swars, 2009).The study was inspired by concerns over the 
poor success rates of elementary education majors enrolled in these courses. Data collection 
included semi-structured, individual interviews (approximately 1 hour in duration), and constant 
comparative analysis was applied to the data, revealing three major themes: (1) domains of 
mismatch (2) affective reactions, and (3) classroom practices. The domains of mismatch theme 
had three sub-themes: mismatch with elementary classroom, mismatch in programmatic emphasis, 
and mismatch in mathematics content. 
 

Overview of Relevant Research 
These two extant studies were framed by prior research on mathematics knowledge-for-

teaching (e.g. Ball & Bass, 2003) and instructor beliefs about mathematics (Ernest, 1989).  
Of relevance to both studies, and of particular interest in this paper, is the literature pertaining to: 
the role of affect, beliefs and efficacy in prospective elementary teacher learning (e.g., Di Martino 
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& Sabena, 2007; Thompson, 1992; Swars, Hart, Smith & Smith, 2007); post-secondary 
mathematics content courses for elementary teacher (e.g., Lubinski & Otto, 2004; Philips, 2007); 
and perspectives on and characteristics of effective university mathematics instruction (e.g., 
Schulze & Tomal, 2006; Weinstein, 2004). While there is an abundance of literature on the 
significant role of beliefs and affect in the pedagogical practices of teachers, far fewer studies are 
available on mathematics content courses for elementary teachers and those found were primarily 
limited to outcomes of reform-based approaches in these courses. Scant studies have looked at 
characteristics of effective post-secondary mathematics instruction in traditional (i.e., non-MFT) 
mathematics courses. 

 
Theoretical Perspective and Research Question 

This cross-case analysis, as well as the two original studies, is grounded in phenomenological 
interpretation (Burch, 1990). Students and instructors individually reported their perspectives on 
the MFT courses. Through the interviews, participants reflected on and retrospectively identified 
the significant or memorable events from their MFT experiences. Through this process, they 
recovered and verbally reenacted the meaningful components of their lived experiences. 

For this cross-case study, we were interested in determining what intersections might exist 
between the perspectives of instructors of a MFT course and the perspectives of students in the 
MFT courses. More specifically, we asked this research question: What common themes exist in 
instructor perspectives and student perspectives on mathematics content courses for prospective 
elementary teachers? 

 
Methods 

Participants and Setting 
The student-focused study involved twelve students (11 females and 1 male) from one urban 

university in the southeastern U.S. The students had completed three or four MFT courses. They 
were randomly selected from 4 cohorts of students in the elementary teacher preparation program 
with a combined size of 99 students, thus representing approximately 12% of the total population. 
Collectively they had taken 42 sections of MFT courses. At the time of the original study, all of 
the students were in the last semester of the program and completing student teaching.  

Although the instructor-focused study gathered data from ten instructors, for the purpose of 
this paper examples will be drawn from the transcripts of only two:  Harriet and Bob 
(pseudonyms). The divergent perspectives they offer on teaching the MFT course provide a 
sufficient basis for illustrating the common themes identified in this analysis. Harriet and Bob are 
both experienced instructors, having taught in mathematics departments for 22 and 13 years 
respectively. Harriet is relatively new to teaching the MFT course but had taught the course six 
times over three years, while Bob taught it nine times over nine years. Both have Master’s degrees 
in mathematics but neither took mathematics education courses nor had formal teacher training. 
Harriet was initiated into teaching the MFT course by a colleague with a Master’s degree in 
mathematics education who taught MFT courses for many years. Bob’s first forays into teaching 
the course were guided by his institution’s curriculum, the textbook, and informal discussions with 
colleagues. 
Data Collection and Analysis 

Data collection for the two extant studies was described in the background section of this paper. 
To conduct the cross-case analysis for this present study, we created a matrix with the results from 
the two studies, specifically examining the data for convergence. This analysis revealed two 
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commonalities across the themes, including connections to the elementary classroom and student 
affect, as shown in Figure 1.  
 

Student-focused Study Instructor-focused Study 
•  affective reactions 
• classroom practices  
• domains of mismatch  

a. elementary classroom 
b. programmatic emphasis 
c. mathematics content 

 
 

• student affect 
• instructor identity  
• resources 
• orientation to teaching 
• tensions 
• orientation to mathematics 
• student knowledge 
• classroom environment 

    Figure 1. Themes and commonalities of the two extant studies. 
 

Cross-case Results 
The Students’ Perspectives on Connections to the Elementary Classroom 

After experiencing other courses in their teacher preparation program, the students were 
acutely aware of disconnections between their experiences in the mathematics content courses and 
other experiences in the program. The students frequently described an inability to position the 
mathematics content coursework within their growth as educators, which led to perceptions of lack 
of usefulness or relevance of the courses as evidenced by this statement: ‘I mean a lot of us were 
always questioning, you know, why we have to take these math courses…It’s not even necessary.’ 
Similarly, another student stated, ‘The reason why we were taking those courses was never 
brought to our attention. We had no clue why we were taking those classes, no clue…It seemed 
very unnecessary.’ Another student said: 

It [mathematics courses] had no connection to elementary schools. Anybody could take 
those courses. I don’t think we ever talked about kids. I seriously don’t think we ever talked 
about teaching or students or anything like that. I just don’t remember ever that 
connection.  

Another student explained the lack of connection with elementary classrooms as: 
In our [elementary] classrooms right now, you know, they’re not graphing how many 
bagels and coffee people are going to eat and drink tomorrow. It was just not very logical 
for, you know, a kindergartner.’  

The following statements further support this sentiment:  
They’re [mathematics instructors] blind to what we are actually doing with our lives’; 
‘[Elementary] Students were never even brought up… I mean, students or when you get 
your own classroom were never brought up’; and ‘We’re thinking we’re learning 
something about how to be teachers. But, in reality we’re learning how to get through their 
math courses. 

The participants did indicate positive experiences in some of the courses. In particular these 
related to modeling pedagogical methods that might be used in an elementary classroom or using 
materials that elementary students use. For example, one student commented: 

[The Number & Operation course instructor] was big on you know . . . we would do that in 
class, it wasn’t like, take this home and do this but we actually [did activities in class] and 
we did a lot of group work and that was really good too. 

One student provided a specific example of making strong connections: 
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We had to do a project in geometry where we had to go to like a specific county and get a 
book and find a geometry lesson, but that was just a project and we presented it to the 
class . . . so just different things like that,  just to make it real to us. 

One student noted that the positive experiences and factors that made it positive occurred in her 
methods course, not in the content course.  

No [not in the content], this happened in my methods course, mainly because she [the 
methods instructor] took out the manipulatives, showed us what they were going to be 
doing, she basically took curriculum from those grade levels and put it in front of our 
faces. 
 

Ideas for changing the courses were proffered, including: ‘Get some teachers who were actually 
qualified in elementary [teaching]… They actually know what children are going through and that 
would help;’ ‘They [mathematics instructors] could talk to elementary teachers;’ and ‘Maybe 
have us students say, hey, this is what is going on in my [elementary] classroom.’ 
The Instructors’ Perspectives on Connections to the Elementary Classroom 

 Harriet’s descriptions of her goals and strategies for teaching the MFT course are permeated 
with comments related to mathematics-for-teaching knowledge (Ball & Bass, 2003) and how her 
students’ learning relates to their future as teachers. When asked if there is anything that she 
teaches MFT students about fractions that she would not teach other students, she states:   

The fact that there are different models, there are different ways of picturing what’s going 
on, and that they are appropriate for [...] what may work well for some situation, or for 
some [elementary school] student, may not work for some other one. 

She also emphasizes connections between mathematical ideas both within and across grade levels. 
She explains:   

At all times I connect it [the course content], as far as I can, to what goes on at different 
levels. What you might do with a grade 1 class, how that connects to what they’re going to 
see in, you know grade 4 or 5 or something like that, how that connects to what they might 
do in high school and how that connects to what I’m doing in Calculus. Because they’ve 
got to see how it’s connected, and how we build bigger and bigger [...] understandings of 
sets of numbers, or calculations. 

Harriet does not just pay lip-service to these ideas. She describes assignments that allow her 
students to build their mathematics-for-teaching knowledge, such as analysis of pupil errors and 
discussion of alternative solutions.  

In contrast, Bob makes very little reference to mathematics-for-teaching knowledge. His 
emphasis is instead on developing a strong understanding of fundamental mathematics and 
communication skills. Varieties of algorithms and models form part of his course content, but he 
does not specifically address how they can be applied differently at various grade levels.  

Bob needed to be pressed by the interviewer to consider what aspects of the course content 
might be particularly relevant to prospective teachers as opposed to general learners of 
mathematics. Initially his comments revolve around his teaching methods, such as the use of group 
work and manipulatives, but he makes no reference to any special mathematics knowledge for 
teaching. Eventually he describes challenging his students to think about the kinds of questions 
that they will encounter as teachers: 

. . . what kinds of questions will you encounter?  And why is it important that you to be 
able to communicate your ideas effectively, […], why should you understand this material 
to the most, [...], fundamental and basic level, and understand all of the structure? 
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He adds: 

 when you get some of these obtuse questions, that are seemingly [...] obtuse, you have to 
be able to appreciate it and be able to differentiate whether that’s something that can lead 
you into a teachable moment 

His response appears to be a justification for his goals of developing strong mathematics content 
knowledge and communication skills. For Bob, mastery of the subject content along with general 
pedagogical skills, seem to be sufficient for the teaching of mathematics—a traditional and 
prevalent point of view (Hill et al., 2007).  
The Students’ Perspectives on Student Affect  

A second theme across the interviews was students’ affective reactions to the coursework 
experiences. Many statements described negative emotions, for example, they used words such as 
‘emotional wreck’, ‘so stressed’, ‘very belittling’, ‘discouraged’, ‘terrified’, ‘struggling’, and 
‘frustrating’. A student asserted, ‘I felt like I was just hanging on. Just trying to dig myself out of a 
hole, and I kept falling down.’  

The students also portrayed the courses as having deleterious influences on their mathematics 
teaching efficacy beliefs and self-efficacy beliefs, which were often linked with the classroom 
practices of the instructors. Most often, descriptions of ineffective pedagogy were related to 
traditional approaches to instruction. The students mentioned a preponderance of ‘lecture,’ ‘note-
taking’, and ‘power point presentations,’ and asserted the ‘classes were not hands-on.’ In 
describing how the courses impacted teaching efficacy beliefs, a student stated, ‘I felt less 
confident [about teaching mathematics] when I walked out of those classes because it’s just so 
much and it just seemed so unnecessary… It was just very discouraging.’ In response to a question 
on how the courses prepared her to teach elementary mathematics, a student stated the courses 
made her, ‘Feel less prepared. Feeling more scared, definitely.’ One student attributed this 
negative impact on her teaching efficacy to the attitude of the instructor of the course, ‘The 
attitude was if you don’t get this [math content], you won’t be able to teach it, basically.’ 

Students also commented on how the experiences in the courses influenced their self-efficacy 
beliefs in mathematics, as represented by this student’s statement:  

[I felt] terrified, struggling, especially in geometry. It was just, it was very frustrating 
because I didn’t get it. I didn’t understand why we’re doing what we were doing, how we 
were coming out with the answer, and especially if I didn’t get the answer right. 

Further, another student stated: 
Like geometry… I came out of there in tears. I felt very disappointed. I felt stupid. I felt 
alone. And, I know that I am an intelligent person, or I have the potential to learn 
something. If I don’t know it, I’m willing to give up my time and my efforts. But, I felt like 
my efforts didn’t matter.  

Similarly, another student said: 
It (mathematics courses) made me feel so low in math. Even though I knew those math 
courses, I would never be teaching that stuff… It totally lowered my self-esteem in 
mathematics. 

The Instructors’ Perspectives on Student Affect  
Both Bob and Harriet describe their students as suffering from mathematics anxiety and 

lacking confidence in their ability to do mathematics. However, there are considerable differences 
in their perspectives and pedagogical approaches to these negative affective states. 

Harriet observes that her students:  ‘are very anxious around problem solving. They are just 
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terrified, most of them, of a problem they haven’t seen before.’ Her efforts to address this seem to 
be centered on changing their ideas of what the enterprise of mathematics is all about. She tries to 
convince them that ‘we’re supposed to have fun with this’ and tells her students that ‘you may 
never have seen it; you might not get all the way through it. But what I’m looking for is how far 
did you get, and how well can you explain what it is that you got’, shifting the focus away from 
getting the right answer toward less threatening goals.  

By the end of the course she hopes her students have grown in confidence and also ‘they have 
more of a sense of play [...] I think they’re more flexible. They think they’re more flexible. They’re 
not as scared if [...] that someone will ask them a question that they can’t answer.’   

Bob describes his students as believing that mathematics is arbitrary and incomprehensible:  
‘So many things seem magical to them’. He affirms that ‘it’s not your standard sort of math group, 
it’s one that has encountered some challenges along the way, and it hasn’t always left them with a 
positive impression of mathematics.’  In his view, their confusion and anxiety is closely linked to 
their skills: 

In many cases, some of the very elementary arithmetic operations are in fact, confused in 
their minds and so when they hit upon things, in particular when you hit rational numbers, 
as an example, that’s one place where students have a great deal of anxiety and they would 
demonstrate poor understanding of ideas. 

More than once he describes the MFT course as a second start for these students. He attempts 
to reshape their beliefs and attitudes by providing them with opportunities to see the logical 
structure of mathematics and deepen their understanding. For Bob, the course ‘focuses on a very 
sound fundamental ability to appreciate it [mathematics], in a theoretical way, why things work, 
as opposed to technical aspects of how do you do mathematics.’ However, although he believes 
that improved skills will lead to increased appreciation and confidence, he confesses that the 
realities of the course conspire against this occurring. Early in the interview he expresses a wish 
that his MFT students develop a love of math, but when asked about whether this goal is 
accomplished, he admits:  ‘in terms of the other goal, for love of math?  Unfortunately, the course 
is so packed, that in some ways, I think they do get a little bit beaten by the end, and they’re just 
tired.’  This statement illustrates Bob’s realization that the volume of content covered in a limited 
time is at odds with his affective goals. 

 
Discussion 

Although the two groups of participants in these studies were in different settings, they provide 
two distinct viewpoints on a similar experience: MFT courses. When juxtaposed the data reveals 
salient commonalities. The findings provide important insights into issues and concerns around 
creating experiences in MFT courses that best support elementary prospective teachers’ learning of 
mathematics; they also enrich our understandings of the realities of MFT classrooms, revealing 
both the affordances and the constraints.  

  The student voices emphatically call for the need for connecting the mathematics to the 
elementary classroom. Without this connection, the students were not able to find relevance in their 
learning. This need is recognised in the literature (Philip, 2007). Ball and Bass (2003) also strongly 
advocate for this link:  

Practice in solving the mathematical problems they will face in their work would help 
teachers learn to use mathematics in the ways they will do so in practice, and is likely also 
to strengthen and deepen their understanding of the ideas. (p. 13) 

The instructor-focused study reveals how differently instructors may perceive the need for 
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incorporating these connections. Harriet is very aware that these links help to motivate her students, 
helping them to see why a deeper understanding of mathematics is required of them in this course 
as compared to their previous mathematics courses. For Bob, making these connections is not an 
explicit part of his course. One reason for this may be that as a mathematician his lack of 
experience in elementary classrooms limits his ability to do so. However, Harriet also lacks such 
experience. Another possibility is that Bob takes such connections for granted. His inability to 
identify content in his course that would be particularly relevant to future teachers of mathematics 
as opposed to general mathematics students reflects a lack of awareness of specialized mathematics 
knowledge-for-teaching. For Bob, subject content knowledge and pedagogical knowledge are 
distinct. He sees his role as supporting the development of the former. 

With regard to the theme of affect, the student-focused study reports an alarming number of 
negative comments, indicating increases in students’ anxiety and decreases in self-efficacy. Both 
instructors were acutely aware of the impact of affect and described their students as coming into 
the course with high mathematics anxiety and lack of confidence. However, their perceptions about 
the cause of the anxiety and strategies for addressing it were quite different. For Bob, the source is 
students’ lack of fundamental skills. As a result, his solution is to help them see the logical 
structures of mathematics and develop these skills, though he acknowledges that the sheer volume 
of the material he must cover, in fact, adds to his students’ stress. For Harriet the source is negative 
past experiences and a perception of mathematics as rigid. Her efforts focus on moving students 
away from the ‘one right answer’ view of mathematics, helping them develop more flexibility in 
approaching mathematical problems and to just have fun.  

From the students we hear that traditional instructional methods of lecture, power point 
presentations, and drill and practice tended to elevate anxiety and decrease efficacy, while reform 
approaches such as small group work, hands-on learning, and opportunities to share and discuss 
were less stressful and increased efficacy. They also shared that the instructor having a caring 
manner, an approachable demeanour, and a perceived willingness to help supported their learning. 
This echoes Schulte & Tomal (2006) cited above.  Regardless of their perceptions of the source of 
their students’ anxieties, knowledge of this research could help inform instructor choices with 
respect to how to address concerns around student affect. 

The voices of the students in the student-focused study lend support to concerns that 
mathematicians in mathematics departments may be unprepared to take on the task of preparing 
elementary teachers. The lack of connections of content with the elementary classroom and 
traditional teaching approaches seem to contribute to frustration and anxiety as well as decreased 
self-efficacy. However, the instructor-focused study shows that though lack of explicit connections 
to elementary learning may occur, this need not be so. The differences between Harriet and Bob in 
this regard may have been the result of the mentorship Harriet received, suggesting a potential 
means for supporting the mathematicians who teach these courses. 

Another side of this issue is that mathematicians, at their best, have much to offer future 
teachers, even at the elementary school level (Hodgson, 2001; Williams, 2008). Jonker (in review) 
describes mathematicians in mathematics departments as ‘stewards of their discipline,’ ‘passionate 
about mathematics’, and ‘eager to share their excitement with students and concerned about the 
place of mathematics in the world.’  The challenge is to create opportunities for conversations 
between mathematics educators and mathematicians so that students in MFT courses are better 
prepared to teach mathematics to elementary children.  
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This paper examines how teachers engaged in equity-oriented reforms learn through 
interactions in teacher groups. Analysis of teachers’ framing of a freshman mathematics student 
failure problem showed that over time teachers’ frames shifted from invariable framings based 
on student characteristics and systemic issues to actionable framings based on classroom 
systems contributing to student failure, thereby promoting teachers’ concentration on courses of 
action linked to instruction. By joining the frame analysis and community of practice literatures, 
this study contributes an empirical example of development within teacher community alongside 
analytic tools for documenting teachers’ learning within these groups. 
 
 Research suggests that teachers' participation in a strong teacher community has the greatest 
potential for yielding the kinds of teacher learning that produces equitable student outcomes, 
though what that learning is or how it might be taking place is largely unaccounted for in the 
literature (Gutiérrez, 1996; Horn, 2005; Little, 2003; McLaughlin & Talbert, 2001). This “black 
box” of teacher learning (Little, 2003) has resulted in schools and districts moving forward with 
well intentioned yet underconceptualized reforms involving professional learning communities, 
based on an inferred causal connection between teachers’ participation in these communities and 
improved student achievement. Many teachers have nevertheless been required to spend 
professional development time participating in what Grossman and colleagues (2001) call 
pseudocommunities, characterized by members “playing community” and behaving “as if we all 
agree” (p. 955), which surely sidesteps the important work that needs to be done inside of the 
professional learning community to achieve equitable student outcomes. This paper addresses 
this phenomenon by examination of the professional community as a learning resource for 
teachers. The research question driving this investigation asked: How do teachers engaged in 
equity-oriented reforms learn through interactions in teacher groups? 
 

Theoretical Framework 
Teachers’ Learning in a Community of Practice 

Teachers’ participation in their professional communities is a social endeavor. This activity 
catalyzes a dual process of participation and reification, which is the fundamental process 
through which learning happens (Wenger, 1998). This learning-as-a-social-phenomenon stance 
supports a more general conception of teacher community, meaning that these groups do not 
necessarily have a certain level of functioning, improvement-oriented stance, or meet some other 
criterion; rather, they are the places where learning unfolds (Coburn & Stein, 2006). By adopting 
a community of practice perspective – which Wenger (1998) characterizes as communities where 
members are mutually engaged in an activity, held together by a joint enterprise, and have a 
shared repertoire of customs for praxis – learning is defined as a change in participation within 
that community. This definition of learning recognizes the co-construction and distribution of 
knowledge across teachers and takes the wider social context into consideration. This framing is 
critical for this study because it allowed for an equity-oriented description of the teacher group in 
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my study with the understanding that such a description is neither unitary nor consistent, which 
helped me see teacher groups for what they are: key sites for negotiation of meaning related to 
their joint enterprise (Coburn & Stein, 2006). 

 
Frame Analysis as a Means for Capturing Learning 

This study aimed to understand teachers’ learning through interactions in a community of 
practice context, and so conceptual tools that capture learning as changes in participation within 
the group are needed. Theoretical and empirical work on frame analysis proved useful for 
making sense of these interactive learning processes as they unfold (Benford & Snow, 2000; 
Goffman, 1974; Snow & Benford, 1988). Snow and Benford (1998) use the verb framing to 
conceptualize the signifying work of spreading ideas, meaning making, and mobilizing others 
into action. I borrowed conceptual tools from this work and coupled this literature with the 
communities of practice literature because of their common interest in understanding the 
processes surrounding participants’ interaction, with focus on “how people use interpretive 
frames strategically to shape others’ meaning-making processes in an effort to mobilize them to 
take action” (Coburn, 2006, p. 347). By analyzing teachers’ framing processes, I gained analytic 
purchase on making sense of teachers’ engagement in these negotiation of meaning processes, 
such as how participation in teacher groups and reification of equity-oriented reforms shaped 
their ideas and guided the community’s action. It stands to reason that teachers’ collective 
engagement in framing processes is likely to generate evidence of and describe changes in 
teachers’ participation in a community of practice (Wenger, 1998), which I interpret as evidence 
of learning. Thus, examination of the ways in which teachers engage in framing processes 
through interactions in teacher groups stands to result in more manageable units of interactions 
for the analysis of their learning. 

 
Methods 

Context, Settings, and Participants 
This research takes place in the context of Adaptive Professional Development,1 a larger 

design-experiment project situated in part at Clark High School (all names are pseudonyms), a 
diverse, large, urban comprehensive high school in a large northwestern school district in the US. 
Our research team worked with the Clark mathematics teachers using a mutual appropriation 
approach – that is, we collaborated with the teachers to create activities that fit theoretical 
principles about equitable mathematics teaching while serving the teachers’ goals (Cole, 2006). 
Our precepts included pedagogical principles about equitable mathematics teaching, such as the 
use of pedagogical strategies to engage learners in important mathematical ideas (Boaler, 2002; 
Horn, 2006; Moses, 2001). In addition, we used learning principles for teachers, such as 
prioritizing providing teachers with collaborative time in the school day to make sense of new 
practices in their classrooms (Horn, 2005, 2007; Horn & Little, 2010).  

During the 2004-2005 school year, I followed the interactions of the mathematics department 
at Clark in my role as a researcher. I observed classrooms, attended department meetings, and 
provided classroom support to teachers. Susan, a veteran teacher, confided that she struggled 
with issues related to students, teaching, and mathematics. She asked for my help and so I 
provided her with additional classroom-based support several days per week, such as co-
planning instruction, revisiting content, modeling teaching, making sense of student work, and 
interpreting student interactions. However, even with this support Susan still faced a crisis: over 
75% of her freshmen students were failing her first-year mathematics course. This crisis caused 
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the other teachers of first-year mathematics to examine their pass rates, and the results were 
stunning: more than 50% of students taking the first year (9th grade) mathematics course at Clark 
were failing. Teachers were in a panic over these data and asked our research team to help them 
make changes to their existing curriculum and pedagogy with the aim of improving all the 
success of all students.  

Realizing the ambitious nature of the Clark teachers’ plans for implementing starkly different 
pedagogical and curricular equity-oriented reforms, our team designed an intervention for the 
2005-2006 school year to support their reforms. We created the “Freshman Team” intervention 
by providing the four teachers of first year mathematics with an extra planning period (in 
addition to their personal planning period) so that they would have dedicated time each day 
during the school day to collaborate around issues of teaching and curriculum. We also helped 
Clark find a new teacher trained in equity-geared teaching practices who could take on the 
“missing” four first year classes, in addition to being a part of the collaborative team and having 
her own personal planning period. The Team was composed of five teachers: Susan (10+ years 
experience), Zack (3+ years experience), Rose (30+ years experience), Julie (5+ years 
experience), and Linda (new teacher). The Team met during every sixth period meeting, and in a 
typical week they had three 50-minute meeting and one 110-minute meeting. 
 
Research Strategies 

I crafted a case study around the Freshman Team at Clark because this method focused the 
investigation and analysis on the complexities and particulars of teachers’ learning around about 
struggling students in context of equity-oriented reforms (Merriam, 1998). Sustained attention to 
one group and context fostered in-depth exploration and analysis of the “richly brewed 
particulars” (Dyson, 2005, p. 2) of teachers’ learning. These choices ultimately allowed me to 
use the case of Clark to theorize about teacher learning inside teacher community more generally 
and respond to a need for case studies of this nature (NAE, 2008). 

My study targeted high school mathematics teachers because they teach a high status, high 
stakes content area that consistently plays a gatekeeper role for students (Moses, 2001; NRC, 
1989; Schoenfeld, 2002). Making matters worse is the fact that a disproportionate number of 
poor and minority students compose this group, meaning that working-class students and 
students of color are marginalized in their mathematics classes more than their peers (Moses, 
2001). These harsh realities have renewed interest and urgency in creating equitable mathematics 
classrooms, which I characterized as spaces where we cannot distinguish high performers from 
low performers based on race and social class (Schoenfeld, 2007). Following Martin’s (2006) 
lead, “race is viewed here as socially, politically, and relationally constructed so that issues of 
marginalization, power, dominance, and devalued social status assume prominence” (p. 198). 
Moreover, these classrooms are spaces where “mathematical identities, excellence, and literacies 
of marginalized students” (Gutierrez, 2008, p. 357) are supported. 

I focused my study on teachers engaged in equity-oriented reforms for two reasons. First, in 
keeping with prior reasoning, a specific portrait of teacher learning about equity-oriented reforms 
directly speaks to single-system attempts to change disparities in student achievement by 
educators. To achieve this goal, I selected a group of teachers who not only chose to engage in 
equity-oriented reforms but who also had some success with their efforts to improve equitable 
outcomes. This particular group is made more exceptional as case of teacher community because 
it was designed for optimizing teachers’ learning (e.g., attending to issues of equity through 
conversations about curriculum and pedagogy became a part of teachers’ daily work) and had 
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considerable external support by our research team. 
Second, there is presumably a greater impetus for teachers engaged in equity-oriented 

reforms to question their assumptions and practices, thereby rendering their learning more 
visible. I made this assumption because a major goal of equity-oriented reforms involves 
providing all students with opportunities for making sense of essential mathematics ideas. It 
follows that the conditions surrounding teachers’ enactments of reform, such as instruction and 
classroom culture, must also align with this goal in order to yield equitable outcomes. As such, 
my focus on a group of well-resourced, highly motivated teachers collectively engaged in equity- 
oriented reforms was a strategic choice for increasing observable instances of teachers’ collective 
sensemaking about these reforms. 

I collected a variety of qualitative data about the teachers’ work, including audio records and 
fieldnotes of Team meetings, artifacts from Team meetings and activities, and teacher interviews. 
Primary data were transcriptions of audio records from Team meetings. The data corpus was 
designed to capture teachers’ framing of the struggling student problem over time in context of 
their equity-oriented reforms. The data set included 35 records of Freshman Team meetings, 31 
of which were from weekly long meetings. Of the 35 meeting records, 26 had fieldnote records 
and 32 meetings had audio records.  
 
Data Analysis Procedures 
 I began data analysis by strategically reducing my data set using my unit of analysis, 
episodes of pedagogical reasoning (EPRs), which Horn (2005) defines as “units of teacher-to-
teacher talk where teachers exhibit their reasoning about an issue in their practice” that are 
“accompanied by some elaboration of reasons, explanations, or justifications” (p. 215). My 
decision-rule for locating EPRs was based on topical shifts related to struggling students. After, 
four episodes were selected for closer analysis because they contained extended talk about the 
struggling student problem. I selected episodes that (a) represented development across time, (b) 
had three or more Team members present, (c) had quality records available, and (d) had 
substantive discourse dominated by teachers. 

 
Figure 1: Overview of Teachers' Framing Practices 

The transcripts and corresponding meeting summaries for selected EPRs were coded using 
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three core framing tasks identified by Snow and Benford (1988) to help identify how teachers 
framed the struggling student problem in context of their equity-oriented reforms. Specifically, I 
looked for (a) diagnostic frames to understand how teachers conceptualized the struggling 
student problem; (b) prognostic frames to understand how teachers conceptualized interventions 
related to the struggling student problem; and (c) motivational frames to understand how 
teachers made a case for their framing. After coding the transcripts of the EPRs for these framing 
moves I looked for themes within and across the data (see Figure 1 for an overview). 

 
 Results  

Finding 1: Evidence of Within-Group Development in a Teacher Community 
Teachers’ Shifting Frames Show Development within a Teacher Community over Time. 
 The Freshman Team teachers concentrated on diagnosing struggling students in the episode 
from October (EPR 1), including invariable student characteristics related to work ethic and 
classroom behavior. Though teachers agreed to send home good news cards, call parents, and 
mail home letters with improvement strategies, by locating their diagnoses within the context of 
fixed student characteristics teachers had little access to actionable responses proximal to 
everyday instruction. In January (EPR 2) teachers’ initial diagnoses of struggling students were 
challenged by information learned from reviewing academic histories of identified struggling 
students: ELL students and special education students were not supported when they were 
mainstreamed into a regular classroom, some students only recently performed poorly, and some 
struggling students had slipped by unnoticed. Participants put forward conceptual strategies such 
as encouraging students to take an evening class, moving students to work with another teacher, 
and seeing students as capable. Teachers were once again left with little actionable responses 
proximal to everyday instruction, though their diagnoses generally shifted away from simple 
assignment of blame, such as struggling students are students who “choose to fail,” and trended 
towards external factors that influenced students’ performance, such as lack of ELL support and 
special education transitions. 
 In March (EPR 3) teachers used classification schemes (Horn 2005; 2007) to diagnose the 
“core group of struggling students that seem to drive the whole school crazy,” which included 
locally meaningful categories like the Taylors (smart students who are lazy) and the Paiges 
(students who are very far behind their peers academically). Teachers went beyond these 
categories and offered reasons why these students perpetually struggle, such as with students like 
Autumn, who had never experienced what it felt like to be successful in math class. Teachers 
presented myriad strategies for action, including the systemic response of generating a school-
wide list of struggling students so that a comprehensive effort could be made to help them. More 
proximal classroom responses included strategies such as using a new teacher to help run triage 
with difficult students, peer and student observations, and emailing struggling students’ other 
teachers for ideas and to garner additional support for students. This episode highlighted 
teachers’ increasing specificity with their diagnoses of why students’ struggle, resulting in a 
larger repertoire of actionable responses and focus on classroom-based intervention strategies. 
 In May (EPR 4) teachers considered the effects of status and race on the struggling student 
problem. Rose made the diagnosis that “white kids automatically have more status” because of 
Clark “not having a middle” and “not having a good pool of white kids” in Math 1. Though 
Rose’s prognosis was unclear, Julie extended the status problem idea Rose originated by 
diagnosing the growing racial divide of students caused by the tracking practices that were in 
place at Clark. Julie made meaning of Rose’s “not having a middle” and “not having a good pool 
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of white kids” comments by linking these problems to tracking (as opposed to suggesting 
abstractly that they need more “good” white kids in Math 1 at Clark). Teachers talked through 
the pros and cons for a variety of solutions to the tracking problem, such as offering a within- 
class Honors option, using harsher grading schemes, calling all classes Honors, giving placement 
tests, and detracking altogether. Rose ended the episode with the diagnosis that the most 
important strategy for these issues relates to groupwork, thereby linking the problems of status, 
race, and tracking with the Team’s pedagogical reforms. Though teachers’ diagnostic frames 
reflected classroom enactments of society and the system, their solution frames reflected 
classroom-based instructional responses.  
 What is important to note is that teachers’ diagnoses in later episodes contrasted earlier 
diagnoses, especially the in the first and second episodes where teachers were focused on 
understanding the attributes of struggling students. While teachers continued to use frames 
related to fixed attributes and personal circumstances, their primary diagnoses shifted towards 
the nuances behind why particular students struggle and status-related issues. While the former 
frames places the onus for achievement primarily on the students, the latter provide teachers a 
means for action. Teachers’ frames became more nuanced in their representation of the 
struggling student problem, disentangling issues of ability from school-savvy and systemic 
problems like racism and tracking. Thus, there is a preponderance of evidence that shows how 
teachers developed and drew upon a larger repertoire of frames of the struggling student problem 
over time, with focus and priority given to solution frames that were related to everyday 
instruction. More generally, by tracking teachers’ shifting frames around problems of practice, 
the case of the Clark Freshman Team offers a counternarrative to static characterizations of 
teacher community and shows within-group development in a teacher community over time. 
 

Finding 2: Evidence of Teachers’ Collective Learning 
Teachers’ Collective Learning is Manifested through their Framing Practices. 
 Examination of teachers’ framing practices across episodes yielded teachers’ evolving 
narratives of the struggling student problem, which I claim made teachers’ learning in the 
Freshman Team community of practice more transparent. Teachers’ participation in the Team 
gave them the opportunity to engage in extended talk about the struggling student problem. 
Participation in these conversations fostered teachers’ reification of the struggling student 
problem, evidenced by the different frames they used to diagnose problems, propose solutions, 
and give rationale for their ideas. The participation and reification processes worked in tandem to 
coordinate and localize the meanings of these frames. The prior result showed how teachers’ 
reification of the struggling student problem changed through interactions in their teacher group. 
These shifts served to mark and describe changes in teachers’ participation in a community of 
practice, which is a process Wenger (1998) characterizes as learning. This analysis thus showed 
that the Clark teachers’ collective learning was manifested through their framing practices. 
 As an illustration, in October (EPR 1) each teacher participated in the Team debriefing and 
reified the struggling student problem through diagnoses that centered on fixed student attributes. 
In January (EPR 2) teachers developed a community-owned framing for why students struggle 
(struggling students must not understand anything and must be used to failing, which is a status 
problem), which depended on teachers modifying another teacher’s framing. In March (EPR 3) 
teachers reified potential classroom-based interventions using specific students as representative 
cases for a larger group of struggling students. Teachers intertwined their category systems and 
frames and then negotiated meaning around these frames through the processes of participation 
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and reification, out of which their classroom-based interventions emerged. This resulted in 
conversation turns that contained different kinds of linked frames that had the overall effect of 
building resonance for their ideas with the Team. In May (EPR 4) teachers again intertwined and 
linked their framing practices to negotiate the meaning of status, race, and tracking in context of 
the struggling student problem. What is significant is how the Team negotiated the meaning of 
all these frames; the Team haggled over every offered frame. This important process helped the 
Team iteratively make progress on their collective understanding of these issues. 
 Teachers increasingly used a variety of linked frames to help build resonance for their 
ideology, courses of action, or rationale for action, which likely contributed to which frames 
were picked up or ignored by the Team. What is more, teachers moved towards using the group 
to negotiate the meaning of these frames, which corresponded to episodes with more actionable 
solution responses. By examining shifts in the Team’s framing of the struggling student problem 
in the context of their engagement in fundamentally temporal, fundamentally social learning 
actions, this dissertation documented the Team’s movement towards more classroom-based 
actionable responses and away from less obvious actions based on invariable student 
characteristics. These shifts accounted for a change in participation in the Freshman Team, 
which contributes an empirical example for teachers’ learning in a community of practice. 
 

Discussion 
 This paper aimed to describe high school mathematics teachers’ learning as they took on 
issues of equity in their workplace group. As with many stories of learning, my data tell a 
developmental story, though not a linear one. My analysis thus required tools that could preserve 
the messiness of learning and at the same time tell a nuanced learning story in a productive way, 
which I accomplished by joining the communities of practice and frame analysis literatures. 
Analysis showed that teachers’ frames shifted from invariable framings based on student 
characteristics, personal circumstances, and systemic issues to actionable framings based on 
classroom systems that contributed to student failure, which promoted teachers’ concentration on 
courses of action linked to their instructional practices. As a result of this analysis, this study 
yielded significant findings about teachers’ shifting framing practices and learning, and advanced 
the literature with analytic tools for making sense of teachers’ development, shifting frames, and 
learning in context of teacher groups.  

As is often the case with the study of rich data, this analysis raised issues that merit further 
study. For example, the process of offering frames appears to catalyze a response by the group, 
creating potential for group interactions around this framing. Through more research is needed to 
confirm my speculation that offering and then discussing rams around problems of practice 
yields productive learning opportunities inside of teacher community, my hypothesis is that this 
avenue of research would generate findings that help explain how opportunities to learn connect 
with teachers’ learning inside teacher community. A limitation of my analysis is that I do not 
make claims about teacher’s individual learning, though my speculation is that an individual’s 
consistent orientation to invariable frames closes off learning opportunities readily available and 
important to the group. This raises an emerging analytic issue concerning learning opportunities 
alongside analysis of individual learning that merits further study. Moreover, I predict that my 
use of key conceptual tools from frame analysis was but the tip of the iceberg when it comes to 
the application and utility of the larger social movement literature to the teacher community and 
teacher learning literatures; in any case, more research needs to be conducted to understand the 
interplay of these literatures and open up an entirely new way for conceptualizing this work. 
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Endnotes 
1. Ilana Horn, Principal Investigator. 
 

References 
Benford, R.D., & Snow, D.A. (2000). Framing processes and social movements: An overview 

and assessment. Annual Review of Sociology, 26, 611-639. 
Boaler, J. (2002). Learning from Teaching: Exploring the Relationship between Reform 

Curriculum and Equity. Journal for Research in Mathematics Education, 33(4), 239-258. 
Coburn, C. E. (2006). Framing the problem of reading instruction: Using frame analysis to 

uncover the microprocesses of policy implementation American Educational Research 
Journal, 43(3), 343-379. 

Coburn, C. E., & Stein, M. K. (2006). Communities of practice theory and the role of teacher 
professional community in policy implementation. In M. Honig (Ed.), New Directions in 
Education Policy Implementation: Confronting Complexity. Albany: State University of New 
York Press. 

Cole, M. (2006). The fifth dimension: An after-school program built on diversity. New York: 
Russell Sage. 

Dyson, A.H. (2005). On the case: Approaches to language and literacy research. New York: 
Teachers College Press. 

Goffman, E. (1974). Frame Analysis: An essay on the organization of experience. New York: 
Harper & Row. 

Grossman, P., Wineburg, S., & Woolworth, S. (2001). Toward a theory of teacher community. 
Teachers College Record, 103(6), 942. 

Gutiérrez, R. (1996). Practices, beliefs and cultures of high school mathematics departments: 
Understanding their influence on student advancement. Journal of Curriculum Studies, 28(5), 
495-592. 

Gutiérrez, R. (2008). A "gap-gazing" fetish in mathematics education? Problematizing research 
on the achievement gap. Journal for Research in Mathematics Education, 39(4), 357-64. 

Horn, I. S. (2005). Learning on the job: A situated account of teacher learning in high school 
mathematics departments. Cognition and Instruction, 23(2), 207-236. 

Horn, I.S. (2006). Lessons learned from detracked mathematics departments. Theory into 
Practice, 45(1), 72-81. 

Horn, I. S. (2007). Fast kids, slow kids, lazy kids: Framing the mismatch problem in 
mathematics teachers' conversations. Journal of the Learning Sciences, 16(1), 37-79. 

Horn, I.S., & Little, J.W. (2010). Attending to problems of practice: Routines and resources for 
professional learning in teachers’ workplace interactions. American Educational Research 
Journal, 47(1), 181-217. 

Little, J. W. (2003). Inside teacher community: Representations of classroom practice. Teachers 
College Record, 105(6), 913-945. 

Martin, D. B. (2006). Mathematics learning and participation as racialized forms of experience: 
African American parents speak on the struggle for mathematics literacy. Mathematical 
Thinking and Learning, 8(3), 197-229. 

McLaughlin, M. W., & Talbert, J. E. (2001). Professional communities and the work of high 
school teaching. Chicago: University of Chicago Press. 

Merriam, S. B. (1998). Qualitative research and case study applications in education (2nd ed.). 
San Francisco: Jossey-Bass Publishers. 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

406



 

Moses, R. P. (2001). Radical equations: Civil rights from Mississippi to the algebra project. 
Boston: Beacon Press. 

National Academy of Education. (2008). Taking stock of the research on teacher professional 
communities. National Academy of Education Notes, 10(1), 1-12. 

National Research Council. (1989). Everybody Counts: A report to the nation on the future of 
mathematics education. Washington, D.C.: National Academy Press. 

Schoenfeld, A.H. (2002). Making mathematics work for all children: Issues of standards, testing, 
and equity. Educational Researcher, 31(1), 13-25. 

Schoenfeld, A.H. (2007). Standards, equity, and the math wars, Northwest Mathematics 
Conference. Bellevue, WA.  

Snow, D.A., & Benford, R.D. (1988). Ideology, frame resonance, and participant mobilization. 
In B. Klandermans, H. Kriesi & S.G. Tarrow (Eds.), International Social Movement 
Research (Vol. 1, pp. 197-217). Greenwich, CI: Jai Press Inc. 

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge:  
Cambridge University Press. 

  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

407



 

 

PERSPECTIVES ON INSTRUCTOR MODELING IN MATHEMATICS TEACHER 
EDUCATION 

 
Cassondra Brown 
MiraCosta College 

cas_brown97@yahoo.com 
 

Susan Nickerson 
San Diego State University 

snickers@sunstroke.sdsu.edu 

 
We unpack the notion of mathematics teacher educators modeling teaching in mathematics 
teacher education courses. Specifically, we investigated what practicing teachers gained 
from mathematics teacher educators’ modeling by examining: (1) What do mathematics 
teacher educators believe they model about effective instructional practice? (2) What do 
practicing teachers notice about the mathematics teacher educator’s pedagogy and identify 
as effective mathematics teaching? (3) In what ways do these perspectives align in 
mathematics courses for practicing teachers? The results provide insight into what and how 
teachers learn from engaging in inquiry-oriented teaching. We discuss the implications for 
the education of mathematics teachers.    

Introduction 
While research has pointed to the benefit of student-centered instruction and 

collaborative, inquiry-oriented learning environments in both K-12 and college mathematics 
courses (Boaler, 1998; Bowers & Nickerson, 2001; Goos, 2004; Rasmussen, Kwon, Allen, 
Marrongelle & Burtch, 2006), many mathematics courses are still taught rather traditionally.  
Borg (2004) points to what Lortie (1975) calls the ‘apprenticeship of observation’ to explain 
the prevalence of traditional mathematics instruction.  With respect to teaching practices, the 
notion of apprenticeship of observation suggests that teachers learn about teaching long 
before they enter the classroom.  Their education as teachers starts when they themselves are 
students and their experiences influence the ways in which they think about the teaching and 
learning of mathematics (Ball, 1988). Many teachers’ experiences as learners of 
mathematics, from elementary through college, primarily involved their teacher in the role of 
the provider of information, in what has been called a factory model of education (Callahan, 
1962).  Since teachers bring their own experiences as learners of mathematics to their 
practice, it is not surprising that the way teachers teach mathematics is not often substantially 
different from how they learned mathematics (Hiebert & Stigler, 2000; Sowder, 2007; 
Thompson, 1992).  The fact that teachers were educated in a traditional system has been 
described as “…perhaps the greatest obstacle to these reforms” (Simon, 2008, p. 17). 

It has been suggested that if teachers learn from their experiences as mathematics 
students then mathematics teacher educators should model desired instructional practices in 
teacher education and professional development programs (Borasi, Fonzi, Smith, & Rose, 
1999; Loughran & Berry, 2005; NCTM, 1991; Simon & Schifter, 1991; Sowder, 2007).  The 
implication is that an important factor in helping teachers enact these shifts is to engage them 
as learners in inquiry-oriented mathematics communities. How might this learning occur and 
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what might be learned? 
We report on instructor modeling in three mathematics courses for practicing teachers. 

We investigated what mathematics teacher educators believed they model, what practicing 
teachers noticed, and the ways in which these perspectives were aligned. The mathematics 
courses for practicing teachers discussed in this report are a part of a university-based 
professional development group.  As with many mathematics professional development 
programs, the goal is to move teachers forward in their thinking about content and student 
learning so teachers can work to help increase student achievement in mathematics 
(Nickerson, 2010, Sowder, 2007).  These professional development programs are designed to 
provide extra preparation for teaching mathematics by providing opportunities for teachers to 
deepen their content knowledge and by collaboratively reflecting on their teaching and 
student learning. 
 

Theoretical Perspective 
We view learning as inherently social and seek to account for individual perspectives 

within evolving social practices. We are concerned with the “negotiation of meaning.” We 
focus on individuals’ perceptions of the mathematics teacher educator’s pedagogy to give an 
account of what mathematics teacher educators believe their instruction conveys, what 
individual teachers notice and describe the social conditions in which the teaching acts of 
note were situated. Neither the social processes nor the individual’s interpretations can be 
considered without the other.   

The notion of perceptual lived experience (Loughran & Barry, 2005) suggests that some 
learning occurs by “living through” experiences.  Loughran and Barry give an example in 
which student teachers develop perceptual rather than conceptual knowledge of a situation.  
In their example, the student teachers as students in a classroom setting experience the 
emotions, images, needs, values, volitions, and frustrations of individuals in the situation, 
which develops their perceptual knowledge of learning environments instead of their 
conceptual knowledge.  While this kind of learning is rather passive, the learner gleans ideas 
about the “how to” of the activity by simply being a part of the situation.   

Intent participation (Rogoff, Paradise, Arauz, Correa-Chávez & Angelillo, 2003), a 
related, more deliberate form of learning from experiences in a situation, describes learning 
from keen observation and listening to ongoing activities in which the learner participates or 
expects to participate in the future.  Both perceptual lived experience and intent participation 
suggest that learning occurs through the (implicit) modeling of an expert, where the expert 
provides an example of the required performance. From these perspectives, teachers have the 
opportunity to learn about the practice of teaching by engaging in an inquiry mathematics 
classroom.  

Another way teachers can learn about the practice of teaching through modeling in 
teacher education is that the teacher can learn as an apprentice to an “expert” teacher.  Here 
the learner is not unaware of the intentional modeling of practice.  Apprentices learn through 
methods of observation, scaffolding, and increasing independent practice (Collins, Brown & 
Newman, 1989; Lave & Wenger, 1991). Student teachers and observers can be viewed as 
apprenticing from master teachers, teacher coaches, and teacher educators.  The learner can 
be seen as a cognitive apprentice (Collins et al, 1989; Schoenfeld, 1992) where instructional 
practices are learned through observation, guided experience and participation.   

In the mathematics teacher education courses in this study practicing teachers 
participated in mathematics classes, and thus learning about instructional practice looked 
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quite different.  In mathematics teacher education like the courses in this study, the 
mathematics teacher educators are not teaching along side teachers in teachers’ classrooms. 
The mathematics teacher educators must make connections to K-12 classrooms through 
anticipation exercises, discussions of possible trajectories in classroom situations, and 
reporting back experiences.  In these courses, the connections often took the form of 
commentary by the mathematics teacher educator that was related to a mathematical activity 
the teachers themselves were engaged in. The mathematics teacher educators prompted 
discussion among the teachers, asking them to anticipate how it might apply in a classroom 
situation. Also, the teachers discussed their own teaching as they reported on a predetermined 
task that all of the teachers in the class tried with their own students, called “try-ons” in this 
context. This anticipation and reporting back on teaching experiences with a more 
experienced mathematics teacher educator can provide a means of scaffolding the learning of 
reform teaching. 

The constructs of perceptual lived experience, intent participation, and apprenticeship 
share a situated perspective on learning from the milieu.  They all suggest that knowledge is 
developed and deployed in activity and is not separable from or ancillary to learning and 
cognition (Brown, Collins, & Duguid, 1989).  Thus, learning the teaching profession stems, 
at least in part, from the teaching teachers see and experience as learners and the activity they 
engage in as professionals.  Moreover, how teachers learn about practice affects how they 
view the practice of teaching. 

 
Method 

In this study we observed the mathematics professional development of a large urban 
university in the southwestern United States. Data was collected in three cohorts: a primary 
elementary cohort (grades k-3), an upper elementary cohort (grades 4-6), and a middle school 
cohort.  Our data encompassed teachers’ and mathematics teacher educators’ reflections on a 
year of professional development and with respect to two classes. We drew on a three-step 
methodology (Busse & Ferri, 2003) and complementary accounts research methodology to 
develop a rich account from the data (Clarke, 1997). The facets of the methodologies include: 
observation, interview, stimulated recall and analysis of complementary perspectives.   

The data set consisted of:  
1) Audio recorded pre-session interviews with four mathematics teacher educators.  
2) Video of the six individual classroom sessions (two consecutive classes for each of the 

three cohorts). 
3) Stimulated recall interviews (SRI) with the mathematics teacher educators (MTEs), one 

for each class session. 
4) Semi-structured interviews with a subset of the practicing teachers, part of which 

included stimulated recall interview. 
5) Researcher fieldnotes of the six classroom sessions and interviews. 
6) Reflection surveys, given to all 49 practicing teachers in the three cohorts at the end of 

the first session. 
7) Quantitative surveys, given to all 49 practicing teachers in the three cohorts at the end of 

the second session. 
The mathematics teacher educators were interviewed pre and post observation. In pre-session 

interviews, MTEs were asked to reflect generally on what instructional practices they believe 
they model as they teach. Then classroom data was collected in two consecutive classes for each 
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of the three cohorts.  The class sessions were videotaped and a researcher took fieldnotes.  Both 
the MTEs and the classroom teachers were interviewed within a day or two using stimulated 
recall interviews (SRI). In the SRIs, it was the interviewees that pointed to noteworthy aspects. 
The surveys asked all the teachers to reflect on what was modeled throughout the year. 

The videos of the classroom sessions were reviewed to create a descriptive timeline of 
classroom events to aid in analysis. Several participants were interviewed to enable the coding 
and subsequent creation of an integrated data set of complementary perspectives. The initial 
interviews with the MTEs suggested the coding categories aligned with the NCTM Professional 
Standards for Teaching. The transcript of the classroom sessions were analyzed in a cyclical 
process of coding and search for confirming and disconfirming evidence (Strauss & Corbin, 
1990) to delineate the categories of modeled instructional acts.  Once we developed what we 
thought to be an exhaustive group of codes, we coded a few episodes separately and compared 
codes for inter-rater reliability.  The coders were in agreement 78% of the time and discussion 
resolved discrepancies. The primary causes of discrepancies were related to sub-codes of the 
categories.   

The data allowed for analysis on two levels, (1) globally on modeling throughout the year of 
professional development and (2) locally on modeling in two consecutive class sessions.  The 
pre-session interviews with the mathematics teacher educators, the reflection surveys and the 
individual interviews with eight practicing teachers provided data on perspectives on what the 
mathematics teach educators modeled about practice in general.  The stimulated recall interviews 
with the mathematics teacher educators and the practicing teachers provided data on specific 
events.  Both levels were important to examine.  Globally, with respect to the year, because 
though a specific instructional act may not have occurred in a particular session or one may not 
have noted certain aspects of instruction in a given event does not imply the action is not 
common or that it has not been noted elsewhere.  Locally, with respect to two consecutive 
sessions, is important to examine because interpretations of a specific event may vary.  An 
analysis of both levels has the capacity to highlight how implicit and explicit modeling conveys 
teaching practices. 

 
Analytical Framework 

An initial analysis of the classroom videos and the interviews began with the NCTM 
Professional Standards for Teaching Mathematics with respect to the four categories of tasks, 
discourse, environment and analysis.  Using a cyclical process for confirming and disconfirming 
evidence (Strauss & Corbin, 1990) the pre-session interview data and the classroom data 
(fieldnotes and classroom video) informed the elaboration of the four categories derived from the 
NCTM Professional Standards for Teaching Mathematics.  This process allowed for the 
emergence of parallel categories for describing the mathematics teacher educators’ pedagogy.  
The parallel categories characterize the mathematics teacher educators’ pedagogy as the 
participants are engaged as mathematics learners and as mathematics teachers.  The emergent 
codes were used to categorize and coordinate the mathematics teacher educators and the 
practicing teachers’ perceptions of classroom events. 

Teachers’ learning about instructional practice in mathematics teacher education is often 
not restricted to learning about classroom mathematics instruction.  There are also 
opportunities for teachers to learn about other facets of the teaching profession.  The current 
reform movement in mathematics education has a strong underlying theme of the 
professionalism of teaching.  This view recognizes the teacher as a part of a learning 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

411



 

community that continually fosters growth in knowledge, stature, and responsibility (Dufour, 
2005; NCTM, 1991, Author).  Reform recommendations suggest that teachers ought to 
collaboratively plan instruction, reflect on practice, create and reflect on new practices, and 
support one another’s professional growth (NCTM, 1991).  Such interactions allow teachers 
in a school and its administrators to continuously seek and share learning and then act on 
what they learn. This type of communication and collaboration with a focus on inquiry about 
student learning are important aspects of what researchers call a “professional learning 
community” (Dufour & Eaker, 1998; Astuto, Clark, Read, McGree & Fernandez, 1993; 
Hord, 1997). 

 
Results 

An initial analysis of the pre-session interview data revealed that the mathematics teacher 
educators modeled more than the teaching of mathematics, they also modeled participation in the 
collective inquiry process of a community of mathematics teachers.  The mathematics teacher 
educators were not explicit in their discussion about modeling the collective inquiry part of the 
teaching profession; however, their discussion related to developing the teachers’ pedagogical 
content knowledge pointed to the teachers’ engagement as professionals in the mathematics 
teacher education sessions.  The emergent framework, summarized in table 1 (see next page), 
characterizes the mathematics teacher educators’ pedagogical moves with respect to the 
participants’ engagement as learners and teachers. 

This first result, the emergent analytical framework, made it possible to characterize the 
mathematics teacher educators’ pedagogy as described by the mathematics teacher educators and 
participating teachers and observed by the researchers.   These characterizations describe the 
mathematics teacher educators’ pedagogy as they engage teachers as learners and as 
professionals.  

Teachers can learn about the practice of teaching from MTE modeling.  In the Reflection 
Survey 1 and teacher interviews, the participants noted teaching actions related to the categories 
worthwhile tasks, discourse, tools, and learning environment in the analytical framework.  
Reflection Survey 1 asked the teachers to describe what they have done in their classes to 
support student learning drawing from what they have learned in prior mathematics content 
sessions. The teachers reported that they had incorporated specific activities and tools that they 
found useful in their own learning in the sessions.  The teachers reported that they had adopted 
practices like engaging students in mathematical conversation (discourse), specifically, through 
questioning and prompting students to share out and provide justification.  The teachers also 
reported incorporating wait-time and letting students struggle with difficulty, facets of the 
learning environment from the analytical framework.   

While both the mathematics teacher educators’ and the participants’ utterances point to the 
mathematics teacher educators’ pedagogy as the participants were engaged as both learners of 
mathematics and as mathematics teachers, the emphasis was on participants’ engagement as 
learners, as opposed to their engagement as teachers.  This was more so the case for the teachers 
than for the mathematics teacher educators.  The teachers pointed to the pedagogy as they were 
engaged as a learner in about 86% in their reflections on the year and 88% in their reflections on 
the two sessions. 

The teachers in the primary and upper elementary cohorts noted pedagogy related to their 
engagement as learners almost exclusively, while the middle school teachers reported it in only 
about 71% of their coded utterances.  On average in the pre-session interviews where the 
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mathematics teacher educators reflected on the year, they emphasized mathematics pedagogy 
they believe they model as the teachers were engaged as learners in about 71% of the coded 
utterances.  In the stimulated recall where the mathematics teacher educators reflected on the two 
sessions noted such engagement in about 78% of the coded utterances.  Like the teachers, the 
mathematics teacher educators from the elementary cohorts more frequently discussed 
instructional acts where the participants were engaged as learners.  The middle school cohort 
facilitator, MTE-Karla, emphasized pedagogy related to the participants’ engagement as teachers 
and as learners almost equally, reflecting the dual purpose of the mathematics teacher education.  
This points to the likelihood that the difference is due to the intended purposes of the 
mathematics professional development sessions and the mathematics courses.   

The pedagogical moves most noticed by both the mathematics teacher educators and the 
teachers were characterized under the categories of tasks and discourse.  The mathematics 
teacher educators and the teachers highlighted the way the mathematics teacher educator 
modeled the use of tasks, specifically noticing tasks that problematized the mathematics and 
prompted the teachers to make connections between mathematical ideas and among 
representations.  These tasks were seen as promoting discussions of the mathematics.  Both the 
mathematics teacher educators and the teachers pointed to the scope of tasks, particularly the 
large amount of time spent on a single task devoted to developing mathematical concepts in 
learning situations. 

 
Table 1: Summary of Analytical Framework. 
 Classroom Community of 

Mathematics Learners 
Community of Mathematics Teachers  

Tasks Worthwhile Tasks are the projects, 
questions, problems, constructions, 
applications, and exercises in which 
teachers engage intended to develop 
teachers’ mathematical content knowledge. 

Tasks are the projects, questions, problems, 
constructions, applications, and exercises in 
which teachers engage intended to develop the 
teachers’ understanding of the students’ 
mathematics. 

Discourse Classroom Discourse refers to the ways 
that mathematics teacher educators mediate 
discourse about mathematical ideas to 
focus discussion on concepts and solution 
paths instead of answers. 

Classroom Discourse refers to the ways that 
mathematics teacher educators mediate 
discourse about practice to focus discussion on 
teaching, student learning and/or thinking. 

Tools Tools are objects, tangible or intangible 
that the MTE and/or teacher’s use in 
learning situations to reason, make 
connections, solve problems, communicate 
and enhance discourse. 

Tools are objects, tangible or intangible that the 
MTE and/or teachers use to reason or enhance 
learning about or discussion of lesson planning, 
student learning, thinking and understanding, 
and so on. 

Environment Environment represents the setting for 
which the development of each teachers 
mathematical power is fostered. 

Environment represents the setting for which 
the development of each teacher’s knowledge 
for teaching is fostered. 

Analysis Ongoing Analysis is the systematic 
reflection in which mathematics teacher 
examine relationships between what they 
and their students are doing and what 
students are learning. 

Ongoing Analysis is the systematic reflection in 
which mathematics teacher educators engage in 
analysis to foster teachers’ participation in the 
Collective Inquiry Process  
 

 
While the teachers pointed to tasks and discourse, some pointed to how the coordination of the 
pedagogical moves related to structuring learning environment, specifically structuring the 
sessions.  The teachers’ discussion about discourse often pointed to discourse in task situations, 
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collaborative work on tasks and sharing ideas.  The teachers specifically mentioned how the 
mathematics teacher educator pushed for justification and asked questions as opposed to giving 
answers.  As a part of this, the teachers did point to a facet of the learning environment category, 
reporting that the mathematics teacher educators allowed them to struggle with difficulty.  The 
teachers characterized the mathematics teacher educators’ instruction as Socratic, that is, the 
mathematics teacher educators asked questions that helped them shape their thinking and move 
them forward in their thinking.  The teachers reported that they try to incorporate these facets of 
the mathematics teacher educators’ pedagogy in their own teaching. 

There are aspects of ongoing analysis that the mathematics teacher educators believe they 
model that are not noticed by the teachers.  There is a belief among the mathematics teacher 
educators and the teachers that a deeper understanding of the mathematics content better 
prepares teachers to present challenging tasks and ask questions that help students move forward 
in their thinking.  However, the mathematics teacher educators’ report that one of the purposes of 
questioning as the teachers are engaged in tasks is ongoing analysis of the teachers’ thinking.  
The mathematics teacher educators note that their questions are driven by the need to develop 
conceptual models of the teachers’ thinking.  The teachers did not note developing conceptual 
models as a reason for being able to ask “good” questions; the teachers pointed to experience, 
mathematical knowledge, and being well prepared for the lesson as key to the mathematics 
teacher educators’ ability to ask questions that move them forward in their thinking.  This 
perhaps points to one of the reasons for differences in the emphasis the mathematics teacher 
educators and the teachers put on the category of ongoing analysis.  

 
Conclusions 

In general the mathematics teacher educators and practicing teachers reported that the 
mathematics teacher educator modeled student-centered instruction as conveyed in the NCTM 
Professional Standards for Teaching Mathematics (1991), but also facets of the collaborative 
work of teachers outside of the classroom.  This work outside of the classroom might include 
teachers collaboratively planning instruction, reflecting on practice, creating and reflecting on 
new practices, and supporting one another’s professional growth.  

This research informs the body of knowledge about teaching the practice of teaching 
mathematics.  The work described in this report makes recommendations regarding modeling by 
mathematics teacher educators based on an analysis of empirical data. It provides insight into 
what and how teachers learn from modeling reform teaching.  Specifically, the study draws on an 
analysis of data from three classrooms to illustrate how explicit discussion about mathematics 
teaching and implicit modeling of instruction supported practicing teachers’ noticing of the 
instruction they experienced, and how engaging in facets of the teaching profession that take 
place outside of their interactions with students has the potential to foster the enculturation of 
teacher into a professional learning community of mathematics teachers.   
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A common practice in mathematics professional development to enhance teachers’ content 
knowledge is to engage them in solving and discussing mathematics tasks. Yet, what is entailed 
in these experiences and how teacher discussions afford or constrain opportunities to develop 
teachers’ knowledge of mathematics is not fully understood. In this paper, the authors provide a 
research-based framework to analyze teachers’ mathematical productions (verbal reasoning and 
written inscriptions) used in collaborative mathematical work that illustrates the complexity of 
considering teachers’ opportunities to learn and how discussion of mathematics may or may not 
be resources for learning.   
 

Introduction 
To better understand the mathematical knowledge teachers need to prepare them for their 

work, Ball and colleagues (Ball, Thames, & Phelps, 2008) have analyzed detailed records of 
practice to identify the content and pedagogical knowledge demands of mathematics teaching 
developing a practice-based theory of mathematical knowledge for teaching (MKT). From this 
work, some of the mathematical demands that are unique to the field of teaching have been 
outlined and include: recognizing what is involved in using a particular representation, linking 
representations to underlying ideas and to other representations, and giving or evaluating 
mathematical explanations (Ball et al., 2008). These demands become even more prevalent when 
teachers facilitate the development of students’ mathematical understanding by selecting high-
level mathematics tasks, orchestrating student discourse around the task, advancing students’ 
mathematical justifications, and helping students seek connections between previous and new 
knowledge. 

Mathematics professional development (PD) is considered one setting in which teachers may 
deepen their content knowledge used for teaching (Ball & Cohen, 1999). While mathematics 
content in PD is often overlooked or superseded by other issues of teaching (Hill, 2004), one 
common way to keep mathematics central is to engage teachers with activities and discussions 
around mathematics tasks (Jaworski, 2007). These activities often situate mathematical work in 
examinations of student work or representations of practice such as narrative or video cases 
(Kazemi & Franke, 2004; Silver et al., 2007). While practice-based (Ball & Cohen, 1999) 
activities are invaluable to mathematical and pedagogical learning, there is still much to learn 
about how teachers collectively do mathematics in ways that support their mathematical learning 
(Suzuka et al., 2010). This paper highlights research on teachers’ collective opportunities to learn 
mathematics and shares a framework for analysis of teachers’ mathematical work.   

The most common rationale for engaging teachers in mathematical work is to advance 
teachers’ mathematical content knowledge. However, this goal takes on varying levels of focus 
and specificity across studies. Recent research and development efforts have advanced that the 
purpose of doing mathematics in professional education (teacher preparation and PD) is to 
develop teachers’ specialized content knowledge (SCK) needed to meet the demands of teaching 
(Ball et al., 2008; Elliott et al., 2009a; Lo, Grant, & Flowers, 2008; Suzuka et al., 2010). 
Programs like those discussed by Lo and her colleagues (2008) and Suzuka, Sleep, Ball, and 
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their colleagues (2010) engage teachers in solving mathematics tasks and analyzing solutions, 
alternative strategies, and multiple representations in order to enhance teachers’ content 
knowledge and connect it to the demands of teaching.  

To develop teachers’ knowledge, researchers have also asserted the need for teachers to 
justify their own mathematical reasoning. Simon and Blume (1996) considered how pressing on 
preservice teachers’ mathematical justifications supported the emergence of learners’ 
understandings of mathematical concepts. Other researchers have found that teachers’ and 
teacher-leaders’ justifications invoked or developed MKT through the unpacking of key 
mathematical ideas (Elliott, Lesseig, & Kazemi, 2009). Such mathematical work provides 
teachers with both a deeper understanding of the mathematics they use in the classroom as well 
as more facility to use this knowledge in a classroom in which students’ reasoning is central 
(Stylianides & Ball, 2008). 

Fostering meaningful mathematics learning for teaching in PD is no easy task. One 
prevailing issue that impacts this work is that doing mathematics with teachers is different from 
doing mathematics in the classroom (Elliott et al., 2009a). This is due in part to the fact that 
teachers tend to hold mathematical knowledge differently than students. While teachers may 
have previous experience with mathematical content, they often do not have a deep 
understanding of or facility with developing justifications that explain mathematical ideas (Lo et 
al., 2008). To meet the mathematical demands of teaching, teachers need not only a method for 
solving a math task, but a repertoire of solutions and justifications that unpack why methods 
work. Yet, a number of studies have found that teachers were less likely to positively evaluate 
justifications that use non-standard methods, those potentially more likely to be accessible to 
students who are not formally trained in proof, or to distinguish arguments that provided a 
mathematically valid reason rather than a thorough explanation of how a solution was developed 
(Bieda, 2010; Knuth, 2002).  

Despite the struggles researchers have uncovered on engaging teachers in mathematical work 
that unpacks key mathematical ideas the importance of providing teachers with opportunities to 
do this work in PD is not diminished.  Indeed, these struggles point to a need for more research 
to be done to understand the potential learning opportunities made available to teachers during 
collaborative mathematics work. If we expect teachers to have opportunities to learn 
mathematics for teaching in PD, leaders need understandings of what makes a discussion 
productive and how discussion might stay focused on key mathematical ideas. Similarly, the 
research community needs tools for analyzing discussions that coordinate argumentation with 
attention to teachers’ specialized content knowledge. Detailed images of mathematics 
discussions among teachers could serve professional educators learning how to facilitate PD 
oriented to SCK and researchers who are trying to build a knowledge base on teacher learning.  

We advance that researchers need opportunities to share the analytic work entailed in 
examining collaborative mathematical activity in order to construct more rigorous means of 
evaluating how conversations advance teachers’ learning of mathematics for teaching. To this 
end, we share our coding system and examine the utility of it. Using data from a teacher-leader 
research project, we will illustrate how the framework examines what is entailed in teachers’ 
mathematical discussions and how key mathematical ideas are potentially drawn upon. The 
framework and the data illustrations are a basis for a discussion on the import of frameworks that 
examine the depth of conversation, key mathematical ideas, and teachers’ opportunities to learn 
MKT, in particular SCK. As such, we intend that this discussion will open up a dialogue for 
other researchers to consider how we might investigate teachers’ collective mathematical work.   
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Context 
The seminars from which data for this paper are drawn are part of a five-year research and 

development project, Researching Mathematics Leader Learning (RMLL) investigating how 
teacher-leaders develop mathematically rich learning environments for teachers. The project’s 
framework and design evolved to focus on developing teachers’ SCK as a key purpose for 
engaging in mathematics during PD. RMLL seminars provided opportunities for teacher-leaders, 
who were also teachers of mathematics, to do mathematics, discuss the mathematics, and 
consider the mathematical entailments of the tasks they solved (other activities were part of 
RMLL seminars, but not central to this paper). For this paper we will refer to RMLL participants 
as teachers since we investigate their collective mathematical work and not activities central to 
their leading. Participants in this study (n = 70) were volunteers involved in one of two phases of 
RMLL seminars and were becoming, or already were, leaders in their schools, districts, and 
regions charged with facilitating mathematics PD. Most participants were current part- or full-
time classroom K-12 teachers. A few participants were full time leaders of mathematics PD.  

Using data on participants’ mathematical productions in small and whole group discourse, 
RMLL researchers have focused on justification as a means to understand the mathematical work 
at play and the normative aspects of these interactions (Elliott et al., 2009b). This previous work 
inventoried what participants reported as acceptable justifications, what participants’ solution 
methods entailed, and made claims about how justifications allowed for an understanding of the 
underlying mathematics (Elliott, Lesseig, & Campbell, 2010). The intent of our previous work 
was to provide images of mathematical justification productions that invoke and develop SCK.   

We have come to realize that a focus on teachers’ solution methods and justifications without 
considering the collective talk elaborating teachers’ solutions severely limits how we might 
understand doing mathematics in PD and teachers’ opportunities to learn. As a result, we 
consider teachers’ justification episodes through a new lens drawing on research on 
mathematical discussions of both students and teachers. 
 

Theoretical Considerations 
We are interested in the collective work of teachers solving mathematics tasks with a 

facilitator.  Guided by a situated learning perspective (Putnam & Borko, 2000; Wenger, 1998), 
this study examines the entailments of learners’ participation in collective activity. Specific to 
our study, we investigate the collective work of a group of teachers solving mathematics tasks 
and the potential resources made available through their work to learn mathematics for teaching.  

Previous studies have considered the nature of students’ mathematical discussions as well as 
the mathematical learning opportunities they afford or constrain. In an account of students’ 
collective mathematical learning, Cobb (2002) considers the mathematical ideas that students 
take up, entailments of classroom discussion, and how students use tools and inscriptions. We 
saw these foci as central in how to examine the collective participation of teachers in 
mathematical activity.  Considering community discourse in terms of the three foci allows for the 
documentation of emergent practices, which account for mathematical learning of the 
community (Cobb, 2002).  In his study Cobb uses Toulmin’s (1958) scheme for argumentation to 
examine classroom discussion.  Similarly, Forman and colleagues (1998) in their analysis of a 
mathematics classroom advance that Toulmin’s argument analysis is a valuable tool for 
examining the mathematical reasoning used to solve tasks. In general, both research projects use 
a classification of utterances as claims, warrants, and backings to examine the structure of 
conversation to infer what we consider to be depth of a conversation.  Claims are assertions in 
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need of argumentative support because the audience has called them into question or the rules for 
social interaction require such support.  Warrants explicate how conclusions have been drawn 
from accepted givens.  Backings strengthen the acceptability of warrants, essentially serving as 
the “why” that refers to the structure of the key mathematical ideas at play.  

Considering the benefits of the approach to analyzing classroom mathematical practices used 
by Cobb (2002) and Forman and colleagues (1998), we took into consideration recent studies 
that have taken a similar theoretical and analytical stance in examining teacher discourse around 
mathematics tasks. Steele’s (2005) analysis of mathematical and pedagogical discussions in a 
mathematics methods course also used Toulmin’s (1958) argument model as a basis for analysis. 
In addition to the focus on claims, warrants, and backings (referred to as “bridge statements” and 
“evidence”), Steele also considered the potential responses to an argument adding “challenges” 
and “connections” as elements of the community’s discourse structure and important for 
considering the depth of a discussion. Implicit in Steele’s analysis is how deep conversations 
afford teachers opportunities to learn mathematics, although he does not take this up directly. 
Steele’s work instead considers how argumentation may be driven by the underlying disciplines 
informing the conversation to explain how mathematical discussion differ from pedagogical 
discussions. We have found Steele’s analysis helpful to consider the depth of conversation, and 
we use a similar analytic tool to explicitly examine learning opportunities for teachers.   

Researchers who directly consider the entailments of teachers’ discussions have reported 
conflicting results when examining the nature of mathematical and pedagogical conversations to 
advance teachers’ learning. Crespo (2006) dubbed teachers’ talk during mathematical work to be 
exploratory, in that it tended to be interactive, consisting of unprompted interruptions, 
disagreements, and tentativeness, and pedagogical talk as expository, more definitive in nature.  
Exploratory discussion allowed teachers to make public numerous mathematical ideas, but here 
the analyses did not explore the nature of the mathematical ideas, nor how ideas contributed to 
teacher learning. Crockett (2002), in another study, noted that teachers working on a 
mathematics task were so invested in reaching a correct answer that they missed out on 
examining the mathematical value and assumptions in the problem. Steele, Crespo, and Crockett 
provide valuable insights on teacher discourse of mathematics. However, each shares slightly 
different levels of detail and conflicting results for supporting teacher learning through teachers 
doing and discussing mathematics. 

To fill the knowledge gap in understanding how teachers doing mathematics in PD may 
contribute to their development of SCK, we came to understand that our analyses must take up 
discursive interactions as mathematical justifications unfold in relationship to drawing on key 
mathematical ideas. Research on students’ and teachers’ mathematical discourse allowed us to 
conceptualize teachers’ math argumentation accounting for both how and what math ideas are 
justified. 

 
Methods 

Our work looking at teachers’ discussions around mathematics tasks and our consideration of 
how to analyze such work has been an iterative process. We developed our coding scheme based 
on the theoretical considerations uncovered in the literature and by reviewing data first 
individually, then together.  An initial selection of video-data that included a variety of teachers 
across our two-phase research design, two different mathematics tasks that center on algebraic 
reasoning, and instances from early and late in RMLL seminars were examined to develop the 
window.  After a code window was developed, an individual researcher would code the data and 
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a second researcher would verify codes. Any differences in coding were resolved through 
discussion to arrive at 100% agreement.  

Figure 1 illustrates the coding window used to analyze teachers’ mathematical discussions in 
both small and whole group settings. Data were analyzed using the video analysis software, 
Studiocode. Participants’ written mathematical inscriptions were also examined to look closely at 
what is referenced in video and the mathematical nature of the inscription. 

 Each video episode was coded as follows:  Each discussion was coded into idea units based 
on the main speaker and the claim being argued or challenged. Each idea unit was then further 
described using elements of the argument structure:  claim, warrant (referred to here as evidence-
how) and backing (referred to here as evidence-why). Evidence-why codes were distinguished by 
levels of justification (Simon & Blume, 1996) to describe the backing for a solution. In addition 
to those elements of an initial argument we have also included challenges to a claim (e.g., press 
for justification, stumbling) and connections 
(e.g., to other solutions, across multiple 
representations) from the main speaker or the 
rest of the group. Finally, we coded when 
teachers explicitly  identified key math ideas 
or implicitly discussed key math ideas 
embedded in their arguments.  In using this 
code, we are not suggesting that an individual 
teacher knows a particular key idea.  Instead, 
we are highlighting the ideas that are made 
public that have potential to serve in the 
development of SCK.  Because our teachers, 
at times, would narrate their experience by 
talking about themselves as learners or how 
the work connected to other experiences we 
coded their narrations as meta-talk and 
accounts of experience to capture teachers’ 
disclosures made during math activity. 

Discussion of an Illustration of Teachers’ 
Collaborative Mathematical Work 

To illustrate how a consideration of both teachers’ 
justification productions and the argumentation structure of 
a teacher group support the interpretation of complex 
discourse of teachers in PD, analyses from our larger project 
will be discussed here. Data for the discussion in this paper 
came mid-way through the RMLL seminars where 
participants were engaged in collaborative discussions of 
solutions to a math task (the Staircase task; see figure 2). 
The Staircase task is a commonly used task in PD with the 
potential to highlight important mathematics ideas such as 
understanding how models can be decomposed and 
rearranged while preserving space and quantity and 
mapping relationships among representations, in 
particular how the composition of a figure is accounted 

Figure 1.  Studiocode Coding Window 

 

 

 
      1           2             3                   4                  
 
1. Build the next two staircases. 
2. Describe the 10th staircase. 
3. What is the relationship between the 

staircase number and the number of 
cubes it takes to build the staircase?  
See if you can find a rule to represent 
that relationship. 

Figure 2. The Staircase Task 
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for in a symbolic expression.   
The episode shown here is a discussion among three Phase I participants:  Wendy, Hal, and 

Erica (all pseudonyms).  The transcript of the segment, our coding of this instance, as well as the 
relevant inscriptions can be found in Figure 3.  In the episode, Wendy is presenting her solution 
to the Staircase task, which she mentions relates to a solution that Hal just presented. She begins 
by verbally recounting the way she recomposed the visual model in order to create a “duplicate” 
staircase. In the process of drawing a connection between her visual model and her symbolic 
solution, Wendy stumbles.  Her next move we code as a new solution, because it uses her 
inscription differently.  Wendy considers the re-conceptualizing of the inscription and its 
correspondence to a symbolic expression. Her restated idea exhibited a more transparent link 
between her representations and the idea of a duplicate staircase (and, thus, needing to divide by 
two).  This move makes available the idea that decomposition preserves quantity.  Hal’s 
revoicing of Wendy’s idea provides evidence that this connection has been taken up publicly. 

 
Figure 3.  Teachers’ Discussion and Inscription Around Staircase Task 

 
What does this say about doing math in PD?  In Wendy’s first solutions we do not see her 

connect to a symbolic expression in a transparent way but she provides an explanation with a 
mention of another solution. We see that stumbling acts as a challenge that has opened up her 
reasoning as she connects her model to a symbolic expression such that the decomposition of the 
figure corresponds and is accounted for symbolically.  Hal’s later revoicing allows us to see his 
reasoning connected to her reasoning. As we examine the claims that these teachers are making – 
how they get supported, challenged, and used in the collective space – we are able to see the 
mathematical content that is emerging in the collective through the argument, interactions, and 
use of inscriptions. Further analyses of subsequent data will allow us to trace mathematical ideas 
across teacher discussion and consider what mathematical ideas are put on the table by this 
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group, which seem to be taken up and unpacked through considerable discussion of claims, 
warrants (explaining how), backings (explaining why), challenges, connections and qualifiers. 
This analysis allows us to move our examination beyond an inventory of solutions and 
representational use. We are teasing out what is entailed in doing mathematics, the role of 
inscriptions and discourse. Subsequent data analysis will also examine the role of facilitation in 
teachers’ collective mathematical work as the small group moves to a whole discussion.  

 
Conclusion 

In this paper we have provided the theoretical and analytic considerations for examining 
teachers’ collective mathematical work accounting for argumentation, levels of justification, and 
key mathematical ideas.  Previous research has accounted for teachers’ argumentation without 
incorporating attention to justification or key mathematical ideas emerging in teachers’ collective 
mathematical work. Important to note in these analysis is the role of our video coding tool, 
Studiocode, that makes it possible to examine over 20 episodes of teachers doing mathematics 
and provides methods for examining patterns across the 20 episodes to consider how teachers’ 
mathematical learning emerges in the community. 

The framework we have presented here affords ways of capturing the complexity of teachers’ 
collaborative mathematics talk. With this framework, we are able to look at a wide range of data 
to better understand the aspects of collaborative talk that advance mathematical learning. The 
excerpt of data we chose for this paper also illustrates the framework’s ability to highlight the 
opportunities for key mathematical ideas to emerge in discussion, such as “stumbles”, outside 
challenges, and building connections across representations and solutions. As we continue to 
move forward with our examinations of teachers’ collaborative mathematics talk in order to 
better understand these opportunities we plan to consider more deeply what stumbles or 
challenges provide teachers in their mathematical learning and uncover more aspects of 
collaborative work that facilitate the development of SCK.   
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Thirty-five teachers teaching advanced topics in high school mathematics were engaged in a 
year-long intensive professional development project intended to increase their Mathematical 
Knowledge for Teaching in the area of discrete mathematics.  Project activities embodied a 
models and modeling perspective on pedagogy and learning.  Results showed that participating 
teachers’ content knowledge improved significantly in discrete mathematics, their classroom 
practice improved significantly.  Additionally, participating teachers’ students outperformed 
their counterparts in a matched-control group in achievement. Results provide evidence of the 
effectiveness of mathematical modeling for developing teachers’ mathematical knowledge for 
teaching, and on improving secondary mathematics teachers’ practice. 
 

With the recent push to increase the general mathematical competence of US high school 
graduates, the State of Arizona has instituted new standards incorporating significant aspects of 
discrete mathematics, including graph theory, combinations and permutations applied to the 
solution of conflict problems, probability and statistics, and shortest path algorithms (Standards 
Committee, 2008). This subject matter is becoming increasingly important in scientific and 
economic modeling, and is now considered essential background for college- and work-
readiness. 

Two problematic issues arise when attempting to infuse discrete mathematics content into the 
current high school curriculum.  The first concerns the ability of teachers to effectively deliver 
high quality instruction given that discrete mathematics has historically been given only cursory 
(if any) treatment in their college-level mathematics courses (Rosenstein, Franzblau, & Roberts 
(1991, Eds).  The second issue, and one that is at least as important as teacher knowledge is the 
fact that there is no coherent set of curricula (i.e., texts, materials) for teachers to use to structure 
their implementation of the new standards. 

To address these concerns, a partnership was formed between a large Southwestern 
University, and a large urban school district to substantially increase the pedagogical content 
knowledge of high school mathematics teachers in the areas of discrete mathematics and 
mathematical modeling, and to create a coherent course of study around discrete mathematics 
appropriate for a 4th year of high school mathematics. The project worked toward four 
measurable goals and used formative evaluation as a guide for on-going program development 
and refinement to meet the goals. 
Goals 
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1. Increase mathematical knowledge for teachers (MKT) for Junior-Senior level teachers 
(e.g., Hill, Ball, & Schilling, 2008); 

2. Create a coherent, rigorous curriculum for fourth year courses that develop student 
knowledge and skills in Discrete Mathematics and modeling (e.g., Zawojeski, Lesh, & 
English, 2003) 

3. Increase student achievement specifically focusing on fourth year courses that develop 
student knowledge in Discrete Mathematics and modeling 

4. Develop student’s content knowledge through the use of workplace technology 
Goals were designed to ensure that this learning and growing expertise was sustained and shared 
with district instructors and colleagues. 
 
Project Activities 

The partnership identified 10 campus instructional leaders and an additional 25 mathematics 
teachers proportionally distributed by student population across high schools.  The project 
developed an integrated system of PD, curriculum, and technology implementation in the area of 
Mathematical Modeling. Mathematical Modeling was chosen because it integrates all aspects of 
the College and Work-Readiness Standards in Arizona, because it draws easily upon students’ 
prior knowledge of Algebra and Geometry, and because it provides important contexts for 
learning and applying discrete mathematics in realistic scientific and workplace scenarios Figure 
1 (below) shows project activities arranged across the 14 months of project funding.  

The meat of the program has been a monthly series of 8-hour professional development 
sessions designed to increase teachers’ pedagogical content knowledge in modeling discrete 
mathematics topics.  These sessions are bookended by week-long (40 hours each) Summer 

  
Figure 1. Professional development foci and timeline 

Workshop.  Teachers are organized across schools into curriculum development teams, tasked 
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with designing the 4th-year curriculum structure and tasks for subsequent implementation in the 
2010/2011 academic year (see Figure 1).  

Initially, forty two teachers were provided 135 contact hours of professional development 
utilizing two 40-hour intensive summer workshops that introduced participating teachers to the 
content of discrete mathematics, including graph theory, combinatorics, probability and statistics. 
Institute faculty emphasized a variety of researched best practices, focusing on modeling high 
cognitive demand tasks in problem-based-learning scenarios. The use of readily-available 
software and mathematical technology was emphasized throughout these sessions.  Technology 
included simulation tools, probeware and data analysis tools, and graphical/visualization tools. 
Throughout the school year, additional content instruction was provided to teachers in each of 9 
additional 8-hour Saturday sessions.   

Also throughout the school year teachers implemented these best practices by developing and 
piloting curriculum for a new 4th-year course designed to embody the College Ready and Work-
Ready Standard for Arizona Mathematics. This course is targeted towards non-calculus-
intending students, and is pedagogically based on mathematical modeling. Teachers engaged in 
iterative design cycles (Lamberg & Middleton, 2009) to develop and test lessons and whole units in 
their classrooms, videotaping their practice, and collecting student work samples for use in 
subsequent professional development. These data records were used to improve the designed 
courses and develop teachers’ guides to assist other teachers in implementing the College and 
Work Ready Standards in their classrooms, focusing on discrete mathematics, probability and 
statistics. All work products were uploaded to the project Sharepoint® website to enable ready 
access for teacher teams to updated materials. 

 
Evaluation 

Participants 
     The project was evaluated using a pre-post, quasi-experimental design with a matched 
comparison group. Each school was asked to provide a comparison teacher for any participating 
teacher. Matched comparison was based on number of years teaching, grade level taught, and 
math courses taught. Twenty-seven project teachers completed all of the 135 hours of 
professional development, and had complete data.  Forty teachers, who received no professional 
development in discrete mathematics or mathematical modeling comprised the comparison 
sample. 
Measures 

To measure teachers’ practical change, the Reformed Teaching Observation Protocol 
(RTOP) was employed. The RTOP was developed as an observation instrument to provide a 
standardized means for detecting the degree to which K-20 classroom instruction in mathematics 
or science is “reformed”. Pre-RTOP data have been used to assess the quality of instruction 
against an external metric of excellence, and fidelity of implementation. In addition, for teacher 
content knowledge, a cognitive growth instrument, The Discrete Math Content Measure 
(DMCM), was developed (the pre-test was administered in 2009 and the post-test administered 
in 2010). The overall reliability (Chronbach’s Alpha) of the exam as a whole was 0.70. Student 
achievement was measured with AIMS scores and CRT (course) scores yearly. 
Observational Protocol 

There were five observers that completed the RTOP evaluations for the participant group.  
The observers completed RTOP training through center for Research and Innovation in 
Mathematics and Science education (RIMSE), with Arizona State University.  Each participant 
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and contrast group teacher was observed in a typical class where they taught discrete 
mathematics topics: Once in the Fall semester, 2009, once in the Spring Semester, 2010. There 
were no major differences in the timing or method of the administration of the RTOP evaluations 
in the pre or post RTOP.   

 
Results 

Teacher Knowledge 
Results from the DMCM analysis shows a significant difference between the 2 groups (p-

value = .00) as post-test scores for the Participant (M = 18.29) were higher than the comparison 
group (M = 11.95) See Table 1 Results from the DMCM analysis for the 27 program Participants 
show that there were gains from pre (M = 10.47, SD = 3.41) to posttest (M = 18.29, SD = 3.29), 
and the gains were significant (p-value = .00). Results from the analysis for the comparison 
group revealed that there was little change between pre-test mean scores (M = 11.42, SD = 2.72) 
and post test mean scores (M = 11.95, SD = 3.17) and the difference was not significant (p = 
.24).  
 

Discrete Mathematics Content Measure: Participant Group 
Group Pre-score 

Mean (SD) 
Post-score 
Mean (SD) 

Significance 
p < .05 

Participant 
 

10.47 
(3.41) 

18.29 
(3.30) 

.00 

Control 11.42 
(2.72) 

11.95 
(3.17) 

.24 

Table 1. DMCM comparison of participant and comparison groups 
 
Teacher Change in Practice 

Differences in pre- and post-classroom observation (RTOP) average scores indicate a 
positive gain in those items relating to reformed and inquiry-based classroom from mean of 
59.78 at the beginning of the MSP to a mean of 68.56 following the MSP professional 
development intervention. The gains were significant (p = .028). The Post RTOP score (M = 
68.56, SD = 17.29) revealed a nine-point gain from the Pre RTOP score (M = 59.78, SD = 
17.59), and the gain was significant (p = .028). PUHSD had a 15% change in pre-post RTOP 
scores. 

With regards to the relationship between teachers’ RTOP scores and their student 
achievement, we found that, for our data, the Spearman rho between the RTOP & post-DMCM 
was to be .50, a moderate-to-high, statistically significant correlation (p = .007). This finding 
indicates that project teachers who learned more mathematics, also taught mathematics in a more 
reformed manner on average, and that this reformed practices was related to higher student 
achievement. 
Student Achievement 

The project measured student growth using the State Arizona Instrument to Measure 
Standards, a Criterion-Referenced test bench-marked on the State Mathematics Standard. 
Unfortunately, in the middle of the project, the State elected to change the test, and so pre- and 
post administrations are not measured on the same scale. Overall in the State, scores on the 2010 
AIMS are lower than on the 2009 administration due to this change.  For the 2010 administration 
of the Arizona Instrument to Measure Standards (AIMS), there were 610 students in participating 
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classrooms, primarily 10th graders, taking the test for the first time.  Of those students, 338 
students (55%) scored proficient or above and 272 students (45%) scored basic or below. The 
comparison group teachers tested 899 students that were 10th graders. Of those students, 405 
students (45%) scored proficient or above and 494 students (55%) scored basic or below.  This 
provides some evidence to suggest that the teaching practices in the MSP program contributed to 
student learning. 
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Course Group Mean Std. 
Deviation 

N 

Algebra 1 Control 36.59 11.041 191 
 Particip 42.26 11.502 111 
 Total 38.68 11.525 302 
Geometry Control 51.80 13.510 574 
 Particip 52.96 15.038 353 
 Total 52.24 14.115 927 
Algebra II Control 66.83 10.567 81 
 Particip 73.40 7.066 70 
 Total 69.87 9.661 151 
Pre-Calc/ 
Calculus 

Control 73.67 5.508 3 

 Total 73.67 5.508 3 
Academic Decathlon Particip 70.80 9.834 5 
 Total 70.80 9.834 5 
AIMS prep Math Control 44.34 12.992 50 
 Particip 50.37 10.622 49 
 Total 47.32 12.200 99 
Enrichment Control 47.64 11.582 22 
 Total 47.64 11.582 22 
Total Control 49.57 15.201 899 
 Particip 53.10 15.731 610 
 Total 51.00 15.510 1509 

Table 2.  Descriptive Statistics on the AIMS-Mathematics test for Students of Participating 
and Control Group Teachers 

 
A univariate post-test, experimental/control group model was applied to the analysis of 

student achievement data.  The dependent measures included students’ AIMS mathematics raw 
score, the ACT composite mathematics score, ACT Algebra/Coordinate Geometry score, and 
ACT Plane Geometry/Trigonometry score.  It was hypothesized that students of teachers 
participating in the Modeling MSP would show greater student achievement on these outcome 
measures than teachers who had not participated in the program. In addition, because typical 
high school courses (e.g., Algebra 1, Geometry, Algebra II, etc) would show different levels to 
which course content fit the content in the MSP, we analyzed differences in student achievement 
by course, and we accounted for the interaction effect between project participation and course 
by performing a factorial analysis.  All family-wise alpha coefficients were set to .05 (1-tailed). 
Table 2 shows results for the analysis of the AIMS-mathematics test by course and by 
participation.   

Results indicate that students of participating teachers outperformed their peers in classes 
taught by control group teachers. When analyzing the main effect for course, as expected, 
students in higher level courses showed greater AIMS achievement. Most importantly, the main 
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effect for overall mathematics achievement as measured by the AIMS-mathematics test was 
found to be superior for students of participating teachers when compared to their matched 
control group (F(1,1497) = 8.58, p = .048). In analyzing the interaction of the two conditions, the 
data show that for every class where comparison was possible, participating teachers’ students 
outscored control group students.  Overall, these differences are statistically significant (F 
(3,1497) = 3.87, p = .009).  Details of the analysis are presented in Table 3 below. 
 

Source Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Observed 
Power 

Intercept Hypothesis 153458.77
9 

1 153458.779 329.40
3 

.002 1.000 

Error 1000.119 2.147 465.870b    
Course Hypothesis 99905.196 7 14272.171 36.117 .001 1.000 

Error 1966.882 4.977 395.161c    
Particip Hypothesis 4396.818 1 4396.818 8.585 .048 .575 

Error 1867.314 3.646 512.157d    
Course * 
Particip 

Hypothesis 1945.671 3 648.557 3.866 .009 .825 
Error 251110.35

3 
1497 167.742e    

Table 3.  Univariate ANOVA--Effects of participation and course on student achievement 
on the AIMS-mathematics test. 

 
These findings are in alignment with the goals of the project. Since all project activities were 

designed explicitly to embody the Arizona Mathematics Standard, it was expected that on a test 
of this Standard, students of teachers who had more experience learning the mathematics related 
to the Standard would perform better.  Additionally, it provides evidence that modeling as an 
environment for enhancing teachers’ understanding and pedagogical skill in applying the 
Standard content is a viable strategy. 

In addition to the AIMS data, the ACT was utilized as a nationally-validated outcome 
measure to augment the AIMS data.  We analyzed student achievement using three of the ACT 
scale-scores:  ACT Mathematics Composite, ACT Algebra/Coordinate Geometry subscale, and 
ACT Plane Geometry/Trigonometry subscale.  Results are mixed, showing no overall effect of 
project participation on ACT Mathematics Composite scores, or on ACT Plane 
Geometry/Trigonometry scores. A main effect for Course was detected for each of these 
subscales, with students enrolled in higher courses performing better on both (See Table 4 
below). 

On the ACT Algebra/Coordinate Geometry subscale, a significant main effect was found for 
Course, but not for Participation. The interaction effect, however was found to be statistically 
significant.  A Scheffe post hoc test revealed that in Algebra II, the largest represented course in 
the study, Participating teachers’ students outperformed those of Control teachers (p < .05). 
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Source Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Observe
d Power 

Intercept Hypothesis 3107.319 1 3107.319 798.64
8 

.000 1.000 

Error 3988.149 1025.04
0 

3.891b    

Course Hypothesis 1401.903 7 200.272 15.917 .001 .999 
Error 84.387 6.707 12.582c    

Particip Hypothesis .023 1 .023 .003 .957 .050 
Error 284.312 35.854 7.930d    

Course * 
Particip 

Hypothesis 75.155 5 15.031 2.425 .034 .771 
Error 8028.120 1295 6.199e    

Table 4. ANOVA--Effects of participation and course on student achievement on the ACT 
algebra/coordinate geometry subscale. 

 
Discussion 

Results show that teachers, given an intense, sustained set of professional development 
experiences organized around mathematical modeling, can learn significant new content, change 
their practice to reflect modeling instruction, and increase the mathematical achievement of their 
students in the process. Several problems, however, have been identified related to attracting and 
retaining teachers over the long haul.  In particular, retention of participants was an ongoing 
challenge.  The number of original participants was identified as 60; however 43 instructors 
participated. Participants dropped out for various reasons:  one teacher passed away, one was 
taking care of a dying parent, one started their Master’s degree and had a time conflict, three 
teachers were involved in remediation and wanted to discontinue, two were getting paid to do 
Saturday School so there was a conflict with their schedules, and others stopped coming without 
explanations. 

Moreover, implementing a two-week summer workshop may not be the most effective way 
to provide the bulk of the learning. Teachers experience a high level of mental fatigue and 
express feelings of being overwhelmed using this format. 

RTOP observations and teacher comments continue to demonstrate the need to model and 
explicitly identify reformed teaching practices and an understanding of how students learn 
mathematics content.  During the final weeks of the project, teachers were expected to 
implement specific instructional strategies in their classroom.  During the RTOP Evaluation 
Dissemination session, were able to share experience and ask follow-up questions regarding each 
RTOP category and item.  We conducted the RTOP Evaluation Dissemination after the first 
RTOP. The team felt that the process of identifying each item, addressing strengths and 
weaknesses in the overall group and modeling exemplar teacher performance (with MSP teacher 
participants) would help the majority of teachers be more successful in terms of developing 
pedagogical content knowledge and providing more effective mathematics instruction for their 
students. 
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LEARNING TRAJECTORIES AND KEY INSTRUCTIONAL PRACTICES 

 

As learning trajectories gain traction in mathematics education, we seek to understand the ways 
in which teachers may use them in interactions with students. This paper reports on one group of 
elementary teachers’ use of their emerging knowledge of a learning trajectory to examine key 
pedagogical practices. Findings suggest that a learning trajectory helps teacher place student 
thinking at the center of these practices. 

 In this paper we examine the role a learning trajectory (LT) that characterizes students’ 
progression from less to more sophisticated levels of understanding plays in teachers’ analysis of 
classroom discourse orchestration. In the introduction of the Common Core State Standards 
(CCSSO, 2010), the authors of the document highlighted the role LTs played in the initial 
development of the new standards and reported that the development of the standards began with 
research-based trajectories.1 LTs have been demonstrated effective in assessment design 
(Battista, 2004), curriculum development (Clements, Wilson, & Sarama, 2004), and as a tool for 
teachers to identify students’ ideas in instruction (Furtak, 2009; Mojica, 2010; Wilson, 2009). By 
providing a framework for aligning evidence of student cognition with research findings on 
likely tendencies for the development of children’s mathematical conceptions, LTs support 
teachers in locating students’ ideas within a range of conceptual development and offer a theory 
of how mathematical ideas develop overtime (Wilson, 2009).  

The recent release and adoption by many states of the Common Core State Standards recalls 
the question about the relationship between standards, professional development, and 
instructional practice. Cohen and Hill (2001) showed that in the absence of focused professional 
development on the content and the ways in which students learn that content, it is unlikely for 
new standards to result in changes in teachers’ practices or increases in student achievement. 
Further, these authors indicated that professional development related to changes in standards 
should provide teachers with opportunities to explore and understand new standards through 
examining student thinking, work samples, and curricular connections if meaningful change is to 
occur.  Thus, we propose that professional development focused on LTs can provide 
opportunities for teachers to examine both changes in content and the ways in which students 
think about that content in light of the new standards. Further, we seek to understand how 
participation in professional development that attends to LTs supports participants’ examination 
of classroom mathematics instruction during whole class discussions. 
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Perspectives 

Learning trajectories are descriptions of the qualitatively different levels of reasoning 
sophistication through which students’ concepts pass as they evolve from informal ideas to 
complex understandings. With roots in Simon’s (1995) hypothetical learning trajectory, LTs 
bring clarity to the intermediate understandings a student may have of a mathematical concept. 
LTs outline how those intermediate understandings relate to previous ideas as well as to those 
that will evolve from them. In our work we use Confrey et al.’s (2009) definition of a learning 
trajectory: “a researcher-conjectured, empirically-supported description of the ordered network 
of constructs a student encounters through instruction (i.e., activities, tasks, tools, forms of 
interaction and methods of evaluation), in order to move from informal ideas, through successive 
refinements of representation, articulation, and reflection, towards increasingly complex 
concepts over time” (p. 347). In this definition, the role of instruction is highlighted, making 
teachers and the practices they employ to create learning environments for students central in the 
development of students’ understanding of mathematical concepts.  

Researchers have recently begun to investigate the ways in which teachers may use LTs in 
their practice. For instance, Wilson and Mojica (2010) reported that knowledge of an LT 
supported both practicing and prospective teachers in constructing models of students’ thinking. 
Furtak (2009) concluded that knowledge of an LT helped teachers in viewing students’ 
conceptions along a continuum of proficiency rather than simply “right” or “wrong.” Wilson 
(2009) described how LTs assisted teachers in interpreting evidence of cognition when analyzing 
student work and in interacting with students during instruction. He suggested that LTs sensitize 
teachers to a variety of strategies used by students when gaining proficiency with a mathematical 
idea. He also conjectured that LTs provide a framework for teachers to organize students’ work 
in class discussions. The research reported in this paper investigated this last conjecture further. 

This study is part of a larger project that aims to conceptualize the notion of Learning 
Trajectories Based Instruction, broadly defined at the outset of the project as the ways in which 
teachers use their own knowledge of a LT to organize their instructional practices and participate 
in their professional communities. As the context for our investigation, we are working with one 
LT: the learning trajectory for equipartitioning (EPLT), which is the set of cognitive behaviors 
that have the goal of producing equal-sized groups (from collections) or equal-sized parts (from 
continuous wholes), or equal-sized combinations of wholes and parts, such as is typically 
encountered by children initially in constructing ‘fair shares’ for each of a set of individuals 
(Confrey et al., 2009). The EPLT describes how children’s informal experiences with creating 
fair shares evolve over time to a robust understanding of partitive division. The proficiency 
levels of the EPLT document the strategies, practices, emerging relationships, generalizations 
and the misconceptions children experience through instruction as they mature to an 
understanding of a ÷ b as creating b equal-sized parts of a.  

As students engage in equipartitioning tasks, the EPLT describes how they work to 
coordinate three equipartitioning criteria: (1) students must create the correct number of groups 
or parts; (2) students must create equal-sized groups or parts; and (3) students must exhaust the 
whole or collection. Also, the EPLT outlines how different parameters affect the level of 
difficulty of the task, such as sharing a whole among eight people is less difficult than sharing a 
whole among five people. The trajectory goes on to characterize the practices of naming and 
justifying answers to equipartitioning problems. For example, children proceed from 
nonmathematical names for each share such as parts or pieces, to counts and then to numbers in 
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relation to a unit. Three important emerging relationships are also considered in the trajectory: 
compensation, the idea that producing more equal-sized parts decreases their size; composition 
of splits, the idea that one split across another split affects the size of every part in a 
multiplicative way; and transitivity, the idea that non-congruent parts resulting from the same 
split on the same whole are of equal size. 

To frame our examination of connections between teachers’ experiences with EPLT and 
pedagogical practices that support the orchestration of productive mathematics discourse in the 
classroom, we draw on the work of Stein, Engle, Smith, & Hughes (2008). These authors 
proposed a set of five practices to examine teachers’ work in supporting discourse: anticipating, 
monitoring, selecting, sequencing, and connecting.  In this paper, we focus on the last three of 
these practices. Selecting is the practice of choosing particular students to share their work with 
the rest of the class to get certain ideas on the table while remaining in control of which students 
present and what the mathematical content of the discussion will likely be.  Sequencing is the 
practice of making decisions about how to order the students’ presentations to maximize the 
chances that the mathematical learning goals for task are achieved.  Connecting is the practice of 
helping students develop relations among presentations and judge the consequences of different 
approaches for various problems, making sure students’ presentations build on each other to 
develop powerful mathematical ideas. 

 
Methods 

The specific research question addressed in this study is: In what ways do teachers use their 
understandings of EPLT to select, sequence and connect students’ mathematical ideas for whole 
class discussion? We conducted a design experiment within a school-based professional 
development setting. Design experiments are used to provide “systematic and warranted 
knowledge about learning and to produce theories to guide instructional decision making” 
(Confrey, 2006, p. 136). They “entail both ‘engineering’ particular forms of learning and 
systematically studying those forms of learning within the context defined by the means of 
supporting them” (Cobb, Confrey, diSessa, Lehrer, and Schauble, 2003, p. 9). The data set for 
the study is comprised of videos of professional development meetings and audiotapes (with 
transcripts) of small group discussion during the professional development. As it is usual for 
design experiments, data analysis consisted of constant comparison methods (Glaser, 1992; 
Strauss & Corbin, 1998), which allows for the creation of emerging categories in the data 
analysis and the refinement of these categories as they are contrasted with new information. The 
various sources of data were also used for triangulating information (Miles & Huberman, 1994) 
in search of both confirming and disconfirming evidences. As we examined the ways in which 
teachers engaged with one particular professional learning task, we coded the data for teachers’ 
use of their knowledge of particular aspects of the EPLT to justify their arguments about how to 
select, sequence, and connect students’ responses in whole group classroom discussion. 
 
Participants 

We partnered with one elementary school in a mid-size urban area in the southeast. Twenty-
four K-5 teachers from this school volunteered to participate in the professional development. 
Only three of these teachers had less that 3 years of teaching experience and about half of the 
teachers had more than 10 years of experience. Many of the teachers have been at this school for 
a few years. Overall, this school has a yearly turnover teacher rate of 4% and a student 
population of approximately 600 students. The student population in the 2010-2011 school year 
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was 35% Caucasian, 29% Hispanic, 25% African American, 7% Asian, and 4% other, with 54% 
of the children on free or reduced lunch. 
 
Professional Development Design and Professional Learning Task 

The professional development was designed to offer a total of 96 hours of work on the 
concept of EPLT over a period of 12 months. The initial 30 hours of professional development 
were offered as a Summer Institute, followed by 54 hours of face-to-face and web-based activity 
during the school year, ending with 12 hours the following summer. This report is based on the 
work conducted during the Summer Institute.  The 30 hours of work for the institute were spread 
over 6 days, immediately before the 2010-2011 school year started. We worked with the teachers 
for 6 hours during the first 3 days, and then for 4 hours during the following 3 days.  All 
meetings took place at the school, giving teachers the opportunity to also work on organizing 
their classrooms after the professional development meetings. 

The research reported in this paper concerns a professional learning task that was posed to 
the teachers on the fourth day of the Summer Institute. On Days 1–3 teachers had investigated 
the concept of equipartitioning, the proficiency levels of the EPLT, and the parameters affecting 
the difficulty of tasks at a particular level. Through analysis of student work and video clips of 
children solving various equipartition tasks for collections and single wholes, teachers had 
discussed the equipartitioning criteria, naming practices, and emerging relations such as 
compensation, composition of splits, and transitivity.  

We began Day 4 of the Summer Institute with a task that aimed to provide teachers with an 
opportunity to make explicit connections between their learning in the professional development 
and their classrooms instruction. In this task, we purposefully asked participating teachers to 
select, sequence and connect student work. Teachers were given a scenario where students in a 
second grade classroom had worked on the task of fairly sharing a rectangular cake among four 
people and the second grade instructor saw four different solutions to the task (represented in 
figure 1, labeled A, B, C, and D). In cross-grade-level groups, teachers were asked to discuss the 
following question: “How would you select and sequence the presentation of these solutions for 
a whole class discussion? Why?”  

 

 
 
Figure 1. Representations of the approaches to sharing a whole among four. 
 
After the small group discussions, the teachers viewed an 18-minute video recording of the 

actual second grade classroom. In the video the classroom instructor starts by having students 
share solution C. The students indicated that each person would get two pieces and that each 
piece was one-eighth. Next, a student shared approach A, and the instructor guided the students 
to see that each of the four pieces needed to be the same size and that if they were of equal size, 
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then each could be called one-fourth. Approach D was shared next and students told the class 
that they realized that although they had not used all of the cake. The instructor concluded the 
sequence by having a pair of students share approach B, and made connections to the two-eights 
created in approach C and the parts created in approach D.  

In the whole group discussion of the video, teachers examined the instructor’s choices in 
selecting, sequencing, and connecting her students’ responses. After each solution was shared 
with the second grade class in the video, the recording was paused and the teachers were asked to 
discuss the mathematical issues that arose as students shared a particular solution. They 
conjectured what they would do at that particular moment in the lesson if they were teaching it 
and examined the connections the actual instructor made. 

 
Results 

Selecting and Sequencing 
Selecting and sequencing student work was not a trivial task for participating teachers. It 

elicited a rich discussion in the small groups and only one of the cross-grade-level small groups 
actually agreed on a sequence for presenting students’ answer: D, A, B, and then C. One group 
reached consensus that they should begin with approach A, and another group agreed they would 
begin their sequence with approach D. The two other groups failed to reach a consensus, with 
one not being able to solve whether they would begin with A or C and the other debating 
whether to begin with A or D. In the process of these discussions, three aspects of the EPLT 
emerged in teachers’ justifications for how they would select and sequence these particular 
students’ solutions: the three equipartitioning criteria, students’ misconceptions, known 
strategies for creating equal parts. 

All of the small groups made reference to the three equipartitioning criteria as they worked to 
make sense of the four approaches. The teachers used the criteria both in understanding solutions 
A through D and in examining how they might sequence these solutions for discussion. In 
selecting a response to begin a classroom conversation, one teacher told her group, “I would start 
this one [D] just because I think this is the problem that…that they’re not using the whole. They 
are thinking it’s a cake and they’ve made four pieces but they’ve not used the whole.” In another 
group, a teacher stated, “I would probably share the top left corner [A] also and then talk about, 
you know, first that you did use a whole; that you do have the right amount of pieces, and then 
really look into ‘are the pieces equal?’” In trying to decide which of the criteria she should 
address first, one teacher questioned her group, “Did we ever establish that there is necessarily a 
hierarchy of those three criteria?” In this, the teacher was not only recalling the 3 criteria from 
the EPLT but was also adopting a perspective of student thinking as a continuum of least to most 
sophisticated. These examples are representative of the teachers’ comments across the small 
groups. Being a pre-requisite for obtaining fair shares, all teachers considered that these criteria 
needed to be explicitly addressed in the classroom as they made sense of various students’ 
responses.  

Concerning the three criteria, approach C generated interesting discussion as one teacher 
questioned whether the student had created the correct number of parts. Other teachers wanted to 
use approach C to think about a ratio relationship. “The reason I would do it [C] is because it 
seems like you can turn that into a higher order, you know, solution.  You can say, Okay, I see 
this one has eight wedges, whatever. Eight triangles. There are eight pieces and we have four 
[people].” For these teachers, although approach C showed eight pieces, it represented an 
opportunity to explore equivalent fractions. In another group, a teacher noted the same idea: “So 
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that would be a really good teaching point if you want it. I mean, that… showing the eight could 
be a really powerful thing.”  

Teachers also made use of known misconceptions considered in the EPLT as they discussed 
how they would select and sequence students’ solutions in their classrooms. Four of the small 
groups referred to the misconception that when creating equal-sized parts of a whole some 
children believe the number of cuts they make is the same as the number of parts they wish to 
create, usually in the context of making parallel splits. Though the work samples used in the 
activity did not depict this exact misconception, teachers recalled it in their group conversations. 
In particular, teachers were concerned that approach C could foster such misconception, as one 
teacher argued: “One of the dangers is them equating making just four cuts and then to 
always…it’ll always work.” Later she repeated: “there is a risk in this [C] if they’re going to 
think ‘oh, make four cuts, no matter what’.” Similar exchanges happened in three other small 
groups. As teachers discussed their sequences of approaches for class discussion, erroneous 
conceptions documented by the EPLT influenced their analyses and considerations of how to 
chose and order the students’ approaches. 

In relation to students’ equipartitioning strategies, two of the small groups explicitly 
discussed but all groups made at least some reference to students’ use of  “halving” and 
“repeated halving” as a strategy, as well as the relative ease of equipartitioning wholes into two 
equal parts. In the previous days of the Summer Institute, teachers had learned a variety of 
different strategies students use to equipartition a whole described in the EPLT, but in examining 
the given sample of student work, they repeatedly related to halving and repeated halving. As 
one teacher observed, “I guess given what we talked about last week, halving and halving is 
easiest.  But I mean, like, you know, what would my reasoning be for sharing the easiest?”  

 
Connecting 

When watching the actual classroom video, the teachers drew on several ideas from the 
EPLT to describe the connections the instructor made and to conjecture others. As in the 
selecting and sequencing small-group exercise, teachers referred to the three equipartitioning 
criteria to understand the instructor’s sequencing and to describe the relationships among the 
approaches. For instance after sharing the first approach [C], one teacher suggested that the 
teacher should focus on the number of parts created in subsequent discussion. In response to a 
question from the researcher about what the instructor may be thinking and where she could take 
the discussion, the teacher said, “Counting, like ‘how many pieces did you make?  Let’s count 
them’ and like see that there’s more than four.” After viewing the instructor’s discussion of 
approach D in relation to C, and how two of the pieces created in C matched into one of the 
pieces created in D, one teacher commented, “And it was really nice how she made the 
connection back to the previous work to show the change.” The three equipartitioning criteria 
helped teachers notice connections made by the instructor as well as suggest other connections 
that could have been made. 

Another way that the EPLT informed connections teachers noticed was by calling attention 
to the issues of naming equal-sized parts in relation to the original whole. As the teachers 
observed the connections the classroom instructor was making in the video, they noted the 
different naming practices and commented on the instructor’s support of its refinement. For 
example in approach A, a student first referred to a share as “a piece.” One teacher commented, 
“Well she saw that you got a, uh, qualitative answer. We saw that before. A piece. And then she 
was trying to go for the quantitative one.” Another teacher followed up on this comment about 
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naming by pointing out the clarity of the instructor’s language. She stated, “And she made a kind 
of subtle distinction too, because the child who attempted to answer what the second one was, 
said, ‘A second fourth?’  And so, she used that but she said, ‘a second one-fourth.’  Just to kind 
of clarify that.” Thus, the teachers’ exploration of the subtleties and challenges of naming parts 
of wholes supported their noticing of the connections the instructor made. 

Perhaps the most profound way that the EPLT affected the connections the teachers 
suggested was their use of emerging relationships to examine links across students’ approaches. 
While the instructor’s connections in the video centered on the three equipartitioning criteria and 
on naming, participating teachers also focused on emerging relationships. For instance, regarding 
transitivity, after viewing how two of the small pieces in approach D produced a fourth, one 
teacher suggested posing a question relating these results to the eights generated from approach 
C. She stated, “It would have been interesting, I mean, if we had said, okay, well are these…are 
these two pieces the same [D]?  Is it the same fair share as these two pieces [C]?” This led to a 
discussion among the teachers and PD facilitators about how to show that non-congruent parts 
are actually the same. Also, the teachers connected the issue of two-eighths and one-fourth to the 
ideas of compensation and composition of splits. In referring to approach B, one teacher 
summarized, “Composition of splits - so, if you make a new cut then it affects all the other pieces 
- but it also is compensation because now there are more people sharing the smaller one.” This 
teacher was noticing that by splitting along the diagonals in approach B, the single split acts on 
multiple parts, the essence of composition. Further, it creates more equal-sized parts but that 
each of the parts is smaller. By providing teachers with a description of these relationships that 
emerge from engaging in equipartitioning tasks, the EPLT assisted the teachers in connections 
that may support students in gaining proficiency with these emerging relationships.  

Discussion 
In this paper we examined the ways in which teachers who participated in a 30-hour Summer 

Institute on the EPLT used their understandings of this particular LT to engage with the three key 
pedagogical practices of selecting, sequencing and connecting students’ mathematical ideas. We 
noted that teachers used the three criteria for equipartitioning to support their work in all of these 
three key pedagogical practices and, in fact, these criteria guided most of teachers’ decisions 
when engaged in these practices. Teachers highlighted the importance of supporting students as 
they develop these criteria by proposing to select and sequence tasks that highlight the criteria 
and also to use the criteria as a venue for connecting the selected strategies. Teachers also 
suggested ways to assist students in coordinating the criteria. We also noted that teachers used 
known misconceptions and splitting strategies when selecting and sequencing students’ 
solutions, whereas they used their knowledge of naming and emerging mathematical relations to 
examine connections across solutions.  Teachers suggested ways to confront students’ 
misconceptions as well as to support the development of emerging relations, which represent 
more sophisticated levels of thinking in the EPLT. 

We started our design experiment using Wilson’s (2009) revised conjecture that LTs provide 
a framework for teachers to organize students’ work in class discussions. By examining how 
teachers used the EPLT in three specific pedagogical practices, we can now further refine the 
initial conjecture. We contend that LTs allow teachers to put students’ mathematics at the center 
of their instructional decision, bringing specificity to the ways in which teachers’ engage with 
the three key pedagogical practices of selecting, sequencing, and connecting (Stein et al. 2008) 
student work to generate productive mathematics discourse. The trajectory allows teachers to 
focus on students’ solutions and thought processes to orchestrate discourse, instead of attending 
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to non-mathematical ideas such as what the majority of the class did or what the teachers wanted 
students to do. Additionally, LTs support teachers in drawing connections among students’ ideas 
and in identifying emergent relationships that build toward more sophisticated understanding. 

 
Endnotes 

1. Although the CCSS used the term learning progression, we take learning trajectories and 
progressions to be synonymous and we have opted to consistently use the latter in our work. 
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Over the course of two years, data was collected focused on preservice elementary teachers’ 
engagement with mathematics textbooks and curriculum materials in two contexts: (1) a 
university mathematics education course, and (2) student teaching. To frame the results and 
suggest opportunities for learning, Feiman-Nemser and Buchmann’s (1985) critical analysis of 
experience in teacher education is utilized. These “pitfalls” of teacher education, or particular 
types of “inappropriate learning” are used as frames to help highlight important ideas from this 
research. Results indicate high levels of disequilibrium surrounding preservices teachers 
opportunities for learning, and also point to the importance of human resources during 
university coursework and fieldwork. Implications for teacher education are shared.  

 
In 1996, Ball and Cohen asked a critical question: what is, or might be, the role of curriculum 

materials in teacher learning? To address this question, growing numbers of teacher education 
courses engage preservice teachers in textbook analysis and adaptation, as well as in the use of 
Standards-based curriculum materials (Frykholm, 2005; Tarr & Papick, 2004). Moreover, many 
student teachers are placed in school settings where the use of Standards-based curriculum 
materials has been mandated (e.g., Van Zoest & Bohl, 2002). As Ben-Peretz (1984) points out, 
however, “The ability to grasp the full meaning of curriculum materials is a prerequisite for their 
professional use in classrooms. This ability has to be developed in pre- and inservice teacher 
education programs” (p. 11). If teacher education is to play a pivotal role in helping teachers 
learn from the use of mathematics curriculum materials, it is important to examine carefully the 
typical experiences and learning opportunities embedded in preservice programs.  

 
Research Context and Results 

Over the course of two years, data was collected focused on preservice elementary teachers’ 
engagement with mathematics textbooks and curriculum materials in two contexts: (1) a 
university mathematics education course, and (2) student teaching.  

 
Preservice Teachers Curriculum Use in a Mathematics Education Course 

Research Context 
Participants in the first part of the study were 23 preservice elementary teachers in an 

undergraduate mathematics course titled Geometry and Computing for Teachers. As part of a 
larger research study, students were engaged in using reform-based middle grades curriculum 
materials as the basis for all mathematical learning. During the fifth week of a 15-week semester, 
the preservice teachers were given copies of selected student pages from two different sets of 
instructional materials, one reform-based curriculum, and one traditional curriculum. The 
preservice teachers were asked to first give an open-ended analysis of each set of instructional 
materials, and then to respond to 10 questions focused on the comparison of the two sets of 
instructional materials.  
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Methods 

Data for the first part of this research consists of the 23 preservice teachers’ written responses 
to the assignment described above. To synthesize and interpret the teachers’ written analyses of 
the two sets of instructional materials, the entire collection of papers was reviewed several times 
by two researchers. In particular, the reviews aimed to identify the criterion the teachers seemed 
to be using for reading and evaluating the instructional materials, as well as those factors that 
seemed to be primary in their ultimate decisions about which set of instructional materials they 
preferred. After these two large reviews, each of the 23 papers were more carefully examined to 
confirm the tentative themes developed during initial reviews. In all, each individual paper was 
reviewed at least four times to develop major themes. 

 
Results 
To synthesize and interpret the teachers’ written analyses of the two sets of instructional 

materials, common themes were developed across all written components of the project. First, I 
found that the preservice teachers were in search of familiar (traditional) components in both sets 
of instructional materials. The majority of the teachers specifically cited their own past 
experiences with traditional mathematics textbooks and lessons as major influences on their 
interpretations of the two sets of instructional materials. Second, I found that the teachers tended 
to use traditional expectations to judge both sets of instructional materials. The influence of 
preservice teachers’ familiarity with more traditional instructional material components was, at 
times, so strong that it led them to inaccurately describe the two sets of instructional materials or 
to arrive at questionable conclusions about the materials.  Finally, teachers attempted to justify 
the differences between the two sets of materials. Although they were not asked to do so, the 
teachers were compelled to discuss why such different sets of instructional materials might exist. 
In one way or another, they each communicated a belief that each set of materials had been 
created for a different type or level of learner. 

 
Preservice Teacher Curriculum Use During Student Teaching 

Research Context 
The participants in the second part of the study were two elementary student teachers, 

Heather and Bridget. Heather completed her student-teaching internship in Jameson County, 
where the Standards-based Everyday Mathematics [EM] curriculum program (University of 
Chicago School Mathematics Project [UCSMP], 2001) was in use, while Bridget completed her 
internship at a Coopersburg Schools, where the teachers utilized materials from the 
commercially-developed Silver Burdett Ginn [SBG] (Fennell et al., 1999) textbook series.  
 
Methods 

The majority of the data was collected through classroom observations (11 observations 
total) and both informal and semi-structured interviews (7 interviews total). Most observations 
took place in 2-3 day consecutive blocks and fieldnotes were recorded throughout the entire 
block of time devoted to mathematics. Artifacts and documents included Heather’s lesson plans 
and student-teaching journals. Analysis of data began at the start of data collection for the study. 
All fieldnotes were typed within 48 hours of each classroom observation, coupled with analytic 
notes and memos written at the end of each file. More extensive analysis took place following 
the completion of data collection. Separate files were created to group data according to 
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developing themes (e.g., lesson pacing, teacher direction, lesson objectives, curriculum script). 
As major themes developed, lesson segments and interview quotes that appeared to highlight the 
major aspects of Heather’s curriculum use were selected for inclusion in this report.  
 
Results 

 Below, I briefly describe Heather and Bridget’s use of their mathematics curriculum 
materials for the design and enactment of instruction during their student-teaching internships.  

Heather’s use of standards-based curriculum materials. Each weekend Heather prepared for 
the upcoming week’s mathematics activities using a copy of the EM teacher’s guide to develop 
general plans for her lessons: “On the weekend I’ll do an outline for the week and write down 
roughly what I’m going to do.” Heather explained that she looked at the teacher’s guide again 
each morning before teaching: “During specials or snack time, I’ll just review the lesson for that 
day.” Heather felt that detailed lesson plans were unnecessary because when she taught, she had 
“the teacher’s manual up there.” Although Heather typically planned on her own as she read 
through the lessons in the teacher’s guide, she also consulted her cooperating teacher: “I would 
ask my cooperating teacher about any questions that came up when I was planning, like about 
different games or just questions that come up.” 

Typically, Heather attempted to conduct her mathematics lessons in the specific ways 
recommended by the 4 to 5 page lesson plans found in the first grade EM teacher’s guide. She 
used the guide during instruction to refer to specific tasks and questions to ask students as well as 
the overall organization of lessons. Heather explained that she tended to rely on the book during 
instruction because of the detailed, scripted nature of the information contained in the teacher’s 
guide: “I feel like the teacher’s guide is a script, so I always have it with me. A lot of times, I feel 
like if I miss a paragraph in the book then maybe that will throw the lesson off.” When Heather 
adapted the recommendations, her changes usually related to the amount of time to spend on 
each lesson component. She often experienced difficulty carrying out her lessons in the 
timeframe she had allotted and, as a result, she sometimes changed the nature of the activities to 
“make up time.”  

Bridget’s use of a commercially-developed textbook. During her internship, Bridget used the 
workbook component of the SBG curriculum program and supplemented the workbook with 
additional tasks and activities. Each week, Bridget met with three other kindergarten teachers to 
plan for upcoming lessons. The focus of these planning meetings was on the selection of SBG 
workbook pages and worksheets: “I’ve been told several times that I needed to make sure that 
[the students] are getting plenty of paperwork.” The teachers used a year-long curriculum plan to 
identify which pages of the SBG workbook could be used to address the state curriculum 
standards. Bridget explained that “the principal likes to know what [state standards] we’re 
covering which day.”  

Although Bridget found the planning meetings to be helpful, she consistently made her own 
plans after the meetings. As Bridget explained, “The truth is, I am trying to use what they’re 
giving me and add to it where I think it’s lacking.” For each lesson, Bridget evaluated the SBG 
workbook offerings according to her informal assessment of students’ knowledge, the objectives 
presented in the state curriculum framework, and her own visions of mathematics instruction. To 
develop new mathematics activities for use in conjunction with the SBG worksheets, Bridget 
first consulted the state curriculum framework to identify specific mathematical content, and 
then tapped other resources, including pages from Everyday Mathematics that she copied from 
teachers in Jameson County, for instructional ideas that would address the needs of her students.  
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Discussion 

The descriptions of preservice teachers’ experiences with mathematics curriculum materials 
not only add detail to what we know about teachers’ interactions with and uses of curriculum 
materials, but also have the potential to offer insight into the role of teacher education in guiding 
and supporting teachers’ ongoing learning with these materials. To frame these results and 
suggest opportunities for learning, I use Feiman-Nemser and Buchmann’s (1985) critical analysis 
of experience in teacher education.  

 
Pitfalls of Experience in Teacher Education 

Although a trust in firsthand experience in learning to teach is common, Feiman-Nemser and 
Buchmann (1985) examine early experiences in teacher education with a critical eye. The 
authors ask, “Is experience as good a teacher of teachers as most people are inclined to think?” 
(p. 53). To explore this question, Feiman-Nemser and Buchmann discuss teacher learning in the 
moment as well as the “potential learnings – insights, messages, inferences, reinforced beliefs – 
about being a teacher, about pupils, classrooms, and the activities of teaching” (p. 54). These 
“pitfalls” of teacher education, or particular types of “inappropriate learning” as described by the 
authors, are outlined in Table 1. I use these frames to help highlight important ideas from this 
research. 

 
Table 1: Pitfalls of Experience (from Feiman-Nemser and Buchmann, 1985) 
 

!"#$%&&'
Description of experience  

Familiarity pitfall The familiarity pitfall stems from the tendency to trust 
what is most memorable in personal experience…. Ideas 
and images of classrooms and teachers laid down 
through many years as a pupil provide a framework for 
viewing and standards for judging what [is seen] now 
(p. 56). 

Two-worlds pitfall  The two-worlds pitfall arises from the fact that teacher 
education goes on in two distinct settings and from the 
fallacious assumption that making connections between 
these two worlds is straightforward and can be left to the 
novice (p. 63). 

Cross-purposes pitfall The cross-purposes pitfall arises from the fact that 
classrooms are not set up for teaching teachers (p. 63). 
The legitimate purposes of teachers center on their 
classrooms, which generally are not designed as 
laboratories for learning to teach (p. 62). 

 
Learning to Challenge what is Familiar about Curriculum during University Coursework 

Research indicates that teachers teach in the ways in which they were taught (Ball & 
Feiman-Nemser, 1988; Lortie, 1975). Feiman-Nemser and Buchman’s (1985) “familiarity 
pitfall” highlights this idea. The authors suggest that unquestioned familiarity is a pitfall in that it 
“arrests thought and may mislead it” (p. 56). The authors further emphasize, “People do not 
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recognize that their experience is limited and biased, and future teachers are no exception. The 
‘familiarity pitfall’ stems from the tendency to trust what is most memorable in personal 
experience” (p. 56).   

The preservice teachers in my studies experienced the familiarity pitfall. Many brought ideas 
and images from their own schooling experiences to their teacher education coursework. When 
we asked our preservice teachers to evaluate and compare mathematics lessons – two fairly self-
contained sets of instructional materials that dealt with the same mathematical topic but in 
different ways – many of their views about what should be in a lesson related very closely to 
what they had experienced as students themselves. Their past experience not only limited their 
view of what could possibly be incorporated into a mathematics lesson, but the strength of their 
conceptions also tended to cloud their interpretations of some qualities of the less familiar lesson 
activities.  

The familiarity pitfall suggests the need for activities such as the mathematics lesson 
comparison. The selection of the instructional materials that we asked teachers to analyze for this 
lesson comparison was very deliberate – material sets with distinctly different conceptions of 
teaching and learning, but also sets of materials that were familiar and comfortable as opposed to 
materials that were unfamiliar and more closely aligned with the current reform movement in 
mathematics education. Contrasting familiar materials with newer, more innovative materials not 
only provided insight into the strength of the apprenticeship of observation (Lortie, 1975) as 
preservice teachers found traditional elements even when they were not there, but also created an 
entry point for discussion related to the power of past experience.  

 
Teacher Learning about Curriculum Materials across Two Distinct Settings 

Feiman-Nemser and Buchman (1985) also describe the “two-worlds pitfall” in teacher 
preparation. As suggested by the authors, preservice teachers will need guidance in recognizing 
how what they have learned as university students can help shape their perspectives and practices 
as teachers. Making these connections are not necessarily easy or automatic. 

I examined the experiences of two elementary student teachers who taught in different 
classroom contexts and utilized different instructional resources to teach mathematics. I found 
that, in contrast to the inservice teachers in Remillard and Bryans’ (2004) study who drew upon 
their own instructional repertoires as they interpreted and used their curriculum materials, the 
student teachers in my study turned to their cooperating teachers, peers, teacher education 
experiences, and other textbooks and materials. This finding suggests that resources such as 
these may be critical supports for student teachers when they use curriculum materials for 
mathematics instruction for the first time. Bridget, for example, relied heavily on her teacher 
education experiences – she pulled in activities from her mathematics methods courses and from 
the instructional resources she had come to believe were more innovative and closely aligned 
with her new views of mathematics teaching and learning. In addition to relying on ideas from 
her teacher education coursework, Bridget also needed to use the mathematics instructional 
resources mandated by her placement school – materials she felt were inappropriate for her 
students learning. She was caught in the “two-worlds pitfall” as she taught with mathematics 
instructional materials for the first time. Bridget worked hard to fulfill the requirements of her 
internship site by using the required workbook, but also needed to find ways to incorporate new 
instructional ideas she had learned throughout university coursework.  

 
Classrooms as Sites for Teacher Learning about Curriculum Materials  
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As preservice teachers first enter classrooms, they are confronted with the responsibility of 
teaching while still learning how to teach. Feiman-Nemser and Buchman (1985) describe this 
experience as the “cross-purposes pitfall.” This pitfall suggests the frequent disconnect between 
the responsibility of teaching and the need for critical reflection on teaching. It also highlights 
the idea that classrooms are not set up for teaching teachers.  

During student teaching, Heather was caught in the “cross-purposes pitfall” as she found 
herself placed in a classroom with a cooperating teacher who had set routines and guidelines for 
students, and who used a detailed, Standards-based mathematics curriculum for instruction. 
When Heather entered her student teaching experience in the middle of the year, she easily 
assimilated into the order already established in her cooperating teacher’s classroom. Heather 
was able to observe her cooperating teacher teach with the detailed mathematics curriculum, and 
was then able to step in to the already established instructional routine. Heather was afforded an 
opportunity to consider and learn about the complicated nature of Standards-based curriculum 
program enactment as she worked to understand how to use a particular set of curriculum 
materials well. For student teachers, relying heavily upon a curricular guide or on predetermined 
classroom norms might limit opportunities to move moment to moment and constrain certain 
aspects of learning to teach. Heather’s experience with a Standards-based curriculum provided 
her an opportunity to understand the complicated nature of curricular resources, but also limited 
her chances to reflect critically on other aspects of curriculum enactment.  

 
Teacher Learning with Mathematics Curriculum Materials 

The preservice teachers in the two studies presented here found themselves immersed in 
professional development with mathematics curriculum materials, textbooks, and state 
curriculum guides during coursework and fieldwork experiences. To respond to Ball and 
Cohen’s (1996) question, curriculum materials indeed played a substantial role in preservice 
teacher learning in my studies. Preservice teachers had the opportunity to: 

• develop an understanding of the variety of mathematics instructional resources available 
for teaching that were different from what was familiar and comfortable; 

• negotiate balance between university experiences and personal expectations for 
instructional resources and the expectations of schools in regard to mathematics 
curriculum; 

• consider and learn about the unexpectedly complicated nature of Standards-based 
curriculum program enactment; and 

• make decisions regarding lesson adaptation from a variety of mathematics instructional 
materials for particular students and for particular classroom contexts. 

The results not only illustrate teacher learning with and about curriculum materials, but also 
point out opportunities within teacher education for preservice teachers to question well-
established beliefs and practices regarding mathematics teaching and mathematics instructional 
resources. In other words, the opportunities for learning afforded to these preservice teachers as 
they interacted with mathematics curriculum materials display a common theme of 
disequilibrium. These studies also highlight possible missed opportunities for learning and the 
importance of human resources within teacher education as it relates to preservice teachers’ 
encounters with disequilibrium. These ideas are explored further below. 

 
The Role of Disequilibrium 

As Wheatley (2002) describes, disequilibrium among preservice and inservice teachers is 
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caused by a challenge to teachers’ beliefs about their existing practices. Wheatley further 
suggests, “The psychological need to resolve such disequilibrium often pulls teachers into 
learning and change” (p. 9).  It was when our preservice teachers encountered materials and 
practices different from what they were expecting or accustomed to that opportunities for 
learning seemed to arise. For example, for many of the preservice teachers who participated in 
the lesson analysis assignment, exposure to new curriculum materials allowed them to consider 
the methods in which they were taught mathematics. Many of the preservice teachers examining 
the curriculum materials encountered disequilibrium as they questioned prior certainties about 
effective lesson structures for the teaching of mathematics. This lesson analysis assignment 
positions teachers to encounter disequilibrium and confront tacitly-held beliefs about teaching 
built on what is inherently familiar and comfortable.  

Heather too encountered disequilibrium as she utilized Standards-based mathematics 
curriculum materials during student-teaching. Quite the opposite of what she expected, Heather 
discovered how difficult it was to plan and teach with what she described as a detailed, scripted 
mathematics curriculum. What Heather thought she knew as she entered student-teaching – that 
mathematics would be planned – was challenged as she discovered the work and reflection 
necessary to use the curriculum materials effectively. Further, when Heather was encouraged to 
plan from alternative instructional resources for just one lesson, she felt more attuned to her 
students and the overall learning objectives. Heather’s feeling of disequilibrium when using the 
EM curriculum, coupled with the opportunity to plan a lesson using different curricular 
resources, helped Heather to evaluate more critically her understanding of a Standards-based 
curriculum program prior to beginning full-time teaching. 

 
The Role of Human Resources 

Bumping up against disequilibrium when using mathematics curriculum materials for 
teaching and learning is not surprising. There is potential for learning when preservice teachers 
are asked to consider materials different from what they are used to, teach with methods and 
materials different from their philosophies about teaching and learning, and teach with 
complicated and detailed curriculum materials. However, as preservice teachers encounter 
disequilibrium amongst the pitfalls of experience in teacher education, it is important to 
articulate the role of human resources in this learning. As our understanding of the role of 
curriculum materials in teacher learning matures, it is important to reconsider the role of teacher 
educators, cooperating teachers, and field supervisors.  

The familiarity pitfall stems from teachers’ tendency to trust what is most memorable from 
past schooling experiences. Left unaddressed, preservice teachers may have a hard time viewing 
other alternatives as valid possibilities for their future teaching. This common pitfall within 
teacher education emphasizes further the importance of many instructional activity comparison 
assignments designed to enhance and challenge curricular knowledge, and the critical role of 
teacher educators in both the design of and facilitation of reflection surrounding such activities. 
Teacher educators need to help preservice teachers make sense, in a deep and conceptual way, of 
the variety of curriculum resources available to them both before and during student teaching 
experiences. They need to help preservice teachers realize that what they have experienced with 
mathematics curriculum materials and instructional resources as students is only one option 
amongst many possibilities in their future use of mathematics curricular resources.   

To address the two-worlds pitfall, teacher educators might position themselves as critical 
supports, or safety nets, for preservice teachers as they make the transition from university 
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coursework to classroom-based fieldwork. Helping teachers make connections between 
philosophical beliefs and actual classroom practice with mathematics instructional materials and 
pushing them to “act with understanding” (Feiman-Nemser & Buchmann, 1985, p. 64) is critical. 
For mathematics curriculum materials and instructional resources to play a role in teacher 
learning throughout student-teaching, teacher educators and university supervisors might need to 
expand their support and redefine their roles to stretch far beyond the walls of university 
classrooms. Cooperating teachers might also reconsider their role in the education of preservice 
teachers. If cooperating teachers viewed themselves as teacher educators rather than model 
teachers, they might be better positioned to help preservice avoid the “two-worlds” pitfall as it 
relates to developing curricular knowledge.  

In light of the “cross-purposes” pitfall, cooperating teachers might also search out ways to 
support novice teachers to move beyond mere imitation towards purposeful and reflective 
decision-making with curriculum materials. Critical examination and use of many types of 
instructional resources during student teaching might help us work towards a compromise 
between the necessary responsibility of a preservice teacher to teach and his or her ultimate goal 
of learning about teaching. Although these modified roles might create new challenges within 
current teacher education practices, we must not underestimate the importance of human 
resources as we consider opportunities for teachers to learn with mathematics curriculum 
materials.  
 
Final Thoughts 

In order to position curriculum materials as tools for teacher learning, we need to move 
beyond mere exposure to specific materials and on curriculum use strategies, towards a focus on 
the critical analysis of curriculum materials and their use. Helping preservice teachers to (a) 
understand the philosophies that underlie curriculum materials, (b) make sense of their use of 
materials both before and during student teaching as they transition from the university to school 
settings, and (c) navigate the pitfalls of experience as they encounter learning opportunities in 
real classrooms is critical. As we design opportunities for preservice teachers to engage with 
mathematics curriculum materials, we must position all players in the preparation of teachers as 
critical supports amongst the pitfalls of experience within teacher education. With these human 
supports in place, engaging preservice teachers in activities and learning opportunities with the 
potential to create disequilibrium and reflection may position mathematics curriculum materials 
as clear tools for teacher learning and as vehicles for renewal and innovation in the teaching of 
mathematics.  
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In this paper, we summarize the findings of a research synthesis specifically related to the 
geometry and measurement content knowledge of elementary/middle school preservice teachers. 
Findings from this synthesis show that preservice teachers have weak conceptions in geometry 
and measurement content knowledge. However, instructional strategies that incorporate 
technology (e.g., dynamic geometry software or virtual manipulatives) or analyzing children’s 
work, have been shown to strengthen preservice teachers’ understanding. 

Introduction 
For the past several years, a working group has met at the Psychology of Mathematics 

Education-North American Chapter (PME-NA) annual conferences. With members sharing their 
individual research, common themes and interests emerged and discussions turned towards needs 
for future work. In order for the group to build on and extend the knowledge base in the area of 
mathematical content knowledge for preservice teachers, a common need that emerged was 
knowledge of the status of current related research. Thus, a synthesis of the current research was 
essential for the following reasons: 

1. To design a program of study to develop elementary/middle school preservice teachers’ 
mathematical content knowledge for teaching, we need to understand what content knowledge 
preservice teachers bring to their courses. “The key to turning even poorly prepared 
prospective elementary teachers into mathematical thinkers is to work from what they do 
know” (CBMS, 2001, p. 17). 
2. In addition to knowing what knowledge the preservice teachers bring to their coursework, 
we need to understand how to build on that knowledge in meaningful ways to further develop 
the preservice teachers’ mathematical content knowledge for teaching. We need more 
empirical evidence of what learning opportunities contribute most to more knowledgeable and 
confident teachers in order to make more informed changes to our preparation programs 
(Mewborn, 2000). 
3. To identify future research directions, we need to know what has been established in terms 
of preservice teachers’ content knowledge and how that knowledge has been developed and 
what we still do not know or understand. 

Theoretical Framework 
There has been a recent emphasis in the mathematics education community in describing the 

needed and desired mathematical content knowledge for teaching, with various descriptions 
emerging from research (e.g. Hill, Rowan, & Ball, 2005; Ma, 1999; National Research Council, 
2001; Shulman, 1986). Building on the work of Shulman (1986), Hill, Ball, & Shilling (2008) 
describe a framework for distinguishing different types of knowledge included in a construct of 
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mathematical knowledge for teaching. This framework distinguishes between subject matter 
knowledge and pedagogical content knowledge. The interest of the working group centered on 
synthesizing research on subject matter (content) knowledge described in this framework. 
Understanding this content knowledge is vital for mathematics educators as we develop content 
(and methods) courses to meaningfully prepare preservice teachers as well as knowing how to 
help preservice teachers understand the needed content knowledge for themselves. 

Our guiding questions for this synthesis were: What research has been conducted on 
elementary/middle school preservice teachers' content knowledge? and What is known from this 
research about preservice teachers’ content knowledge? This paper reports on the work related 
to the subgroup focusing on preservice teachers’geometry and measurement content knowledge. 

Methods 
We began our work using the ERIC database focusing on the years 1998 to 2009. For 

dissertation work, we chose to review those from 2006 to 2009 and conference proceedings 
2004-2009. In addition to the publication date requirement, each research study had to be 
published in a peer-reviewed journal and focus on elementary or middle school preservice 
teachers’ geometry and measurement content knowledge. Since not all countries use the same 
grade-level classification as in the US, we decided to look at children aged 3 - 12 (possibly up to 
14) when including international studies. Key words used in various combinations during this 
search process included geometry, preservice/pre-service, elementary, teacher, mathematics, 
measurement, length, volume, area, and angle. This produced a total of 30 studies. 

Each of the 30 studies went through an independent review that detailed the research 
questions, study type and research design, lens and/or approach used, selection and description of 
participants, conditions of and procedures for data collection, data analysis, findings, and 
conclusions/implications. When there was a discrepancy on the inclusion or exclusion of a study, 
discussion allowed for mutual consensus on a final decision. Excluded from our synthesis were 
studies that had: (a) a general description of content knowledge that lacked specific attention to 
geometry or measurement, (b) a selection of inservice teachers or college students majoring in 
mathematics as opposed to mathematics education, (c) a sole focus on perceptions about 
mathematics not connected to content knowledge needed for teaching, and (d) a focus on 
describing classroom practice or activities with a lack of attention to research design methods. 
After examining the 30 studies, only 11 met all of the review criteria. 

When the PME-NA Working Group met again to discuss the status of all content area 
reviews, the group decided to conduct another search through the literature. This second phase of 
the search focused on the 25 journals that provided relevant research studies for any of the 
content areas during the first phase. This second phase was initiated to search for relevant 
research published in 2010 and to see if new studies surfaced that possibly were missed in the 
initial search. Two new studies were found for geometry and measurement; one was published in 
2010 and the second was published in a year not included in the ERIC database for that 
particular journal. Thus, in our final analysis, only 13 studies matched our criteria to be included 
in our analysis of research describing elementary preservice teachers’ knowledge of geometry 
and measurement. 

 
Results 

Characterizations of the data  
Eleven studies focused on geometry and only two studies reported on measurement. Of the 

geometry studies, seven focused on preservice teachers’ content knowledge relative to shapes 
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and their attributes (diagonals, reflective symmetry, etc.), one examined visualization skills, and 
four focused on other general knowledge of geometry. Studies on shape focused on 
quadrilaterals, rectangles/rhombi, and triangles. Studies on measurement focused on perimeter, 
area, and volume. 

In order to synthesize findings across the 13 studies, we examined study types and 
characterized the research questions that dealt with preservice teachers’ geometry and 
measurement content knowledge. Three broad categories emerged: descriptive studies that 
examined the status of mathematical knowledge and understandings of preservice teachers; 
studies that explored the impact of some “treatment” in a mathematics content or methods 
course; and finally, comparison studies that examined differences between ideas/features, groups 
or looked for relationships between two entities. Italicized text emphasizes the key features of 
the questions in the studies for these three categories. 

The Status of Preservice Teachers’ Content Knowledge in Geometry and Measurement 
Six studies had at least one research question that focused on what preservice teachers 

understand about specific topics in geometry and measurement. These topics included 
quadrilaterals, reflective symmetry, triangle altitudes, volume, perimeter, and area. 

Across all of these studies, we found preservice teachers’ understanding of geometry to be 
weak or limited. “Preservice teachers’ understanding of geometry was limited with shapes and 
measurement aspects of shapes” (Aslan-Tutak, 2009, p. 158); “it was found that a large portion 
of preservice teachers has lack of content knowledge of reflective symmetry” (Son, 2006, p. 
149); “the results presented in this study are that most of these participants lack the ability to 
articulate complete descriptions of rectangle and rhombus” (Pickreign, 2007, p. 6); “we found 
that many preservice teachers had the same poor concept images as primary or secondary 
students” (Gutierrez & Jaime, 1999, p. 272); “the diversity of responses offered by preservice 
teachers in this study could be comparable to what would be expected from students in an upper 
primary classroom” (Zevenbergen, 2005, p. 21); and “yet, even with an apparently better 
foundation in mathematics, the students appeared to have poor conceptual understanding (in 
perimeter and area)” (Menon, 1998, p. 365). 

Pickreign (2007) attends to how teacher preparation programs might address the concern of 
such limited geometrical understanding of preservice teachers, very similar to our initial quote 
from CBMS, working from what preservice teachers do know: 

“This, however, raises serious questions to be answered if we are to affect the content 
knowledge of teachers of mathematics: Can sufficient experience with these geometric 
ideas be provided in teacher education programs to lead to more profound 
understandings? Are there other mathematical ideas that require such experience? What 
should characterize these experiences? Can these experiences be provided without adding 
time or credit hours to teacher certification programs? One option in addressing these 
questions might be to not address them. Instead, accept teacher education programs as 
entry level preparation and utilize continuing professional development to address the 
growth of teachers’ profound understanding of fundamental mathematics.” (p. 6) 

Time appears to be a critical component. Perhaps teacher preparation programs will not be 
able to provide the needed extent of time to make significant change but it can lay important 
groundwork. 

Exploring the Impact of a Treatment 
Five studies had questions of an exploratory nature, investigating “what happens if”, four in 
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the area of geometry and one looking at volume. 
Geometry studies explored how dynamic geometry softwares impact preservice teachers’ 

understanding of proof, the influence of the analysis of children’s work with quadrilaterals on 
preservice teachers’ understanding of geometry content knowledge, the impact of instruction 
utilizing graphic organizers and concept attainment strategies on preservice teachers’ 
understanding of altitudes of triangles and diagonals of polygons, and the influence of digital and 
concrete tangrams on preservice teachers’ 2D visualization on tangram designs. 

Findings from Christou, Mousoulides, Pittalis, and Pitta-Pantazi (2004) show dynamic 
geometry softwares, along with appropriate questioning, motivated the students in the study to 
justify their conjectures and enabled students to pass from “exploratory” geometry to deductive 
geometry. Aslan-Tutak (2009) found that incorporating analysis of children’s work into activities 
while preservice teachers make sense of quadrilaterals had a significant positive affect on the 
preservice teachers’ learning as determined by a repeated measures ANOVA. Cunningham & 
Roberts (2010) explored the impact of a treatment lesson involving instructional strategies 
designed to assist the development of preservice teachers’ concept images and concept 
definitions related to altitudes of triangles and diagonals of polygons. These strategies included 
the use of graphic organizers along with the concept attainment model in the development of 
definitions. The combination of these strategies resulted in some improvement for the preservice 
teachers’ understanding of triangle altitudes and diagonals of polygons. Spencer’s work (2008) 
found that using both digital and concrete tangrams in a methods course did help improve 2D 
visualization skills of preservice teachers which, in turn, had a significant positive impact on 
their attitude toward geometry. 

Zevenbergen’s (2005) study explored the impact of various learning dispositions that were 
emphasized within a mathematics course module on volume. These dispositions included 
developing mathematical meaning of volume as opposed to only using algorithmic methods, 
emphasizing the development of measurement and spatial sense, and developing the capacity 
within the preservice teachers to identify errors in children’s mathematical thinking. However, 
despite the various methods used in the course to develop these dispositions, there was a 
“worrying number of students” who had not achieved them (p. 21), with some students quite 
resistant to alter their thinking about how to learn mathematics. Responses to interviews of 
students in the course highlighted the power of the teaching practicum, with preservice teachers 
rejecting the nature of the work done in their mathematics course due to their experiences in the 
schools. “Ideally, it would be useful to expose students to schools and classrooms that 
demonstrate the values embedded within teacher education courses if such courses are to 
effectively change teaching practice” (p. 21). 

These few studies suggest various instructional strategies can make positive change on 
preservice teachers’ geometrical understanding, such as those incorporating technology, making 
use of graphic organizers and concept attainment, and analyzing children’s work. Field work that 
provides similar experiences as found in preservice teachers’ mathematics courses and the length 
of time devoted to concept development may be critical factors to maintain these positive 
changes. 

Examining Associations and Differences 
Six studies included research questions that examined relationships and/or differences. 

Studies examined differences in geometric reasoning levels between elementary and secondary 
preservice teachers and male and female preservice teachers, differences in content knowledge 
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based on instruction, relationships between visualization skills and attitude towards geometry, 
differences in student learning environment, and differences in students’ conceptions of 
geometry concepts.  

Halat (2008) administered a van Hiele Geometry Test (VHGT), based upon work of Usiskin 
(1982), to 281 Turkish elementary and secondary preservice teachers. He found “no statistically 
significant difference in regard to the reasoning stages between the pre-service elementary school 
and secondary mathematics teachers, and that although there was a difference with reference to 
van Hiele levels between male and female pre-service secondary mathematics teachers favoring 
males, there was no sex-related difference found between male and female pre-service 
elementary school teachers” (Halat, 2008, p. 1). 

With respect to examining the impact of instructional strategies, Aslan-Tutak (2009) 
considered the impact of having supplemental geometry activities in a two-week unit during a 
methods courses, using control and treatment groups. The results showed the geometry 
knowledge of students, as measured by the Content Knowledge for Teaching Mathematics (CKT-
M) test (Hill & Ball, 2004), in either group was increased significantly, however the grouping did 
not have any statistically significant affect on participants’ knowledge growth. Lundin (2007) 
also used the CKT-M test to measure content knowledge differences of preservice teachers from 
two groups: those who had completed mathematics courses designed for elementary education 
majors and those preservice teachers who had completed the mathematics requirement through 
the completion of other mathematics courses. She found no statistically significant differences 
between the two groups based upon students’ mean scores. Lundin suggests the lack of 
difference could be attributed “to the likelihood that mathematical content gained in regular math 
courses taken by the participants was as beneficial as the content knowledge gained in the 
courses examined in this study” (p. 78) or that the subjects in her study “did not make a 
transition from applying general mathematical content knowledge to the mathematical content 
knowledge required for teaching” (p. 79).  

Spencer (2008) found a positive relationship between attitude toward geometry and 2D 
visualization with increased levels of 2D visualization corresponding to an increased attitude 
towards geometry. Two-dimensional visualization skills were improved by the use of concrete 
and/or digital tangrams.  

Gerretson (2004) examined to see whether or not there was a difference in elementary 
preservice teachers’ performance on similarity tasks when using dynamic geometry software as 
compared to paper-and-pencil learning environment using traditional tools (e.g., compass, ruler). 
Using a pre/posttest control group experiment using randomized blocks controlling for initial 
performance, she found a statistically significant difference in learning environments between 
the two treatment groups. “Fundamentally, software users outperformed non-software users even 
when prior knowledge variability was taken into consideration.” (p. 18). Analysis suggests 
elementary preservice teachers using a paper-and-pencil learning environment encountered more 
difficulties particularly situated around similarity properties of unfamiliar shapes, whereas 
preservice teachers using dynamic geometry software had “acquired a greater knowledge base to 
access, network, and apply” (p. 19).  

Fujita and Jones (2006) explored the nature of preservice teachers’ personal figural concepts 
and formal figural concepts, particularly in the area of quadrilaterals, building on the work of 
Tall & Vinner (1981) with respect to concept image and concept definition and Fischbein’s 
figural concept (1993). The study examined data from two groups of preservice teachers in 
Scotland. The groups were based on their year of study in the teacher education program; either 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

456



 

first or third. For either group, the data indicate a gap exists between the formal figural concepts 
of preservice teachers and their personal figural concepts “such that their images are so 
influential in their personal figural concepts that they dominate their attempt to define basic 
quadrilaterals” (Fujita & Jones, 2006, p. 131). Preservice teachers rely on their images of shapes 
to construct definitions rather than examining and using properties of shapes. 

In several of these comparison studies, despite further evidence of preservice teachers’ 
limited conceptual understandings in geometry, growth in content knowledge was demonstrated. 
Growth occured where technology was incorporated into the learning environment and when 
supplemental learning activities examining children’s work were utilized. 

Discussion and Conclusion 
Our synthesis was guided by two questions, determining what research has been done related 

to geometry and measurement content knowledge and synthesizing what we know from this 
research regarding preservice teachers content knowledge. We organized the research found into 
three categories; briefly, these were status, explorations, and comparisons.  

Based upon the research examining the status of preservice teachers’ knowledge of geometry 
content, there is a need for these courses to take the time to develop foundational knowledge of 
geometry and measurement.  

Preservice teachers enter their teacher preparation programs with limited geometry and 
measurement content knowledge, relying more on their understandings from middle school than 
their high school geometry course and operating on low van Hiele levels of understanding, 
relying on their concept images of geometrical concepts, with poorly constructed concept 
definitions. Although one study found no significant difference in mean scores between 
preservice teachers who had taken mathematics courses designed for teachers and those who had 
not, others had positive findings. Studies that explored alternative methods of instruction with 
the use of technology, such as dynamic geometry systems and virtual manipulatives, provided 
encouraging results related to improving deductive thinking and 2D visualization skills. Other 
instructional strategies in this synthesis that promoted preservice teachers’ learning of shape and 
their properties included using a graphic organizer and concept attainment model, and analyzing 
children’s work. The importance of a “supportive” field component was also noted to help 
sustain the values of the teacher education program, otherwise it is likely preservice teachers 
would reject constructive methods of teaching mathematics.  

Limitations to our synthesis include using only one database. Using multiple sources may 
have produced more studies. Expanding our search to include more than the previous ten years 
would also have included more research and perhaps more seminal pieces in the area of 
geometry and measurement. 

This summative look at research on preservice teachers’ geometry and measurement content 
knowledge shows a paucity of research published in peer-reviewed arenas in the past ten years. 
However, this limited research consistently shows that preservice teachers do not have a solid 
understanding of several fundamental concepts within geometry and measurement. In order to 
work from what preservice teachers do know (CBMS, 2001), it appears that a greater focus on 
developing strong foundational knowledge is needed in geometry and measurement courses. Yet 
this raises some questions:  

• What do we perceive, as a community of mathematics educators, as the essential 
foundational geometry and measurement knowledge that content courses should include?  

• If such “core” foundational knowledge can be determined, what are sufficient 
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experiences that would enable preservice teachers to acquire profound understandings of 
this core knowledge and when do these experiences occur in a teacher preparation 
program? 

Further work of researchers mapping out the core mathematical content knowledge for teachers 
will be helpful in highlighting the gaps between what content knowledge is needed by preservice 
teachers and what knowledge they bring with them to their teacher preparation programs.  
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Enacting tasks at high levels of cognitive demand helps preservice teachers make sense of 
mathematical ideas and serves as a model for instruction.  Small group discussions can be useful 
pedagogical tools for maintaining a task’s cognitive demands.  In this article, we contrast two 
small group discussions within a preservice elementary classroom to illustrate characteristics of 
productive small group discussions.  

Introduction 
Current research on mathematical tasks examines the levels of cognitive demands at which 

tasks are written, set up, and implemented in elementary and middle school classrooms in the 
hopes of shedding light on effective classroom instruction (Stein, Smith, Henningsen, & Silver, 
2000).  Tasks that require high levels of cognitive demands prompt students to explain their 
reasoning and make connections between different representations or procedures.  Since 
reasoning and sense making are critical components of conceptual understanding, finding ways 
to maintain high levels of cognitive demand during task implementation is important.  Research 
shows, however, that teachers often inadvertently reduce the cognitive demands of a task during 
its implementation by making problems easier to solve, often by providing students with too 
many hints or by removing prompts for student-constructed justifications (Stein, Grover, & 
Henningsen, 1996). 

One way to maintain high levels of cognitive demands may be through the use of 
mathematical discourse.  There is evidence demonstrating the benefits of using discourse in the 
mathematics classroom (Walshaw & Anthony, 2009).  When students are pushed to articulate 
their ideas and listen to the thinking of their peers, they are able to make better sense of their own 
thinking.  Serving as a basis for current reform efforts, the National Council of Teachers of 
Mathematics (2000) identifies communication as an essential standard of mathematics education, 
stating that students must learn to communicate their mathematical thinking to others and 
evaluate the mathematical thinking of their peers.  Nevertheless, many classrooms continue to 
implement traditional teacher-centered instruction (Hiebert et al., 2005).     

In this research report we will present an analysis of preservice elementary teachers’ small 
group discussions regarding a mathematical task written at a high level of cognitive demand.  
Through careful examination of videotaped discussions, we will identify characteristics of small 
group interactions that maintained the level of cognitive demand inherent in the task.  We will 
contrast them with other small group interactions that lowered the task’s cognitive demand level.  
Focusing on small group discussion yielded new information as small group interactions provide 
opportunities for learning that whole class formats do not (Yackel, Cobb, & Wood, 1991).  For 
example, preservice teachers may feel more comfortable sharing their ideas in a small group 
setting.  Although our original intent was on examining the role of whole-class discussion in 
fostering preservice teachers’ conceptual understanding, we began to quickly notice that small 
group interactions played a key role in helping preservice teachers make sense of important 
mathematical ideas. 
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Theoretical Framework 
Research on mathematical tasks and their cognitive demands has been on-going for over 

twenty years.  Mathematical tasks play a large role in determining the mathematics that students 
will see in the classroom (Doyle, 1988).  Tasks that emphasize computation and memorization 
result in students acquiring procedural skills without understanding why they work; tasks that 
focus on solving rich, contextual problems help students attend to the concepts underlying the 
problems (Stein & Lane, 1996). 

Research suggests that preservice teachers should become accustomed to solving cognitively 
demanding problems, since the expectation is they will be posing cognitively demanding 
problems to their own students (Stein et al., 2009).  The cognitive demands of a task refer to the 
kinds of thinking processes entailed in the task (e.g. memorization, use of procedures, use of 
complex thinking and reasoning strategies).  Stein and colleagues suggest that the cognitive 
demands of a task can change as the task moves through three phases of development – writing, 
set up, and implementation (Stein et al., 1996; Stein et al., 2000; Boston & Smith, 2009).  For 
example, a mathematical task may be written at a high level of cognitive demand, but presented 
and/or implemented at a lower level of cognitive demand.   

Rubrics have been developed to assess the cognitive demands of tasks as written and as 
implemented (Boston & Smith, 2009).  The Instructional Quality Assessment – Academic Rigor 
(IQA-AR) rubric includes two forms, the Potential of the Task and Implementation of the Task.  
Both forms scores range from 0 to 4.  A score of 0 indicates that the lesson tasks were 
nonmathematical in nature. Score levels 1 and 2 represent low-level cognitive demands. Score 
levels 3 and 4 represent high-level cognitive demands in which the connections to meaning and 
understanding are implicitly (score level 3) or explicitly (score level 4) required by the task. 

When comparing tasks’ levels of cognitive demands at the written and implementation 
phases, Suzuka and colleagues (2009) found that teacher educators have difficulty maintaining a 
task’s cognitive demands when implementing the task in a preservice teacher classroom.  Two 
primary reasons could explain their difficulty: sometimes teacher educators focus too heavily on 
the mathematics of the task, thereby disconnecting the task from the work of teaching; or, work 
focuses too heavily on pedagogical concerns without engaging preservice teachers in 
understanding mathematical content.  In order to keep tasks focused on MKT development, the 
authors suggest asking preservice teachers to attend to their classmates’ thinking, pressing 
preservice teachers to explain their own thinking, and being explicit about the connections 
between mathematical tasks and teaching.   

While reform efforts during the past twenty years call for the use of classroom discourse 
(Senk & Thompson, 2003), research has also recently begun examining classroom communities 
where discourse is used to promote mathematical learning.  Hufferd-Ackles, Fuson, and Sherin 
(2004) created the Levels of Math – Talk Learning Community framework, which identified four 
components of a math-talk learning community: questioning, explaining mathematical thinking, 
source of mathematical ideas, and responsibility for learning.  Each component is rated from 
level 0 to 3 to reflect changes in how teachers and students interact to make sense of 
mathematical ideas.  Classrooms at a level 0 are teacher-centered, where the teacher is the only 
questioner, students provide short answers and never elaborate on their thinking, the teacher is 
the only source of mathematical ideas, and students are passive listeners to what the teacher is 
saying.  Classrooms at a level 3, however, are primarily student-centered, where students and 
teacher question one another, students provide more elaborate justifications of their mathematical 
ideas, and students take responsibility for helping each other learn mathematics.   
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Though research on mathematical discourse and small group interactions is abundant at the 
K-12 level, little is known about discourse in preservice teacher classrooms. Dixon, Andreasen, 
and Stephan (2009) conducted a classroom teaching experiment in a preservice elementary 
teacher mathematics content course in order to understand how classroom norms are established.  
They observed that making sense of others’ reasoning was one of the most difficult, yet 
important, norms to establish.  Research on discourse in preservice teacher classrooms also 
showed that math-talk learning communities (as defined by Hufferd-Ackles et al., 2004) can be 
established by prompting preservice teachers to question, explain, and clarify each others’ 
thinking (Rathouz & Rubenstein, 2009).  These studies, however, did not focus on small group 
interactions.  As such, we do not yet have a clear picture of the characteristics of student-to-
student talk in preservice teacher classrooms.       

Methods 
The study took place in the spring of 2010, during a semester-long preservice elementary 

mathematics content course at a large private university in the northeastern United States.  It is 
the second course in a series of two required mathematics content courses for undergraduates 
seeking state certification as elementary or special education teachers.  The course emphasizes 
preservice teachers’ conceptual understanding of content and seeks to develop productive 
mathematical talk as a classroom norm.  Each section consisted of approximately sixteen 
participants who were randomly assigned to four small groups.  Two classroom sections of this 
course were videotaped and audio taped during eighty minute class sessions over a two-week 
period.   

The curriculum used in the study was a four-part unit on geometric measurement created by 
the researchers.  Our analysis focuses on a two-day lesson about surface areas of prisms and 
cylinders.  Day one required participants to work through mathematical tasks regarding the 
lateral and total surface areas of prisms.  Day two required participants to work through 
mathematical tasks focused on lateral and total surface areas of cylinders, as well as the 
relationship between the surface areas of prisms and cylinders.  The tasks were written to be 
cognitively demanding, with repeated prompts for participants to justify their reasoning to others 
and make generalizations across topics. 

We used two sets of rubrics to collect data about each task and its implementation.  We used 
the IQA-AR rubrics for the potential of the task and for the implementation of the task in order to 
assess the cognitive demands of the tasks before and during implementation, respectively 
(Boston & Smith, 2009).  In order to assess the nature of student-to-student talk within small 
group discussions, we used the Levels of Math Talk framework (Hufferd-Ackles et al., 2004).   

Results 
During day one of the surface area task, small groups in both sections worked on a 

mathematical task consisting of four questions (shown below).  Each group had to fold one piece 
of paper lengthwise and a second, identical, piece of paper widthwise, find each prism’s 
dimensions, and calculate their surface areas.  Participants then needed to identify similarities 
and differences between the surface area calculations of both prisms.  Each group had 
approximately fifteen minutes to complete the task. 

3. Take two pieces of 8

 

1
2  in. by 11 in. paper and fold them into two different rectangular prisms 

with square bases. Label one, Prism X, and the other, Prism Y.  The large rectangle that is 
used to form each prism is called the “lateral surfaces rectangle.” Note that the prisms are 
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missing their bases. On the drawing below, label the dimensions of both prisms. 

 

 
     Prism X       Prism Y 

4. a) What are the dimensions of the lateral surfaces rectangle for Prism X?  How can we use 
the dimensions of the prism to find these measures? 

 b)   Calculate the area of the lateral surfaces rectangle of Prism X, the area of the bases of 
Prism X and the total surface area of Prism X. 

5. a)   What are the dimensions of the lateral surfaces rectangle for Prism Y?  How can we use 
the dimensions of the prism to find these measures? 

 b)   Calculate the area of the lateral surface rectangle of Prism Y, the area of the bases of 
Prism Y and the total surface area of Prism Y. 

6.   Explain any similarities and differences between the surface area calculations in questions 2 
and 3. 

Cognitive Demand Analysis for Potential of Task 
We rated this task at a level 4 cognitive demand using the IQA-AR rubric for potential of the 

task.  The task engages participants in complex thinking because they are asked to compare and 
contrast two different orientations of seemingly identical prisms.  They are asked to follow a 
procedure (creating two different prisms from the same sized sheet of paper) to illustrate an 
important mathematical concept (prisms can have the same lateral surface area but different total 
surface areas).  In other words, the numerous computations of total and lateral surface areas 
required by the task serve a greater purpose – conceptual understanding of the differences 
between total and lateral surface areas of prisms.  In the last question of the task, participants are 
prompted to provide explicit evidence of their understanding by comparing and contrasting the 
calculations that were performed on the two prisms.  In doing so, they are making connections 
between two representations of a rectangular prism.   

Instructor F’s Small Group Discussion 
Participants create the two paper rectangular prisms using sheets of paper with dimensions 8 

* inches by 11 inches, following the instructions written in question 3.  In the following small 
group discussion, participants are finishing their calculations of prism Y’s surface area.  After 
having found that the length of a side of prism Y’s base is 2.75, they are helping each other with 
the rest of the calculations that need to be done in order to answer question 5.  Once this is 
complete, they, move on to a discussion of question 6.   

S1: We’re saying that the lateral surface area would be 93.5 because it’s the same 
piece of paper but the bases are going to change. 

S4: So the base is? 
S1: It would be 2.75 squared. 
S4: 7.5625. 
S2: Plus 2 times 7.56. 
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S1: Put another one [prism Y base area] because you need 2 of those. 108.625. So 
it’s not the same.  

S3: Well yeah because the squares [points to paper rectangular prism] are different 
sizes. 

S3: The lateral surface areas are the same, but… 
S2: Yeah, the lateral surface areas are the same. 
S3: But the bases…  
S2: The bases are different. 
S3: …are different sizes, so the larger base is going to have a larger surface area? 
S2: Yeah. 
S3: Um, what number are we supposed to go up to? 
S1: I think up to 6. 
S3: Oh, okay…are you sure? 
S1: Yup, that’s why we had to do different squares on the… 
S4: So why is the surface area different? 
S1: Because this [points to paper rectangular prism]…they have the same lateral 

surface area [points to top of paper rectangular prism], but the boxes [points to 
base of paper rectangular prism] of the squares of the bases are different. 
Because these [points to bigger paper prism] squares are bigger so it makes it 
more. 

In this discussion, the small group interactions result in a shared understanding of why the 
total surface areas of the two prisms differ.  Initially, S2 and S1 notice that S4 has only added 
one base area to prism Y’s lateral surface area, explaining two base areas are needed to 
accurately calculate total surface area.  S3 revoices S1’s remark that the total surface areas of the 
two prisms are not the same since their base areas differ.  S3 and S2 again revoice the idea.  
Although S3 is satisfied with this explanation, S4 is not and asks the group to explain why the 
prisms’ surface areas differ.  S1 restates the explanation in his own words using folded paper 
prisms to illustrate his reasoning. 

We rated this small group discussion at a level 4 in cognitive demand using the IQA-AR 
rubric for implementation of the task.  There is clear evidence of participants’ reasoning, as 
group members articulated an explanation for why the surface areas of the two prisms are 
different.  When S3 responds to S1’s initial comment that the surface areas are not the same, she 
is making sense of the mathematics.  She could have simply stated that the surface areas differ 
because the two prisms are different, but this would have shown vague understanding.  Instead, 
she states that the difference is a result of different sized bases.  This shows that she understands 
that it is the base areas of the two prisms that distinguish one prism’s total surface area from the 
others’ – the lateral surface areas are the same.  Also, S1 is making an explicit connection 
between representations when he lays one paper prism next to the other and points to their 
different sized bases.   

We rated the small group discussion at a level 3 for questioning, explaining mathematical 
thinking, source of mathematical ideas, and responsibility for learning using the Levels of Math 
Talk framework.  These high levels of math talk are due to the comfort with which group 
members express their ideas and help one another understand them.  Participants initiate their 
own student-to-student talk without prompting from the instructor, and they do not hesitate to 
ask questions of each other to clarify ideas.  Participants freely interject their own ideas 
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throughout discussion, either correcting each others’ mistakes as evidenced by S2’s and S1’s 
noting that S4 omitted one base to calculate the total surface area.  Participants repeatedly justify 
their ideas and with little prompting from each other, as seen when S3 spontaneously began to 
articulate her explanation for why the surface areas differ.  Participants in this group take 
responsibility for their own learning, as seen when S4 asks for clarification after the other group 
members were finished. 

Instructor C’s Small Group Discussion 
Participants in this small group also worked on the same mathematical task as the group in 

Instructor F’s class.  In the following discussion, the group members are finishing their 
computations of the total surface areas of both prisms and need to explain any similarities and 
differences between the surface areas of the prisms.   

S2: So we know the lateral surface area…. 
S1: Is 8.5, oh wait sorry what did you get for the lateral surface area? 
S2: Is 93.5 
S3: What’s 93.5? 
S2: Is the lateral surface area….one piece of paper.  
S1: Yeah same as the last one. 
S2: Right. And then to that we have to add the bases [points to bases of prism] which 

are now different.  
S3: The bases are….2.75? 
S2: Yeah. So 7.5…now you got to multiple that by 2…15. 
S3: What was the area of one of them? 
S2: One of them is 7.56.  So the total is 108.425, which is bigger. 
S1: Okay, so similarities and differences between the surface area calculations…the 

lateral surfaces were the same, but the bases were different and therefore the total 
surface area… 

S1: Okay, are we supposed to keep going? 
S3: Well he said till 8. 

In this discussion, the group focuses on making correct calculations of prism Y’s total 
surface area.  S1 asks S2 for the lateral surface area of prism Y (93.5), after which S3 asks S2 
what 93.5 represents.  As S2 begins to articulate the next step in the procedure for calculating 
total surface area, S3 asks her for the area of the base of prism Y.  The only discussion 
surrounding mathematical concepts occurs at the end, when S1 states that the difference in 
surface areas is due to the difference in base areas.  None of the other participants follows up on 
this claim at all.   

We rated this small group discussion at a level 2 in cognitive demand using the IQA-AR 
rubric for implementation of the task.  The purpose of this group’s talk is to make sure that all 
group members arrive at the same numerical results for the calculations of total surface areas of 
prism X and prism Y.  Since the group as a whole does not engage in any discussion around S1’s 
statement, it is not apparent that the other group members agree with this statement or understand 
why it is true.  Throughout their discussion, participants follow a well-known procedure for 
calculating surface areas; they are not engaged in any complex thinking or meaning making.  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

465



 

We rated this small group discussion at a level 1 using the Levels of Math Talk framework.  
Participants ask each other questions, but they do not listen attentively since questions are 
repeated (S3 asks for the lateral surface area immediately after S1 asks the same question).  S1 is 
the only participant who describes her non-computational thinking, but her claim is not explored 
any further by the other students.  In fact, small group discussion focuses solely on procedures 
for finding total surface areas, rather than the concepts underlying the problem.  

When comparing Instructor F’s small group interactions to Instructor C’s small group 
interactions, clear differences appear.  In Instructor F’s class, group members maintain the task’s 
high level of cognitive demand during task implementation.  They do this by engaging in 
thoughtful discussion about the key mathematical ideas of the task, making sure to provide 
reasoning when appropriate.  In Instructor C’s class, however, group members are focused on 
getting the correct answer to the problem and neglect the last part of the question that asks for an 
explanation of the similarities and differences between calculations. 

Differences in both group’s level of math talk are also evident.  Instructor F’s group is at the 
highest level of math talk because they make repeated efforts to explain their thinking.  In fact, 
when analyzing classroom video of these interactions, one notices a sense of urgency, among the 
group members, to make sure everyone understands the concepts under investigation.  They are 
not afraid to interject their own ideas into a conversation because they know their ideas will be 
valued.  On the other hand, Instructor C’s group members exhibited a low level of math talk.  
Since participants were focused on getting the correct answer instead of making sense of their 
answers, questions were short and only elicited superficial responses.  Also, since S1’s claim is 
not explored by other group members during the small group discussion, one might conclude that 
the group uses another source of mathematical ideas, such as the instructor or whole class 
discussion, instead of each other.  

Discussion 
In this article, we provided examples of how differences between two small groups of 

elementary preservice teachers working on the same task lead to maintaining or lowering the 
task’s cognitive demands.  In Instructor F’s small group discussions, participants maintained the 
cognitive demands of the task by fully answering the questions posed and justifying their 
answers.  In Instructor C’s small group discussions, participant discussion resulted in lowered 
cognitive demands because this group only answered the computational portion of the questions 
posed and neglected to provide explanations of why they performed their computations or 
reached their conceptual conclusions.   

We also evaluated the two small group discussions using a rubric for levels of math talk 
(Hufferd-Ackles et al., 2004).  We found that Instructor F’s small group discussions were rated at 
a higher level of math talk than Instructor C’s small group discussions.  Participants in Instructor 
F’s class were actively involved in asking each other questions and defending their own ideas, 
while participants in Instructor C’s class rarely asked each other to explain their thoughts and 
were hesitant to pose clarifying questions.          

Based on our analysis, we believe that the focus of preservice teachers’ attention during 
small group discussion can impact whether tasks’ cognitive demands are maintained or not.  
Small groups who focus on providing explanations, justifying procedures, and making 
generalizations appear to maintain a task’s high level of cognitive demand.  We observed a 
shared desire among all group members in Instructor F’s class to make sense of the task.  
Participants were consistently asking each other for explanations and were often dissatisfied with 
correct solutions that they did not understand clearly.  In contrast, small groups who focus solely 
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on finding correct answers, do not justify their procedures, and do not attempt to generalize their 
ideas beyond specific cases risk lowering the cognitive demands of a task.  In Instructor C’s 
small group, there did not appear to be a shared need to develop an understanding of the 
mathematics of the task.  Participants seemed satisfied when they arrived at the same numerical 
answer, and chose not to push for meaning or clarification. 

Although it is unclear why one group developed a shared need to make sense of the task 
while the other did not, it seems that a small group working together in a preservice Instructor 
Course can develop its own culture that helps to determine how the group functions.  Future 
research should explore the source of small group cultures.  Do small groups adopt the culture of 
their classroom?  Does what the instructor of the course value – respectful discourse and focus 
on meaning – dictate how small groups operate?  In our study, Instructor F focused whole-class 
discussion on sense making while Instructor C focused his discussions on answer checking.                 

It is also possible that maintaining high levels of cognitive demand is associated with high 
levels of math talk during small group discussions.  A future study could investigate the interplay 
between a task’s cognitive demands and the levels of math talk used to solve the task: does a 
small group’s success in solving cognitively challenging problems relate to the degree to which 
they use productive math talk during discussions?  Our study suggests that math talk can help 
maintain high levels of cognitive demand, and that using contrasting cases might be a useful 
method for investigating this further.   
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As preservice elementary teachers (PSTs) examine their personal readiness, instructional 
practices, and their agency in enacting those practices, a ubiquitous question is “What can I 
do?” to support all students in learning mathematics amidst social, political and institutional 
dynamics present in today’s classrooms. This paper explores how PSTs are developing 
understandings of self as mathematics teacher and of teaching through participation in a 
seminar designed to support critical examination of themselves as mathematics teachers, and if 
and how this self-examination is consequential for their understandings of teaching, particularly 
as within complex realities of schooling and attention to equity and access. 

I think I am experiencing an identity crisis as a teacher. …As far as me as a math teacher, I 
am not sure where I see myself. I want to believe that I will be using problematic tasks and 
encouraging my students to explore and to question. And I hope that I won’t be skilling and 
drilling my students. I hope I won’t be using mind numbing workbooks and textbooks. I hope 
my students are learning and growing in my classroom. I hope I continue to see them as 
unique individuals, not just as test takers. I hope I am still reflective and responsive to my 
students’ needs. I hope that I am flexible and constantly strive to improve my teaching.  I 
hope I am not stuck in a rut. I hope I haven’t succumbed to the pressures of high stakes 
testing. And, I hope that I will think of the administrators and other teachers at my school as 
allies, not adversaries.  (Sarah, March 29, 2010)  
Sarah wrote this vision statement during the last semester of an intensive elementary master’s 

certification program after completing over two semesters of coursework toward her degree and 
interning for seven months in a third-grade classroom.  Sarah’s writing highlights the complexity 
of teaching mathematics in the realities of her classroom context. Sarah essentially asked, “What 
can I do?” a complex question heard in preservice teacher education as preservice elementary 
teachers (PSTs), such as Sarah, question their personal readiness to engage in instructional best 
practices, their understanding of what those practices are, and their agency in enacting those 
practices in school contexts.  As she discussed in other writings, for example, Sarah remained 
uncertain about how to actually work towards equity in mathematics by employing teaching 
practices such as engaging students in conceptually rich mathematics in this era of high-stakes 
testing. While it is generally accepted that teacher preparation needs to include an emphasis on 
best practices (Ball & Forzani, 2009) and classroom analysis (Hiebert, Morris, Berk, & Jansen, 
2007), it also must prepare PSTs to navigate the many social, political, and institutional 
dynamics in classrooms so they can enact equitable teaching practices that best support all 
students in learning with understanding.  Successful negotiation of these dynamics requires that 
teachers have an examined vision of their goals of mathematics teaching, the social and political 
contexts of schooling, and the realities of their school contexts, that is, understanding of 
themselves as mathematics teachers.  The paper explores how PSTs develop understandings of 
themselves as mathematics teachers, and if and how this self-knowledge is consequential for 
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their understandings of mathematics teaching, particularly as situated within the complex 
realities of schooling and with attention to equity and access. 

Elementary teacher preparation is further complicated by elementary teachers’ positioning as 
generalists (Brown & McNamara, 2005), such that they may not identify as mathematics 
teachers or attend specifically to creating rich mathematical experiences.  Elementary teachers’ 
existing beliefs and their personal, perhaps damaging, mathematical experiences also influence 
their interpretations of curricula and reform (e.g., Drake, 2006) and conceptualizations of 
mathematics (Gellert, 2000).  In the complexity of their mathematics teaching environments and 
their complex positioning, PSTs highlight different tensions through three iterations of the 
question, “What can I do?”: a) What can I do?, with emphasis on personal readiness; b) What 
can I do?, focusing on actionable steps; and c)  What can I do?, attending to personal agency 
(Pollock et al., 2010)?  In response, teacher preparation needs to emphasize dispositions and 
knowledge that relate specifically to mathematics and mathematics teaching for understanding, 
while also supporting elementary PSTs in understanding themselves, their students, and the 
social, cultural, and intellectual contexts of teaching. 

Without approaches in mathematics teacher education that address the complex situations or 
multiple dynamics with which PSTs will contend as novice teachers, PSTs are unprepared for the 
realities of public schooling.  In particular, PSTs need approaches that attend to issues of equity, 
self-understanding, and the social and political contexts of teaching within content-specific 
teacher education (Crockett & Buckley, 2009). The consequences of leaving teachers unprepared 
for the realities of schooling are damaging, not only for those teachers, but also for students, as 
teachers who are unprepared may be unable to provide all students opportunity to learn or to 
enact equitable mathematics teaching practices.  Developing an understanding of self as 
mathematics teacher, which for Sarah means examining her own relation to the complexities in 
her context, may build capacity for making sense of one’s relation to these dynamics and the 
realities of schooling and critically analyzing teaching decisions. This understanding of self as 
mathematics teacher is related to what the research literature frames as teacher identity. The 
theoretical perspective of this study extends current perspectives of identity, as simultaneously 
personal and social and in constant negotiation (e.g., Wenger, 1998; Holland, Lachicotte, 
Skinner, & Cain, 1998), but emphasizes the importance of individual’s awareness of the 
construction of identity and active engagement in its negotiation (Butler, 1999).  

I contend that engaging PSTs in understanding that mathematics teacher is a complex 
construction supports them in making sense of their relation to the multiple dynamics and forces 
present in their mathematics classrooms, or in understanding themselves as mathematics 
teachers. This understanding should be framed by prevailing discourses of teaching, 
mathematics, and students, and by local discourses within their teaching contexts. Further, it 
builds PSTs’ capacity for navigating their contexts and taking up particular mathematics teaching 
practices that support access to mathematics and equitable learning environments, such as 
teaching students through methods of inquiry and problem solving (NCTM, 2000).  As Butler 
(1999) argues, understanding how identity is situated and negotiated—simultaneously, asserted 
and threatened—may open possibilities for PSTs to reconstitute mathematics teacher identity 
with a different set of attributes and engagements. 

In applying Butler’s (1999) perspective of gender identity to elementary PSTs, the following 
questions guide this research: 1) How does the seminar support PSTs to critically examine their 
understandings of themselves as mathematics teachers and the discourses that shape those 
understandings?, and 2) How are PSTs’ understandings of themselves as mathematics teachers 
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and of related social and political discourses consequential for whether and how they take up 
new understandings of self as mathematics teacher and teaching in context? 

Begin your paper here. All text is to be in Times New Roman 12-point, 1-inch margins, and 
single spacing. You should use the ruler tool or the style sheet to indent the first line of each 
paragraph one-fourth of an inch. DO NOT use the space bar or tab key to indent.  
To begin your second paragraph, do not leave a blank line. Be sure to indent again. Indenting 
should happen automatically if you are using the style sheet or the ruler bar correctly. 

It is suggested that authors make two copies of this Template and work directly in one of the 
copies, or copy an existing file into one copy and format using styles. 

Theoretical Framework 
Conceptions of teacher identity assume that identity is dependent on and formed within 

contexts, and is relational, shifting, and multiple (Rodgers & Scott, 2008).  Becoming a teacher is 
not developing an identity, but is developing identity as a continuous process of constructing and 
deconstructing understandings within the complexities of social practice, beliefs, experiences, 
and social norms.  This is similar to Butler’s (1999) description of the process of becoming a 
woman: “If there is something right in Beauvoir’s claim that one is not born, but rather one 
becomes a woman, it follows that woman itself is a term in process, a becoming.… As an 
ongoing discursive practice, it is open to intervention and resignification” (p. 45).  Being and 
becoming a teacher also should be seen as open to continuous identification and reidentification.  
For example, Sarah engaged in this ongoing process during her internship, identifying how her 
mentor’s actions were shaping her interactions with her students, and, thus, how she saw herself 
as a teacher in relation to her mentor:   

I find myself yelling at my students and I'm like, “Why am I yelling at them? They just don't 
get long division yet!” But … I feel my mentor, her voice, and it's like, “Is that me?” because 
I used to not be a yeller. Have I become that teacher? …Have I turned into my mentor? 
(April 27, 2010) 

What Sarah is doing—struggling with the internal and external forces that are shaping her 
understandings of herself as a mathematics teacher—is identity work.  Understanding of self as 
mathematics teacher is situated within and shaped by historical, political, and social contexts, 
and also influenced by other individuals and imposed constraints.  Prevailing discourses about 
mathematics teaching and learning and local discourses within their teaching contexts influence 
PSTs’ understandings of mathematics teaching (e.g., de Freitas, 2008) and may shape their 
engagement with teaching and learning to teach.  These may include: institutional discourses 
around curriculum and testing (e.g., Brown & McNamara, 2005); social discourses around race, 
class, and student abilities (e.g., de Freitas & Zolkower, 2009; Sleeter, 2008); or, discourses of 
teacher as “savior” (e.g., Britzman & Pitt, 1996). 

My theoretical premise is that deconstructing these contexts, expectations, and constraints 
and challenging PSTs to question them and the dominant discourses that frame mathematics 
teaching—the “culturally established lines of coherence” (Butler, 1999, p. 33)—is encouraging 
PSTs to be actively involved in the process of identity work.  Developing awareness of these 
dynamics means “unpacking the invisible knapsack” (McIntosh, 2001, p. 180) of the implicit 
discourses that have shaped and are shaping their understandings of being mathematics teachers 
and making these discourses explicit.  For Sarah, that may include thinking about why she may 
“succumb to the pressures of standardized testing” or otherwise lose the flexibility or 
responsiveness she aspires to demonstrate in her mathematics teaching.  According to Butler 
(1999), deconstruction, as a process of critically examining the meaning and “substantive 
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appearance of gender”, identifying “its constitutive acts, and locat[ing] and account[ing] for 
those acts within the compulsory frames set by the various forces that police the social 
appearance of gender” (p. 45), can support resignification.  As PSTs question these discourses 
and deconstruct (Butler, 1999) what it means to be mathematics teachers in context, they are 
examining themselves as mathematics teachers. Making sense of one’s relations to the multiple 
dynamics in the mathematics classroom and developing understanding of self as mathematics 
teacher builds capacity for navigating these dynamics, attending to issues of equity, and being 
critical analytic about teaching decisions. Thus, this critical examination may lead PSTs to take 
up new understandings of being a mathematics teacher and of mathematics teaching. 

Methods 
Data collection took place during a seminar in the final semester of a 15-month elementary 

master’s certification program and the required school-based fieldwork.  Ten female PSTs, 23- to 
34-years old, volunteered to participate in the eight 2-hour group sessions of the seminar and the 
study.  One PST self-identified as African-American, one as an immigrant from Argentina, and 
eight as White.  

Seminar Design 
Seminar sessions engaged the participating PSTs in deconstruction, a process of critical 

examination of their understanding of themselves as mathematics teachers, teaching, and the 
political and social discourses that shape their understandings.  The seminar design situated 
critical pedagogy (e.g., Ellsworth, 1989; Freire, 1970/2000; Kumashiro, 2000) in mathematics 
teacher education.  Although PST education has attended to metaphors (e.g., Fenstermacher & 
Soltis, 1986) and the construction of a professional identity (e.g., Peressini et al., 2004), this 
seminar engaged theories of deconstruction and wove issues of self-understanding into content 
and context.  PSTs analyzed case studies, transcripts, and videos, which provided opportunities 
for them to name and complexify prevailing discourses and positionings in relation to 
mathematics teaching and learning and to examine their own and others’ practices.  PSTs also 
completed writing assignments to relate these activities to their own positioning as mathematics 
teachers.  Rather than reaching a predetermined understanding of certain content, the goal was 
for PST’s self-understanding, where the PST asks how he or she is positioned and how others are 
positioned within discourses and “brings this knowledge to bear on his or her own sense of self” 
(Kumashiro, 2000, p. 45).  That is, sessions served to open possibilities for PSTs to position 
themselves differently.  Meeting as a group generated a sense of common cause and created a 
space for PSTs to voice their concerns as well as strategize; sessions, thus, became legitimate 
and valued spaces where PSTs could speak and others would listen. 

Data and Data Analysis 
I collected data from the seminar to examine: a) how PSTs develop understanding of 

themselves as mathematics teachers, b) how this is consequential for whether they take up new 
understandings of mathematics teacher and teaching; and, c) how the seminar supported PSTs’ 
self-examination.  Data include interviews, discussion transcripts, and PSTs’ written work from 
the seminar. 

Attention to PSTs’ understandings of themselves and their take up of new understandings 
was analyzed through the particular discursive practices of “working difference” (Ellsworth & 
Miller, 1996).  How PSTs are engaging in the particular discursive practices of working 
difference that attend to context, their positioning, and the positioning of others around an issue 
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that emerges as salient speaks to how the seminar is supporting critical self-examination. If 
understandings of self are conceptualized as positioning, then repositioning and negotiating 
positions suggests new understandings of self and personal readiness.  How PSTs are taking up 
new understanding of mathematics teacher is operationalized through how PSTs are engaged in 
the particular discursive practice of showing the active labor of working difference (Ellsworth & 
Miller, 1996), that is, how they are repositioning themselves. 

To understand how PSTs are taking up new understandings of mathematics teaching, I 
followed how individuals are problematizing one emergent issue through the sessions, attending 
to content of their conversations about teaching and the processes they engaged in their 
conversations. Problematizing teaching includes how PSTs are attending to the work of teaching 
and how they are negotiating three specific levels of attention— attention to core principles of 
teaching, strategies for instruction, and actions specifically for tomorrow’s classroom (Pollock, 
2008)—and using particular discursive practices in taking up and engaging in problems of 
practice (Horn & Little, 2010). Pollock’s (2008) three levels of talk serve to structure the 
analysis of the content of the conversation, while attention the discursive practices of 
normalizing, specifying, revising, and generalizing (Horn & Little, 2010) are the processes of the 
conversation that the analysis follows.   

Results 
The following analysis focuses on two PSTs’ understandings of self as mathematics teacher 

and how the seminar was consequential for their new understandings of mathematics teacher or 
teaching. The analysis continues the case of Sarah and presents a contrasting case of Brooke.  
Issues of assessment emerged as salient to both Sarah and Brooke; Sarah engaged in particular 
discursive practices that suggest her taking up new understandings of mathematics teacher and 
mathematics teaching, while, in contrast, Brooke did not.  That is, the seminar did not support 
Brooke’s new understandings of mathematics teachers or teaching in the same way. 

Sarah’s initial vision statement presented her “hopes” for herself as a mathematics teacher 
and her teaching.  She presented the complexity of mathematics teaching and tensions with 
standardized testing and how testing frames students and their achievement: “I hope I continue to 
see them as unique individuals, not just as test takers.” In Session 2, Sarah also shared how she 
was uncomfortable in hearing her mentor’s voice in her own teaching, asking herself, “Is that 
me?” when she yelled at her students because of their difficulties with long division.  My 
analysis suggests how Sarah felt uncomfortable with how her mentor was positioning students 
and their abilities and with how she was also positioning her students when they were having 
difficulties with long division. Sarah’s discursive practices suggest that she struggled with 
concurrently supporting her students’ learning and assessing them, either in mathematics class or 
in relation to standardized testing. Sarah engaged in unpacking her positioning by attending to 
institutional pressures of testing and pressures in her context.  

Issues of assessment also emerged as salient to Brooke’s understanding of herself as a 
teacher.  In the following excerpt, Brooke emphasized, but resisted her positioning by issues of 
assessment, even minimizing its influence on her teaching:   

But see, I don't feel like [curriculum pacing] influences me all that much because like I'm 
spending five days on this stupid volume lesson, which really doesn't have the huge 
practicality of counting these imperfect block shapes, but I'm doing it because it is going to 
be on their unit assessment. But the majority of the stuff I teach is all beyond what is being 
assessed on those tests.  So I feel like the test doesn't necessarily, like I make sure that I hit 
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those things but it is only like, you know, a couple of things that I need to do and I have a lot 
more time that I get to do a lot more enriching things with my kids. 

Brooke attended to how she is teaching “a stupid volume lesson” because the content is on the 
assessment but also emphasized that she is not positioned by assessment: “It doesn’t influence 
me all that much.” In this way, Brooke seems to resist how she is positioned by district-mandated 
assessments, although she is spending a week of instructional time on a topic that she does not 
value.  Brooke did not attend to these tensions or to the political contexts of her teaching or 
immediately engage in discursive practices of working difference (Ellsworth & Miller).  

As the sessions continue, Sarah and Brooke engaged in different discursive practices with 
working difference, that is, in understandings themselves as mathematics teachers in relation to 
discourses about assessment.  In a particular conversation in Session 4, PSTs highlighted 
challenges and tensions with engaging students in rich tasks and assessments while grading 
students in line with institutional constraints on teachers’ flexibility with assigning grades. In 
response to these tensions, PSTs began to complain and share categorical advice, which are 
discursive practices that Horn and Little (2010) suggest are not conducive to the taking up of 
problems of practice. Sarah, however, took up the tensions of assessment and shared a practice in 
her classroom that aligned with principles of seeing assessment as an ongoing practice of 
actively attending to student thinking in the context of her test-driven school culture: 

You have to give them opportunity. What I do a lot of times, as part of the morning routine, I 
don't give them morning work sometimes if I'm handing back like a big writing assignment 
or something. I'll leave it on the reading group table.  Come and pick up your paper, read my 
comments, raise your hand if you have questions, and that's their morning work for the day. 
And you know, if you're monitoring and you're making sure they're not chit-chatting and 
they're, you know, staying on task, I've found that that's helpful. My mentor thinks it's a 
waste of time, she thinks it's stupid. I did [this] when I was in takeover, and I thought it was 
really helpful because I actually did have some kids come up to me and say, “What do you 
mean I'm not specific?” and like, “What does that mean?” I'm like, “You've got to give 
details.” You explain it them, like so, “Oh, this is what you wanted.” So I had like, you 
know, a couple of little writing conferences, and did it make big difference for everyone in 
the class? I don't know, but I do know it made a difference for two students in particular. 

In attending to student thinking and supporting her students’ continued reflection on their work, 
Sarah presented assessment as a complicated process that she engaged in with students and 
within her school context.  Sarah engaged in discursive practices of problematizing practice by 
specifying the problem through adding details of how she enacted this practice in her classroom 
and by generalizing: “You have to give them opportunity.”  Additionally, Sarah wove together 
attention to different levels of Pollock (2008) through presenting principles of assessment, a 
strategy of how to enact this in her classroom, and the particular actionable steps she took.  This 
conversation was significant for how Sarah demonstrated her developing positioning in relation 
to assessment, and it also created an opportunity for other PSTs to think about assessment, as 
evidenced by further conversation. 

Other PSTs followed by asking Sarah questions.  Then, the conversation shifted to discuss 
practices in mathematics assessment in primary grades as Candice asked about how to grade 
first-grade students on their understanding of place value when they are just learning how to 
count. Brooke interjected and shared how she graded second grade students’ homework:  
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I'll be honest sometimes that it really kind of depends on my mood. Like, sometimes I'll be 
like, you know [shrugs shoulders], it’s just that kind of day that I'm willing to be harsh on 
everybody. Which is bad. I know that we should be really consistent, but some days— 

Brooke presented a solution grounded in her local context to the exclusion of attending to the 
complexity of assessing students. This is similar to her earlier comment about her volume lesson, 
where she did not attend to the prevailing discourses of testing, but focused on her current 
students. While assessment emerged as an issue that was salient to her understandings of herself 
and her teaching, analysis does not suggest that Brooke took up new understandings of 
assessment as situated within prevailing institutional discourses or problematized assessment or 
her current practices in this session or subsequent sessions in relation to these prevailing issues. 

In her final presentation, Sarah, however, situated discourses of assessment into her mentor’s 
current teaching context and its test-drive culture.  Sarah emphasized how she did not appreciate 
her mentor’s classroom management style or her mentor’s strict and even negative interactions 
with students: “I struggled with [her mentor’s style] throughout the year.  She was too heavy 
handed with the kids. She relied on humiliation and fear.” She ended her presentation, however, 
by presenting her understanding of assessment and her mentor in context: 

Even though my presentation probably started very critical of her, she’s an amazing teacher. 
She’s just operating within this Title 1 environment, where there is all this pressure on 
teachers to maintain pace with the curriculum guides and FAST test. … I actually calculated 
the amount of hours and amount of days [of testing]. I think that it was something like over a 
month of school days were disrupted by testing. So, overall, I think that kind of informs my 
critique of her.  I had a really good year, and I look forward to next year. (June 21, 2010) 

Sarah noted how her mentor operates within particular institutional discourses and is positioned 
in specific ways by the curriculum guides, testing, and her students’ high test scores, which made 
her an “amazing teacher” by the administration’s standards.  In response to her initial criticism of 
her mentor’s management style, Sarah related her mentor’s positioning and the pressures she felt, 
as brought on by testing and the Title 1 environment, to how her mentor positioned and 
responded to students. In this way, Sarah presented awareness of the complexity of the 
assessment and the work of mathematics teaching in challenging contexts and how being a 
mathematics teacher is contingent on and in response to contexts.   

In addition to her new awareness of the complexity of being a mathematics teacher, Sarah 
demonstrates awareness of the value in the process of deconstruction and critical self-
examination.  Her deconstruction supports her in understanding the complexity of the particular 
interactions in her classroom, her mentor’s positioning and how this positioning influences her 
expectations, her students and their learning.  That is, Sarah’s presentation suggests that she 
valued the process of deconstruction, as it allowed her—and will continue to allow her—to 
explore and question how students and teachers are positioned and navigate the social and 
political dynamics in schools and classrooms.  Deconstruction is now a tool that she can use to 
inform future decision-making, supporting her agency in reidentifying with particular discourses, 
repositioning herself, and redefining herself as mathematics teacher.  

Discussion 
As a seminar for mathematics teacher education, analysis suggests that opportunities for 

PSTs to analyze discourses and positioning and discuss their implications on students and 
teachers may support PSTs’ critical examination of their understandings of themselves as 
mathematics teachers and their teaching when there are continued opportunities to connect to 
their own contexts and experiences, such as in seminar discussion prompts and writing 
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assignments. Critical self-examination supported Sarah in taking up new understandings of 
mathematics teacher and mathematics teaching.  Brooke characterized her positioning as 
localized, or in relation only to her particular field placement and current practices under her 
mentor, to the exclusion of how she positions herself towards or is positioned by broader social 
and political discourses. This suggests how some PSTs are strongly attending to their local 
contexts to make sense of how they are being positioned as mathematics teachers and more work 
with attending to the social and political discourses in her specific context may have supported 
her in attending to her complex positioning.  Facilitating PSTs in connecting these discourses 
and positionings to their teaching contexts may empower PSTs, such as Brooke, to understand 
how they are positioned, a question of personal readiness, and to exercise agency—that is, what 
can I do?—in responding to prevailing discourses by taking up or rejecting certain positions. 
That is, deconstruction can become a practice used in mathematics teacher education for 
engaging PSTs in thinking critically about teaching and themselves and also a tool for supporting 
PSTs’ own critical analysis of teaching practices. 

Embedded in a conception of teacher identity as fluid and negotiated is “the implicit charge 
that teachers should work towards awareness of their identity” (Rodgers & Scott, 2008, p. 733).  
Teacher education has a responsibility to support PSTs in this identity work, that is, in navigating 
the social, political, and historical forces that are shaping their identity and the multiple demands 
in schools and mathematics classrooms, as this work is necessary for teachers to have the 
capacity to address issues of equity and access in teaching mathematics.  By operationalizing 
identity and critical pedagogy in mathematics teacher education, this study contributes to 
research in mathematics teacher education by providing new tools for mathematics teacher 
education and attending to enduring questions of how to prepare teachers to enact equitable 
teaching practices in the complexity of today’s classroom contexts. 
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To implement current reforms regarding proof and reasoning in secondary school mathematics 
successfully, pre-service secondary mathematics teachers must have adequate understandings of 
concepts across mathematical domains for their future teaching. This paper examined the 
strategies that pre-service secondary mathematics teachers had for evaluating statements in the 
domains of algebra, analysis, geometry, and number theory. The results suggest that most pre-
service teachers rely on examples and their (partially) correct understandings of mathematical 
facts when determining the statement’s veracity. The results also suggest that the majority of 
pre-service teachers accurately evaluate the validity of statements.  

Introduction 
Reasoning and proof have been receiving an increasing level of attention in mathematics 

because they are considered important components of understanding concepts mathematically. 
Recent reform documents from the National Council of Teachers of Mathematics (NCTM, 2000) 
and the Mathematical Association of America (MAA, 2004) have placed emphasis on teaching 
and learning about verifying statements in secondary school mathematics and undergraduate 
mathematics. The Principles and Standards for School Mathematics (NCTM, 2000) suggests 
that students should be able to evaluate conjectures by the end of secondary school. The 
Undergraduate Programs and Courses in the Mathematical Sciences: CUPM Curriculum Guide 
(MAA, 2004) recommends that undergraduate students need to “learn a variety of ways to 
determine the truth or falsity of conjectures” (p. 45). Research investigating secondary students’ 
and pre-service secondary mathematics teachers’ abilities to decide the truth and falsity of 
statements, however, suggests that many students and teachers have difficulty doing such tasks 
(Hoyles & Kuchemann, 2002; Ko & Knuth, 2009; Riley, 2003). Hoyles and Kuchemann (2002) 
found that 40% of 1,984 eight-grade students inaccurately determined the geometric conjecture’s 
veracity. Riley’s (2003) result indicated that roughly 57% of 23 prospective secondary 
mathematics teachers believed that a false statement in geometry was true. Ko and Knuth (2009) 
reached a similar finding, reporting that 20% of 35 pre-service secondary mathematics teachers 
who answered believed one false statement about differentiation to be true.  

The aforementioned findings should come as no surprise because students are usually asked 
to prove a true statement rather than to disprove a false one in the mathematics classroom 
(Buchbinder & Zaslavsky, 2007). Under such a learning environment, it is likely that most 
students are easily convinced that mathematical propositions are true (Smith, 2006). Limited 
research has documented evidence that undergraduate students might rely on examples, 
deductive reasoning, both example-based reasoning and deductive reasoning, or their familiarity 
with content when asked to evaluate the statement to be true or false (Gibson, 1998; Goetting, 
1995; Weber, 2009). No studies to date have investigated the mathematical thinking behind the 
strategies pre-service secondary mathematics teachers use to determine the validity of statements 
in different mathematical domains. Such practices are particularly important for secondary 
mathematics education majors, as they need to understand the conventions of proving in a 
variety of domains to implement current reform recommendations about reasoning and proving 
in secondary school mathematics. Thus, the main purpose of this study was to examine strategies 
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pre-service secondary mathematics teachers had for evaluating various statements in the domains 
of algebra, analysis, geometry, and number theory. This study was guided by two research 
questions: (1) In what ways did pre-service secondary mathematics teachers verify each given 
conjecture to be true or false? and (2) Which strategy did lead pre-service secondary 
mathematics teachers to make a correct determination of the statement’s veracity? 

Theoretical Framework 
Evaluating the truth and falsity of statements accurately is a complex problem-solving 

process, as individuals should have adequate understandings of mathematical concepts related to 
problems and be able to apply such knowledge flexibly. Although individuals need to be able to 
correctly decide the truth or falsity of a given proposition before constructing a proof or 
generating a counterexample, such a decision really depends on whether or not individuals 
believe the statement to be true or false. When evaluating purported statements, some individuals 
are inclined to base their determination on example-based reasoning strategies. Moreover, they 
tend to use random, general, or specific examples related to statements during the processes of 
verifying the statement’s validity (Alcock & Inglis, 2008; Gibson, 1998; Goetting, 1995; Harel & 
Sowder, 1998).  

When asked to evaluate the validity of statements, others use their understandings of true 
known definitions, theorems, or axioms involved in problems (Alcock & Inglis, 2008) or start 
constructing a proof and then find a counterexample if they get stuck in the proof (Weber, 2009). 
Still others make judgments based on their past memories of similar conjectures, so they begin 
producing a proof, looking for a counterexample, or testing a couple of numbers and then 
making an attempt at a proof (Goetting, 1995). Indeed, verifying statements across mathematical 
domains is a vital practice for pre-service teachers to foster their reasoning and comprehend the 
concepts. Particularly, undergraduate mathematics is an important period for pre-service teachers 
to build knowledge to advance mathematical reasoning for learning more advanced mathematics 
in secondary-school teaching. The goal of the paper reported here is to shed light upon the 
processes of evaluating practices associated with conjectures. 

Methods 
Eight secondary mathematics education majors from a large Midwestern university in the 

United States participated in this study. One was a third-year, five were fourth-year, and two 
were fifth-year undergraduate students. All of the participants had taken a number of upper-level, 
non-proof intensive mathematics courses that included the topics of analysis, combinatorics, 
differential equations, linear algebra, modern algebra, number theory, probability, or statistics. 
They had also taken at least two courses involving mathematical proofs about the topics of 
analysis, linear algebra, geometry, modern algebra, or transition to proofs. Since number theory, 
geometry, continuous functions, differentiation, and one-to-one functions were addressed in 
undergraduate mathematics courses as well as in pre-calculus and calculus courses in high 
school, all of the pre-service teachers participating in this study had some relevant domain 
knowledge. 

The primary source of data was one-on-one semi-structured interviews. Interviews were 
audio-recorded, lasted approximately 90-120 minutes, and included a focus on the evaluation of 
the statement being true or false and the productions of proof and counterexample. Because the 
focus of this article is on pre-service teachers’ strategies for verifying the validity of statements, 
the results presented and the subsequent discussion focus exclusively on data about their proof 
and counterexample productions. During the interview, the pre-service teachers were handed 
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each statement (see Table 1), one at a time, and were asked to think aloud how to determine each 
statement to be true or false. The instrument, comprised of six mathematical statements that were 
adapted from existing literature and textbooks, was designed to assess pre-service teachers’ 
abilities to evaluate the veracity of statements about algebra, analysis, geometry, and number 
theory. The instrument was finalized after receiving feedback from three mathematics professors 
as well as one mathematics education professor and pilot testing with engineering and 
mathematics graduate students. 

The interview transcripts and participants’ written responses were summarized initial 
impressions and highlighted interesting issues regarding the participants’ statement verifications. 
Coding of the data began with a set of external codes that were derived from the theoretical 
framework. By examining the data and reviewing the transcripts, themes emerged in 
participants’ statement verifications. After proposing these internal (data-grounded) codes, each 
transcribed interview was reexamined and recoded to incorporate these new codes.  

 
Table 1. The instrument. 
Question Statement Domain True or False 
1. If Nn! , then GCD( 1)56, =!nn . Number Theory False 
2. If AB  and CD  intersect at the point M, 

BMAM !  and DMCM ! , then DBAC // . 

 
(Adapted from Yang & Lin, 2008, p.65) 

Geometry True 

3. Let RDf !:  be a function and Dx !0 . If
)(lim)(lim

_
00

xfxf
xxxx !!

=
+

, then f is continuous  

at 0x . 

Analysis False 

4. If Nn! , then nn 443 +  is divisible by 3. 
(Adapted from Smith, Eggen, & St. Andre, 
2006, p. 109) 

Number Theory True 

5. If CAh !: and DBg !:  are both 1-1 
functions, !=" BA , and !="DC , then 

DCBAgh !"!! : is a 1-1 function. 
(Adopted from Smith et al., 2006, p. 204) 

Algebra True 

6. Let RDf !:  be a function and Da! . If 
RDf !: is differentiable at a, then f is 

continuous at a. 

Analysis True 

Results 
The results reported in this section are organized by two research questions concerning pre-

service teachers’ strategies for evaluating various conjectures. 
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Pre-Service Teachers’ Strategies for Evaluating the Statement 
Based on the theoretical framework regarding strategies for verifying conjectures, four 

specific categories—the example-based strategy, the mixed reasoning strategy, the naïve 
reasoning strategy, and the sophisticated reasoning strategy, as listed in Table 2, were proposed 
through the coding process to access the participants’ responses to the ways they used for doing 
these tasks. 

Table 2. Strategies for evaluating statements. 
Strategies Description 
Example-Based Reasoning # Individuals rely on numbers or diagrams to verify the 

statement.  
Mixed Reasoning # Individuals both use examples to identify relevant patterns 

and structures, and manipulate (partially) correct properties, 
definitions, and/or theorems to identify a reasonable 
example to attempt to prove or disprove the statement. 

Naïve Reasoning # Individuals manipulate partially correct properties, 
definitions, and/or theorems from their intuitive 
understanding or past experience to verify the statement. 

Sophisticated Reasoning # Individuals manipulate relevant true properties, definitions, 
and/or theorems to attempt to prove or disprove the 
statement. 

 

Table 3 displays the distribution of strategies the pre-service teachers had for deciding each 
statement to be true or false. As shown in the table, the mixed reasoning strategies (33 cases out 
of 46) were used more often than the other three strategies (5 example-based reasoning 
strategies, 4 sophisticated reasoning strategies, and 4 naïve reasoning strategies) by prospective 
teachers when determining the validity of statements. 
Table 3. Pre-service teachers’ strategies for evaluating the statement. 
Strategy True  False Frequency 

Count* Question 2 
(Geom- 

etry) 

Question 4 
(Number 
Theory) 

Question 5 
(Algebra) 

Question 6 
(Analysis) 

Question 1 
(Number 
Theory) 

Question 3 
(Analysis) 

n % n % n % n % n % n % n 
Example-based 0 0 1 13 0 0 0 0 3 38 1 13 5 (4) 
Mixed 8 100 7 88 6 86 5 71 5 63 2 25 33 (8) 
Naïve  0 0 0 0 0 0 2 29 0 0 2 25 4 (3) 
Sophisticated 0 0 0 0 1 14 0 0 0 0 3 38 4 (4) 
Note. Pre-service secondary mathematics teacher 8 did not decide Questions 5 and 6 to be true or false.  

*The frequency count is the number of each strategy that each participant used for evaluating the validity of 
six given statements. 

Due to decimal rounding, the total percentage of Questions 1, 3, and 4 is greater than 100. 

Data described in Table 3 also illustrates that each pre-service teacher used the mixed 
reasoning strategies at least once when evaluating the statement’s veracity. Although the mixed 
reasoning strategies was the most commonly strategies used for verifying the validity of 
Questions 1, 2, 4, 5, and 6, substantially fewer pre-service teachers used the example-based 
reasoning, naïve reasoning, or sophisticated reasoning strategies for evaluating Questions 1, 3, 4, 
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5, and 6. Considering the statements across different domains, it is interesting to note that the 
false question in Number Theory was the most likely to be verified by examples-based reasoning 
strategies. Also, all pre-service teachers tended to employ the mixed reasoning strategies for 
determining the true geometric statement. The section that follows describes each strategy used 
by pre-service teachers when deciding the statement’s veracity.  

Example-based reasoning strategies. Four pre-service teachers based their determination of 
the statement’s validity merely on numbers or diagrams related to the problem. One pre-service 
teacher stated what he did when determining a statement’s (Question 1) veracity: “I went through 
a few possibilities, […], and I got up to five. […] Six times five is twenty five, so the greatest 
common divisor between twenty five and five is five” (PSMT1). Another participant used 
diagrams to evaluate a statement’s (Question 3) veracity: “I was thinking like x, and it would be 
continuous. And then I was thinking about x2, and it would be continuous as well” (PSMT5). 
Thus, these pre-service teachers tested a few numbers or diagrams to evaluate the statement’s 
validity.  

Mixed reasoning strategies. In general, every pre-service teacher used the mixed reasoning 
strategies at least once when determining the veracity of statements. Moreover, these teachers 
decided the statement’s validity on the basis of examples and their (partially) correct 
understandings of definitions or theorems involved in the problem. One teacher labeled the 
figure first and said, “Angle AMS and angle BMD are equal because they are vertical angles, so 
[triangle AMC and triangle BMD are] congruent triangles, [so the] corresponding angles [angle 
CAM and angle DBM] are congruent, and they are alternative interior angles which make line AC 
and line DB be parallel.” (PSMT3, Question 2). In explaining why he determined the statement 
to be true, one teacher said, “I plug in a couple of numbers just to see if the statement works. […] 
When I factor out n, I can see that any natural number that is a multiple of 3 means that is also 
divisible by 3” (PSMT2, Question 4). Still another teacher drew a picture and explained why she 
agreed with the statement to be true, “Continuous functions mean that you have a graph, it is a 
smooth line, and there is no hole on the graph. [T]he limit from the left and the limit from the 
right is the same that gonna be continuous” (PSMT8, Question 3). In summary, these pre-service 
teachers who applied the mixed reasoning strategies for verifying the validity of statements 
either relied on examples to identify the structure of the statement or based on their (partially) 
correct understandings of mathematical properties along with examples related to the problem.  

Naïve reasoning strategies. With this strategy, three per-service teachers determined the 
statement’s veracity based on their partially correct understandings of mathematical facts related 
to the problem. When evaluating a statement’s (Question 3) veracity, one teacher stated, “[The 
continuous function] was defined at some point x on the function, or 0x  on the function. […] 
[T]he limit from the left is the same as the limit from the right, so since it’s defined at that point 
and those limits are the same, then it has to be continuous” (PSMT1). Another teacher explained, 
“What I can remember, if a function is differentiable at a, then that means that the corresponding 
y value exists at a, so it doesn’t necessarily mean the function to be continuous” (PSMT7, 
Question 6). Thus, these pre-service teachers seemed to possess fragile mathematical knowledge 
to verify the statement’s validity.  

Sophisticated reasoning strategies. Four pre-service teachers decided the validity of 
statements on the basis of true mathematical definitions, theorems, or properties. For example, 
one teacher explained his strategy for evaluating a statement’s (Question 5) validity:  

I know the definition of one-to-one function means that for exactly one, there is one x value 
for only one y value, so from the domain to the range. Umm, since both of those are one-to-one 
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functions and since, umm, the domains of each function h and g, respectively, are mutually 
exclusive as well as the range of mutually exclusive, the intersection is the no set, and the union 
between the two, umm, will still be one-to-one. (PSMT1).  

In responding to what he did when verifying the validity of a statement (Question 3), one 
teacher stated, “The statement is false because the definition of the continuity is the limit of the 
function at a point is also equal to the value of the function at that point” (PSMT2). In short, 
these pre-service teachers attempted to employ relevant mathematical facts logically when 
determining the statement’s veracity. 

Pre-Service Teachers’ Strategies for Evaluating the Statement and Their Determination of  
its Validity 

Table 4 presents the frequency count of strategies for verifying statements used by pre-
service teachers along with their correct and incorrect decisions on the validity of statements.  

Table 4. Frequency count of pre-service teachers’ strategies for verifying the statement and 
their decisions on its validity.  
Strategy True  False Frequency 

Count* Question 
2 

Question 
4 

Question 
5 

Question 
6 

Question 
1 

Question 
3 

 Co In Co In Co In Co In Co In Co In Co In 

Example-based 0 0 1 0 0 0 0 0 3 0 0 1 4(3) 1(1) 

Mixed 8 0 7 0 5 1 4 1 4 1 1 1 29(8)  4(3) 

Naïve  0 0 0 0 0 0 1 1 0 0 0 2 1(1) 3(3) 

Sophisticated 0 0 0 0 1 0 0 0 0 0 3 0 4 (4) 0(0) 

Note. Pre-service secondary mathematics teacher 8 did not decide Questions 5 and 6 to be true or false.  
Co indicated that the correct decision regarding a statement’s validity made by pre-service teachers.  
In indicated that the incorrect decision regarding a statement’s validity made by pre-service teachers. 
aThe frequency count is the number of occurrences that a particular strategy was used. Totals may include 

multiple counts for a single pre-service teacher (i.e., a teacher may have used the example-based reasoning strategy 
for verifying the validity of more than one statement). The number of different teachers citing a particular strategy is 
provided in the parenthesis. 

As seen in Table 4, the participants who used the sophisticated reasoning strategies 
accurately made a decision on the statement’s veracity. It is clear from the table that the pre-
service teachers were more likely to make an incorrect determination of the statement’s validity 
by employing the naïve reasoning strategies. If we consider the most effective strategy used in 
allowing a correct decision on a statement’s validity, then the mixed reasoning strategies (29 
cases out of 46) far out-numbered the other three strategies (4 sophisticated reasoning strategies, 
4 example-based reasoning strategies, and 1 naïve reasoning strategy). These findings show that 
most pre-service teachers did not solely rely on examples when testing the proposition to be true 
or false. These findings also show that only a few pre-service teachers were able to employ true 
mathematical properties and theorems to decide the validity of statements correctly. Considering 
the statements across various domains, it is interesting to note that all participants accurately 
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evaluated the geometric statement (Question 2) by using the mixed reasoning strategies. Perhaps 
relying on pictures serves as a helpful means for pre-service teachers to identify the structure of 
the given statement in Geometry.  

Discussion  
This study examined the processes through which pre-service secondary mathematics 

teachers evaluated the truth and falsity of given statements across domains. The overall findings 
indicate that all participants employed the mixed reasoning strategies—using both examples and 
their (partially) correct understandings of mathematical concepts—for determining the 
statement’s veracity at least once. The fact that the pre-service teachers in this study 
overwhelmingly used examples when asked to verify the validity of statements is not surprising 
considering the literature on undergraduate students’ tendencies to rely on example-based 
reasoning strategies (Gibson, 1998; Goetting, 1995; Harel & Sowder, 1998). This study, however, 
shows that the participants used examples to identify patterns and structures rather than 
conclusively determined the truth of statements. Considering the strategy used in allowing a 
correct decision on the statement’s validity, the mixed reasoning strategies were more effective 
ways (29 cases out of 46) than the other three strategies (4 sophisticated reasoning strategies, 4 
example-based reasoning strategies, and 1 naïve reasoning strategy). There were a few cases in 
which the pre-service teachers inaccurately made a decision on the validity of statements by 
employing the example-based reasoning strategy (1 cases out of 46), the mixed reasoning 
strategies (4 cases out of 46), or the naïve reasoning strategies (3 cases out of 46). These teachers 
seemed to use their partially correct understandings of limits, continuous functions, one-to-one 
functions, and the greatest common divisor to determine the statement’s veracity. This result is 
reminiscent of Weber and Alcock’s (2004) suggestion that “students’ [concept] images of 
mathematical concepts are often inconsistent with the corresponding formal definitions” p. 232). 
In order to help individuals develop concept images—defined as mental pictures—to be 
consistent with mathematical definitions, mathematics instructors need to draw attention to pre-
service teachers’ misconceptions of concepts and seek ways to refine their content 
understanding.  

Another feature of the results is that the majority of participants determined the validity of 
statements accurately (38 cases out of 46). Yet, the wealth of existing studies investigating pre-
service secondary teachers’ conceptions of proof show that many teachers have considerable 
difficulty understanding and producing proofs and counterexamples (e.g., Goetting, 1995; Harel 
& Sowder, 1998; Weber, 2001). The results of this study suggest that providing pre-service 
teachers with opportunities to experience determining the validity of statements across domains 
might be a way to enhance their development with proof and counterexample. Such practices can 
help pre-service teachers not only see the logic behind a statement (Tall, 1992) and explain why 
something is true or false, but also foster their mathematical reasoning and understanding 
(Buchbinder & Zaslavsky, 2007). If engaging learners in verifying the truth and falsity of 
statements can illuminate underlying concepts of propositions as well as promote learners’ 
mathematical reasoning, more research is needed on what curricular tasks can better develop pre-
service secondary school mathematics teachers’ conceptions of proof and counterexample.  

In summary, four strategies—example-based reasoning, mixed reasoning, naïve reasoning, 
and sophisticated reasoning—used by pre-service teachers to evaluate the validity of statements 
in different domains cannot make generalizations due to the small number of participants in this 
study. While most pre-service teachers relied on examples to test Question 1 (Algebra), the 
majority of participants were inclined to use numbers or diagrams along with their (partially) 
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correct understandings of mathematical facts when verifying various statements across domains. 
These findings suggest a need to help pre-service teachers apply example-based and deductive 
reasoning strategies flexibly to evaluate the statement’s veracity. These findings also suggest that 
designing instructional approaches by drawing from individuals’ strategies for evaluating 
statements to help pre-service secondary mathematics teachers learn mathematics meaningfully 
and foster their mathematical reasoning is needed. 
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In this article we describe the results of a special final course, at the main teachers’ college in 
Mexico, which had two related main objectives: one was to find out the Mathematical 
Knowledge for Teaching (MKT) held by student teachers (ST) at the end of their instructional 
preparation. The other was to discern ways to improve this knowledge and to document the 
changes observed. In teachers’ colleges in Mexico, math contents and pedagogical ideas are 
taught separately, so we aimed to help student teachers to integrate these. The analysis showed 
that their knowledge is mainly instrumental but that through discussions and reflection about the 
main issues, they were able fairly quickly to attain a significant improvement in all the contents 
included. Moreover, they also showed changes on some of their views about math and its 
teaching. 

Introduction and Theoretical Framework 
For two decades in Mexico, great effort had been placed on improving education at the basic 

levels. Study programs have been changed, text books have been replaced and computers have 
been brought to help out, but internal and external evaluations have shown at best very small 
improvements in students’ achievements. The most likely explanation, supported by research in 
math education (Adler et al., 2005) is that a very important element has been overlooked: 
teachers’ professional development. With new principles, standards and approaches brought 
everyday into education, the preparation of teachers had become even more crucial. 

A very important sector of teachers, which also has to be taken into account, are the future 
teachers being prepared in the different pedagogical schools and colleges. Ponte and Chapman 
(2008) give an overview of the studies carried out with student teachers (ST) about their math 
knowledge, their teaching knowledge and their development. 

A common practice in teachers’ instruction in Mexico is to separate content and pedagogy in 
different courses, with the assumption that the future teachers will be able to integrate them in 
their practice. However, this and the formal procedural orientation of their math courses, leave 
the ST with limited skills and inadequate conceptual understanding. Thus, in the main teachers’ 
college in Mexico for secondary education (Escuela Normal Superior de Mexico), it was felt 
necessary to introduce a special course at the end of their training that would give the ST an 
opportunity to build on their previous knowledge and to restructure their conceptions through 
group discussions and reflection. Within this context we initiated a research study to find out the 
general knowledge held by ST at the end of their instructional preparation and to assess to what 
extent their pedagogical content knowledge in several topics was modified by this didactical 
intervention. We also recognized the importance and close relationship between conceptions, 
beliefs and practice (Thompson, 1984; Leder, et al. 2002) and although it won’t be described in 
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here, another portion of this project looked into these issues. 
Pedagogical Content Knowledge (Shulman, 1987) refers to a complex mixture with many 

components like content, pedagogy, organization of topics and problems, student conceptions, 
models, representations, activities, curriculum, etc. Some facets of this teachers’ knowledge are 
more closely related to the mathematical content, like knowing the structure and connections of 
mathematical concepts and procedures, deconstructing one’s own knowledge or understanding 
students’ methods of solution. Ball and Bass (2000) associated this special knowledge with the 
term: Mathematical Knowledge for Teaching (MKT). Hill and Ball (2004) continue developing 
the concept of MKT and describe another of its components: profound math knowledge, which is 
a specialized knowledge that helps teachers understand and plan their classroom activities. 

Professional development programs seek, in various ways, to enhance teachers’ practices and 
therefore students’ competence. Some are centered on pedagogical ideas, others on mathematical 
content and some others on the mix, Pedagogical Content Knowledge (PCK). Our orientation is 
along this last line, with an emphasis on MKT and following the view of many researchers 
(Ponte and Chapman, 2006) who stress that teachers’ training should be connected to their 
practices, using the same tasks, materials and techniques that could be used in their classrooms. 

Based on different frameworks and methods of inquiry, there have been a number of research 
studies connected to teachers’ professional development projects in different countries. Amato 
(2006), within a mathematics teaching course for student teachers, conducted a study to improve 
their relational understanding (Skemp, 1976) of fractions, by playing games. In a study 
investigating the Pedagogical Content Knowledge (PCK) of elementary school teachers in the 
topic of decimals, Chick, et al. (2006) proposed a framework with three categories for their 
analysis: 1. Clearly PCK; 2. Content Knowledge in a Pedagogical Context and 3. Pedagogical 
Knowledge in a Content Context. Like several other authors, Seago and Goldsmith (2006) 
studied the possibility of using classroom artifacts like students’ work and classroom videos to 
assess and promote MKT. Also, in a collaborative action research, Cooper, et al. (2006) 
uncovered some characteristics of instructional interactions that lead to positive results in 
students’ learning. 

In an article about cognitively guided instruction, Carpenter, et al. (2000) stressed the 
importance of teachers’ knowledge about the mathematical thinking of children. The authors 
identified four levels of teachers’ beliefs that correlate with their mode of instruction: I. They 
believe that math has to be taught explicitly and therefore they show procedures and ask the 
students to practice them. II. They start to question this explicit mode and therefore they give to 
the students some opportunity to solve problems by themselves. III. They believe that students 
can have their own strategies so they provide problems and the students report their solutions. 
IV. Teaching becomes more flexible, with the teacher learning from his students’ productions 
and adapting his instruction to this knowledge. 

Since we were interested in assessing the MKT, we based our analysis on the framework 
given by Ball, et al. (2008), who divides this knowledge into three main domains: 

A. Specialized content knowledge is the math knowledge and skill needed almost 
exclusively for teaching. The teacher requires supplementary math knowledge in the multiple 
activities of his practice. Among other things, he must have a profound understanding of the 
fundamental concepts of each of the topics, knowing not only ‘how’ but also ‘why’. In 
addition, he should be able to unpack math ideas to make them more visible to others. 
Moreover, he should know the connections of different concepts and topics and relations with 
other subjects. 
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B. Knowledge of content and teaching consists of knowing about teaching math. This 
knowledge is required in the planning, design and instruction in the classroom work to answer 
questions like: What would be an appropriate sequence of teaching? What example would 
illustrate this or that? What classroom methods should be followed? What representations are 
adequate? Each of these tasks requires a combination of specific math understanding and 
pedagogical ideas. 

C. Knowledge of content and students combines knowing about students and math. This 
knowledge is related to students’ thinking, strategies, difficulties and misconceptions. It is 
needed to infer and evaluate what the students say or do, their methods, their solutions, etc. 
These tasks require a blend of a specific math understanding and a familiarity with students’ 
thinking. 

Methodology 
The special course was given during the last semester of formal courses to a group of 21 

students in a teacher’s college in Mexico City (ENSM – Escuela Normal Superior de Mexico), 
preparing them for teaching at the secondary school level. Each six hour session of the 16 given 
was divided into two thirds of selected contents and one third of additional pedagogical 
elements. In this article we will describe only the selected contents section of the course. 

Before the course, we asked the ST to mention math topics from their previous courses which 
they found difficult or they think to be a source of conflict to students. Among the most cited 
answers were: fractions, decimals, mental calculation, algebra, variables, functions, 
probability… Thus, we decided to form three sequential blocks for discussion in the course: 
1) Fractions and decimals, 2) Mental calculation and estimation and 3) Variables and functions. 

Professional development programs use a variety of resources to make teachers reflect on the 
ideas involved. For example, Borko and collaborators (2008) suggested video analysis to 
motivate discussions between teachers and Chamberlin (2003) employed written students’ 
productions. In our study however, our instruments for analysis and means of motivating 
reflection were a series of questionnaires and further inquiries during the sessions. 

All the 16 sessions were audio taped for their analysis. At the beginning of each of the three 
blocks and also in most of the sessions, a questionnaire or a worksheet was handed out (or 
previously given to answer at home) with the objective of making the ST reflect about some 
important ideas and concepts of that particular content. This also had the purpose of steering 
their thinking about the three main domains of MKT described above. From the research point of 
view, their written answers gave us a small window of their knowledge. Then a full class 
discussion took place to argue their own ideas and to hear and evaluate the others’. Because of 
the dual character of the course, for the most part, we let them express their ideas and encourage 
interaction between them. In the latter sessions of each block, we gave them notes (taken home 
to read) synthesizing some important ideas of the topic being covered and then the ST discussed 
those ideas further. This second phase gave us another window of their knowledge and of the 
possible changes brought about. The main sources for these notes were research papers on 
mathematics education in each subject. The pedagogical support for the course was taken also 
from the research literature, for example Schwartz, et al. (2006), Chick and Baker (2005) and 
McDonough and Clarke (2003). 

Results 
To illustrate the two ways data was collected, here we will describe 1) the results of the 

questionnaire applied before and after the six sessions of the block of fractions and decimals and 
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2) the results of the observations of the four sessions of the block of mental calculation and 
estimation (the other block not discussed shared similar conclusions). 
Results of the Questionnaire Applied Before and After the Block of Fractions and Decimals 

The questionnaire consisted of 6 items (some with two parts). Here we show three of the six 
questions which seem representative (from the 21 ST, 18 took the initial questionnaire and 19 
took the final). 

Item 2. Consider the fraction 4/5. a) Describe some of its different meanings. b) Represent it 
in different ways. 

Part a): In the initial questionnaire, 16 of the ST wrote only one or two meanings, without 
explanations: For example, “Four parts of five.”, “Four over five.”, “4/5 = .8”, “Four of five.”, 
“Four is to five. Four fifths.” This exhibited a poorly established knowledge, extracted from what 
they vaguely remembered. In the final questionnaire, 15 of the ST gave much more complete 
answers, adding also the associated meaning. One short answer was: “As quotient ! four over 
five; as ratio ! four to five; as part-whole ! four fifths…” Of course, this means that they learnt 
something, but the value we see in it is that, by briefly exposing them and letting them reflect on 
these ideas, the ST were able to demonstrate a more sound knowledge. 

Part b): This is an important question that shows the amplitude and flexibility with different 
representations. In the initial questionnaire, 10 of the ST represented the fraction only as part-
whole of continuous sets like rectangles and circles; 7 others used also part-whole in both types 
of sets (three of them include a third representation: an equivalent fraction, the numerical line or 
as a ratio). In the final questionnaire, we observed a multiplicity of answers. All of the ST 
employed at least three different representations like the one shown below in the figure. Five of 
them supported their answers with well elaborated explanations. Here we observe a richer 
knowledge of content and teaching. Again, this shows that much of this knowledge is held by 
them but dormant and an appropriate setting brings it out and solidifies it. 

 
Item 4. a) Give a problem illustrating the operation: 1 * divided by 3. Explain its solution.    

b) Give a problem illustrating the operation: 1 * divided by *. Explain its solution. 
Part a): In the initial questionnaire, most of the ST gave a partitive context when posing the 

problem: “Juan wants to divide 1 * chocolate bars in equal parts for his 3 children. ¿How much 
would each one gets?” In the final questionnaire, we observed basically the same, but their 
symbolic solutions are more frequently supported with graphical representations and with more 
congruent explanations. 

Part b): This obviously was more revealing than the first part. In the initial questionnaire, 
only 5 of the ST posed a correct problem, based on the interpretation “how many times it fits.” 
For example: “I have a soda with 1 * liters and a glass of a * a liter. How many times will I be 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

490



 

able to fill the glass without any leftover?” Another 6 ST posed an incorrect problem, either 
forcing the result of 3 of the original operation, not even using the numbers contained in it: “A 
car need gas every 50 km. How many times we have to stop for a trip of 150 km?” or posing 
instead the operation 1 * divided by 2: “If you have a chocolate bar and half of another, and we 
want to divide it between 2 people, how much does each one get?” The other 7 ST didn’t answer. 
We can characterize this as a deficient specialized content knowledge. In the final questionnaire, 
more than half of the ST gave a correct problem, although we still observe the same two 
incorrect thinking mentioned. This seems to be a hard notion for them. 

Item 6. Consider the numbers, 0.245, 0.2 and 0.1089. a) If a student says that 0.1089 is the 
biggest, what do you believe he is thinking? b) How would you show him which is bigger? 

Part a): In the initial questionnaire, there were two types of similar but not equivalent 
answers; 11 of the ST mentioned that the decimal point was ignored and 7 others write that the 
student looks at the number of digits. This shows some knowledge of content and students. The 
final questionnaire showed similar results. 

Part b): In the initial questionnaire, 7 of the ST drew a diagram showing the position value of 
each digit, 5 only proposed the use of the numeric line, another showed sequences of numbers 
without explanation and the rest didn’t answer. This demonstrates a reduced knowledge of 
content and teaching. The main difference between the two questionnaires is that in the initial 
one, we observe mainly technical explanations based on the separation of the numbers into its 
digits, but in the final questionnaire there was an attempt to give semantic descriptions and more 
extended explanations. For example, one of them wrote: “In a table of positional values 
indicating integers, tenths, hundredths…” Shows the table and continues “We observe in the 
tenths, which is bigger, and see that in two numbers they are the same, so we compare the 
hundredths…” In general, they revealed afterwards a greater capacity for instruction. 
Observations of the Sessions of the Block of Mental Calculation and Estimation 

In the four sessions of mental calculation and estimation, the three issues addressed through 
diverse activities were: i) characteristics; ii) strategies; iii) comparison with the traditional 
algorithms. In the next subsections we will described the knowledge observed from the ST and 
their changes, according to the three main domains of the MKT proposed in the theoretical 
framework. 

A. Specialized content knowledge. At the beginning of this block the ST were given three 
questions about mental calculation and then they argued their answers with the whole group. To 
the question “Give two examples that show how people use mental calculation in real life.” the 
great majority had difficulties identifying situations. There was a clear confusion between mental 
calculation and estimation since most of the examples were calling for estimations like: “In the 
kitchen mental calculation is used to estimate portions…” “Time is a factor that we estimate 
constantly…” “When we go shopping we perform estimations…” When they were told that in 
mental calculation we expect an exact answer, they gave very vague examples related to some 
operation and frequently mistaken like “When you multiply by 99 you add 1 to be 100 and then 
you subtract the result by 1.” or “Rounding quantities, for example $25.65 ( 4, can be converted 
to 25.50.” Thus we observed a very small specialized content knowledge. The ST claimed that 
“In our classes they don’t develop abilities for these subjects.” and pointed out that the only 
strategies they know, they learnt as rules of memorization. 

To the next question formulated to the ST “Which strategies do you know of mental 
calculation?” their responses were only a list of names like: “counting”, “rounding”, “basic 
operations”, decomposition”, “chopping” and “multiples of 10”. In the follow up discussion, we 
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requested an example illustrating the strategies, but the ST claimed they didn’t know how to 
apply them. Only two ST gave an example: One was: “Decomposition: For 35 + 48 =, first add 
30 and 40 to get 70 and the 5 and 8 to get 13. To finish we make the operation 70 + 13 = 83.” 
and the other was, according to him about “counting”, but was in effect another example of 
decomposition. We can appreciate again a very limited knowledge of this subject, with one 
single strategy known (decomposition) which is the closest in form to the conventional 
algorithms. 

Later on, we applied a worksheet with 10 simple operations where the ST were asked to 
describe the procedures that they could follow to solve them. More than half of the responses 
were mental applications of the conventional algorithms. Another 35% were answered by 
applying a decomposition strategy (the way to differentiate between this one and the algorithms 
is that in the former the value of the quantities are preserved but in the later, only the digits are 
handled). Another strategy appearing in approximately 10% of the cases, it is called “by steps”. 
To give an example, for the division 400÷25, one of the ST wrote “4(25=100; 100(4=400; 
4(4=16”. Rounding appeared only in 4% of the responses although a few operations were 
designed explicitly to apply this strategy. For example, for 37+46, one ST wrote “40+46=86, 86-
3=83”; for 87÷3, another ST wrote “90÷3=30, 3÷3=1, 30-1=29” and for 693÷7, yet another ST 
wrote “700÷7=100, 7÷7=1, 100-1=99”. So not only the ST didn’t have a clear set of concepts but 
their familiarity with strategies was very poor. 

Before the second session on mental calculation, the ST were given reading materials on the 
subject. With this new information, they were able to bring out many strategies during the oral 
exercises proposed. For example, for the subtraction 56–18, one proposed: “To 18, I take away 2 
and to 56 I take away 16 to get me 40. Then I take away the other 2 to give 38” (although hard to 
follow, this is a correct strategy, using compatible numbers); another followed rounding of the 56 
with compensation: “I add 56+4 to get 60 and add 4 to 18 to get to 22. Subtracting these we get 
38” and a third one also used rounding but of the 18 with compensation: “I would add 2 to both 
to get 58–20 = 38”. In this same exercise, we observed also decomposition and “by steps” 
strategies. We see once again here that the ST were capable of applying very rapidly the different 
strategies shown in the readings and developing their knowledge with the interactions with 
others. So what was hindering them was a lack of knowledge. As one of them expressed, “Now 
we have the strategies and know how to use them. We only need to direct them to each exercise.” 

On to the sessions on estimation, we observed too that the ST’ initial conceptions were quite 
vague. They describe estimation as “It is something approximated.” “It is what we use to 
approximate large quantities.” Afterwards, the ST were given a worksheet consisting of 5 
exercises related to this topic (which we will refer below as I, II, III, IV and V.) 

In items I and II an operation (374 + 421 + 339 + 472 and 1797.50 – 635.10) was given to the 
ST to estimate the result and give an appropriate context of estimation. In items III and IV, the 
ST were given a problem (one of addition and one of multiplication) to estimate the result and to 
explain their solution. In the discussion that followed, they heard others’ responses and learned 
from them. We observed, in general, a significant growth in the variety of their strategies, 
applying rounding of various types (with one or two significant figures or to units, tenths…) and 
translations like 400(4 for the first sum. 

B. Knowledge of content and teaching. Another question posed in the initial session was: 
“How would you teach mental calculation?” The ST’ answers were all along these lines “With a 
lot of exercises so the students practice their calculations.” “Through fast operations without 
using paper.” We observed several misconceptions and inappropriate approaches to the teaching 
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of mental calculation like repetition and memory as opposed to reasoning and the construction of 
strategies. Furthermore, two of the ST indicated that mental calculation is something that cannot 
be taught: “It is something used outside the classroom and there is no way to instruct it.” In 
general this shows a poorly founded knowledge for teaching. 

In the next session, after reading the materials given, they were requested to think of 
advantages and disadvantages of mental calculation and the conventional algorithms. Here we 
observed that their initial views changed considerably. For the algorithms they mentioned: “They 
are not used in higher courses because the calculator is used, not to lose time.” “The numbers 
lose their meaning.” “They are general, but we don’t have a feeling if it is right or not.” “About 
mental calculation they stated that: “An advantage is that each one looks for his strategy and 
applies it.” “It develops a numerical sense, for their studies and their life.” The progress of the 
ST illustrated here is in their motivation to teach mental calculation and in knowing a reasonable 
approach for teaching it. As one of them stated “The development of mental calculations is not 
only to give the steps to follow but we should base our instruction on strategies so they can 
decide which to follow.” 

After this, we questioned the ST about the differences of mental calculation and estimation. 
Two of their answers were: “there is only one exact answer but many reasonable estimations.” 
“In estimation we should use much bigger numbers.” We can appreciate that they showed an 
increased understanding of these subjects for teaching. 

C. Knowledge of content and students. In exercises III and IV mentioned before, we added in 
each, a possible student’s solution. We requested the ST that they would explain the solution and 
also evaluate it. For example, question III “For the construction of a special classroom, the 
school has to collect $6,274 pesos. a) About how much does each of the 28 groups have to 
contribute? b) If a student writes: 6000÷20=300, explain and evaluate his answer.”   Some of 
their explanations were “The student chopped. He didn’t care if the last digits were 6, 7, 8 or 9.” 
“He must take into account a smaller quantity to drop it.” We appreciate here some dislike for 
the ‘radical’ way to carry out the estimation given. They showed in general very little tolerance 
for approximations. This is also shown in their evaluations of the estimation given: “this is 
correct although the error is very big.” “It is right although his approximations were very far 
off.” 

Conclusions 
The knowledge that a teacher should hold is very extensive and it has been characterized by 

what it is call MKT, which is the mathematical knowledge useful in the teacher practice, strongly 
conceptual in nature. 

However, in many teachers’ schools, math and pedagogy are separated in different 
compartments. ST in their last year of formal learning have a knowledge of mathematics and 
mathematics teaching, but our observations showed that the former is somewhat limited and 
forgotten, based mostly on procedural understanding. The latter is composed of conceptions 
formed through their own experiences. 

In general, we observe important deficiencies in the three domains of the MKT. In the 
specialized knowledge, there was a lack of a variety of strategies of solution and the ability to 
unfold procedures. With respect to knowledge for teaching, they had a very small array of 
representations and illustrations. Their knowledge of students was based on their intuitions. 

In this paper we described two rather different situations. In the case of fractions and 
decimals, the ST already received in previous courses, the same topics we covered in our 
sessions. In the case of mental calculation and estimation, although it is included in their 
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programs of study, many times it was overlooked or the approach given is very mechanical 
without looking at strategies. In both cases, we observed a weak knowledge of the subjects. 
However, in the case of fractions and decimals, the six sessions given were able to bring back 
and solidify the main concepts and in the case of mental calculation and estimation the four 
sessions were able to provide a good background for further development. Furthermore, the ST 
learnt to ask themselves the proper questions about their practices within the three domains of 
MKT. 

These results strongly suggest that it would be a very favorable strategy in teachers’ colleges 
to implement a short special course at the end of the formal learning like the one described here, 
with the objective of ST discussing and reflecting about their strengths and weaknesses in some 
core subject matter. Currently in Mexico, training of ST is done in classrooms with in-service 
teachers. However this does not recuperate and refresh their knowledge and practices are often 
perpetuated by the same traditional ideas. 
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Reports on a research project designed to implement an adapted Lesson Study cycle whereby 
preservice mathematics teachers co-create a lesson with a Master Teacher and observe the 
Master Teacher teach the lesson. Results show the preservice teachers’ shift, when designing a 
lesson, from a ‘teacher presenting the task’ perspective to a ‘student engaging in the task’ 
perspective and the importance of seeing their own lesson taught. 
 

Introduction 
This paper reports on a study designed to show how an adapted Lesson Study (Isoda, 2007) 

can enhance preservice teachers' early experiences in constructing mathematical tasks for use in 
the classroom. For the purposes of this study, the term Lesson Study refers to an improvement 
cycle in which teachers collaborate to discuss learning goals and plan one or more actual 
classroom lessons. Teachers engaged in lesson study assume shared responsibility for the 
teaching lessons they create, observe the effectiveness of these materials as they are taught, and 
then work to revise lessons for future use (Lewis, 2002). 

Specifically we studied a community of planning and practice (Wenger, 1999) by 
implementing and studying a cycle of preservice teachers designing lessons which promote 
inquiry and learning for understanding; the implementation of those lessons by a Master Teacher 
(observed by the preservice teachers); and co-reflection on the lesson by the inservice and 
preservice teachers. We call this the CRAFTeD (Call for lesson; Referendum, Advising session; 
Fine-tune; Teach-Experience; Debrief) cycle. The key component of this cycle is that preservice 
teachers see their own Lesson Plan implemented by a Master Teacher which gives them a 
different level of investment in the lesson than if they watched exemplary lessons, and they see 
their Lesson Plan implemented without having the pressure of teaching the lesson themselves 
whereby their concentration may be such aspects as classroom management, teaching style and 
their interactions with the students. 

In pilot studies undertaken in the past (Meagher, Edwards & Koca, 2009) we have seen the 
importance of exemplary field placements for the consolidation of issues about inquiry learning 
addressed in the university classroom. The use of video technology in our most recent work has 
shown how the school-university partnership has the possibility be scaled up to impact far more 
preservice teachers than are able to attend a field placement site. 

The research questions guiding the research and the analysis are: 
(a) How do preservice teachers engage in creating lessons with a Master Teacher? 
(b) What is the impact on preservice teachers of seeing their own lesson being taught? 
 

Literature Review and Relationship to Research 
There is now a large body of literature (Conference on Learning Study, 2006; Fernandez, 

Cannon & Chokshi, 2003; Fernandez & Yoshida, 2004; Isoda, 2007; Lewis, Perry, & Murata, 
2006) on the importance and effectiveness of Lesson Study approaches in improving teaching, 
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curricular content, and instructional sequences. Hart, Alston & Murata (2009) draw on a plethora 
of research studies to argue that while many Professional Development models such as action 
research or teacher place teachers at the centre of the research, Lesson Study is unique in focus 
that is brought to bear on a “live lesson.” They assert that “teachers notice certain aspects of 
teaching and learning, and this implicit and organic noticing does not happen in artificially replicated 
professional development settings.” (p.1) Lesson Study approaches can also provide for more 
focused professional development than many traditional professional development models 
(Lewis, 2002). Furthermore, developing communities of practice (Wenger, 1999) and lesson 
study groups (Fernandez, 2002) can help teachers to adopt a more research-based focus in their 
lesson planning and to develop a shared repertoire of communal resources which can transcend 
individual contributions. Most research thus far has focused on inservice teachers: our research 
involves implementing an adaption of the Lesson Study approach for pre-service teaches. 

Our research employs lessons learned from Lesson Study approaches to address the problem 
that the teaching methodologies advocated by methods instructors in teacher preparation 
programs are not readily observed in actual classroom settings, a disconnect that has become 
more pronounced in the age of high-stakes standardized testing. While university methods 
instructors laud the merits of student-led inquiry, exploration, and discovery-based teaching 
methods, secondary mathematics teachers in too many schools “set aside” such teaching in favor 
of instruction directly focused on student preparation for high-stakes, multiple choice state tests 
(Seeley, 2006). In an age in which testing dominates the landscape of too many classrooms, it 
becomes increasingly difficult to provide teachers-in-training with models of high-quality 
mathematics instruction in secondary school environments. The proposed study looks to explore 
an answer to this situation by providing preservice teachers with opportunities to collaborate 
with exemplary high school mathematics teachers by means of inexpensive, readily available 
web-based conferencing services and strategic face-to-face visits throughout the semester. 

 
Methods and Methodologies 

This research is designed to implement the following CRAFTeD cycle:  
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The cycle emerged from our previous work where the decisive influence of the field 
placement in terms of the mentorship/exemplars students experienced became apparent. 

(i) A class of preservice high school teachers wrote Lesson Plans on a given topic and then 
worked together to develop improved lessons/short units designed often for technology-rich 
environments; (ii) an experienced inservice teacher reviewed the lessons/short units and 
presented an initial redesign; (iii) the inservice teacher taught the lesson, observed on video by 
the preservice teachers; (iv) the preservice teachers and inservice teachers met together to reflect 
on and redesign the lesson based on their experiences in the classroom 

The purpose of the cycle is to examine (i) how pre-service teachers co-create a lesson and (ii) 
to examine the particular impact of ownership of the lesson on preservice teachers learning. 
The preservice teachers 

The pre-service teachers (n=15) were engaged in routine activities that comprise a 
mathematics teaching methods course, which met for two 75 minute sessions a week for 15 
weeks, at a small Midwestern university. The course was the second in a two-course Methods 
sequence, these courses being the pre-service teachers’ only Methods courses in the program. 
Prior to taking the Methods courses the pre-service teachers take Foundations and Mathematics 
Content courses. The course was designed specifically for pre-service secondary school 
mathematics teachers, with the subjects engaging in activities focused primarily on pedagogical 
issues (e.g. constructing lesson plans and grading rubrics, creating technology-oriented math 
activities) and content issues (solving mathematics problems, assessing student work). As part of 
the course the preservice teachers engaged in two iterations of the CRAFTeD cycle. 

The inservice teachers 
The inservice teacher was a Master Teacher at a local partnering school. The inservice 

teacher has been a co-operating teacher with the university for many years and is a teacher leader 
in the district with particular expertise in the use of technology in teaching mathematics. 
Data Collection 
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The data collected during each cycle, as described above was 
• A Skype-based discussion between the class and the inservice teacher initiating the cycle 
• Lesson Plans created by small groups of the preservice teachers 
• The Lesson Plan voted on as the best from the 8 created 
• The revisions suggested by the inservice teacher 
• Reflections from the inservice teacher and the preservice teachers on the revised lesson 
• The final implemented Lesson Plan 
• Videotape and fieldnotes from the lesson as taught by the inservice teacher 
• Videotape and fieldnotes of the debriefing between the preservice and inservice teacher. 
• Interviews with inservice and preservice teachers on the entire cycle. 
• A revised Lesson Plan after the teaching of the Lesson. 
The data coded for direct answers to the research questions with two basic codes: “co-

creation” (CC) and “their own lesson” (TOL). The data was then re-analysed using the constant 
comparative method (Cresswell, 1998) to examine emerging patterns that were not revealed at 
the first round of coding. Sub codes such as Modifications to the Lessons, Classroom 
Management, Student Learning emerged at this stage. Quotes exemplifying the quotes were 
organised and exemplary quotes for each of the codes chosen to support the analysis. The 
analysis is presented in the order of the cycle. 

 
Results 

Call for Lesson 
The cycle was implemented on two occasions in the semester. On each occasion there was a 

Skype teleconference with the experienced teacher. In the first iteration of the cycle the Call was 
for a lesson introducing right angle trigonometry in a manner that would allow the students 
experiencing the lesson to “make a connection to the ‘sin’ button on their calculator.” For the 
second lesson the Call was for a lesson connecting the unit circle and the sine curve. 
Referendum 

At the Referendum stage in the first iteration the preservice teachers decided to take elements 
from each of the group’s lessons to make what they ended up calling the ‘Frankenstein’ lesson. 
The consensus was that the ‘Frankenstein’ lesson didn’t work as well as it could have so, for the 
second iteration of the cycle the preservice teachers decided to pick one lesson and then work 
together to strengthen that lesson.  
Advising Session 

Two candidate lesson’s were sent to the inservice teacher who reviewed both and then chose 
on commenting “I will use A’s lesson. The other is good, but too algebraic. I really wanted 
something visual and kinesthetic, and A’s fit the bill.” (Inservice Teacher Interview) 

The core of the Lesson chosen is a fairly standard use of pieces of dry strands spaghetti 
placed on a unit circle to create a physical measurement of the y-coordinate associated with a 
chosen x-coordinate. Students then paste these pieces onto an axis at the relevant place to create 
the outline of a sine curve. 

The students sent a complete lesson, including worksheets to the inservice teacher who then 
return the lesson with several comments. It is interesting to note that many of the modifications 
made by the inservice teacher at this point showed his experience in thinking about the lesson 
from a students’ point of view. To use the language of Stein and Schwab Smith (1998) he is 
thinking about “Tasks as implemented by students” rather than “Tasks as set up by teachers.” 
Many of the modifications are simply practical elements which the inservice teacher recognises 
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as crucial to allowing the students to concentrate on the substance of the task. For example, in 
the original lesson the students constructed a story about the bug’s journey which involved 
taking measurements every 15 seconds which should then be equated to degrees (the journey 
having been set up to take 6 minutes so each degree would be a second) resulting in the 
following unit circle on their worksheet: 

 
with just two indicators each showing 15 degrees. The inservice teacher judged the time issue to 
be a distraction and also recognised the ambiguity in this set up: Will students recognise that the 
two 15 degrees indicated are supposed to total to the 30 degrees required for the second 
measurement? Might students get confused about what happened when you get passed 90 
degrees? There are some valuable mathematical discussions possible around those two questions 
but the inservice teacher wanted the students to concentrate on getting the correct measurements 
and not be distracted at his point of the lesson and so proposed the following unit circle for the 
worksheet: 

 
The preservice teachers recognised this as having the advantage of focusing on the degree 

measurements of the unit circle and therefore being more focused on the substance of the 
mathematics. 
Fine-tune: 
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The preservice teachers moved to the fine-tune part of the cycle wherein the authors of the 
original lesson plan formally taught the lesson to the other preservice teachers. This stage of the 
process turned out to be surprisingly powerful. It furthered the preservice teachers’ development 
in taking the crucial step of thinking about the lesson from a students’ perspective rather than 
from a teacher’s perspective (students’ tasks vs teachers’ tasks again). Suddenly a plethora of 
practical issues were brought to light and modifications were made to the lesson as the preservice 
teachers realised that they had not thought carefully enough about many practical issues such as: 
“The blank graph also had a suggested location to place tape, which we discovered was 
problematic because the tape being placed over the x-axis made it difficult to determine the exact 
location of the x-axis.” (Preservice teacher 14). The importance of this fine-tuning stage was 
discussed at length by most of the preservice teachers in their reflections resulted in statements 
such as “I think the debugging effort demonstrated the importance of “piloting” one's lesson. It is 
easy to imagine how smoothly things will be, but until you actually put yourself in the role of the 
student and follow the instructions and complete the activity, it is difficult to identify potential 
problems.” (Preservice teacher 15). 

As we have mentioned before this sort of realisation may read as something that should be 
obvious to teacher candidates but it was an important lesson for them to learn and a lesson that 
was only learned because their lesson was actually going to be taught not simply produced as an 
exercise for a class. 
Teach/Experience 

The Lessons were taught by the inservice teacher and videotaped so that the preservice 
candidates could spend adequate time watching and reflecting on the implementation of their 
lesson. 
Debrief 

The other stage of the cycle where the benefit to the students was greatest was in the debrief 
on the Lesson. The debrief was conducted through in class discussion and by having the 
preservice teachers write reflection papers. 

In this part of the cycle we again saw the importance of the lesson being their own lesson 
coming through strongly. The level of investment and, therefore, the level of attention the 
preservice teachers paid to the lesson seemed to be a direct result of this ownership. 

Modifications 
The preservice teachers noticed straight away that the inservice teacher modified their lesson 

by including an introduction on families of graphs such as |x| and x^2. He then spent some time 
using a SmartBoard to animate the journey of the bug walking around the circle. He then 
challenged the students to think about what the graph of the height of the bug relative to the x-
axis over time would look like. This introduction and conjecture setting may seem, to any 
experienced reader, an obvious aspect of any lesson and it may indeed seem like even novice 
teachers should know to do this but it is interesting to read in the student reflections how 
powerfully this aspect impacted them. The impact had two aspects (i) the conviction that it 
improved the lesson and (ii) this gave them an example, in a context, that they were familiar with 
and of which they had ownership, of how a teacher can draw on students’ previous learning, 
connect to the current topic and force students to think through what the outcome may be to 
create a student investment in the outcome of the lesson. (Will the graph turn out to be a parabola 
as suggested by one of the students in the class?). In their reflections almost every preservice 
teacher wrote about these modifications and the impact they had on the lesson. As one preservice 
teacher reflected: “In the Spaghetti Sine lesson, the inservice teacher had to include a warm-up 
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since we did not provide one with the lesson. The warm-up he presented was excellent in that it 
helped students to recall previously learned families of functions as a precursor to the 
introduction of a new family function, the sine curve. This modification significantly improved 
the lesson's effectiveness from a constructivist point of view. Students were asked to incorporate 
new information by layering it upon former knowledge.” (Preservice Teacher 2). The idea of the 
conjecture also resonated strongly with the preservice as exemplified in the following comment: 
“Most students predicted that the graph of the bug's height above the x-axis would take the shape 
of a parabola.  Having students predict what this graph would look like was a good idea because 
it forced students to really contemplate the problem before actually investigating it.” (Preservice 
Teacher 5). 

Classroom Management 
As the lesson progressed the preservice teachers had an opportunity to closely observe a 

Master Teacher at work and see an exemplary implementation of the lesson without having to 
worry about classroom management let alone implementation. In fact, it gave the students an 
opportunity to observe how a skilled and experienced teacher used classroom management to 
further the goals of the lesson and engage with the students. As one preservice teacher noted 
“One small thing that he did to increase the quality of the lesson was going around and handing 
out tape to the students as they needed it.  This small gesture allowed the inservice teacher to 
roam the room, checking student progress and answering questions while keeping the order by 
keeping them seated.  Otherwise, the activity would be more chaotic if students were constantly 
getting up to get more tape.  This is a management detail that I am now aware of as I begin my 
teaching career.” (Preservice Teacher 5). The preservice teachers also observed that the inservice 
teacher was experienced enough to head off some potential difficulties before they could cause a 
problem “[He] took care of the issue we were concerned about with having the calculators in the 
correct mode right away at the beginning of class.  By taking care of this before getting into the 
activity, he prevented the possible disaster that could have occurred later and disrupted the entire 
class.” (Preservice Teacher 9). 

Student Learning 
The videotaping of the lesson also allowed the preservice teachers the opportunity to observe 

the students working on the materials they had created. The ownership here provided a real 
investment in student learning and the tone of excitement in the reflections as the preservice 
teachers wrote about how they observed student engagement and learning shows the impact of 
the cycle on their development as novice teachers.  

It was pretty cool to watch kids make connections as they were working.  After the slope of 
their sine graph turned negative, many of them began to see the symmetry in the curve they 
were constructing.  Then when the graph slipped below the x-axis many of them realized 
they were going to make the same curve but upside down from the first.  The coolest 
connection students began to make though was that they could have cut out multiple pieces at 
the same time.  We could literally hear students coming to this conclusion as we watched the 
video.  As connections were being made we could see the students were adding meaning to 
what they were doing and that this lesson would be one that they would remember. 
(Preservice Teacher 1) 
This observation of connections the students were able to make was frequently remarked 

upon. Others were encouraged by seeing that the kind of hands-on lesson advocated for by 
NCTM (2000) and most professors can work in a real class: “I found the level of student 
engagement heartening. We have been encouraged to find hands on activities when creating 
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lessons. We are taught that students learn in stages and that abstraction is the last phase. At the 
secondary level, I believe teachers expect students to leap to abstraction far too quickly. When 
this happens, the students do not enjoy the process, and often feel left behind in their thinking. 
Lessons like the Spaghetti Sine lesson remind me to make the leap more of a step. I hope I never 
forget this pedagogical reality.” (Preservice Teacher 2). 
 

Discussion 
This study was designed to implement the six stage CRAFTeD cycle we developed to 

provide preservice teachers enrolled in a Mathematics Methods class a rich and meaningful 
experience in writing lesson plans and to answer the following research questions: (a) How do 
preservice teachers engage in creating lessons with a Master Teacher? (b) What is the impact on 
preservice teachers of seeing their own lesson being taught? 

The study was not on a large scale and was exploratory in nature but the data presented 
above provides evidence that there is a trajectory of development in understanding Lesson Plans 
as well as many basic and more nuanced issues of teaching when the CRAFTeD cycle is 
implemented. The fact of the lesson being taught provides extra motivation “These experiences 
have made something I wouldn’t have cared about as much more worthwhile. If we had been 
doing lessons for this class and I knew that all they were going to be: all that was going to 
happen is that they were going to get graded and I was going to get them back I wouldn’t be as 
prone to put as much time and effort into it as I am now knowing that this is actually being 
taught to actual students.” (Preservice Teacher 6). The preservice teachers not only had an 
investment in what was happening but were able to follow every detail of the lesson closely. “I 
really appreciate having the extra time to create, get feedback, edit, and then give a final version 
of our lesson to him before he taught it. This made watching the lesson easier since I knew what 
was happening.” (Preservice Teacher 10). The process can also encourage students to be 
innovative “being able to think outside the box and come up with these things and have a veteran 
who has outstanding classroom management skills to implement it helps you feel a little more at 
ease about thinking outside the box.” (Preservice Teacher 8). 

The investment in the lesson the preservice teachers had designed and worked on with an 
experienced teacher made this a very different experience from creating lessons which will never 
be taught and a very different experience from simply watching an exemplary lesson on video. 
We believe the CRAFTeD cycle has considerable potential to provide a variant model on 
traditional Lesson Study that can be very effective the development of preservice teachers. 
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We present an analysis of the practices of one mathematics teacher educator in the context of an 
elementary methods course. Our analysis of the 51 tasks used in the course revealed a content 
structure characterized by four components: mathematical knowledge, psychology of 
mathematics learning, teachers’ didactic actions, and reflection. The epistemic nature of the 
tasks in these content areas is described. We also observed a number of structuring frameworks, 
largely informed by theory, that were presented to the students as tools for completing course 
tasks. We conclude with a general framework for the investigation of other methods courses. 
 

Objectives 
Teachers have a number of ways to check the degree to which their practice is aligned with 

local and national objectives set out for elementary mathematics teaching. Aside from assessing 
their students’ understanding in the classroom, there are a number of standards documents that 
can assist them to stay “on track,” such as the NCTM Standards (NCTM, 2000), which provides 
teachers a comprehensive vision of elementary mathematics instruction in terms of content and 
process objectives. The same cannot be said of mathematics teacher educators (MTEs), those 
who prepare future elementary teachers of mathematics in the context of teacher education 
programs. Few, if any, guidelines exist with respect to content, curriculum, or pedagogical 
approach for the MTE, and as a result, MTEs engage in widely different practices, with virtually 
no communication among them (Osana, Sierpinska, Bobos, & Kelecsenyi, 2010). Furthermore, 
while the research on the practices of MTEs has grown over the last decade (e.g., Even & Ball, 
2009), it provides at the same time analyses that are at a large and small grain size. For example, 
cross-cultural comparisons of the mathematics components of teacher training programs are 
available (e.g., Pope & Mewborn, 2009) as well as psychological descriptions of individual 
preservice teachers’ thinking (Newton, 2008; Tirosh, 2000), and detailed, narrative accounts of 
single MTEs engaging preservice teachers in specific tasks (see Chapman, 2009). Other studies 
have examined the practices of MTEs by using their syllabi as data (Taylor & Ronau, 2006), but 
the limitation of this approach lies in the challenge of determining the types of knowledge their 
tasks actually or intend to generate, resulting in a superficial or disconnected analysis that often 
generates more questions than answers.  

Such varying perspectives and levels of analysis make it difficult to compare the practices of 
MTEs in their methods courses, which is the objective of our current research. Little is known 
about what MTEs do as they prepare future teachers of mathematics, including the reasons for 
what they do and the effects of their practices. Before one can even determine the effects of their 
specific practices, however, one needs a common language and organizing framework to analyze 
and document them. Thus, the objectives of the current study is twofold: (a) to present a detailed 
analysis of the practices of one MTE, and (b) to present a framework that can be used to 
document the practices of other MTEs in the context of their own methods courses.  

The present study is part of a larger, ongoing project in which we are analyzing the data from 
five other university sites. We are currently using the framework presented in this paper, called 
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the Mathematics Teacher Educator Framework (MTEF), to document the practices of the other 
five MTEs from whom we collected data. In so doing, we are refining, and may possibly expand, 
the framework so that it is general enough to examine the practices of any other MTE in the 
context of an elementary methods course. This will lead the way for more meaningful dialogue 
to take place among MTEs and allow for common ground on which to conduct future research in 
the area. While the findings presented in this paper are the beginnings of a work in progress, we 
nevertheless believe that our insights at this stage may prompt other MTEs, as well as scholars in 
the field, to think about adopting the common language we propose through the MTEF to 
communicate more productively about the preparation of mathematics teachers. 

 
Theoretical Framework 

The approach we take in our analysis of MTEs’ practices is through an examination of the 
tasks they use with preservice teachers, those that are required of them in class as well as 
assignments that are to be completed outside of class. A theoretical framework that we have 
found particularly useful in our examination of tasks is derived from Chevellard’s (2002) 
“praxeology theory.” A praxeology is a theoretical model of a practice, and as such, a praxeology 
of a practice describes it using four dimensions: tasks, techniques, technology, and theory. One 
can begin talking about the existence of a “practice” in the execution of a class of tasks if (a) the 
tasks have been divided into types; (b) there are techniques for tackling each type of task; (c) 
there is a conceptual framework and technological tools to justify the purposes of the tasks and 
the validity of the techniques; and (d) there is a discourse that systematizes and brings theoretical 
coherence into the previous elements of the practice. The discourses in (c) and (d) are necessary 
for the practitioners to communicate their practice to others and to assess whether a task has been 
satisfactorily completed.  

So far, the Chevellard’s (2002) framework of “praxeology” has been usefully applied 
primarily in the study of practices in mathematics teaching (e.g., Barbé et al., 2005; Sierpinska, 
Bobos, & Knipping, 2008). We argue, however, that the same theory can be used to analyze our 
observations of MTEs’ practices in their methods courses. In this paper, we show how we used 
Chevellard’s model of Anthropological Theory of the Didactic (ATD) to analyze the tasks 
collected from one MTE in an elementary teacher-training program at a Canadian university. 

 
Method 

Participant and Settings 
The mathematics teacher educator in the present study (referred to in this paper as MJ) was a 

full-time, tenured faculty member in education at a large university in Canada. For the 10 years 
prior to our data collection at this institution, MJ was responsible for teaching two required 
elementary mathematics methods courses, each offered during 13-week semesters. The first of 
these courses, offered every fall, provides the context for the present study. MJ’s research 
background was in educational psychology, which included a minor in mathematics education.  

 
Data Collection and Analysis 

The primary source of data for the present study was 51 tasks used in MJ’s methods course. 
We created a rubric based on the ATD model, and used it to code each task as we made a first 
pass through the data. The rubric contained two major categories: (a) the institutional status of 
the task, which contained the subcategories of in-class activity, take home assignment, and in-
class test, and (b) ATD analysis, which contained the four subcategories specified by 
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Chevellard’s (2002) ATD model, namely task type, technique, technology, and theory.  
We also interviewed MJ to obtain more detail about each task and to tap into her 

justifications for including the tasks in her course. We conducted a total of 15 interviews with 
MJ over the course of one year, with the duration of each ranging from half an hour to two hours. 
The interviews were semi-structured, and included questions such as, “Why did you choose this 
task in particular? Why did you design it this way? What do you intend for the students to learn 
by engaging in this task? How was it implemented in the class?” Four of the interviews were 
audio recorded; detailed notes were taken during the remaining interviews. Finally, a third source 
of data used in our analyses was the collection of documents provided to students in the course, 
which included the syllabus, all handouts and tests, and lecture slides. 

The transcriptions of the audio recorded interviews and the interview notes were analyzed 
using grounded theory techniques (Strauss & Corbin, 1998). These analyses were used to 
supplement the initial coding of the tasks to generate further categories in the rubric, which, 
through several passes through the interview transcripts and careful examinations of course 
documents, allowed us to describe the course and to create the MTEF in its current state. More 
specifically, when coding for task type, we coded the data for the content that was targeted by 
each task (e.g., psychological principles underlying children’s thinking). This allowed us to 
address the structure of the course content. When coding for techniques, we searched for ways 
suggested by MJ to go about working through the task (e.g., “use your knowledge of problem 
types and apply it to extend the given third-grade activity”). We also coded the data for the 
techniques associated with each task, which directed us to search for tools suggested by MJ that 
justified the use of the techniques (e.g., a set of principles for analyzing a classroom lesson). 
Finally, we coded the data for evidence of any discourse that was intended to systematize and 
bring together theoretical coherence to the technologies recommended for each task.  

 
Results and Discussion 

In this section, we illustrate MJ’s practice by presenting the content structure of the course 
(task type), the techniques suggested by MJ to tackle the tasks, the technologies MJ required her 
students to use as tools in their use of techniques, and finally, the theories used to justify the 
technologies. Our analysis of the tasks using the ATD framework allowed for an additional 
theme to emerge, called epistemic actions, which describes the kinds of knowledge that MJ 
intended to foster using the tasks she chose. Note that in this section, we refer to the preservice 
teachers in MJ’s course as “students.” 
Task Types and Techniques 

The content structure of MJ’s course consisted of four content categories: (1) mathematical 
knowledge for teaching, (2) psychology of mathematics learning, (3) the teacher’s didactic 
actions, and (4) reflection. We describe each of these categories below. 

Mathematical knowledge for teaching. The first category – mathematical knowledge for 
teaching (MKT) – is defined here as knowledge of the concepts and principles of school 
mathematics (1). In MJ’s course, MKT included knowledge of numbers and their properties, 
models of mathematical operations, and the ability to solve the problems in the elementary 
mathematics curriculum. There were 17 MKT tasks in MJ’s course, which constituted 33% of all 
the tasks analyzed. A sample MKT task is presented in Figure 1.  

Psychology of mathematics learning. We defined the category of Psychology of Mathematics 
Learning (PML) as knowledge of how children learn mathematics, which included, in MJ’s 
course, (a) how children learn to count and understand number, and (b) the types of strategies 
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children acquire as they learn to solve problems with whole numbers. The same number of PML 
tasks was assigned by MJ as MKT tasks – that is, we coded 17 PML tasks, which made up 33% 
of all tasks in the data set. A sample PML task is presented in Figure 2.  

2 x 7 = (2 x 4) + (2 x 3)

 

Figure 1. Sample MKT task (adapted from Sowder, Sowder, & Nickerson, 2011). 

Figure 2. Sample PML task. 
Teacher’s didactic actions. There were 11 tasks (22% of all the tasks) that we placed in the 

category of Teacher’s Didactic Actions (TDA), which we defined as the knowledge and skills 
needed to perform pedagogical actions, such as identifying the didactic objective of an activity, 
using a pictorial representation to explain an algorithm, and producing tasks intended to mobilize 
a specific mathematical concept. We present a sample TDA task in Figure 3.  

Reflection. In the fourth category of task type, Reflection, we placed 6 of MJ’s tasks, which 
constituted 12% of all 51 tasks. Reflection tasks were those that targeted the students’ beliefs 
about the goals and objectives of the course in relation to their development as teachers. More 
specifically, MJ required her students to think about why subject matter knowledge is important 
for elementary mathematics teachers, how a “good” teacher uses mathematics in the classroom, 
and to identify a new kind of knowledge (namely, the professional body of mathematical 
knowledge that is “pedagogically useful,” Ball & Bass, 2000) and distinguish it from the “plain 
old math,” a term used by MJ to describe what she believed reflected her students’ conceptions 
of the subject-matter. One such task assigned by MJ was to write a brief “journal entry” on the 
first day of class describing her students’ thoughts about various aspects of a teacher’s subject-
matter knowledge, including their beliefs about the types of mathematical knowledge necessary 
for elementary school teachers. Subsequently, MJ required her students to read a non-technical 
article (Ball, Hill, & Bass, 2005) on the topic of mathematical knowledge for teaching and to 
compare Ball et al.’s account to the beliefs expressed in the journals of their peers, which were 
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anonymously posted on the course’s website.  

 
Figure 3. Sample TDA task (situational problem from Kestell & Small, 2004). 

Across all the tasks in the four content categories, we observed MJ specifying a number of 
techniques for her students in the course. These techniques included using a checklist; recalling a 
definition; applying a principle or property; reading a text; describing observations; and 
comparing actions, tasks, and strategies; and were made explicit in all the tasks MJ assigned. 
 
Technologies and Theories 

Technologies can involve terminology, number facts, mathematical definitions, types of 
strategies used by children to solve problems, and didactic principles. Some technologies are 
loose collections of facts or principles, and others cohere as comprehensive frameworks. In 
classifying the technologies in MJ’s course, we observed that they fell into two categories: (1) 
related to the mathematics itself (e.g., principles and properties of involving operations with 
whole numbers), and (2) related to teaching actions and children’s learning. The majority of the 
technologies in MJ’s course took the form of “structuring frameworks”; they were collections of 
principles, tightly bound together, to be used as tools for completing tasks.  

To illustrate, MJ presented a number of mathematical properties, such as commutativity, 
associativity, and distributivity, as tools for thinking about a teacher’s actions. The task provided 
in Figure 1 shows how MJ required her students to use their knowledge of the distributive 
property of multiplication over addition to interpret a teacher’s actions during a lesson. In 
addition, a large component of MJ’s course centered on frameworks of problem types and 
children’s thinking taken from Cognitively Guided Instruction (CGI; Carpenter et al., 1996), a 
mathematics professional development program for elementary teachers. In several of her tasks, 
MJ required students to use the CGI taxonomy of children’s strategies to interpret and evaluate 
their mathematical work. Another task MJ asked her students to complete was to use the 
taxonomy to evaluate the relative difficulty of two division word problems – one measurement 
division and one partitive division – while taking into account a specific strategy to be used in 
each case. As a final example, MJ required her students to use a framework presented by Hiebert 
et al. (2007) on the dimensions of effective learning environments in mathematics. In one task, 
she required her students to analyze a videoclip of a fourth-grade lesson on area and perimeter 
and to analyze the teacher’s actions using Hiebert’s framework. In the assignment, MJ states: 
“This is not necessarily a perfect lesson... Use the Hiebert reading to point out, where applicable, 
ways the teacher creates an effective environment and ways he can improve his teaching.” 

U4!$!3&$:O&#V!-;K!N$/3!3;!K4&!3O&!
:;/3&W3!;X!3O&!<#;BC&M!3;!&W3&/%!
43K%&/34Y!0/;NC&%,&!;X!
MKC3+<C+:$3+;/!$/%!%+9+4+;/!Z!3O$3!+4V!
3;!4&&!O;N!3O&-!3O+/0!$B;K3!;3O&#!
<#;BC&M!3-<&4=![#+3&!;/&!N;#%!
<#;BC&MV!+/!3O&!:;/3&W3!;X!3O+4!
4+3K$3+;/$C!<#;BC&MV!3O$3!-;K!M+,O3!
K4&!N+3O!-;K#!43K%&/34!3;!M&&3!3O+4!
;B\&:3+9&= 
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Our analysis revealed that MJ’s technologies were informed by a deep theoretical 
understanding of teaching and learning in mathematics, but were left unjustified by theory. In 
particular, MJ noted specific reasons for not including theory in the course, such as a lack of time 
and pressure from the students themselves to know “the answer” and the one “right” way to 
teach. MJ was sensitive to the many “layers of complexity” in teaching mathematics, and as 
such, there were some tasks in her course that were left open to her students’ interpretation. More 
specifically, MJ expected her students to use the structuring frameworks in completing the 
course tasks, but was less concerned with their analyses or creations per se – as long as they 
engaged in analytical thinking (in her case, used the frameworks consistently, applied the correct 
definitions, and attended to the information provided in the task), the task was left open to the 
students’ interpretation of it. This relatively open-ended nature of many of her tasks caused, in 
her experience, great discomfort and uncertainty in her students. As such, MJ indicated to us that 
she was unwilling to add to the uncertainty by also requiring them to use theory to justify their 
actions in the context of the course tasks.  

 
Epistemic Actions 

We used our analysis of the 51 tasks to discern their epistemic nature – that is, from the 
results of our examination of the types of tasks emerged a picture of the type of knowledge MJ 
was intending to impart to the students in her course. Across all four content categories (MKT, 
PML, TDA, and Reflection), we observed seven epistemic actions intended by the tasks. These 
epistemic actions were: identify, produce, discuss/reflect, assess, model, solve, and explain. The 
actions differed according to the content with which they were associated. For MKT tasks, for 
example, students were required to produce a representation of a number with base-ten blocks; 
identify which property of an operation, among those they learned in class, was used in a 
teacher’s didactic action or a student’s solution; identify the type of a given problem based on a 
list of types of problems presented in class; and solve a mathematics problem. In the PML 
category, sample actions were to identify a child’s strategy; produce an example of a given 
problem; use knowledge of children’s thinking reflect on parents’ false beliefs about 
mathematics learning and to produce an argument to convince them otherwise; discuss the 
relative difficulty of a problem; and assess the counting skills of a child. With respect to tasks of 
type TDA, for instance, students were asked to produce a problem of a given type; explain a 
standard algorithm to a child; and identify the didactic objective of a given curricular activity. 
Finally, in the Reflection category of task type, students were asked to reflect on why teachers 
need to know mathematics and how they use their knowledge during teaching; and to identify a 
new category of mathematical knowledge, namely “mathematical knowledge for teaching,” of 
which they should have become aware by reading an article by Ball et al (2005). 

The most frequently occurring action observed in the data was “identify,” which accounted 
for 33% of all the epistemic actions found in the 51 tasks. This was nearly twice as many as the 
number of actions in the next frequent category, “produce,” which made up 17% of all actions. 
“Discuss/reflect” and “assess” were actions accounted for 16% and 14% of all epistemic actions, 
respectively, followed by the final three (i.e., model, solve, and explain) which together 
constituted 20% of all actions. An additional epistemic action emerged from our analysis, and 
that was of justification, which was systemic throughout the course and was required of students 
in almost all tasks. Indeed, 18 of the 51 tasks (35% of the total) required the students to provide a 
written justification of their claims – oral justifications were required in almost all other cases. 
MJ expected the students’ justifications to be systemic, or in other words, based on a system of 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

510



 

concepts, properties, and principles in the areas of MKT, TDA, and PML, which were, in MJ’s 
course, accepted as true. The choice of the concepts and the truth of these properties, principles, 
and statements was not questioned or debated. 

 
Contributions: The Mathematics Teacher Educator Framework 

Cochran-Smith (2003) argued that the responsibility of preparing qualified teachers rests 
primarily with teacher educators, who are becoming increasingly active in studying their own 
practices. Because of this, she continues, one sees, “the emergence of new terminology and new 
contexts for doing and making public the work of teacher education” (p. 9). We present here 
what we call the Mathematics Teacher Educator Framework (MTEF), an organizing model that 
we believe provides a common discourse to describe and communicate the work of the MTE. 
The MTEF emerged from our analysis of the tasks used in MJ’s methods course and, while it is 
relatively restrictive because it is based on only one site, we present it here as a first of its kind.  

The MTEF is anchored in a task analysis informed by the ATD model (i.e., task, technique, 
technology, and theory), through which one can describe the content structure of a methods 
course. Currently, the model contains four content areas (i.e., MKT, PML, TDA, and Reflection), 
but as our data analysis on the larger project unfolds, additions and reconfigurations to this 
content structure are inevitable. From the present task analysis, we were able to discern the 
epistemic nature of the tasks used in MJ’s course, which provides a view into the knowledge that 
she was trying to impart to her students. Given that uncovering the knowledge objectives of 
MTEs is by no means straightforward, we consider this aspect of the MTEF to a be a particularly 
important contribution to the literature in mathematics teacher preparation.  

Once the epistemic actions in any given methods course are determined, one can begin to 
classify them according to the degree to which they call for higher level thinking. In MJ’s course, 
the tasks that called for “identification” were of lower level than those that called for “reflection” 
(Vygotsky, 1987). Indeed, in one of our interviews with MJ, we noticed that she was surprised 
that she had given so much weight to relatively low-level tasks. We used this opportunity to 
discuss with her how to increase the presence of reflection, generalization, and abstraction in her 
tasks. Reflective practice and adopting an inquiry stance toward teaching have been identified as 
key areas of growth for the developing mathematics teacher (Doerr et al., 2010; van Es & Sherin, 
2008). The epistemic nature of tasks gleaned from the MTEF can itself be used as a tool for 
reflection, as MTEs may not be aware of the effects their own practices may have on the 
development of preservice teachers (cf. Torff & Sternberg, 2001). 

 
Endnotes 

1. We note that our conceptualization of MKT is more restrictive than that offered by Ball et al. (2008), 
who defined MKT as a combination of subject matter and pedagogical content knowledge (Shulman, 
1987). We restrict our characterization of MKT to knowledge of school mathematics and the “specialized 
content knowledge” described by Ball et al. as the mathematical knowledge unique to teaching. 
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Noticing is important to skilled teaching, as it enables teachers to modify instruction in response 
to students’ mathematical thinking and understanding. Novice teachers, however, often fail to 
notice important student ideas. A study was conducted with two secondary-level student teachers 
that focused on using research-like video analysis to help them learn to notice and assess the 
mathematical potential of important moments during instruction. Preliminary results of this 
work, as well as participants’ perspectives on their learning, are discussed. This use of video 
analysis holds promise for helping novice teachers use their classroom as a site for inquiry and 
learning. 

 
Objectives and Purposes of the Study 

The vision of mathematics instruction advocated in documents such as the National Council 
of Teachers of Mathematics’ [NCTM] Standards (e.g., 2000)—one in which teachers listen to 
and make sense of student ideas in order to build on them during instruction—requires a very 
different set of skills, dispositions and competencies than the traditional, teacher-centered model 
of instruction (Feiman-Nemser, 2001). It requires that teachers use the classroom as a site for 
inquiry and continued learning. Given the recognition that completing a teacher education 
program is not sufficient to develop all of the finished competencies of an effective teacher 
(Feiman-Nemser, 2001; Hiebert, Morris, & Glass, 2003), it has been suggested that it may be 
more productive to conceptualize teacher education as a venue for helping teachers acquire tools 
that enable them to learn from practice over time (Ebby, 2000), rather than as a site for 
producing a fully-formed teacher.  

Tools to learn from practice can be developed through engaging with student thinking 
(Feiman-Nemser, 2001; Philipp, et al., 2007), but many opportunities to do so within teacher 
preparation programs are not capitalized upon. Traditional field experiences, for example, have 
been criticized for helping prospective teachers learn what is currently being done, rather helping 
them rethink the possibilities for instruction (e.g., Philipp, et al., 2007). Even when placed in 
exemplary classrooms, prospective teachers often do not have the knowledge or dispositions to 
meaningfully observe classroom interactions (Masingila & Doerr, 2002). Adding to the problem 
is the fact that the goals of field experiences are often not well-articulated, leaving school-based 
mentors to develop their own goals for the field experience that often have little connection to 
mathematical content or students’ understanding of it (Leatham & Peterson, 2010). Thus, it is 
becoming recognized that intentional and substantial teacher educator involvement—visiting 
school sites and engaging teacher candidates in discussions about what is observed—is critical to 
supporting meaningful learning from field experiences (Grossman, et al., 2009; Masingila & 
Doerr, 2002).  

The use of video is another promising method of positioning prospective teachers to continue 
to learn from practice as it grounds learning in practice. In fact, studies have found that video 
cases can support the development of teachers’ analytical skills by helping them learn to make 
sense of students’ mathematical ideas and use classroom-based evidence to support analyses of 
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teaching and learning (Sherin & van Es, 2005; Author reference). Much of the current work with 
video, however, has used classroom video clips that have been selected and edited by 
experienced teacher educators, eliminating the opportunity for teachers to determine what 
instances might be worthy of analysis. This is problematic because in order to learn from 
teaching practice, teachers first need to notice (Sherin & van Es, 2005) important instructional 
events. In fact, a major difference between expert and novice teachers’ practices is their ability to 
notice and respond to important instances during instruction (Hogan, Rabinowitz, & Craven, 
2003), with novices failing to notice or act upon many instructional instances that experienced 
educators intuitively recognize and productively respond to (Peterson & Leatham, 2009). Thus, 
to position teachers to learn from practice, teacher educators need to not only develop 
prospective teachers’ ability to analyze classroom events, but also their ability to notice the 
events that are worthy of analysis because of their potential to support students’ mathematical 
learning.  

Ongoing work has led to an initial conceptualization of important mathematical moments that 
teachers should attend to during instruction (e.g., Leatham, Peterson, Stockero, & Van Zoest, in 
press) and a characterization of circumstances likely to lead to such moments (e.g., Stockero, 
Van Zoest, & Taylor, 2010). This work is an important first step in making such moments visible 
to teachers, as it provides frameworks that can be used to scaffold teacher noticing by focusing 
their attention on characteristics of potentially fruitful mathematical moments that could be 
capitalized on during instruction. The study reported here aimed to develop a preliminary 
understanding of how such frameworks might be used in practice. In particular, the frameworks 
developed as part of related projects were used to inform the development and implementation of 
instructional activities aimed to help two prospective secondary school mathematics teachers 
learn to recognize and analyze important mathematical moments in instruction during their 
student teaching experience. In this paper, the teacher learning activities, data collection, and 
analysis are described, and the results of initial data analysis are shared. The paper concludes 
with a discussion of the potential implications of this work for teacher education and future 
directions of the work. 

  
Theoretical Perspectives 

Consistent with current thinking in mathematics education (i.e., NCTM, 2000), this research 
is based on the view that the use of student thinking is central to effective mathematics 
instruction. Thus, it follows that noticing important student mathematical thinking is an essential 
skill of effective mathematics teachers, since teachers cannot intentionally act upon that which 
they do not notice (Sherin & van Es, 2005). The definition of noticing used in this work draws on 
that of Sherin and van Es (e.g., Sherin & van Es, 2005; van Es & Sherin, 2002), who define 
noticing as comprised of three interrelated skills: identifying important events during instruction, 
reasoning about them, and making connections between the events and broader educational 
principles. The conceptualization of the act of noticing during instruction underlying the research 
is shown in Figure 1; the first two components are the focus of the part of the work reported here.  
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Figure 1. Components of teacher noticing. 

  
The idea that student thinking is central to effective mathematics instruction does not imply 

that all student thinking is equally useful. Some student ideas, for example, are only tangentially 
related to the goals of the lesson or do not have the potential to add to students’ understanding of 
important mathematical ideas. These ideas are probably not worthwhile to pursue during a 
lesson, as the benefit they would bring would not outweigh the time taken from the lesson. Other 
student ideas, however, are mathematically rich and provide an opportunity for the teacher to use 
the student thinking to develop important mathematical ideas (Author reference). These are the 
instances that were the focus of this study. The central component of noticing as used in this 
work was helping novice teachers learn to notice student thinking that has the potential to 
advance student understanding of important mathematical ideas, while not expending time and 
energy on that which does not.   

 
Methodology  

Participants 
Two prospective secondary school teachers enrolled in the same teacher education program 

participated in the study during an 11-week student teaching experience. Both participants had 
been enrolled in a mathematics methods course taught by the researcher during the previous 
semester; an explicit focus of this course was on listening to and making sense of students’ 
mathematical thinking in order to build on it during instruction. Both participants were working 
with two cooperating classroom teachers, one in their major content area and one in their minor; 
this is typical of students in the program. Mary was completing her student teaching in high 
school chemistry (major) and mathematics (minor) classrooms and Audrey in middle school 
mathematics (major) and science (biology minor) classrooms. Project activities focused only on 
the participants’ mathematics classes. A graduate student research assistant (RA), an experienced 
teacher and Audrey’s cooperating teacher for mathematics, assisted on the project. The RA had 
no previous experience with the type of research-like analysis of instruction that was the focus of 
the study and was explicitly asked not to discuss the project activities with Audrey outside of 
project meetings. 

 
Context 

To help them learn to notice and make sense of important mathematical instances during 
instruction, the participants used the Studiocode video analysis software (SportsTec, 1997-2011) 
as a tool to analyze video recordings of classroom instruction. This software was selected 
because it allows multiple users to individually code and annotate a video segment and then 
merge and compare coding among users. It was hypothesized that engaging participants in 
research-like video analysis, rather than in more open discussions of classroom video that have 
been typical in past video case research (e.g., Author reference), would enhance their ability to 
notice important mathematical moments during classroom instruction, as it required them to 
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individually code the video and justify their coding before they engaged in discussions about it. 
The participants coded a total of eight classroom videos during the project. The first was of 

the RA’s instruction during the second week of the student teaching experience when the 
participants were just beginning to take on teaching responsibilities. The remaining videos were 
recorded in Mary’s and Audrey’s classrooms, alternating between classrooms each week. After 
recording, the researcher prepared each video for analysis by editing out portions where audio 
could not be heard or that were not related to the lesson content; this was done to reduce the 
participants’ video analysis time. It is important to note that the researcher did not edit any 
portion of the video where the teacher or students were talking about mathematics. The only 
portions what were edited were those where the teacher was taking care of administrative tasks 
or where students were working quietly.  

The participants were instructed to code each video for mathematically important moments 
that would be important for a teacher to notice during instruction and to annotate each coded 
segment to indicate its perceived mathematical importance. The phrase mathematically 
important moment was intentionally left undefined by the researcher so that the group could 
refine the definition during project meetings. The participants first coded and annotated each 
video individually, after which they sent their Studiocode coding timeline to the researcher via 
email. The researcher and RA also individually coded the same video and then met to discuss 
their coding and agree upon the mathematically important moments in the video that a teacher 
could capitalize on during instruction. The researcher then compared these agreed-upon instances 
to those coded by the participants to determine which instances would be discussed in the next 
project meeting. The instances that were agreed upon by the researchers and both participants 
were always discussed during the meetings, with an emphasis on making sense of the 
mathematical importance of these moments. Instances that were coded by only one participant, 
or only by the researchers, were sometimes chosen to help distinguish instances that were 
mathematically important from those that were less important, or to highlight important 
mathematics embedded in student thinking.  

 The participants and the researcher met weekly for 60 to 90 minutes to view and discuss the 
coded video segments; the RA attended the first four meetings. During each meeting, the 
researcher pushed the participants to articulate the mathematical importance of instances they 
had identified and to consider whether there were characteristics common among mathematically 
important moments during instruction. For instance, the participants came to agree that student 
involvement seemed central to mathematically important moments, and thus, it was unlikely for 
such a moment to occur if students were not actively participating in the lesson. 

During the last two weeks of the project, each participant taught a lesson in which she was 
asked to indicate her real-time noticing during instruction. This was done via a self-mounted 
camera that could be activated by the participant. The researcher also recorded the entire lesson. 
Following the lesson, each participant engaged in an interview that focused on the 
mathematically important moments that she had noticed during the lesson. The interview also 
included questions aimed at understanding participants’ perspectives on the project activities and 
how these activities supported their learning during the student teaching experience.  

 
Data Collection and Analysis 

Data included participants’ individual and merged Studiocode coding timelines and the 
accompanying video, the researchers’ Studiocode timelines, and video recordings of each project 
meeting. In addition, video snapshots from the real-time noticing experience, the corresponding 
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complete classroom video, and a recording of the post-interview were also included in the data. 
The first phase of data analysis focused on summarizing the instances in each video that 

participants coded as a mathematically important moment and making comparisons both 
between the two participants’ coding and between the researchers’ and the participants’ coding. 
This analysis focused on documenting the segments that were coded as mathematically 
important, as well as the participants’ reason for identifying them as such. In many cases, the 
participants did not give a complete explanation of the importance of an instance in their 
annotation, so were pushed for a more complete explanation during the project meeting. In these 
cases, information from both the Studiocode timeline and the project meeting video was used to 
develop a complete explanation of the perceived importance of the moment. The outcome of this 
phase of analysis was an account of participants’ noticing and their explanations of the 
importance of the coded moments in each video. This gave preliminary information about how 
each changed over time. 

The participant interviews were analyzed to understand the participants’ perspectives on the 
learning activities themselves, the value of specific activities in terms of supporting their learning 
during student teaching, and what they perceived to have learned by engaging in the project 
activities.  

 
Results 

Evidence of Learning in Coding and Project Meetings 
Preliminary data analysis indicates that there was a change in participants’ abilities to notice 

and analyze mathematically important moments during the study. In the first video, both 
participants focused mainly on identifying “good teacher moves.” For example, both coded 
instances in which the teacher used a good visual representation of a problem, asked a series of 
questions to ensure that students understood the rules of a probability game, and summarized the 
lesson at the end. In addition, Audrey noted several instances where the teacher clearly defined 
mathematical terms. Although these were all productive teacher moves, they were each part of 
the teacher’s plan for the lesson, and thus, are not the types of instances that are important for a 
teacher to notice during instruction. During the project meetings, instances such as these were 
used to discuss the difference between good planned teacher moves and moments that require a 
teacher response during a lesson.  

On the other hand, in the same video, the researchers noted a mathematically important 
moment while students were playing a dice-rolling game related to probability that the 
participants did not. In the game, students placed 18 chips in columns numbered zero through six 
and then removed a chip each time the difference of two rolled dice was equal to the column 
number; the winner was the first to remove all 18 chips. After playing the game and recording 
the differences of the dice on each roll in a frequency table, the teacher told his students that they 
would play again. A number of students placed their chips by copying the outcomes in the 
frequency table in hopes of winning the game the next time, not realizing that the same outcome 
was unlikely. Although this moment had the potential to be used to highlight important ideas 
about theoretical and experimental probability, neither participant noticed its mathematical 
importance. 

By the eighth video, both participants had shifted their primary focus from the teacher’s 
actions to the thinking of students in the classroom, although Mary was generally better able to 
discern important student thinking from that which was less important than was Audrey. For 
example, both participants coded an instance in which a student used the distance formula to find 
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the distance between some pairs of coordinate points, but used simple subtraction of coordinates 
for other pairs that were located vertically or horizontally from one another on the coordinate 
plane. Most students in the class had used the distance formula for all pairs of points. Both 
participants recognized this as an opportunity to highlight when the distance formula needed to 
be used, and when other methods were appropriate. Similarly, both coded an instance in which a 
student had included an unnecessary step in a geometric proof and another student explained 
why the step was not needed. Audrey, however, also coded an instance in which students were 
guessing which angles in a figure were supplementary to one another. Although supplementary 
angles are an important topic in geometry, there was no mathematical basis for their guesses, so 
it would be difficult to use the guessing to support student understanding. 
 
Participant Perspectives on Learning 

In the post-interviews, both participants agreed that the project activities were a valuable 
addition to their student teaching experience, despite the extra time they required. Both stated 
that coding the videos and then using the merged Studiocode timelines as a basis for project 
meeting discussions helped them really think about what moments during the lesson were 
mathematically important; instances on which they agreed confirmed their thinking, and those 
about which they disagreed pushed them to explain their thinking and continually refine their 
definition of what moments were mathematically important. Both participants also agreed that 
leaving mathematically important moment ill-defined at the start and then developing and 
refining the definition together made them think hard about what moments might meet the 
mathematically important criteria and which might not. They both stated that introducing the 
researcher’s conceptualization of the construct via a reading (Author reference) mid-way through 
the project was helpful in that it gave them a framework to use to make sense of the work they 
had already done. 

When asked to discuss how they felt the project activities affected their teaching, both 
participants noted that it shifted their focus from themselves to their students. Audrey said that, 
“It was good because it helped me key in onto the student a little bit more than I would have 
otherwise. Cause I would have been just trying to get, like, the content out there.” Mary said that 
analyzing the videos helped her become more objective about her teaching, noting that it was 
important that the focus wasn’t on “am I a good teacher, am I a bad teacher” but was on the 
mathematically important moments and how they could be used in the lesson. This, she said, 
helped her focus “on what [students] are learning rather than on ‘Oh shoot, I should have done 
that.’” Mary also noted that she often thought about how to set up mathematically important 
moments when planning lessons. She said that she focuses on “trying get them to come up with 
things and asking them why more. I want to put a lot on them. And like, I already wanted to do 
that as a teacher, but I think this helped me think about it more, like, when I’m in class.” Later in 
the interview she added, “You can, like, set [a moment] up and it might not happen, but it’s more 
likely to happen if you if you set it up than if you don’t.”  

Interestingly, both participants also noted that the activities helped them to think about the 
other non-mathematics classes they were teaching. Mary said that it helped her ask better 
questions in her chemistry class, where she noted that she had started out asking mainly lower-
level questions. Audrey said, “I think [coding and discussing the video] helped me respond to 
those moments [in math], but then I feel like, why aren’t we doing this in science, cause I don’t 
know what those moments are in science. You know what I mean, the scientifically important 
moments. It’s like, in science, I’m like what, I think I’m kind of struggling a bit with what is the 
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big picture.” Although not an expected outcome of the activities, this type of transfer is 
particularly encouraging to improving instruction more broadly. 
 

Discussion and Conclusion 
Preliminary findings suggest the value of engaging prospective teachers in detailed, focused 

analysis of practice as part of the student teaching experience. Both the participants’ video 
coding and their interviews indicate that engaging in the project activities helped keep them 
focused on what matters the most during instruction—listening to student thinking and assessing 
the mathematical potential of that thinking in order to determine whether it might be worthwhile 
to incorporate. This is a very different focus than what has been documented in many student 
teaching experiences, where prospective teachers’ primary focus is on issues, such as classroom 
management, that have little connection to mathematical content or to students’ understanding of 
it (Leatham & Peterson, 2010). 

The use of video analysis software seemed to support teacher learning by forcing them to 
identify specific moments and their reasons for selecting them as mathematically important prior 
to discussing them with others. Although the coding could have been done in other ways—for 
instance, on paper by noting video time stamps—Studiocode allowed the researcher to merge the 
participants’ timelines in order to display their coding together and also to quickly select a coded 
moment and replay the instance in the video during a project meeting.  These features of the 
software allowed for focused discussion of particular coded moments in ways that other modes 
of coding and reflection could not. 

The discussions in which the researcher and participants engaged seemed critical to helping 
the participants learn to differentiate between moments that had significant mathematical 
potential and those that did not. In the discussions, the researcher pushed the participants to 
clearly articulate the mathematical importance of coded moments; when they could not, they 
were engaged in discussions about whether the moment was, in fact, mathematically important. 
Discussing instances that the participants had not coded provided an opportunity to help them 
better understand secondary school mathematics and to begin to make connections among 
mathematical ideas. Thus, although time-consuming, the sustained interactions with the 
researcher/teacher educator seemed critical to supporting participant learning. This study 
suggests, as have others (e.g., Grossman, et al., 2009), that teacher educators need to find ways to 
keep field experiences, particularly extended experiences such as student teaching, focused on 
students’ learning of mathematics. Understanding what facilitator moves and tools are most 
productive in doing so will help teacher educators plan activities that most effectively and 
efficiently advance teacher learning. 

Although the results of this work appear promising, there is much work to be done. Thus far, 
the data indicates that the activities supported learning, but does not illuminate the specifics of 
how that learning occurred. Subsequent data analysis will aim to draw connections between 
changes in participants’ noticing and specific learning activities. This will entail detailed analysis 
of the questions the researcher asked to push participant thinking during project meetings, 
questions the participants raised during the meetings, and how specific tools and frameworks 
may have supported participant noticing. It is expected that this analysis will lead to hypotheses 
about teachers’ learning-to-notice trajectories and specific learning events that might trigger 
advances in teachers’ noticing. In future projects, the teacher education model will be refined and 
tested with larger groups of student teachers in a range of mathematics classrooms, and 
additional data will be collected to understand how the noticing skills that teachers develop affect 
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their classroom instruction.  
The preliminary results of this study provide support for including research-like video 

analysis in teacher education programs as a means of advancing teachers’ ability to learn from 
practice. Developing teachers’ abilities to notice and capitalize on important instructional events 
holds great promise in positioning teachers to become life-long learners in their own classrooms, 
and thus, improve their instruction over time. 
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While understanding children’s mathematical thinking is an important part of what teachers 
need to know in order to be effective in the classroom, preservice coursework often fails to 
provide learning opportunities focused on this aspect of teaching. Using a videocase curriculum 
focused on children’s mathematical thinking, the authors examined changes in preservice 
elementary teachers’ knowledge of, beliefs about, and ability to analyze children’s thinking. 
Results from a quasi-experimental study indicate that the videocase curriculum had little effect 
on participants’ knowledge and ability to analyze children’s thinking, yet a moderate effect on 
participants’ beliefs about mathematics teaching and learning. 

Research points to the importance of attending to children’s mathematical thinking as an 
important aspect of what teachers need to know (Carpenter et al., 1989). Despite the centrality of 
children’s thinking to teachers’ mathematical knowledge, there exists little research involving 
preservice teachers’ (PSTs) learning about children’s mathematical thinking, with few 
exceptions (e.g., Philipp et al., 2007). Such research provides evidence that PSTs, if given 
opportunities to closely study children’s mathematical thinking in the form of video clips, can 
further their own mathematical knowledge in relation to children’s thinking (e.g., Philipp et al., 
2007).  

This study builds on and extends the extant research by examining how the design and  
implementation of a videocase curriculum supported PSTs’ ability to analyze children’s 
mathematical thinking. Specifically, the authors discuss findings from a quasi-experimental 
study of PSTs’ engagement with the videocases in a required mathematics content course across 
two semesters, focusing on changes in PSTs’ knowledge of, beliefs about, and ability to analyze 
children’s mathematical thinking. The authors administered in both semesters a pre- and post-test 
using a mathematics content knowledge assessment instrument developed to measure 
mathematical knowledge for teaching, a pre- and post-test using the Integrating Mathematics and 
Pedagogy (IMAP) Beliefs survey, and a pre- and post-test video activity developed by the 
authors.  

Theoretical Framework 
Although most scholars and educators agree that mathematics teachers at all levels need  

to have a thorough knowledge of the content they teach (e.g., Kilpatrick et al., 2001), there is less 
agreement about the precise nature of the mathematics content that teachers should learn in 
preservice education programs. Some researchers have reconceptualized mathematics content 
knowledge, arguing that teachers need to not only know mathematics content, or common 
content knowledge, but that they need to know mathematics in ways needed for teaching, or 
specialized content knowledge (Ball et al., 2008). While common content knowledge refers to 
the knowledge that bankers or retailers, for example, have to know (e.g., computing 
percentages), specialized content knowledge refers to the mathematics knowledge that is specific 
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to teaching (e.g., analyzing children’s errors), and more closely resembles what teachers have to 
know and do with children in the classroom. If they are expected to support children as they 
investigate mathematical concepts, PSTs need to have a strong understanding of mathematical 
knowledge for teaching, which includes both common and specialized content knowledge. 

Preservice mathematics coursework, however, often fails to adequately prepare PSTs for  
the work of teaching, as such courses focus solely on the learning of content with limited 
attention given to how such knowledge is used in actual teaching practice (RAND, 2003). In 
addition to knowing the content of the mathematics problems they use with children, teachers 
also have to analyze unusual solution methods that children may pose, appraise children’s 
explanations, and ask mathematical questions that further children’s thinking, teaching tasks for 
which PSTs are often ill prepared. These kinds of mathematical tasks of teaching (Ball et al., 
2008), however, often receive scant attention in preservice mathematics coursework. Given what 
we know about the mathematics knowledge teachers need to be effective in the classroom (Hill, 
Rowan & Ball, 2005), mathematics content courses need to include opportunities for PSTs to 
develop mathematical knowledge for teaching. 

Recent research has demonstrated that preservice coursework can provide opportunities for 
PSTs to develop their abilities to analyze children’s thinking in ways needed for teaching. For 
example, in their experimental study involving PSTs in content courses, Philipp et al. (2007) 
argue that PSTs’ content knowledge and beliefs about mathematics teaching practice can be 
enhanced if they have opportunities to learn about children’s thinking while simultaneously 
learning mathematics needed for teaching. Assigning PSTs to four different treatment groups, the 
authors found that PSTs in the two treatment groups that involved the close study of children’s 
mathematical thinking through the use of videos and interviews demonstrated more changes in 
their beliefs about mathematics teaching and learning as compared to the PSTs in the other 
treatment groups that involved more traditional field experiences. These findings are particularly 
important because they demonstrate that although PSTs may begin a content course with beliefs 
that stand in contrast to reform-oriented mathematics practice, content courses that connect 
content knowledge with the analysis of children’s thinking can foster changes in PSTs’ beliefs.  

Project Background 

Content Course 
The content course in question is the first of two required content courses PSTs take during 

their freshman or sophomore years at the university, and precedes the mathematics methods 
course that PSTs typically take during their senior year. The content course is designed around 
developing PSTs’ mathematical knowledge for teaching, and includes a focus on whole and 
rational numbers and operations, place value, proportional reasoning and aspects of number 
theory. The course also provides PSTs with opportunities to develop their abilities to engage in 
explaining, representing, and understanding and reacting to mathematical thinking that is 
different from their own.  

Videocase Curriculum 
As part of the Videocases for Preservice Elementary Mathematics (VPEM) Project, the  

authors developed 9 videocases and accompanying facilitator guides to be used in mathematics 
content courses for PSTs. These materials were designed to support the development of PSTs’ 
understanding of the mathematical knowledge needed for teaching whole and rational number 
concepts and proportional reasoning by providing PSTs with opportunities to examine children’s 
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mathematical thinking in the context of actual classroom lessons. The videocases were 
implemented at regular intervals across the semester. Each videocase included a video clip(s) - 
focused on children’s discussions of certain content and taken from actual classrooms - and a 
facilitator’s guide - designed to support instructors in facilitating PSTs’ discussion of the 
videocase, including focus questions. During the content course, PSTs first worked on the 
mathematics problems discussed in the video, and then viewed the videos through the lens of the 
focus questions. Table 1 below includes descriptions of the 9 videocases, including mathematical 
topic and mathematical tasks of teaching foci.  
 
Videocase Title Mathematics 

Topics 
Mathematical Tasks of Teaching 

Finding Patterns Algebra Evaluating the plausibility of children’s claims 
Asking productive mathematical questions 

Counting 
Strategies 

Meaning of 
addition, 
subtraction; 
Addition, 
subtraction 
problem types 

Evaluating children’s mathematical explanations 
Asking productive mathematical questions 

Understanding 
Place Value 

Counting; Place 
value 

Analyzing children’s thinking 

Modeling Double-
Digit Subtraction 

Subtraction 
algorithm 

Linking representations to underlying 
mathematical ideas 

Debating 
Remainders 

Division; 
Remainder 
interpretation 

Evaluating children’s mathematical arguments 
Asking productive mathematical questions 

Student Errors 
with 
Multiplication & 
Division 
Algorithms 

Place value; 
Standard, 
alternative 
multiplication & 
division 
algorithms 

Analyzing children’s errors 

Pattern Block 
Fractions 

Relationship 
between improper 
fractions and 
mixed numbers 

Analyzing children’s thinking 
Analyzing children’s errors 

Why is 1/20 not 
equal to 20%? 

Relationship 
between 
percentages and 
decimals 

Analyzing children’s errors 
Linking representations to underlying 
mathematical ideas 

Making 
Predictions Using 
Multiple Solution 
Strategies 

Fractions; Liner 
functions 

Evaluating children’s mathematical explanations 

Table 1. Videocase design overview 
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Methods 
The authors employed a quasi-experimental design to the study of changes in PSTs’  

knowledge of, beliefs about, and ability to analyze children’s mathematical thinking to 
understand the overall effectiveness of the videocase curriculum.  

Participants 
Participants were recruited from PSTs who enrolled in two sections of a required  

mathematics content course for PSTs at a large midwestern university during the Spring 2010 
and Fall 2010 semesters. PSTs from the sections of the course taught by the first author served as 
the treatment group (i.e., videocases), while PSTs from the other section of the course served as 
the control group (i.e., no videocases). 22 PSTs were in the treatment group and 17 PSTs were in 
the control group during the Spring 2010 semester; 30 PSTs were in the treatment group and 24 
PSTs were in the control group during the Fall 2010 semester. 

For both semesters, in the treatment course, PSTs viewed the videocases, answered focus  
questions related to the videocases, engaged in small group and then whole group discussions of 
the focus questions, all facilitated by the instructor. For both semesters, in the control course, 
PSTs worked on tasks similar in content focus to the tasks in the videocases in lieu of watching 
the videocases. However, in the Fall 2010 semester, the implementation of the videocases was 
modified in order to improve the quality and duration of videocase discussions, and PSTs’ 
responses to the focus questions. These changes included the following: 1) PSTs watched 
videocases from the course website as part of homework assignments; 2) focus questions were 
revised to be more succinct; 3) guidelines for responding to the focus questions and a rubric for 
evaluating responses were developed to scaffold PSTs’ written responses to the focus questions; 
and 4) PSTs’ written responses were graded using the rubric in order to provide feedback for 
improvement. 

Measures 
As the study focused on changes in PSTs’ knowledge of, beliefs about, and ability to  

analyze children’s mathematical thinking, we administered the following measures pre-post in 
both semesters. First, we used a mathematics content knowledge assessment instrument 
developed by the Learning Mathematics for Teaching Project. Items not only capture whether 
teachers can answer the problems they use with children, but also how teachers solve the special 
mathematical tasks that arise during teaching (e.g., given 3 different multiplication strategies, 
determine which method can be used to multiply any two numbers). Second, as teachers can 
have differing conceptions of mathematics and mathematics learning which may or may not 
align with ideas about teaching and learning underlying recent reform efforts, we administered 
the IMAP Beliefs survey that was specifically designed to capture the characteristics of beliefs 
most closely related to understanding children’s mathematical thinking: beliefs about 
mathematics as a discipline, beliefs about learning and knowing mathematics, and beliefs about 
children’s learning and doing mathematics. Finally, we administered a video activity developed 
by the authors designed to analyze PSTs’ ability to analyze children’s thinking as depicted in 
video format. 

Results 

Mathematics Content Knowledge Assessment 
Identical content knowledge assessments were administered in the first and last  
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weeks of classes in both the treatment and control courses. The authors conducted a one-sample 
T-test to examine the gains from pre- to post-course on the assessment. Table 2 shows the results 
of a one-sample T-test for each group.  
 
Semester Group N Mean SD T Df Sig. (2-

tailed) 
Cohen 

Spring 
2010 

Treatment 22 .60 .58 4.82 21 .000 1.03 
Control 15 .70 .67 4.07 14 .001 1.05 

Fall 
2010 

Treatment 28 .85 .70 6.38 27 .000 1.20 
Control 25 .91 .58 7.89 24 .000 1.58 

Table 2. One-sample T-test on content assessment gain scores by group 
 
These results indicate that for the treatment group in Spring 2010, for example, the  

equated average IRT change score or the gain score from pre- to post-test was 0.60 logits with 
SD = 0.67. A one-sample T-test indicates that PSTs’ content knowledge increased significantly 
during this semester, t(21) = 4.82, p < 0.05, d = 1.03. As displayed in Table 2, both treatment and 
control groups in both semesters demonstrated significant development in their mathematical 
knowledge for teaching. An independent T-test was conducted to examine the differences 
between treatment and control groups for each semester. However, we found no significant 
difference between treatment and control groups. One reason for no difference between 
treatment and control groups may be that the overall content course design and materials used in 
both courses were well aligned with the goals of learning mathematical knowledge for teaching. 
Indeed, both instructors were members of a planning group around the two content courses who 
collaboratively plan and design the course (Castro Superfine, 2010), thus making the two courses 
almost identical with the exception of the videocases. 

IMAP Beliefs Survey 
Identical online IMAP belief surveys were assigned as homework assignments for the  

first and the last weeks of classes in both courses. All PST responses were collected with the 
exception of the pre-test IMAP survey from the control group in Spring 2010. All responses were 
double coded blind using the IMAP belief rubrics in Ambrose et al. (2004). The survey data were 
then analyzed using the methods reported in Philipp et al’s. (2007) work. Table 3 shows the 
distribution of beliefs score changes for the treatment and control groups in Spring and Fall 2010 
by belief. Table 4 shows the percentage of PSTs in the treatment and control groups that 
demonstrated large increases, small increases, or no increase in terms of changes in their average 
belief scores across the seven beliefs. 
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Group Large Increase Small Increase No Change or 

Decrease 
1. Mathematics is a web of interrelated concepts and procedures (and school mathematics should be too). 

Spring Treatment (n=22) 32% 18% 50% 
Fall Treatment (n=30) 17% 37% 47% 

Control (n=24) 21% 29% 50% 
2. One’s knowledge of how to apply mathematical procedures does not necessarily go with understanding 

of the underlying concepts. 
Spring Treatment (n=22) 0% 19% 81% 
Fall Treatment (n=30) 7% 7% 87% 

Control (n=24) 4% 21% 75% 
3. Understanding mathematical concepts is more powerful and more generative than remembering 

mathematical procedures. 
Spring Treatment (n=22) 18% 27% 54% 
Fall Treatment (n=30) 33% 20% 47% 

Control (n=24) 25% 29% 46% 
4. If students learn mathematical concepts before they learn procedures, they are more likely to 

understand the procedures when they learn them. If they learn the procedures first, they are less likely 
ever to learn the concepts. 

Spring Treatment (n=21) 27% 27% 46% 
Fall Treatment (n=30) 13% 23% 63% 

Control (n=24) 17% 21% 63% 
5. Children can solve problems in novel ways before being taught ho to solve such problems. Children in 
primary grades generally understand more mathematics and have more flexible solution strategies than 

adults expected. 
Spring Treatment (n=21) 14% 23% 64% 
Fall Treatment (n=30) 14% 31% 55% 

Control (n=24) 13% 13% 75% 
6. The ways children think about mathematics are generally different from the ways adults would expect 

them to think about mathematics. For example, real-world contexts support children’s initial thinking 
whereas symbols do not. 

Spring Treatment (n=21) 18% 14% 68% 
Fall Treatment (n=30) 27% 17% 57% 

Control (n=24) 13% 38% 50% 
7. During interactions related to the learning of mathematics, the teacher should allow the children to do 

as much of the thinking as possible. 
Spring Treatment (n=21) 18% 14% 68% 
Fall Treatment (n=30) 37% 27% 37% 

Control (n=24) 17% 8% 75% 
Table 3. Beliefs-score-change percentages by belief, group and score-change category 

 
We found the following patterns from the distribution shown in Table 3. First, treatment  

groups, in both Spring and Fall 2010, had the greatest percentage of PSTs with large increases on 
every belief. Second, for Beliefs 2, 3, 6, and 7, the treatment group in Fall 2010 had a large 
percentage of PSTs with large increases as compared to the treatment group in Spring 2010. 
Finally, for Belief 7, there is a relatively large percentage (i.e., 63%) of PSTs with large and 
small increases in the Fall 2010 treatment group, compared to PSTs (i.e., 25%) in the control 
group for the same semester. 
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 Spring Fall 

Treatment Treatment Control 
Large Increase 18% 21% 16% 
Small Increase 20% 23% 23% 
No Change or 
Decrease 

62% 56% 62% 

Ratio Large/No 29% 38% 26% 
Table 4. Average percentages of PSTs in each beliefs change-score category (with ratio of 

percentage with large change to percentage with no change) by group 
 

As Table 4 indicates, the treatment group in Fall 2010 had the largest ratio of large  
increase to no increase in the average belief scores. Taken together, the IMAP beliefs survey data 
seem to indicate that engagement with the videocases influence PSTs’ beliefs about mathematics 
teaching and learning, and reflect findings from previous research (Philipp et al., 2007).  

Video Activity 
A video activity assessment based on a video clip from an actual classroom was designed  

to assess PSTs’ ability to attend to and analyze children’s mathematical thinking in video format. 
As part of the video activity, PSTs were asked to watch a video clip and then to respond, in 
writing, to prompts about children’s thinking: (1) What do you notice about student’s 
mathematical thinking in the video? (2) Identify the different strategies used by students in the 
video, and (3) How are students’ strategies different? Identical pre- and post-video activities 
were administrated in the first and the last weeks of class in both courses. All responses were 
double coded blind using a rubric developed by the authors, and focused on differentiating 
between the level of sophistication of PSTs’ analysis of children’s thinking. Level 1 indicates a 
general statement about the strategies was given (e.g., the child used addition). Level 2 indicates 
that a response included a mathematical focus, but yet was not specific enough to explore the 
underlying concepts. Level 3 indicates that a response included a mathematical focus and 
specifically unpacked the mathematics in the different strategies. Level 4 indicates that, in 
addition to the criteria for Level 3, the response also included the use of critical words (e.g., 
repeated addition, repeated subtraction, evenly distributed). Codes of G, U, and B denote 
responses focused on general aspects of the video, children’s understanding, or children’s 
behavior, respectively. 
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Fall 

 
Spring 

 
 

 Treatment Control 
 

Treatment Control 
  Pre Post Pre Post Pre Post Pre Post 

Q
ue

st
io

n 
1 

3SS-1 11 7 16 6 9 7 10 8 
3SS-2 8 11 5 5 9 9 1 0 
3SS-3 5 5 2 2 2 3 0 1 
3SS-4 0 0 1 0 0 0 0 0 
3S-G 10 9 8 15 5 9 6 3 
3S-U 6 8 0 1 6 5 6 10 
3S-B 2 0 1 0 0 0 0 0 

Q
ue

st
io

n 
2 6-1 0 1 0 0 1 1 0 0 

6-2 2 1 0 3 2 3 1 1 
6-3 6 5 5 3 2 6 7 7 
6-4 20 23 23 17 17 11 9 9 

Q
ue

st
io

n 
3 

7-1 4 3 3 5 3 8 5 5 
7-2 19 20 23 17 15 11 7 9 
7-3 5 7 2 1 4 3 4 2 

Table 5. Frequencies of PSTs’ video activity responses by question and by level 
As Table 5 indicates, while there were small shifts from pre- to post-course on certain  

questions, overall there were minimal differences between the treatment and control groups for 
the three questions on the pre-post video activity. 

Conclusion 
A primary aim of this study is to explore the potential of a videocase curriculum for  

supporting PSTs’ learning about children’s mathematical thinking as part of a required 
mathematics content course. Overall, results of the study indicate that, besides differences on the 
pre-post belief survey, there were no marked differences between the treatment and control 
groups. In other words, use of the videocase curriculum seemed to have a minimal effect on 
PSTs’ knowledge of and ability to analyze children’s mathematical thinking, yet the videocases 
did have a moderate effect on PSTs’ beliefs about mathematics teaching and learning. We posit 
that one reason for such results may be that the content courses in the study were collaboratively 
designed and implemented by a group of mathematics educators and mathematicians around the 
idea of developing PSTs’ mathematical knowledge for teaching (see Castro Superfine, 2010). 
Thus, the treatment and control courses were essentially the same course using the same tasks, 
in-class activities, homework assignments, and exams, with the exception of the videocases. In 
this particular course context, one would not expect the videocases to have a significant effect. 
As the videocases did have an effect on PSTs’ beliefs about mathematics teaching and learning, 
there seems to be some potential for effecting change. However, the collection of videocases 
needs to be implemented in different course contexts in order to fully test the potential of the 
videocase curriculum.  
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This multiple-case study explored the experiences of two groups of elementary prospective 
teachers (n=12) completing distinct mathematics content courses. Individual interviews revealed 
perspectives on knowing, learning, and teaching mathematics as experienced by the two groups; 
the quantitative findings indicated differences in mathematical beliefs. One group characterized 
mathematics as a record of knowledge, difficult to understand and lacking in relevance; learning 
occurred through rote memorization and via external expertise, with teaching typified as 
explaining. The other group portrayed mathematics as process-focused, internally constructed, 
and relevant; learning took place through a focus on children’s thinking, with teaching 
characterized as guiding and questioning.  

 
The context for this study was an elementary teacher preparation program that was evolving in 

response to university system mandates requiring more courses in mathematics content for 
elementary teachers. Specifically, programs had to include a particular 3-hour course in elementary 
mathematics during the sophomore year in addition to 9 hours of upper-division mathematics 
courses. Throughout this period, mathematics department faculty members developed and taught 
the required courses for elementary teachers in Number and Operations, Algebra, Geometry, and 
Statistics.  

Many prospective teachers failed or withdrew from these courses and consequently had to 
defer student teaching. Over one 4-semester period (Fall 2004-Spring 2006), 24.8% of prospective 
teachers did not complete or pass one or more of these mathematics courses. In response to this 
troubling trend, an experimental group of prospective teachers enrolled as a cohort in a one-time 
sequence of four content courses having specific foci on the perspectives of the National Council 
of Teachers of Mathematics (NCTM, 2000) and the development of the specialized content 
knowledge (SCK) needed for teaching elementary mathematics. This experimental sequence is 
referred to here as the “alternative courses” and was taught by an instructor in the elementary 
education department (grades PreK-5). The other group of prospective teachers in this study 
participated in what is referred to here as the “traditional courses” taught by instructors in the 
mathematics department.  

This study explored these two groups of teacher candidates’ (n=12) perspectives on knowing, 
learning, and teaching mathematics in the context of these experiences, as well as their 
mathematical beliefs and affect. More specifically, this study used a multiple-case design that 
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applied mixed methods to explore the following research questions: (1) What are the perspectives 
on knowing, teaching, and learning mathematics of two groups of elementary prospective teachers’ 
in the context of distinct mathematics courses? and (2) What are the mathematical beliefs and 
affect of these prospective teachers?           

 
Theoretical Perspectives and Related Research 

Perspectives on Teacher Knowledge in Mathematics 
A pressing concern for elementary teacher preparation programs is the development of 

adequate and appropriate mathematical content knowledge. The precise nature of this knowledge 
has prompted significant debate in the mathematics education community (Ball, Hill, & Bass, 
2005; Hill, 2010; Rowland, Huckstep, & Thwaites, 2005). In recent years, researchers (Ball, Hill, 
& Bass, 2005; Ball, Thames, & Phelps, 2008; Hill 2010) have proposed a specialized content 
knowledge (SCK) described as “the mathematical knowledge ‘entailed by teaching’ - in other 
words, mathematical knowledge needed to perform the recurrent tasks of teaching mathematics 
to students” (Ball et al., 2008, p. 399). Examples of SCK include teachers’ abilities to: (a) 
analyze and interpret students’ mathematical thinking and ideas, (b) use multiple representations 
of mathematical concepts, and (c) define terms in mathematically correct and accessible ways.  

 
Teacher Beliefs and Affect 

Prospective teachers come to the teaching profession with deep-rooted mathematical beliefs 
and affect formed during their seminal years as students in K-12 classrooms (Lortie, 1975); they 
resist changing these beliefs and affect as they move through teacher preparation programs 
(Phillip, 2007). Three teacher belief constructs are relevant to this study including: efficacy 
beliefs, pedagogical beliefs, and beliefs about the nature of mathematics. The first belief 
construct, teacher efficacy, has been defined as teachers’ beliefs in their skills and abilities to 
teach mathematics effectively and influence student learning (Hoy, 2004). The second belief 
construct, pedagogical beliefs, includes teachers’ beliefs related to how they should teach and 
how students should learn; these beliefs can be viewed as grounded in theories of learning. 
Lastly, beliefs about the nature of mathematics include what mathematics is as a subject or what 
it means to know and do mathematics, ranging from mathematics as unrelated facts, rules, and 
skills to mathematics as problem solving, fluid and expanding in nature (Handal, 2003; Wilkins, 
2008).  

 
Elementary Prospective Teachers’ Experiences in Mathematics Content Courses  

Studies of elementary prospective teachers’ experiences in mathematics content courses have 
focused on efforts to align the curriculum and instructors’ practices with current reform 
recommendations (Lubinski & Otto, 2004; Philipp et al., 2007; Royster, Harris, & Schoeps, 
1999). Royster et al. found that elementary education majors showed the greatest positive 
changes in mathematical dispositions when compared to other majors upon completion of a 
mathematics course that had been revised for congruence with reform recommendations. In 
another study, Phillip et al. concluded that prospective teachers in a mathematics course studying 
children’s mathematical thinking developed more sophisticated beliefs about mathematics and 
improved their mathematical content knowledge than prospective teachers who did not have 
children’s thinking as a focus. 

Studies have also examined college students’ perceptions of effective mathematics teaching 
and learning (Harkness, D’Ambrosio, & Morrone, 2006; Powell-Mikle, 2003; Schulze & Tomal, 
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2006). For example, Powell-Mikle reported certain classroom characteristics that support student 
learning in mathematics: adequate instructor availability, clear instructor explanations, prevalent 
classroom discourse, and a caring classroom environment. Schulze and Tomal’s sizeable study of 
2,042 college students examined factors contributing to a “chilly” mathematics classroom 
climate, which include: difficulty level of course content, teaching style/personality of the 
professor, and personality styles of classmates.  

 
Methodology 

The design of this study included a descriptive, holistic multiple-case approach (Yin, 2003). 
A case study methodology was applied as it was “impossible to separate the phenomenon’s 
variables from the context,” (Merriam, 1998, p. 29) and two bounded units were investigated. 
The two cases, which were the units of study and analyses, were the distinct mathematics course 
experiences, and the purpose of the study was to provide a “thick description” (Merriam, 1998, 
p. 29) of each. Further, this rich description provided opportunities to compare and contrast 
across the two mathematics course experiences in the interpretation of the findings.    

Within this multiple-case design, mixed methods were applied. More specifically, a   
“concurrent triangulation” (Creswell, Clark, Gutmann, & Hanson, 2003, p. 224) approach to 
mixed methods was used, with data collection occurring via individual interviews and surveys.  
In this present study, the concurrent triangulation approach implies: (a) quantitative and 
qualitative data were collected concurrently, (b) qualitative data were given priority, and (c) 
integration occurred in the interpretation phase.   

 
Participants and Setting 

The participants were 12 randomly selected prospective teachers enrolled in an elementary 
teacher preparation program at a large, urban university in the southeastern U.S. The gender of the 
participants included 11 females and 1 male. At the time of this study, the participants were in the 
student teaching semester of the program. The program was two years in duration and included 
three semesters of courses with concurrent two-day-per-week field placements, followed by a full 
semester of student teaching.  

The participants had completed one mathematics methods course and the four required 
mathematics content courses for elementary teachers. The mathematics methods course was taken 
during the second semester of the program and taught by instructors in the elementary education 
department. The content courses were Number and Operations (lower level), Geometry, Algebra, 
and Statistics (all upper level). As an admittance requirement, all 12 of the prospective teachers 
completed the Number and Operations course prior to entering the teacher preparation program. 
The other content courses were completed at different times during the program but were finished 
prior to the student teaching semester.  

Six of the prospective teachers experienced the “traditional courses” (see introduction) taught 
by various instructors in the mathematics department, and six prospective teachers experienced the 
“alternative courses” taught by an instructor from the elementary education department. The nature 
of the course experiences is best viewed from the responses of the participants who experienced 
the courses firsthand; however, a syllabi analysis revealed that in general the two sets of courses 
focused on the same mathematics content with considerable differences in the nature of this 
knowledge as well as the ways in which this content was taught and learned. One major difference 
in these approaches was that the alternative courses included a significant amount of time studying 
children’s development of mathematical thinking, problem solving, and understanding, whereas 
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the traditional courses focused primarily on memorization of formal definitions and proficiency 
with standard algorithms.  

 
Instruments and Data Collection  

This mixed methods study included qualitative data collected via individual interviews and 
quantitative data collected via two belief surveys. Data collection occurred during the student 
teaching semester of the teacher preparation program. 

 The interview protocol included six multi-part questions such as: (a) What are your overall 
impressions of the math courses? What was easy and hard?  What did you like and dislike? (b) 
After taking the math courses, do you feel confident that your content knowledge is sufficient to 
understand PreK-5 math?  Why or why not? and (c) After taking the math courses, do you feel 
prepared to analyze children’s math strategies in grades PreK-5?  Why or why not? The semi-
structured interviews were conducted at the convenience of the prospective teachers at the 
researchers’ offices or the student teaching schools.  

 Two belief surveys were completed by the prospective teachers on campus: the Mathematics 
Beliefs Instrument (MBI) and the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI). 
The MBI is a 48-item Likert scale instrument designed to assess teachers’ beliefs about the 
teaching and learning of mathematics and the degree to which these beliefs are cognitively 
aligned (Peterson, Fennema, Carpenter, & Loef, 1989, as modified by the Cognitively Guided 
Instruction Project). The three subscales include: (b) role of the learner (Learner), (b) 
relationship between skills and understanding (Curriculum), and (c) role of the teacher (Teacher). 
The Learner subscale contains 15 items that assess the degree to which teachers believe that 
children can construct their own mathematical knowledge. The 16-item Curriculum subscale 
examines the degree to which teachers believe that mathematics skills should be taught in 
relation to understanding and problem solving. The 17 items on the Teacher subscale address the 
extent to which teachers believe that mathematics instruction should be organized to facilitate 
children’s construction of knowledge. The instrument uses a Likert scale with five response 
categories (strongly agree, agree, uncertain, disagree, and strongly disagree), with higher scores 
indicating beliefs that are more cognitively aligned. These subscales have high reliability 
(Chronbach’s alpha =.89 for Learner, .80 for Curriculum, and .90 for Teacher) and represent 
independent constructs based on confirmatory factor analysis.  

The MTEBI consists of 21 items, 13 on the Personal Mathematics Teaching Efficacy 
(PMTE) subscale and 8 on the Mathematics Teaching Outcome Expectancy (MTOE) subscale 
(Enochs, Smith, & Huinker, 2000). The two subscales are consistent with the two-dimensional 
aspect of teacher efficacy. The PMTE subscale addresses the prospective teachers’ beliefs in 
their individual capabilities to be effective mathematics teachers. The MTOE subscale addresses 
the prospective teachers’ beliefs that effective teaching of mathematics can bring about student 
learning regardless of external factors. The instrument uses a Likert scale with five response 
categories, with higher scores indicating greater teaching efficacy. Possible scores on the PMTE 
subscale range from 13 to 65; MTOE subscale scores range from 8 to 40. These subscales have 
high reliability (Chronbach’s alpha = .88 for PMTE and .81 for MTOE) and represent 
independent constructs based on confirmatory analysis. 

 
Data Analysis 

This multiple-case design included analysis of the data within each case. Audiotapes of the 
interviews were transcribed and analysis of the data began by applying the a priori codes of 
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knowing, learning, and teaching mathematics as experienced by the two groups of prospective 
teachers in the mathematics courses. Through this process an additional code emerged: beliefs 
and affect. Researchers used constant comparative methods (Lincoln & Guba, 1985) to generate 
more refined categories within these codes. Specifically, researchers individually analyzed the 
qualitative data through open coding, which generated numerous categories and subcategories 
that represented observed phenomenon found in the data (Strauss & Corbin, 1998). Researchers 
periodically met and discussed the subcategories to reach consensus on their meanings related to 
the categories. This recursive process of discussion and analysis of all interview data initiated 
development of a coding manual that was used in subsequent analyses. The researchers then 
engaged in data reduction by recoding data using the coding manual for guidance in comparing 
and refining categories. Coded categories were collapsed and renamed related to the themes of 
knowing, teaching, and learning mathematics, as well as beliefs and affect. Data from the belief 
surveys were considered at the case level by subscale and overall scale. The quantitative data 
were used for descriptive purposes.   

 
Results 

Quantitative Findings  
 Mean scores, including differences in mean scores, and standard deviations for the two 
groups of prospective teachers on the MBI and MTEBI (subscales and overall scale) are shown 
in Table 1. When comparing the two sets of scores, all subscale and overall mean scores have at 
least half-point differences in the Likert scale value. These findings suggest the prospective 
teachers in the alternative courses had stronger mathematics teaching efficacy beliefs and 
pedagogical beliefs that were more cognitively aligned. Two subscales, Teacher and Learner, 
evidenced the largest differences in mean scores, .77 and .76 respectively. It seems the 
prospective teachers in the alternative courses, more so than those in the traditional courses, 
believed that children can construct their own mathematical knowledge and that instruction in 
mathematics should be organized to facilitate this construction. Interesting, the subscale that 
revealed the next largest difference in mean score (.70) was the MTOE. When comparing the 
two groups of prospective teachers, those completing the alternative courses seem to have 
stronger beliefs that their teaching of mathematics positively influences student learning.         
Table 1 
Means and Standard Deviations for Mathematics Pedagogical and Teaching Efficacy Beliefs as 
Likert Scale Values 
 Traditional Courses Alternative Courses Both Courses 
Subscale and Overall 
Scores* 

Means Standard 
Deviations 

Means Standard 
Deviations 

Differences in 
Mean Scores 

Learner 3.70 .60 4.46 .49 .76 
Curriculum 3.61 .55 4.15 .47 .54 
Teacher 3.78 .49 4.55 .32 .77 
Overall MBI 3.70 .50 4.39 .31 .69 
PMTE 4.08 .23 4.68 .34 .60 
MTOE 3.61 .28 4.31 .74 .70 
Overall MTEBI 3.90 .13 4.54 .44 .64 
*MBI = Mathematics Beliefs Instrument; PMTE = Personal Mathematics Teaching Efficacy; 
MTOE = Mathematics Teaching Outcome Expectancy; MTEBI = Mathematics Teaching 
Efficacy Beliefs Instrument. 
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Qualitative Findings 

Traditional courses. The data analysis reveals the prospective teachers characterized the 
mathematics in the traditional courses as: procedural knowledge, lacking relevance, and difficult. 
More specifically, mathematics as procedural knowledge included descriptors such as 
“formulas,” “step-by-step,” “right and wrong,” “abstract,” “information,” and “definitions,” with 
little attention to processes in mathematics. Mathematics was typified as a record of knowledge. 
Further, the prospective teachers frequently spoke of the irrelevance of the mathematics, 
describing the mathematics as “high school” or “college” level, with little connection to the 
elementary classroom. Interestingly, before completing the courses, the prospective teachers 
believed they already had the mathematics knowledge needed for the elementary classroom; the 
courses did not challenge the prospective teachers’ paradigm about the SCK needed for teaching 
elementary mathematics. Additionally, the prospective teachers described the difficulty of the 
mathematics in the courses, particularly as “hard” and “unattainable.”  
 In considering the learning and teaching of mathematics in the context of the traditional 
courses, it is noteworthy there was little mention of the learning and teaching of mathematics for 
elementary students. Learning mathematics was characterized as: rote memorization, a process 
that occurs via experts, and “passing the course.” The prospective teachers described their 
learning through rote memorization as “time-consuming, extensive practice,” “note-taking”, 
“homework,” and “repetition and regurgitation.” Further, this learning took place via receipt 
from external expert sources, and this expertise included the course instructors, tutors, textbooks, 
and class notes. Learning was also typified as “passing the course.” The prospective teachers 
spoke of “passing the test” and “getting in and getting out.”  
 The teaching of mathematics in the traditional courses was typified as explaining, and the 
prospective teachers experienced teaching as “lecturing,” “showing,” “step-by-step 
explanations,” “Power Points,” and “covering content.” Further, teaching in the courses was 
characterized as teacher-centered and content-centered rather than attentive to the needs of the 
prospective teachers. The teaching was frequently described as “fast-paced,” and instructor 
dispositions, such as differing levels of helpfulness, responsiveness, and availability, were a 
factor.  
 The prospective teachers’ experiences with knowing, teaching, and learning mathematics 
were linked with their affective responses in the courses. They described emotional reactions to 
the courses, including “terrifying” and “frustrating.” They also portrayed their experiences as 
having negative influences on their mathematics teaching efficacy (i.e., beliefs in their 
capabilities to be an effective mathematics teacher and influence student learning) and 
mathematics self-efficacy (i.e., beliefs in their capabilities to do mathematics).  

Alternative courses. The analysis of the data indicates the prospective teachers portrayed 
mathematics in the alternative courses as process-focused, useful, challenging, and internally 
constructed. The process focus included an emphasis on “problem solving” and “understanding,” 
which contributed to flexibility in their mathematical knowledge. The mathematics was also 
described as “useful” or “relevant,” with explicit connections to the mathematics in the 
elementary classroom. Further, the mathematics was typified as “challenging;” it was a 
“struggle” for the prospective teachers to “unlearn” mathematics as being simply procedures. 
Mathematics in the courses was also portrayed as internally constructed (i.e., “in my head”) 
rather than received from other external expert sources. Further, in describing the mathematics in 
the courses, the prospective teachers frequently contrasted it with the mathematics learned in 
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other content courses.  
 The learning of mathematics in the courses was typified in several ways by the prospective 
teachers. They described learning as occurring through a community of learners, with an 
emphasis on discourse. Further, learning took place through mathematical processes such as 
“problem solving,” which were portrayed as “engaging” and perceived as “okay to be wrong.” 
Learning mathematics also took place through a focus on children’s learning and thinking. The 
courses built the mathematical knowledge of the prospective teachers by studying how children 
think about mathematical concepts and ideas; this focus and course assignments led to learning 
as being perceived as directly applicable to the elementary classroom.  
 Teaching in the context of the alternative courses was typified by the prospective teachers as 
“guiding” and “questioning.” The instructor promoted discourse, created a safe learning 
environment, and used tools (e.g., manipulatives) relevant to the elementary classroom. 
Interestingly, the prospective teachers described a “struggle” or tension in connecting what they 
were learning in the courses to their teaching in their field placement classrooms, which were 
often characterized as “traditional.” Further, the dispositions of the instructor, such as 
“helpfulness” and “accessibility,” were described as important to teaching in the course.  
 The prospective teachers’ characterizations of knowing, learning, and teaching mathematics 
were linked with their affective responses in the courses. The prospective teachers described the 
courses as positively influencing their mathematics teaching efficacy and mathematics self-
efficacy.  

 
Concluding Thoughts 

 More than two decades have passed since Ball and Wilson (1990) challenged the 
assumptions that: (a) the development of elementary prospective teachers’ mathematical content 
knowledge should occur within the context of traditional undergraduate mathematics courses, 
and (b) that content knowledge is the only professional knowledge necessary for teaching. These 
beliefs continue to be espoused by some policy makers and faculty members at institutions of 
higher education, who believe that prospective teachers need only take additional advanced 
mathematics courses to acquire content knowledge in mathematics, while disregarding SCK 
(Sowder, 2007). The prospective teachers’ experiences related to knowing, learning, and 
teaching mathematics, as well as the differential outcomes in beliefs, suggest several benefits of 
alternative ways of thinking about elementary teacher preparation. Further, the findings provide 
insights into the issues and challenges of building the SCK needed for teaching elementary 
mathematics.  

It is evident the prospective teachers in this study learned what they had the opportunity to 
learn (OTL) (Hiebert & Grouws, 2007), as revealed in their characterizations of knowing, 
learning, and teaching mathematics in the distinct course experiences. The Introduction to the 
original National Council of Teachers of Mathematics (NCTM) Standards (1989) states “what a 
student learns depends to a great degree on how he or she has learned it” (p. 5, italics in original). 
OTL is considered a complex process and product of both the curricular emphasis and the quality 
of instruction (Hiebert & Grouws, 2007). Teacher competencies developed in teacher preparation 
programs, including SCK needed for teaching mathematics, clearly depend upon how this 
knowledge is acquired.  
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Prior research investigating PSTs’ statistical thinking is sparse, yet teacher educators need to 
know how best to prepare future teachers for their work and given the increasing importance of 
STEM education we need teachers who are capable of preparing students at an early age to 
think about data. In this paper we share the results from a study investigating pre-service 
teachers’ (PSTs’) initial thinking about distributions of data in four different contexts. In 
particular we investigated how PSTs reasoned about different distributions of data  - including 
how they consider measures of center and measures of variability. Data was collected through 
surveys and interviews conducted prior to their beginning a statistical unit in their elementary 
teachers mathematics content course.   

 
Without basic statistical literacy adults are unlikely to have the knowledge base to make 

informed personal decisions and, on a professional level, the door to many higher paying jobs 
closes. (Cobb & Moore, 1997; Garfield & Ben-Zvi, 2008). 

 
Why Focus on PSTs’ Conceptions? 

Recent research on teacher knowledge has shown that the knowledge needed for teaching 
mathematics/statistics is complex and multifaceted (i.e. Hill, Ball, & Schilling, 2008; Ma, 1999; 
Shulman, 1986) and goes beyond content knowledge including such aspects as knowledge of 
how students think about the mathematical/statistical content.  Hill, Ball, and Schilling (2008) 
introduced a framework for mathematical knowledge for teaching listing six different types of 
knowledge needed to teach mathematics, three in the realm of subject matter knowledge and 
three in the realm of pedagogical content knowledge (see Figure 1). In addition, teachers’ 
mathematical knowledge for teaching has been empirically linked to instruction (Borko & et al., 
1992; Fennema & Franke, 1992); and student achievement gains (Hill, Rowan, & Ball, 2005).  

 
Figure 1: Domain map of mathematical knowledge for teaching (Hill et al., 2008). 

 
New mathematical ideas are built on currently held conceptions. In order to help PSTs 
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develop such multifaceted knowledge of mathematics/statistics for teaching, teacher educators 
need to build on PSTs incoming conceptions. The conceptions we examine in this paper fall 
beyond common content knowledge (i.e. how to calculate the mean for example) and are situated 
in the realm of specialized content knowledge (i.e. knowledge of center and distribution 
specifically used for teaching). Mathematics teacher educators need to understand PSTs’ initial 
conceptions when they enter our classrooms (Bransford, Brown, & Cocking, 1999) as these types 
of understandings underpin and inform the pedagogical decisions made when teaching. 

 
Why Focus on PSTs’ Conceptions of Statistics? 

The importance of statistics for all citizens living in a democratic society is reflected by the 
Guidelines and Assessment in Statistics Education (GAISE) report (Franklin et al., 2007). 
GAISE highlights the important role of statistics education in preparing students to navigate our 
current society (reading newspapers, understanding political implications etc.). In particular, 
understanding distributions of data is a unifying theme in the study of statistics and one of the 
foci of the elementary math curriculum as laid out by NCTM and Common Core Standards 
(National Governors Association & Council of Chief State School Officers, 2010). Bakker and 
Gravemeijer (2004) suggest that distribution is an “organizing structure or conceptual entity” for 
looking at data (p. 149) and they argue that without a notion of distribution it is not possible to 
reasonably summarize a data set and make appropriate choices between different measures of 
center. While substantial efforts have been made to better understand students’ statistical 
reasoning and how they think about distributions of data, there is a paucity of empirical research 
investigating teachers’ statistical reasoning (Shaughnessy, 2007b). What little empirical research 
has been conducted (Groth & Bergner, 2006; Jaccobe, under review; Leavy & O'Loughlin, 2006) 
indicates that PSTs do not have the knowledge needed to teach statistics at the level endorsed by 
GAISE. It is not sufficient to know that teachers do not have adequate statistical knowledge for 
teaching statistics, teacher educators need to better understand teachers’ statistical knowledge 
when they enter our classrooms so we can build on those conceptions when working with 
teachers.  

In this study we examined PSTs’ conceptions of distributions of data in four different 
contexts. In particular, we investigated: (a) how PSTs might compare two different distributions 
of data that had the same mean and median, but differed in variability; (b) the ways in which 
PSTs’ construct a data set for a given mean (with a particular focus on the range of the data sets 
they created); (c) whether PSTs recognize the mean as an appropriate measure to compare two 
data sets of different size; and, (d) the ways in which PSTs’ think about the median through a 
task that focuses on possible student interpretations of median. The results of this study provide a 
glimpse into U.S. PSTs’ initial knowledge of distributions of data. We selected these particular 
tasks for two reasons. First, we wanted to build off the small body of prior research (see Leavy & 
O’Loughlin, 2006) and look for possible comparisons between U.S. PSTs and PSTs in Ireland. 
Second, the tasks used in this study align with Level A in the GAISE document and highlight 
components of statistical knowledge that PSTs need to be successful in their work. Thus, the 
strategies used by PSTs’ when working on these tasks provides valuable insights into their 
specialized content knowledge; these insights inform the decisions that teacher educators make 
regarding the types of experiences we provide in our pedagogy of mathematics courses.  

Methods 
Twenty-seven PSTs enrolled in the 2nd of 3 mathematics-for-elementary-school-teachers 
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courses completed a written survey followed by a brief interview. The survey items were drawn 
from various previous research studies (as cited below) to give an initial insight into PSTs’ 
knowledge of distributions of data. We introduce the tasks in the results section. Data analysis 
was conducted by the first two authors and focused on the survey results. The authors 
independently categorized student responses to each item and then met to discuss the categories. 
Once common categories were established the data was coded using those common categories. 
Disagreements were resolved through discussion. 

 
Results 

What Measures Do PSTs Use When Comparing Distributions of Data? 
To examine whether PSTs pay attention to distribution in a given data set we asked them to 

respond to the Movie Wait Time Task (Shaughnessy, 2007a). On this task PSTs are presented 
with a scenario involving the comparison of two distributions of data. In response to the task, 19 
PSTs disagreed with Eddie, 4 PSTs agreed with Eddie; and 4 did not express agreement or 
disagreement. 25 of the PSTs mentioned the range or the variability of the wait times in their 
response. The 4 PSTs who agreed with Eddie agreed that the average is 10 but all 4 mentioned 
the variability in wait times. The two PSTs who did not mention variability performed 
calculations to find the mean. Thus at least in this task almost all PSTs recognized variability as a 
measure to take into account when comparing distributions of data.  

 
Figure 2: Movie Wait Time Task (Shaughnessy, 2007a) 

Can PSTs Construct a Distribution of Data to Reflect a Given Mean? How Does Variability 
Factor in their Decisions? 

To examine whether PSTs’ can construct a distribution to reflect a given “average” the PSTs 
were asked to label prices on individual potato chip bags given that the average price is 27 cents. 
PSTs were asked to come up with a second labeling excluding 27 as a value (see Figure 3). In 
our analysis we focused on the PSTs’ strategies and the range of the data set they provided.  
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Potato Chip Task A: The average price of a bag of chips 
is 27cents. We have seven bags of chips each of which 
has an empty price tag. Place prices on each of the bags 
so that the average price is 27 cents.  

 

Potato Chip Task B: The average price of a bag of chips 
is 27cents. We have seven bags of chips each of which 
has an empty price tag. Place prices on each of the bags 
so that the average price is 27 cents.  However, none of 
the bags of chips can cost 27 cents. 

 

Figure 3: Potato Chip Tasks (see Leavy & O'Loughlin, 2006; Mokros & Russell, 1995) 
For Part (A) of the Potato Chip Task our results showed that 14 PSTs (about 50% of the 

PSTs as opposed to 25% of PSTs in Leavy & O’Loughlin’s study) put a 27 into each of the 
boxes on the first task (all listed results can be seen in Table 1). Seven PSTs (about 25% of the 
PSTs, similar to Leavy and O’Loughlin’s study) started with 27 in the middle and then varied the 
numbers by +1/-1 as they moved outward resulting in the following prices: 24, 25, 26, 27, 28, 29, 
30. Three PSTs used the mean algorithm, one selected numbers across a wide range summing to 
189, two iteratively subtracted numbers from 189.  One PST entered some 27s and then used 
balancing (i.e., adding and subtracting the same number from 27 in order to “balance” out to 27) 
to find the other prices in the data set. Two PSTs used what we call reasonable responses – using 
some type of reasoning that the bags combined have to be $1.89 the average price would have to 
be 27 thus the values would be around 27. 

As expected, it seemed most PSTs understood the “average” as the “mean” rather than 
another measure of center. One PST used the mode in their reasoning for all 27s. Twenty-three 
PSTs chose numbers for the prices that stayed within a close range [24,30]. Four PSTs chose 
wide ranges for their data such as (100, 20, 20, 10, 10, 10, 19). These PSTs either gave no 
justification or used the mean algorithm (summing up to $1.89) as their explanation.  

For Part (B) of the Potato Chip task all PSTs interpreted “average” as mean. Twenty-one 
PSTs gave values in between 20 and 35, while six PSTs gave wide ranges in value.  Most PSTs 
used the mean algorithm some with guess and check, some with some basic balancing. Only four 
PSTs used a conceptual approach using balancing (pairs and one set of three) or a reasonable 
approach. Initially many of the responses in Part (A) looked like balancing approaches (i.e., 
balanced around the 27 like this response: 24, 25, 26, 27, 28, 29, 30), however, in Part B these 
PSTs seemed to focus more on the algorithm for finding mean. This indicated to us that just 
because their work “looks like” a balance approach does not mean it is. In fact, PSTs may be 
drawing on procedural rather than conceptual knowledge and using the mean algorithm to find 
pairs that average to 27.  
 
Table 1: PSTs’ responses to the Potato Chip Tasks  
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All of the wide range responses appeared to use only the mean algorithm in order to justify 

their solutions – no evidence of average as balance or reasonable. Those PSTs who displayed 
balance type reasoning did so via general sense (some over, some under) or pair-balance. Only 
one PST displayed explicit knowledge of balancing three values; we argue that this may be an 
important first step in developing a more conceptual understanding of mean as point of balance. !

Combining the results of the Movie Wait Time Task and the Potato Chip Task it seems that 
PSTs can recognize variability in the data but when asked to create a set of data may stay close 
to the mean value.  Although our sample size is small and we only have evidence of this from 
two tasks, this finding is consistent with work done by Rubin, Bruce and Tenney (1991) with 
middle and high school students who seemed to recognize variability in some data contexts, but 
not in others. In particular, it seems that in tasks where students are asked to provide the data 
they may gravitate toward the expected value and not consider variability in the data; yet, in 
other contexts where students see different sets of data they may be more likely to focus on 
variability within the data or between data sets. However context is always an important 
consideration when dealing with data. In this case the actual context of the potato chip task (i.e. 
pricing bags of chips) may impact the variability of the distributions constructed by PSTs. Even 
though PSTs may recognize the ‘possible/theoretical’ variability in the distribution of prices, the 
context may limit the variability of the values they choose to represent the distribution of data. 
This raises an interesting issue for further research, would PSTs construct data sets with a wider 
variability if the context was not restrictive? 

 
Do PSTs Recognize the Mean as a Way to Compare to Data Sets of Different Size? 

A third task (see Figure 4) was given to examine whether PSTs would recognize the mean as 
a suitable measure to compare the data sets (Leavy & O'Loughlin, 2006). This recognition of the 
mean as a comparison measure falls into the realm of specialized content knowledge (SCK) and 
is an important component of the knowledge needed for teaching. 
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Basketball Task: Coach Andrews is selecting students to play on the All Star Team. He has 
decided to look at the scoring of each player during the last three weeks of the season. Below are 
the points scored by Bob and Deon.  If Coach Andres can only select one of the two players, who 
would you recommend and why? [Note: The coach has not received scores for Deon’s last two 
games played]  

Bob 21 16 23 21 20 17 16 22 

Deon 24 18 21 25 22 28   
 

Figure 4: Basketball Task (developed by McGatha et al., 2002 and also used by Leavy & 
O'Loughlin, 2006)  

 
In this task 15 PSTs (a little more than half of the PSTs in the US vs. 70% of the PSTs in 

Ireland) recognized the mean as an appropriate measure to compare scores. Thirteen PSTs 
compared group means while 2 PSTs made equal sized groups (putting in 0s or 23s for Deon’s 
last scores – 23 is the average of Deon’s first 6 scores). Eleven PSTs compared the scores 
without comparing the means. Seven PSTs compared pairs of games, one PST, for example, 
stated: “I would choose Deon because he has done better than Bob 5 out of the 6 games. Deon’s 
avg. is higher than Bobs.” One PST compared total points scored thus far as well as the 
differences in the first 6 games, one PST looked at consistently scoring above 18, one PST gave 
no response, and two PSTs wanted to await the last two scores before making a decision. This 
task illuminates that only about half of the PSTs recognized the appropriateness of the mean to 
compare data sets of different sizes.  
 
 
How Do PSTs’ Think about the Median in Response to Children’s Incorrect Interpretation of the 
Median? 

A fourth task was constructed to examine whether PSTs would recognize children’s 
misconceptions when responding to a task about the median (see Figure 5). 
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Family Size Problem: In a 4th grade class the students collected data on their family sizes (how many 
people are in their immediate family). The teacher put the data on the board and asked the students to 
find the median of the data. The students copied down the numbers and wrote their answers (See Figures 
3a and 3b for Anna and Lisa’s solutions). Please write a reaction to each of the solutions. In your reaction 
please include (a) whether you think the answer is correct/incorrect, and (b) what you might do next with 
that child if you were the teacher. 

 

 

 
Anna’s solution to identifying the median in the 
family size problem. 

 Lisa’s solution to identifying the median in the 
family size problem 

 

Figure 5: Two children’s solution to a Family Size Problem. 
 

The problem was designed to highlight two potential conceptual difficulties students may 
have understanding the median, the order of the data and the number of times each data point 
appears. Thus, the task was designed so that one student chose the middle number of the 
unordered data set, another the middle number of the various family sizes. The first of these 
solutions results in an incorrect answer the second in a correct answer, but based on an incorrect 
argument. Agreement with Anna’s solution indicates a conception of median that may not 
include the notion of the importance of ordered data. Agreement with Lisa’s solution, indicates 
that the frequencies of each family size do not matter. At Level A of the GAISE document 
students “should understand that the median describes the center of a numerical set in terms of 
how many data points are above it and below it” (p. 29). All but one PST identified the 
misconception in Anna’s solution (i.e. that the data set needs to be ordered), however only 15 of 
27 PSTs recognized that Lisa’s argument was incorrect (see Table 2). This may be due to the fact 
that it resulted in the correct answer or due to the fact that the PSTs did not pay attention to the 
fact that each data point needs to be accounted for when calculating the median. One PST argued 
that Lisa’s solution is correct because "each number only needs to be represented once to find the 
median“ and another that Ana’s is incorrect “Anna is … confused what the middle is in this 
situation… she should be considering the range of the numbers given (2-6) not the order in 
which they were written.” Thus while most of the PSTs recognized that order mattered when all 
the data was presented about 44% of the PSTs did not recognize the need for all data points when 
they were not presented in the solution.  

Table 2: PSTs responses to Family Size Problem: 
 Identified  misconception Did not identify misconception 

Anna’s solution 26 1 

Lisa’s solution 15 12 

Conclusions 
The PSTs responses to these four tasks give a glimpse into U.S. PSTs’ initial thinking about 
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distributions of data. All PSTs, except one, displayed knowledge of the mean algorithm (Potato 
Chip Task), however, it can often be difficult to decipher procedural averaging of pairs from 
conceptual averaging through balancing (Potato Chip Task). What may look like balancing may 
be grounded in the algorithm. All but one of the PSTs interpreted average as “mean” – this is not 
surprising as the terms are often used interchangeably and PSTs often encounter the notion of 
average referring to all three measures of center for the first time in their mathematics/statistics 
for preservice teachers course. When given tasks like comparing two data sets of unequal size 
(Basketball task) only about half the PSTs recognized the mean as an appropriate measure of 
center and when confronted with a child’s solution to the Family Size Problem about half the 
PSTs did not recognize the need for all data points to calculate the median. This shows that these 
PSTs conceptions of mean and median need to be further developed to be at the level 
recommended in GAISE. When we relate these findings back to the knowledge needed to teach 
mathematics, we can conclude that most PSTs possess common content knowledge (CCK) of the 
measures that index distribution, however performance on the tasks reveal problems with 
specialized content knowledge (SCK) of center and variability and understandings that extend 
beyond the ability to carry out procedures and manipulation of quantities. It is this specialized 
content knowledge of statistics that supports thinking and reasoning about distributions and that 
underpins the instructional decisions PSTs may make in classrooms when providing explanations 
for procedures, when selecting tasks and in recognizing sources of students errors.  

PSTs seem to recognize variability in the data when presented with a a (Movie Wait Time 
Task) or already constructed data sets, but seem to provide responses close to the mean value 
when asked to construct data from a given mean (Potato Chip Task). Given that distributional 
reasoning entails the ability to simultaneously consider measures of center and measures of 
variability in data, more work needs to be done to understand how PSTs consider distributions of 
data and how they coordinate measures of center and variability when reasoning about data. 
Furthermore, we cannot ignore the potential influence of context on the decisions PSTs make 
when choosing values to represent a distribution of data. This area needs to be explored in future 
research.  

To help PSTs develop their ability to reason coherently about distributions of data, we may 
need to explicate the relationship between the various measures of center and the data points 
from which they are created, as well as the role variability plays in statistics. In particular to help 
PSTs develop a conceptual understanding of the mean we may need to begin with balancing two 
numbers (pair) or fair share, then move to balancing 3 numbers or fair share among three, and 
then move to balancing more numbers or fair share. In addition we need to focus PSTs’ attention 
to the range of values in a data set. The fact that one mean can originate from many different data 
sets is something that PSTs need to come to understand and they must begin to negotiate how 
context may play a role in the type of variability they expect to see in data.   
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     Shulman’s (1986) curricular knowledge includes knowledge of the variety of curricular 
materials and the ability to evaluate, compare and justify curricular choices. To meet this need 
we have engaged our pre-service teachers (PSTs) in a comparison activity of two Standards-
based lessons. We present PSTs’ perceptions of the affordances and constraints within each 
lesson, interpret these results and present implications for further research. 

Because Standards-based curriculum materials are becoming ubiquitous in schools (Archer, 
2005; Remillard, 2005), there is a need for teacher education programs to prepare PSTs to be 
able to perceive the intended meaning of, mobilize the potential of, and continually develop their 
pedagogy through curricular resources. Our overarching research concerns the design of 
research-based activities for the elementary mathematics methods course that will allow pre-
service teachers (PSTs) to learn about- and from- Standards-based curricular materials. We posit 
these types of activities can enable PSTs to move along a trajectory towards expert curriculum 
use. Our conceptualization of expert curriculum use can be associated with Taylor’s (2010) 
notion of the “curriculum-proof teacher”; a teacher “who can use any given curriculum in highly-
effective ways” (p. 152). This paper presents our findings related to PSTs’ critiques and 
perceptions of two Standards-based lessons.  

Theoretical Frame 
Framing our examination of PSTs’ perceptions and preferences in working with materials 

from Everyday Mathematics and Investigations is the research around teacher learning about and 
from curriculum materials and PSTs’ capacities to evaluate curriculum materials. We also 
considered research that provides some insight into the relationship between teacher capacity, 
curricular use, and instruction involving Standards-based curriculum materials.  

Learning about and from Curriculum Materials 
To frame our use of curricular materials and to inform our examination of what PSTs learn 

about and from Standards-based curricular materials, we employ Shulman’s (1986) construct of 
curricular knowledge: 

The curriculum is represented by the full range of programs designed for the teaching of 
particular subjects and topics at, a given level, the variety of instructional materials available 
in relation to those programs, and the set of characteristics that serve as both the indications 
and contraindications for the use of particular curriculum or program materials in particular 
circumstances. (p. 10) 

The learning activity reported on in this study addresses PSTs’ curricular knowledge by 
introducing examples of available materials and asking PSTs to evaluate, compare, consider and 
justify a curricular choice. 

Several studies have examined how teachers use Standards-based curriculum materials and 
the impact those materials have had on teacher learning (e.g. Collopy, 2003; Nicol & Crespo, 
2006; Remillard & Bryans, 2004). Some of those studies (e.g. Collopy, 2003; Remillard & 
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Bryans, 2004) have shown that external resources  (e.g., curriculum materials, professional 
development) that have prompted some teachers to use and learn from curriculum materials in 
reform-oriented ways do not prompt all teachers with those same resources to learn or teach in 
similar ways. For example, Collopy (2003) reported the stark contrast between two teachers in 
their learning from the use of the same curriculum series with the same professional development 
opportunities. One teacher (Ms. Ross) developed a new teaching practice by using the materials 
as her primary source of professional development. Ms. Clark, however, did not change her 
practice and continued to emphasize memorization and the use of standard algorithms. Collopy 
(2003) contends that the two teachers differed in their “opportunities to learn” because of the 
ways in which they read and enacted the curriculum along with how they used the materials 
when collaborating with colleagues. We posit Collopy’s (2003) findings on how teachers read 
curriculum may allow us to explain the PSTs’ critiques and perceptions of the two lessons. 

PSTs’ Capacity to Evaluate Curriculum Materials 
Studies in science and mathematics education (e.g. Beyer & Davis, 2009; Davis, 2006; Lloyd 

& Behm, 2005, and Nicol& Crepo, 2006) have found that 1) PSTs need continuous supports 
available in order to evaluate curriculum materials in reform-oriented ways, and that 2) PSTs can 
misinterpret lessons when they look for aspects of lessons that are familiar to them. In one study, 
PSTs were asked to complete three science lesson plan analyses using a narrative that provided a 
description and rationale for an important  “principle of practice” (Beyer & Davis, 2009, p. 6). 
The majority of PSTs used the educative support in their analysis and made adaptations that 
better supported key principles in science teaching, but did not make similar analyses and 
adaptations when the support was not available (Beyer & Davis, 2009). Lloyd & Behm (2005) 
investigated the ways in which PSTs compared and contrasted two textbook lessons (one 
traditional and one reform-oriented). The researchers found that PSTs looked for aspects of the 
lessons that were familiar to them. Thus, the lessons they preferred were more traditional. 
Furthermore, the researchers concluded that PSTs’ fondness for traditional lessons led the PSTs 
to misinterpret those lessons. 

Capacity and Mobilization of Standards-based Curriculum 
Stein and Kaufman (2010) investigated how teacher capacity and teachers’ mobilizations of 

curriculum materials influenced instruction. They found that teachers implementing 
Investigations in Number, Data, and Space (Investigations) had higher-quality lessons (measured 
by maintaining high levels of cognitive demand, attending to student thinking and vesting 
intellectual authority in mathematical reasoning) than those implementing Everyday 
Mathematics (EM). The researchers attribute this finding to that fact that Investigations (TERC, 
2008) provided more support to teachers for “locating and understanding the big mathematical 
ideas within lessons compared to Everyday Mathematics” (Stein & Kaufman, 2010, p. 663). 
After examining levels of cognitive demand and supports for teachers in both series however, the 
researchers branded Everyday Mathematics as a low demand/low support curriculum and 
Investigations as high demand/high support.  

Methods 
The Developing Addition Strategies module asks PSTs to examine and engage in two 

addition lessons from Standards-based curricula. “Addition Starter Sentences” is a third grade 
lesson from Investigations (TERC, 2008) and “A Shopping Activity” is a second grade lesson 
from EM (USCMP, 2007). Both lessons are designed to provide opportunities for children to 
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develop alternate addition strategies for multi-digit addition. Over the course of two 75-minute 
class sessions, the first author used the Developing Addition Strategies Module within two 
sections of an elementary mathematics methods course. He engaged PSTs in the examination of 
the curricular materials and also in completing the learning tasks from each lesson. The 
researchers had several goals for this module, including affording PSTs an opportunity to 
develop knowledge of alternative addition strategies as well as how children develop, make 
sense of, and use alternative addition strategies (Tyminski, et al., 2010). Another aim, and the 
focus of this paper, was to give PSTs an opportunity to critique and compare the two lessons, 
culminating with the PSTs choosing and defending their preference for one of the two lessons. In 
order to support PSTs in critically examining curricular materials, the first author had introduced, 
implemented and discussed constructs and tools for analyzing tasks earlier in the semester. These 
supports included activities involving: levels of cognitive demand (Schwan-Smith & Stein, 
1998); availability of multiple access points; whether solution strategies are teacher/textbook- or 
student-generated; the degree to which lessons support teaching through problem solving; and 
whether/how lessons address the essential skills and content in state Standards. The comparison 
activity was posed as follows: 

First, describe, in a bulleted list the strengths and weaknesses of these two lessons as written. 
Be sure to comment on: 

• What you think students will know or understand by the end of the lesson 
• Cognitive demand of the tasks 
• Whether strategies are teacher/textbook-generated or student-generated 
• Whether the tasks include multiple access points for different students 
• Whether/how this lesson reflects teaching through problem-solving 
• Whether/how this lesson addresses essential skills/content in your state Standards 
• Your overall impression of the lesson’s strengths and weaknesses 

Second, write a short paragraph (4-6 sentences) telling which lesson materials you would 
rather teach from, why you feel that way, and what goals you would have for your students in 
using this lesson. Please use evidence from the materials and/or from your own experiences 
to support your choice. 

This paper focuses on the results of the final paragraph in which PSTs selected the lesson they 
would prefer to teach from and justified their choice based on their perceived strengths and 
weaknesses of the curricular materials. We collected responses from 45 PSTs at a large, 
Midwestern university during the spring semester of 2010.  

Addition Starter Sentences (TERC, 2008) begins by asking children to decide which of the 
following “addition starter problems” is easier for them to solve and why: 100 + 200 = ______, 
136 + 200 = ______, 136 + 4 = ______. Next, children are asked to choose a starter sentence to 
solve 136 + 227 and explain why that would be a good start. After children solve 136 + 227, they 
share their solution paths. Children then complete a worksheet with five more “sets” of tasks, 
three starter problems matched to a final problem. In the methods course, we enact the lesson as 
written with PSTs participating as students. We then ask PSTs to read the curriculum materials 
and discuss the educative features (Davis & Krajcik, 2005). One educative feature we focus on is 
the information about alternate addition strategies that align with the starter problems: breaking 
apart by place; adding one number in parts; and changing a number, then adjusting (TERC, 
2008). We then ask PSTs to analyze ten examples of children’s mathematical thinking for the 
problem 249 + 175. The PSTs are to make sense of the strategies, determine if the approaches 
are mathematically valid, and categorize them according to the three strategies. We finish the 
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module with a discussion of how teachers can support students in using these three strategies 
(see Tyminski, et al., 2010). 

A Shopping Activity (UCSMP, 2007) also allows opportunity for students to develop 
invented strategies for multi-digit addition. According to the curriculum materials, “The main 
objective of this lesson is to develop and practice strategies for mental addition of 2-digit 
numbers” (UCSMP, 2007, p. 254). The lesson begins with some mental math exercises and a 
contextual task designed for students to use the “count up” strategy for subtraction. The lesson 
then moves into an activity in which the teacher selects two items from a list of eight, to 
“purchase”. Each of the prices for the items is less than $50. The teacher selects two items, for 
example a telephone ($46) and a toaster ($29) and asks the children how they might find the total 
cost. In discussing the students’ solutions the lesson reads: 

You or the children might suggest the following strategies: 
Strategy 1: Start with the larger addend, 46. To add 29, note that there are 2 tens in 29. 
Count up by 10s. Then add 9. The total cost is $75. 
Strategy 2: Think of $10 bills and $1 bills. Add the $10 bills. Add the $1 bills.  Add the tens 
and the ones. 
Strategy 3: 29 is 1 less than 30. Add 30 to 46. Then subtract 1 to make up for the extra 1. 
Strategy 4: 29 is 1 less than 30 and 46 is 4 less than 50. Add 30 and 50. Then subtract the 
extra 1 and the extra 4. (UCSMP, 2007, p.253) 

The lesson asks the teacher to pose more examples and discuss students’ solutions. It explicitly 
tells teachers not to introduce a traditional pencil and paper algorithm for addition at this point. 
The students are then put into pairs to complete the next activity, “Playing Shopping”, which 
uses the same eight items and prices.  One child is the clerk and the other child the customer.  
The customer selects two items randomly and finds the total amount of the two items using a 
“part-part-total diagram”, but without using a calculator.  The clerk then checks the total amount 
using a calculator.  The children then switch roles. The lesson concludes with children 
completing a handout of shopping problems similar to the lesson tasks. In a similar manner to the 
Starter Sentences Lesson, we engage the PSTs in the main learning tasks as if they were students 
in the elementary classroom, followed by a reading of the materials and a discussion of its 
educative features (Davis & Krajcik, 2005). 

Both lessons afford students opportunity to develop alternative addition strategies. The three 
strategies in both curricula are research-based student approaches to these types of problems. 
What differentiates the two lessons for us is in the amount of support given to students and the 
teacher in this process. The starter sentences are presented as a potential first step in a solution 
path and suggest one of the three solution strategies. The students however choose how to use 
the starter sentence to complete the problem and there are a myriad of ways to apply the 
strategies, especially within the “change the numbers” approach. Further, the Starter Sentences 
teaching materials include supports for the teacher in terms of student strategies (“Often the 
numbers in a problem will suggest one strategy more than another; for example, students may be 
more likely to add on to the next hundred if one number is close to a multiple of 100, such as 
199” (TERC, 2008, p. 92)); questioning (“How did the Starter Problem you chose help you know 
what to do next?” (p. 92)); and for observation (“Do students choose one of the starts to solve the 
final problem? Which one? Can they follow though with the solution and keep track of the 
steps?” (p. 92). 

 Although the solutions included within the EM lesson are descriptions of the three strategies 
in Investigations (Strategy 1 is “add one number in parts”, Strategy 2 is “break apart by place”, 
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Strategy 3 and 4 involve “changing the numbers”), similar scaffolds are not found within the EM 
lesson, leaving it up to the student to decide how to begin the task. In terms of teacher supports, 
the inclusion of the phrase “You or the students might suggest the following strategies” 
(UCSMP, 2007, p. 253) concerned us as it implicitly suggests to the teacher that it is acceptable 
to directly teach or introduce the strategies. We also identified a lack of teacher support in 
helping students begin to engage with the tasks. EM does include some instructions for 
supporting Strategy 2 with physical models, (“Use play money to illustrate Strategy 2. Put four 
$10 bills and six $1 bills on one stack and two $10 bills and nine $1 bills in a second stack. 
Combine the bills as indicated” (p. 253). This scaffold is more of a demonstration than an 
approach to help students think about the strategies, but at least it offers some pedagogical 
support. The lack of suggestions for the other strategies leaves it on the shoulders of the teacher 
to develop scaffolds for students.  

Data Analysis 
From two methods course sections, we collected 45 responses. These were first sorted 

according to their final curricular preference. Next, each justification paragraph was analyzed 
independently at the two university sites through a process of open and emergent coding (Strauss 
& Corbin, 1998), using a framework of PSTs’ perceived affordances and constraints as a lens. 
Through an inductive analysis process, a series of codes for four categories: student affordance, 
student constraint, teacher affordance, teacher constraint, emerged from the data. As codes 
emerged from the PSTs’ perceptions of the strengths and weaknesses of the materials, they were 
shared across university sites and refined. There were 18 codes established for student 
affordance, 5 for student constraint, 5 for teacher affordance, and 3 for teacher constraint.  

Results 
Of the 45 responses, 30 PSTs stated their preference for the Everyday Mathematics materials, 

while 13 PSTs selected Investigations. One PST did not include a final paragraph, and the other 
suggested using parts of both lessons in her teaching. We present data from the 43 responses in 
this section, broken down by the viewpoint of the student and the teacher. 

Student Affordances and Constraints 
In justifying their choice of lesson, many PSTs commented on features pertaining to the 

interactions and opportunities students would have in learning from the materials. A vast 
majority of the PSTs who preferred “A Shopping Activity” justified their choice with examples 
of student affordances (SA) of the materials. Twenty-seven of the 30 PSTs included an SA in 
their justification, and many students (22 of 27) included more than one SA in their justification.  
In all, 70 comments were coded as SA-EM (student affordance within EM). Table 1 presents the 
affordances that appeared in at least 15% of the PSTs’ responses (N=30). None of the 30 
responses included text coded as a student constraint (SC-EM) of the EM lesson. Three PSTs 
focused on student constraints within Investigations (SC-IN) as opposed to the affordances of 
EM. One PST felt that the Investigations lesson lacked student autonomy; two others described 
the solution strategies as being teacher/textbook generated. One of the PSTs who selected EM 
nonetheless mentioned that the Investigations lesson afforded students opportunities to make 
connections. 

The majority of PSTs who had a preference for EM viewed “A Shopping Activity” as a 
familiar context, hands-on, and fun. These responses seem to focus on the interest of the activity 
rather than the interesting mathematics. Other, less reported reasons for preferring EM focused 
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more on the mathematics – opportunities for practice, student-generated solutions, multiple 
solution strategies, student autonomy, and learning from peers. 

 Of the 13 PSTs who selected “Addition Starter Sentences” from Investigations, 7 included 
student affordances in their justification. Across these seven responses, twenty-two comments 
were coded as SA-IN. Table 2 presents the affordances appearing in at least 2 of the PSTs’ 
responses (N=13). One of the 13 PSTs who selected the Investigations lesson cited the lack of 
contextual tasks as a weakness of the materials; we coded this as a student constraint of 
Investigations (SC-IN). Three of the 13 PSTs focused on the student constraints of EM, two on 
“lack of student autonomy”, the other on a perceived “lack of goal”. Comparatively, the reasons 
PSTs gave for preferring Investigations tended to focus more on the mathematics: student 
autonomy, student generated solutions, and multiple solution paths. 

 
SA Code # % 

Contextual tasks 12 40% 
Hands on tasks 9 30% 
Fun 8 27% 
Opportunities for practice 7 23% 
Student generated solutions 7 23% 
Multiple solution strategies 6 20% 
Student autonomy 5 17% 
Learn from peers 5 17% 

Table 1: PSTs’ Perceptions of Student   Table 2: PSTs’ Perceptions of Student 
Affordances in EM Lesson       Affordances in Investigations Lesson  

Teacher Affordances and Constraints 
PSTs also commented on their analysis of the curricular materials from a teacher’s 

perspective. Of the 30 who preferred the EM lesson, 13 used justifications we coded as TA-EM 
(teacher affordance within EM), 5 of these included more than one affordance for a total of 18 
comments: 8 PSTs cited the materials for including “differentiation”; 7 comments indicated 
“ease of use (implementation)”, 2 PSTs noticed “possible student solutions” included in the 
materials; and 1 viewed the materials as giving the “teacher control” of the lesson. Only 1 PST 
who selected the EM lesson included a comment coded as TC-EM (teacher constraint within 
EM), it was coded as “difficult to understand”. We take this comment to mean the PST had 
difficulty in making sense of the organization of the curricular materials. A total of three PSTs 
included commentary from a teaching perspective on the Investigations materials within their 
EM justification. One commented on the “ease of use” of the Investigations materials (TA-IN: 
teacher affordance within Investigations). Two PSTs’ comments were coded TC-IN (teacher 
constraint within Investigations): one was coded “difficult to understand”; the other was coded as 
“difficult to use (implement)”. We specifically differentiated between difficulties PSTs perceived 
in reading the materials and using the materials, although we posit the two ideas are strongly 
connected. 

Seven of the 13 PSTs’ justifications that selected Investigations materials included comments 
coded as TA-IN (teacher affordance within Investigations); only 2 made more than one such 
comment in their paragraph. There were a total of 11 comments coded as teacher affordances: 7 
indicated “ease of use”; 2 indicated the inclusion of “differentiation” for students; 1 PST cited 
the inclusion of “examples of teacher talk”; and 1 noticed “possible student solutions” included 

SA Code # % 
Student autonomy 7 54% 
Student generated solutions 4 31% 
Multiple student strategies 2 15% 
Scaffolding 2 15% 
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in the materials. Two PSTs indicated teacher constraints within the Investigations materials (TC-
IN): 1 response was coded as “needs to be adapted”, the other as “difficult to use (implement)”. 
One PST, who commented on the ease of use of the Investigations lesson, also cited the EM 
lesson as “difficult to use” (TC-EM). 

We were surprised by the marked difference in the number of comments coded as student 
affordance or constraint and the number of comments coded as teacher affordances or 
constraints. There were 99 comments that addressed the materials from a student point of view 
and 38 from a teaching point of view. One interpretation of these results is that PSTs were more 
attuned to the potential experience of learning from these materials, rather than teaching with the 
materials. The comments that were made however, provided interesting evidence of PSTs’ 
critiques of the lessons. The theme of differentiation was evident within many of the PSTs’ 
comments on both sets of curricular materials, demonstrating to us they were aware of the 
importance of addressing the needs of individual learners, and noticing the supports within the 
materials designed to aid teachers in doing so. What was interesting to us about these results is 
the assignment did not specifically ask them to comment on this facet of the lessons. Fourteen 
PST commented on the ease of use of the materials, 7 for EM and 7 for Investigations. This data 
raised a new question for us to consider as researchers, what was it specifically about the 
materials that PSTs were referring to when citing their ease of use? 

Conclusions and Implications 
We agree with Stein and Kaufman’s (2010) assessment that Investigations is stronger than 

EM in terms of cognitive demand, and in the amount and quality of teacher support. Yet, our 
PSTs overwhelmingly picked EM as the curricular materials they would rather teach from. Why 
was what was clear to us, not evident to the PSTs? We conclude with three possible explanations 
and implications for future research. 

First, we agree with Collopy’s (2003) notion that the manner in which PSTs read the 
materials, with a viewpoint of a learner, may have caused them to miss out on some of the 
opportunities to learn about the curricular materials. We base this upon their comparative lack of 
attention to teacher affordances and supports; particularly lack of attention to supports within 
both curricular materials in terms of presenting possible student solutions. Our future research 
needs to specifically address how PSTs view teacher supports. Do PSTs believe they can learn 
from the curricular materials? Should we include a non-Standards-based example lesson in the 
comparison in order to help them notice when supports are not available? 

A second explanation also pertains to PSTs’ tendency to evaluate the materials from a 
student’s point of view. By selecting the EM lesson and focusing on aspects of the lesson such as 
hands on materials, real world contexts and being “fun”, PSTs are trying to ensure that the 
activity involved in the lesson is interesting. From a teaching point of view, we would hope they 
would try to ensure that the mathematics involved in the lesson is interesting. Most PSTs 
perceive mathematics as a discipline of discrete facts and procedures to be memorized rather 
than a discipline of interconnected concepts (Thompson, 1992). In other words, mathematics is 
not meant to be interesting. To make mathematics interesting, the activity needs to be interesting. 
Thus, the “shopping activity” is preferred.  

A third explanation is the PSTs were drawn to EM as a result of their teacher capacity. 
Teacher capacity, including a teacher’s education, experience, and mathematical knowledge is a 
measure of ability needed to implement curriculum (Stein & Kaufman, 2010). At the PSTs’ 
current stage of development (first semester seniors), it is fair to classify them as having 
comparably low teaching capacity in terms of education and experience. Although they did not 
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clearly state this in their paragraphs, perhaps given their experience and knowledge, the PSTs 
perceived that Investigations could be difficult to teach from, leading them to prefer the lower 
demand in EM. Stein and Kaufman (2010) talked about this notion – some believe that “even 
among standards-based curricula, some are more difficult for teachers to implement than are 
others” (p. 664). Our PSTs, and others, are not noticing the supports provided in Investigations to 
help implement the high-demand tasks. 

Finally, it is evident that through this activity, PSTs are learning about the curricular 
materials, developing curricular knowledge, and are able to use educative supports in their 
critique and analysis of Standards-based curricular materials. While many PSTs did not view the 
materials in the same manner an expert might, we are encouraged that with further experiences, 
PSTs will continue to develop in their ability to do so. 
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We report on results of a classroom teaching experiment in a mathematics content course for 
prospective elementary teachers. A local instruction theory for the development of number sense, 
which was previously applied to whole-number mental computation, was extended to inform 
instruction concerning reasoning about fraction magnitude. We found that students’ reasoning in 
fraction comparison tasks improved in several ways. Their performance improved, they became 
more flexible in their reasoning, and they came to use less conventional and more sophisticated 
strategies. These changes parallel those that we previously saw around mental computation. 

  
We report on results of the implementation of a local instruction theory (LIT) for number 

sense development in a mathematics content course for prospective elementary teachers. Our 
previous research showed that students involved in an earlier teaching experiment developed 
improved number sense, particularly in terms of flexible mental computation (Whitacre, 2007). 
The previous research was informed by a conjectured local instruction theory and informed the 
refinement and elaboration of that local instruction theory (Nickerson & Whitacre, 2010). In a 
recent iteration of the classroom teaching experiment (CTE), the local instruction theory was 
extended from the whole-number portion of the course to the rational-number portion. We found 
that interview participants’ reasoning about fraction magnitude improved over the course of the 
semester. Their performance improved, they became more flexible in their reasoning, and they 
came to use less conventional and more sophisticated strategies. These changes parallel those 
that we previously saw around mental computation. 

 
Background 

This study represents the latest phase in an ongoing design research effort (Gravemeijer, 
1999) concerning the number sense of prospective elementary teachers. Our previous research 
involved the design and elaboration of a local instruction theory for students’ development of 
number sense with a focus on whole-number mental computation (Nickerson & Whitacre, 2010). 
In the recent CTE, the local instruction theory was applied to reasoning about fraction 
magnitude. Our research involves both documenting collective classroom activity and analyzing 
student learning. Our focus in this paper is on the analysis of interview data. 
 
Previous Research 

One area of focus in the number sense literature has been the computational strategies that 
students use. Good number sense is associated with flexibility, which is exhibited in the use of a 
variety of computational strategies. In mental computation, inflexibility often manifests in the 
use of the mental analogues of the standard paper-and-pencil algorithms. While the standard 
algorithms can be useful, skilled mental calculators tend to select a strategy for an operation 
based on the particular numbers at hand. Furthermore, the strategies that these individuals use 
often stray far from standard, as in reformulating computations or rounding and compensating 
(Carraher, Carraher, & Schlieman, 1987; Greeno, 1991; Hierdsfield & Cooper, 2002; 2004; 
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Hope & Sherrill, 1987; Markovits & Sowder, 1994; Reys, Rybolt, Bestgen, & Wyatt, 1982; 
Reys, Reys, Nohda, & Emori, 1995; Sowder, 1992; Yang, Reys, & Reys, 2009). 

In order to teach mathematics effectively, elementary teachers need to understand elementary 
mathematics deeply (Ball, 1990). However, prospective and practicing elementary teachers often 
know the procedures of elementary mathematics, but do not understand the material conceptually 
(Ball, 1990; Ma, 1999). Studies of preservice elementary teachers have found that this population 
tends to exhibit poor number sense, even after having completed their required college 
mathematics courses (Tsao, 2005; Yang, 2007; Yang, Reys, & Reys, 2009). In light of these 
findings, we have focused on improving the number sense of prospective elementary teachers. 

In 2005, we conducted a CTE in a mathematics course for prospective elementary teachers. 
In that study, we focused on mental computation as a microcosm of number sense. Thirteen 
students participated in pre/post interviews in which they were given story problems to be solved 
mentally. In addition to coding for the particular mental computation strategies that participants 
used, we coded these as belonging to more general categories of strategies. We used a scheme of 
Markovits and Sowder (1994) to categorize participants’ strategies as Standard, Transition, 
Nonstandard without Reformulation, and Nonstandard with Reformulation. The essential 
criterion in this scheme is the extent to which the person’s approach is tied to (or departs from) 
the standard algorithm for the operation. Nonstandard strategies are those that diverge 
substantially from the standard algorithms. The use of such strategies suggests an understanding 
of the operation that is not bound to any particular algorithm; these nonstandard strategies are 
associated with number sense (Markovits & Sowder, 1994; Yang, Reys, & Reys, 2009). 

The Standard-to-Nonstandard framework revealed a rather dramatic shift in the strategies 
used by the 13 interview participants. Participants shifted from using the most standard to the 
least standard strategies, which suggests that their understanding of the operations moved from 
being bound to the standard algorithms to being unconstrained by these (Whitacre, 2007; 
Whitacre & Nickerson, 2006). These results were encouraging and led us to pursue further 
research concerning the number sense development of prospective elementary teachers. 
 
Local Instruction Theory for Number Sense Development as Applied to Fraction Magnitude 

The previous teaching experiment was reflexively related to the development of a local 
instruction theory. A local instruction theory (LIT) consists of “the description of, and rationale 
for, the envisioned learning route as it relates to a set of instructional activities for a specific 
topic” (Gravemeijer, 2004, p. 107). We have described elsewhere our local instruction theory for 
the development of number sense (Nickerson & Whitacre, 2010). Here, we briefly list the three 
major goals around which this LIT is organized: (1) Students capitalize on opportunities to use 
number-sensible strategies; (2) Students develop a repertoire of number-sensible strategies; (3) 
Students develop the ability to reason with models. 

We sought to extend the LIT to the rational number domain, with a focus on reasoning about 
fraction magnitude. This area relates to mental computation in that a variety of strategies can be 
used, including traditional procedures, as well as nonstandard strategies. Behr, Wachsmuth, Post, 
and Lesh (1984) touted the importance of reasoning about fraction magnitude as a prerequisite to 
reasoning meaningfully about operations involving fractions. Fraction estimation and 
comparison tasks have been used in assessments of students’ number sense (Hsu, Yang, & Li, 
2001; Reys & Yang, 1998; Yang, 2007). 

Our thinking concerning reasoning about fraction magnitude is informed by the framework 
of Smith (1995). Smith groups fraction comparison strategies into four categories, which he calls 
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perspectives. These perspectives serve not only to categorize strategies but also to highlight 
commonalities in reasoning across groups of strategies. Strategies such as converting to a 
common denominator or converting to a decimal belong to the Transform perspective. They 
involve transforming one or both fractions in some way in order to facilitate the comparison. One 
can also compare fractions without performing any sort of transformation. One way to do this is 
to apply the Parts perspective, wherein the fractions are interpreted in terms of parts of a whole. 
This perspective alone is sufficient for relatively simple cases, such as comparing fractions that 
have the same numerator or same denominator. 

The Reference Point perspective involves reasoning about fraction size on the basis of 
proximity to reference numbers, or benchmarks (Parker & Leinhardt, 1995). For example, using 
the residual strategy for comparing fractions, one compares the difference of each fraction from 
a common benchmark number, typically 1: To compare 7/8 and 6/7, we can notice that 7/8 is 1/8 
away from 1, whereas 6/7 is 1/7 away from 1. Since 1/8 is less than 1/7, 7/8 is closer to 1, and 
therefore larger (Yang, 2007). (Smith refers to this as the reference point strategy, as do Behr, et 
al., 1984.) The Components perspective involves making comparisons within or between two 
fractions, as in coordinating multiplicative comparisons of numerators and denominators. For 
example, in order to compare 13/60 and 3/16, we can notice that 13 x 5 = 65 > 60, whereas 3 x 5 
= 15 < 16. It follows that 13/60 is greater since its numerator-denominator ratio is less extreme. 

In designing instruction, these perspectives informed our decisions relative to tasks, number 
choices, and anticipated student reasoning. We mapped out the envisioned learning routes 
described in our LIT in terms of the evolution of these perspectives and of particular strategies 
within each category. 

Although Smith (1995) does not describe the perspectives or particular strategies belonging 
to his framework in a hierarchical way, we view the Reference Point and Components 
perspectives as generally more sophisticated categories of reasoning about fraction size. There is 
support for this in the literature. For example, Yang (2007) considers the residual strategy to be 
Number sense-based, as opposed to Rule-based. We posit that there is a general correspondence 
between Smith’s perspectives and the Standard-to-Nonstandard framework, described earlier. In 
particular, the Transform and Parts perspectives correspond more or less to the Standard and 
Transition categories of strategies, while the Reference Point and Components perspectives 
correspond to Nonstandard strategies (with or without reformulation). We do not intend by this a 
one-to-one mapping of categories, but a more general grouping into Standard (including 
Transition) and Nonstandard. 

The general number sense literature, as well specific studies of researchers such as Yang 
(2007) and Newton (2008), suggested that prospective elementary teachers would come to the 
first course with limited number sense and would tend to apply standard algorithms for 
comparing fractions. Pilot interviews that we conducted with preservice elementary teachers who 
had completed their mathematics content courses confirmed this expectation. In our instructional 
sequence, we aimed for the more sophisticated strategies to eventually be used by students and 
established for the class by mathematical argumentation. In particular, we sought to engage 
students in reasoning about fraction size from Smith’s Reference Point and Components 
perspectives. Tasks were designed and sequenced so as to begin with students’ current ways of 
reasoning and to provide opportunities for reasoning about fraction size in new ways.  
Instruction 

Topics in the curriculum include quantitative reasoning, place value, meanings for 
operations, children’s thinking, standard and alternative algorithms, representations of rational 
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numbers, and operations involving fractions. Our work in the CTE involved identifying in the 
curriculum particular opportunities to engage students in authentic mental computation and 
reasoning about fraction size, and to share and justify their strategies. Over time, a shared set of 
strategies was established via mathematical argumentation. These strategies were given agreed-
upon names, and the class maintained a list of strategies with examples of each. Students came to 
the course with a Parts conception of fractions, and Parts reasoning served as a foundation upon 
which more sophisticated strategies came to be established. Students also engaged in activities 
involving placing fraction markers on a string representing a number line, and distance along the 
number line often featured prominently in students’ arguments concerning fraction comparisons. 
 

Methods 
This study took place at a large, urban university in the Southwestern United States. The 

participants in the study were students enrolled in a first mathematics content course of a four-
course sequence. There are multiple sections of the course, and a common final exam is used. 
The second author taught the section of the course in which data was collected. 

Seven of the students participated in pre/post interviews concerning their rational number 
sense. The interview participants were female undergraduates. Participants were asked to 
evaluate the relative sizes of pairs of fractions, amongst other tasks. Nine pairs of fractions were 
presented, one at a time. The particular pairs of fractions that participants were asked to compare 
appear in Figure 1. The same pairs of fractions were used in both interviews. The fractions were 
presented visually, and participants were asked to read them aloud. Participants solved the tasks 
mentally and explained their reasoning verbally, as shown in Figure 2. Participants were not 
allowed to do any written work for this portion of the interviews.  

 
2/8 3/8 
3/4 3/5 
6/7 7/8 

14/1
3 

13/1
2 

8/24 13/3
9 

13/6
0 

3/16 

7/28 13/5
0 

2/7 12/4
3 

35/8
32 

37/8
34 

 
Figure 1. Fraction comparison 

tasks 

 
 

Figure 2. Maricela comparing 13/60 with 
3/16 in her second interview 

 
We modified the framework of Smith (1995) for use as a coding scheme in order to account 

for differences in student population, the particular set of tasks that we used, and the foci of our 
research. Certain strategies were removed from the scheme because they never occurred in our 
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data set, and there were pairs of strategy codes that we collapsed into a single code. The refined 
scheme was used to code the pre/post data. 

In addition to coding for strategies and perspectives, we coded responses as Valid or Invalid. 
This is a researcher’s assessment of the mathematical validity of a participants’ strategy. Fraction 
comparisons are multiple-choice tasks with only three options (one fraction is larger, the other 
fraction is larger, or the two are equal). As a result, it is not uncommon for students to give 
correct answers on the basis of invalid or unclear approaches. We were interested in identifying 
valid strategies that led to correct responses. Thus, we also coded responses for correctness. In 
analyzing the pre/post data, we focused on those responses that were Valid and Correct (VC). 
We also coded students’ strategies as Standard or Nonstandard, as discussed earlier. 

As an assessment of change in performance, we compared the number of VC responses pre 
and post for each student. To assess change in flexibility, we compared the number of distinct 
VC strategies used by each student pre and post. Finally, we compared the numbers of Standard 
and Nonstandard VC responses pre and post. 

 
Results 

A comparison of interview participants’ pre/post responses reveals improved performance 
and increase flexibility. Furthermore, participants’ reasoning shifted from predominantly 
employing Standard strategies to a more balanced range of Standard and Nonstandard strategies. 
We discuss the case of one particular participant in more detail. 

For six of the seven interview participants, the numbers of VC responses increased from the 
first to the second interview. The mean VC score increased from 5.86 to 7.7 (of a total of 9 
responses). The additional VC responses were often the result of new strategies used by the 
participants. The number of distinct VC strategies used also increased from the first to the second 
interview for six of the seven participants. The mean number of distinct strategies used increased 
from 4.86 to 7.57. Thus, the participants used VC strategies more often in the second interview, 
and they used a wider variety of VC strategies. These data appear in the tables below. 

 
 

Student VC 
Pre 

VC 
Post 

Angela 4 8 
Brandy 4 7 

Maricela 7 8 
Nancy 8 9 
Trina 7 8 

Valerie 5 8 
Zelda 6 6 
Mean 5.8

6 
7.7 

 
Table 1. Counts of Valid-Correct 

Responses Pre and Post 

 
Student Distinct 

VC Pre 
Distinct 
VC Post 

Angela 4 7 
Brandy 4 7 

Maricela 3 8 
Nancy 6 9 
Trina 6 8 

Valerie 5 8 
Zelda 6 6 
Mean 4.86 7.57 

 
Table 2. Numbers of Distinct Valid-

Correct Strategies Pre and Post 

 
Maricela’s Transformation from Inflexible to Flexible 

Maricela was particularly inflexible in her reasoning about fraction magnitude in the first 
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interview. For seven of the nine comparisons, she attempted to solve by finding a common 
denominator. In some cases, this approach was manageable and led her to the correct answer. 
However, she also attempted this approach for comparisons for which it was extremely 
unwieldy, including to compare 35/832 and 37/834. Such conspicuous inflexibility suggests that 
her reasoning about fraction magnitude was bound to the standard algorithms for comparing 
fractions. Even though pencil and paper were unavailable to her, she entertained no alternative 
other than attempting to mentally compute and retain multiple multi-digit products. 

In her second interview, Maricela used a different strategy for each of the nine comparison 
tasks, and eight of these were VC responses. In her first interview, she had compared 13/60 with 
3/16 by converting to a common denominator. In her second interview, she compared these by 
comparing their distance from 1/4. We coded her primary strategy as Distance Below under the 
Reference Point perspective. She identified a benchmark fraction that would be useful for 
comparison. This required an initial estimation of the size of the fractions as being roughly close 
to that benchmark of 1/4. She then identified fractions equivalent to 1/4 but with denominators of 
60 and 16, which facilitated her distance comparison by making it easy to find differences. She 
identified the distances from 1/4 as 2/60 and 1/16. She simplified 2/60 to a unit fraction, which 
then enabled her to compare the “gaps” of 1/16 and 1/30. She stated that 1/16 was the larger of 
these. She then correctly concluded that 13/60 was larger than 3/16 because it was closer to 1/4. 
The reasoning that Maricela displayed here contrasts starkly with her very procedural approach 
to this and other fraction comparison tasks in her first interview. 
 
Shift from Standard to Nonstandard 

Maricela’s contrasting pre/post responses suggest a shift in perspectives. Her responses to 
eight of the nine comparison tasks in the first interview reflected a Transform perspective: She 
approached the tasks by attempting to apply a procedure for converting one or both fractions to 
an equivalent form in order to make the comparison. In her second interview, Maricela’s 
responses reflected a range of perspectives. Four of her nine responses were coded as Parts, two 
as Reference Point, two as Components, and only one as Transform. 

This shift in perspectives was also a trend across the interview participants. In the first 
interview, 30 of the 41 VC responses involved a Standard strategy, such as converting to a 
common denominator. In the second interview, there were 54 VC responses, and 30 of these 
involved Nonstandard strategies. (See Figure 3.) We note that the responses in the first interview 
were weighted largely toward Standard, which reflects a lack of flexibility. In the second 
interview, Nonstandard responses outnumbered Standard ones, but by a relatively small margin. 
We view this more balanced set of strategies used as a desirable picture. There is nothing wrong 
with the Standard strategies in principle. In fact, four of the nine comparison tasks that we used 
lend themselves well to Standard approaches. Thus, we would expect flexible, skilled individuals 
to use such approaches approximately as frequently as the interview participants did for the 
given set of tasks. In fact, exactly 24 of 54, or 4/9, of the VC responses were Standard. 
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Figure 3. Shift from Standard to Nonstandard strategies 
 

Figure 3 actually provides a concise summary of the interview results: We see the shift from 
Standard to Nonstandard, the increase in VC responses demonstrates improved performance, and 
the increase in Nonstandard VC responses coincides with improved flexibility. 
 

Conclusion 
We began this study with the idea of extending a local instruction theory for the development 

of number sense to the domain of rational numbers. Our focus shifted from whole-number 
mental computation to fraction comparison tasks. Smith’s framework informed our thinking 
about strategies and perspectives involved in comparing fractions. The research literature, 
together with our pilot interviews, enabled us to anticipate prospective elementary teachers’ 
initial reasoning about fraction magnitude. Our pre-instruction interviews enabled us to refine 
our expectations. We designed the instructional sequence in terms of students moving from the 
Transform and Parts perspectives toward the Reference Point and Components perspectives. 
Specific instructional activities were crafted with this envisioned learning route in mind. 

Results from pre/post interviews with seven of the students show that the participants’ 
performance and flexibility in comparing fractions improved, and that they shifted from using 
predominantly Standard strategies to a balance of both Standard and Nonstandard. These results 
provide evidence that the prospective elementary teachers developed improved rational number 
sense. The results also parallel those that we saw in a previous study in which the LIT was 
applied to mental computation. Taken together, these findings suggest to us that the LIT does 
serve its purpose in shaping instruction design in such a way that substantial number sense 
development occurs. The fact that these results have been achieved with prospective elementary 
teachers is especially significant since the literature tells us that this student population tends to 
have poor number sense, even after having completed their mathematics content courses. 

Having found further evidence that the implementation of our local instruction theory 
supports number sense development, the current phase in our ongoing design research seeks to 
better understand how that development occurs by analyzing collective classroom activity. 
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A Mathematics course for elementary school teachers (MFET) is required in North America in 
most teacher education programs. Our study investigates the perceptions of prospective 
elementary school teachers with respect to the contributions of such a course to their teaching. 
The results show that acquiring an understanding of concepts from the elementary school 
curriculum is the main contribution. We conclude with two perspectives – a pessimistic one and 
an optimistic one – on this finding.  

In many teacher education programs in North America a Mathematics course (or a sequence of 
Mathematics courses) for elementary teachers is either a requirement of, or a prerequisite for, 
entry to a teacher education program. Despite repeated calls for a “thorough rethinking of 
mathematics courses for prospective teachers of all grade levels” (CBMS, 2001, p.6), and an 
agreement about the need for integration of mathematics and pedagogy at the elementary level in 
order to develop profound knowledge of mathematics for teaching (Ball & Bass, 2000), in many 
programs there is still the traditional separation between the Mathematics-content courses and 
the Mathematics-methods courses for prospective elementary school teachers.  This study 
investigates prospective teachers’ views of the contributions, both actual and potential, of the 
Mathematics-content course, referred to as MFET – Mathematics for Elementary Teachers – to 
their teaching.  

On Teachers’ Knowledge 
With the extensive emphasis on teacher education in recent mathematics education research, the 
primary foci have been on assessing the knowledge that teachers have and exploring what 
knowledge teachers should have (e.g. Hill, Sleep, Lewis & Ball, 2007; Davis & Simmt, 2006).  
Acknowledging that teachers’ knowledge is multi-faceted, different attempt were made to 
categorize the components of such knowledge. Shulman’s (1986) classical categories refer to 
subject matter knowledge (SMK), pedagogical content knowledge (PCK) and curricular 
knowledge. An extended categorization of teachers’ knowledge was introduced by Deborah Ball 
and colleagues (Hill, Ball and Schilling, 2008). It was referred to as “mathematical knowledge 
for teaching” (MKT) and presented as an extension of Shulman’s categorizations. The PCK 
refinement included Knowledge of Content and Students (KCS), Knowledge of Content and 
Teaching (KCT) and Knowledge of Curriculum.  The SMK refinement contained the categories 
of Common Content Knowledge (CCK), Specialized Content Knowledge (SCK) and Knowledge 
at the Mathematical Horizon. As knowledge acquired in a Mathematics-content course is of 
interest in this study, we note that CCK was described as shared among individuals who use 
mathematics, while SCK was considered as the domain of teachers that allows them “to engage 
in particular teaching tasks” (ibid, p. 377). 
In contrast to this categorization, Davis and Simmt (2006) argued against the traditional 
separation of content and pedagogy, and claimed that “mathematics-for-teaching” can be 
considered as a distinct branch of the discipline of mathematics. Extending the research of Davis 
and Simmt (2006) on what teachers need to know, Askew (2008) examined the research 
evidence for the mathematics discipline knowledge that primary teachers might need in order to 
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teach effectively. Askew suggested that attention of mathematics educators should be shifted 
from what mathematics primary teachers should know to why they should know this 
mathematics. He also supported the view that distinction between content knowledge and 
pedagogical content knowledge may no longer be helpful. However, despite the repeated claims 
against separation of content and pedagogy in teacher education and research, this long-
established separation still exists within the coursework towards teachers’ certification.   
Our prior research investigated the perceptions of secondary school mathematics teachers on the 
use of their knowledge of ‘advanced’ mathematics – knowledge they acquired during their 
studies at colleges and universities – in their teaching practice (Zazkis & Leikin, 2010).  The 
results varied significantly: some teachers claimed that they have never used what they learned in 
their university courses, while others claimed that they used it  “all the time”, but had difficulty 
in providing specific examples of this usage. The current focus on elementary school teachers, 
the mathematics they study in their University degrees and its perceived usefulness for teaching 
is a natural follow up.  

Mathematics for Elementary Teachers  (MFET) Course 
While certification at the secondary level requires teachers to acquire a significant background in 
the subject matter, usually a degree or at least a minor, for elementary school teachers, as 
generalists, the mathematical subject matter requirements are limited. If such a requirement 
exists, it is usually for one or several mathematics-content courses designed specifically for this 
population.  
A typical MFET course – and we infer what is ‘typical’ from a variety of textbooks with a 
similar tables of contents  (e.g., Bassarear, 2007; Billstein, Libeskind & Lott, 2009; Musser, 
Burger & Paterson, 2006; Sowder,  Sowder & Nickerson, 2010) and a variety of course outlines 
or course syllabi posted on the web – provides an overview of the underlying concepts of 
elementary mathematics. Typical topics include number systems and algorithms, patterns and 
introductory number theory, measurement and geometry, probability and data analysis. Different 
authors and publishers, in an attempt to satisfy the market, chose different perspectives on 
concepts and topics, such as problem solving, mathematical reasoning, the use of manipulatives, 
connection to the Standards, or the use of technology. The degree to which a certain perspective 
is implemented depends on the instructor’s choice; however, the core topics remain the same. 

The Study 
Participants in this study were prospective elementary school teachers (PTs) enrolled in a one-
year teacher certification program. All the PTs had some teaching experience in elementary 
school, having completed a ‘practicum’ of either 6 weeks or 5 months. All of the PTs had taken a 
MFET course, similar to a ‘typical’ course described above, as it is a required prerequisite in 
their teacher education program. However, they completed this course at various times, with 
various instructors and at various colleges or universities. As such, our study concerns the 
course, rather than its specific implementation.  
Our study attempted to address the following question: How do prospective teachers describe the 
contribution of their MFET course to their teaching? Or, stated differently: What have 
prospective teachers learnt in their MFET course that they perceive as useful for their teaching? 

Data Collection and Analysis 
The data collection included a written response task and a clinical interview.  
A written response task was administered to a group of 25 PTs. Initially, they were asked to 
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provide examples of several teaching situations in which their mathematical knowledge from the 
MFET course could have been useful. The teaching situation could have been actual or 
imaginary. However, several students claimed that they “just knew things” and had difficulty 
identifying the source of their knowledge. Acknowledging this difficulty the task was modified. 
The task sought examples of usage, either actual or potential, of mathematical knowledge 
beyond the topic that was being taught.  
The interviews were conducted with 14 PTs from a different group. The interviews initially 
attempted to solicit explicit examples of mathematical knowledge usage in teaching elementary 
school mathematics. However, the flexible structure of the interviews turned in part into a 
conversation about the MFET course and its contributions to teaching.  
The data analysis was ongoing, using a qualitative approach based on grounded theory 
procedures and techniques (Strauss & Corbin, 1990). In the written responses that explicitly 
addressed mathematical knowledge from the MFET courses we identified the mathematical topic 
in each example and the setting in which the example was presented. We then identified several 
recurring themes in the provided responses. Then, in the analysis of the interviews we identified 
additional emerging themes. The themes that were identified in participants’ responses serve as 
an organizing structure for the subsequent results and analysis.  

Results and Analysis 
To foreshadow our main observation, we start with an illustrative comment from Linda:  

Linda: I likely learned about […] in grade school. It was not until MFET course that I 
learned the reasoning behind why this works and fully understood […]. This was very 
helpful when teaching […] during my practicum.  

Please note that we intentionally deleted the mathematical content that Linda mentioned, as 
similar comments were provided with respect to different topics and procedures.  We return to 
the ideas of ‘understanding’ and “reasoning behind why this works” in our subsequent analysis.  
In what follows we attend to the recurring themes in the participants’ responses as well as to 
their particular examples of knowledge usage.  

Initial Hesitation 
In the clinical interviews, among the initial ‘warm-up’ questions, the participants were asked 
about their MFET course. The questions were of general nature, such as, where did you take the 
course, how long ago was it, what did you think of it? A typical response is presented below.  

Rita: Actually when I enrolled in it I was so freaked out the first couple of days, because 
I’m so terrified of math that I was going to transfer out, but I really wanted my 
elementary school pre-req’s. And so I was in the middle of transferring out and then I just 
really started enjoying it and I stuck with it and I ended up getting an A, so I was like, 
this wasn’t so bad. 

The words anxious, nervous, terrified, freaked out, intimidated, panicky and alike were common 
in participants’ descriptions of their entry point to the course. However, many students reported a 
degree of confidence and satisfaction towards completing the course, as well as some joy and 
excitement. While a level of confidence with the mathematical content taught is essential for 
teaching, we were further interested in specific examples of what PTs believe they learned that 
were helpful for teaching.  

Examples of Usage 
In this section we summarize examples of usage from the written response task. The particular 
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examples that were provided in the interviews appear further on, as illustrations of the recurring 
themes.  
Out of 25 PTs who completed the written response task, 17 explicitly referred to the knowledge 
acquired in their MFET course, generating 42 examples of knowledge usage. Table 1 presents a 
distribution of the 42 examples by topics.  Table 2 presents a distribution of the 42 examples by 
the intended usage.  
 

Mathematical content Number of examples 
Computation (shortcut tricks, estimation, order of operations) 9 
Elementary Number Theory (divisibility, prime numbers) 8 
Fractions and Decimals 8 
Geometry  (area, perimeter, angles, ') 8 
Algebra  5 
Other (e.g., different bases, division by zero) 3 
TOTAL 42 

Table 1: Distribution of examples by topic 

Method of usage Number of examples 
Evaluating correctness of a student’s response 24 
Helping a student, responding to a question 8 
Creating examples/tasks/activities for students 5 
Classroom management/grouping of students 5 
TOTAL 42 

Table 2: Distribution of examples by the intended usage 
Computation 
 The most frequent category is that of computation, however the examples that we clustered there 
are very different. They include computational shortcuts and tricks, such as how to multiply a 2-
digit number by 11, attending to compatible numbers by performing computation mentally while 
students learn algorithms, evaluating the potential correctness of a student’s answer by 
estimation, and identifying a source of a student’s error, such as disregard of the order of 
operations. In most cases the knowledge from MFET course was used in order to evaluate a 
response from a student by a method different from the one used by the student. Awareness and 
appreciation of different approaches is elaborated upon further in the analysis of the interviews.  
Elementary Number Theory 
 As “Elementary Number Theory” we clustered examples that referred to divisibility rules, prime 
numbers and prime decomposition. Familiarity with divisibility rules served teachers in 
recognizing an error in a student’s answer, such as when the difference of two odd numbers was 
not even, or when the sum of two numbers divisible by 9 was not divisible by 9. It further served 
when designing examples for student work, for example, when students are learning the long 
division algorithm, divisibility rules help the teacher to present students with exercises where 
division is without remainder, without carrying out the division. Moreover, some PTs reported 
that divisibility rules helped them when planning an activity that involved student work in small 
groups, that is, deciding on whether equal size groups were possible with a given student 
attendance.   
Fractions and Decimals 
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Included in this category were examples related to introducing students to different models of 
representing fractions and equivalent fractions, to converting improper fractions to mixed 
numbers, comparing fractions and performing operations. These examples referred mostly to 
designing pedagogy for student understanding and, again, evaluating student answers, achieved 
by applying a standard procedure, by different means, such as comparing fractions by attending 
to units and not to a common denominator.   
Geometry 
Examples related to geometry mentioned the sum of the angles in a triangle and in a 
quadrilateral, the concepts of area and perimeter, and the meaning of '. Knowledge from the 
MFET course was helpful in assessing students’ work, for example, when students measured all 
the angles of a quadrilateral and calculated their sum to 274 degrees, the teacher immediately 
recognized an error either in measurement or in addition. Examples in this category also referred 
to designing activities to introduce concepts. One such example replicated with elementary 
school students an activity previously experienced in the MFET course: It involved measuring 
the diameters and circumferences of different circular objects in order to introduce ' as a ratio 
and not “as a strange appearance in some formulas”.  
Algebra 
In this category PTs’ examples mentioned their knowledge of solving equations in order to 
obtain the answer “quickly” and evaluating the work of students performed without algebraic 
means.  
The repeating themes identified in the written responses of PTs were those of understanding and 
awareness of different ways to perform a mathematical task. We elaborate on these themes in 
further detail, and add other themes, as we turn now to the analysis of clinical interviews.  

Understanding and Explaining 
The most robust theme, which was mentioned in the written responses and which appeared in all 
of the interviews, was that of understanding. Only two participants mentioned that their MFET 
course helped with “revisiting” or “refreshing basic skills”. The majority maintained that in their 
MFET course they understood mathematical ideas, in some cases for the first time, and this 
personal understanding was ultimately related to the ability to explain, that is, to teach. While 
Tanya (below) makes an explicit connection between understanding and teaching, Betty 
elaborates further, starting with a severe criticism of her elementary school experience and her 
desire to find out why certain rules exist. 

Tanya: I always struggled in math for myself and taking this course helped me understand 
math better. You definitely need to understand that to be able to teach that.  

Betty: She explained all of the things that we just were taught in elementary school as this 
is the way it is, like this is the rule. She’d explain why.  I remember when I was a kid, I 
was like why? Why is this the rule? And then they’d be like, because it is. And I’m like 
well, OK, that doesn’t help. So she explained why those rules were and I was just like, 
finally, I can understand it because it’s true, if you understand why the rules exist your 
application of them will be more accurate but also you can figure out other rules. You 
need to really understand why the rules exist in order for you to teach this. 

Once the connection between understanding and teaching was mentioned, the interviewer invited 
specific examples of concepts or ideas that were “really understood” or “understood better” as a 
result of the MFET course experience. The mathematical topics mentioned in the interviews 
echoed those from the written response task. These included measurement, algorithms, fractions, 
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focusing on division of fractions, and multiplication tables. For limitations of space, we illustrate 
only the last topic in the following excerpt:   

Lisa: Multiplication tables – I thought that has to be a skill that’s just memorization and 
drills and, actually, you can do a lot with understanding around that, like patterns and 
stuff.  

Multiple Ways, Questions and Connections 
Closely related to the theme of understanding is the theme of acquiring different ways to 
approach a mathematical task. Lisa makes this connection explicit, while Betty connects 
availability of different methods to understanding her students’ thinking:  

Lisa: I have a deeper understanding for it and then I can see lots of different ways of doing 
it.  

Betty: I think that I’ve learned, and this is sort of intimidates me, is that I have to open my 
mind to understand how other people think […] to not underestimate the students and to 
try really hard to understand how they came up with, to say show me… 

The connection here is obvious: personal awareness of multiple strategies is helpful in trying to 
understand students’ strategies and approaches that may be different from the conventional ones 
(Leikin & Levav-Waynberg, 2009). Moreover, the ability to acknowledge different approaches 
in students’ work was also connected to the ability to deal with students’ questions.  

Tanya: I also think it helps when they have questions, you’ll have other knowledge to draw 
from for questions they may have.  

Betty: I don’t want to be the teacher who says that’s the way it is. […] And I remember she 
told us why that works, I remember she did bring that up and I was like, oh, well that 
totally makes sense […] If they ask I’d like to be able to provide an answer, at least guide 
them in the direction of finding the answer, rather than just saying this is the way.  

Note that Betty makes explicit reference to her Mathematics instructor, “she told us why that 
works”, whereas she herself balances the ability “to provide an answer” with her pedagogical 
belief in the need to “guide them in the direction of finding the answer”.  

 “Math today is different” 
The idea that “Math today is different”, that is, different from the mathematics they experienced 
as learners, was the second most prominent and unsolicited theme in the interviews, mentioned 
by nine participants. Several PTs mentioned that the course opened their minds, extended their 
horizons and influenced their views on what mathematics is about. This difference is contrasted 
with a description of prior experience, which is common among the participants.  

Cara: When I was going through math, it was just the numbers, not the problems.  
Anne: Math is completely different today. I asked my teacher, I don’t understand this and 

he’s like well can you do it, that’s how I remember most of my math being, all I learned 
was equations and if you could do the equation, if you could use the equation then you 
didn’t need to know anything else.  

At first we considered the theme of mathematics being different, and the presented prior 
experiences of frustration, as not explicitly related to our research questions. However, on a 
second look, acknowledging and appreciating this difference – between mathematics of 
yesterday and that of today or tomorrow – can be considered as the main impact of a teacher 
education program in general and a MFET courses in particular. Participants implicitly or 
explicitly contrasted their experience of “doing” and being shown how to do, with the desired 
explanation and understanding, which was considered essential for teaching.  
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Discussion 
Acquiring understanding is a declared purpose of the MFET courses. For example, Musser, 
Burger and Peterson (2006), authors of one of the popular textbooks for such a course, state 
explicitly in their introduction:   

“This book encourages prospective teachers to gain an understanding of the underlying 
concepts of elementary mathematics while maintaining an appropriate level of 
mathematical precision” (p. xi). 

In the “Message to prospective and practicing teachers” on the first pages of their book, Sowder, 
Sowder and Nickerson (2010) mention different perspectives and contributions to teaching: 

“Some mathematics may be familiar to you, but you will explore it from new 
perspectives. […] Though the course is about mathematics rather than about methods of 
teaching mathematics, you will learn a great deal that will be helpful to you when you 
start teaching” (p. xiv). 

As such, our findings suggest that the MFET course, or at least the offerings of the course that 
our participants were enrolled in at different times and at different places, achieved the set goal, 
at least from the perspective of participants in this study. However, this personal perspective of 
participants needs to be investigated further. It cannot be concluded from the participants’ 
testimonies that they have indeed acquired a desirable level of what researchers referred to as 
PUFM - profound understanding of fundamental mathematics (Ma, 1999) or KDU – key 
developmental understanding (Simon, 2006), that is deemed as a prerequisite for MKT – 
mathematical knowledge for teaching (Silverman & Thompson, 2008). We further also note that 
the MFET course is only one step in the mathematics education of prospective teachers, and it is 
likely that ideas that developed in this course are reinforced and reexamined in courses that 
attend to “methods” of instruction, that is, to pedagogy and curriculum. 
Taking a pessimistic view on our results, we note that the majority of participants entering a 
teacher education program for certification at the elementary level acknowledged that they did 
not sufficiently understand the concepts and procedures of elementary school mathematics. 
While this is consistent with prior research, our specific contribution, however, is in basing this 
finding on participants’ testimonials related to their understanding (or lack of it) within particular 
concepts and topics of elementary school mathematics, rather than on researchers’ observations.  
Taking an optimistic perspective, we note that following a MFET course PTs reported that they 
“really understood it”, whereas “it” referred to various concepts, such as place value or fractions, 
or algorithms, such as column addition or division by a fraction. However, what does it mean to 
“really understand” something? Betty summarized this as “knowing the reasons behind all the 
things that you teach the kids”. Moreover, according to our participants, several related and 
further elaborated answers can be offered: For some PTs this means to know why and not only to 
know how, for others it means being able to provide an explanation to a student, and, 
furthermore, to be equipped with several different explanations. These views are in accord with 
the shift from what mathematics teachers should know to why they should know this 
mathematics, suggested by Askew (2008). The teachers’ (partial) answer to “why” is the 
implementation of knowledge in teaching.  
We mentioned above that self-report of acquired understanding does not necessarily mean that 
an appropriate level of understanding was achieved. Nevertheless, the personal 
acknowledgement of the importance of understanding and the ability to explain mathematics to 
students, rather than provide rules, is a valuable contributor to a teacher’s comfort zone (Borba & 
Zulatto, 2010). Furthermore, the awareness that “math today is different”, that is, that the 
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desirable way of learning mathematics is different from the personal experience of participants, 
is an important step towards “teaching differently” or “teaching for understanding”.  We also 
suggest that the repeated reference to “different mathematics” may also signify a change in 
personal beliefs of what mathematics is about. That is to say, not that mathematics has changed, 
but rather the PTs’ view of mathematics.  
What can this imply for the teaching of mathematics? Anne’s opinion is embedded in her 
question:  

Anne: And there were all those things that you learn that you’re like, why didn’t we just 
learn it like that from the beginning, because it would have helped me so much more.  

In our optimistic perspective we would like to conclude with the hope that Anne’s students will 
“learn it like that from the beginning”. 
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This study investigates the extent to which pre-service elementary teachers (PETs) use their real-
world knowledge to solve problems for which the result of the arithmetic operation is 
problematic, if one takes into consideration the reality of the context. A paper-and-pencil test 
was administered to 566 PETs enrolled in mathematics content courses. The test included 8 
experimental items and 4 buffer items. The findings for a sample of 68 PETs are not very 
encouraging. The total number of realistic responses varied from 5 to 58 (out of 68 possible for 
each problem).  

 
Word arithmetic word problems play an important role in learning mathematics at the 

elementary school level. There are several practical and theoretical reasons of the inclusion of 
arithmetic word problems in the elementary curriculum. First, they provide contexts in which 
students can use their mathematical knowledge so they can develop their problem-solving 
abilities, an important goal of learning mathematics. Second, word problems provide practice so 
students can develop their abilities to use their knowledge in real-life situations. Third, word 
problems serve as motivators so students can see the relevance of the procedures and algorithms 
learned in school. Fourth, word problems have the potential to provide students with rich 
contexts and realistic activities in which to ground mathematical concepts and, thus, facilitate the 
learning of more complex concepts. Finally, word problems provide students with experiences to 
learn how to use mathematical tools to model aspects of reality, that is, to describe, analyze, and 
predict the behavior of systems in the real world (Burkhardt, 1994; De Corte, Greer, & 
Verschaffel, 1996; Verschaffel, Greer, & De Corte, 2000; Verschaffel & De Corte, 1997). 

Some critiques (e.g., Gerofsky, 1996; Lave, 1992; Nesher, 1980) argue, however, that the 
mathematics curriculum fails to achieve these lofty goals because traditional instructional tasks 
tend to focus on a straightforward application of procedures and computations to solve artificial 
problems unrelated to the real world. As a result, students tend to approach word problems, more 
often than desirable, in a superficial and mindless way with little, if any, disposition, to modeling 
and realistic interpretation.  Several pieces of research provide empirical evidence to these claims 
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(Davis, 1989; De Corte & Verschaffel, 1989; Greer, 1993, 1997; Reusser, 1988; Reusser & 
Stebler, 1997; Schoenfeld, 1991; Silver, Shapiro, & Deutsch, 1993; Verschaffel, 1999; 
Verschaffel & De Corte, 1997; Verschaffel, De Corte, & Lasure, 1994).  

Purpose of the Study 
The purpose of the study was to examine prospective elementary teachers’ (PETs) reactions 

and responses to problematic arithmetic word problems for which the solution is not the result of 
application of the most obvious arithmetic operation suggested by the two numbers given in the 
problem statement.   

As suggested by the research literature, elementary school children tend to ignore the realistic 
constrains of the context embedded in the statement of the problem, a phenomenon that 
Schoenfeld (1991) coined “suspension of sense-making.” Several critics and researchers argue 
that children’ suspension of sense-making is the result of school practices (Davis, 1989; Greer, 
1993; Nesher, 1980; Schoenfeld, 1991; Silver, Shapiro, & Deutsch, 1993). To develop children’ 
disposition to realistic modeling, we must change curriculum and instructional tasks.  Since the 
teacher has an important role in the construction or selection of learning tasks and opportunities, 
one may argue that researchers and curriculum developers need to understand teachers’ reactions 
and responses to problematic problems.  

 
Theoretical and Empirical Background 

Mathematical modeling is the process of representing aspects of reality by mathematical 
means. In particular, the solution of some physical or real-world problems requires some form of 
mathematization. That is, the construction of a mathematical model. The complexity of the 
process of mathematization depends, of course, on the nature of the problem. There are several 
proposed models of representing reality by mathematical means (e.g., Silver, Shapiro, & 
Deutsch, 1993; Verschaffel, Greer, & De Corte, 2000), but Silver et al’s model (Fig. 1) suffices 
for our purposes.  

According to Silver, Shapiro, and Deutsch’s model, a simplified version of the process of 
mathematical modeling consists of four different stages: understanding of the problem, 
construction of a model or selection of a mathematical procedure, the execution of the procedure, 
and the interpretation or evaluation of the outcomes of the procedure.  

 

 
 

Fig. 1: Silver et al.’s (1993) referential-and-semantic-processing model for successful 
solutions 

The first stage of the process of mathematical modeling involves understanding the problem 

Story text Story situation
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situation embedded in the story text. That is, we need to understand the given or known facts, the 
unknown information, the superfluous data, and missing information. The second phase involves 
the construction of a mathematical model or selection of a suitable procedure, operation, or 
algorithm whose outcome will lead us to the solution of the problem. To perform the second 
stage of the modeling process successfully, we must understand the mathematical structure of the 
problem. That is, we must understand the interconnections or relationships among the different 
types of information related to the solution of the word problem. The third stage of the problem 
involves mainly performing the computation, procedure, or algorithm either with paper and 
pencil or using a computational device. Finally, we should interpret and assess the outcome of 
the mathematical procedure in terms of the realistic context embedded in the story text of the 
word problem or in terms of the real-world story situation. It is during this step that we need to 
focus on the meaning of the result of the mathematical model so we can establish the connection 
between the outcome of the computation and the solution to the real-world story problem. It is 
during this stage that we need to assess whether our modeling assumptions are realistic or 
reasonable.    

Silver, Shapiro, and Deutsch’s model implies that there are three main potential sources of 
error when solving word problems: lack of understanding of the mathematical structure of the 
problem, which leads students to select an inappropriate procedure, executing the procedure 
incorrectly, and failing to interpret or assess the result of the procedure in terms of commonsense 
or everyday-life knowledge. Silver, Shapiro, and Deutsch (1993) examined 195 middle grade 
students’ solution processes and their interpretation of solutions to the following problem:   
The Clearview Little League is going to a Pirates game. There are 540 people, including players, 
coaches, and parents. They will travel by bus, and each bus holds 40 people. How many buses 
will they need to get to the game? 

Their analysis revealed that 91% of the students selected an appropriate procedure (e.g., long 
division, repeated multiples, repeated additions, etc.), but only 61% of these students performed 
it flawlessly (about 56% of the total number of students). Overall, the researchers found that only 
43% of the total number of students gave the correct answer (14) to the problem. However, some 
of these students provided inappropriate interpretations or justifications. For example, one 
student wrote “14 buses because there's leftover people and if you add a zero you will get 130 
buses so you sort of had to estimate. Are we allowed to add zeros?" (p. 124-125). The 
researchers also reported that about 55% of the students did not get the correct answer because 
either they did not properly interpret the outcome of the computation or executed incorrectly the 
procedure. These computational mistakes could have been prevented if students had interpreted 
their solutions appropriately. Silver, Shapiro, and Deutsch proposed the model displayed in 
Figure 2 as a graphical representation of unsuccessful solutions that are due to a failure to 
connect the outcome of the procedure to the real-world context embedded in the story problem. 
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Figure 2: Silver et al.'s (1993) referential-and-semantic-processing model for unsuccessful 

solutions 
Other pieces of research have amply documented elementary school children’ improper 

modeling assumptions when solving arithmetic word problems. Some further examples of the 
word problems that students have been asked to solve are the following:  

1) What will be the temperature of water in a container if you pour 1 liter of water at 80° 
and 1 liter of water of 40° into it? (Nesher, 1980) 

2) John's best time to run 100 m is 17 sec. How long will it take to run 1 km? (Greer, 1993) 
3) Lida is making muffins that require 3/8 of a cup of flour each. If she has 10 cups of flour, 

how many muffins can Lida make? (Contreras & Martínez, 2001) 
4) In September 1995 the city's youth orchestra had its first concert. In what year will the 

orchestra have its fifth concert if it holds one concert every year? (Verschaffel, De Corte, 
& Vierstraete, 1999) 

In their study with 75 fifth graders in Flanders, Verschaffel, De Corte, and Lasure (1994) 
reported that only 7 (9%) students provided a realistic and correct response to the temperature 
problem. Similarly, in the same study, these researchers found that only 2 (3%) responses 
included realistic answers or reactions to the running problem. In another study, Contreras and 
Martínez (2001) focused on prospective elementary teachers’ solution processes and realistic 
reactions to the third problem. Their analysis revealed that only 19 (28%) of the participants’ 
responses contained a realistic solution to the problem, but none of the participants made any 
comments about the problematic nature of the problem.  

Verschaffel, De Corte, and Vierstraete (1999) addressed upper elementary school children’ 
difficulties in modeling and solving nonstandard additive word problems involving ordinal 
numbers. The participants were administered a paper-and-pencil test consisting of 17 word 
problems, 9 of which were experimental items and 8 buffer items. The result of the 
straightforward arithmetic operation yields the correct answer for three of the nine experimental 
items. An example of such a problem is “In January 1995 a youth orchestra was set up in our 
city. In what year will the orchestra have its fifth anniversary? However, the solution of the 
remaining six experimental items is either 1 more or 1 less that the result of the straightforward 
arithmetic operation of the two given numbers. An example of such a problem is problem 4 
stated above. Overall, the researchers found that the percentage of correct responses for each of 
the six problematic items was less that 25%. An error analysis revealed that 83% of the errors 
made on these problems were ± errors. In other words, most of the children’ errors were due to 
their interpretation that the result of the addition or subtraction of the two given numbers yielded 
the correct answer.  

Although research has convincingly documented elementary school children’ strong 
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tendency to model problematic problem unrealistically, the generalizability of the findings to 
more mature students, such as prospective elementary teachers, has not been established 
empirically. On one hand, since PETs have had even more experiences with traditional school 
problems, we may argue that there is no reason to expect that prospective elementary teachers 
would use their real-world knowledge and realistic considerations in their solution processes of 
problematic word problems. On the other hand, we may claim that PETs may have faced real-
world problem situations outside school more often than young children and, having a more 
developed mathematical knowledge, have a stronger disposition to activate their real-world 
knowledge when confronted with problematic problems whose realistic solutions require taking 
into consideration contextual real-world knowledge. In the present study we focus on the extent 
to which the findings from previous research with pupils are generalizable to prospective 
elementary teachers.  

 
Methods and Sources of Evidence 

The total sample of participants consists of 566 PETs enrolled in different sections of 
mathematics content courses for elementary teachers at a Southern University in the United 
States. The present paper reports the results of two groups (68 PETs) for which the analysis has 
been completed. The PETs had not been previously engaged in any intentional or systematic 
modeling activities or tasks.   

A paper-and-pencil test consisting of 8 experimental items and 4 buffer items was 
administered to the PETs during regular class instruction. The 8 experimental items (Table 1) 
were problematic in the sense that the outcomes of the arithmetic operations performed with the 
given numbers in the problem story does not provide the answer to the problem, if one takes into 
consideration the real-world situation embedded in the contextual problem story. The buffer 
items, on the other hand, were standard routine problems whose solution is the straightforward 
result of the operation performed with the given numbers. The experimental items were adapted 
from Verschaffel and De Corte’s (1997) study. An example of a buffer item is “Joel is building a 
collection of 175 different stamps. He has already collected 107 different stamps. How many 
more stamps does he need to complete the collection?”  
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Table 1: The eight experimental items   
1. 1175 supporters must be bused to the soccer stadium. Each bus can hold 40 supporters. How many buses are 
needed? (Carpenter, Lindquist, Matthews & Silver, 1983).  
2. 228 tourists want to enjoy a panoramic view from the top of a high building that can be accessed by elevator only. 
The building has only one elevator with a maximum capacity of 16 persons. How many times must the elevator 
ascend to get all the tourists on the top of the building? Verschaffel, 1995) 
3. At the end of the school year, 50 elementary school children try to obtain their athletics diploma. To receive the 
athletic diploma they have to succeed in two tests: running 400 m in less than 2 minutes and jumping 0.5 m high. All 
the children participated in both tests. Nine children failed the running test and 12 failed the jumping test. How 
many children did not receive their diplomas? (Verschaffel, 1995) 
4. Carl and George are classmates. Carl has 9 friends that he wants to invite to his birthday party. On the other side, 
George has 12 friends that he wants to invite to his birthday party. Since Carl and George have the same birthday, 
they decide to give a party together. They invite all of their friends. All their friends come to the party. How many 
friends are there at the party? (Nelissen, 1987)  
5. A man wants to have a rope long enough to stretch between two poles 12 m apart, but he has only pieces of rope 
1.5 m long. How many of these pieces would he need to tie together to stretch between the poles? (Greer, 1993) 
6. Steve has bought 12 planks of 2.5m each. How many 1 m planks can he saw out of these planks? (Kaalen, 1992)  
7. Sven's best time to swim the 50 m breaststroke is 54 seconds. How long will it take him to swim the 200 m 
breaststroke? (Greer, 1993)   
8. The flask is being filled from a tap at a constant rate. If the water is 4 cm deep after 10 seconds, how deep will it 
be after 30 seconds? (This problem was accompanied by a picture of a cone-shaped flask) (Greer, 1993)  

After each problem, we have indicated its original source; however, in some cases the numbers were replaced 
by others.  

Students’ written responses to the problems were the source of data. Written directions asked 
students to show all their work to support each of their answers and to write down any questions 
or concerns they may have about each problem. We recognize that written responses have some 
intrinsic limitations when compared to verbal protocols. However, written protocols allow 
researchers to collect data from large samples. Moreover, some researchers (Hall, Kibler, 
Wenger, & Truxaw, 1989) have validated the use of written responses to infer cognitive 
processes.   

 
Analysis and Results 

Each response to problems 1 and 2 was coded as correct or incorrect. Each response to 
problems 3-8 was coded as correct, partially correct, or incorrect. Two independent raters judged 
every response. A response was judged as correct if it included a realistic numerical answer that 
estimated or indicated the range of possible solutions and took into account the contextual 
restraints of the real-world problem situation. A response was judged partially correct if it was  
incomplete or wrong but included a realistic comment suggesting that the student displayed 
awareness of the contextual restraints of the real-world problem situation. A response was judged 
incorrect when it did not suggest any awareness of the contextual restraints of the real-world 
problem situation. The inter-rater agreement was 99.6%. Table 2 summarizes the results of the 
analysis.  
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Table 2: The number and percentage of correct, partially correct, and correct responses for the 8 
experimental items.  

Problem Number and percent of 
correct responses 

Number and percent of 
partially correct responses 

Number and percent of 
incorrect responses 

1 55 (81%) 0 (0%) 13 (19%) 
2 58 (85.5%) 0 (0%) 10 (14.5%) 
3 3 (4.5%) 13 (19%) 52 (76.5%) 
4 3 (4.5% 15 (22%) 50 (73.5%) 
5 2 (3%) 4 (6%) 62 (91%) 
6 14 (20.5%) 1 (1.5%) 53 (78%) 
7 1 (1.5%) 4 (6%) 63 (92.5%) 
8 0 (0%) 5 (7.5%) 63 (92.5%) 

 
As shown in Table 2, PETs’ performance on most items was alarmingly poor: The 

percentage of incorrect responses ranged from a high 92.5% for items 7 and 8 to 14.5% for item 
2. Overall, the percentage of realistic responses (correct responses and partially correct 
responses) on the 8 problematic items was only 33%. We should notice, however, that the 
number of realistic responses was considerable greater for the division problems involving 
remainders, problems 1 and 2). If we exclude these two problems from our analysis, then the 
percentage of realistic responses for the remaining 6 problems is only 16%.  

Discussion and Conclusion 
The purpose of the present study was to collect systematically empirical data about the extent 

to which prospective elementary teachers activate their real-world knowledge when solving 
problems whose solution in not the direct result of an arithmetic operation. Using similar 
problems and methodology as previous studies (e.g., Verschaffel & De Corte, 1997; Verschaffel, 
De Corte, & Lasure, 1994), a test consisting of 8 problematic items and 4 standard problems was 
administered to a sample of 566 PETs. The analysis has been completed for 68 PETs (2 groups) 
and it is reported in the present article.  

Although previous studies have convincingly demonstrated children’ strong tendency to 
ignore the contextual realities embedded in the story of the problem situation, we were hoping 
that our findings with prospective elementary teachers would be much more encouraging. After 
all, prospective elementary teachers are part of a more mature and experienced population and it 
is reasonable to assume that they have an understanding of the contextual knowledge needed to 
realistically solve the problems. Therefore, the question of PETs’ failure to activate this 
knowledge needs to be further discussed and investigated. We offer several tentative hypotheses 
to explain PETs’ lack of disposition to model contextual word problems realistically.   

First, children and PETs’ lack of activation of their real-world knowledge may be due to their 
constant exposure to traditional and stereotypical school word problems. If this is the case, then 
this tendency may remain constant or get stronger with additional years of immersion in the 
mathematical culture of traditional classrooms. Future research is needed to better understand the 
effects of traditional learning environments on students’, including PETs, failure to activate their 
real-world knowledge to solve problematic problems.  

A second possible explanation to understand PETs’ tendency to ignore the contextual 
realities of the situation embedded in the problem story is that they lack enough world-real 
knowledge of the situational context of the problematic problems. Even though this seems 
unlikely, follow-up studies should provide empirical data to confirm or refute this hypothesis.  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

582



 

A third explanation may be that PETs approached the problematic problems in an automatic 
way thinking that they were standard mathematical problems without reflecting on the contextual 
realities of the problem. Further research is needed to better understand PETs’ suspension of 
sense-making when solving these types of problems.  

In conclusion, this study provides, at the very least, some empirical evidence that PETs lack 
an initial disposition or reaction to consider the contextual restraints of problems grounded in the 
real world. Further research is needed to better understand PETs’ apparent suspension of sense-
making when engaged in solving problems that require realistic interpretations.  
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This study investigates the influence of teacher understanding on student understanding through 
teacher practice. Three elementary school teachers participated in a university course that 
discussed mathematical and pedagogical knowledge regarding addition and subtraction word 
problems. The data from this study were analyzed qualitatively to describe the nature of the 
teachers’ understandings, the ways teachers used their understandings in their practice, and the 
nature of their students’ understandings. I hypothesize that teachers used their understanding to 
create and implement tasks at a high level of cognitive demand, maintaining that demand over 
time, which affected student understanding. 
 

There is quantitative evidence that content knowledge and pedagogical content knowledge 
influence student understanding (Hill, Rowan, & Ball, 2005; Fennema & Franke, 1992), but how 
teacher knowledge affects student achievement needs to be explored. In this study I begin to 
uncover how teacher knowledge affects student understanding using a qualitative perspective. If 
we assume that teacher understanding affects practice and that teacher practice affects student 
understanding (Hurry, Nunes, Bryant, & Pretzlik, 2005; Smith & Baker, 2001), then we can 
begin investigating these relationships.  

Objectives 
In three cases, I describe the nature of a teacher’s understanding of a particular mathematical 

topic and investigate how that understanding affects the teacher’s practice while teaching that 
topic. In addition, I examine the link between teacher understanding and student understanding 
in order to hypothesize about the relationships between them. 

My study is exploratory in nature and seeks out possible connections that will need to be 
further developed. Since teacher knowledge is so expansive and varied, I limited this study to 
investigating one mathematical topic in light of only a few aspects of teacher knowledge. In this 
study I examine the understanding of three teachers regarding the content knowledge and 
pedagogical content knowledge shown to be integral to teaching addition and subtraction word 
problems, according to the Cognitively Guided Instruction (CGI) program (Carpenter, Fennema, 
Franke, Levi, & Empson, 1999). I investigate how a teacher’s understandings of the structure of 
addition and subtraction word problems and of how students typically solve addition and 
subtraction word problems affect her practice, and how her practices affect student 
understanding of addition and subtraction. 

Framework 
My research uses Deborah Ball’s construct of the mathematical knowledge needed for 

teaching (Ball, Phelps, & Thames, 2008). According to Ball, Specialized Content Knowledge 
(SCK) is an important aspect of subject matter knowledge and Knowledge of Content and 
Students (KCS) and Knowledge of Content and Teaching (KCT) are vital to pedagogical content 
knowledge. I have chosen to examine teacher and student understanding of addition and 
subtraction word problems due to the extensive research that has identified the content 
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knowledge and pedagogical content knowledge for teachers in this area. I examine qualitatively 
how a teacher’s understandings of the structure of addition and subtraction word problems, a 
substantial part of their SCK, affects students’ understandings of addition and subtraction 
through its effects on teacher practice. I also examine how a teacher’s understanding of the 
strategies students use to solve addition and subtraction word problems, part of their KCS as well 
as KCT, affects students’ understandings of addition and subtraction through teacher practice.  

I relied on research by Wiggins & McTighe and Sierpinska to establish when participants 
were exhibiting understanding. Understanding is “a family of interrelated abilities” that develops 
over time in an individual and involves “sophisticated insights and abilities, reflected in varied 
performances and contexts” (Wiggins & McTighe, 1998, p. 5). Wiggins and McTighe (1998) 
describe six indicators of understanding: explanation, interpretation, application, perspective, 
empathy, and self-knowledge. Sierpinska (1994) also identifies four indicators, which she calls 
mental operations, involved in understanding: identification, discrimination, generalization, and 
synthesis. There was some overlap in the two bodies of research, but each offered some valuable 
insight into indications of understanding. I referred to both Sierpinska’s work and the work of 
Wiggins and McTighe to qualitatively describe the understandings of my participants. 

Methodology 
A pilot study indicated that the teachers in the local school district, unfortunately, did not 

have the type of content and pedagogical content knowledge I wanted to explore. Therefore, it 
was necessary to offer a course taught at a large university in the Mid-Atlantic region. The 
mathematics coordinator for the school district invited first-, second-, and third-grade teachers in 
the district to participate. Two first-grade and two second-grade teachers responded. The teachers 
in the study were selected from this course. 

The course functioned as a discussion group with all four elementary school teachers, the 
mathematics coordinator, and myself. We met 10 times for a total of over 18 hours. The purpose 
of the course was to both improve and evaluate the teachers’ understandings of how students 
think about addition and subtraction word problems, the classification of problems, the direct 
modeling of problems, the counting strategies used for solving problems, and the relationships 
among these topics, as researched by CGI. During the first half of the course I instructed the 
teachers. During the second half of the course the teachers decided how this knowledge could be 
used to change and enhance their own teaching. Throughout the last half of the course teachers 
were given the opportunity to evaluate their lesson plans that involved addition and subtraction 
word problems. The curriculum they used contained almost solely Join and Separate (Result 
Unknown) problems. They rewrote almost all the word problems in the curriculum, using each of 
the structure types identified by CGI.  

Three teachers, Carmen, Pam, and Julie (all names used are pseudonyms), clearly exhibited 
understandings of the content and pedagogical content knowledge as described by current 
research, to observe in their classroom. I observed any class time during which the teachers 
taught addition and subtraction word problems. I audio-recorded the teaching sessions and took 
field notes, which included verbatim teacher and student interactions, writing on the board, or 
other relevant data not captured by the audio-recording. Copies of lesson plans and classwork 
were collected. The field notes, lesson plans, other additional documents such as student work, 
and transcribed audio-recordings were used to analyze the understandings teachers had, how this 
understanding affected the teachers’ decision making, and how this understanding influenced 
student understanding. I also examined the students' understandings of the mathematics by 
listening to class discussions, teacher and student discussions, and by accessing student work. 
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During interviews, the elementary school teachers in the study were asked about why they 
made specific decisions before and during class time. Events that merited attention during 
interviews included the teacher making changes to lesson plans, claims she made about student 
understanding during class, the teacher intervening in student work, assessments she made about 
students’ solution strategies, or just conversations the teacher had with a student. I concentrated 
on observing four or five students in each classroom. Students were interviewed using 
mathematics tasks similar to those they encountered during their regular class work. To evaluate 
teacher and student understanding, I investigated participants’ ability to identify, explain, 
interpret, discriminate, apply, and generalize within the context of understanding addition and 
subtraction word problems. 

The analysis was conducted qualitatively using the data I collected in classroom 
observations, field notes, documents from the teachers, and interviews. The manner in which 
teachers used the curriculum provided me with an important avenue for investigating their 
understandings and how they utilized their understandings in practices such as planning lessons, 
choosing tasks, and anticipating student responses. I reviewed the data points searching for 
indicators of understanding in which I found multiple pieces of evidence. I also searched the data 
for evidence that teachers or students did not exhibit a specific understanding to make sure the 
assertions were made with as little bias as possible. Once I gained a better understanding of the 
understandings, I organized the categories into subcategories, based on types of understanding 
repeated in the data.   

Next, I determined how the teacher used her understandings and how those understandings 
may have influenced the students’ understandings. I usually worked backwards from a particular 
student understanding, investigating the data to find possible instances when the teacher may 
have influenced that understanding through her practice. In addition, I hypothesized how the 
teacher’s knowledge could have affected the teacher’s practice. Multiple instances of a particular 
student understanding, coupled with multiple instances of a particular practice influencing that 
understanding, merited a connection worth noting. 

Results 
The following paragraphs suggest some aspects of student understanding influenced by 

teacher understanding as well as aspects of teacher practice that influenced student 
understanding. 

Aspects of Student Understanding Influenced by Teacher Understanding 
Student understanding of their written representations was one of the most notable items 

influenced by the teachers’ understandings. Students understood that addition and subtraction 
word problems could be represented with devices such as equations, pictures, diagrams, or tally 
marks. Teachers influenced how the students were able to interpret the representations and how 
they used the representations to explain and interpret the problems given to them. For example, 
Pam asked students to write an equation to represent each problem they were asked to solve. She 
used equation writing as a tool for students to observe and articulate the differences in structures. 
Her consistent emphasis on where the question mark was in the equation enabled students to 
show what parts of the problem were given and what part of the problem was missing. Similarly, 
the teachers influenced the quality of students’ verbal explanations of their thinking. All three 
teachers used written and verbal representations that described, as literally as possible, the 
thoughts and actions of a typical student when solving the problems (as described by CGI), 
which may have contributed to why the practices were relatively easily incorporated by their 
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students. 
There was an extensive amount of evidence in all three classrooms that teacher 

understanding can lead to an expanded student understanding of mathematical operations. I 
believe that the teachers’ flexible understandings enabled the students to interpret the 
mathematical operation as a strategy used to solve the problem instead of a defining 
characteristic of the problem. The students could focus on the problems’ structure, not relying on 
an operation to interpret problem. The operations were possible avenues for solving the 
problems. The teachers asked the students to solve problems in multiple ways, including by the 
use of different operations. Students showed an ability to interpret the operations as “opposites” 
of each other. They explained that the opposite operation could be used to check their work or to 
solve a problem using a second method.  

Students in this study were able to learn about concepts such as recognizing invariance, 
generalizing, justifying, and focusing on the structure of the problem instead of just how to solve 
a problem. For example, when one student, Niki, solved a Join (Change Unknown) she wrote the 
equation 32 + ? = 50. Niki then wrote 30 + 20 = 50 and then 32 + 18 = 50. Her teacher asked her 
about her thinking. The student responded: 

Niki: Because this [the number in the problem] is 32, this [the number in her equation] 
has to be 32. So I added 2 more. Then I took 2 less from the 20 because if I added 2 
more to here [the first addend] I have to take away from there [the second addend]. 

Pam: How did you know the 50 would not change? 
Niki: Because I added 2 more and took away 2 more so it would be the same thing. 

Niki showed surprising mathematical insight with her generalization and her nascent 
understanding that she could add to one addend and subtract from the other addend and maintain 
the same sum. These young students were developing the building blocks for identifying and 
explaining these important mathematical practices and powerful mathematical concepts. 

The ability of students to progress to more sophisticated levels of problem solving was also 
influenced by the teachers’ mathematical and pedagogical understandings. The teachers 
understood the students’ current ability levels and they also understood the more sophisticated 
strategies, so they developed tasks to build on the students’ understanding. The teachers 
understood the importance of students developing their individual interpretations of the 
mathematical topic. Practices such as refraining from teaching a standard algorithm until the 
students were capable of understanding the algorithm allowed students to develop their own 
strategies as shortcuts for direct modeling and counting strategies. All three teachers encouraged 
their students to use less sophisticated methods for solving problems when they believed a 
student lacked the ability to interpret the nature of the problem, which the teachers hoped would 
lead to a deeper mathematical understanding for the student. 

Aspects of Teacher Practice That Influenced Student Understanding 
The first and most drastic change in the teacher’s practice was the complete revamping of the 

problems given to the students. It is clear that the teachers’ understandings affected their practice 
through the types of problems they chose to give to their students and through the sequencing of 
those problems. The teachers also used their understandings to comprehend and carry out the 
objectives for each of their lessons. They were able to make more specific lesson objectives and 
have those objectives guide their interactions with the students throughout their teaching. They 
could decide whether the purpose of their lessons was to introduce a certain type of problem, 
develop interpretations for problems, discriminate among different types of problems, or develop 
strategies to solve problems. 
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The teachers’ understandings enabled them to better address the needs of their students, not 
only through the building of their lesson plans but also in daily interactions with students. Prior 
to this study, the teachers were unhappy with how they taught the lessons, but were unable to 
make changes because they did not understand the mathematics well enough. By their own 
admissions, their knowledge only enabled them to change the numbers in the problem to increase 
or decrease difficulty. Because of their increased mathematical understandings they were able to 
construct tasks that would build on student understandings. The teachers gained insight into 
students’ weaknesses and strengths, and could modify their practice accordingly. For example, 
Julie noticed that a group of two higher achieving students answered all of their problems 
correctly except for the Compare (Referent Unknown) problems.  She was able to design more 
problems of this type and target her verbal questions to address the relationships involved.  

All three teachers identified that the questions they asked their students were more targeted 
than in previous years on the mathematics they wanted their students to understand, because they 
understood the mathematics better. For example, the teachers’ understandings of structure were 
evident in their teaching when they continuously asked students to explain the relationships 
within the word problems. Carmen made a practice of asking students to explain the story 
without using any numbers. These teachers did not simply expect students initially to be able to 
explain the nature of the problem; they used scaffolding to press students to interpret the 
numbers in the problem, the objects to which those numbers refer, and the relationships among 
the referents within the problem, instead of focusing on getting an answer or which operation to 
use to solve the problem.  

The teachers used multiple representations in their teaching, such as blocks, pictures, 
equations, and diagrams.  Teachers asked students to model high-level performance with 
explanations for how they wrote their equations, including interpreting why they decided to 
represent the quantities in the manner they chose and where to place the quantities in the 
equation. The teachers encouraged the use of direct modeling to understand the nature of 
difficult problems. The teachers spent time not only showing examples of ways to solve 
problems but also explaining how the strategies worked and how the strategies were contingent 
upon the nature of the problems they were attempting to solve. Asking the students to solve 
problems in multiple ways increased the flexibility of their understanding (Star & Rittle-Johnson, 
2008). It gave the students further incentive and avenues to develop their strategies and develop 
their ability to explain and interpret the mathematics they used. 

Finally, teachers were able to find validity in the arguments students made that were different 
from their own, and encouraged students to continue in their thinking. For example, Pam found 
herself wanting to ask students to solve Separate (Change Unknown) problems using the missing 
addend approach, because that is how she conceptualizes those problems. But she allowed her 
students to develop their own strategies, based on their interpretation. She identified that there 
are many appropriate ways to think about mathematical problems, and decided not to instruct her 
students specifically how to solve them. Teachers can allow students to develop their correct 
interpretations, merely by knowing when to refrain from imposing their own ideas that might 
hinder productive student thinking. 

Discussion 
After analyzing the data, I hypothesize that teachers’ mathematical knowledge for teaching 

determines the teacher’s ability to design and implement a task at a high level of cognitive 
demand as well as their ability to maintain that level throughout implementation. The following 
figure adapted from Henningsen and Stein (1997) illustrates the three phases through which tasks 
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Figure 2. Framework for Mathematical Tasks (adapted from Henningsen & Stein, 1997, p. 528) 
 

Research shows that the level of cognitive demand of a task tends to decrease as the task 
proceeds through the framework. In the framework, teacher knowledge of subject matter appears 
as a factor influencing the setup of the task, but it does not appear as a factor influencing the 
implementation of the task. I agree that teachers’ instructional dispositions determine the way a 
teacher desires to implement a task, but, a cross-case analysis of the participants in my study 
showed that not only did they desire to implement tasks at a high level of cognitive demand – but 
they also used their understanding to create situations in which students were using tasks at a 
high level of cognitive demand and maintaining that demand throughout implementation. 

The teachers used their understanding to create the two types of higher level cognitive 
demand tasks, “using procedures with connections” and “doing mathematics” indicated by 
Henningsen and Stein. Tasks that use procedures with connections were chosen to “focus 
students’ attention on the use of procedures for the purpose of developing deeper levels of 
understanding of mathematical concepts and ideas” (Stein, Smith, Henningsen, & Silver, 2000, 
p. 16). For example, Carmen asked her students to use the procedure of answering a list of 
questions she constructed to encourage them to think about the relationships between the 
quantities in the word problems, such as “Who has more?” “What clue tells you this?” etc. The 
students followed this procedure trying to make connections among the numbers in the problem, 
the quantities they represented, and the relationship between those quantities. The teachers also 
used problems that asked students to represent the quantities and actions in the problem in 
multiple ways, such as with diagrams, manipulatives, symbols, and problem situations (Stein et 
al., 2000, p. 16). Because the teachers were aware of the connections they were able to 
incorporate those connections with procedures. Teachers consistently asked students to make 
connections among the representations to develop their meaning, such as when Pam asked 
students to write mathematical equations to lead students to understand the types of knowns and 
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unknowns in the addition and subtraction word problems. 
The teachers also used their understanding to create higher-level cognitive demand tasks 

called “doing mathematics.” Instead of giving students the same type of problem repeatedly and 
telling them how to solve it, students were given problems that required nonalgorithmic thinking. 
Students were purposefully not given algorithms so they could develop more complex thinking 
about the operations. Teachers thought flexibly about the problems–not defining them by a single 
operation,–allowing different operations, depending on the strategies students chose. All three 
teachers chose tasks that required considerable cognitive effort so that some level of anxiety was 
experienced by the students at some time during their work, which was a change from previous 
years when the students were described as “bored.”  

The teachers were also able to use their understanding to maintain that demand level over 
time. According to Stein and colleagues there are seven factors associated with maintenance of 
high-level cognitive demands (Stein et al., 2000). These factors coincide with the aspects of 
teacher practice that I claimed to be influenced by teacher understanding. I will discuss four of 
the factors I saw evidenced by the teachers in this study. 

Eighty-two percent of tasks that stayed at a high cognitive demand were tasks that built on 
students’ prior knowledge (Henningsen & Stein, 1997). The participants in my study decided to 
write a pretest for their students. Through this test the teachers realized the students were capable 
of much more than the teachers were previously expecting.  The teachers knew the demand of 
the tasks in the current curriculum was too low, but they did not have the understanding 
necessary to change them. During this study they completely changed their curriculum, based on 
the results of the pretest they gave their students. The teachers also encouraged the students to 
use strategies to solve problems based on their understanding of the students’ ability levels. 
Using their increased mathematical understandings, teachers were better able to determine the 
students’ prior understandings and design activities that could improve those understandings—
without their increased mathematical understanding they could only increase or decrease the size 
of the numbers. 

Scaffolding of student thinking and reasoning is another significant factor to maintaining 
tasks’ high level of cognitive demand. With each teacher I witnessed situations in which students 
were unable to complete a task and the teacher provided assistance through questioning and 
comments that asked students to think about the structure of the problem without reducing the 
demand of the task. For example, when one student was unable to understand a Separate 
(Change Unknown) problem, Carmen helped her develop a strategy using tally marks to solve 
the problem. The student was eventually able to build off this interaction and solve these 
problems without Carmen’s assistance. 

Carmen also demonstrated a fourth factor, giving students a means of monitoring their own 
progress. She gave the students a checklist to fill out for each problem to enable students to guide 
their own progress in problem solving. 1) Read the problem. 2) Look for clues in the problem, 
find the important information. 3) Think of some strategies. 4) Solve the problem. 5) See if it 
makes sense. Carmen reported that this type of list was unnecessary before because the students 
“didn’t have to think” about the problems. Now that her curriculum did contain problem solving 
that required students’ cognitive effort, she addressed the development of students’ ability to 
monitor each step toward solving the problem.  

These teachers modeled high-level solution strategies, another tool for effective maintenance 
of high cognitive demand. They explained how solution strategies were appropriate based on the 
nature of the problems. They acknowledged that they were unable to do this successfully before 
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learning more about addition and subtraction word problems. They were aware of the important 
relationships in problems and could therefore model these relationships in a variety of ways. Part 
of these demonstrations involved drawing conceptual connections, another important factor in 
maintaining the task demand level. For example, teachers could draw connections between 
addition and subtraction when demonstrating the use of both of the operations within one word 
problem. 

I suggest that student understanding was affected by the teachers’ maintenance of the level of 
cognitive demand. The students demonstrated the type of understandings fostered by tasks with 
higher cognitive demand level that focused on “procedures with connections” (Stein et al., 2000). 
Students were able to develop deeper levels of understanding of mathematical concepts, such as 
their expanded understanding of the operations of addition and subtraction, through their use of 
procedures. They represented problems in multiple ways, such as modeling, equation writing, 
and creating their own word problems. Students were able to develop meaning by making 
connections among multiple representations. For example, the students in Pam’s class were able 
to use equation writing, picture drawing, and creating of problem situations to better understand 
the relationships between types of knowns and unknowns in an addition and subtraction word 
problem. There were many examples of students showing cognitive effort, not following 
procedures mindlessly, and engaging with underlying conceptual ideas. There is also evidence 
that students were able to demonstrate the type of understandings that “doing mathematics” tasks 
are intended to engender. Students showed nonalgorithmic thinking while solving the addition 
and subtraction problems in multiple ways. There is evidence of students beginning to explore 
aspects of mathematical concepts such as invariance, generalizing, justifying, and focusing on 
the structure of the problem instead of just how to solve a problem. There were countless 
examples of students accessing relevant knowledge and using it appropriately to work through a 
task.  

The teachers each expressed that they knew they were not effectively teaching this topic prior 
to the study. They did not realize they were lacking the mathematical understanding necessary to 
enhance their practice. Within days of increasing their SCK, KCS, and KCT they were able to 
change their practice. Their teaching practices, affected by their deeper understanding, 
influenced the quality of their students’ understandings. 
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In this study, we expand the Cohen and Ball triangle of interactions to explore the relationship of 
professional development to classroom practice. We consider a case study of one teacher’s 
implementation of a task from professional development in her 7th grade classroom. We were 
specifically interested in how the content and pedagogy of the professional development would 
be adopted by the teacher. Our findings suggest that this teacher treated pedagogy and 
mathematical content as separable, which led to problematic implementation of PD practices. 

Research and theory around the design of high-quality professional development suggests 
that using materials like those a teacher would use in her classroom is one particularly effective 
strategy for influencing teaching (e.g., Banilower, Heck, & Weiss, 2007; Hill, 2004) as is 
modeling the kind of learning environment that is desired for the K-12 classroom (e.g., 
Desimone, et al., 2002; Elmore, 2002; Hill, 2004). Further, an emerging body of research 
highlights the need for high-quality teaching practices to be implemented in ways that are 
grounded in the mathematics. For example, Wood, Williams, and McNeal (2006) found that 
teachers who asked questions that pushed students to engage in inquiry and argument led to 
higher levels of success among mathematics students than teachers who asked questions that 
only required the students to report their thinking. While both instances involve questioning, the 
first is necessarily grounded in the mathematics and students’ reasoning while the latter can be 
used generically (e.g., ‘How did you get your answer?’). Similarly, Kazemi and Stipek (2001) 
identified the characteristics of classrooms in which there was more push for conceptual 
learning. Their findings suggest that these classrooms include norms such as: explanations need 
to include mathematical arguments rather than descriptions; students are expected to understand 
connections among multiple problem-solving strategies; errors are treated as a means for 
enhancing learning, thereby serving a generative role; and collaboration features consensus 
building through mathematical argumentation. Like the Wood et al. study, this study 
demonstrates that the precise ways in which pedagogical moves are implemented fundamentally 
shapes the classroom environment. Given what is known about professional development and 
what is known about teacher practice, we sought to understand what aspects of professional 
development (PD) a teacher might carry into her classroom and what the movement between the 
PD and classroom environment might look like. 

Theoretical Framework 
We frame our effort by extending the triangle of interactions metaphor introduced by Cohen 

and Ball (1999, 2001). In their model, the classroom learning environment is shaped by the 
interactions of three primary elements: teachers, students, and content as embodied in materials. 
We extend this metaphor to include a second triangle, which represents the same elements 
interacting in professional development (see Figure 1). The two triangles are joined at the vertex 
representing the teacher/participant. This vertex is noteworthy because the teacher is not only 
present in both environments, but also because her interpretation of the PD fundamentally shapes 
both environments as she brings experiences from her classroom to the PD and experiences from 
the PD into her classroom. While it is true that the materials from the PD can be taken into the 
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classroom, the teacher is responsible for turning the intended (written) curriculum into the 
enacted curriculum (Remillard, 2005). 

 
Figure 1. Double triangle of interactions representing the classroom (bottom) and PD 

environment (top). 
The teacher is ultimately responsible for implementing ideas from PD in her classroom. This 

study, therefore, documents one teacher’s experience in PD and the way this experience shaped 
her classroom. Since the teacher is the point joining the two triangles it is important to examine 
the teacher in the professional development context and her classroom context. To frame our 
analysis, we focused on a specific set of instructional moves as well as the teachers’ content 
knowledge. Specifically, we were interested in the ways the teacher supported connection-
making in her classroom as this had been a significant factor in her PD experience. We defined 
connection-making with a 4-facet framework for connection making. The four facets include: 

! Questioning & Communicating: in this framework, these serve as tools for 
articulating, expanding, and refining mathematical ideas. Specific kinds of 
communication in which we were interested included that which supported exploring 
connections among representations, problematizing ideas, promoting conjecture-
making and testing, and engaging with ideas in ways that move the learner to deeper 
levels of mathematical understanding. 

! Reasoning with Representations: in the framework, reasoning with representations is 
seen as connection making. To reason with a representation, a person must draw on a 
set of mathematical understandings, embody them in the representation, and 
communicate to others about those ideas using language and the representation itself. 

! Embracing Multiple Approaches: this framework builds from the perspective that 
different people have different solution paths. The path taken depends on knowledge 
invoked and the solver’s knowledge. The value of highlighting these differences is in 
its effectiveness for introducing all of the learners to new perspectives and promoting 
their ability to create connections among ideas. 

! Scaffolding: this framework is built from the perspective that facilitators make a 
number of moves that support learners in moving from their current levels of 
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understanding to new understandings. Scaffolding moves include, but are not limited 
to, those consistent with the five practices for facilitating discourse around 
cognitively challenging tasks (Stein, Engle, Smith, & Hughes, 2008). These include 
anticipating responses, monitoring responses as learners work, select particular 
approaches to highlight during group discussion, sequence responses to highlight 
particular ideas, and support learners in making connections between different 
approaches.  

These four facets of connection making formed the basis of our analysis of both the PD and 
classroom settings as we considered how the teacher translated the PD experience into her 
classroom practice. 

Methods 
Data were collected as part of a larger research project in which we used a mixed methods 

design to understand teacher learning in PD and the impact it has on classroom experiences and 
student performance. For this study, we considered one videotaped session of a 14-week 
mathematics PD experience and one videotaped session from one participant’s 7th grade 
classroom. This teacher, Donna, was the only one in our study who invited us to videotape an 
implementation of a task taken directly from the PD course. 

Professional Development 
The PD workshop was a 14-week (total of 42 hours) experience for middle school teachers in 

which they specifically engaged in content knowledge development. The course engaged the 14 
participants in exploring fraction multiplication and division as well as proportional reasoning. 
Each session, which was taught in the district office in a large, underachieving, urban school 
district, lasted three-hours and engaged the participants in hands-on, technology-supported 
engagement with the mathematics. The three stated goals of the PD were (1) understanding 
referent units (the whole to which a fraction refers) in a variety of situations; (2) using drawn 
representations; and (3) proportional reasoning. To meet these goals, participants were asked to 
engage with a number of open-middle tasks either as a group or in small groups. For the small 
group work, each teacher was responsible for preparing a write-up that documented the approach 
taken to solving the task, any dead-ends hit, and a fully discussed solution. 

The facilitator, a member of the research team, had extensive experience as a professional 
developer and was a former high school teacher. Each session was videotaped using two 
cameras. One was focused on any written work being discussed, while the other focused on the 
people speaking. These two sources were combined into a single view using picture-in-picture 
technology to create a restored view (Hall, 2000).  

7th Grade Class 
As part of the larger research project, we asked several teachers representing a cross-section 

of abilities on our pre-course assessment to allow us into their classrooms so we could 
understand how the professional development impacted their teaching. We specifically asked to 
see examples of a typical lesson and a lesson the teacher felt was like the PD. For this analysis, 
we consider Donna’s implementation of a task she thought was like the PD. The lesson was 
implemented approximately three months after the completion of the PD. As in the PD, the 
classroom was videotaped using two cameras and the sources were combined.  
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Data Analysis 
Both the PD session and Donna’s 7th grade lesson video were analyzed using memoing 

(Strauss & Corbin, 1998). Every instance of any of the four facets of connection making was 
noted. This included those instances that did not capture our full definition (e.g., the teacher may 
ask a closed question rather than a generative one). We chose this approach in place of grounded 
theory to help us focus on those aspects of classroom practice that have been demonstrated to be 
important for learning as well as those specifically built into the PD experience. Once we had 
memoed each lesson, we built a model of it to help us understand how the facets of connection 
making worked in that lesson. 

Secondary data, including weekly telephone interviews with Donna completed during the 14-
week PD, write-ups of her tasks, and reflections (e.g., specific questions about generalizing the 
mathematics) collected in the PD sessions were analyzed. We used the same facets of connection 
making and memoing technique as was used with the video data. 

Results 
In this section, we briefly present an overview of Donna’s experience in the PD as well as 

some elaboration on her content knowledge. This is followed by a discussion of Donna’s PD-
inspired lesson. Data are summarized due to space limitations. Both the PD and the 7th grade 
lesson like the PD focused on a pair of mathematical tasks (shown in Figure 2).  

 

 

 

 

 

 

 

 

 
Figure 2. Task used in both lessons. Discussion in this paper focuses on task (b). 

Donna’s PD Experience 
  A typical session of PD opened with the facilitator asking participants to work on a task for 

a short time that was then discussed in the whole group. Then, participants were introduced to 
the tasks from which they could select to complete a write-up. During the times in which the 
participants worked, they could choose to work alone or with a partner.  

Donna, who was an 11-year veteran teacher, began the PD with a slightly above average 
mathematical knowledge in the areas of interest to us. On our pretest, her z-score was 0.2 but by 
the end of the PD, she scored a 1.4, showing much more than the 0.3 growth considered 
significant. In observations of the class from which these data are drawn, it was clear that she 
had some confusion about aspects of proportional reasoning and that her definitions for 
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proportional relationships were superficial. For example, she spoke of direct proportions as being 
“up/up” relationships and inverse proportions as “up/down” relationships. In both whole class 
discussions and one-on-one discussions, the facilitator communicated the need for precision in 
defining the relationships by saying things like, “I think this speaks really nicely to what that is 
that we're talking about. I think just saying 'as one goes up the other goes up' and 'as one goes up 
the other goes down' — talking like that — additive and multiplicative — I don't think we're 
really being clear enough.”  

In the course of the PD class session, Donna developed a conjecture for herself about inverse 
variation. She asserted that if you multiply one value (e.g., y) by an amount, then you would need 
to multiply the other value (e.g., y) by the reciprocal of the amount. As shown in Figure 3, for 
example, to increase the 12 to 24 requires multiplying by 2, therefore, according to Donna’s rule, 
the corresponding value to 24 would have to be * of 500. The facilitator worked one-on-one 
with Donna to explore this conjecture by asking questions about the situation in Figure 2B. The 
facilitator challenged Donna by asking questions about the t-chart Donna had made (Figure 3) 
such as, “So, if we take 500 to 200 and then we did 12 to 30, we should see the reciprocal?” 
Donna and the facilitator worked on this situation together for several minutes using the 
representations Donna had created and Donna’s own conjectures. In the whole-class debriefing, 
she scaffolded the entire group’s thinking by again emphasizing the need for more precision in 
defining proportional situations than simply describing them in terms of the idea of one value 
increasing or decreasing as the other increases. Through these conversations, we assert that 
Donna had an opportunity to begin thinking about proportional relationships as being 
multiplicative in nature. 

   

 
Figure 3: Donna’s work for the situation in Figure 2, Question B. 

At the end of the session, participants were asked in the reflection activity whether data 
shown in a table were directly proportional, inversely proportional, or neither. Donna showed 
evidence of both properly identifying the situations and providing mathematically grounded 
evidence for those. For example, her rationale for (appropriately) rejecting one table of data was 
that it “… is not a proportional relationship because there is not a constant pattern that fits either 
description (xy=k or y=kx). The multiplicative aspect is not there.” She also provided a coherent 
definition for constant of proportionality that suggested she may be starting to think differently 
about direct and inverse relationships than she previously had: “A constant of proportionality is a 
number that can be multiplied by one term to get the other. Doesn’t apply to inverse?”  

Despite the promising evidence that Donna was beginning to sort out proportionality in 
November, by March when we recorded her classroom, she reported that she was still confused 
about how and why inverse and direct proportions were different. She said, “…I’m not even 
absolutely sure that’s ever clearly defined for me…[in my own classroom] I recognized the 
difference… I’m not sure that it’s defined. And I guess it’s because the materials I work from 
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don’t define it clearly to me. I probably don’t define it clearly to [my students].” 

Donna’s Classroom Lesson 
Donna introduced the two tasks in Figure 2 (parts A and B) to her students by asking them to 

read aloud and using communication moves to ensure the students understood the problem. She 
encouraged them to work with “the mathematician next to you”. She also used questioning to 
remind them of the representation they had been using with proportional situations (graphs) but 
also promoted other approaches saying, “… you can use the graph if you want to. But if you 
have an idea in your head of how you could visualize this in a different way, some other kind of 
model, then you can draw that.” Donna circulated the room as the students worked asking them 
questions. Her questioning was largely confined to reporting questions (Wood et al, 2006) in 
which students explained how they did the problem but not why that had chosen an approach. For 
example, she asked one group, “What did you do when you did what you did?” We saw a few 
frequent questioning patterns in Donna’s interactions with her students. One was to ask students 
to explain what the problem was asking if they were confused about what to do.  Another pattern 
was her invitation to students to use their own strategies when solving a problem. However, this 
became problematic for Donna when she needed to evaluate students’ approaches. Their 
approaches, at times, differed from what she expected and her only responses were either 
encouragement or to explain her own thinking—both without supporting students in connecting 
their understanding to her own. In one case, a student used a solution path Donna had not 
expected, so she explained her own to him. His response to her was to ask if he could have done 
it her way. When she said he could have, he commented on his own effort saying, “All that work 
for nothing.” Communication was about evaluation and efficiency, not about engaging in 
mathematical discussions or pushing students thinking forward as Donna had experienced in the 
questioning she had in PD. 

Donna had suggested to students that they should use representations in her launch of the 
problem, but as she circulated, she was clearly surprised by some of the representations she saw. 
In the spirit of supporting multiple approaches, Donna seemed hesitant as she tried to accept the 
ways students chose to approach the situation. For example, Donna encountered a group that 
created a bar graph for their inverse proportion. She asked the group, “Is this the kind of graph 
we’ve been doing with direct and inverse variation?” A student responded, “We've been doing 
line graphs, but I didn't feel like the line graph would be comfortable…” Donna responded, “If 
you think this is going to show you a better picture then go for it.” Another student in the group 
commented, “I don't feel right about doing a bar graph.” Donna articulated that students could 
use different approaches as long as they were comfortable with their answers, and she reminded 
them that the question asked them to determine which kind of variation (direct or inverse) was 
represented in the problem. Unlike the PD where mathematical discussions were had about the 
representations and their mathematical affordances, in Donna’s class, the discussions focused on 
student comfort with no elaboration on that comfort or on aspects of the mathematics. 

Analysis 
In the PD, the framework of connection making was clearly present with all aspects of the 

class working together to scaffold learners. The facilitator used questioning to either understand 
participants’ thinking or to push their understanding. She used precise communication in terms 
of not only incorporating mathematical terms but specifically discussing those terms and why 
she was focused on the precise use of them. She encouraged the use of representations and 
focused teachers on explaining them to her and to each other. The whole class debriefings of 
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tasks always focused on connecting the various approaches together. 
In contrast, when Donna implemented the task in her class questioning stopped at explaining 

how a problem was worked. Although multiple approaches were tolerated, they were not used to 
promote thinking and connection making among students. In fact, students saw Donna’s 
approaches as being better than their own and, in the class we observed, they did not get to see 
any approaches other than their own or ones that Donna talked to them about in their partner 
work. Communication was not mathematically precise and, while not presented in the data due to 
space limitations, she pursued using the up/up and up/down explanations for the proportional 
relationships. She also emphasized the shape of the graph without pursuing any discussion about 
understanding the graphs in more detail. There was no sense of connecting ideas to each other 
and Donna did not seem to scaffold students’ efforts so that the pieces fit together. In fact, she 
would give different pairs of students different directions without purpose—for example, one 
group was told to work the problem another way while another was asked about a different 
representation. But, there was no follow-up of any kind on these challenges.  

Conclusions 
Our goal in this study was to explore aspects of professional development a teacher might 

carry into her classroom and what the movement between the professional development and 
classroom environment might look like. In our case, we were offered the opportunity to observe 
a single teacher engage with a task taken from the PD. We assert that this analysis contributes to 
our understanding of how a teacher mediates the double triangle of interaction.  

Donna was a good teacher in many respects. Her classroom was pleasant and her students 
clearly liked her. Her mathematics knowledge was clearly above average, despite some 
problematic understandings. According to her interviews, she enjoyed the PD and thought it was 
helpful to her teaching, though she could not provide examples of specific ways in which it was 
helpful.  

From the perspective of the double triangle of interaction, however, we can see that the 
teacher mediation of the two environments plays an important role in the experience the students 
have. In PD, the task served as a conversation starter. It had been intentionally chosen by the 
facilitator to highlight particular relationships among the numbers (and the facilitator had 
discussed this intentionality in the PD). The focus of the task activities was on developing 
conceptual understanding that was mathematically precise. To do this, the facilitator used all four 
aspects of the framework for connection making in ways that were consistent with high press 
practices (Kazemi & Stipek, 2001).  

Donna, having experienced this environment as a learner, chose to take the exact materials to 
her own students. She framed the task as a challenge for the students and used it to engage them 
in talking to each other and to problem solve. The focus of her interactions was often on correct 
calculations and the take-away was the shape of the graphs. There was no attention to precise use 
of mathematical terms nor was there any attention to the multiplicative relationship of the values 
in the task. Whereas the task had been used to engage participants with mathematical concepts to 
develop understanding in the PD, in the 7th grade classroom, the task was about doing hands-on 
mathematics with a goal of knowing that the graph shapes were different. 

This suggests that while Donna was able to see the moves the facilitator made and take those 
into her classroom (e.g., she used questioning, supported multiple approaches and 
representations, etc.). Her lack of tying these to the mathematics in ways that supported a high 
press learning environment meant that the students missed out on opportunities for learning.  

As suggested by the double triangle of interactions, in order for PD to impact classroom 
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practice, it must be relevant and apparent to the teacher because she is the one who moves the 
opportunities from one environment to the other. While Donna valued her experiences as a 
learner, she did not take them, except in a superficial way, into her classroom practice. This 
suggests two things. First, the Donna viewed pedagogical moves and content knowledge as being 
separate from each other—thus her ability to use the same pedagogical moves as the facilitator 
but in less rigorous ways. Second, it suggests that the goals of PD may need to be 
reconceptualized from supporting the teacher in her personal development to providing support 
for developing the learning environment in which the teacher practices. This does not mean 
telling the teacher how to conduct her practice, rather it means focusing the PD so that the 
teacher’s personal development is situated, for her, in the practice of teaching. For example, we 
wonder whether Donna’s content knowledge development around the relationship of quantities 
in the inverse proportion would have been more salient to her teaching had we presented her with 
student reasoning similar to her own and let her think about how she would interpret and respond 
to that reasoning in her own practice. Pursuing opportunities to more fully integrate the two 
triangles of interaction may support teachers in better translating their own experience as learners 
into their practice as teachers. 

Endnotes  
1. The work reported here was supported by the National Science Foundation under grant 
number DRL-0633975 and DRL-1036083. The authors wish to thank the members of the 
research team as well as Donna and her 7th graders for their assistance with this research. 
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We report on our efforts to support teachers’ development of mathematical knowledge for 
teaching through online professional development. In particular, we report on our investigation 
into the relationship between online interaction and teachers’ development of mathematics 
content for teaching. Through the integration of content analysis and social network analysis, we 
identify underlying relationships between aspects of online interaction and teacher learning. 
Results indicate that while interaction, broadly speaking, was not correlated with teacher 
learning, particular combinations of content and the centrality of an individual in the interaction 
were. Implications of these significant correlations for mathematics teacher education are 
discussed. 

For more then a decade, the importance of teachers’ content knowledge has been a major 
focus in the literature (Ball, 1993; Ma, 1999; Shulman, 1986) and increasing teachers’ 
mathematical knowledge continues to be a major focus in both education research and policy 
(Greenberg & Walsh, 2008; National Mathematics Advisory Panel, 2008). Despite these calls, a 
great number of elementary teachers continue to be underprepared and uncomfortable with the 
mathematics content they are expected to teach (Greenberg & Walsh, 2008). At the secondary 
level, studies have shown that students who have been successful in high school and university 
mathematics classes – even those with grades of A in calculus – often have weak or 
underdeveloped understandings of the concept of function, a core concept in the K-12 
mathematics curriculum (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Monk, 1992; Thompson, 
1994). With regards to the mathematics preparation of school teachers, Cuoco (2001) notes the 
solutions “will not come from rearranging the topics in a syllabus or by adding more topics to an 
already bloated undergraduate curriculum. Making lists of topics that teachers should know … 
won’t do it either” (p. 170).  He argues that teachers need experiences doing mathematics and to 
develop a “taste” and passion for it. Bass (2005) notes that regardless of their level mathematical 
preparation, evidence suggests that that teachers lack Mathematical Knowledge for Teaching 
(MKT): “the mathematical knowledge, skills, habits of mind, and sensibilities that are entailed 
by the actual work of teaching” (p 429). 
Throughout the past two years, we have engaged in an extended research project focusing on 
supporting teachers’ mathematical content knowledge and mathematical knowledge for teaching 
through online professional development. The overarching goal has been to support teachers’ 
mathematical development through authentic engagement in collaborative mathematical problem 
solving and connecting that engagement with the teaching of school mathematics. In this paper, 
we report on the results of a subset of this project that sought to support teachers’ developing a 
coherent view of the school algebra curriculum and mathematics content knowledge for teaching 
school algebra. The primary research question we explore is What is the relationship between 
online participation in teacher development activities and teachers’ development of MKT?  
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Theoretical Background 
The majority of online instruction emphasizes the importance of interaction and the 

affordances of the internet in supporting interaction at a distance, but pays little attention to the 
key features and functions of those interactions. We have found Lotman’s (1988) 
characterizations of text as univocal or dialogic particularly useful in understanding the function 
of the individual posts that make up an online interaction and the interaction as a whole.  
Univocal discourse functions “to convey meaning adequately” (Lotman, 1988, p. 34). In 
contrast, dialogic discourse can be characterized as a “thinking device.” Lotman describes 
dialogic function as generating new meaning: “In this respect a text ceases to be a passive link in 
conveying some constant information between input (sender) and output (receiver). … [I]n its 
second function a text is not a passive receptacle, or bearer of some content placed in it from 
without, but a generator” (Lotman, 1988, pp. 36-37). This dualism has guided both the design of 
our teacher development activities and our analysis of the online interactions.  
In our work with teachers, we seek to provide environments that support the dialogic function of 
text, where teachers view and use each others posts as “thinking devices.” We, then, attempt to 
understand these interactions in terms of their potential and success for catalyzing the generation 
of new mathematical knowledge and knowledge for teaching. This perspective is consistent with 
a variety of research in the learning sciences that emphasizes the importance of discourse and 
interaction in learning (Mercer, 2000; Paloff & Pratt, 1999; Ravenscroft, 2001; Shale & 
Garrison, 1990; Su, Bonk, Magjuka, Liu, & Lee, 2005). Previous results documenting the 
relationship between interaction and learning include that learning is promoted through dialogue 
(Cunningham, 1992) and that learning occurs online through social activity in communities 
(Haythornthwaite, 2002; Rovai, 2002). 

Through a design research methodology, we have developed and explicated a model for 
Online Asynchronous Collaboration (OAC) in mathematics teacher education, which has at its 
core cycles of individual, small group, and whole class interaction (see Silverman & Clay, 2010 
for a detailed discussion of OAC). OAC begins with participants drafting a solution, initial 
approach, or questions on a set of purposefully selected, open-ended mathematics tasks in a 
private online workspace. In these initial posts, we do not expect that each teacher will be able to 
complete each of these activities, but we do expect each participant to attempt the assigned task 
and either pose a solution method and solution or ask relevant questions or wonderings that 
reflect their current state of thinking about the task. After the individual work phase, each 
participant’s initial postings are made public for small-group and dyadic interactions where 
participants add comments, respond to classmates’ questions, or ask for clarifications. Finally, 
the instructors orchestrate a whole-class discussion that lies at the confluence of the participants’ 
collective sense making and the sessions’ instructional objectives.  

We have had success documenting participants’ mathematical development (Clay & 
Silverman, 2008; Silverman & Clay, 2009) and the role of the teacher in supporting that 
development (Clay & Silverman, 2009). Despite these successes, we have struggled to identify 
correlations between the online teacher development activity and teacher development. In this 
paper, we focus our attention explicitly on this relationship. 

Setting and Participants 
In this article, we focus on an online graduate class in mathematics education that focused 

specifically on proportional and algebraic reasoning. The course was designed to support 
teachers as they deepen and extend their mathematical understandings and develop schemas 
within which a variety of mathematical ideas are conceptually connected (Silverman & Clay, 
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2009). First, we began by exploring mathematical ideas that the teachers teach regularly and 
ostensibly know well. We then sought to problematize the teachers’ current mathematical 
understandings through posing “changes” to the mathematical idea (for example the exclusion, 
replacement or addition of properties, generalization, application to a new setting, etc.). These 
new conceptualizations of school math concepts were then used to support instructional 
conversations that bridged teachers’ developing understandings and the school mathematics 
curriculum and focused on how various mathematical ideas fit together. 
The wholly online class took place in the winter term of 2008 at an urban research university in 
the Northeastern United States. The class consisted of 17 (13 women, 4 men) who were 
geographically distributed throughout the United States. The 10-week course was hosted in the 
Blackboard Learning Management System. Within Blackboard, participants accessed course 
materials (readings and activities) from their homes or workplaces and participated in both 
threaded discussion boards and blogs. Each week, participants were presented with prompts to 
consider when creating their posts, but were consistently reminded that the prompts were meant 
as guides and not as a list of questions that must be answered. For each discussion board, 
participants were required to post a minimum of one initial post by Tuesday evening and two 
replies by Saturday evening.  

Data Sources and Analytical Procedures 
The two primary sources of data for this study include online interaction data, taken from the 

participants’ interaction in the online discussion forums, and teacher learning data. Teacher 
learning was measured using instruments developed and validated by the Learning Mathematics 
for Teaching Project (http://sitemaker.umich.edu/lmt) for measuring teachers Mathematical 
Knowledge for Teaching. For this paper, the two versions of the LMT instrument for patterns, 
functions, and algebra were administered and are used as a validated measure of participant 
learning of the relevant content.  Teachers’ gain scores were converted to Item Response Theory 
(IRT) scaled scores using conversion tables provided by the developers.  

Coding and Content Analysis 
While raw interaction data (who talked to whom) is relatively easy to generate and can 

provide us with useful information about the interactions between teachers, this information does 
not provide us with any information about the content of and function of those interactions. In 
essence, it neglects the basic question posed by Schlager, Farooq, Fusco, Schank & Dwyer 
(2009): “What constitutes a meaningful relation or tie between individuals?” (p. 87). In order to 
better understand this question, we employed a variant of content analysis to compare, contrast, 
and categorize the posts. Coding of interaction data began with Lowes, Lin & Lang’s (2007)’s 
coding scheme for coding interactivity in an online class, which was adapted to meet the needs 
of this project through a recursive process. Ultimately, the following codes became stable for our 
data set: 
 

Cheerleading/Affirming (C/A) 
• Offering praise and encouragement 
• Focus on ideas not related to mathematics or teaching (ie. use of learning management 

system, course logistics, personal issues, etc.) 
• Affirmation of work without any evidence of reflection 
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•  
Students, Teaching, and Schools (STS) 

• New information about students and teaching from teachers’ own classroom or 
classroom experience 

Direct Instruction (DI) 
• Providing direct instruction to classmates; telling how to do or solve a problem 

Doing Mathematics (DM) 
• Making mathematical activity (thinking, representing, conjecturing, etc.) public  

Questioning/ Challenging (Q/C) 
• Raise questions that extend previous post, or express disagreement with it 

 
All posts were coded on each of the two dimensions by two researchers using the above scheme. 
In order to ensure the reliability of the coding process, the researchers coded the first 30 posts 
together and came to agreement on the codes, definitions, and examples. The researchers then 
coded the entire data set independently and approximately 77% of the items were coded similarly 
by both researchers. Each item that was coded differently was discussed and deliberated until 
agreement was reached on how to code the item in question.  

Social Network Analysis 
Social network analysis (SNA), a mathematical approach for analyzing interactions and the 

structure of social network and the strength of the ties between actors in the network 
(Wasserman & Faust, 1994), was used to quantify the interactions being studied. One primary 
use of social network analysis is to identify important actors in the interaction and we use these 
measures of importance to further parse the online interaction data and to quantify teachers’ role 
in the online interaction. Within social network analysis, there are two primary ways of 
quantifying the “importance” of actors in an interaction: centrality and prestige.  An actor’s 
centrality, or the number of posts generated by the actor is a measure of his or her influence on 
others within the social environment. In particular, it is the actor’s potential influence on the 
interaction. When one has a high centrality, he or she is in direct contact with many others: “this 
actor should then be recognized by others as a major channel of relational information … a 
crucial cog in the network, occupying a central location” (Wasserman & Faust, 1994, p. 179). An 
actor’s degree prestige, or the number of posts received by the actor (the in-degree), is a measure 
of how he or she is potentially influenced by others in the social environment. In terms of online 
learning, an actor’s prestige can be interpreted as the amount to which colleagues (other actors) 
seek out and support an individual (Russo & Koesten, 2005). 

Analysis of Relationship Between Online Participation and Increases in Mathematical 
Knowledge for Teaching 

In order to quantify participants’ participation, each participant’s centrality and prestige was 
calculated (both their overall centrality and prestige as well as centrality and prestige broken 
down by each of the codes discussed above). Finally, Pearson’s correlation was used to identify 
statistically significant linear relationships between participants’ centrality and prestige and gains 
in mathematical knowledge for teaching, as measured by the LMT instruments.  

Results 
Analysis of the relationship between individual participation and LMT gain scores was 

conducted on the twelve independent variables shown below in Table 1.  
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Table 1: Twelve Independent Variables 
 Centrality Prestige 
Overall [1] [2] 
Cheerleading/Affirming [3] [4] 
Students, Teaching and Schools [5] [6] 
Direct Instruction [7] [8] 
Doing Mathematics [9]* [10] 
Questioning/Challenging [11]* [12] 

An analysis of the linear relationship between each of the independent variables for participants’ 
content prestige and centrality and participant learning was conducted using Pearson’s 
correlation coefficient. This analysis indicated the following positive relationships (indicated by 
* in Table 1 above): 

• A positive relationship between participants’ Doing Mathematics (DM) centrality and 
their LMT gain score, r(15) = 0.624, p < 0.05.  

• A positive relationship between participants’ Questioning and Challenging (Q/C) 
centrality and their LMT gain score, r(15) = 0.631, p < 0.05.  

Conclusion and Discussion 
In this study, we bring into question the common belief and research results that emphasize 

the importance of interaction in online learning (Paloff & Pratt, 1999; Shale & Garrison, 1990; 
Su et al., 2005). In particular, we present evidence for the claim that it is not simply interaction 
that is important for learning in an online context. We extend Schlager, Farooq, Fusco, Schank & 
Dwyer’s (2009) question of “What constitutes a meaningful relation or tie between individuals?” 
(p. 87) in two key directions: the content of the contribution and the individuals’ patterns of 
activity. Results indicate that while overall levels of activity in online interactions were not 
correlated with gains in mathematical knowledge for teaching, the centrality of individuals 
Doing Mathematics and Questioning/Challenging were. Put another way, teachers with high 
activity (ie. teachers who generated a large number of posts) coded as Doing Mathematics and 
Questioning/Challenging tended to have higher LMT gain scores.  

We recognize that this result might seem counterintuitive: one of the benefits of social 
networks (like online classes – or schools, for that matter) is that individuals can learn and grow 
through individual interactions with group members. For example, research has shown that who 
a teacher “gets help from” and not the amount of help a teacher gets was related to changes in 
teaching practices (Penuel & Riel, 2007). In other words, it seems that the posts directed towards 
an individual should be an important predictor of teacher learning. This was not the case in this 
study: participants’ learning was correlated with the centrality of an individual (the number of 
posts an individual directed towards others), provided the posts involved Doing Mathematics or 
Questioning/Challenging.  

We reconcile this apparent contradiction by focusing on the nature of MKT. We have argued 
previously that the development of MKT starts with coherent mathematical understandings and 
involves personal reconstruction of one’s mathematical understandings to include both (1) the 
variety of ways that individuals may understand the idea and (2) how particular ways of 
understanding can empower individuals to learn other, related mathematical ideas (Silverman & 
Thompson, 2008). We also argued that this personal reconstruction is necessarily the result of a 
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reflecting abstraction (Steffe, 1991) and not easily developed through explanation or 
demonstration: “the transition requires a building up of the understanding through students’ 
activity and reflection and usually comes about over multiple experiences” (Simon, 2006, p. 
362). Framed this way, it appears to make sense that our participants’ learning was not correlated 
with explanations and demonstrations directed towards the participant (others’ posts directed to 
the participant). Doing Mathematics and Questioning/Challenging centrality can be interpreted 
as a metric for the one’s level of personal engagement and reflection in interactions designed to 
support the development of MKT. We speculate that participants with a high Cheerleading or 
Direct Instruction are experiencing the same discussion board quite differently than those with 
high Doing Mathematics and Questioning/Challenging centrality: rather than “telling” they are 
“doing” and “wondering” and placing themselves in a state of cognitive disequilibrium, which 
has the possibility of stimulating equilibration (learning). 

Implications for Mathematics Teacher Education 
The primary implication for mathematics teacher education is that, while teachers need to be 

challenged and encouraged to engage with their colleagues as part of their professional 
development activities, efforts need to be made to increase the amount of Doing Mathematics 
and Questioning/Challenging that they engage in. One obvious method, which we have 
implemented with little success, is being more specific about the posting requirements (for 
example, requiring at least one Doing Mathematics or Questioning/ Challenging post). We 
believe that there are two reasons for our lack of significant results from more specific 
requirements: our past participants (1) want to talk about what they believe their current needs to 
be and doing or learning math is often not a current perceived need and (2) often believe that 
direct instruction is the essence of doing mathematics. With these two factors in mind, it is clear 
that the challenge is not one of imposing requirements but rather one of a cultural shift: teachers 
need to come to see the value of MKT for their teaching and that the more teachers engage in 
doing mathematics, the more effective they will be at supporting their students as they do 
mathematics. Thus, it seems that one way to increase the effectiveness of online implementations 
designed to foster MKT would be focused teacher development activities designed to support 
this cultural shift. Examples of such activities include the Math Forum’s Online Mentoring 
Project (Shumar, 2006) and dialogue games (Ravenscroft, 2007).  

Future Work 
We fully recognize that all of the emphasis cannot be placed on increasing participants’ 

Doing Mathematics and Questioning and Challenging centrality – these posts need not and do 
not happen in a vacuum. A great many Doing Mathematics posts were in response to others’ 
posts and it is necessary to have something (a post) to question or challenge. Further, we 
acknowledge that other types of posts (cheerleading, for example) may be useful in supporting 
generative discourse. We have begun to explore sequential analysis (Bakeman & Gottman, 1997; 
England, 1985; Jeong, 2003) to study group interactions. Sequential analysis involves using 
probability to study relationships between individual posts and predict the characteristics of 
interactions that support individual contributions with particular characteristics (for example, 
“Doing Mathematics” posts) and the conditions under which those posts are more likely. In 
addition to increasing the effectiveness of our online teacher development, we believe that this 
research can help us bridge our work and the current emphasis on online communities in teacher 
professional development.  
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We investigate the impact of integrating dynamic geometry environments with haptic devices, 
which allow users to not only see and manipulate geometric figures on a screen but also feel, 
through force-feedback, the result of interacting with such objects. The feedback loop can be 
assigned to varying attributes of objects, for example, the changing area of a deformable 
triangle, as well as invariant ones. We report preliminary findings from our work in informal 
settings. Our findings indicate that such experiences allow young children as well as 
undergraduates to yield expressive discourse that is intimately connected to the mathematical 
concepts being presented. 

Introduction 
Our project combines various technological ingredients to develop a new mathematical and 

scientific learning environment for allowing more students to access conceptually demanding 
ideas through various senses in K-5th grade classrooms. We are using a modified version of The 
Geometer’s Sketchpad® software, the H3D Application Programming Interface and specific 
haptic devices.  

Haptic literally means “ability to touch” or “ability to lay hold of” (Revesz, 1950) and has 
evolved in a technological era to be an interface for users to virtually touch, push, or manipulate 
objects created and/or displayed in a digital visual environment (McLaughlin, Hespanha, & 
Sukhatme, 2002). Haptic devices can provide force-feedback or tactile feedback. Haptic 
interfaces allow users simultaneous information regarding their input and reaction to that input as 
programmed within a computational environment. 

The activities we are creating allow users to construct, interact and explore geometric figures 
and shapes, and so engage in model-eliciting activities in various mathematical topics. Our study 
is assessing and evaluating what new or enhanced learning experiences can be created by the 
synergistic integration of dynamic geometry with new haptic hardware, why this is necessary and 
how it can improve present practice.  

We are designing new mathematical investigations that build on established curricular 
standards and frameworks, and assess the potential scalability of such an approach in the future 
given these intersecting research traditions. We can finally do this because of the availability of 
new affordable devices, but such technological advances are irrelevant without an aim to 
transform the mathematical and scientific activities of the classroom. The first stage of our 
project, which we report on here, investigates the educational potential for introducing such a 
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multi-modal environment in different settings by investigating how it can engage different aged 
students to investigate mathematical ideas focused on change and variation. We particularly 
focused on features of expressive discourse that are elicited when students interact with our 
dynamic haptic geometry environment. We have analyzed whether the added modality of force-
feedback can be engaging and rich for students in terms of how they can potentially discover 
new concepts, which has led to the emergence of design principles for future implementation in 
formal mathematics settings. 

Theory 
Haptic technology has evolved over the past 10 years, particularly out of a focus on virtual 

reality in the 90s, and has become more available in a variety of commercial and educational 
applications, including 3D design and modeling, medical, dental and industrial applications. 
However, research specifically examining haptics in relation to learning and education is scarce. 
A large proportion of the existing studies focus on “haptic perception” a major field in 
psychology focused on haptic sense, and the second main set was focused on multimodality. 
Multimodality reaches into education in various ways intersecting deeply with a multi-media 
approach. Recently, multimodal approaches have also focused on the role of gesture with 
increasing interest (Wagner Cook, Mitchell, Goldin-Meadow, 2008) with particular focus on this 
mode as a form of mathematical expressivity (Hegedus & Moreno-Armella, 2008). 

Historically, this has been translated as a way to create multiple learning pathways for 
students to work within auditory and visual modalities. In fact, the audio/visual modality is still 
the predominant “multi-” media form. But, students can interpret visual, auditory and haptic 
displays to gather information, while using their proprioceptive system (making sense of the 
relative positions of one's own body parts) to navigate and control objects in their synthetic 
environment (Dede, Salzman, Loftin & Sprague, 1999). In this work, multiple sensory 
representations can offer mutually reinforcing information that a user can collect to develop an 
understanding of a mathematical or scientific model. In addition, haptics have been said to be 
superior to vision in the perception of properties of texture and microspatial properties of pattern 
(Zangaladze, Epstein, Grafton, & Sathian, 1999), while vision is more useful in the perception of 
macrogeometry particularly shape and color (Sathian, Zangaladze, Hoffman, & Grafton, 1997). 
Leveraging these relative strengths, our proposed activities will incorporate the need to 
investigate both shape and properties of construction (i.e., the mathematical structure of a figure 
or surface). We propose that it is relevant to integrate haptic technology with dynamic geometry 
software to offer multiple sources of information-feedback for students; it is not enough to offer 
a way for students to just see a mathematical object or a scientific model in a static way they 
must also engage with it dynamically, tactically and naturally. 

 
Setup of Multi-Modal Technology Environments 

Description of the haptic activity setup 
The SenseAble PHANTOM Omni haptic device (See Figure 1) is capable of reading position 

and orientation data of a stylus in 3D space, which serves as the physical interface to the device. 
The device also provides force feedback to the user through the stylus. Users can grip the stylus 
and move it freely in 3D space with their choice of grip suitable to their intentions at any given 
time. We paired PHANTOM Omni with a laptop so that users are able to view a visual 
simulation as they simultaneously manipulate the device. Interviewers used the mouse and a 
separate keyboard to manage switching among activities and manipulating the parameters of 
activity variations.  
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Figure 1. The SenseAble Phantom Omni haptic device 

Description of the Types of Simulations 
We aimed to elicit student expressivity associated with two types of simulations: breaking 

point and impact. A breaking point is defined as a point of resistance against the haptic stylus, 
where the resistance is removed once a large enough force is exerted on the stylus. An impact is 
defined as bumping into, or being bumped by objects within the haptic environment. These 
simulations were embedded into activities in which the students were not initially presented with 
any visuals. This protocol gave us the opportunity to hear students draw heavily on their haptic 
experiences without the additional influence of the visual simulation. Later, visuals were 
revealed in order to examine ongoing expressive discourse in the presence of additional stimulus.  

One activity we embedded the simulation of breaking point is called Falling Off. Haptic 
experience in this activity consists of a resistant force occurring from a user's contact with a 
visual surface using the haptic device. As the user moves off the edge of the surface, the 
resistance is removed, which results in a feeling of falling off. Another activity involving the 
simulation of breaking point is called Break Through, wherein users encounter an unavoidable 
barrier in the center of the haptic environment. When contacted by the user, the barrier provides 
a resistant force, which can be removed once the user exerts sufficient force on the barrier. 
Additional haptic experiences can be added to either side of the barrier through the exertion of 
forces that oppose a user's movements within the haptic environment.  

In, Impact, our second simulation type, students encountered two types of obstacles as they 
explored the haptic environment. The Spheres activity presented a stationary 8x8x8 lattice of 
spheres. Spaces among the spheres allow users to probe around and through the lattice, bumping 
into the spheres in the process. The second activity involving the simulation of impact is called 
Bumped. In this activity, the obstacle moves perpetually and repeatedly from left to right with a 
speed controlled by the researcher. The users feel being bumped by the obstacle when they 
explore the center of the haptic environment.   

Methods 
During the spring of 2010, we collected preliminary observational data in the form of video 

and field notes from 32 students (27 elementary and five undergraduate) interacting with the 
haptic activities. The students involved were chosen from three different populations within the 
Southcoast region of Massachusetts including local elementary schools, university freshmen and 
young children from a local urban city Boys and Girls Club of America. The observations 
occurred during informal interview sessions, where researchers asked questions to the students 
about what they thought and felt and how they related these experiences to the dynamic visuals 
on the screen. For undergraduate students, the interview sessions lasted about an hour; for 
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elementary students, they lasted between 25-40 minutes. In this paper, we do not make a 
distinction among these students with respect to their developmental differences. Instead, we 
only provide a descriptive approach towards their haptic experiences to explore the features of 
their expressive discourse. Pseudonyms for student names are used. 

We used the qualitative software product NVivo® to examine the use of expressive discourse. 
For example, we addressed the following: How did the student dialogue cohere with the 
expectations of the activity? What can we learn about the types of interview question and 
response patterns that inform future interface and activity design? We have used NVivo® to code 
for these types of expression as attributes for our particular cases (both students and activities). 
In order to answer the questions surrounding the activities’ expectations the coded student 
discourse was cross-referenced with the set of expectations for each particular activity. 

Our analysis of students' expressive discourse focused on how they could differentiate haptic 
experiences (e.g., “this felt like the ball was moving faster”). We initially identified three 
categories of expressive discourse. The first category is metaphorical word use. We define 
metaphorical word use as the set of utterances about objects or actions that are not present in the 
haptic-visual environment, but result from students' previous experiences. We further classified 
the use of metaphorical word use as scholastic (mathematical/scientific) or non-scholastic (non-
mathematical/scientific). Scholastic use of metaphors relates objects or actions to mathematical 
or scientific objects students have previously interacted with. Non-scholastic use of metaphors is 
not related to mathematical/scientific objects but to students' everyday experiences.   

The second category of expressive discourse is reaction to sensual experiences. We define a 
sensual experience as any form of expressivity that is a result of the students' sensations and 
reactions to the feedback (e.g., force, sound, or visual) they receive from the haptic device. We 
subdivided this category into descriptive aesthetics, evaluative aesthetics, and gesturing. 
Descriptive aesthetics pertains to utterances about the color, size, or feel of what students are 
seeing, feeling or hearing (Sinclair, 2004). Evaluative aesthetics differs from the descriptive 
aesthetics in that, instead of just describing the form (e.g. it's green), students are assigning some 
affective statement to their experiences (e.g. it's scary or it's beautiful). In addition to the verbal 
reactions pertaining to an activity’s aesthetics, we also focused on students' sensual reactions 
through gesturing. We consider gesturing as a set of bodily movement for communicating in 
context, or collaboration with speech; either to oneself, a fellow student, or one of the 
interviewers. 

The final category of expressive discourse is developing a way of measuring and calibrating 
visual and physical spaces. This corresponds to the students' routines as they attempt to measure 
and calibrate the physical and visual space during their haptic experience.  

 
Results 

Metaphorical Word Use 
      Examples of scholastic metaphorical word use were seen during an activity where students 
were presented a flat surface, which they could drop onto a small, white ball. When asked what 
would happen when the surface was dropped, one elementary school student (aged 8), Annie, 
predicted that it would fall to one side. This prompted another similarly aged student, Beatrice, to 
relate it to a “see-saw”, and the white ball as the fulcrum. When asked to give a definition of 
fulcrum, Beatrice said “the center that keeps it together, like scissors”. More metaphorical word 
use was seen with elementary school students during the Break Through activity. Students were 
presented with a barrier that provided resistance to passing through it, until enough force was 
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exerted using the haptic stylus, thus releasing the resistance. As an explanation for this barrier, 
which some students described as a wall or “pressure”, two groups of students reasoned that it 
had magnetic properties that “[didn’t let] you go where you want”. Undergraduate participants 
also used expressions containing mathematical metaphors. In one activity three undergraduates 
were shown a shallow, concave parabolic curve. The haptic stylus controlled a point displayed 
on the x-axis and, as they moved the point in the positive direction, students felt an increasing 
force, proportional to the parabola’s slope, in the negative x-direction. In one student’s 
explanation of this force-feedback, he referred to the feeling as “riding across sine waves”. 

The use of non-scholastic metaphorical word use, however, was more prevalent in our 
interviews. In one Break Through activity, when the force opposing user movement was 
activated, students described their movements as “heavier”, “like rubber” or an “eraser on 
paper”. In contrast, movements without the force were described as “lighter” or “freer”. One 
student even compared their movements with, and without the force to being chased in a scary 
movie. The student related the opposing force to when they are walking and “you feel all that 
pressure, like someone’s behind you, and you’re scared”. Movement without the force present 
represented a “relief” for the student. 

Another metaphor discussed in a Break Through activity, related the force opposing 
movement to walking on a windy day. In the metaphor, the force was described by an elementary 
school student as “wind actually blowing you” towards the barrier. In a separate session, an 
undergraduate used the same metaphor, saying the force was like wind when you’re walking, 
“there would be resistance to your movements.” The Bumped activity also provided similarities 
between the elementary and undergraduate students. Two groups of students, one elementary and 
one undergraduate, described the periodic impacts as the beating or pumping of a heart, or a 
pulse. Along with the theme of periodicity, these two age groups also likened the period impact 
to a clock. 

Reaction to Sensual Experiences 
This type of expressive discourse classifies the communications of student reactions to 

sensual experiences during our activities. As an example, we again reference the force opposing 
movement in the Break Through activity. One student explained that when the force is not active 
the haptic environment “feels like it’s empty”, but with the force the environment has 
“something inside it.” This explanation makes a description, in terms of a container, about the 
haptic sensation associated with moving through the environment.  

The Spheres activity intends for students to describe how a lattice of spheres hindered or 
modified their movement within the haptic environment. During the interviews with both 
elementary and undergraduate students, movements across, and within the lattice were described 
as bumpy 20 times. Again, these “bumpy” descriptions pertain to student reactions to sensations 
caused by their movement through the environment. 

Evaluative aesthetics differs from the descriptive brand, because students make affective 
statements rather than just talking about the forms of their sensual experiences. For example, in 
the Break Through activity, when one student pushed against the barrier he described it as 
“weird”. When further evaluating the experience he said, “it feels like rubbing on rubber…it’s 
weird.” Some elementary school students exploring the spheres in the Spheres activity began to 
associate the colors of the spheres with how “hard” they felt. Interestingly, however, the stiffness 
of the spheres in the activity was identical. In the Bumped activity, one group of students 
indicated that the impact from the moving obstacle was emotionally affective. The students said 
that the unexpected impacts became “scary”, because the sphere “just jumps out of nowhere”. 
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In addition to the verbal reactions pertaining to an activity’s aesthetics, students in our 
interviews also expressed their sensual reactions through gesturing. The Bumped activity 
provided a number of gestural reactions, mainly because it was the only activity offering objects 
that were out of the students’ control. In each of our other activities, students were the initiators 
and producers of sensation on objects in the haptic environment. However, the students could not 
control the moving obstacle in Bumped. Therefore, students would make gestures to either avoid 
coming into contact with the obstacle, or seek out contact with it. This type of gesturing occurred 
when the obstacle was both invisible and visible. 

In one interview, a student named Catie discovers that there is a different haptic sensation 
that results from pulling the device close to her body, rather than towards the base of the device. 
When the next student, David, begins using the device, Catie gets the attention of David and 
makes a gesture, pulling her arm towards her body, in an effort to show David the difference. 
While Catie makes the gesture, David mimics it, presumably in an attempt to achieve the same 
sensation as Catie.  

One student, while moving through the Bumped activity used a gesture to test if they were 
causing the impacts or if the impacts were independent of their movement. While the student, 
Ethan, was moving the haptic device he noticed the device providing force-feedback. Ethan 
claims that he is not the source of the feedback, saying the device is “doing it on its own.” 
Another student, Fred, questions Ethan by saying, “how do we know you’re not touching it.” In 
response, Ethan rests the haptic stylus in the palm of his hand, looks at Fred, and says, “see, I’m 
not doing it!” Fred appears to be satisfied with the evidence. This episode is quite significant 
because it illustrates a gesture powerful enough to convince another student that the sensation 
felt by Ethan was not caused by Ethan’s movements. 

Developing a way of measuring and calibrating visual and physical spaces 
In some cases, fifth-grade students compared the regular structure of the lattice of spheres 

within the Spheres activity to familiar objects with regular structure. Students most often 
described the spheres as discrete objects, such as “bumps” or “rocks.” As they explored, students 
also characterized the arrangement of the objects in space, starting with horizontal structure and 
then adding in a vertical component. One group offered, “it feels like you’re going over bump 
after bump,” noting repetition left to right. They later decided “it feels like stairs because it’s 
going higher and higher,” adding in the vertical. In this group, “stairs” became an accepted 
description adopted among the students and repeated: “like going down stairs,” “like rocks piled 
up as stairs.” Another group, that followed a similar pattern of describing horizontal and vertical 
structure, was more systematic in their investigations and specific in describing how the 
horizontal and vertical structure interrelated. Moving from left to right, a student sought to 
describe the repetition additively: “If I move one over, there's one more, and one more over 
there. Once you go over here, there's no more.” This group also explored the vertical pattern in 
conjunction with the horizontal, using stairs as a way to describe change in two dimensions: 
“Every time I move down there's something stopping, and up, and sideways, kinda. […] As you 
go up, it stops, up, stop. [...] It’s kinda like stairs, you stop it goes down, stop it goes down.” This 
group also adopted “stairs” as one shared way to describe one aspect of the structure of the 
matrix. 

The use of stairs to relate vertical and horizontal structure appeared during the non-visual 
portion of the Spheres activity. Once the students were shown the sphere lattice, one face of this 
three dimensional lattice was immediately revealed to them. The nature of flat computer 
monitors meant that the depth of the 3D model was obscured by the front of the lattice. But, 
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students still noticed the depth in their explorations with the haptic stylus and in the visuals. In 
one third-grade group, Doug, Ellen and Fiona wondered aloud about the structure of this 
simulation in the depth dimension. By counting the visible spheres and using multiplication, 
Fiona decided that a face had 35 spheres (the proximity of the virtual camera to the lattice meant 
that some of the spheres were out of the field of view, and students counted a 5 x 7 lattice in the 
front face). As Ellen began to count the spheres by tapping them with the haptic stylus, Doug and 
Ellen agreed that the front face was not the entirety of the lattice. “35 is just the top.” They 
sought a way to complete the count in the depth dimension, which was more difficult to see on 
the screen. Ellen said, “You can't tell how many there are down, so you can't tell how many there 
are.” She went on to elaborate as she explored in the depth dimension: “If you, like, move it 
farther away and closer to the machine you can kind of feel the ones on the bottom, but not 
really.” The laptop screen was tilted away from her, and her descriptions appear to associate 
“down” with depth. As she continued to probe, they discussed how one might arrive at a full 
count of the spheres. “You would do 37, I mean 35 times how many there is down.” While Doug 
attempted to tell how many there were based on the shadows of the spheres in the display, Ellen 
began counting aloud. As she moved the stylus closer, and then farther away from herself she 
counted: “One, two, three, four...” When asked whether she was counting the spheres on the 
laptop screen, she said, “No. Feeling them.” It appeared that the desire to get a full count of the 
lattice and the difficulty of getting accurate visual confirmation led Ellen to count by feeling 
variation along one specific dimension. Communication among the students and the researchers 
during this activity involved both expressive word use and gesture, as Ellen used deliberate and 
exaggerated poking motions to illustrate her count while we all attended to her efforts. 

Discussion 
 From the findings that relate the expectations of each activity and students’ expressive 
discourse, we formulated a set of haptic design principles. For example, activities that provide 
resistance in the form of a breakable wall (i.e. resistance against moving then, after a certain 
level of force is exerted, no resistance) are described by students as containing stoppages, 
“getting stuck” and preventing them from “going where you want”.  We also discovered that 
students were able to discriminate varying levels of viscosity, when the viscosity change is 
preceded by a breaking point.  

No visuals in an activity often led to students exploring positions within the haptic 
environment where they posited haptic sensations would occur. Student discourse also indicated 
that haptic sensations could incite affective statements. For example, when students encountered 
an object moving along a track, the frequency of impact led to unsettled emotions (e.g. “creepy”, 
“scared”, “losing control”).  

The analysis also led to the identification of distracters in the activities, defined as any 
element of an activity (i.e. visual or haptic) that distracts the user from the design intentions of 
the activity. For example, in the Falling Off activity, students were more focused on the visible, 
squiggly lines on the surface instead of exploring the feeling of moving off the surface. Further, 
we found that students who worked within haptic activities more than once were engaged (i.e. 
attentive to the interview questions and activity tasks) throughout the 25-30 minute interview. In 
fact, some students were more active as their interaction with the haptic environment increased.  

In creating haptic principles and identifying distracters, we have now discovered a set of 
haptic experiences that have been shown to be successful in eliciting certain student discourse. 
Using this knowledge, we are designing more mathematical haptic activities, in preparation for a 
main study during the spring of 2011.  
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Students' expressive discourse was particularly rich in their reaction to sensual experiences 
and use of metaphors. Students' genuine participation in the experience was reflected in their 
gestures and utterances of surprise, excitement, shock, etc. which provided a natural context in 
which they developed and tested self-generated hypotheses. The instances in which students 
shifted their everyday metaphors to scholastic (mathematical/scientific) ones made us wonder the 
characteristics of the contexts in which they moved between the informal and formal discourse 
during their experiences. Since our future goal is to use the haptics environment to develop and 
implement mathematical activities, adding a fourth category to our initial classification of 
expressive discourse seems necessary. The fourth category would mainly focus on how, and 
under what conditions, students move back and forth between everyday words to the more 
technical/formal, mathematical words. We are also interested in how students cope with the 
notions of variance and invariance as well as continuity and discreteness as they conjecture about 
mathematics through their haptic experiences in physical environments.  

In summary, a new set of design principles emerged from our analysis of expressive 
discourse as we take steps towards making the haptics experience mathematically relevant and 
significant. We believe that students' self-motivated hypothesizing/theorizing through interaction 
with peers, as reflected by their discourse in our preliminary study, is crucial for mathematics 
learning. The haptics environment presents many opportunities to contribute to the teaching and 
learning of mathematics.   
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This paper reports on a mixed methods study of 111 AP calculus students’ self-reports of their 
graphing calculator use, comfort, and rationale when choosing between mathematical solutions 
produced with and without a graphing calculator.  
 

Graphing calculators have taken on an important role in learning mathematics, especially at 
the secondary level (Dion et al., 2001). Graphing calculators have been reported to have been 
used by over 80% of U.S. high school mathematics teachers and are currently allowed on more 
than 70% of the U.S. state’s mandated standardized tests (Texas Instruments, 2010; Weiss, 
Banilower, & Smith, 2001). In addition, they are allowed on 100% of college entrance exams 
and AP calculus, statistics, physics, and chemistry exams (College Board, 2010). One way in 
which a graphing calculator is often promoted in the classroom is as a tool for checking or 
verifying work done by hand (e.g., Doerr & Zangor, 2000; Harskamp, Suhre, & van Streun, 
2000; Hennesey, Fung, & Scanlon, 2001; McCulloch, 2005; 2009; Quesada & Maxwell, 1994). 
The fact that students use the tool to check their work is not surprising. However, the literature 
has not considered the benefits and constraints for students when using the tool in this way. In 
this paper we report on a mixed methods study of 111 high school Advanced Placement (AP) 
calculus students’ uses of graphing calculators to check their work and their methods for 
reconciling any differences between solutions found by hand and with the technology.  

Background 
Graphing Calculator as a Checking Tool  

Doerr and Zangor (2000) investigated the ways in which students use graphing calculators to 
support mathematical learning. They found that the graphing calculator was often used as a 
checking tool “when it was used to check conjectures made by students as they engaged with the 
problem investigations” (p. 156). Quesada and Maxwell (1994) used open-ended questions to 
analyze students’ thoughts on the positive and negative aspects of the graphing calculator. They 
found that a majority of students felt that the ability of the graphing calculator to check answers 
was a positive aspect of the tool. From additional interviews with students, the researchers found,  

The statement ‘the ability to check their answers’ was interpreted by some to mean not only 
the capability of confirming graphically or numerically the answers obtained algebraically, 
but also the ability (new for many of them) of thinking graphically about problems before 
trying to solve them algebraically” (Quesada & Maxwell, 1994, p. 213).   
Other researchers have observed the promotion and use of the graphing calculator as a 

checking or verification tool in the classroom (e.g. Berry, Graham, & Smith, 2006; Doerr & 
Zangor, 2000; McCulloch, 2009), and researchers have seen that the use of the tool in this way 
can be important for creating an understanding of graphing (Hennesey, Fung, and Scanlon, 
2001), and for allowing students to support their analytical work with graphs and tables (e.g. 
Waits & Demana, 1994). Researchers have not yet, however, clearly determined why a student 
chooses to use the tool to check (Berry et al., 2006).  
Confidence and the Graphing Calculator 

Many students recognize the effectiveness of the calculator for confirming or checking the 
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reasonableness of answers, but they struggle when answers obtained on the graphing calculator 
do not match their own expectations or work they have done on paper (Kenney, 2008; 
McCulloch, 2005; 2009). This relates to a level of confidence that students have both for their 
own work and for the graphing calculator as an effective tool in problem solving. Many 
researchers have been able to find improvements in assessment scores when students use 
graphing calculators (e.g., Ellington, 2003), and some have suggested that a possible reason for 
such improvements is that students are more comfortable or confident when they have a graphing 
calculator to use (Dunham, 2000).  However, it seems that even when students feel that graphing 
calculators are useful, they may often lack confidence in the calculator’s ability to help them in 
problem solving (Graham, Headlam, Honey, Sharp, & Smith, 2003) and may put more trust in 
their own work than in the calculator.  In other cases, students’ confidence in their mathematical 
ability contributes to a lack of perceived need for verification with the graphing calculator 
(Mesa, n.d.) 

On the other hand, there is concern that students can become over-confident in the graphing 
calculator, using the device as a “black box” and blindly accepting calculator output (Doerr & 
Zangor, 2000; Forster & Taylor, 2000). Doerr and Zangor (2000) explain that this occurs when 
learners depend on calculators to produce answers without attending to the meaning, purpose, or 
interpretations of the problem situation. They found that this “black box” use results when 
neither the student nor the teacher provides meaningful strategies for calculator use. Similarly, 
Goos, Galbraith, Renshaw, and Geiger (2003) suggest the calculator can take on the role of  
“master” for the user and that students can become overly dependent on the tool when “lack of 
mathematical understanding prevents them from evaluating the accuracy of the output generated 
by the calculator” (p. 78). When used in these ways, the graphing calculator can become a source 
of mathematical authority for the user (Williams, 1993; Wilson & Krapfl, 1994) and be over-
used to the point that students rely on the calculator with little critical analysis of the results 
(Burrill et al., 2002).  

Research has not yet looked in detail at the level of confidence that students have for their 
own work or for the graphing calculator itself when using the tool in problem solving.  In this 
study, we focus on this issue by examining where students place their trust when conflicts arise 
in problem solving with a graphing calculator. In this study, we address the research questions: 
What do students say they do when a solution produced without technology does not match one 
produced with technology? How do they say they reconcile this situation?   

 
Methods 

Data Sources 
Advanced Placement (AP) Calculus classes were chosen as the focus for this study because 

the curriculum and expectation of calculator use is relatively consistent nationwide as it is set by 
The College Board. To ensure that the population of students was as diverse as possible, this 
study was set in four high schools in the northeastern United States. High School A is located in 
a low-income urban community, High School B serves students from both suburban and rural 
communities, High School C serves students in an affluent suburban community, and High 
School D serves students in a middle class suburban community. All four of these schools 
provide their AP Calculus students with a graphing calculator to use at home and at school.  High 
Schools A, B, and D provided their students with a TI-83+, while High School C provides the 
TI-89 (which has Computer Algebra System (CAS) capabilities).  For the purposes of this study, 
the term graphing calculator refers to both calculators.   
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All of the students at these four schools (n = 111; 49 female; 62 male) completed a survey 
instrument designed (based on pilot studies) to identify the ways that they typically use a 
graphing calculator, both in and out of the classroom, and their comfort in doing so.  In 
particular, the survey provided data on student demographics, mathematical achievement as 
determined by their math teacher, frequency of graphing calculator use and comfort with the 
tool. In addition, an open ended item was included that read:   

Imagine the following situation:  You solved a problem on your own and then used your 
graphing calculator to check your solution.  The calculator gave you a different solution 
than the one you got when you worked the problem on your own.  Which answer do you 
trust?  Why? 

All 111 respondents provided answers to this question on the survey, in many cases surprising 
the researchers with the amount of detail included in their responses. The responses to this open-
ended item are the focus of this paper. 

Data Analysis 
All categorical data from the survey instrument were entered into an Excel file and each 

written response to the open-ended item above was first coded for solution chosen in the 
reconciliation process (i.e. graphing calculator (GC), non-graphing calculator (non-GC), or 
neither).  We then examined all possible associations between descriptive student characteristics 
and solution chosen.  Since the descriptive data were categorical in nature, a chi-squared test for 
association was used. Associations were examined between solution choice and each of gender, 
teacher, teacher-rated mathematics ability, and student-reported comfort using a graphing 
calculator.  Next, we analyzed the written responses to the open-ended item using a thematic 
content analysis process (Coffey & Atkinson, 1996).  After coding each response based on the 
solution ultimately chosen in the reconciliation process, we examined students’ written responses 
for emerging themes within each solution group. This resulted in the development of a codebook 
with 12 data-driven codes. The codes that emerged within each group of solution choices (GC, 
non-GC and neither) directly corresponded with each other, regardless of the ultimate solution 
choice, and fell into four larger categories. Our resulting list of these four categories appears in 
Table 1 below. It is important to note that the assignment of codes to student responses were not 
discrete.  For example, the response “If I’m not sure, the calculator. If I’m sure, my answer. I 
probably plugged something wrong into the calc,” was coded as both confidence in math ability 
and careless errors. In the next section, we provide further details and interpretations for the 
coding results.   
  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

622



 

Table 1 
Categories for rationale of solution choice 
Category Definition 
Careless errors Student notes that “careless errors” (either 

arithmetic or syntactical) are possibly the cause of 
any discrepancies between GC and non-GC 
solutions.  

Check work Student notes that either the GC or non-GC (or 
both) solution(s) must be checked for small errors 
and, barring any small errors, ultimately accepted.  

Recognition of GC affordances and 
limitations 

Student notes either affordances or limitations of 
the GC in their reasons for accepting or rejecting a 
GC solution.  

Confidence in math ability Student notes acceptance or rejection of a GC 
solution is based on confidence (or lack there of) 
in own math ability.  

 
Given the situation posed in the item, that of having to 

reconcile a GC produced solution with a different non-GC 
produced solution, 60 out of 111 students (54%) wrote that 
they would ultimately choose a GC produced solution, 39 
(35%) said they would choose their own work (non-GC 
produced solution), and 12 (11%) did not make a definitive 
choice between the two (Figure 1). No associations were 
found between the solution choice and gender 

 

("2(2,N =111) = 2.649, p = .266) , teacher 

 

("2(6,N =111) = 8.231, p = .222) , teacher rated 
mathematics ability

 

("2(4,N =11) = 2.603, p = .626) , or 
student reported comfort using a graphing calculator

 

("2(4,N =111) = 4.051, p = .399). The most 
commonly provided explanations for deciding what to trust, regardless of solution choice, were 
students’ concerns about making careless errors (n = 58, 52%) and students’ suggestions that 
they would check their work before choosing which solution they trust (n = 43, 38%).  A 
summary of the frequency of codes within each solution category appears in Table 2 below. 

Table 2   
Code frequency in each solution preference category 
     GC solution Non-GC 

solution 
Neither Total 

Careless errors 36 18 4 58 
Check work 22 14 7 43 
Recognition of GC 
affordances and limitations 

13 6 1 20 

Confidence in math ability 5 6 1 12 
Note: Codes are not discrete 
 

The following sections report a more detailed look at these findings. We have sorted the 

Figure 1: Student solution choices 
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findings by the three choices made by students –  GC solution, non-GC calculator solution, and 
neither – and include at least two examples of students’ statements as they relate to the categories 
of rational identified. 

Trust the Graphing Calculator Solution  
Careless Errors 

As noted above, 54% of the students responded that they would choose a GC produced 
solution over a non-GC produced one. More than half of these students’ reasoned that they 
would choose the GC solution because it is easy to make careless errors when working by hand. 
The following statements by students in this category exemplify their responses: 

! “I would trust the calculator because it is easy to make a careless mistake in 
computation when without a calculator and the numbers are large.” 

! “The calculator as long as I am entering it correctly because I have a greater margin 
of error than does the calculator.” 

! “I trust the calculator because of human error.” 
Students not only recognized that careless errors by hand were likely, but some (n = 6) also noted 
that they would use the situation to help identify their errors (e.g. “I would trust the calculator 
because everyone makes mistakes, so I would use that proposed answer and work back and see 
my mistake and fix it”). On the other extreme, a few students noted that they trust their calculator 
solutions so much that they would change their written work to match it. For example, one 
student wrote, “Calculator. I am a very confident calculator user. I’d try to change my work to 
match the calculator answer.” 
Check Work 

Not all of the students automatically identified the GC solution as the one they would trust. 
Sixteen students noted that they would first check their work, both written and GC produced, 
before choosing the GC solution. The following responses are examples of this: 

! “I would double check my work and also how I entered the problem into the 
calculator. If they still don’t match, I would trust the calculator’s answer.” 

! “Well I would actually make sure I plugged in everything correctly into the 
calculator. If that was right, then I would doubt my own solution. So I’d trust the 
calculator answer.” 

Although these responses might imply a similar feeling to those in the careless error category, we 
see these students’ willingness to check all work first as demonstrating more than just blind trust 
in the technology.  
Recognition of GC Affordances  

Justification for choosing a GC produced solution was also attributed to a belief in the 
infallibility of the GC by 13 students. This reasoning was evident in responses such as: 

! “Calculator – we can make math errors but the calculator doesn’t.” 
! “Unlike humans, calculators don’t make computational mistakes for no apparent 

reason.”   
! “Calculator.  The only possible error made by a calculator occurs when a wrong 

number, equation, etc. is entered.  Room for error on the calculator is restricted.” 
We have identified this reasoning under the broader category of limitations and affordances of 
the graphing calculator due to students’ beliefs that one of the affordances of the calculator is 
that it does not make errors.  
Confidence in Math Ability 

Five of the 60 students reported that they trusted the GC due to a lack of confidence in their 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

624



 

own mathematics abilities. For example, students answered:  
! “Calculator, I have no confidence in my math abilities. 
! “I would trust the calculator because I am usually wrong and I have had success in the 

past with trusting the calculator.” 
! “The calculator.  It is better at algebra than me.” 

Interestingly, only one of the students in this category was rated as a relatively lower ability 
student by the teacher, one other was rated average, and the other three were considered to be 
among the strong students according to the teacher.  Thus, student responses show a disconnect 
between their confidence in their ability to do mathematics and their actual performance in class.  

Trust the Non-Graphing Calculator Solution 
Careless Errors 

Thirty-five percent of the calculus students reported that they would choose a non-GC 
produced solution in the situation that it did not match a GC produced one. Like those that chose 
GC produced solutions, many in the non-GC category also considered the possibility of careless 
errors when making their decisions (n=17).  The difference, however, was that these students 
were not as concerned about errors in their written work as they were about errors they may 
make pressing the calculator buttons.  For example, students suggested: 

! “I probably entered it incorrectly on the calculator. I’d try to punch it in again.” 
! “My own answer is probably right; I have finger-calculator problems. Usually the 

reason for the disparity between my value and the calculator value is the lack of 
parentheses or wrong decimal place.” 

Unlike the GC choosers, none of these non-GC students who used the careless error reasoning 
suggested using the situation to help identify their errors. They were not as concerned with 
determining how to get the correct solution on the calculator if they trusted the work they had 
done by hand.  
Check Work 

Thirteen of the non-GC choosers responded that they would trust their non-GC produced 
solution after checking their work for mistakes. For example, students stated:  

! “I’ll check my work again and if I didn’t do anything wrong then I’ll trust my work.” 
! “I would double check my work, and then use my answer because I could have easily 

input something wrong in the calculator.”  
As with the GC group, these students were not willing to blindly accept one answer over the 
other, but did demonstrate more confidence in their own work.  Many of the reasons in both this 
and the careless error category were related primarily to students’ personal experiences, as 
evidenced by their discussions of what they “often,” “easily,” or “usually” do.  
Recognition of GC Affordances  

Like the GC choosers, non-GC solution choosers noted confidence in their mathematical 
abilities or their beliefs about the affordances or constraints of the GC in their justifications. 
However, unlike the GC produced solution choosers, these students placed the authority in the 
situation with themselves. For example, six responses for the non-GC choosers focused on the 
limitations of the GC as a reason for not trusting its solution. Students shared:  

! “I trust the answer I would have gotten on my own. The calculator does not show all 
the steps and it is easy to make mistakes when putting information into the 
calculator.”  

! “I trust my own, sometimes the graphing calculator comes up with weird answers 
using trig functions or does not find the right answer.” 
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! “I would trust myself because the calculator tends to make mistakes sometimes in 
graphing when the equation isn’t entered properly.”  

It is interesting to note in the last two examples that students place the blame for mistakes on the 
calculator, when in fact mistakes may be a result of their own careless errors. We placed them in 
this category, however, based on the students perceptions of the tool, not our own.  
Confidence in Math Ability 

Six students noted their confidence in their mathematical abilities (rather than their lack of 
confidence) as their reasons for trusting the non-GC solution. Responses included:  

! “As long as I am confident with the answer I got, and was not very unsure with it in 
the first place, then I would trust my own answer not the calculator’s.”   

! “Myself, because I am able to do the problem on my own, I wouldn’t even need to 
use the calculator.” 

It is important to note that none of the students who noted confidence in their mathematical 
abilities as justification for choosing a non-GC produced solution were considered by their 
teacher to be among the highest ability students as compared to their peers.  

Trust neither solution 
 Twelve of the 111 students that participated in the study did not make a definitive choice 
between either the GC or non-GC produced solutions. The responses of these students indicate 
that they do not necessarily value or rely on one solution over the other. Instead, they all noted 
the importance of rechecking their work, on both the GC and paper, to identify errors and to 
understand why the solutions differed. For example,  

! “I recheck the calculator first and then my own answer. I check both and trust 
neither.” 

! “I don’t trust either until I figure out where the mistake is. I either made a mistake 
with the math or I typed something into the calculator wrong. When the answers 
match, I trust the answer.”   

Again, these students appear to be considering the same things as the GC and non-GC choosers 
(i.e. checking their work and the possibility of careless errors on paper and in button pushing), 
however they place equal value with each method. Most importantly, they do not exhibit blind 
trust in either solution method. However, the responses do suggest that, as long as the two 
solutions do match, students would feel confident with the answer.  
 

Discussion 
Our findings in this study show that, whether they would choose the GC or non-GC solution 

when a conflict in answers arises, students are considering similar factors: 
! The possibility of careless errors 
! The importance of checking their work  
! The constraints and/or affordances of the graphing calculator 
! Confidence in their mathematical abilities  
More than half of the students chose the GC solution over the non-GC produced solution. 

Many of the students’ reasons for doing so were attributed to lack of confidence in their 
mathematical ability or to an over confidence in the infallibility of the GC. This finding is 
consistent with Goos et al. (2003) who found that students sometimes develop relationships with 
graphing calculators in which the graphing calculator is viewed as the “master”. This suggests 
that it is truly important for teachers to be aware of the issue of mathematical authority. The 
students surveyed here are high school calculus students – often the best and brightest at their 
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schools – and we find that more than half of them are handing the authority in a mathematical 
situation to the tool over themselves. This raises concerns for the results we might find with a 
group of less strong students.  

On the other hand, the large number of students that noted they would choose the GC 
because they are concerned about making careless errors in their written work gives credence to 
the literature that has suggested that students attitudes towards mathematics increases when GC’s 
are available because having the tool increases their levels of confidence (e.g. Dunham, 2000). If 
having a GC available can decrease students’ concerns about the occurrence of careless errors, it 
is possible that students may spend less time worrying about small mistakes and more time 
focusing on thinking deeply about the mathematics.   

It is promising to see that more than half of the students, regardless of solution choice, noted 
the need to check their work. This suggests that these students are thinking critically about what 
might have caused the difference in answers, rather than just accepting one as true. On the other 
hand, it is possible that those students who did not mention checking might have assumed that 
the situation was placed in a testing situation, one in which they may have assumed they would 
not have time to go back and check their work and would thus be forced to choose a solution and 
move on. Such interpretations should be examined more carefully in future studies.   

In conclusion, given the prevalence of graphing calculator use in U.S. high school classrooms 
and standardized tests, these tools are likely going to be a mainstay in school mathematics for 
quite some time (Weiss, Banilower, & Smith, 2001; Texas Instruments, 2010; College Board, 
2010). The results of this study suggest that while such promotion may be beneficial, it needs to 
be handled carefully so that students do not blindly place mathematical authority with the tool 
when reconciling differing solutions.  To build a better understanding of these phenomena, 
further research is needed on how graphing calculator use and decision making is being 
promoted by teachers as well as how students perceive this promotion.  In addition, it is 
important to investigate if these results hold true for other technology tools such as computer 
algebra systems, spreadsheets, and dynamic geometry systems.   
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This study characterized and compared the arguments eighth grade mathematics students 
created while working in technological and non-technological environments. Toulmin’s 
(1958/2003) argumentation model was used to analyze the content and structure of the 
arguments, including the ways in which the students used the tools (technological and non-
technological). Students in both classes were less likely to make their reasoning explicit when 
using tools, technological or non-technological, which may be related to the task on which the 
students were working and the use of the tools as a visual referent. 

Background 
The development of mathematical reasoning and understanding are culturally mediated, 

through language and through the use of tools (Lave & Wenger, 1991; Vygotsky, 1978). From 
this socio-cultural perspective, there is a strong connection between students’ uses of tools and 
their learning because tools are the instruments of access to the knowledge, activities, and 
practices of a classroom community (Lave & Wenger, 1991). Productive activity with the tools 
and the understanding of them are not separate. Verillon and Rabardel (1995) indicate that tools 
do not exist as tools until the user is able “to appropriate it for himself and has integrated it with 
his activity” (p. 84). The use of tools and understanding their significance interact to become a 
single learning process. 

In mathematics classrooms, tools are frequently used. Traditional tools such as compass, 
straight-edge, ruler, and scale have been used for thousands of years to explore, conjecture, and 
make meaning of mathematics, especially geometry. With the advent of the microprocessor, 
technology tools have become more prevalently used in the mathematics classroom. One type of 
technology tool that has become popular in the teaching and learning of geometry are dynamic 
geometry environments (DGEs), such as The Geometer’s Sketchpad (Jackiw, 2001). Many 
teachers, researchers, and professional organizations have suggested the use of dynamic 
geometry environments to teach geometry (e.g. NCTM, 2000).  

The use of tools is an important aspect of participating in a community of practice. Similarly, 
the use of language plays an important role for an individual to participate in the community. 
Although it is important for individuals to learn from the discussions of other members of the 
community, it is even more important to learn how to speak in the community of practice (Lave 
& Wenger, 1991). The affordances of the tools dictate the understandings that one can construct 
within the community and, in turn, the understandings that can be developed by the classroom 
community. Thus, the discourse of the classroom, which includes argumentation, is based, in 
part, on the use of tools. As technological tools become more prevalently used in the classroom, 
in what ways does the content and structure of the arguments students create differ when using 
technological and non-technological tools? The purpose of this study is to describe the 
arguments created by students enrolled in two eighth grade mathematics classes, one in which 
the students regularly use a DGE and one in which the students use non-technological tools, and 
compare the content and structure of the arguments created by pairs of students in each class.  
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One model that has been used by several researchers (e.g., Hollebrands, Conner, & Smith, 
2010; Lavy, 2006; Stephan & Rasmussen, 2002) in mathematics education to examine students’ 
mathematical arguments is Toulmin’s model of argumentation (Toulmin, 1958/2003). Toulmin 
decomposed an argument into six components: claim (the conclusion whose validity is being 
established), data (the facts being appealed to as the foundation of the claim), warrant (the link 
between the data and the claim), backing (circumstances in which the warrant would otherwise 
be invalid), qualifier (confers the strength of the warrant), and rebuttal (circumstances in which 
the warrant does not hold). Figure 1 shows how these six components (data, claim, warrant, 
backing, qualifier, and rebuttal) fit together. Data is provided or constructed and “so” a claim is 
made based on this data. This claim can be made based on this data “since” the warrant. The 
warrant is relevant “on account” of the backing. The claim is valid “unless” the rebuttal occurs. 

 
Figure 1. Toulmin’s (1958/2003) Model of Argumentation 

Methods 
For this study, two classes of eighth grade students were selected to participate in a two-week 

classroom teaching-experiment on triangles taught by the author. I conducted the study with 
students of varying ethnicities and socio-economic status at an urban public middle school in the 
southeast United States. For one of the classes, technology played an integral role. Students used 
a dynamic geometry environment, The Geometer’s Sketchpad (Jackiw, 2001), to explore and 
investigate geometric concepts. The majority of the tasks developed for this unit utilized this 
technology. For the other class, the students used traditional mathematical tools such as scissors, 
rulers, compasses, protractors, and snap-cubes. For both classes, the tools provided students with 
a means to reason and develop new understandings about the geometry concepts. In order to 
minimize the amount of variation between the two classes, the selection and sequence of tasks 
for each class were similar. Furthermore, the design and implementation of the majority of the 
tasks and activities for both classes were similar in nature with the major difference being the 
tools available to the students. In some instances, the tasks differed to capitalize on the 
affordances of the tools.  

During the study, the students in both classes were placed in pairs. By having the students 
work in pairs, the students were given the opportunity to have discussions with their partners 
while working on the tasks. These discussions were the primary focus of the study’s analysis. I 
chose to use pairs rather than larger groups to maximize the opportunities for students to interact 
with the mathematical task while still having peer-to-peer discourse. Four pairs from each class 
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were purposefully selected to be the focus of the data collection and three pairs were selected for 
analysis based on the students’ attendance. To select the pairings, I asked the regular classroom 
teacher to identify students that would be willing to verbalize their thinking and work well 
together. The pairs of students used in the analysis from the technology class were Amy and 
Judy; David and Erica; and, Heather and Mary1. The pairs of students from the non-technology 
class were Andy and Frank, Bob and Ellen; and, Clair and Jim1. 

Data collection consisted of: video and audio recordings of the two classes both small group 
and whole class discussions; video-recordings of the computer screen to capture the students’ 
uses of technology; and, artifacts which include copies of students’ written work including in-
class work, homework, quizzes, and exams. Of each class’s eight class meetings, the researcher 
only analyzed the small group and whole-class discussion for three tasks, although results from 
the analysis of one task, the triangle inequality, will be presented in this paper. I transcribed the 
video recordings of the whole class discussions and small group discussions. From these 
transcriptions, reasoning episodes were established by identifying claims. I then created a 
description of the argumentation episodes for that claim which included the participants’ words 
(from the transcripts) and actions including the students’ uses of the mathematical tools. Then, I 
diagrammed the argument according to the model developed by Toulmin (1958/2003) including 
each of the six constructs, data, claim, warrant, backing, qualifier, and rebuttal. For a given 
argument, some of these components were not specified and I had to make some inferences. In 
these cases, I noted these inferences and attributed them to a student, the teacher, or a 
combination of students and/or teacher. In the diagrams, I used a box to outline each of the 
spoken or known constructs. If I made an inference, I used a “cloud” to note the inference in the 
diagram. 

Results 
The results reported in this paper are based on data taken from tasks in which the 

instructional goal was for the students to develop an understanding of the triangle inequality 
theorem. The students in the technology class used a pre-constructed sketch to explore whether 
given sets of segments would form a triangle. The sketch allowed the students to adjust the 
lengths of the segments using sliders and to drag the segments without changing their lengths. 
The students in the non-technology class completed the same task using snap-cubes and rulers. 
While working on the triangle inequality tasks, the three pairs of students from both classes 
created arguments of various structures and contents. Three themes emerge in the comparison of 
the content and structure of arguments: the difference in the number of arguments between the 
two classes and the frequency in the use of the technology/tools; the explicitness of the warrants 
and the use of technology/tools; and, the content of the additional data. 

The Number of Arguments and the Frequency in the Use of Technology/Tools.  
The first theme to emerge in the analysis of the arguments is the difference in the number of 

arguments created by the pairs of students in each class. The pairs of students working in the 
technological environment created 75 arguments. In comparison, the pairs of students working in 
the non-technological environment created 56 arguments. This difference is even greater 
considering the students in the non-technology class had twenty additional minutes of class time 
to create arguments when they were asked to compare their answers to exercises on the 
homework with their partners. Removing these arguments, the students in the non-technological 
class only created 44 arguments. In addition to the discrepancy in the number of arguments, there 
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was also a difference in the proportion of arguments in which the students used the 
technology/tools. 

While working on the triangle inequality task, the pairs of students in the technology class 
employed the technology in 59 (79%) of their arguments. The pairs of students in the non-
technology class created 19 (34%) arguments in which they used the tools. The higher proportion 
of arguments in which the pairs of students employed technology is most likely due to its use 
during the opening activity. During this activity, the teacher did not intend for the students to use 
the technology. However, the students requested to use it to assist them in solving the problems. 
The students in the non-technology class did not request to use the snap-cubes during a similar 
opening activity. At times, the pairs of students in the non-technology class used a ruler to make 
a sketch, but this was infrequent. Perhaps, the students in the technology class viewed the 
technology as a tool that can assist them in solving problems. The students in the non-technology 
class may not have viewed the snap-cubes in this manner. Rather, the students may have seen the 
snap-cubes as a means to create data to make a generalization, but not to solve problems. 

The Explicitness of the Warrants and the Use of Technology/Tools 
Although the pairs of students in the technology class created more arguments, the content 

and structure of the arguments in relation to the use of tools, both technological and non-
technological, were similar for both classes. When working on the triangle inequality tasks, the 
pairs of students in both classes were more likely to provide an explicit warrant when not 
actively using the technology/tools than when the pairs of students created an argument using the 
technology/tool.  
 
Arguments created by the pairs of students working in the technological environment. Of the 59 
arguments in which the pairs of students in the technology class employed technology, they only 
provided an explicit warrant for 6 (10%) of these arguments. Of the 16 arguments in which 
technology was not actively employed, the pairs of students provided an explicit warrant for 12 
(75%) of these arguments. The explicitness of the warrants may be related to the type of tasks on 
which the students were working. In general, when the students were using the technology, they 
were merely attempting to determine whether a triangle could be formed with a set of segments. 
For example, Judy and Amy attempted to determine whether a triangle could be formed with 
segments of lengths 3, 4, and 4. Amy adjusted the sliders accordingly and dragged the endpoints 
of the diagram to form a triangle. Judy claimed that a triangle can be formed by stating, 
“Possible” and Amy agreed by stating, “Yep.” This argument is illustrated in Figure 2a. 
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Figure 2. Arguments in which (a) students use technology and provide an implicit 

warrant and (b) students do not use technology and provide an explicit warrant 

However, when the pairs of students were not actively using technology, the students were 
mainly working on generalization type tasks. For example, one of the arguments common to all 
pairs of students in structure was in response to the question on the task sheet, “Why was it 
impossible to construct a triangle with some of the given lengths?” One student, Erica, stated, 
“One’s [segment] too long or too short.” This argument is illustrated in Figure 2b. The question 
asked the students to generalize across the examples. The data used by the pairs of students to 
support their claims were their answers to the examples sets of segments on their task sheet. To 
gather this data, the students used technology. However, when responding to this question, the 
data had been previously collected and their reasoning was not based on their active use of 
technology, but on the product of their previous uses. 
 
Arguments created by the pairs of students working in the non-technological environment. The 
arguments created by the pairs of students in the non-technology class were similar in content 
and structure with regards to the use of the non-technological tools and the explicitness of the 
warrant. Of the 19 arguments in which the pairs of students used the tools, they only provided an 
explicit warrant for 1 (5%) of these arguments. Of the 37 arguments in which tools were not 
actively employed, the pairs of students provided an explicit warrant for 30 (81%) of these 
arguments. 

Similar to the pairs of students in the technology class, when the pairs of students were using 
the tools, they were attempting to determine whether a triangle could be formed. In these 
arguments, the data were the lengths of the segments; the arranging of the snap-cube segments; 
and, the appearance of the figures the students formed using the snap-cube segments. In one 
argumentation episode, Clair and Jim were determining whether a triangle could be formed with 
segments of length 3, 4, and 4. Clair arranged the snap-cube segments and was able to form a 
triangle. Jim said, “Possible.” Clair agreed saying, “Yep.” This argument is illustrated in Figure 
3a. 
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Figure 3. Arguments in which (a) students use non-technological tools and provide an 
implicit warrant and (b) students do not use tools and provide an explicit warrant 

When not actively using the tools in the creation of their arguments, the pairs of students 
were generally working on generalization tasks and the majority of their warrants were explicit. 
However, the pairs also created arguments with an explicit warrant that was based on their 
previous uses of the non-technological tools. For example, Clair and Jim created an argument of 
this structure as they discuss their solutions to a homework problem. The problem asked the 
students to determine whether a triangle can be formed with segments of lengths 6, 4, and 10. 
Clair said, “The first one you said no and I agreed. I said no because there would be like it 
wouldn’t match up because 6+4=10.” Jim added, “And that would be a straight line.” This 
argument is illustrated in Figure 3b. Although, in this example, the claim created by pair of 
students was not a generalization, they justified their claim by using a known theorem and stated 
what would occur if they attempted to form a triangle with segments of the given lengths. 

Additional Data Collection 
Many times the pairs of students in both classes collected additional data to verify or refute a 

previous claim. All three pairs of students in both classes created arguments of this structure. The 
students’ decision to seek additional data may be due to a number of factors including an explicit 
challenge to a claim, the uncertainty of a claim, the uncertainty of a claim due to the lack of 
precision in the use of the technological tool, and the ways in which the students used the 
technology to collect the initial data. Even though the pairs of students collected additional data 
for a variety of reasons, the students in the technology class always used technology to collect 
this additional data, usually using the drag feature of the technology. For example, Amy and 
Judy were determining whether segments of lengths 2, 7, and 4 would form a triangle. Amy 
dragged the sliders accordingly and Judy claimed, “That looks totally impossible, that is huge.” 
Amy immediately responded, “You don’t know that though; that’s the only thing.” Judy agreed 
with the sentiment and stated, “I know, the weirdest looking stuff may be possible.” Amy 
dragged the endpoints and is unable to form a triangle. She stated, “It’s impossible.” This 
argument is illustrated in Figure 4. In this argument, Amy challenged Judy’s claim indicating 
appearances can be deceiving. Judy agreed and the pair of students sought additional data to 
verify or refute that claim. 
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Figure 4.  An argument in which additional data is collected using technology. 

For the majority of the arguments in which the pairs of students in the non-technology class 
collected additional data, the students used tools by rearranging the snap-cube segments to 
determine whether a triangle could be formed, using a ruler to create a sketch to determine if a 
triangle could be formed, or focusing on different features of the tools. Although the pairs of 
students mainly used the tools to collect additional data, this was not always the case. At times, 
the students used known facts such as definitions and theorem as additional data to verify or 
refute a claim. For example, Ellen had written on her paper that a triangle could be formed with 
segments of lengths 10, 7, 24. The teacher asked her, “So, you think 24?” She responded, “As 
long as it’s more than 17, it don’t [sic] matter.” Then, the teacher simply stated, “So 10, 7, 
24…okay, okay.” Ellen asked, “Hold on is it more or less?” The teacher pointed to the board and 
asked, “What does it say up there?” Written on the board was the triangle inequality theorem. 
Ellen began erasing her paper and changed her answer. Ellen collected additional data by reading 
the theorem on the board. Realizing that her initial claim was incorrect she made a new claim. 

In the first example of this section, Amy challenged Judy’s claim regarding the appearance of 
the diagram, which prompted the pair to collect additional data by dragging the figure to 
determine if the initial claim was correct. Perhaps, when these students’ initial claims were 
challenged, the students felt the need to collect additional data using tools to verify their claims. 
In the second example, Ellen’s uncertainty of her claim prompted her to question the basis for 
her reasoning and sought additional data to determine whether her reasoning was correct and, 
hence, whether her claim was valid. In other words, when a claim is challenged, the students 
used tools to collect additional data in order to resolve the challenge. When the students were 
uncertain about their claim, they collected additional data, either using tools or definitions and 
theorems, to determine whether they were using sound reasoning. 

Discussion 
One major finding of this study is when students actively used the technological or non-

technological tools, they were more likely to create arguments with non-explicit warrants. In 
contrast, when the students did not actively use the tools, they were more likely to create 
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arguments with an explicit warrant. Hollebrands, Conner, and Smith (2010) had similar findings 
in their study of the arguments college geometry students created when working with 
technology. When the college geometry students provided explicit warrants for their claims, the 
students were generally not using technology. The authors attributed this finding to the students’ 
prior experiences in learning mathematics at the collegiate level where the students were 
expected to provide formal proofs, which require explicit warrants. This same attribution cannot 
be made to the middle school students in this study because it is unlikely they had been exposed 
to formal proofs. Rather, the lack of explicit warrants when the pairs of students were using the 
technological and non-technological tools may be attributed to the visual nature of the tools and 
the task on which the students were working. 

The students’ lack of explicit warrants in their arguments created while actively using the 
technological and non-technological tools may be related to the visual nature of the tools.  Each 
student did not have his or her own personal set of tools. Rather, the pairs of students shared the 
tools and would alternate between using them. Thus, the students shared the same visual display 
presented by the students’ uses of the tools (the screen for the students in the technology class 
and the arrangement of the snap-cube segments for the students in the non-technology class). 
Because the pairs of students had the same visual referent, they may not have been compelled to 
provide an explicit warrant. Lavy (2006) investigated the types of arguments middle school 
students created while using an interactive computerized environment. The author found that the 
students not only used images on the screen and commands as data, but also in their reasoning. 
Lavy concluded, “In a visualized environment, it is obvious that visual evidences can serve as 
reasoning in an argument, since all the work in this setting has the same character” (p. 168). 
Thus, the pairs of student may not have been compelled to provide an explicit warrant because 
they felt their reasoning was obvious to each other. In fact, when the students’ challenged each 
other’s claims the students generally used the tools to collect additional data rather than make 
their reasoning explicit (see Amy and Judy’s argument illustrated in Figure 4). 

In general, when the students were using the technological or non-technological tools, they 
were determining whether given sets of segment lengths would form a triangle. However, when 
the pairs of students were not actively using the tools, the students were mainly working on 
generalization type tasks. Even though the students in the current study did not actively use the 
tools when working on generalization type tasks, other researchers (e.g. Healy & Hoyles, 2001) 
found that students will create generalizations while using technology. Some pairs of students in 
Healy and Hoyle’s (2001) study used a DGE to investigate relationships among the angle 
bisectors of a quadrilateral. The pairs of students did not create the same constructions and did 
not arrive at the same conclusions. However, those students that were successful were able to 
construct and measure aspects of their diagrams and developed generalizations while using the 
DGE. The students in the current study did not have the option of creating their own diagram. 
Instead, the students in the current study used a teacher-generated pre-constructed sketch that 
limited the students in how they could modify and/or measure aspects of the diagram. Perhaps, 
the students in the current study would have been more likely to use the technology while 
working on generalization type tasks if they had been given the opportunity to create their own 
diagrams. 

Endnotes  
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Often, quantitative and mathematical models are used to study complex dynamic systems–where 
collections of individual components interact to produce an emergent pattern of behavior. To 
interpret such models involves ‘unpacking’ the collective behaviors and interactions that 
underlie a given pattern. We investigate what representational supports in a technology-
mediated agent-based modeling environment led secondary students to question and investigate 
the relationship between individual behaviors and collective patterns in a population dynamics 
unit. Our goals are to inform 1) our own design of educational tools and 2) the theoretical 
elaboration of general “conceptual leverage points” for mathematics and complex systems 
education. 

Objectives / Purpose 
Over the past several decades, there have been a number of technological and theoretical 

developments that have enabled scientists to explore the interconnected and complex nature of 
natural and social phenomena in ways that were not previously possible (Bar-Yam, 1997; 
Mitchell, 2009). This increasing capacity to document and study the world’s complexity has led 
calls for complex systems topics and principles to be integrated into the K-16 curriculum 
(Forrester, 1994/2009; Jacobson & Wilensky, 2006; Kaput et al., 2005; Sabelli, 2006). Indeed, in 
her plenary session at PME-NA last year, English noted that technology and complexity “have 
led to significant changes in the forms of mathematical thinking that are required beyond the 
classroom” – and that technology has increased the demand for “the interpretation of data and 
communication of results” (2010, p. 33).  

Our objective is to better understand how we can support students as they engage in one such 
“new” form of mathematical thinking – to interpret mathematical and quantitative models in 
terms of the complex, interactional events that they encapsulate and measure. This report is part 
of a larger design-based research project (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) 
that seeks to (1) explore student reasoning about complex dynamic systems and associated 
mathematical ideas including the measurement and encapsulation of complex behavior, notions 
of rate of change and accumulation in multivariate systems, and nonlinearity; and (2) develop 
educational tools and activities that support such reasoning. 

Background and Theoretical Framework 
One important form of mathematical thinking related to complex systems involves 

understanding the relationship the behavior of a system at different levels (Wilensky & Reisman, 
2006). Often, the relationships between the individual and collective levels of a system can seem 
inconsistent, since many individual behaviors and interactions underlie a given collective result – 
for example, individual cars in a traffic jam each move forward even as the jam itself propagates 
backward; and chemical reactions occur at the atomic level even as chemical concentrations 
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reach equilibrium (Wilensky & Resnick, 1999). Similarly, it is common for information about 
complex systems to be represented in dynamic quantitative and mathematical forms at the 
aggregate level, even while their underlying individual behaviors are not described 
mathematically (Blikstein & Wilensky, 2009; Stieff & Wilensky, 2003; Wilensky, 2003). Hence 
a primary issue in the interpretation and communication of data and mathematical models of 
complex systems is to infer and reason about what behaviors they may encapsulate (Author, 
2010). 

One way to encourage students to interpret mathematical behavior is by actually enabling 
them to simulate and model the phenomena that underlie it. Two decades of work has explored 
how this can be done with dynamic phenomena such as motion (Kaput, 1994; Nemirovsky, 
Tierney, & Wright, 1998; Stroup, 2002), banking (Wilhelm & Confrey, 2003), and other 
physical scenarios (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Yerushalmy, 1997). This is not 
limited to systems where patterns are generated by and reflect a single causal mechanism, but 
also collections of mechanisms – Confrey and Smith have shown that multiplicative reasoning 
can be supported by considering individual elements in a collection each “splitting” to create 
exponentially more entities (1995). Doerr has shown that even the relationship between 
probabilistic collective behavior and theoretical idealized models can be explored by students by 
juxtaposing theoretical and empirical models (2000). 

We are exploring the potential for agent-based modeling (ABM) environments to provide a 
flexible context for students to learn about quantitative / mathematical patterns that represent 
complex dynamic systems. In an agent-based model, individuals that comprise a given complex 
system are simulated by computational agents whose behavior and interactions are governed by 
simple rules. Each agent executes these rules iteratively to simulate a collective emergent 
outcome, which can be expressed both visually and quantitatively with numbers and plots. While 
ABM has been shown to help students make sense of the relationship between individual and 
aggregate behaviors in many scientific domains (Jacobson & Wilensky, 2006), we argue that it 
can also be used to support students as they explore trends represented via data and mathematical 
models (Authors, 2009).  

Of course, any multirepresentational environment is successful only insofar as its 
representations relate to educationally relevant tasks and students’ existing knowledge 
(Goldman, 2003; Kaput, 1998). To the extent that complex systems are described at multiple 
levels using multiple representational systems, we argue that it is very much an educationally 
relevant task to students to navigate and coordinate those descriptions and representations. In this 
paper, we concern ourselves with supporting students in accomplishing this task by exploring 
how well the representations that students interact with while engaging in agent-based modeling 
resonate with and build upon their existing knowledge.  

Research Question 
We are interested in how students’ interactions with agent-based modeling and associated 

representations can help them make sense of the relationship between a collective, quantitative 
pattern exhibited by a complex system, and the individuals, behaviors, and interactions that 
pattern encapsulates. Toward this end, we utilize design-based research to answer the question: 
What representational supports made available through our agent-based modeling activities led 
students to attend to the particularities of the encapsulated individual-to-collective relationship in 
complex systems, and what supports do they use to resolve the relationship that leads to those 
particularities in population dynamic systems?  
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Methods and Design 
Participants 

We draw our data from two iterations of a 200-minute classroom-based educational 
intervention implemented across six classrooms at two public metropolitan high schools in the 
Midwestern United States. “Preparatory High” (PH) is an academically selective senior high 
school with a student population of over 1,000. At the time of our study, roughly one-third of PH 
students were identified as low-income, about 40%, 30%, 25%, and 5% as White, Asian, 
Hispanic, and Black/Native American/Other, respectively, and over 98% of students met or 
exceeded state standards.  We conducted our intervention in two AP Biology classes, each which 
included between 20 and 25 students from grades 10 through 12 who were simultaneously 
enrolled in Precalculus, Calculus, and/or Statistics courses. “Local High” (LH) is an open 
enrollment senior high school with student population of less than 200. At the time of our study, 
99% of LH students were identified as low-income, 100% as Hispanic, and about 25% met or 
exceeded state standards. We conducted our intervention in four Precalculus classes at LH, each 
having between 15 and 25 students from grades 10 through 12. Both schools had high numbers 
of students that met or exceeded expected levels of growth as predicted through state 
standardized exams.   

Design and Activities 
Our implementation included the use of a modeling toolkit and associated activities, each 

which reflect our design hypothesis regarding what aspects of the environment may attune 
students to the complex connection between individual and collective behavior. Though it is 
beyond the scope of this paper to review our design in detail, it was heavily informed by projects 
including SimCalc Mathworlds (Roschelle & Kaput, 1996), Algebra Sketchbook , Modeling4All 
(Kahn, 2007), Agentsheets (Repenning & Ambach, 1997), Trips (Clements, Nemirovsky, & 
Sarama, 1995), Function Probe (Confrey & Maloney, 1996), My Graph Rules (Wilensky & 
Abrahamson, 2006), and various population dynamics activities (Blanton, Hollar, & Coulombe, 
1996). The three supports emphasized by these tools and activities that we examine in this paper 
include the graphical noise produced by agent-based models, the behavioral descriptions used to 
create the models, and spatiotemporal visualization of agent behavior in models synchronized 
with plots of the quantitative patterns that emerge from their execution. 
 
The Modeling Toolkit 

The modeling toolkit utilized by students in our study consisted of new construction and 
analysis modules for the NetLogo agent-based modeling environment (Wilensky, 1999). The 
first module, DeltaTick (Figure 1), enables users to rapidly construct computational agent-based 
models from a library of visual programming blocks that each represent behaviors, constraints, 
or quantities that may be of interest when modeling quantitative trends within a specific domain 
of inquiry. For the population dynamics activities described in this paper, we used a library that 
provided students with agent instructions such as “reproduce” and “die” with certain 
probabilities, “wander” around a spatial world, and constrain their reproductive and death 
behavior based on environmental or individual “if” statements (concerning the availability of 
space or partners or an agent’s age) factors. The full set of “behavior blocks” available for 
students to construct models from is featured below. The second module, HotLink Replay 
(Figure 2), enables users to replay a simulation, and interact with enhanced plots that enable the 
user to click on a given graphical feature and observe that point of time in the visualization of the 
simulation, to overlay and compare graphs across simulations, and to zoom in and annotate 
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specific regions.  
 
The Classroom Activities 

Over the course of each 200-minute implementation, students completed a set of activities 
designed to help them recognize and build connections across individual and quantitative 
aggregate behavior in population dynamic models.  For the purposes of this paper we focus our 
analysis on two activities that were completed at both sites: the “Probabilistic to Exponential” 
activity and the “Make Graph Fit” activity. In 
“Probabilistic to Exponential”, activity students were guided through the construction of a simple 
simulation wherein 100 computational agents each have a .01 chance of reproducing 

  
Figure 1. The DeltaTick (left) and HotLink Replay (right) modules.  

 
per unit of time, and plots of both the number of births and the total number of people per 
iteration of time were tracked. They were then asked questions designed to emphasize the 
connection between the “noisy” data and the standard exponential population growth model. In 
the “Make Graph Fit” activity, students were provided a collection of population patterns 
including exponential decay, relative stability, logistic-like growth, linear-like growth, and 
density-induced growth (whereby individuals reproduce only when spatially near others), and 
asked to find combinations of behaviors that recreated each pattern. 

Data Collection 
During each implementation, groups of 2 to 3 students worked on laptops equipped with 

Camtasia Screen Recorder Software, which enabled us to capture and synchronize students’ on-
screen activity with their group discussions as captured by video cameras mounted within each 
laptop computer. These captured videos were then segmented by activity sequence and 
transcribed using Inqscribe Transcription Software. Since for the purpose of this paper we are 
interested in students’ interaction with the designed tool and the role that activity prompts played 
in guiding students to attend to the connections between individual behavioral and aggregate 
quantitative representations of population dynamics, we focus our current analysis on the 
collection of video data segments that capture the Probabilistic to Exponential and Make Graph 
Fit activities. 
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Analytic Approach 

To explore our primary research question, we coded each activity segment video to for the 
students in a given group questioned a representational support or attended to the fact that a 
support illustrated a particularity between individual and collective system behavior, and 
resolved to actually explore and better understand that relationship. By “explore and better 
understand the relationship”, we mean attempting to resolve the particularity. We attended both 
to supports that we hypothesized would emphasize individual-to-collective connections 
(graphical noise, behavioral enactment, and temporal visualization) as well as unexpected 
supports that emerged from our data in order to pursue the dual goals of testing our existing 
hypothesis regarding how agent-based modeling can engage and support students in reasoning 
about the “individual-to-collective” relationship, while also identifying other potential supports 
that represent additional pathways for learning (Cobb et al., 2003).  

Results 
Since we are interested in exploring our hypothesized supports as well as identifying those 

that emerged from students’ interactions with our designed environment, we present our results 
in two sections. First, we describe students’ interactions with our three hypothesized supports for 
bridging quantitative to individual differences: graphical noise, behavioral enactment, and 
spatiotemporal visualization. Second, we briefly review other supports that students leveraged to 
question and begin to interpret the relationship between individual probabilistic and collective 
quantitative behavior.  

Designed Supports for Bridging Quantitative to Individual Descriptions Graphical Noise 
We expected graphical noise to alert students to the complex relationship between individual 

behavior and collective quantitative trends by emphasizing the probabilistic nature of the 
underlying behavior that graphs measured. Specifically, during the “Probabilistic to Exponential” 
activity, we guided students to construct a graph measuring the change in population to 
emphasize that the probabilistic nature of individual agents’ reproduction manifested 
quantitatively. We found that while nearly half (7 out of 16) of the groups explicitly questioned 
the noise produced by the change in population graph even before they were prompted to do so 
by the accompanying activities, only one group found this to be enough motivation to explore the 
issue in more depth. When explicitly prompted to explain the noise in the accompanying 
activities, many groups did in terms of the relationship between change and accumulation in the 
available graphs, without connecting to probabilistic agent behavior.  
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Initial Questioning 

7/16 groups 
Change Explanation 

1/16 groups no prompting 
7/16 groups prompting 

Probabilistic Explanation 
3/16 groups prompting 

“Like, it's going up 
and down...” 
“Wow, why is it doing 
that? … Is this 
derivative? I don't 
think so… Why is it 
crazy?” 
“Like, it's...the graph 
is kind of like random” 

Ana: I don't get the random dots. 
Jorge: They're not random. It's 
just...it's showing you the...let it get 
to 150 and I'll.. Alright let's go right 
here (zooms in to plot of change). 
175 (zooms in to plot of population). 
It's just the change in one relation. 
So like from here...(adjusts graphs). 
Do you get what I'm saying, though? 

“It says sometimes the graph 
of change-in-all goes down, 
even though the population 
is always growing. Because 
there's still probability that 
they might not have 
any...that they might not 
reproduce at all.” 

Other groups described the noise as the result of death, (1), an inherent feature of the program 
itself (1), or could not be classified (3). 
 
Individual Behavioral Enactment/Programming 

A second factor that we expected to alert and support students in attending to to the 
connection between individual behavior and collective quantitative patterns was that during both 
activities, students engaged in the programming of individual rules as behavioral descriptions. 
We expected that when reasoning about the quantitative patterns generated by those models, 
students would recall either generic descriptions of individual behaviors that contribute to 
population growth (for example, notions of “having babies”, “dying”, or “counting people“) or 
reference to the specific individual instructions they programmed (“one guy reproduces by 1%”, 
“die with probability .05”. Unlike the noise revealed in graphs, students did not express that the 
behaviors they programmed into the simulation and the resulting outcomes were inconsistent or 
unexpected. However, when they were asked to explain what individual behaviors contributed to 
the resultant trend in the “Probabilistic to Exponential” activity, they often did in only a generic 
form “change in population”, “reproduction”. It was not until the “Make Graph Fit” activities 
that students described trends in terms of the specific rules they programmed “reproduce by 1%”, 
“die with probability .05”. While it is not surprising that students would refer to the rules they 
used when working to build models in order to interpret their resultant behavior, this does 
illustrate the potential for construction activities to emphasize the multivariate, “encapsulative” 
nature of patterns in complex systems.  
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 Generic Explanations 

8/16 groups Prob to Exp 
5/13 groups Make Graph Fit 

Rule-Based Explanations 
3/16 groups Prob to Exp 

8/13 groups Make Graph Fit 
Probabilistic 
to 
Exponential 
 
 

 “I was thinking that maybe this 
relates to this, because it's actually 
telling you how many times they 
actually reproduce, which helps 
you understand what's going on...” 

“Because individually they're still subject 
to reproduce by 1%. Over the long run, 
though, it increases...” 

Other groups provided change-based descriptions (2) or could not be classified (3). 
Make Graph 
Fit 

Herman: Give them their 
space. You can't reproduce 
that much. 
 
Eric: Alright...it's falling 
down. 
Janet: It's not growing fast 
enough. 

John: It's not going to like replace though. 
Because if one guy reproduces, he'll make one 
new person. Whereas, if, if it's .99, then 99 
people die. 
Franco: No. 
John : They wouldn't replace each other, though. 
Franco: Chance too high. 
John: They just die. 

 
Spatiotemporal Visualization 

Finally, we expected the side-by-side and synchronous nature of a spatiotemporal, agent-
based visualization and a quantitative plot to emphasize that those quantitative patterns emerged 
from counting the addition and aggregation of individual agents. We found that few groups 
attended to this relationship during the “Probabilistic to Exponential” activity (only 2/16 groups 
mentioned any features of the visualization, and one group only did so to note that they hadn’t 
paid attention to the visualization). In the “Make Graph Fit” activity, as students built models 
that featured spatial and interactive behaviors, they relied more on visualization to understand 
how those features led to patterns such as logistic growth (5/13 groups observed whether their 
behaviors played out in visualizations).  

Emergent Supports for Bridging Quantitative to Individual Descriptions 
Questioning Measurement of Behavior. The first, and perhaps the most impressive, support that 
led students to critically examine the relationship between simulated individual behaviors and the 
quantitative patterns those behaviors produced was to question what, exactly, each quantity was 
measuring. In our design, we expected that asking students what agent behaviors would change 
population would lead students to view population as encapsulating those behaviors. Instead, the 
results above imply that they may have seen the two factors as related without exploring whether 
they were explicitly causal.  
 
Modeling Assumptions 

A second support that led students to examine the relationship between individual and 
quantitative behavior was to question the assumptions about human behavior that underlied a 
given set of programmed rules. This manifested itself dramatically when one group of students 
questioned whether agents exhibited a 9 month gestation period or reflected any assumptions 
about a given demographic populations’ behavior. The group then decided that in order to better 
understand the underlying assumptions of the model, they would conduct experiments with a 
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single individual under different rules. This led them to consider how that single individual 
would influence a population. 
 
The Reversibility Script 

Finally, several of the students from our first research site, PH, used clues from the questions 
we asked in our activity set (including questions regarding the relationship between change and 
population graphs, and regarding the meaning of “change”) to infer that it was a calculus-based 
reversibility relationship, rather than an individual-to-collective relationship, that was the main 
goal of their exploration. While these two concepts are not mutually exclusive, this 
“graphical/quantitative reversibility” appeared to supplant students’ potential exploration of 
individual-to-collective behavior using the environment.  
 

Discussion 
We sought to identify what designed and emergent supports can help students to understand 

and navigate the relationship between quantitative patterns generated by complex systems, and 
the individual behaviors that underlie those patterns. We found that three supports – graphical 
noise, behavioral enactment, and spatiotemporal visualization, each played differential roles in 
drawing students’ attention to and supporting their investigation of this relationship. We also 
identified emergent supports – specifically, the potential for framing graphical noise in the 
context of questioning what, exactly, is being measured; engaging students in discussions about 
the assumptions that underlie a given agent-based or mathematical model; and downplaying the 
reversibility of graphs until connections to the underlying behavior of a model is established, as 
potential paths forward in our development of computational modeling tools to support students 
as they engage in the new forms of mathematical thinking that are required in an age of complex 
systems. 
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Moving from a reliance on physical representations of mathematical concepts or ideas like 
addition to a more abstract, mathematical object based understanding is a critical event in 
developing mathematical content knowledge. In a mixed methods study involving twelve in-
service elementary and middle school teachers taking part in a two-week summer institute as 
part of an online Masters in Science program, the impact of using discourse-based teaching and 
learning strategies on developing their algebraic reasoning and proof understanding of their 
mathematical content knowledge was investigated. Using a combination of qualitative and 
quantitative data sources, a case-study analysis revealed that the teachers who increased their 
content knowledge made significant shifts in their investigations of mathematics concepts. These 
changes were evidenced by a movement from using discourse that relied on physical 
representations and examples to basing their discourse on properties, axioms, and generalized 
characteristics. 

Introduction 
Through leadership from NCTM and supported by the Common Core Standards, increased 

emphasis has been placed on the fostering and supporting of mathematical reasoning and 
justification as key educational elements in addressing mathematics educational reform needs 
(NCTM, 2000). Educators responding to these 21st century reforms for mathematics have 
identified continuing professional education supporting teachers in developing their own 
mathematical content and conceptual knowledge and understanding as critical for meeting this 
challenge (NCTM, 2000). The need for extending teachers’ mathematics knowledge is in 
response to an increase in the level of mathematics proficiency required of primary and 
elementary teachers in order to prepare their students for success in making the all important 
transition from arithmetic, based on physically represented procedures, to the abstracted concepts 
of mathematics (Gray & Tall, 1994). This transition process begins with the introduction of 
algebraic topics and quite often continues for the remainder of a student’s academic career (Sfard 
& Linchevski, 1994). 

Research Question 
      As part of an online three-year Masters of Science program, a two-week long summer 
institute focusing on the development of algebraic reasoning and proof skills was conducted. In 
the context of that summer institute, the research question for this study is: what is the impact of 
using discourse-based instructional strategies focused on developing teacher’s algebraic 
reasoning and proof understanding on their mathematics content knowledge? 

Perspectives and Theoretical Framework 
All too often, teacher preparation and licensure programs place more emphasis on 

methodology, pedagogy and practice than on content knowledge. This shift in emphasis often 
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results in a focus on physically represented procedure with reduced attention to underlying 
abstract concepts. Additionally, the important role played by the dynamic relationship between 
procedure and concept in understanding and solving problems from world experience is seldom 
accessed or investigated. 

In response to the importance of understanding how procedural and conceptual mathematical 
knowledge frame and inform the other, Gray and Tall (1994) presented their model of the role 
embodied objects play in learning mathematics. Their work, taking from Skemps’ (1976) work 
on relational and instrumental understanding, described learning mathematics as “occurring in a 
biological brain” (E. Gray, Pinto, Pitta, & Tall, 1999, pg. 1) and could be investigated with 
support from a cognitive psychological perspective (Tall, 1999; Watson & Tall, 2002).  

Continuing with research in mathematics learning using a cognitive psychology perspective, 
Sfard (1991) described abstract concepts as having two fundamentally different 
conceptualizations: “structural” and “operational” (Sfard, 1991, pg. 3). In Sfards’ perspective, 
these conceptions of mathematics concepts, are instrumental in the process of learning and 
problem-solving. It is the interplay between a structural or object view and an operational or 
process view that frame and support the development of meaningful mathematics knowledge and 
understanding (Sfard, 1991; Sfard & Linchevski, 1994).  

As these theories of mathematics learning developed, understanding the process of 
transitioning from a concrete, computational operations understanding to abstract objects 
understanding became a focus of research. Sfard & Linchevski, (1994) described this as a three 
part process, ending in “reification” (Sfard & Linchevski, 1994, pg. 20), or the ability to see 
something familiar in a new light. Moving through the transition process indicates a development 
of mathematical thinking that is difficult for learners to accomplish as well as for teachers to 
facilitate (Gray & Tall, 2001). In similar research, Edwards (2005) looked the transition from 
elementary to advanced mathematical thinking, defined as “thinking that requires deductive and 
rigorous reasoning about mathematical notions that are not entirely accessible to us through our 
five senses” (Edwards, Dubinsky, & McDonald, 2005, pg. 17). One characterization of advanced 
mathematical thinking is the development of the knowledge and reasoning skills to meaningfully 
think about problems where the concept of infinity plays a central role. 

The importance of being able to move between these two perspectives of mathematics, (i.e. a 
concrete representation view versus a definition and axiomatic view), provided motivation for 
research into how this knowledge is developed. Gray and Tall (2007), extending their work in 
1994, describe the role of language in providing pathways for the “compression” (Gray & Tall, 
2007, pg. 2), where the brain is able to filter out irrelevant information and compact the 
important concepts, through a process where language plays a critical role. While important 
information is first just noticed in the thinking process, it is only when language is used to name 
the concept that the compaction process can result in the development of what Gray and Tall 
describe as a “thinkable object” (Gray &  Tall, 2007, pg. 3). 

The use of language as discourse in learning mathematics is the focus of the work of several 
researchers. Sfard (2003), taking a social constructivist approach and building on work by 
Vygotsky (1929) and Lave and Wenger (1991), describe a model of language, not just 
facilitating learning, but language as learning. In this model thinking is characterized as 
communication, whether internalized dialogue or externalized exchanges. It is this internalized 
dialogue, where concepts and ideas are named and objectified, that facilitates development of 
abstract, conceptualized understanding (Sfard, 2003). The use of language and discourse in 
helping students make the transition from a computational view of mathematics to a view based 
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on abstract mathematical objects is centered on the need for using language to name abstract 
objects in order to think about them (Davis & Tall, 2002; Sfard, 2003; Tall, 2007; 2008; Umland 
& Hersh, 2006). It is precisely this perspective of the use of language that framed and supported 
the collection and analysis of the multiple data sources in investigating how the use of language 
in discussion and shifting usage patterns impact the development of the interplay between 
concrete, computational and abstract, objectified mathematical understanding. 

Context and Methodology 
This study was conducted in the context of the first year of a three year online Masters of 

Science degree program that focused on the integration of technology with science and 
mathematics instruction. Twelve K-8 teachers were selected from several school districts over a 
diverse geographical region covering approximately 500 square miles. The twelve teachers were 
part of a three year MSP grant project that included a face-to-face two-week summer institute 
consisting of a 3-credit mathematics content course and a 3-credit science content course. 

The mathematics content course focused on the development of algebraic reasoning and 
proof skills and understanding. Each day, the students were presented with problems, ideas and 
topics for discussion. These problems used as problem solving prompts were sequenced to lead 
the students from concepts that could be explored through concrete examples, such as calculating 
the number of sodas consumed on the nth day if there had been 6 sodas consumed on the first 
day and 3 more each day after, to concepts and ideas where examples served as a starting place 
for more meaningful investigation and inquiry, for example determining the sum of the first n 
odd positive integers.  

The mixed-methods structure used was a sequential explanatory design framework 
(Ivankova, 2010) where the quantitative data revealed changes in student understanding in both 
algebraic reasoning and proof knowledge. The qualitative data was collected in an effort to 
develop an understanding of the underlying elements of the classroom experience that influenced 
these changes. 

The data collection and analysis methodology were structured to support a case-study 
analysis. This mode of inquiry was chosen to provide insight into both the changes in 
mathematical content knowledge as related to changes in algebraic reasoning and proof as well 
as if and how the students made the transition from a computational to an abstract perspective of 
mathematics. 

The design of the case-study analysis methodology was framed by the work of Onwuegbuzie, 
Johnson and Collins (2009), where they presented philosophy of research that supported the use 
of mixed-methods designs and provide a typology of analysis strategies. This typology indicated 
that a case-study analysis was most appropriate where the goal is to “analyze and interpret the 
meanings, experiences, attitudes, opinions, or the like of one or more persons” (Onwuegbuzie, 
Johnson, & Collins, 2009, pg. 117).  

Data Collected 
Each day, as a result of their activities, the students produced written artifacts which were 

collected. These most often consisted of written scratch work, drawings, charts and illustrations 
used in problem solving and knowledge construction. In addition to these written artifacts, a 
video record of the verbal interactions during the classroom activities was made. This video 
captured both small group and whole group conversations where the students were engaged in 
sense-making interactions as well as expositions of ideas to the entire group. 
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In addition to this qualitative data, two different quantitative measures were utilized. The 
Diagnostic Teacher Assessment of Mathematics and Science (DTAMS) middle school algebra 
strand assessment was used in a pre/post-test context (Saderholm, Ronau, Todd Brown, & G. 
Collins, 2010). This assessment has a subscale focusing on mathematics content knowledge and 
a subscale that focuses on algebraic reasoning, allowing for gathering information about changes 
in both content knowledge and algebraic reasoning skills. This assessment was given on the first 
(pre-test) and last days (post-test) of the summer session. To assess changes in the students’ 
understanding of proof, a diagnostic focusing on students’ skills in constructing proofs from 
familiar and novel problems was used in a pre/post test context, also given on the first and last 
days of the summer session (Healy & Hoyles, 2000). 

Data Analysis 
Analysis of the quantitative data was accomplished through the use of an independent 

samples t-test with the teachers as the unit of analysis. The qualitative data was analyzed through 
an open coding process where the written and video data was coded following procedures 
developed by Corbin and Strauss (1990). The frame work for coding the qualitative data was 
based on Harel and Sowder’s concepts of proof frames, where they describe a progressively 
increasing level of knowledge and sophistication in use of proof and algebraic reasoning to 
construct and communicate mathematics knowledge based on moving from a dependence on an 
inductive perspective based on random examples to using a deductive proof structure based on 
definitions, axioms, and logic (Harel & Sowder, 1998). This description process, using coding 
categories developed from characteristics of the different levels of proof abilities and knowledge 
framed by Knuth and Elliott (1998), identified changes in participant levels of proof 
understanding. 

A case-study analysis was used to identify and describe any progress each student made in 
shifting from a computational perspective of mathematics to one based on abstract concepts. This 
identification process was framed by the work of Sfard and Linchevski (1994) in their 
description of the reification process1 and by the work of Tall (2008) in his description of the 
transition process from a reliance on concrete examples to more formal, axiomatic mathematical 
thinking. 

 

Results and Conclusions 
 
 Differences in Algebraic Reasoning and Proof Skills in Pre/Post Assessments 
 Means    

Assessment 
Pre-

intervention 
Post-

Intervention t-value p-value Effect Size 
DTAMS      
Content Knowledge1 .56 .76 -2.94 .032 .44 
Reasoning and 
Problem Solving2 

.51 .94 -3.02 .006 .54 

Proof Construction 
Assessment3 

2.08 3.58 -3.00 .012 .49 

1. Mean score on a scale of 0-1. 2. Mean score on a scale of 0-2. 3. Mean score on a scale of 0-4. 
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Results of an independent samples t-test, comparing pre and post intervention mean scores, 
reveal a significant increase in the students’ mathematical content knowledge, algebraic 
reasoning skills and their ability to construct algebraic proofs from familiar and novel contexts 
(p<.05 in all cases) with a large of substantial effect size (>.4 in all cases).  

Through the coding process, it became apparent that there was a definitive shift in the content 
of both the written and the verbal sense-making interactions, where the participants’ vocabulary 
and written word choices shifted from describing mathematics concepts in terms of concrete 
examples to describing mathematics concepts in terms of definitions and properties. The goals 
identified by the students for the problem-solving activities also evolved from finding a 
“solution” to developing their understanding of how the mathematics concepts or ideas in 
question could be extended to more generalized ideas, creating new (to them) connections and 
relationships.  

The results of an analysis of the qualitative artifacts of the mathematical discourse engaged in 
by the students described how they developed their mathematical knowledge through 
mathematical discourse centered on making a transition from thinking based on computations 
based on examples to thinking based on definitions, properties and relationships.  

The primary evidence for this transition came in the form of clearly presented changes in 
how the students talked about mathematics, both in their problem solving activities and when 
they were explaining their ideas. Analysis of video data revealed a shift in how the students 
talked about mathematics, both in their use of mathematics vocabulary and their use of 
mathematics notation in the context of displaying their ideas during sense making activities.                             

Day two:  
Student A, in a discussion with another student: “I’m not sure how many examples we need 

to try. I checked a few numbers and it worked for all of them, so I’m OK with it”. 
Day seven:  
Student B, in a small group discussion about the idea that adding two even numbers results 

in an even number: “I tried a bunch of examples and I think it has something to do with what 
makes an even number even. How do we need to define an even number to make sense of this?” 

Student C, in same group discussion, “We need to write an expression that represents adding 
two even numbers where we use variables to represent the even numbers, not just examples of 
even numbers.” 

Their initial written work portrayed the use of primarily guess and check methodologies 
based a limited number of concrete examples, while artifacts from the end of the course 
presented multiple problem solving strategies used in concert to reveal patterns and relationships 
based on generalized properties and definitions.  

These shifts from primarily computational methods based on concrete examples to more 
axiomatic, properties-based methods illustrated how the students’ thinking shifted from a 
concrete, computational understanding of mathematics to an abstract, conceptual understanding. 
Initially, the students attacked each problem with a guess and check methodology, using 
examples in their sense making activities. At times, there were no reasons given for the choices 
of examples.  

Day one: 
Student D, displaying her work to the whole group and responding to a question about why 

she chose her examples, “I just used easy numbers, like 1, 2, and 3.” 
As the students spent time engaging in problem solving activities and developing their 

understanding of proof, they began to be unsatisfied with the limitations of understanding based 
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on examples. Questions about generalization of ideas, properties and concepts became the focus 
of discourse, where extended discussions helped frame and develop shared knowledge.  

Day 8: 
Student A, in a discussion with another student about summing the first n positive odd 

integers and how to show that the summation equals n2, “I think we need to talk about odd 
numbers like we did with the problem about adding even numbers, with an expression instead of 
examples. That way we can add up the expressions and see how that might simplify to n2.” 

As the students became more adept at asking the kinds of questions that better represented 
their thinking processes, they became better at using questions to help craft their understanding 
and knowledge. The development of their questioning strategies implied a development in their 
thinking. Moreover, since the problems they were using as prompts for their investigations 
centered on aspects that were not accessible to them through examples, (i.e. infinite sums), their 
thinking necessarily shifted to a more advanced mathematical thinking structure (Edwards et al., 
2005). This change in thinking, represented as changes in speaking and writing patterns (Hilbert, 
2008), indicates a transition from an operational, through a structural, to a functional perception 
of algebra as described by Sfard & Linchevski (1994) or from a procedural, through a process to 
a procept (melding of process and concept) perception of mathematical thinking detailed by 
Gray, Pinto, Pitta, and Tall (1999). 

Implications 
Helping teachers extend their mathematical content knowledge is critical. Continuing 

education opportunities that support the development of conceptual mathematics understanding 
and the ability to smoothly shift between computational and abstract conceptual perceptions 
provide the teachers with a foundation of knowledge on which they can build, thus facilitating 
their mathematics teaching and the learning of their students. Structuring educational experiences 
where teachers have opportunities to engage in sense making of abstract mathematics concepts 
used in concert with computational mathematics to develop sophisticated problem solving 
understanding and strategies provides a framework where teachers are able to develop their own 
knowledge and skills of mathematical thinking.  With well developed understanding, teachers are 
better equipped to help their students be successful on the same mathematical journey. 

Continuing research towards a more complete understanding of how to help students (and 
teachers) better make the transition from a procedural understanding of mathematics to a more 
conceptual understanding and how to effectively use these different perspectives in problem 
solving and sense making activities would further efforts to make this difficult transition easier 
and more successful. 

Endnotes 
1. In this context, the term “reification” refers to converting processes applied to accepted 
abstract mathematical objects into self-contained static constructs in their own right (Sfard, 
1991) 
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After identifying students’ concept images of rational functions , asymptotes, limits and 
continuity using a two-hour long problem solving interview, a four-week, eight sessions teaching 
experiment was conducted. While the teaching experiment helped the researcher understand how 
students developed their conceptual models of the concepts of asymptotes, limits, and continuity 
of rational functions, it also helped the researcher to investigate effective instructional practices 
that help facilitate mathematics learning with conceptual understanding. This paper summarizes 
the importance of student centered analysis, deconstruction, modification, and reconstruction of 
preexisting concept images in order to foster conceptual understanding of a newly introduced 
concept.  

Purpose of Study 
The purposes of this research were guiding students towards (1) summonsing a deeper 

understanding of the concept of asymptotes (2) helping them see the connections between the 
concepts of asymptotes and limits, and (3) affording them to use that connection to enhance their 
understanding of the concept of limits. 

Asymptote, a concept that is closely related to the concepts of limits, continuity, and 
indeterminate forms is usually introduced to students in the precalculus course. Students often 
struggle with these concepts even in university analysis courses (Juter, 2004). Through a two-
hour long problem-solving interview, the researcher investigated university calculus 2 students’ 
conceptions of asymptotes and the connections between asymptotes, limits, and continuity. 
Nineteen students were interviewed using the problem solving instrument CORI that constituted 
problems requiring thinking out of the box. 

The problem solving interview revealed that students generally possessed a process-oriented 
view towards mathematics problem solving. While holding numerous incomplete conceptions 
regarding rational functions, their asymptotes, limits and continuity, students also failed to 
establish connections between these closely related concepts. Students were unable to explain the 
behavior of functions around its asymptotes and they were unable to relate the asymptotic 
properties of functions in terms of limits. Without being able to relate to the ways in which 
function behavior was affected by its asymptotes, students were unable to find limit at infinity 
and infinite limit without a graphing calculator. 

In light of the conceptual obstacles noted, a series of teaching episodes were carried out to 
help students attain essential modification in their conceptions of asymptotes, limits, and 
continuity. During the teaching episodes, a variety of activities that would encourage critical 
thinking and exploration of conflicting ideas were implemented.  

Theoretical Framework 
The prime goal of this research was to gain a deeper understanding of the complex cognitive 

processes involved in learning mathematics and the implications of those cognitive processes for 
mathematics instruction. Therefore, the theories that framed this research explored several 
crucial aspects of concept, and concept formation (Piaget, 1970; Tall & Vinner, 1981) in addition 
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to knowledge and knowledge acquisition (Skemp, 1971). Theories of concept representation 
(Goldin & kaput, 1996) also influenced this research study. 

Piaget asserted that students do not come to our classes as blank slates. The variety of 
notions students hold regarding a particular concept could be influenced by former formal or 
informal exposition to the concept. At times, prior experiences with a certain concept could 
negatively interfere with the newly introduced aspects of the concept. Piaget referred to these 
internal conceptual conglomerations as schema, while Tall and Vinner (1981) referred to these 
conceptual entities as concept images. Many associated images are consciously or unconsciously 
summoned while recalling and manipulating a concept. Concept images could seriously 
influence students’ interpretations of the newly introduced mathematical concepts unless they are 
given the opportunity to consciously challenge and modify the pre-existing internal schema of 
the concept in accordance with the new conceptual input (Piaget, 1970; Tall & Vinner, 1981).  

Goldin and Kaput (1996) elaborated on different ways of capturing experiences through their 
theory of representation. They argued that representation is a complex cognitive process that is 
signified by personal and idiosyncratic aspects or cultural and conventional aspects (Bruner, 
1966, Goldin & Kaput, 1996). According to Goldin and Kaput there are internal (mental) and 
external (physical) representations. Internal mental representations involve the use of mental 
images. These mental images could be pictures, diagrams, or even written items such as words 
and definitions .These imageries do not include every detail of the object or every action 
performed on them but recall their important characteristics. These internal mental processes, 
though not directly observable, are often inferred by educators and researchers through external 
behaviors (words), or actions (problem solving).  

Since there are different types of representations for human knowledge, different people have 
different mental images of mathematical contexts. For example, before formally learning the 
concept of limits, students are familiar with the terminology limit in daily life. The meaning of 
this word is interpreted differently by different people. For instance, when referred to an off 
limits situation, the meaning of limit cannot be attained is implied while in another situation such 
as age limit 5, the implication is that the limit cannot be surpassed. Due to this confusion, 
students acquire different meanings and interpretations while dealing with the concept of limits. 
One such dilemma causes uncertainty in students whether limit can be obtained, or can be 
surpassed. 

In this instance, how is concept modification possible? According to Piaget’s (1970) and 
Skemp’s (1971) theory of knowledge acquisition, knowledge or a concept is meaning-driven and 
is actively constructed by the learner. Accordingly, concept is formed through experience and 
through classification and abstraction. Gathering together experiences through similarities is 
termed classification while the process of identifying similarities among experiences is called 
abstraction. The efficacy of concept images depends up on the level of proficiency and flexibility 
with which the person acquired the conceptual knowledge. Since learners are active builders of 
knowledge, not passive receivers of information, I was curious to explore ways in which active 
construction of mathematical knowledge could be facilitated and how meaningful learning that is 
less vulnerable to misconceptions could accomplished. I posed that active and meaningful 
construction of mathematical knowledge could more likely be recognized by constructivist 
instructional model. 

From a constructivist viewpoint, knowledge mediation and construction can best be achieved 
if students are active and interactive participants in the process of learning. According to Piaget 
(1970), however, social interaction helps build knowledge by simply aiding the restoration of 
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equilibrium. Constructivism has different forms. While they all support the notion of individual 
construction of knowledge, there are also profound distinctions. Paul Ernest (1996) discussed 
various forms of constructivism: weak constructivism, social constructivism, and radical 
constructivism. Weak constructivism, as Ernest (1996) describes it, assumes that there is a realm 
of knowledge out there which could be received via senses. Individuals personally construct 
knowledge to match the body of knowledge out there. Radical constructivism is based on the 
epistemology that all knowledge is being constructed by individuals on the basis of cognitive 
processes in dialogue with the experienced world. This form of constructivism maintains that 
individual knowledge is in a state of change through reevaluation via the process of adaptation 
and accommodation. This form of constructivism assumes no position regarding the world of 
knowledge outside the experience of the knower. Finally, social constructivism acknowledges 
the existence of a world of knowledge that supports the appearance we have shared access to, but 
which we have no way of knowing about for sure. Individuals construct knowledge with the 
force of language and social interaction. Thus knowledge is a social construction, a cultural 
product consensually negotiated by communities. Learners construct knowledge within the 
cultural context that gives meaning to that knowledge.  

As far as the application of constructivist model to classroom teaching goes, Glasersfeld 
(1996) offered several pointers to help teachers create a classroom that is more constructivist and 
meaningful in nature. Piaget’s (1970) assertion not to consider students as mere blank slates 
holds a substantial role in Glasersfeld’s view of constructivist’s classrooms. Instead, teachers 
were encouraged to acknowledge students’ prior conceptual knowledge and how that can serve 
as a foundation to construct knowledge that is more meaningful (Piaget, 1970). Accordingly, the 
teacher must try to find out where students stand as far as the knowledge they hold prior to 
instruction. 

According to Glasersfeld, a teacher must then try to modify students’ ways of thinking of 
mathematical knowledge. Students must realize that knowledge is context specific, and that 
knowledge that is well explored within the context of discussion is more sensible. Subsequently, 
instead of giving out correct answers, a teacher must ask students how they arrived at their 
answer and then help them explore the reasons why the answer may or may not work under 
another similar circumstance. Thus, students may become proficient in making sense of their 
own mathematical thought process through analyzing the problem situation and by 
discriminating between similar and diverse circumstances.  
 

Research Question  
How can students’ pre-existing concept images regarding the concepts of rational functions, 

their asymptotes, limits, and continuity be modified? What effect does the teaching experiment 
have on students’ concept modification and forming connections between the closely related 
concepts of asymptotes, limits, and continuity? 
 

Methodology 
I conducted a small scale Teaching Experiment (Steffe & Thompson, 2000) with a small 

group of participants to gain insights into, and build explanations of students’ mental 
constructions of mathematical concepts. Seven students were recruited based on their 
performance on the problem solving interview and also based on their immediate availability. 
Through a teaching experiment a researcher will be able to gain first-hand information on 
students’ mathematical reasoning (Steffe & Thompson, 2000). Teaching experiments are usually 
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situated within a constructivist theory of learning in which learning is believed to be happening 
because of learners’ active construction of knowledge. 

Steffe (1980) identified three major aspects of a teaching experiment as individual 
interviews, teaching episodes, and modeling. Teaching experiments are concerned with 
conceptual structures and models of the kinds of change that are considered learning or 
development. Modeling is the formulation of models that would explain the results of the 
research. In this research, modeling would explain the researcher’s perception of how students 
construct, interpret, and refine their notions of the mathematical concepts of asymptotes, limits, 
and continuity. 

By following Steffe’s model, once students’ concept images were identified after the 
exploratory interview, I carefully outlined the lesson plans to be used during the teaching 
episodes. Each lesson contained a set of problems that students were expected to solve 
individually. In some cases, for example, with rational functions, a packet of notes was provided 
that contained definitions of some concepts with examples and non-examples. Lesson plans were 
designed bearing in mind that in order for students’ conceptual schemes to change, they should 
be presented with situations in which they deem their existing schemes inadequate. In such cases, 
the new situation cannot be solved unless students make a major reorganization in their existing 
conceptual schemes.  

The setting of the teaching episodes was somewhat different from that of a typical classroom. 
There was no urge to rush; there were no deadlines to meet, and no curriculum that must be 
covered during these teaching episodes. In addition, direct instruction was not used and students 
were encouraged to first work on their own and then discuss their ideas in groups while the 
teacher-researcher took the role of a challenger and a negotiator of concepts. The focus was on 
how students’ conceptual schemes changed due to specialized mathematical interactions that 
took place between students, between the student and the researcher, and autonomously within 
each student. The researcher, however, asked probing questions, provided scaffold at times, and 
afforded students with additional resources as needed. 

Before the discussion of any mathematical concepts, I started the teaching episodes with a 
brief presentation of the nature of mathematical truth. At this time, a list nicknamed as the rules 
to live by were also discussed. These rules were: (1) do not try to memorize every single rule or 
fact you may come across, (2) mathematics does not comprise simply of memorization, (3) 
mathematics is a problem-solving art, not just a collection of facts, (4) do not give up on a 
problem if you couldn’t solve it right away, (5) re-read it thoughtfully and try to understand it 
more clearly, and (6) struggle with it until you solve it (Stewart et al, n.d.).The eight learning 
episodes, conducted over a period of four consecutive weeks were dedicated to mathematics 
concepts of rational functions, usage of correct terminology, definition of asymptotes, vertical 
asymptotes, horizontal asymptotes, other asymptotes, limits, finite limits, infinite limits, and 
limits at infinity.  

Teaching episodes were based on 6 assumptions on student concept formation and 
conceptual change. The first assumption was that student’s concept images were influenced by 
their previous exposure and experience with the concept. The second assumption was that 
students actively construct their own mathematical knowledge and active assimilation, 
accommodation and equilibration is imperative for the full development of these conceptions. 
The third assumption was that, equilibrium can only be maintained through the active encounter 
with situations that may pose disequilibria in the already existing conceptual framework. Fourth, 
I assume that social interaction and argumentation are essential features of maintaining 
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conceptual equilibrium. Fifth, teachers could intervene and pose cognitive confusion by simply 
invoking contradicting problem situations by the usage of appropriate examples or by redirecting 
students’ attention to formal definitions and probing a constant check between intuitions and 
formal definitions. The sixth assumption is that in a situation where the second, third, fourth and 
fifth assumptions are realized, a teacher-researcher might be able to foster concept refinement in 
learners. 

I believe that concept refinement becomes complete only through the processes of constant 
re-assimilation, accommodation, and the maintaining of equilibrium invoked by different types 
of cognitive demands. It should also be noted that students’ mathematical schemes change only 
slowly, and there will be extended periods when students operate at the same learning level. For 
example, during the learning episodes, there were instances where some students simply could 
not differentiate between the phenomenon of a hole and a vertical asymptote. Sometimes, 
students who seemed to have understood a concept suddenly could lose their steadiness when the 
concept was presented in a newer problem context. 

In the teaching experiment, the sources of data were the students and the teacher-researcher. 
Students and the teacher-researcher provided data in the form of audio and video tapes of the 
teaching episodes that were transcribed. The researcher provided field notes for all teaching 
episodes. Video images helped the researcher to go back and review the teaching episodes for 
clarification and reconfirmation of documented findings during the research. Video segments 
were also selected to record possible interactions suggesting that students were engaged in 
personal constructions of strategies to solve a problem or finding explanations for their 
mathematical realities. 

Results 
As elaborated by Tripp & Doerr (1999), the investigation focused on how shifts in student 

thinking occurred and in what ways such shifts in thinking supported the development of viable 
models. What kinds of events in their interactions with each other, with the problem situation, 
and with associated representations led to shifts in their thinking? This was accomplished 
through closely observing changes in students’ interpretations and representations during the 
teaching episodes as they faced challenging and inconsistent problem situations that conflicted 
with their existing concept images. 

As revealed by the initial problem-solving interview, students’ incomplete concept images of 
rational functions fell mainly into three categories: the rational number image, the fraction 
image, and the discontinuity image. Students who possessed the rational number image described 
that the graphs of rational functions are “nice,” “symmetric” “one-piece,” “continuous,” and 
“without any complications.” Some students specified that like rational numbers, such as 4  
and 9 , these functions were “whole.” These students’ concept image of rational numbers were 
restricted to that of numbers like 4  and 9 . The rational number conception was the most 
prevalent conception that students held of rational functions.  

Some students believed that rational functions assumed fraction forms with no variable in the 
denominator and accordingly no asymptotes or discontinuity existed in their graphs. However, 
those students who held the discontinuity image believed that all rational functions had variables 
in the denominator, and therefore their graphs were discontinuous, they came in several pieces, 
and had vertical asymptotes. During teaching episodes the concept of rational numbers were first 
explored. This was done by definition analysis: examining the definition of rational number, 
analyzing the meaning of the term rational, and examining polynomial functions. During this 
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session students were curios to explore the basic structure of rational numbers and realize that 
rational numbers include a wider variety of other numbers in addition to numbers like 4 .  

Limited perspective on rational number concept, the connection between rational and fraction 
form as perceived by students with no variable in the denominator had clearly affected student 
conception of rational functions and their properties. These various prior notions needed to be re-
configured in order to assign new meaning to the concept of rational functions. 

Student notions about asymptotes in general fell in to the categories of the three-piece graph 
image, the invisible line image, and the no-concurrency image. The three-piece graph image 
reflects graphs with two vertical asymptotes and one horizontal asymptote that were symmetric 
with respect to the Y-axis. Three-piece graphs were also comprised of graphs with two vertical 
asymptotes (VA) and no horizontal asymptote (HA) and were symmetric about the origin. 
Students also believed that asymptotes were dotted lines the graph approached but never reached. 
The no-concurrency images held by students lead them to believe that a graph must never be 
concurrent with any of its asymptotes.  

During teaching episodes, analysis of the definitions of the function concept, the independent 
and dependent variables, were instigated before the definition of asymptotes were discussed. 
These deliberations helped settle a big issue of terminology concerning what is approaching 
what; for example is it as x approaches a, y approaches b or is it as y approaches b, x 
approaches a? The various meanings of the word approach as students perceived them were also 
discussed in addition to each student elaborating on and debating over what their notions of 
asymptotes are and the reasons behind each of those notions. 

Various textbook definitions of the concept of asymptotes were analyzed. During this time 
students unanimously pointed to the popular textbook definition “informally speaking, an 
asymptote of a function is a line that the graph of the function gets closer and closer to as one 
travels along that line.” After examining this definition in regards to both vertical and horizontal 
asymptotes the dilemma was resolved and the unanimous decision was reached to amend the 
informal definition by specifying that the curve was allowed to cut through the HA as long as it 
came back and approached the horizontal line or that the end behavior of the function should be 
such that it must approach the asymptote. It was also noted that if a curve was to cut through the 
vertical asymptote, it could not come back and approach the vertical line, since this behavior 
would violate the function requirement. Students further elaborated that asymptotes of the graph 
of non-functions could very well intersect vertical asymptotes as well. 

Regarding particularly on vertical asymptotes, students held a variety of notions. All students 
associated vertical asymptotes in connection with multiple views of undefinedness. Most 
students stated that vertical always occurred at points where the function was undefined. Though 
a few students who knew about the possibility of having either a hole or a vertical asymptote at 
the points were the rational function was undefined, they were unable to distinguish between the 
conditions under which a hole occurred for a rational function. Even though students had seen 
graphs with holes and have realized that the function would be undefined there, many of them 
were unable to differentiate between the function behavior around holes and around vertical 
asymptotes. The confusion between holes and vertical asymptotes seems to have stemmed from 

noticing no distinction between the 
0
0  and 0,

0
≠bb forms. 

I encouraged students to examine their own newly reconstructed definition of asymptotes to 
establish the condition/s that warranted the occurrence of vertical asymptotes. To challenge 
beliefs such as “a curve could not intersect its VA”, “the function was undefined at VA” and 
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“VA occurred at the zeros of the denominator,” I encouraged students to compare the functions 

1
1)(

2

+

−
=
x
xxK , and 

1
13)(

+

−
=
x
xxa . I also decided to invoke three types of representations to help 

students clarify the pitfalls that could arise from only using the algebraic methods or the 
graphing method using a graphing calculator without paying attention to the deeper structures of 
these functions. As such, students were asked to work first independently, and then as a group to 

explore the behavior of functions 
1
1)(

2

+

−
=
x
xxK  and 1)( −= xxK  at x = -1, first without a 

calculator. Then, they were allowed to use a graphing calculator, to graph and to ‘zoom in’ and 
then to explain what they saw. Students were further asked to compare and contrast between the 

function behaviors of K(x), and 
1
13)(

+

−
=
x
xxa , at x = -1. This activity lead to a common 

consensus that a function 
)(
)()(
xq
xpxf =  will have a VA at x = a, if 0)( =ap and 0)( ≠aq . Later 

a variety of functions such as 
2
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were examined for an in-depth analysis of different properties of different types of asymptotes 
and function behaviors around the asymptotes. 

Instances of spontaneous dealings were invoked by student curiosity on what would happen 
if the degree of the numerator was larger than the degree of the denominator and what if the 
degree of the numerator was 2 or more degrees higher than the degree of denominator. These 
curiosities stimulated the discussions of oblique and non-linear asymptotes. To reveal another 
example, once students realized that factoring and canceling common factors were the main 
activities during the identification of holes and vertical asymptotes (VA), I asked students to 
solve a problem described by a table of values below. I was simply curious on what students 
might come up with as a consequence of this particular problem. The problem stated that for the 
function V(x), the denominator was 11x – 4. By observing the given table of values, what can 

you say about the behavior of V(x) at or around
11
4

=x ? Note that 364.
11
4
≈ .  

This problem incited cognitive conflict in students that lead to some prime realizations. 
While they narrowed down the possibilities to be either a hole with finite limit or a vertical 
asymptote with infinite limit, the table of values clearly promoted some discussion. Even though 
the function appeared to approach infinities from either side of 4/11, as observed from the table 
of vales, the function value at this point appeared to exist. While students curiously perused how 
this could be possible, consensus were formed except for exact value x = 4/11, the function will 
remain defined. These discussions lead to the realization that it was important to always use 
exact value to discriminate between a hole and a vertical asymptote.  

To help students understand the concept of infinite limit I encouraged them to observe the 
connections between infinite limit and the asymptotic property of the function. To help them 
recognize the occurrence of infinite limit, I encouraged them to inspect the function value at the 
point where limit was computed. Students realized that corresponding to the undefined form 
infinite limit existed. The next issue was to identify the direction in which the function was 
approaching infinity. One of the problems discussed to help students realize various possibilities 
was to ask them to discuss and respond to the reasoning behind an imaginary peer’s – Mr. 
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Magoo’s – argument while solving problems 
2
95lim

2 −
−

+→ x
x

x
, and 

2
95lim

2 −
−

−→ x
x

x
.     Mr. Magoo found 

f(3) = 6, a positive number, and therefore concluded that 
2
95lim

2 −
−

+→ x
x

x
= ∞. Similarly, he 

concluded that as −→ 2x ,since f(1) = -4/-1 = 4, positive and therefore, 
2
95lim

2 −
−

−→ x
x

x
= ∞. 

Analyzing problems of this type helped students to see that while choosing to compute function 
values to tell the direction in which the function was progressing without bound, it is important 
to always check values “close enough” in addition to computing function values for at least two 
close enough points before making a conclusion. 

While computing limit at infinity, by observing what would happen to each of the terms in 
the numerator and the denominator of the function as x approached infinities, students were able 
to infer its implications on the entire function value. They eventually made the observation that 
what was observed through the step by step examination of function terms connected 
consistently with the rules that they were familiar with as to comparing the degrees of the 
numerator and the denominator while computing limits at infinity. As to the discussion of the 
concept of continuity, within the realm of the time that was left, among other things students 
were able to make observations as to the different types of discontinuities that contributed to the 
occurrence of vertical asymptotes and holes. 

 
Conclusion and Discussion 

During the teaching experiment, I was mindful about students’ previous concept images and 
how they could interfere with acquiring proper understanding of the concept definition. Drawing 
from the theory of concept images and concept definition I believed some level of balance 
between the concept image and the concept definition could be achieved through instructional 
activities that highlighted the importance active learning via social interaction and group work. 
This allows students the opportunity to re-examine and re-configure their incomplete 
conceptions by realizing how the concept applies and work in diverse problem situations.  

I realize that student’s previous concept images of rational numbers impeded their 
understanding of rational functions and their properties. This was caused by a limited perspective 
of rational number which led students believe that rational functions cannot have discontinuities 
or asymptotes. Thus, from the beginning of the discussion of rational functions and their 
asymptotes students seemed to have an unresolved disconnect of ideas. Students’ conceptual 
understanding of asymptotes was modified by actively challenging their previous concept images 
of invisible lines, that were just approached, but never reached by the graph of the function This 
was accomplished mainly by reviewing, deconstructing, and amending the textbook definition of 
asymptotes and by trying to align it with a wide variety of functions.  

As a result students were able to make connections between the concepts of limits and 
asymptotes in a more meaningful manner. They were also able to compute limits without the aid 
of a graphing calculator by visualizing the behavior of the graph at the point of calculation of 
limit. Thus, students seemed to have attained certain level of flexibility in the manner in which 
they think through limits and continuity in connection with function’s asymptotic properties.  

I believe that as a result of the transaction of the teaching experiment, students seemed to 
realized that mathematic is more than just by-hearting a bunch of rules and gaining 
understanding of calculus concepts is a lot more than simply being able to calculate the 
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derivatives and just be proficient in performing different types of integration by simply applying 
rules. 

Endnotes 
1. This paper is a part of my dissertation, College Students’ Concept Images of Asymptotes, 
Limits, and Continuity of Rational Functions, completed under the direction of Dr. Douglas T. 
Owens; Professor, College of Teaching and Learning, The Ohio State University, Columbus, 
Ohio. 
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There is a long record of student difficulty in calculus. Previous research has suggested that 
calculus students may benefit from instruction that emphasizes technology, the graphical 
representation, and the notion of local linearity. For this study, the researcher revised the 
curriculum of first-semester calculus to incorporate these three elements. For 28 students taking 
the course, the relationship between several learner characteristics (representation translation 
proficiency, prior knowledge of rate, prior knowledge of function, spatial ability, and 
representational preference) and calculus proficiency was assessed. Results showed that the vast 
majority of students achieved high calculus proficiency, and that the first four characteristics 
had a relationship with calculus learning outcomes, but representational preference did not. 
Further, some students revised incorrect prior knowledge. 

Introduction 
This study was inspired by a history of student difficulties in calculus and innovation in 

response to those difficulties. A significant body of research has addressed student difficulties 
and common misconceptions in calculus (Orton, 1983d, 1983i). Researchers and educators have 
suggested, used and assessed approaches involving a revised syllabus (Heid 1988), increased 
visualization (Hughes-Hallet, 1991), and technology such as Computer Algebra Systems (CAS) 
(Kendal & Stacey, 2001). Little is known about the impact of learner characteristics on learning 
outcomes for calculus students. In this study, a revised curriculum for first semester calculus was 
constructed which emphasized technology, visualization and the notion of local linearity. The 
aim was to assess the impact of various learner characteristics on eventual calculus proficiency 
for students in such a course. 

Background 
Previous research into student difficulties in calculus has addressed student conceptions and 

misconceptions of limits (Oehrtman, 2002; Tall, 1992; Bezuidenhout, 2001a), of the derivative 
(Ubuz, 2007; Bezuidenhout 2001b), and of the integral (Bezuidenhout & Olivier, 2000; Orton, 
1983i). The most intransigent of the difficulties occur with limits (Tall & Vinner 1981; Cottrill et 
al., 1996). Tall (1991) defined a cognitive root to be a unit of knowledge which is a meaningful 
part of prior knowledge and allows for further theoretical development, and he referred to local 
linearity as the cognitive root of the derivative (Tall, 1992). Several studies have observed that 
students can successfully learn the derivative using local linearity instead of limits (Tall, 1986; 
Maschietto, 2002). 

Mathematical situations may be represented in symbolic, graphical, numerical, and verbal 
ways (Hughes-Hallet, 1991). It is important for students to be able to use each of these 
representations, and to translate between them (Tall, 1991). There are specific problem-solving 
benefits to the graphical representation (Hershkowitz & Kieran, 2001; Larkin & Simon, 1987). In 
particular, more frequent use of visual methods has been associated with higher performance in 
calculus (Haciomeroglu et al., 2010). 

Some research has focused on preconditions for success learning calculus. The importance of 
prior knowledge of rate (Pustejovsky, 1999) and of function (Tall, 1997) has been noted. 
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Translation between representations has been adopted into a calculus assessment framework by 
Kendal & Stacey (2003), but not examined as prior knowledge. Results have been mixed 
regarding the role of learner characteristics such as mathematical representation preference or 
spatial ability (Presmeg, 1985; Bektasli, 2006). 

A shift away from procedure-driven instruction and toward broader concept-driven 
instruction is supported by research in psychology (Chen, 1999) and mathematics education 
(Rittle-Johnson & Alibali, 1999). In calculus, traditional instruction focuses on execution of 
computations which can now be done with a CAS or other mathematical software (Tall, 1997). 
Researchers and educators have used, studied, and recommended calculus instruction 
emphasizing visualization (Hughes-Hallet, 1991), visualization with custom software (Tall, 
1986), or CAS (Kendal & Stacey, 2001). For example, Hahkioniemi (2004) suggested that 
students use the visual representation to intuit differentiation rules.  

Java applets and similar computer applications for mathematics instruction (“mathlets”) have 
led to improved learning outcomes in mathematics education (Kidron et al., 2001; Heath, 2002). 
A mathlet is a small platform-independent application, typically interfaced through a web 
browser, offering interactive tools to explore a particular mathematics topic. Prior research has 
identified three main reasons for the potential positive impact of applets throughout mathematics 
education, and particularly in calculus. First, dynamic interaction is beneficial to the learner 
(Arcavi & Hadas, 2000); second, lack of dissemination and other logistical difficulties have, in 
the past, been obstacles to instructional change, but this is not a problem with applets because 
they can be accessed for free on the internet (Hohenwarter & Preiner, 2007); and third, mathlets 
are easy to use (Heath, 2002). 

Research Question 
Research has shown that there are several advantages associated with using technology and 

visualization to teach first semester calculus. However, very few studies have considered the 
outcomes when a calculus course is reorganized around the notion of local linearity. Further, 
little is known about how students’ different learner characteristics might impact their ability to 
benefit from this approach. Therefore, this study investigated whether there was a relationship 
between the learner characteristics of prior knowledge of rate, prior knowledge of function, 
spatial ability, representation preference, and proficiency translating between representations at 
the beginning of the semester and the achievement of proficiency in calculus by students by the 
end of a first semester calculus course which emphasized technology, visualization, and 
introduced the derivative via the notion of local linearity. 

Procedures 
The subjects were 28 students enrolled in a first-semester calculus course. Several sections 

were offered by the college, and students had no prior knowledge of the study, so a selection bias 
was unlikely. The site of the study was a large urban community college. The instructor was the 
researcher, who taught one calculus section. 
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The curriculum for the class was revised to incorporate technology, promote visualization, 
utilize the notion of local linearity, and delay 
the introduction of limits. Nine labs, each of 
which consisted of a mathlet and an activity 
sheet, were integrated into the course. Lab 
reports were collected as homework 
assignments. Students were introduced to local 
linearity in lab #3, which involved the local 
linearity mathlet designed by the researcher, 
displayed in Figure 1 below. The upper window 
displays the graph of the function selected, and 
the bottom window displays a small region of 
the graph. One slider allows the student to 
change the x-value at the center of the region, 
and the other slider allows the student to change 
the half-width h of that region. When the 
function is differentiable at that x-value, under 
sufficient magnification (sufficiently small h) a 
nearly straight line is graphed in the lower 
window. The last two choices for f(x) include 
points of non-differentiability. Therefore the 
introduction students received to the derivative 
at a point was graphical, as was the subsequent 
introduction to the derivative as a function. 
Students thereafter learned symbolic 
differentiation techniques. Formal limits were 
covered at the end of the semester. 

Data on spatial ability, representation preference, prior knowledge of rate and function, and 
proficiency translating between representations were collected at the beginning of the semester. 
Spatial ability and representation preference were assessed using instruments from Guay (1976) 
and Presmeg (1985), respectively, which have documented reliability and validity. 

All other assessment followed frameworks constructed by the researcher. The instruments to 
assess prior knowledge of rate and function and proficiency translating between representations 
were constructed by the researcher and expert-validated for this study. Prior knowledge of rate 
and function were each assessed in the four mathematical representations (symbolic, graphical, 
numerical, verbal), and representation translation was assessed in 8 combinations (from symbolic 
to graphical or numerical; from graphical to verbal or numerical; from verbal to symbolic, 
graphical or numerical; and from numerical to graphical) using typical algebra and precalculus 
exercises assigned at the beginning of the semester.  

The framework for calculus assessment was inspired by elements from Maschietto (2002), 
who used epistemological, cognitive and didactic considerations, Zandieh (2000), who divided 
comprehension of the derivative into 3 stages, and Kendal & Stacey (2003), who focused on 
multiple representations in their assessment. Calculus content was categorized according to topic 
and mathematical representation in the following way: find limits symbolically, graphically, and 
numerically; state the definition of the derivative symbolically (limit definition), graphically 
(slope of the graph, slope of the tangent line, slope indicated after magnifying the graph) and 

Figure 1. A screenshot of the local 
linearity mathlet designed by the researcher 
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verbally (instantaneous rate); find the derivative at a point symbolically (calculate f '(a) ), 
graphically (draw the tangent line, estimate from graph), numerically (estimate from a table), and 
verbally (calculate a rate in a word problem); find the derivative as a function symbolically 
(differentiation techniques) and graphically (graph the derivative given the graph of the 
function); determine non-differentiability symbolically and graphically; solve applications 
represented symbolically (find the slope or equation of the tangent line, find critical points or 
optimize a function), and verbally (solve contextual problems such as maximizing profit). Data 
on learning outcomes were collected during exams and other assignments throughout the 
semester using expert-validated items, as well as from three task-based semi-structured 
interviews during the semester. Each unit of student work was categorized and graded for 
proficiency on a scale from 0 to 4. A score of 3 indicated understanding or a solution that was 
nearly complete, or complete with several minor errors. A score of 3 or greater reflected high 
proficiency, and less than 3 reflected low proficiency. Calculus knowledge data were collected 
throughout the semester, and for each unit of the rubric, the highest level achieved by the student 
was the assigned score. 

Results 
Students generally developed a robust conception of the derivative by the end of the course. 

Overall, 21 students (75%) exhibited high proficiency in learning outcomes collectively. More 
than 70% of the students were highly proficient in 15 of the 18 rubric categories, including a 
robust conception of the derivative (in multiple representations and contexts), finding the tangent 
line (graphically and symbolically), finding the derivative (at a point or as a function, either 
symbolically or graphically), non-differentiability, symbolic differentiation techniques, and 
optimization. The other 3 rubric categories all involved limits. 

The relationships between learner characteristics and derivative proficiency (as measured by 
an average of the rubric unit scores) are presented in Table 1. 
 

Table 1. Derivative proficiency achieved by initial student learner characteristic (n=28) 

Learner Characteristic Initial Level Derivative Proficiency Achieved 
High (3.0-4.0) Low (0.0-2.9) 

Representation 
translation proficiency 

High (3.0-4.0) 21 1 
Low (0.0-2.9) 0 6 

Prior knowledge of rate High (3.0-4.0) 20 1 
Low (0.0-2.9) 1 6 

Prior knowledge of 
function 

High (3.0-4.0) 12 0 
Low (0.0-2.9) 9 7 

Spatial ability High (15-24) 10 0 
Medium (10-14) 6 4 
Low (0-9) 3 3 

Mathematics 
Representation 
Preference 

Balanced or visual (-3 to 12) 8 1 
Slightly non-visual (-6 to -4) 7 2 
Very non-visual (-12 to -7) 5 2 

 
There was a strong link between representation translation and calculus outcomes. Most 

students (22) exhibited high proficiency in translating between representations. Of those 22, 21 
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(95%) displayed high derivative proficiency. Of the 6 with low representation translation 
proficiency, 0 displayed high derivative proficiency. 

There was a clear link between prior knowledge of rate and of function and calculus 
proficiency. Of the 21 students with high prior knowledge of rate, 20 (95%) achieved high 
derivative proficiency. Of 7 with low prior knowledge of rate, only 1 (14%) achieved high 
derivative proficiency. All 12 students with high prior knowledge of function demonstrated high 
derivative proficiency. Of 16 with low prior knowledge of function, 9 (56%) demonstrated high 
derivative proficiency. 

All 10 (100%) students with high spatial ability demonstrated high calculus proficiency. Of 
the 10 students with medium spatial ability, 6 (60%) demonstrated high calculus proficiency, and 
of the 6 students with low spatial ability, 3 (50%) demonstrated high calculus proficiency. 

Of the 9 students with a visual or balanced mathematical representation preference, 8 (89%) 
demonstrated high calculus proficiency. Of the 9 students with a slightly non-visual preference, 7 
(78%) demonstrated high calculus proficiency. Of the 7 students with a very non-visual 
preference, 5 (71%) demonstrated high calculus proficiency. 

Although representation preference did not have a strong impact on student calculus 
achievement, some students with a high preference for visual representations demonstrated a 
very high level of enthusiasm for the course. One student called it his “favorite mathematics 
class ever.” Another used the mathlets to teach calculus to his friends. He also said “this calculus 
course has made me more interested in math” and as a result he decided to take more 
mathematics classes in the future. 

Some students revised incorrect prior knowledge during the course. For example, one student 
demonstrated low proficiency in prior knowledge for distinguishing between average and 
instantaneous rates. He was asked to solve the following problem: 

 
 The manager of a furniture factory finds that it costs $2200 to manufacture 100 chairs in one 
day and $4800 to produce 300 chairs in a day. Express the costs as a function of the number 
of chairs produced, assuming that it is linear. Then sketch the graph. What is the slope of the 
function and what does it represent?  
 
He wrote, “f(c)=22c or f(c)=16c It first starts off high at 22 dollars a chair then at 300 drops 

to 16 dollars a chair.” He incorrectly calculated slope as y/x determined at each point. After 
instruction on the derivative, however, the student demonstrated proficiency in making that 
distinction, as well as in symbolically calculating an instantaneous rate both at a point and as a 
function (with a minor error), as seen in Figure 2. 
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Figure 2. Work by one student on a problem about average and instantaneous rate 

 
Another student misunderstood the concept of instantaneous rates given a graph or table of 

values at the beginning of the course. He also calculated y/x, and he asked about using y/x to 
calculate the slope during a class session. On an early assignment, he wrote, “There are a few 
things I am not completely clear on: The slope of the point is rise over run, meaning y value over 
x value…?” Later in the course, he properly distinguished between them, as in the following 
interview excerpt: 

 
Interviewer: Here's a graph, here are two points on the graph. I'm going to draw this line and 

take the slope. Is that a derivative? 
Student:  That is the average [slope]. 
Interviewer: Oh that's the average. If that's not the derivative then give me an example of a 

slope which is a derivative.  
Student: Take this point for example. Zoom in on it and it becomes like a straight line. 

The slope would be like that. 

Discussion 
Three-quarters of the students in this first-semester calculus course, which emphasized 

technology, visualization, and local linearity, developed high calculus proficiency by the end of 
the semester. The high level of proficiency achieved by most of the students in this study 
deserves attention when contrasted with the sobering fact that nationwide half of students taking 
calculus in college fail (Tall, 1992). Although different initial learner characteristics were 
associated with varying outcomes, the prevailing result was one of overall high achievement. 
This finding alone makes the revised calculus curriculum at the heart of this study, and its 
elements of technology, visualization, and local linearity, worthy of further research. 

Four of the five learner characteristics measured in this study were strongly associated with 
derivative proficiency. The strongest predictors were prior knowledge of rate and representation 
translation; for each indicator a high score almost guaranteed (over 90%) high calculus 
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proficiency, whereas a low score made low calculus proficiency very likely (over 80%). The 
importance of prior knowledge of rate is consistent with the findings of Pustejovsky (1999), who 
used three case studies to conclude that prior knowledge of rate was essential for understanding 
the derivative. It follows from common sense that understanding rate in the linear case is a 
necessary precursor to understanding rate in the non-linear case. Further, if students cannot 
achieve understanding of rate in the simpler linear case, it is unlikely they will learn it in the 
more advanced non-linear case. 

While spatial ability and prior knowledge of function were associated with achieving high 
derivative proficiency, low or medium spatial ability or low prior knowledge of function did not 
preclude achieving high derivative proficiency. Notably, representation preference did not have a 
strong impact on student calculus performance overall; there was almost no difference in rates of 
high calculus proficiency relative to mathematical representation preference. These are 
noteworthy outcomes in a calculus class in which graphs were the prime vehicle through which 
the derivative was introduced. The higher privileging of the visual representation, relative to 
traditional calculus instruction, did not seem to disadvantage students who were less facile with 
that representation. 

Haciomeroglu et al. (2010) found that a preference for visual methods in solving calculus 
problems at the end of the semester was associated with higher achievement in the course. The 
current study found that most students in a calculus class that emphasized visual methods 
demonstrated high calculus proficiency by the end of the course. This was true even for students 
who entered without high spatial ability and without a preference for the visual representation. 
This result strongly supports the inclusion of visual representations in calculus instruction, in 
particular as part of the curriculum described in this study. 

Students in this study revised incorrect prior notions on topics that were related to course 
content, such as average versus instantaneous rates. This counters the notion that knowledge, 
once inculcated, is immutable. Rather, acquired knowledge should not be considered static. Thus 
it is important to find an instructional path which simultaneously delivers new knowledge while 
enhancing prior knowledge. Some studies have looked at the possibilities for instruction in 
constant and non-constant rates of change before calculus. Five-year-olds have shown the ability 
to distinguish between linear and non-linear situations by attending to rate (Ebersbach et al., 
2010), and middle school students successfully encountered early calculus concepts with an 
example of changing rate in kinetics (Barger & McCoy, 2010). The alignment of central 
mathematical themes and cognitive roots for advanced mathematical ideas, such as rate and local 
linearity in calculus, suggests a powerful way to organize curricula which encourages students to 
revisit a theme in courses of increasing sophistication, refine their conceptions, and build 
meaningful networks rich with connections between fundamental mathematical ideas. 
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This paper discusses university students’ mathematical and non-mathematical proving 
difficulties. A total of forty-one difficulties have been observed and organized into nine 
categories. Of these difficulties, twenty-seven are briefly described below. These observations 
come from several years of teaching an experimental proving course to beginning graduate and 
advanced undergraduate mathematics students and from teaching an experimental voluntary 
proving supplement to an undergraduate real analysis course. We believe that discussing and 
categorizing these difficulties will lead to a greater understanding of students’ thinking with 
regard to proof and to future research.  

In this paper, we discuss and categorize students’ difficulties that were observed and 
documented over several years in two whole class teaching experiments that emphasized active 
student participation in the construction of proofs. 

Research Settings 
The settings in which we observed students’ proving difficulties were: (1) a course on proof 

construction designed to improve the proving skills of beginning graduate and advanced 
undergraduate mathematics students (hereafter referred to as the “proofs course”), and (2) a 
voluntary proving supplement to an undergraduate real analysis class (hereafter referred to as the 
“supplement”).  

In the proofs course, the students were given self-contained notes consisting of statements of 
theorems, definitions, and requests for examples, but no proofs. The students constructed their 
proofs at home and presented them in class. The proofs were then critiqued, sometimes 
extensively, and additionally suggestions for improvements in the notation used and the style of 
writing were given. There were no formal lectures, and all comments and conversations were 
based solely on students’ work. Extended comments might occasionally turn into mini-lectures. 
The specific topics covered were of less importance than giving students opportunities to 
experience as many different types of proofs as possible and having them develop beneficial 
ways of reasoning. (For a detailed description of the course, see Selden, McKee, & Selden, 
2010.) 

The supplement was taught at the invitation of an undergraduate real analysis teacher 
because her students were having difficulty constructing proofs, because she did not have 
sufficient time to both cover the content and to work on students’ proving as much as she would 
have liked, and because she was familiar with the above proofs course. Each week, one proof 
problem was selected or created to “resemble in construction” an assigned homework proof 
problem that the real analysis teacher intended to grade in detail, and that could be improved 
subsequently and resubmitted for additional credit. The supplement proof problem could be 
solved using actions similar to those useful in proving the corresponding assigned homework 
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proof problem. However, the supplement proof problem was not a template problem, and “on the 
surface” would often not resemble the assigned proof problem. 

In the 75-minute supplement period, the students co-constructed the proofs at the blackboard 
with the facilitation and encouragement of the supplement instructors. First the students would 
co-construct the formal-rhetorical part of the proof (Selden & Selden, 2009). This consisted of 
first writing the hypotheses at the beginning of their proof. Then, leaving a space for the body of 
the proof, the students would write the conclusion at the end of their nascent proof. Next students 
would unpack the conclusion and find and write the relevant definitions, such as that of sequence 
convergence, on the side board that had been set aside for “scratch work.” Then the students 
would change the notation in the definition to “match” that of the theorem to be proved. They 
would then examine this definition to see where to start and end the body of the proof. For 
example, if the proof problem were one of showing a sequence 1{ }n na ∞

=  converges to A , they 
would then write “Let 0ε > ” immediately after the hypotheses, leave a space for the 
determination of N , write “Let n N≥ ,” leave another space, and finally write “Then 
| |na A ε− < ” prior to the previously written conclusion at the bottom of their nascent proof. This 
brought them to the problem-centered part of the proof (Selden & Selden, 2009), where some 
“exploration” or “brainstorming” on the side board would ensue. The entire co-construction 
process, and accompanying discussions, was a slow one – so slow that only one theorem was 
proved and discussed in detail in each supplement class period. Finally, a pre-prepared written 
description of anticipated proving actions (which was usually three or four times as long as the 
final written proof), would be distributed. (For a detailed description of the supplement, see 
McKee, Savic, Selden, & Selden, 2010). 

Theoretical Background for the Teaching 
The teaching for both the proofs course and the supplement was informed by our theory of 

actions in the proving process and by our division of proofs into their formal-rhetorical and 
problem-centered parts (Selden & Selden, 2009). We see much of the proving process as a 
sequence of mental and physical actions, such as writing or thinking a line in a proof, drawing or 
visualizing a diagram, reflecting on the results of earlier actions, or trying to remember an 
example. As a person gains experience, much of proof construction appears to be separable into 
sequences of small parts, consisting of recognizing a situation and taking a mental or physical 
action. Actions which once may have required a conscious warrant can become automatically 
linked to triggering situations. We view such small, automated situation-action pairs as persistent 
mental structures that we have called behavioral schemas (Selden, McKee, & Selden, 2010). 
Such behavioral schemas are a form of procedural knowledge, that is, of knowing how to do 
something, as well as of “knowing to act in the moment” (Mason and Spence, 1999). We see 
behavioral schemas as very flexible in their implementation. They are not parts of fixed 
sequences that one might regard as procedures or as the implementation of algorithms. To 
acquire a beneficial schema, a person should actually carry out the appropriate action correctly a 
number of times (i.e., practice it) – not just understand its appropriateness. In our teaching, we 
provided students a variety of proving opportunities so they could acquire beneficial proving 
schemas. Changing a detrimental behavioral schema requires similar, perhaps longer, practice.  

Because the students presented their work in the proofs course and because they co-
constructed their proofs in the supplement, we had considerable opportunity to observe their 
actions. In addition, all classes were video-taped and subsequently analyzed to inform our 
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subsequent teaching, as well as to make more general observations, such as those regarding 
students’ proving difficulties.  

Methods of Data Collection 
The results reported here are part of a much larger study. Data were collected from 7 

iterations of the proofs course beginning Fall 2007. Each semester between four and nine 
students were enrolled in the course. All class meetings were videotaped and field notes were 
taken by a graduate research assistant. These videos were viewed and analyzed by the authors 
and one or two graduate assistants the following day in order to determine what to do in the next 
class meeting, and interesting observations were noted so that similar instances could be watched 
for in future. These planning sessions were also videotaped and notes were taken by the first 
author. Individual tutoring sessions conducted by the second author were also videotaped. Take-
home pretest, take-home and in-class final examinations, and student “scratch work” were 
collected in the proofs course. All this was done in the spirit of naturalistic inquiry (Lincoln & 
Guba, 1985) and to inform the future design of the course. The authors and the graduate 
assistants reanalyzed the data to confirm, elaborate, or adjust our earlier observations regarding 
students’ actions and difficulties with proving and discussed these until we agreed on the 
accuracy of the observations. 

In addition, data were collected from three iterations of the supplement beginning in Fall 
2009 and these included: videotapes and field notes taken by a graduate research assistant, class 
homework and tests collected by the real analysis teacher, and observations on proving 
difficulties noted by the first author. The videotapes were viewed and discussed the following 
day to see how to design the next supplement class, and students’ proving difficulties were 
observed and later discussed and categorized by the authors of this paper until they reached 
agreement. Some recurrent difficulties were observed in both the proofs course and the 
supplement. 

Results: Categories of Students’ Proving Difficulties 
Although undergraduate students’ proving difficulties have been observed by a number of 

researchers (e.g., Moore, 1994; Selden & Selden, 2003), we believe this is the first attempt to 
categorize and document as many of them as possible. Below we describe each category and 
give several examples of each. Some categories may overlap and this will be noted. When other 
researchers have reported similar difficulties in the literature, this will also be noted. 

Non-mathematical Difficulties that Influence One’s Ability to Prove 
These came as a surprise to us and were noted in the supplement where we had ample 

opportunity to observe students in the process of proving theorems that were new to them. 
Examples include: 

(1) There were students who were unable to copy a definition correctly onto the 
blackboard from the book or their notes while they were doing “scratchwork” or 
“brainstorming.” This is important as missing even one word or phrase such as “for 
every” in a definition can lead to misunderstanding.  

(2) There were students, who as spokespersons for their student groups, were unable to 
articulate notation or mathematical terms when reading or explaining a proof they had 
just constructed.  

(3) There were students who had trouble adapting the letters (symbols) in a definition or 
previous theorem to the statement of a current theorem that they were attempting to 
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prove or use (in a line of their proof). This was merely a change in the symbolism; 
there was no change in the meaning. They merely needed to adjust the symbolism to 
fit the current context. Yet the students apparently found it difficult to go from one 
context to another. An example was using the definition of continuity given in terms 
of a function f to prove a theorem about a function f go . Another is the real analysis 
student who used the letter n in his proof, and then found a relevant result in his 
textbook, and assumed (wrongly) that the letter n in the textbook theorem was the 
same as the one in the partially completed proof. We consider this, in part, as a 
difficulty with substitution – an area that has not been well researched. 

Using Logic to Structure Proofs 
It has been noted that university students have trouble using logic to structure their proofs 

(e.g., Moore, 1994; Selden & Selden, 2003). Indeed, a few transition-to-proof course textbooks 
pay special attention to this (e.g, Velleman, 1994, Chapter 3). By structuring proofs, we mean 
more than the usual discussion in such textbooks of how to begin and end direct proofs, 
contradiction proofs, contrapositve proofs, and mathematical induction proofs.  

The extent and variety of these structuring difficulties seems not to have been fully 
considered and documented. Some situations involve making rather fine distinctions that 
probably do not need to be made in everyday conversation, and as such, may need special 
attention when teaching beginning university students. Examples include: 

(1) Not knowing, when a situation with several possibilities occurs, that one can usefully 
consider cases, that the cases must cover all possibilities, and that the cases may 
overlap. A simple instance is considering cases when x A B∈ ∪ .  

(2) Not understanding the distinction between using a definition to prove a statement 
(e.g., using the fact that a given sequence converges) versus proving a mathematical 
object satisfies a definition (e.g., showing that a particular sequence converges) is a 
difficult distinction to grasp and harder yet to implement. This was especially hard 
when our students had to make this distinction within a single proof, for example, in 
attempting to prove the product of two convergent sequences is convergent. Making 
this distinction involves knowing that a definition is an “if and only if” statement and 
keeping straight when and how to use the “if” part, in contrast to when and how to 
use the “only if” part. 

(3) In a proof by mathematical induction, not knowing that one should start the induction 
step of what is to be proved with k+1 instead of k (especially when the statement of 
the theorem includes a “for all”), and only later using the induction hypothesis for k. 
This was observed more than once when a student in our proofs class attempted to 
prove that polynomials are continuous. Typically, the student began with an arbitrary 
polynomial of degree k, added to it a term of the form ak+1xk+1, and then proceeded to 
use the induction hypothesis. By doing this, the student had not proved that an 
arbitrary polynomial of degree k+1 is continuous, but rather only that a polynomial of 
this special form is continuous. The student might better have begun with an arbitrary 
polynomial of degree k+1; separated it into two parts, the term ak+1xk+1and the rest, 
which is a polynomial of degree k; applied the induction hypothesis to the latter; and 
finally applied the known (to the student) facts that sums and products of continuous 
functions are continuous, that a constant times a continuous function is continuous, 
and that polynomials of the form xn are continuous. 
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“Metacognitive Knowledge/Actions” 
Under this category, we have placed difficulties that seem to stem from the enactment of 

detrimental behavioral schemas or the lack of enactment of helpful behavioral schemas. The later 
might also be seen as a lack of strategic knowledge (Weber, 2001). Examples include: 

(1) Knowing, or not knowing, that one can just “pick” an element that is known to exist 
(especially from an infinite set) instead of attempting to construct such an element. It 
would suffice to observe that such an element exists and give it a name, such as x1.  

(2) Focusing too soon on the hypotheses of a theorem to be proved, instead of first 
focusing on, and unpacking, the conclusion to see what is to be proved. We have 
documented in detail the case of Willy who did this for a theorem in topology 
(Selden, McKee, & Selden, 2010). We have observed this particular detrimental 
behavioral schema enacted many times by many students. 

(3) Knowing, or not knowing, how to prove a compound element, or entity, is in a set. 
This was documented in detail and occurred when Sofia was attempting to prove the 
relative topology on a subset of a topological space is indeed a topology (Selden, 
McKee, & Selden, 2010).  

(4) Knowing, or not knowing, when proving or disproving two groups (such as N and Q) 
are isomorphic, that one should first look for properties preserved by isomorphisms, 
rather than trying to find a bijection between the two groups and then attempting to 
show the operation is preserved (Weber & Alcock, 2004). 

Going Outside of the “Proof Genre” 
Students may have good ideas for a proof, but may not yet have mastered the art of writing 

proofs in the way their professors expect. A similar observation has been made by Mamona-
Downs and Downs (2009). Examples include:  

(1) Having a propensity to write definitions (that can be found outside the proof) into the 
proof. For example, some students wrote the entire definition for the continuity of a 
function into their proofs, instead of simply saying something like “By continuity of 
g, we have …”. 

(2) Writing directions to oneself, such as “I am now going to try to show that ...” or “We 
have to show that ...” in a (not exceptionally long) proof. 

(3) Using informal language in a proof or using a word or concept that has not yet been 
formally defined. This occurred when students used function notation, such as f -

1(x)=y, instead of the ordered pair notation, before having proved that the inverse of 
the function f is also a function. Dreyfus (1999, p. 88) gave an example of a first-year 
linear algebra student who was asked to determine whether the following statement 
was true or false and explain. If {v1, v2, v3, v4} is a linearly independent set, then {v1, 
v2, v3} is also a linearly independent set. The student’s answer was “True because 
taking down a vector does not help linear dependence.” It is possible the student 
understood, but the use of “taking down” and “help” points to a lack of linguistic 
capability. 

Conventions of the Mathematical Register 
This category has a certain overlap with the above. Examples include: 

(1) Not knowing the difference between “minimum” and “minimal.” 
(2) Knowing how to prove an “if and only if” statement by dividing the proof into two 

parts, indicating the beginning of one part by “(→ )” and the beginning of the other 
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part by “(← )”, thus demonstrating a knowledge of “if and only if” at an action level, 
but later asking about the meaning of “necessary and sufficient.” 

 “Standard” Techniques of Proving 
While these may have some overlap with the above mentioned “metacognitive 

knowledge/actions,” one could also think of lacking these as having an “impoverished 
mathematical toolkit.” 

(1) Not knowing how to show “at most one” versus “at least one” or how to prove there 
is a unique object with some property by assuming, say x1 and x2, have the property 
and then showing x1 = x2.  

(2) Not knowing how to use the Axiom of Choice, or which version to use. 
(3) Not knowing how to prove “p or q” by assuming “not p” and proving q, or 

alternatively, by assuming “not q” and proving p.  

Notational Difficulties 
Using symbols carefully to “say what you mean” and “mean what you say” is not easy for 

students. Also, knowing when a symbol can be used again in a proof, and when it cannot, takes 
time to learn. 

(1) Not knowing the n (or another variable) in a theorem one is trying to use is not the 
same as the n in one’s proof.  

(2) Problems dealing with three levels of abstraction: elements u, sets U, and families U. 
For example, a set U can be open, but U (the topology) cannot be open.  

(3) Being confused about when one can “reuse” a variable name. In a real analysis proof, 
a student used Q both for a neighborhood outside the proof (in the definition) and a 
neighborhood inside the proof. 

(4) Not knowing how to avoid the use of indices, especially when the index set in not 
necessarily countable, or when it would be clearer to write without using indices. An 
example occurred when a student was trying to use mathematical induction to prove 
that any finite intersection of open sets is open, given that the intersection of any two 
open sets is open. The student could have considered an arbitrary family B of k+1 
open sets, let B∈B, and noted that I B = ( I (B \ {B}) )∩  B is the intersection of 
two open sets and applied the induction hypothesis to the former intersection. 
However, the student used indices and got lost in the notation.  

(5) Using the ∈ and ⊆  symbols interchangeably. This may be a confusion caused by 
everyday experiences with the use of “in”. For example, if one has an aspirin in one’s 
cosmetic bag which is in one’s purse, it’s OK to say “I have an aspirin in my purse” 
(Zazkis & Gunn, 1997). Part of students’ confusion may also result from instructors 
using “in” for both “is an element of” and “is contained in.”  

Knowledge and Use of Quantifiers 
That students have problems with quantifiers has been well-documented in the literature. 

This includes: not understanding that the order of the quantifiers influences the meaning of a 
statement (Dubinsky & Yiparaki, 2000); having difficulty interpreting implicit quantifers (Selden 
& Selden, 1995), and knowing the scope of a quantifer (Epp, 2003). We observed: 

(1) In general, many students have difficulty with proving universally quantified 
statements, in which one customarily considers an arbitrary, but fixed, element, as in 
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 real analysis proofs. They often wonder why the result has been proved for all 
elements, such as , rather than only for the specific arbitrary, but fixed, element 
selected. Further, students often take a long time to feel comfortable that this is a 
legitimate method of proof; we have documented this with the case of Mary (Selden, 
McKee, & Selden, 2010). 

The Problem-Solving Aspects of Proving 
In an attempt to have students improve the problem-solving aspects of their proving and to 

have a “rough gauge” of (one dimension of) the difficulty level of proofs in our notes, we 
devised what we have called Type 1, 2, and 3 theorems (Selden, Selden, & McKee, 2008). How 
hard a theorem is to prove depends on many factors including a particular student’s knowledge 
base and the method of proof. However, it is often possible, in the context of a given class, to 
make a judgment of difficulty for most students in the class. So in devising these three types of 
theorems, we were thinking of the kinds of proofs that our students had most often produced. 

(1) A Type 1 theorem is one whose proof requires that students have to look for a useful 
theorem in the course notes. We put such theorems in our notes after it became clear 
that many students didn’t look back over their notes to see if there were any useful 
theorems they could call on, rather than proceeding directly from the definitions of 
the concepts involved. For example, we have a theorem in our notes on the 
boundedness of a continuous function near a fixed number that would be useful in 
showing that the product of two continuous functions is continuous. However, our 
students rarely used that theorem and had difficulty proving the product theorem. 

(2) A Type 2 theorem is one whose proof calls for stating and proving a lemma that is 
easily articulated and proved. We consider this to be cognitively more difficult than 
merely looking in the notes for a relevant theorem.  

(3) A Type 3 theorem calls for stating and proving a lemma that is not easily articulated 
and proved. Doing this calls for considerable creativity. In our proofs course, A 
commutative semigroup with no proper ideals is a group, is such a theorem. There are 
two lemmas that would render the proof merely “a little tricky.” However, these 
lemmas were purposefully not included in the notes so students could have the 
opportunity to discover them. 

Discussion 
While we do not claim the above nine categories are nonoverlapping or a complete list, we 

do believe they form a useful start. Also, although we have documented 41 difficulties, we have 
briefly described just 27 of them to illustrate the categories. We feel this is a beginning that could 
be helpful both to university and other teachers, as well as to researchers.  

Several of the difficulties mentioned above have not been investigated in detail. For example, 
that simple non-mathematical difficulties can interfere with proving was a complete surprise to 
us and is open for investigation. Questions one might ask include: How do such difficulties as 
copying incorrectly directly from one’s textbook or notes arise? Is this due to students’ 
inadequate reading comprehension skills? How is it that students have not learned to articlulate 
(in words) various mathematical symbols? What does this imply about these students’ 
mathematical thinking, if as Sfard (2009) asserted, thinking is just communicating with oneself? 
What do students think, or vocalize in inner speech when they encounter a mathematical symbol 
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such as ( )
b

a

f x dx∫ ? What do students do with respect to articulating symbols when presenting 

their proof attempts for whole class discussion? Do students simply avoid vocalization by saying 
such things as, “We calculated, or we considered, this” and then point to the symbols? If so, why 
do they do this? 

Another area that has not been investigated concerns structuring proofs. What does it imply 
about students’ understanding of definitions if they do not know, in proving, the difference 
between using a definition of an object to assert a fact and proving an object, such as a function 
g, satisfies the definition of continuity. To date, much has been written about students’ not 
knowing that mathematical definitions are analytic (or stipulated) rather than descriptive (e.g., 
Edwards & Ward, 2004); however, even after knowing this, students seem to have trouble 
making the much more subtle distinction between using a definition and satisfying a definition. 

These are just some of the possible interesting questions that could be investigated. 

References 
Dreyfus, T. (1999). Why Johnny can’t prove. Educational Studies in Mathematics, 38, 85-109. 
Dubinsky, E., & Yiparaki, O. (2000). On student understanding of AE and EA 
  quantification. In E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds.), Research in  
 collegiate mathematics education, IV (pp. 239-289). CBMS Series Issues in 
  Mathematics Education. Providence, RI: American Mathematical Society. 
Edwards, B. S., & Ward, M. B. (2004). Surprises from mathematics education research: Student 

(mis)use of mathematical definitions. American Math. Monthly, 111, 411-424. 
Epp, S. S. (2003). The role of logic in teaching proof. American Math. Monthly, 110, 886-899. 
Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. SAGE Publications: Newbury Park, 

CA. 
Mamona-Downs, J., & Downs, M. (2009). Necessary realignments from menal argumentation to 

proof presentation. Proceedings of CERME 6 (pp. 2336-2345). Retrieved from 
http://www.inrp.fr/editions/editions-electroniques/cerme6/ . 

Mason, J., & Spence, M. (1999). Beyond mere knowledge of mathematics: The importance of 
knowing-to-act in the moment. Educational Studies in Mathematics, 28, 135-161. 

McKee, K., Savic, M., Selden, J., and Selden, A. (2010). Making actions in the proving process 
explicit, visible, and “reflectable”. In Proceedings of the 13th Annual Conference on 
Research in Undergraduate Mathematics Education. Retrieved Feb. 10, 2011 from 
http://sigmaa.maa.org/rume/crume2010/Archive/McKee.pdf  

Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in  
 Mathematics, 27, 249-266. 
Selden, A., McKee, K., & Selden, J. (2010). Affect, behavioural schemas and the proving 

process. International Journal of Mathematical Education in Science and Technology, 41(2), 
199-215. 

Selden, A., & Selden, J. (2003). Errors and misconceptions in college level theorem proving. 
Tennessee Technological University Department of Mathematics Tech Report No. 2003-3. 
Retrieved February 8, 2011 from http://math.tntech.edu/techreports/techreports.html. 

Selden, J., & Selden, A. (2009). Teaching proving by coordinating aspects of proofs with 
students’ abilities. In M. Blanton, D. Stylianou, & E. Knuth (Eds.), The learning and 
teaching of proof across the grades (pp. 339-354). London: Routledge/Taylor & Francis.  

Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

682



  Educational Studies in Mathematics, 29(2), 123-151.  
Selden, J., Selden, A., & McKee, K. (2008). Improving advanced students’ proving abilities. 

ICME-11 Topic Study Group 18: Reasoning, proof and proving in mathematics education. 
Retrieved February 10, 2011 from http://tsg.icme11.org/tsg/show/19. 

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, 
and mathematizing. Cambridge: Cambridge University Press. 

Velleman, D. J. (1994). How to prove it: A structured approach. Cambridge: Cambridge 
University Press.  

Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational  
 Studies in Mathematics, 56(3), 209-234.  
Weber, K. (2001). Student difficulty in constructing proofs: The need for strategic knowledge. 

Educational Studies in Mathematics, 48(1), 101-119. 
Zazkis, R., & Gunn. C. (1997). Sets, subsets, and the empty set: Students' constructions of 

mathematical conventions. Journal of Computers in Mathematics and Science Teaching, 16, 
131-169. 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

683



ASSESSING AFFECT AMONG UPPER ELEMENTARY STUDENTS WHO ARE 
GIFTED IN MATHEMATICS: VALIDATING THE CHAMBERLIN AFFECTIVE 

INSTRUMENT FOR MATHEMATICAL PROBLEM SOLVING 
 

Scott A. Chamberlin 
University of Wyoming 

 scott@uwyo.edu 

Robert Powers 
University of Northern Colorado 

 
 

 
The focus of the article is the validation of an instrument to assess gifted students’ affect after 
mathematical problem solving tasks. Participants were 225 students identified by their district as 
gifted in grades 4-6. The Chamberlin Affective Instrument for Mathematical Problem Solving 
(CAIMPS) was used to assess feelings, emotions, and dispositions after students solved Model-
eliciting Activities (MEAs) in groups of three. Through the use of principal component analysis, 
it was determined that three factors should be retained. The instrument holds promise because it 
may be used to assess affect which has implications for identification and curricular adjustments 
to optimize affect. 
 

Literature Review 
Conception of Affect in Mathematics Education 
 Myriad conceptions of affect appear to exist in mathematics education (Mann, Carmody, 
Chamberlin, 2011). Hart and Walker (1993), Hoffman (1986) and McLeod and Adams (1989), 
as examples, have referred to affect in mathematics using words such as motivation, dispositions, 
emotions, beliefs, and attitudes. Most definitions contain some variation of the aforementioned 
terms. It is therefore instrumental that one conception of affect be adopted. Anderson and 
Bourke’s (2000) conception of affect is one commonly accepted given its degree of 
comprehensiveness. Consequently their conception of affect has been used for this research. 
They refer to affect as comprised of eight sub-components including: anxiety, aspiration, 
attitude, interest, locus of control, self-efficacy, self-esteem, and value.   
 
Conception of Giftedness in Mathematics 
 Like the concept of affect, the concept of giftedness is a rather nebulous one. This is the case 
because countless definitions exist for giftedness and when applied to a discipline, e.g. 
mathematics, additional definitions seem to be propagated. Nevertheless, the definition of 
giftedness for this study is based on Krutetskii’s (1976) premise that giftedness in mathematics is 
multifaceted. Through empirical research, Krutetskii found that nine areas of giftedness exist, but 
it could be argued that more exist. In specific, Krutetskii’s nine areas of giftedness are: “the 
ability to formalize, the ability to generalize mathematical material, the ability to operate with 
numerals and mathematical symbols, an ability for sequential, properly segmented logical 
reasoning, an ability to shorten the reasoning process, an ability to reverse a mental process, 
flexibility of thought, mathematical memory, and an ability for spatial concepts” (pp. 87-88). 
Typically, students gifted in mathematics have at least one and perhaps more than one area of 
giftedness in mathematics. 
 
History of Affect 
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The call to assess affect occurred as early as 1916, when Binet and Simon suggested that 
efficient cognition is impacted by feelings, emotions, and dispositions. They referred to affect as 
non-intellectual factors and they mentioned the ability to assess non-intellectual factors in school 
learning as of paramount importance. They viewed non-intellectual characteristics as equal 
importance to intellectual characteristics. Binet and Simon further claimed that the development 
of non-intellectual characteristics was antecedent and prerequisite to the development of 
intellectual characteristics. They suggested that by neglecting affect, learning conditions may be 
seriously compromised.   

Non-intellectual characteristics then became known as non-cognitive characteristics 
(Chamberlin, 2010; Messick, 1979). The biggest challenge facing researchers, then and now, is 
the problem of quantifying a psychological construct. In short, researchers are faced with the 
question, “How do we measure something that does not readily lend itself to being measured?” 
Clearly defined concepts such as speed, volume, and mass are much easier to quantify since 
agreed upon metrics exist, but (psychological) constructs such as interest, attitude, and value do 
not have agreed upon metrics to quantify the degree of interest, attitude, and value. The question 
therefore remained, “how are these constructs quantified?” 

Binet and Simon (1916) mentioned the significance of non-intellectual characteristics, but it 
was not until some 55 years later that a reputable instrument was created. In 1970, the National 
Longitudinal Study of Mathematical Abilities (NLSMA) completed a study conducted on a 
curriculum developed by the School Mathematics Study Group (Higgins, 1970). Researchers 
assessed student attitude with the use of 18 scales and the instrument had moderate to strong 
reliability coefficients (.59 to .85), but validity was not reported in the study. Interestingly, the 
impact of the instrument itself may not have been as significant as the creation of an instrument 
designed to assess a non-cognitive component. Two years later, Richardson and Suinn (1972) 
created the Math Anxiety Rating Scale (MARS) which was designed to assess student anxiety, 
and it was highly respected in the field of assessment of (mathematics) affect. Reliability 
coefficients were high for this instrument (.85 to .97) and the instrument’s validity was normed 
relative to the Differential Aptitude Test.  

The aforementioned instruments were created to assess only one component of affect (e.g. 
attitude or anxiety). Hence, Aiken’s instrument (1974) not only promoted the idea that attitude 
may be comprised of enjoyment and value, but he actually followed up his theory with an 
instrument to assess each component. The true impact of the instrument came with the notion 
that Aiken promoted the theory that affect is multifaceted. Similar to the Richardson and Suinn 
(1972) instrument, the reliability was moderate to strong (.6 to .85), but the criterion validity of 
the instrument was questionable (.10 to .40). 

The Fennema-Sherman Mathematics Attitude Scale (Fennema & Sherman, 1976), the first 
one widely used by researchers, was composed of nine scales that are ostensibly separate, but in 
reality are closely connected to one another. Four scales provide data on student affect and five 
additional scales provide data on teacher and parent affect. In addition, gender of participant and 
usefulness of mathematics is a domain. Two contributions arose from the development of this 
instrument. The first was that gender issues were brought to the fore of mathematics education 
and the second was that four components of affect were assessed at one time. The somewhat 
outdated scale was revised and re-validated in 1999 (Forgasz, Leder, & Gardner, 1999).  

Only one study can be found that pertains to assessing gifted students’ affect in mathematics. 
In 1996, Pajares conducted a study on mathematical problem solving of gifted students and he 
used his self-efficacy instrument that had never been validated with gifted students so the results 
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may be questionable. Despite all of this work, quite literally, no instruments have been created or 
validated for use with gifted students. Moreover, almost no instruments were created to assess 
affect during or after mathematical problem solving as most have been created generically to 
assess affect in mathematics. Consequently, the need for an instrument that has been specifically 
designed for use with gifted students that focuses on affect and mathematical problem solving 
would be an asset to the field of mathematics and gifted education.    

Regarding affect and mathematics, one question perpetually surfaces which is, ‘why does an 
instrument to assess affect among GT students in mathematics need to be created and 
subsequently validated?’ This is a legitimate question. The responses to this question are 
threefold. First, affect is one of the most crucial impacts and determinants regarding students’ 
achievement in mathematics (Dettmers et al., 2011; Shores, Shannon, & Smith, 2010). Second, it 
has been hypothesized that this age level, i.e., grades 4-6, are the most important for the 
development of long-term attitudes, emotions, and dispositions regarding mathematics (Hart & 
Walker, 1993). The ramifications therefore of neglecting affect among GT students is that if 
students develop negative affect towards mathematics in grades 4-6, the most promising 
mathematics students will be lost to other disciplines. Third, it is the moral imperative of the 
American educational system to substantially challenge all students, including the most capable 
students (Sheffield, Chamberlin, Tassle, Mann, & Carmody, 2011). Affect and challenge are 
intricately intertwined and neglecting such students does not bode well for international ratings 
of American students in mathematics and it may further have negative ramifications for 
maximizing mathematical learning in the classroom.  

 
Methods 

 Mathematical problem solving is the focus of doing mathematics (National Council of 
Supervisors of Mathematics, 1978; National Council of Teachers of Mathematics, 1980; 1989; 
2000). Given the high priority of mathematical problem solving (Chamberlin, 2008), it was 
determined that an instrument was necessary to monitor student affect after the process. 
 
Participants 
 Participants in the study came from four elementary and middle schools throughout the inter-
mountain region of the United States. There were 225 participants from a potential sample of 250 
or a 90% response rate. The respective number of boys and girls in the actual sample is not 
known because all data were collected anonymously and gender was not recorded as per the 
schools’ requests. However, there is no indication that a gender bias existed among participants 
because the actual sample appeared similar to the target sample which contained 51% girls and 
49% boys.  
 
Identification Procedures 
 Prior to soliciting schools, the first author investigated the identification procedures to see 
that similarity existed from district to district. Each school had minimally different identification 
procedures and they were all aligned with identification procedures consistent with those 
outlined by the National Association for Gifted Children.  
 
Implementation of Problems 

All of the problems implemented were open-ended tasks so they had more than one solution 
(process) and more than one product as potential responses. Further, students were given no 
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direction regarding what mathematical procedure to use in an attempt to solve the problem. For 
each task, students were asked to read the newspaper article that accompanied the handout at 
home the night before the task was implemented and to complete a series of questions designed 
to create conversation about the topic. On the day of the activity, students met as an entire class, 
discussed responses to the comprehension questions with the facilitator (i.e., the first author), and 
read the problem statement. Once the facilitator was assured that all students understood what 
was asked in the problem statement, students worked with peers in groups of three to solve the 
problem. Solving the problems and writing up the solutions typically required 50 to 70 minutes 
so some class periods were extended to accommodate the research protocol. Upon immediate 
completion of the problem solving task, students were asked to complete the instrument designed 
to assess affect. This was done in an attempt to garner accurate data regarding student affect 
during the mathematical problem solving process. Solution discussion followed data collection.  

 
Tasks Used 
 The tasks used were a special type of mathematical problem solving activity called Model-
eliciting Activities (MEAs). To date, the most comprehensive review of MEAs, i.e., their 
purpose and general characteristics, who and how they were created, some examples, 
characteristics of student interpretations, four disclaimers, the six principles for design, common 
misconceptions, and questions about them, is detailed by Lesh, Hoover, Hole, Kelly, & Post 
(2000). The design principles, explicated in Chamberlin and Moon (2005) and Lesh et al., 
provide a basis for understanding what comprises all MEAs. At the heart of how MEAs are 
created are the six principles used to design MEAs. These principles are: the Model-construction 
principle, the Reality principle, the Self-assessment principle, the Construct Documentation 
principle, the Construct Shareability and Re-usability principle, and the Effective Prototype 
principle. The objective in using the six design principles is to increase the likelihood of 
uniformity in the structure of tasks. The Model-construction principle suggests that all MEAs 
demand that a mathematical model is constructed to explain the mathematical phenomenon or 
phenomena. The developed model should have immediate utility and future utility (reusability). 
The Reality principle does not insure that all tasks are immediately applicable to all students’ 
lives. Instead the Reality principle demands that all tasks demand that students try to make sense 
of a mathematical situation. The Self-assessment principle suggests that each MEA should have 
some component that enables students to determine whether or not their response is logical. One 
question often posed to assess this principle is, “Will students know when they’re finished with 
the problem?” The Construct Documentation principle suggests that each MEA must demand 
that students document their work. This documentation should closely detail their thinking 
(especially their mathematizing of the situation). The Construct Shareability and Re-usability 
principle demands that each MEA must have the construction of a model for it to be an MEA. 
Moreover, the model should meet the demands of the immediate problem, and as models go, 
should be able to be used in subsequent, similar mathematical situations. Therefore each model 
should satisfy an immediate as well as a long-range need. The Effective Prototype principle 
suggests that each MEA should leave some residue (Skemp, 1982) for future mathematical 
situations. The Construct Shareability and Re-usability principle demanded that the model is 
transferrable to future situations. The Effective Prototype principle demands that mathematical 
concepts learned may be applied to future, non-identical, situations. 

Examples of MEAs may be found online at http://crlt.indiana.edu/research/csk.html and at 
https://engineering.purdue.edu/ENE/Research/SGMM/CASESTUDIESKIDSWEB/index.htm. 
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The activities used for this research were ones that have traditionally been perceived by teachers 
as free of or with significantly reduced gender bias. Activities used were: On-time arrival, Track 
programs for sale, Summer reading, Amusement park, and Track and field teams.  

 
Instrumentation 
 The Chamberlin Affective Instrument for Mathematical Problem Solving (CAIMPS) was 
designed for grade 4-6 mathematics students of advanced academic ability. It is important to note 
that students in the convenience sample were not all identified as gifted in mathematics. Pending 
identification procedures, some students were simply identified as gifted in general. The 40-item 
instrument was initially designed to assess Anderson and Bourke’s (2000) eight factors of affect 
with five items comprising each scale. These factors are: anxiety, aspiration, attitude, interest, 
locus of control, self-efficacy, self-esteem, and value. Respondents were provided with five 
options regarding how they would respond to each item: strongly agree, agree, undecided, 
disagree, and strongly disagree.  
 

Results 
Validation of the CAIMPS 
 The statistical procedure employed to investigate the actual number of factors that the 
CAIMPS would yield was exploratory factor analysis (EFA), a kind of principal component 
analysis. EFA is a process whereby items are analyzed repeatedly in an attempt to “identify the 
fewest possible constructs needed to reproduce the original data” (p. 533, Gorsuch, 1997). The 
number of factors was determined by the Cattell Scree-plot Test (Cattell, 1966). Based on the 
component factors of the scree, the analysis proceeded to extract three principal components 
(Stellefson & Hanik, 2008; Tanguma, 2000).  
 
Statistical Procedures Used 
 A varimax roation method was employed to extract the three principal components (Bauer, 
Jackson, Skwarchuk, & Zelefsky, 2006). The Keiser-Meyer-Olkin test determined acceptable 
sampling adequacy (.916), indicating that few common factors were shared in the three factors. 
Bartlett’s test of sphericity confirmed that the data were non-collinear. Based on the items that 
loaded onto each factor, the researchers identified the three factors as:  
o Attitude/value/interest 
o Self-esteem/self-efficacy 
o Aspiration 
Additionally, three items did not load onto these factors. Although each item was intended 
originally to investigate anxiety, their internal reliability of .519 was not satisfactory enough to 
identify them as a stand-alone construct and the items were consequently discarded from the 
analysis. Each factor is described below. 
 Factor 1: Attitude, value, interest 
 The first factor is comprised of the items associated with attitude, value, and interest. The 
construct is comprised of 14 items: 1, 2, 6, 9, 13, 20, 23, 24, 27, 30, 31, 32, 34, and 37. The 
measure of internal reliability, Cronbach’s alpha was very high (α= .918).  

Factor 2: Self-esteem, self-efficacy 
The second factor is comprised of the items associated with self-esteem and self-efficacy. 

The construct is comprised of 14 items: 3, 4, 5, 10, 12, 16, 17, 19, 26, 29, 33, 36, 39, and 40. The 
measure of internal reliability was also high (α=.908). 
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Factor 3: Aspiration 
The third factor is comprised of the items associated with aspiration. The construct is 

comprised of 8 items: 8, 14, 18, 21, 25, 28, 35, and 38. The Cronbach’s alpha is moderately high 
(α=.805), and certainly within acceptable levels.    

 
Discussion 

Implication 1: Use of Instrument 
 This instrument was designed for specific use with upper elementary and lower middle grade 
gifted students at the immediate conclusion of an open-ended mathematical problem solving 
task. Given the diversity of characteristics of the sample, the instrument may be used with a 
broad range of students as it was validated with students identified as gifted in general. The 
application of this instrument to classroom settings with gifted students may provide immediate, 
reliable data regarding students’ affect at the conclusion of mathematical problem solving 
activities.  
 
Implication 2: Use of Instrument for Identification Procedures 
 This instrument may have particularly strong implications for identifying advanced 
mathematicians and it may point to prospective success in mathematics. Identification of 
students who have the greatest likelihood of success in a program is a necessary component in 
strong identification procedures and affective ratings should be considered in this equation. With 
initial identification procedures, seeking very high intellect was the only emphasis in GT 
programs. However, more contemporary beliefs are that multi-modal procedures can bolster and 
provide more comprehensive data than simply viewing IQ data.  
 
Implication 3: Ease of Ese 
 Given the relative ease with which this instrument may be implemented, it is noted that 
teachers of the gifted can have the ability to make immediate changes in an effort to maximize 
learning. Moreover, this investigation of affect, through the use of an empirically proven 
instrument, may be used with certainty given data attained.  
 The implications contribute to GT mathematics students’ learning insofar as they are all 
intended to provide immediate data for teachers to make adjustments to curricular approaches 
and selections. Moreover, the data secured was designed for assessment of affect with highly 
open-ended tasks. The positive component to this instrument is that students’ affect links directly 
to their achievement. Negative affective ratings do not insure poor learning, but statistically, they 
correlate very closely. Similarly, positive affective ratings do not insure the maximization of 
learning in mathematics, but they set up the pre-conditions for the optimization of learning in 
mathematics. Fundamentally, affect cannot be intentionally impacted without a cognizance of the 
level of affect. Moreover, an instrument that reveals affective ratings on problem solving tasks 
enables teachers to make instructional decisions immediately to positively impact learning 
environments.   
 
Limitations 
 The first limitation is that the sample that completed the problem solving activities and the 
instrument were predominately students identified as gifted in general (not gifted specifically in 
mathematics). Hence, some students were truly advanced in mathematics and some were simply 
average ability students in mathematics which is a fairly diverse sample. Second, the method for 
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analyzing data was exploratory factor analysis. Confirmatory factor analysis is often regarded as 
a more powerful approach to solidifying results and would therefore be the more preferential of 
the two approaches.  
 
Areas for Future Research 

Two areas for future research exist. First, for subsequent data collection procedures, the more 
specific population of individuals gifted only or at least in mathematics should be explored 
although this potentially nebulous construct may prove problematic in assessing students. What 
one may consider gifted in mathematics may not be what another considers gifted in 
mathematics. Second, some limitations are evident with exploratory factor analysis (EFA). Chief 
among the concerns is that the process of EFA is just as the name implies…exploratory. 
Consequently, the revised instrument must be used with a new sample of students with the intent 
of using Confirmatory Factor Analysis (CFA) to investigate the statistical strength of the 
instrument.   
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This study applied a social cognitive framework to investigate self-efficacy, calibration (accurate 
feelings of knowing), and exam performance among 195 students in the content courses of a 
secondary mathematics teaching program. Using structural equation modeling analysis of 
survey and final exam data, findings suggest high prior performance, strong self-efficacy, and 
slight overconfidence are most associated with increased exam performance. 

A quote attributed to Henry Ford summarizes a key principle in the social cognitive view of 
learning: “Whether you think that you can or that you can't, you're usually right.” This 
hypothetical relationship between performance and beliefs in one’s capabilities hinges on effects 
of perceived self-efficacy, or self-evaluations of one’s ability to accomplish given performances 
under specific constraints (Bandura, 1997). In the context of the undergraduate mathematics 
coursework of prospective secondary mathematics teachers, Ford’s simple axiom about the 
influence of self-efficacy on success is just one part of multifaceted interactions among 
experiences, self-beliefs, academic motivation, and performance that can help to explain future 
teachers’ trajectory toward meeting their goals in mathematics. 
Research into self-efficacy has established that learners who express high self-efficacy in an 
academic domain tend to perform better on tasks in the domain than similarly knowledgeable 
peers who report low self-efficacy (Pajares & Schunk, 2001). More than 1,800 research studies 
in education have addressed self-efficacy, and results suggest moderate-to-strong positive effects 
of self-efficacy judgments on performance tasks in domains as diverse as reading 
comprehension, career choice, and problem-solving in mathematics (Lightsey, 1999). However, 
there are documented exceptions to this trend (e.g., Klassen, 2006), and some important aspects 
of mathematics self-efficacy, especially calibration, or the accuracy of students’ self-efficacy 
judgments, have received little research attention. 
Following a thorough review of literature on mathematics self-efficacy, the dissertation study 
reported here addresses three aspects of the existing research which suggest further study: (1) the 
self-efficacy of college students in advanced mathematics courses, (2) the calibration of students’ 
beliefs in their mathematical abilities, and (3) the mathematics self-efficacy of prospective 
secondary mathematics teachers. The overarching purpose was to investigate the following 
question: 

How do self-efficacy and calibration influence the exam performance of students enrolled 
in the mathematics courses of a secondary teacher preparation program? 

Theoretical Framework 
When considered in the complicated context of mathematics content preparation for secondary 
teachers, a social cognitive conceptual framework can help to explain the level and accuracy of 
students’ self-perceptions of their abilities in advanced mathematics courses.  
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Social Cognitive Theory and Self-Efficacy 
Albert Bandura’s social cognitive theory first began as a means for explaining observational 
learning mechanisms by positing that a causal triadic reciprocality exists between individuals’ 
behavior, environmental stimuli, and internal cognitive factors. This approach has since 
developed into a robust theory increasingly focused on the cognitive and motivational processes 
supporting metacognition (Schraw, 1998), self-efficacy, and self-regulation among learners as 
they acquire knowledge and skills. Self-efficacy emerges as a prominent theme; Lightsey (1999) 
identified over 2500 hundred articles addressing relationships between self-efficacy and 
achievement.  
Social cognitive research considers self-efficacy to be a mediating mechanism in human 
cognition because self-beliefs in ability act as a filter between prior experiences and subsequent 
development of abilities within a particular domain. In contrast to self-concept, which refers to 
more global self-beliefs and personal identity, Pajares and Schunk (2001) summarize the 
hypothesized direct role self-efficacy plays in the choices people make: 

Self-efficacy beliefs influence the choices people make and the courses of action they 
pursue. Individuals tend to engage in tasks about which they feel competent and 
confident and avoid those in which they do not. Efficacy beliefs also help determine how 
much effort people will expend on an activity, how long they will persevere when 
confronting obstacles, and how resilient they will be in the face of adverse situations. (p. 
241) 

Attributed in part to individuals’ tendencies to rely heavily on self-efficacy beliefs during 
difficult tasks (Bandura, 1997), self-efficacy judgments are often better statistical predictors of 
performance in academic domains than standardized measures of ability or intelligence (Pajares 
& Kranzler, 1995). In fact, after controlling for instructional factors, path analyses of 
performance incorporating biographical (e.g., socio-economic status, gender), motivational, and 
instructional variables, suggest self-efficacy beliefs account for the largest portion of variation in 
academic performance (Madewell & Shaughnessy, 2003). Though measures of self-efficacy are 
often useful for predicting performance, strong self-efficacy beliefs may be less connected to 
success in difficult domains such as mathematics. In particular, developing both strong and 
accurate self-efficacy beliefs may be foundational to the benefits of self-efficacy in learning 
mathematics at the level of calculus and above. 

Mathematics Self-Efficacy, and Calibration 
Sometimes referred to as “feeling-of-knowing accuracy” (Schraw, 1995, p. 326), students’ 
calibration (Pajares & Miller, 1994) in self-efficacy ratings is a relatively new area for 
mathematics education research (e.g., Chen & Zimmerman, 2007) with foundations in 
experimental psychology and reading education (Lin & Zabrucky, 1998). For example, the 
tendency of students across backgrounds and performance abilities toward overconfidence, or 
positively biased self-perceptions of abilities, was identified has been identified as a potential 
obstacle to learning: “overconfidence is a common phenomenon among young adult students that 
may result in inadequate learning due to premature termination of cognitive processing.” (Lin & 
Zabrucky, p. 384) 
In contrast, Bandura (1997) suggests slight overconfidence in one’s abilities can be 
psychologically adaptive because overconfidence can have positive benefits on effort and 
persistence. In this view, poor calibration in the form of overconfidence can be reframed as a set 
of optimistic self-evaluations that may ultimately support taking-on challenges. Nonetheless, 
Bandura and other calibration researchers (e.g., Pajares & Kranzler, 1995) caution against 
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grossly inflated overconfidence, suggesting that unrealistic overconfidence can lead students to 
engage in self-handicapping academic behaviors (Urdan, 2004) such as reduced studying and 
increased procrastination. 
Since personal, social and cultural conditions are seen as important co-determinants of academic 
confidence, motivation, and behaviors, social cognitive theorists do not subscribe to global 
models of self-efficacy and performance (Bandura, 1997). Thus, it was important to develop a 
hypothesized model of self-efficacy, calibration, and performance which was based on the 
specific learning context at the research site. 

Hypothesized Model and Research Questions 
The hypothesized model for exam performance in advanced mathematics, shown in Figure 1, 
was based on an extensive review of related literature and was similar to models employed by 
Chen (2003) and Pajares and Kranzler (1995) in studies of mathematics self-efficacy among 
general student populations. The hypothesized model is a compact way of representing four 
quantitative research questions (Q1-Q4 below), which were addressed using structural equation 
modeling. 

Q1 Does high school mathematics achievement have a significant effect on the amount 
of mathematics in participants’ college major? 

Q2 Do high school mathematics achievement and the amount of mathematics in 
participants’ college major have significant effects on participants’ calibration? 

Q3 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, and calibration have significant effects on participants’ 
self-efficacy?  

Q4 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, calibration, and self-efficacy have significant effects 
on participants’ performance on exams in advanced mathematics? 

 

Figure 1. Hypothesized structural model for exam performance in advanced mathematics.  

Methods 
This study reports on findings from the quantitative portion of a mixed methods study which 
used a concurrent triangulation strategy (Creswell, 2003). Quantitative data sources included 
university enrollment data, background and self-efficacy survey responses, and copies of 

Exam 
Performance 

Math in 
Major 

HS Math 
Achievement 

Calibration 
Bias 

Self-
Efficacy 
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students’ work on exams. Qualitative data sources included transcripts and artifacts from task-
based interviews with 10 secondary teaching majors (see Champion, 2010). 

Data Collection 
Sample 
There were 309 students enrolled in the 12 participating sections of advanced mathematics 
courses (M = 25.8, SD = 6.9) at the research site. Of the enrolled students, 17 (6%) did not take a 
final exam and 40 (17%) were enrolled in two or more of the classes, yielding a potential sample 
of 252 unique students who finished the classes. Of these, 210 (83%) consented to participate 
and complete data were available for N=195 students. Participating sections included three 
sections of Calculus I, two sections each of Calculus II, Calculus III, Discrete Math, and one 
section each of Linear Algebra, Abstract Algebra II, and Probability Theory. About half (49%) 
of the data comes from students’ performance in Calculus I or II. When a student was enrolled in 
more than one participating section, only the data from the highest-numbered class was used for 
analysis. 
Participants 
Study participants ranged in age from 18 to 49 (M = 21.2, SD = 4.2). Most of the students (81%) 
were 18-22 years old, some of the students (11%) were 23-25 years old, or over 25 years old 
(7%). The percentages of study participants classified as Freshman, Sophomore, Junior, and 
Senior were 28%, 28%, 25%, and 18%, respectively. Study participants were almost exactly 
equally-distributed by gender (97 female, 98 male); the proportion of female students (50%) is 
substantially higher than national averages in advanced mathematics (Lutzer et al., 2007) but less 
than the overall proportion (60%) of female undergraduate students at the research site. Typical 
of the university, most of the participants self-identified as Caucasian (83%), followed in 
prevalence by Asian American (5%), Hispanic American (5%), and Other (7%). Though the 
study potentially included all students taking advanced mathematics at the research site, 
approximately half (49%) of study participants declared their primary major in mathematics or 
mathematics education. In particular, 12% indicated a major in Elementary Education – 
Mathematics Concentration and 37% indicated a major in Mathematics. About 79% (34/43) of 
the female mathematics majors chose the secondary teaching concentration, while just 37% 
(19/30) of the male mathematics majors chose the secondary teaching concentration. Other 
common student majors included Chemistry (10%), Earth Sciences (7%), Physics (6%), Biology 
(5%), Pre-Program (e.g., pre-medicine, pre-dentistry) (5%), and Undeclared (5%). 

Data Analysis 
The first four research questions (Q1- Q4) addressed effects posited by the structural path model 
of performance in advanced mathematics. Structural modeling was conducted using R, the open 
source implementation of S-Plus, and relied heavily upon structural model fitting routines in the 
package sem (Fox, 2009). The structural modeling procedures applied a strict interpretation of 
the underlying model, focusing on analysis of the correlation matrix and statistical evidence for 
inclusion or removal of the hypothesized directional effects of indicators and constructs (Suhr, 
2008). Data collection instruments included a background survey, self-efficacy surveys in which 
students rated their confidence in being able to correctly complete exam tasks in the few minutes 
just before the actual exam, and graded copies of students’ work on regularly administered final 
exams. Computation of self-efficacy and directional calibration scales followed procedures from 
several recent mathematics self-efficacy studies (e.g., Chen, 2003; Pajares & Miller, 1994).  
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Results 
Descriptive Findings 

Table 1 includes descriptive statistics of the indicator variables for the latent constructs High 
School Math, Math in Major, Self-Efficacy, and Calibration Bias. By definition, the means of the 
indicators for self-efficacy and calibration bias are ascending by “level.” For example, a 
student’s SE Level 1 rating indicates belief in being able to complete the mathematical tasks in 
which his or her classmates expressed the lowest collective rating. The means of self-efficacy 
indicators ranged from M = 2.9 to M = 4.5 on a scale of 0 to 5. The means of calibration 
indicators ranged from -0.4 for Level 1 (underconfidence) to 1.9 for Level 7 (overconfidence). 
Calibration means were significantly positive in 5 of 7 indicators at the α = .01 criterion, 
suggesting general tendencies toward overconfidence in the calibration indicators. 
Table 1. 
Descriptive Summary of Indicators for High School Math Achievement, Math in Major, Self-
Efficacy, and Calibration Bias 

Construct Indicatora n M SD Scale 

HS Math Achievement ACT Math 132 24.9 3.9 14 to 36 
HS GPA 133 3.4 0.6 0 to 4 
HS Self 195 4.6 1.1 0 to 7 

Math in Major Required Math 177b 23.0 15.2 3 to 45 

Self-Efficacy SE Level 1 195 2.9 1.3 0 to 5 
SE Level 2  3.2 1.2  
SE Level 3  3.5 1.1  
SE Level 4  3.7 1.1  
SE Level 5  4.0 1.0  
SE Level 6  4.2 1.0  
SE Level 7  4.5 0.9  

Calibration Bias Bias Level 1 195 -0.4 1.8 -5 to 5 
Bias Level 2  0.2 2.2  
Bias Level 3  0.4 2.2  
Bias Level 4  0.9 2.3  
Bias Level 5  1.2 2.4  
Bias Level 6  1.5 2.4  
Bias Level 7  1.9 2.4  

Note. a“Level” indicator were formed by ascending within-class means. bMissing values for Required Math correspond to 
ambiguous majors (e.g., “undeclared”, “pre-program”). SE = self-efficacy rating, HS GPA = high school grade point average 
(capped at 4.0); HS Self = self-assessment of high school mathematics performance, Required Math = number of semester 
mathematics credits required by declared college major.  

Table 2. 
Distributions of Indicators for Final Exam Performance 
Construct Indicator % Incorrect % Correct 

Final Exam Performance Perf. Level 1 75 25 
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Perf. Level 2 63 37 
Perf. Level 3 56 44 
Perf. Level 4 42 58 
Perf. Level 5 33 67 
Perf. Level 6 27 73 
Perf. Level 7 17 83 

Note. Table entries indicate the proportion of students (N = 195) who correctly solved the corresponding final exam items. Items 
were randomly sampled from seven-level quantile groups based on item difficulty.  

Indicators of final exam performance were based on dichotomous (correct-incorrect) scoring of 
seven final exam items by within-class means. As shown in Table 2, Performance Level 1, for 
example, represents students’ performance on a difficult final exam item in their class – only 
about one in four students (25%) correctly solved the task corresponding to this first indicator. In 
contrast, 83% of participants correctly solved the final exam item corresponding to the 
Performance Level 7 indicator. Three indicators come from final exam tasks which were 
correctly solved by fewer than half of students; the remaining four indicators include greater than 
50% correct responses. 
The data suggested study participants experienced relatively strong performance in high school 
mathematics. The average ACT Math score of participants was M = 24.9, which corresponds to 
the 79th percentile of U.S. college-bound students (ACT, 2007) and is about one standard 
deviation above the university average (M = 21.6, SD = 3.7, t(1,236) = 11.3, d = .9, p < .001). In 
response to “Which of the following best describes how well you did in your high school math 
courses?”, most students (87%) chose one of the descriptors OK, Good, or Very Good. The 
percentage (17%) of participants’ GPAs at 4.0 or greater was larger than the average percentage 
(7%) of 4.0s at the university. 
The measure of required semester mathematics credits in participants’ primary college majors 
(Required Math) was calculated based on the distributions of students’ majors. Since all 
mathematics majors were required to complete 40 college credits in mathematics, the large 
proportion of Mathematics majors in the sample produced a large departure from normality. The 
non-normal distribution, coupled with a lack of correlation between Required Math and the other 
study variables, led to its removal from the modeling estimation procedure. 

Structural Equation Modeling Results 
 
Model Estimation 
After removing Required Math from the structural model specification, the sem estimation 
procedure for hypothesis-based model converged in 210 iterations. All directional effects in the 
model were significant at the α = .05 criterion with the exception of the posited direct effect of 
the latent variable High School Math Achievement on the latent variable Final Exam 
Performance (β = -.19, p = .40). Model fit indices included an overall chi-square of χ2 (246) = 
608.0, CFI = .70, NNFI = .67, SRMR = .08, and RMSEA = .09. The comparative fit indices (CFI 
and NNFI) were both below the .9 threshold for good fit, and the SRMR and RMSEA indices 
suggested marginal model fit. A likelihood-ratio test confirmed the structural model provided a 
significantly better fit than the measurement model (∆χ2 (6) = 146.7, p < .001). 
Model FindingsFigure 2 shows the final structural equation model with the estimated 
standardized directional effects; the estimates of measurement errors are omitted from the 
diagram for readability. Standardized parameter estimates for the structural model were all 
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significant at the α = .05 criterion, and values ranged from β = .21 (the loading of Bias Level 1 
on Calibration Bias) to β = .78 (the loading of HS Self on HS Math Achievement). Effects 
between latent constructs (represented as ovals in the diagram) can be interpreted as estimates of 
the sign and relative magnitude of effects in the hypothesized model. For example, the review of 
literature supported direct effects of calibration bias on both final exam performance and self-
efficacy, and the estimated coefficients suggested the negative effect of calibration bias (β = -
.75) on final exam performance was comparatively larger than the positive effect of calibration 
bias on self-efficacy (β = .39).  
As shown in Table 3, the large direct negative effect of calibration bias on final exam 
performance was mediated somewhat by an indirect positive effect of bias on self-efficacy. 
Similarly, high school math achievement had indirect effects on final exam performance through 
the separate effects of high school mathematics achievement on self-efficacy and calibration 
bias. The largest total effect on final exam performance was that of self-efficacy. 
 

 
Figure 2. Standardized coefficients of directional effects in the final estimated structural 
equation model.  
Table 3. 
Standardized Direct, Indirect, and Total Effects between Latent Constructs 
Effect of… on… Direct Indirect Total 
HS Math Achievement    
 Calibration Bias -.46**   -.46 
 Self-Efficacy .54** -.18 .36 
 Final Exam Performance  .57 .57 
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Calibration Bias    
 Self-Efficacy .39*  .39 
 Final Exam Performance -.75** .24 -.51 
Self-Efficacy     
 Final Exam Performance .62**  .62 

Note. *p < .05, **p < .01. 
Discussion 

This study adds to existing literature on mathematics self-efficacy and calibration in 
mathematics. In particular, the study extends path analysis studies of calibration among middle 
school (Chen, 2003) and high school students (e.g., Pajares & Kranzler, 1995) to the important 
population of college students. The incorporation of structural equation modeling, with its 
affordances for multiple measures of underlying factors, also addresses implicit assumption in 
the prior path analysis studies that attitudinal variables can be perfectly measured by a single 
scale. The study findings suggest self-efficacy and calibration exhibit approximately equal and 
opposite effects on mathematics performance, providing support for Chen’s (2003) findings that 
calibration has a weak effect on self-efficacy and that both self-efficacy and calibration have 
moderate to strong effects on mathematics performance. The similarities between estimates of 
directional effects in this and Chen, Pajares, and others’ studies, taken in context of differing 
settings and measures of mathematics performance, suggest robustness for findings that self-
efficacy and calibration have independent mediating effects within the long-understood influence 
of prior achievement on future performance in mathematics. Future research goals include (1) 
developing techniques for improving the calibration of students in advanced mathematics 
courses, (2) identifying potential differences in self-efficacy between teaching and non-teaching 
mathematics majors, and (3) documenting self-efficacy trajectories of secondary mathematics 
majors.  
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Parents want to help their children succeed in school, especially in mathematics however; they 
are often inadequately prepared to do so.  The primary hypothesis of our research is that 
children’s understanding of mathematics can be improved by empowering parents with 
resources focused on how children learn mathematics. Emergent themes that evolved as the 
result of these beginning research efforts are: 1) Parents desire and need more mathematical 
content knowledge 2) Parents think differently about how to help their child as a result of 
learning about children’s thinking about math 3) Parents are frustrated by their child’s struggle 
with mathematics. 
 
     Children are not the only ones doing homework these days.  As more and more schoolwork is 
sent home at earlier and earlier ages, parents also feel the pressure to help their students succeed 
(Kohn, 2006).  Many parents, however, are ill-prepared to work with children, especially in 
mathematics.  Therefore, it is not surprising that parents expressed a desire to be more effective 
in helping their children with schoolwork (Mapp, 2003). 

Despite altruistic intentions, most parents do not have a grasp of cognitive development or 
basic knowledge of how their children think about mathematics. Without ill-intent, they often 
rely on ineffective questioning, explaining and examples when working with children (Eloff, 
Maree, & Miller, 2006).  Unfortunately, well-meaning parents generally do not know the 
importance conceptual understanding plays in assisting their child in becoming a life-long 
learner of mathematics. 
     It is not that all parents and primary caregivers have been unsuccessful in learning 
mathematics themselves, but more often than not those who have been successful have learned 
mathematics as rules and procedures.  They might be able to tell children the rules but unless 
they understand the concepts behind the rules; they will not be effective in helping children 
understand mathematics. By knowing how children think mathematically, parents can make 
appropriate interventions that provide powerful learning opportunities. 
     Our initial research with parents (Feikes, Swchwingendorf & Stevenson, 2010) offered four 
emergent themes, three of which will be the focus for this paper.  The purpose of this study is to 
explore how previously published materials on Connecting Mathematics for Elementary 
Teachers (CMET), can be adapted for use with parents to increase their knowledge of children’s 
thinking about mathematics and efficacy to assist their children. Ultimately, the goal is to 
positively impact student learning of mathematics.  
 

Review of Literature 
The Connecting Mathematics for Elementary Teachers, (CMET), an NSF supported project 

(DUE 0126882 and DUE 0341217) funded the development of the commercially published 
textbook CMET (Feikes, Schwingendorf, & Gregg, 2009) and supplemental materials for 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

702



prospective elementary teachers and their instructors (http://www.cmetonline.com).  Literature 
on mathematical content knowledge (e.g. Hill & Ball, 2004) and the importance of understanding 
children’s thinking (Empson & Junk, 2004; Steinberg et. al, 2004), contributed to the creation of 
these materials.  

Results from CMET indicated that preservice teachers who used the CMET materials 
increased their self-efficacy (Pratt, Feikes, & Hough, 2007, 2007) developed beliefs that were 
more aligned with conceptual understanding of mathematics (Hough, Feikes, & Pratt, 2006), and 
developed greater pedagogical content knowledge—the mathematical knowledge necessary for 
teaching (Feikes, Pratt, & Hough, 2006).   

There are currently two other nationally funded projects focus on parents and mathematics 
education.  Math and Parent Partnerships, (MAPPS), attempts to engage parents in mathematics 
with their children.  The intent is that parents would be to support their children’s mathematical 
learning.  After participating in the MAPPS project students had better attitudes about 
mathematics and liked math more.  They also indicated that they were more likely to try harder 
after participating in this project with their parents (MAPPS, 2007).  Another project, The Role of 
Gender in Language Used by Children and Parents Working on Mathematical Tasks at the 
University of Hawaii, focuses on gender-related differences in language and actions used by 
children and parents when working on mathematical tasks.   

 
Methodology 

Due to the limited literature on parents’ work with children on mathematics outside the 
classroom and the exploratory nature of this study, a variety of data collection techniques were 
used to gather information from a wide range of participants.  To develop an understanding of 
the effectiveness of the CMET materials to assist parents in helping their children with learning 
mathematics and to identify revisions that are needed to meet the needs of parents and their 
children, it was deemed appropriate to focus on a limited number of parents who could be easily 
accessed and were identified as wanting to assist their children with homework.  It is left to later 
studies to contrast the behavior of these parents with others who are not as readily interested in 
assisting their children with mathematics homework. 

 
Data Collection 

The primary methodology is a design experiment (Brown, 1992, Collins, 1992; Cobb, 
Confrey, diSessa, Lehrer & Schauble, 2003). This methodology has been modified to fit with the 
research conducted in this study.  Features of the research that lend itself to a design study are 
the application of innovative instructional material, the testing of theories of how to help parents 
help children, and the cyclical nature of design.  

A design experiment provides the tools to test theories of how parents work with their 
children on mathematics and how to improve these interactions.   Theories on parent learning are 
‘humble’ theories in that they target domain-specific learning processes (Cobb, et. al, 2003). 

Further, this study entails five key features described by Cobb et al., (2003) it:  1) develops 
theories, specifically theories parent learning and parent enablement, 2) is interventionist—new 
activities will be employed, 3) tests these theories and materials with parents in real learning 
situations, 4) is iterative in that both materials and theories will be revised in a cyclical process, 
and 5) is pragmatic—the materials will be realized with real parents working with children.   

The present study’s varies in two ways from Cobb et. al. This study focuses on parents 
interacting with their children as they help them with mathematics outside of the classroom.  A 
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second key difference is that we have collected anecdotal evidence and interview data about the 
learning process without actually observing and intervening in the parent/child episodes. Despite 
these differences we consider the design experiment as the best fit to our research purposes. 
 

Data Sources 
Data for this study consisted of a) written reviews of the materials, b) course work in a 

graduate mathematics education course, c) transcripts from parent focus groups, and d) 
transcripts from parent interviews. For clarity, these are all independent data sources and there 
was no overlap of participants. The purpose of collecting these data was to examine how parents 
might use knowledge of how children learn mathematics in helping children learn mathematics.  
 

Written Reviews of CMET Materials 
There were two groups of parent participants who provided written reviews of using CMET 

with their children, one of which was a group of graduate students.  Two parents were asked to 
review the CMET materials in regards to its possible contribution in helping them with their 
children.  They completed a questionnaire in which they were asked to assess each chapter, what 
they learned, and how they used any of this information with their children. These participants 
were paid a small stipend. Several graduate students who were also parents reviewed the CMET 
materials as part of a mathematics education graduate course for elementary teachers.  They were 
asked to evaluate the CMET materials in regards to the degree to which it contributed to their 
ability to assist their children with mathematics homework. 
 

Focus Group Interviews 
Two focus groups were conducted with parents at local elementary schools, one school had a 

high rate of free and reduced lunches (83%) and the second was in a middle class community 
and was Four Star School.  The focus group sessions were one hour in length, audio-recorded 
and transcribed. This corpus of data will be used to determine how knowledge of children’s 
mathematical thinking might be used by parents working with children, how parents interpret the 
resources, and more importantly how they use CMET resources working with children.   
 

Individual Interviews 
Two parents whose children were having difficulty in mathematics were presented with 

selected sections of CMET that related to the difficulties that their children were having. 
These parents were interviewed and the interviews transcribed.  The questions were brief, asking 
them what did they learn by reading the resource materials and how did they use them with their 
child.  
 

Data Analysis 
The data sources listed above were submitted to Constant Comparative Analysis to produce 

emergent themes (Glaser and Strauss, 1967).  These themes were substantiated, modified, or 
rejected through review by two researchers.  Every effort was made to triangulate the themes 
with multiple data sources (see Results section).  
 

Results 
The overall goal was to discern if the CMET materials adapted for parents on how children 

learn mathematics are useful, how these types of resources might be used by parents, if using 
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these resources impact children’s learning of mathematics and how they can be improved.  The 
results presented here are only include the initial emergent themes.  
 
 
1. Parents see the need to learn mathematics to help their children. 

One theme that emerged was that parents want to know more mathematics in order to help 
their children.  A parent in the focus group was talking about her son’s homework that night.  
“My son understands it much better than I do, but in order for me to help him, I have to 
understand it.”  She realized that she could not help her son on his homework unless she 
understood the mathematics.  Later in the focus group she indicated that she could use the 
Internet to help her learn more mathematics, but she currently does not have the Internet.  She 
wants to help her son and is even aware of resources but does not have the resources at her 
disposal. 

Parents from both the focus groups had difficulty understanding lattice multiplication and 
partial products. In regards to lattice a parent said, “I was like man, how did they get this 
number?  Because it didn’t add up right at first.  Then you have to start going an angle with it, 
and I thought okay, I got it now.”  Again, the parent may attribute his not understanding lattice 
multiplication to his lack of understanding of mathematics.   

 
2. After using the adapted CMET materials, parents began using a different approach to 
help their children. 

One parent who reviewed CMET indicated that using these materials changed how she 
approached working with her daughter.  She found herself more willing to let her daughter 
experience mathematics rather than just telling her how to do it. This was most evident with 
problem solving activities where she found herself “restraining myself to not ‘jump in’ and allow 
her to experience problem solving for herself.” She began to realize that her way of helping her 
daughter may not be the best approach. In a broader sense she took a more reform-oriented view 
to teaching.  She moved from ‘teaching as telling’ and acted in a way that supports the notion 
that children must construct their own knowledge of mathematics.  

The following self-reported example from a parent who reviewed CMET illustrates evidence 
of both learning and change in how this parent interacted with her son.  

My son Nathan had ‘created’ his own way to multiply two, 2-digit numbers.  23 x 45 = 
(20 x 40) + (3x40) + (3x5) + (20x5).  I kept trying to convince him that the traditional 
algorithm was more efficient because his method became cumbersome for 3-digit 
numbers - I then found out his method was called partial sums and some children are 
taught this way to multiply.   

     After reading the CMET materials, rather than fight her son, this parent saw his work as a 
precursor to the traditional multiplication algorithm. She explained, “So we used his partial sums 
as a jumping off point to get to the traditional algorithm - trying to look where his pieces 
matched with "mine" as he calls it. 

Another parent, who reviewed CMET in the graduate course, began to engage her child in 
statistical activities described in the materials. At first she thought the chapter in the CMET on 
statistics and data analysis was for children in the upper grades.  Reading examples about how 
young children can collect and represent data inspired her to encourage her child to do the same.  
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I found myself actually having my 4-year-old collect data with a mini clipboard.  I had 
him go around our house when we had company lately and see who was wearing jeans, 
pants, or skirts.  He drew pictures and reported his “data” to us at dinnertime. 

When asked if the CMET materials were helpful a parent responded, “Yes and no.  It helped 
me to understand what she was struggling with, but she still struggles with [that].” For example, 
if her daughter solved 4 x 5 = 20 and then is asked 5 x 5, her daughter had difficulties solving the 
problem.  The mother explained, “So when I ask her what 5 x 5 is, she doesn’t understand that 
you add another 5.  She isn’t seeing it as four groups of five. I don’t know how to help her.”  
This parent seems to have internalized some information from the materials.  She sees that 
multiplication facts are related and that she wants her daughter to understand that multiplication 
is repeated groups. 

These three examples above illustrate that parents were reading the CMET materials, 
learning from them and, interacting differently with their children from what they had prior to 
reading the materials.  

 
3. Some parents are frustrated helping their children with mathematics. 

Another theme that emerged was the frustration of parents whose children were struggling 
with mathematics. A parent, of a third grader in the focus group, expressed his frustration when 
his daughter solved a problem like 6 + 2 on her homework and then later in her homework she 
did not know how to immediately solve: 2 + 6.  “And then their fingers go up.  And I’m like, 
why would you, you know, why would you have to do [that]. Shouldn’t have to do that we’ve 
been doing that since Kindergarten.”    

Regarding this frustration the same parent said, “She gets confused and she gets frustrated 
and she usually just lets it go- don’t even want to mess with it no more… then I get upset, and I 
may start getting a little loud.”    

 
Conclusions 

Parents want to be a valuable resource to their children but they frequently lack the 
knowledge necessary to help with math homework (Eloff, Maree, & Miller, 2006). One way to 
support parents is to provide resources to discover how their children actually learn mathematics. 
With this knowledge, parents will be empowered to contribute to their children’s mathematical 
development, hopefully resulting in student learning. 

The findings of this exploratory provide an impetus to continue research on adapting CMET 
materials for parents and continue our search for funding.  The fact that parents see the 
importance of learning about how children learn mathematics reinforces the need for CMET 
adapted materials.  The finding that parents are actually using the information to work with their 
students with a greater understanding of student thinking, seems to make the creation of 
materials for parents a necessity. 

From the third emergent theme, it appears that not only must these materials be provided in 
an understandable format to parents, and suggestions should be given on how to use this 
knowledge; but that parents’ ways of thinking about how their children learn must also be 
addressed to alleviate frustrations. Perhaps, addressing the beliefs and values of parents is 
beyond the scope of our intended resources, but it is an area of that must be considered. 

Another significant question, which we have not addressed is, “Does parents’ use of CMET 
resources help children gain a deeper mathematical understanding that results in measurable 
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student learning?” This question is difficult to address outside of the school setting but is the 
ultimate aim of this and other intervention efforts to improve mathematics education. 

With more homework and need for parents to help with mathematics, it seems necessary to 
provide assistance to not only students but also to parents and caregivers. Knowing that parents’ 
involvement with their children’s schoolwork improves students’ performance and their attitudes 
about math, parent assistance about how children learn mathematics become paramount.  The 
adaption of CMET materials for parents appears to be a rich source of information to increase 
parent’s ability to improve their child’s learning of mathematics and further research is 
warranted. 
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This paper presents the results of a study involving surveys and interviews conducted with 76 
Northern Nevada Girls. We investigated how the girls perceived themselves and others in 
relation to mathematics, what factors influenced those perceptions, and how those perceptions 
influenced the girls in mathematics. Findings are organized into three main themes: 
identification with mathematics, outside influences on mathematics identity, and power relations 

 
Females continue to be underrepresented in the mathematical sciences, and they perform 

more poorly in and have less positive dispositions toward mathematics than males (Wiest, 2011). 
Because females’ dispositions toward mathematics tend to develop relationally within social 
contexts (Zeldin et al., 2008), issues of identity and power may be important to examine in 
efforts to support and encourage females in mathematics. Although identity has not occupied a 
central position in mathematics education research and thus lacks a common, accepted definition 
(Cobb, Gresalfi, & Hodge, 2009), the construct is emerging as a topic of interest in gender and 
science-oriented fields (Brotman & Moore, 2008). The purpose of this research was to 
investigate issues of power and identity in relation to mathematics for a group of adolescent girls. 
We investigated how the girls perceived themselves and others in relation to mathematics, what 
factors influenced those perceptions, and how those perceptions influenced the girls in 
mathematics. 

 
Related Literature 

The General Construct of Mathematics Identity and Its Impact 
Wigfield and Wagner (2005) describe identity in general as “an overall sense of who one is” 

(p. 228). Personal identity encompasses perspectives individuals construct about the world 
around them and themselves in relation to that world, for example, how others perceive them and 
what role they occupy within a community (Hodge, 2006; McCarthey & Moje, 2002). It is a 
value-laden construct in which individuals determine the degree to which they adopt or resist 
others’ expectations (Cobb et al., 2009).  

Although personal identity tends to be stable at any moment (Esmonde, 2009), it is a 
dynamic construct that evolves over time (Gaganakis, 2006; Hodge, 2006; Owens, 2007/2008; 
Solomon, 2007). Identity can vary in different contexts, situations, and relationships and is thus 
complex and domain-specific (Esmonde, 2009; Gaganakis, 2006; Hodge, 2006; Leatham & Hill, 
2010; McCarthey & Moje, 2002; Wigfield & Wagner, 2005). Therefore, student identities must 
be examined within the context of a specific subject area. Martin (2009) describes mathematics 
identity as 

the dispositions and deeply held beliefs that individuals develop about their ability to 
participate and perform effectively in mathematical contexts and to use mathematics to 
change the conditions of their lives. A mathematics identity encompasses a person’s self-
understanding and how others see him or her in the context of doing mathematics. (pp. 136-
137) 
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Mathematics Identity Formation 

Identity is a negotiated construct that is influenced by a number of social, cultural, cognitive, 
and affective factors (Gaganakis, 2006; Martin, 2009; Owens, 2007/2008). Because identities are 
located within relationships (e.g., McCarthey & Moje, 2002), peers, teachers, school counselors, 
families, the community, and others influence identity formation (Axelsson, 2009; Esmonde, 
2009; Gaganakis, 2006; Hodge, 2006; Martin, 2009; Mireles-Rios & Romo, 2010; West-
Olantunji et al., 2010). For example, the way in which an individual is positioned within 
particular social and academic settings influences personal identity in those situations (Owens, 
2007/2008; Solomon, 2007). Nevertheless, individuals exercise varying degrees of agency in 
determining how to process and respond to external assessments of themselves (Hodge, 2006). 
Peers have a particularly strong influence on young people’s development, perspectives, and 
behaviors, such as their self-confidence and academic achievement motivation (Bissell-Havran 
& Loken, 2009; Hoogeveen, van Hell, & Verhoeven, 2009; Keck, 2008; Wigfield & Wagner, 
2005).  

Another factor that can influence mathematics identity is past and present mathematics 
performance, such as grades and test scores (Axelsson, 2009; Keck, 2008). One’s sense of 
academic competence and affective characteristics such as confidence, motivation, and anxiety 
influence identity formation and stem from such factors as possession of academic knowhow and 
social support (Axelsson, 2009; Owens, 2007/2008; Wigfield & Wagner, 2005). Students’ self-
concept, including competency-related beliefs, has been shown to decline from early adolescence 
through secondary school (Nagy, Watt, & Eccles, 2010; Wigfield & Wagner, 2005). 

Teachers’ beliefs and classroom practices, such as those that foster or inhibit competence and 
motivation or promote peer comparisons, can shape mathematics identities (Martin, 2009; 
Wigfield & Wagner, 2005). Selected other instructional practices that can influence identity 
development are use of group work, which can proceed equitably or inequitably, ability 
grouping, and technological learning supports (Esmonde, 2009; Owens, 2007/2008; Solomon, 
2007). Research shows that students develop more positive identities, including a stronger sense 
of agency, in classrooms that emphasize student thinking, responsibility, and active, 
collaborative participation versus authoritative, teacher-centered classrooms where students 
mainly follow directions and perform prescribed procedures (Cobb et al., 2009; Keck, 2008; 
Solomon, 2007). 

Students’ social identities, such as gender, race/ethnicity, national origin, and social class, are 
important factors in identity formation (Brotman & Moore, 2008; Gaganakis, 2006; Solomon, 
2007; Wigfield & Wagner, 2005).  

 
Identity and Power in Mathematics 

Identities are constructed within social settings in which individuals are positioned in 
ways that give them differential status and power (Esmonde, 2009; McCarthey & Moje, 2002; 
Solomon, 2007). Hodge (2006) describes power relations as “situations in which ideas and 
practices of particular groups or individuals are valued over those of others” (p. 377), which can 
include ways of reasoning, communicating, and demonstrating knowledge. Like identity, power 
relations can change over time as interpersonal dynamics shift based on various influential 
factors from within or outside the group (e.g., Martin, 2009). 
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Research Purpose and Method 
 

The purpose of this research was to investigate issues of power and identity in relation to 
mathematics for a group of adolescent girls. We investigated the following questions: How do 
adolescent girls perceive themselves and others in relation to mathematics? What factors 
influence these perceptions? How do these perceptions influence the girls in mathematics? 

Participants in this study were 76 Northern Nevada girls who voluntarily attended a six-day, 
residential summer mathematics and technology camp during the summer of 2009 or 2010 (36 
and 40 girls, respectively). They entered grade seven (50 girls) or grade eight (26 girls) the 
following fall. Of the 74 girls who disclosed their race/ethnicity, 50 were White/non-Hispanic, 
13 were Hispanic, 8 were Asian/Pacific Islander, and 3 were a mix of two or more categories. 
About one-third of the girls participated in the program on a financial-need scholarship as 
determined by eligibility for free or reduced-cost lunch. Research participants completed a 
written five-item survey upon entering the summer girls’ mathematics and technology camp. The 
open-ended questions included questions related to how the girls viewed themselves as 
“mathematicians,” who influences those views, and what perceptions the girls held of others in 
mathematics. Four girls also participated in individual interviews at three points in time: the 
camp beginning, the camp end, and four months later when they were back in school. The girls 
were asked questions related to how they perceive and want to perceive themselves in relation to 
mathematics, what factors influence these perceptions, and potential future career aspirations in a 
mathematics-related field. We analyzed our survey and interview data by reviewing it carefully 
for themes related to our research. We sorted the data into three a priori themes that appeared in 
the professional literature on identity and power: identification with mathematics, outside 
influences on mathematics identity, and power relations.  

 
Results 

 
Identification with Mathematics 

Ability. In reference to how “good” they are in mathematics, respondents described positive 
and negative associations related to their mathematics abilities or capabilities. Many indicated 
positive associations with mathematics by describing that they see themselves as 
“mathematicians.” Participants used such terms as “kinda good,” “smart,” and “advanced” to 
describe themselves in mathematics. Several positioned themselves as average or in the “middle” 
in terms of mathematics ability. Participants who reported negative associations with 
mathematics expressed difficulties with learning mathematics or described mathematics as an 
area of needed academic improvement.  

Performance. Some participants based their perspectives toward mathematics on 
performance in general or performance on specific topics and skills. During Interview 1, a 
respondent said, “I do think that I’m good at math, but sometimes I don’t like if I don’t get a 
problem.” This participant later stated in Interview 2 that she felt less confident about herself 
during the camp in reference to “two hard math [word] problems in the mornings.” Another 
interviewee reported in her first interview that she is good at mathematics because of her 
multiplication and integer computation skills. However, she did not believe she was good at long 
division. Other mathematics topics that participants commented on in describing themselves in 
relation to mathematics based on performance included speed in solving a problem, 
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understanding a concept or recalling a mathematics fact, and frequency of errors or mistakes 
made when doing mathematics. 

Dispositions. Over one-half described themselves as having a desire to learn mathematics 
and being serious about mathematics. They said they like mathematics and enjoy facing 
challenging problems. A few other respondents described disinterest in or apathy toward 
mathematics, often due to their struggles with the subject matter. 

A common belief among participants was that “everyone has potential,” in other words, that 
personal agency plays a role in mathematics ability/performance. One-fourth of the survey 
respondents wrote that those who are good at mathematics typically demonstrate determination 
to do well in mathematics. They explained that people must “try” in class, pay attention during 
lessons, ask questions when they need help, and study. Whereas 16 of 47 girls of higher-SES 
expressed the belief that personal agency thus plays a role in mathematics, only 3 of 24 girls of 
low SES did so. Conversely, three participants claimed that some people are naturally better at 
mathematics than others. One stated that being better at mathematics is a “gift from god.”. 

Almost all participants described the usefulness of mathematics in everyday life. Most 
participants also said mathematics was very important to their future career. Five participants, 
however, were more equivocal about their valuing and perceived usefulness of mathematics. For 
example, three weren’t sure how important it would be for their career (e.g., singer or author). 

Participation. Some participants described their willingness and effort to actively participate 
in mathematics class at school. They reported exerting effort to learn new concepts and skills, 
such as paying attention in class, taking notes, doing homework, and studying for tests. Ten 
participants described providing mathematics help to peers, mainly friends, during mathematics 
class and at lunch or after school. Five expressed a lack of interest in pursuing additional 
mathematics participation by stating that they only did required assignments and activities to 
achieve a good grade in mathematics class. One participant explained that she was not doing well 
in mathematics, so she came to the summer camp to try to improve her skills. In reference to the 
math and technology camp participants had just entered while completing the surveys for this 
research, only 3 girls reported that they had ever attended a similar, supplementary, out-of-school 
time program in a mathematics-related field. 

 
Outside Influences on Mathematics Identity 

Family members, including parents, grandparents, aunts, uncles, and siblings were reported 
as influences on mathematics identity. Family members provided support, assistance, feedback, 
and encouragement. Participants said parents and siblings helped them with homework. Students 
also described parents’ attitudes towards mathematics as influences. One student wrote: “My 
parents are very supportive of my math skills. They always joke that they don’t know where it 
came from. My mom says it’s a gift that she can even add and subtract!” One-third of the girls 
described their parents’ love for mathematics as a means of support and encouragement. 

Teachers were also identified as influences within the instructional environment. For positive 
influences, several participants described how their teachers expressed or modeled their 
enjoyment of mathematics or made it fun, and one wrote, “My teacher calls me a math wizard.” 
In contrast, teachers also exerted negative influence on participants’ mathematics identity. Three 
students described feeling “put down” by mathematics teachers, and one interviewee noted, “My 
last math teacher caused me to think a little less of my ability in math.” 

About one-third of the participants described the level of support provided by teachers as 
influences on mathematics identity. Most reported that they received enough mathematics help 
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from teachers. One participant explained that her teacher would slow down and work out the 
problem with her. Several students reported that they did not receive an adequate amount of help. 
Only 4 of the 24 low-SES participants compared with about half of higher-SES participants 
reported teachers as an influence in how they see themselves in mathematics. The role of the 
teacher and type of instruction is evident in this quote from a rising seventh grader: 

Math camp helped me a lot because we got to use pictures and stuff. At my school, they use 
pictures too, but they just do answers. My math teacher, I didn’t really get to know math or 
do math or anything, because he tells us the answers…and he won’t even let us work out the 
problem or anything…. So, I like being here because I get to know math and I get to work it 
out for like 10 minutes or so with a group and at my school, we had to work it out 
individually unless our desks were put into groups…. I was scared to come to math camp 
because I was scared that all of the other girls would know how to do the problems and I 
wouldn’t because of my math teacher giving me all the answers. 
Other influences indicated were peers and television/movies. About half of the respondents 

explained that friends and classmates supported or influenced their association with mathematics 
in various ways. Some respondents described friends and classmates passing negative judgment 
on their mathematics abilities. Students described peers calling them names, such as “nerds” or 
“brainiacs” for reasons such as enjoying mathematics, doing well in mathematics, and attending 
the math camp. Four participants mentioned television/movies as outside influences. Two 
participants commented on seeing characters on television shows with mathematics-related 
careers and who enjoy doing mathematics. Another participant wrote that movies have an impact 
on her because filmmakers cast people who are nerdy (seemingly a negative connotation).  

Participating in “extra” math experiences is likely another influence on mathematics identity. 
All four girls who participated in interviews said at both follow-up interviews that the camp 
influenced how they perceived themselves in mathematics. They mostly discussed having gained 
new knowledge and skills, new methods for doing mathematics, and increased confidence as a 
result of these improvements and expansions. 

 
Power Relations 

One-fifth of the participants identified differences in positioning and opportunities within the 
classroom and society as a whole in relation to mathematics. These participants wrote that 
students are given different opportunities in class based on their level of understanding of 
mathematics. Three participants perceived a difference in the amount of respect given to certain 
types of students. One wrote, “Teachers take smarter kids more seriously and give them more 
respect than average or below average students.” Another stated: “My 7th grade teacher wouldn’t 
actually see me much because she would only be with the smart ones and leave the ones that 
really need help behind.” In contrast, two of four interviewees who self-identified as Hispanic 
did not perceive differences in positioning within the math camp context. In response to what 
things at camp made her feel good about herself in mathematics, one stated: “I think that during 
math camp, I knew that the other girls around me were all on about the same page and that I 
didn’t feel like I was too far ahead or too far behind.” The other described fear about attending 
the math camp because she “was scared that all of the other girls would know how to do the 
problems…they would be mean to me or tease me.” She explained that the setting turned out to 
differ from what she had anticipated. She found her peers helpful and supportive. 

Within a societal context, six participants wrote survey comments indicating perceptions that 
certain groups or types of people have better ability or are treated differently than others in 
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mathematics. One wrote, “Math is known as a hard subject with only men capable for 
succeeding,” and another simply stated, “Men are respected more.” Other girls addressed 
additional biological characteristics, including hair color (blond) and race/ethnicity, that they 
perceived to influence the treatment some people receive. In contrast, eight participants reported 
that everyone has similar mathematics ability. 

 
Discussion and Closing 

Most research participants expressed some type of opinion about themselves in relation to 
mathematics or vice versa. This indicates that most girls had some type of conscious opinion on 
this matter in one direction or another, which may indicate the salience of the mathematics-self 
relationship. Although most comments were positive, some were negative. The girls were also 
asked to comment on the value of mathematics and whether or not various groups of individuals 
are equally capable in mathematics. These perspectives also tended to be more positive than not. 
Of the majority positive responses to these questions, we suspect that some were rehearsed 
rhetoric the girls had been “fed” at some point from teachers, parents, or others. For example, the 
mathematics camp that all of these girls attended opened with a parent-camper session in which 
the first author (Wiest) emphasized that females and males have equal mathematics capabilities 
and that effort and experience are highly important factors. This occurred one to two hours 
before the girls completed the surveys prior to the main camp activities beginning. It is likely 
that this and similar experiences influenced some girls to state what they have heard and adopted, 
likely unexamined in many cases. Nevertheless, the girls did offer a number of examples of the 
utility of mathematics that did not arise in the camp’s opening address. Again, it is uncertain 
whether these “tidy” examples were memorized from some source or were authentic. Similarly, a 
number of girls articulated the importance of mathematics to their future career by perceiving 
this importance in general or, especially, by naming a specific career. These may also be 
regurgitated comments heard from well-meaning adults. 

We suspect that deeper probing would yield more fragile and less positive self-images in 
relation to mathematics and that the positive notions the girls repeated may not be fully 
integrated into some or many of these girls’ self-perceptions. Mixed perspectives indicating 
confidence or lack thereof were evident across but also within girls. The variability demonstrated 
within girls, such as girls who described greater ability and confidence with some mathematics 
topics compared with others as well as awareness of societal perspectives compared with their 
own, can mean that these girls’ have good self-awareness into their own strengths and 
weaknesses, which can be useful to guide future learning. However, it may also signify easily 
malleable and thus fragile self-conceptions in relation to mathematics that depend on 
mathematics topic, mathematics performance, and others’ opinions, in other words, external 
factors beyond their control. 

The role of personal agency in determining one’s relationship with mathematics is important. 
A belief that one can strengthen one’s positive connection to mathematics with appropriate 
experience and effort is important to help girls feel some sense of personal responsibility for and 
control over this relationship. A belief that predetermined or external factors alone shape this 
relationship, such as biology, the mathematics content itself, or others’ perspectives, can lead to 
fatalistic notions that could cause some girls to “accept” their position in relation to mathematics 
and other individuals. In the present study, about one-fourth of the participants expressed the 
belief that personal agency plays a role in mathematics. However, one-third of higher-SES girls 
but only one-eighth of low-SES girls offered this perspective. This is an area for concern. 
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Higher-SES girls likely have more opportunity for furthering their academic skills through 
attendance at out-of-school-time programs, travel, and possession of educational materials at 
home. Perhaps their parents vocalize the importance of working hard and an expectation for 
success and may provide more role models in mathematics-oriented endeavors. Low-income 
students may have less access to opportunities due to financial constraints, which limit 
opportunities, resources, and time (e.g., Wiest, 2010). Further, they may be disenfranchised from 
school, finding it harder than higher-income students to believe they are taken seriously in school 
or that academics can play an important role in their future (see also Martin, 2009). 

The opinion of others is important to girls. Peers clearly play an important role. However, 
adults also have an important impact on girls’ self-perceptions, performance, and participation. 
This appears to be more complex than meets the eye. For example, one girl noted in a positive 
sense, “My parents are very supportive of my math skills. They always joke that they don’t know 
where it came from. My mom says it’s a gift that she can even add and subtract!” Whereas this 
comment appears to be positive on the surface (and is to some degree), the subtext is that the 
girl’s mathematics ability came from some unknown place rather than being a result of the girls’ 
own intelligence and effort. Further, it provides a weak female role model in the mother’s 
comments about herself in relation to mathematics. This type of comment can plant deep seeds 
that are likely digested and may surface in the form of negative dispositions at some point. One 
interviewee clearly links her concern about her teacher only giving the students answers and not 
letting students figure them out for themselves to her lack of confidence doing mathematics 
because she believes she is not properly prepared with the needed skills. 

Mathematics participation is affected by financial resources and opportunities for out-of-
school-time (OST) experiences, as well as awareness and encouragement. The girls in this study 
had little opportunity or encouragement to pursue OST mathematics. The important role of the 
teacher is evident where one girl noted that she had not previously participated in programs 
similar to the mathematics camp because her teacher had not suggested it. Because greater 
participation in additional mathematics experiences appear to be linked to girls’ dispositions 
(e.g., confidence) and self-assessed ability, it follows that greater mathematics participation can 
likely improve girls’ mathematics identity. It is thus imperative to offer all girls more 
mathematics opportunities and to encourage and support their participation.  

It is clear from this study and others that there is much room for hope in relation to girls’ 
present and future relationship with mathematics. However, proactive work in this area is still 
needed. The fact that some girls, although small in number, perceive societal perspectives and 
power relations that academically and socially position people in particular ways that are not 
always positive and productive is another source of evidence that our work is not done. 
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This article reports on the type of mathematical competencies that students exhibit at the 
superior level of education to solve problems which involves concepts such as the unknown 
quantity, the variable, and the solution of a linear equation.  The role of the professor is 
emphasized, as well as his/her interventions to help students develop comprehension. The 
discussion of competencies in which this paper is based is established by De Corte (2007).  The 
problem reported forms part of a series of problems solved in an environment of Problem 
Solving.  The results reflect the mathematical knowledge exhibited in the students’ procedures. 

Introduction  
In this era of rapid advances both in science and in technology, there is a demand to have 

people who are not only more informed, but also better educated.  We require an education that 
will form competent human beings able to make contributions for the further development of 
society.  Various questions emerge upon this theme: What does it really mean to develop 
competence? How has mathematics formed part of this competence? What does it mean to 
develop mathematical competence? How should the learning process that we use for our students 
enhance their acquisition of mathematical skills? What is the role of the professor in the 
development of this competence? 

This article will discuss questions such as: What mathematical competencies are exhibited at 
the superior educational level to solve problems that require linear equations? Another question 
is: What type of interventions can the professor use to help his students develop mathematical 
knowledge and competencies? Based on a final report given in by students in this study, it is 
possible to identify the procedures commonly used by students who solved Problem 1, here 
reported, in a Problem Solving environment (Schoenfeld, 1985).   Thus it is possible to identify 
students’ competencies and mathematical knowledge.  The professor’s role in helping students to 
develop their mathematical knowledge and skills will also be noted.  The discussion about 
mathematical competence found in this paper is established in De Corte (2007).   

Review of Literature  
Obtaining mathematical competence implies acquiring mathematical disposition, of which is 

characterized by five aspects (De Corte, 2007, p. 20, 21): an accessible base of knowledge, well-
organized and flexible, the use of heuristic methods and meta-knowledge, positive mathematics-
related beliefs, and self regulatory skills.  Furthermore, this competence implies that the student 
has the capacity to transfer these skills and knowledge to new tasks.   

The acquisition of the mathematical competence according to De Corte (2007) requires an 
active-constructive, self-regulated, situated, and collaborative process of learning.  An 
environment of collaboration, where it is permitted that the student establishes meaningful 
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mathematical knowledge is important.  One theoretical perspective in the teaching and learning 
of mathematics that considers and uses discussions such as the one hereby presented is Problem 
Solving (NCTM, 2000|2003; Schoenfeld, 1985; Santos, 1997).  

This theory proposes that the teaching of mathematics should be approached as a problem-
solving domain where students construct a deep understanding of mathematical ideas and 
processes by engaging them in doing mathematics (Schoenfeld, 1985; Santos, 1997). It implies 
discarding the idea of introducing the problems in the curriculum with the only purpose of 
memorizing a set of definitions, algorithms, and techniques to solve routine activities 
(Schoenfeld, 1985).  

In Problem Solving theory, the role of the professor is fundamental and definitely influences 
the formation and creation of the classroom as a place of learning (Grouws, 2004) where 
resources, heuristics, control and beliefs are important.  The professor can create favorable 
learning conditions in the classroom where the following points are taken into consideration: the 
development of a significant answer by the student himself /herself, student justification and 
explanation of answers, ability on the students’ part to understand the meaning of explanations 
and justifications offered by other students.  Classroom environment should be provided in 
which the students can feel confident to communicate their ideas, ask questions, use multiple 
representations, construct ideas, and formulate exceptions to the rule (Santos, 1997).  On the 
other hand, the students who are in disagreement or those who do not understand something in 
the classroom feel sufficient self assurance to question and challenge their classmates.  The 
social interaction that takes place in the classroom is essential for the development of reasoning 
and the process of acquiring meaning (Rasmussen, Yackel & King, 2004).  The professor can 
help with configurations/teaching techniques in the classroom that encourages interaction in the 
group(s).  

The design and use of the problems in the classroom should have the objective to promote 
the learning of mathematics concepts, to develop strategies, procedures and heuristics (NCTM 
2000|2003).  This is to say, it should have the goal that the student achieve the following: a 
reflexive attitude to form the structure of inference, the ability to use constructive arguing, the 
practice of critical reading, the use of effective writing and communication skills, and the faculty 
of decision making, as well as other aspects (NCTM, 2000|2003; Schoenfeld, 1985; Santos, 
1997).  These characteristics are necessary to form competence in students who study 
mathematics.  Creating an environment in the classroom for the solution of problems, therefore, 
makes it possible to develop mathematical proficiency in students, or in other words, permit the 
students to acquire an aptitude for mathematics (De Corte, 2007).  

Methodology 
The problem described in this article forms part of a series of algebraic problems designed 

with the objective to understand and develop the following mathematical competencies (De 
Corte, 2007): an accessible base of knowledge, well-organized and flexible, the use of heuristic 
methods, meta-knowledge, and self regulatory skills. The development of concepts such as the 
unknown quantity, the variable and the solution of a linear equation were the core mathematical 
knowledge to be developed. The role of the professor was important in the classroom to get this 
objective. 

The problems were implemented in a Problem Solving environment where students worked 
in groups to solve them. Each class session had duration of two hours.  During this time, the 
students were given general instructions to solve a problem in separate work groups, each 
containing three participants.  Advances were discussed at various times by the presentation of 
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groups of students to their classmates and the class session ended with a global analysis of the 
problem. Finally, the homework assigned was to write an individual report demonstrating how 
the solution of the problem was. One of the best reports is included in this paper (figures 1-3) as 
an example of procedures to solve Problem 1. 

The problem used for this paper was given to freshman students enrolled in a course of 
general mathematics, at a public university.  The objective of the course was the learning of basic 
mathematical knowledge that students should acquire in their first year of university studies 
(topics of algebra, progressions, applications, probability, and statistics).  The study whole group 
consisted of 20 students, most of whom were studying the major of commercial systems.  The 
students level of knowledge for this group was based on their studies in high school.  

  The following problem was given to the students and is the one used in this paper: 
Problem 1.  The cost of a barrel of Maya Petroleum is $395.00, and the cost of a barrel of 
Brent Petroleum is $545.00. 

a) If you mix one barrel of each brand of petroleum, how much does a barrel of this 
resulting mixture cost? 

b) If you mix two barrels of Maya Petroleum, and one barrel of Brent Petroleum, how 
much does one barrel of this resulting mixture cost? 

c) If you mix one barrel of Maya Petroleum and two barrels of Brent Petroleum, how 
much does one barrel of this resulting mixture cost? 

d) If you mix 15 barrels of Maya Petroleum, and 20 barrels of Brent Petroleum, how 
much does one barrel of this resulting mixture cost? 

e) How much should you mix from each brand of petroleum if you want the mixed 
barrel that you produce to cost $450.00?  

f) How much should you mix from each brand of petroleum if you want the mixed 
barrel that you produce to cost $500.00? 

g) How much should you mix from each brand of petroleum if you want the mixed 
barrel that you produce to cost $600.00? 

The questions lettered a-d can be solved in an arithmetic form.  The aim is to offer students 
the opportunity to observe the relationship among data and identify a pattern in the structure of 
operations.  The questions lettered e, f, and g require the structure of the following linear 
equation: 

b
yx
yx
=

+
+545395

                                         equation (1)
 

In the above equation, the letter x corresponds to the number of barrels of Maya Petroleum, 
and y corresponds to the number of barrels of Brent Petroleum.  The letter b corresponds to the 
cost of one barrel of the mixed petroleum.  

Results and Discussion 
It is important to emphasize some of the difficulties that were identified in students’ 

mathematical skills at the beginning of the course when they solved word algebraic problems.  
Students were not aware that an equation could have an infinite number of solutions.  
Furthermore, they had not had previous experience in using both graphic and algebraic 
procedures for solving a word problem. 

Students had a lot of difficulty in interpreting verbal language to algebraic language.  They 
had difficulties in identifying the variable and writing equations.  When they resolved a problem, 
they did not specify the solution in their report (as observed in Figure 2).  In other words, they 
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did not consult the word problem in order to analyze the viability of the solution.  They only 
displayed the solution or solutions identified, without specifying the relationship between the 
solution and the question stated in the word problem.  Students did not demonstrate the habit of 
validating their steps in the process of problem solving. 

Taking the previous observations into consideration, the following aspects were developed 
throughout the course.  Regarding accessibility, well-organization, and flexibility, mathematical 
concepts such as the variable, an equation, the solution of a linear equation and others were 
studied in depth.  Concerning heuristic methods, the use and integration of different forms of 
representation was promoted.  As for self-regulation skills, students expressed their ideas through 
discussions, argumentations, and presentation activities.  Additionally, students were constantly 
reminded to validate their own procedures.  They were also reminded to continuously go back 
and review the initial question stated in the word problem.  

Procedures for solving Problem 1   
Arithmetical Procedures: Looking for Patterns 

 Students read in groups the Problem 1. They did not have difficulties to answer the four 
questions a, b, c and d because of their arithmetic nature (Figure 1).  However their procedures 
were not organized in a systematic way when they solved it in the classroom. It is possible to 
observe that there is a specific order and explanation of ideas in Figure 1 since this figure is part 
of a final report. Students could systematize the information as a homework because they had 
already had discussions in the classroom. 
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Figure 1. Process of finding the solution to a-d in Problem 1. 

When answering the question e in Problem 1, groups of students tried to solve the problem 
using trial and error procedures.  The students chose possible amounts of barrels (x and y in the 
equation 1) as solution, and carried out the corresponding operations.  They then saw how to get 
closer to the answer they needed (450), and then did the calculation again.   

The students demonstrated understanding of the relationship between the data in  Problem 1, 
the structure of the relations included, and the dependency between the amounts they needed to 
calculate. Nevertheless, they did not consider writing this functional relation in algebraic 
language to solve the Problem 1(Letter e). This procedure was an arithmetic one. 

Algebraic Procedures: Writing Equations and Using Different Mathematical Representations to 
Solve Letters e-g, Problem 1, and Understanding the Solution   

The role of the professor in the classroom was important in this stage. The questions that the 
professor asked the groups to discuss the procedures were: Was there any other method that you 
could have used that would have helped you find the solution? Which operations were used that 
allowed you to answer the previous questions? What were the amounts that did not change in 
every calculation, and which were the amounts that varied? Can you write equations? These 
questions and the fact that three groups presented their organized arithmetic procedures used 
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helped the class to utilize algebraic language and write the equation 450545395
=

+
+
yx
yx

 
 

(equation 2). However, to find the answer of the problem using this equation became a challenge 
again. The students had only one equation with two variables so they were confused about the 
solution.  

Professor intervened again in the classroom to promote discussion. She asked some questions 
as follows: What is the solution or solutions for this equation? How can we find them? How can 
we know what the values are for x and y? What happens if we suppose that x has a value of one, 
and we substitute this value in the equation. Can we find the value of y? What happens if I give 
different values to x? What happens if I graph them? The students were encouraged to use 
different representations to solve Problem 1, Letter e (Figure 2). 

 
Figure 2. Process used to answer Letter e, Problem 1.  

Nevertheless, it is possible to note that students were confused in the following entry (it is a 
translation from the text included in Figure 2): “To complete this problem, use the following 
formula.  Later, you only have to find the value of x y y to get the results of how many barrels of 
Maya Petroleum and how many barrels of Brent Petroleum you will use for the mixture.  Later, I 
can add these two quantities to give me the total number of barrels that are mixed [that] we 
obtained.”  It is not clear if the students understood the equation used to find the solution, either 
the solution.  The student (in this entry) was trying to explain the formula, but the student did not 
write something about the solution of the Problem 1.  Student did not write the conclusion 
emerged in the classroom. The whole group presented the same difficulties in the reports. 
Finding the solution to Letter f was somewhat easier for the class during the session.  The whole 
group was able to discuss it with sufficient interpretation of the graph.  During the class 
discussion, students found that there were an infinite number of solutions, and they obtained 
some of them from the equation but in the reports students did not write something about the 
solution as in the report of Figure 3.  Students only registered the quantities used to draw the 
graph. Some of them explained in their reports that they followed the same process as before (in 
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Letter e), only that they changed the quantity of 450 in the equation. They explained that this 
modified the problem, but did not describe how this happened.  

 
Figure 3. Process of the solution in Problem 1, Letter f.  

When solving Letter g (Figure 4), the groups of students expressed surprise and asked: What 
is the significance of a straight line such as this? Can we talk about the negative quantities for 
barrels of petroleum? Is there a solution to the problem? These questions provided an advantage 
to discuss if there were limits in how many prices were possible for a barrel of petroleum of 
whatever mix we could produce.  This in turn raised the question, “When can the Problem 1 have 
a solution?”  

Students used graphs again to analyze the question of Letter g, Problem 1. In Figure 4 we 
can observe the procedure to solve it. The student in this report explained in it that in order to get 
the answer, he only needed to change the quantity of 600 in the equation (2). Then, the student 
said about the solution: “Since it gave me a negative answer, the equation doesn’t have a 
solution.” 

 
Figure 4. Process of obtaining the solution for Problem 1, Letter g.  
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Discussion of Results and Conclusion   
In an attempt to discuss the process used to answer the problem stated previously, it is 

necessary to analyze the following questions, which underlie this paper:  What mathematical 
competencies are exhibited at the superior educational level to solve problems that require linear 
equations? Another question is: What type of interventions can the professor use to help his 
students develop mathematical knowledge and competencies?  

Because the procedure used in this report represented the reports of the whole group of 
students, it could be said that it reflects the following: the students have a base of arithmetic 
knowledge that permits them to undertake algebraic problems, identify information in the 
problem, and recognize patterns and relationships.  However, they have difficulty representing 
these relationships in equations.  They also have difficulties with the concept of infinite number 
of solutions, the variable, and finding the solution to an equation.  They do not have different 
heuristic methods formed to help them solve problems.  Students have impediments with 
argumentation and validating their own procedures and solutions.  Their concept of a linear 
equation is one that is limited to identifying only one answer, and does not include the existence 
of infinite number of solutions, or non existence of any solution. 

On the other hand, in the report that has been included in this paper (figures 1-4), one can 
note great achievements in how many mathematical competencies have been developed by the 
students which is demonstrated by their knowledge of the unknown quantity, the variable, and in 
the solving of an equation.  The results are presented in an organized form; there is evidence of 
relationships and patterns in Figure 1, as well as in figures 2-3, even though there is no evidence 
of a written argumentation for the solution of the problem. That is to say, there is not a 
conclusion in terms of what was discussed at the end of the class: When will the Problem 1 have 
a solution? 

The questions asked by the teacher helped students reflect on the concept of solution and its 
relationship with other concepts, such as the unknown quantity and variable.  Integrating the 
process of graphing in the process of solving the equation helped students to learn these concepts 
in depth.  The role of the professor was essential in this sense, as well as proving help to the 
students to reformulate, contextualize,  discuss, and analyze  Problem 1.  Constantly monitoring 
the procedures used by the groups was important to identify the mathematical knowledge of the 
students, the comprehension level of the problem, and the formation of pertinent questions. 

This problem was implemented in other classroom settings, beyond the one discussed in this 
article.  The class discussed the type of solutions they could use in order to solve the problem in 
terms of whole numbers and real numbers, as well as their significance in terms of barrels, and 
the possibility of having the a container to form the mixture.  Students identified that the total 
amount of the mixture obtained would be limited to only one barrel, and therefore, as it is 
expected, other types of graphics and discussions surfaced. 
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Using dynamic learning technologies, we created dynamic conceptual models to address 
prospective elementary teachers’ misconception of proportionality involving problems in the 
form of “a/b of X”. Data collected at multiple points revealed the persistence of prospective 
teachers’ naïve mental models and their interference with meaningful mathematical reasoning. 

Learning is fundamentally about change, and change has been emphatically called for during 
the past two decades in mathematics education, where rule-based instruction masks the true 
nature of mathematical reasoning and hinders young students’ academic progress and career 
opportunities (National Council of Teachers of Mathematics, 2000). There is growing evidence 
that, for a variety of reasons, many elementary school teachers do not have the kind of 
mathematical knowledge that is pedagogically conducive to meaningful classroom instruction 
(e.g., National Council on Teacher Quality, 2008). Teacher preparation programs and 
professional development projects have thus resorted to inquiry-based and theory-guided 
instruction in order to bring about substantive changes in K-12 teaching practices. Following the 
work of Milrad, Spector, and Davidsen (2003) and  Seel (2003), we incorporated model-centered 
instruction into a mathematics methods course in our teacher preparation programs, taking 
advantage of emerging open-source dynamic mathematics technologies. We embedded 
significant mathematical topics in realistic situations and made connections with other focal 
ideas in a coherent manner, integrating multiple representations and dynamic modeling tools. In 
this paper, we document our research findings about prospective teachers’ misconceptions as 
they interacted with a dynamic conceptual model specifically designed to explore their 
understanding of ratio and proportion. We analyze their responses under the perspective of 
mental models and discuss the implications for mathematics teacher preparation. 

Theoretical Framework 
We conducted our instructional intervention and data analysis under the theoretical 

perspective of Model-Centered Learning and Instruction (MCLI, Seel, 2003). Mental models are 
dynamic mental structures that learners create internally in support of inference and decision-
making when they are faced with a problem situation. Cognitively, mental models build a bridge 
between propositional rules and perceptual images as a means of comprehension (Johnson-Laird, 
1983). The interpretation of a problem or a discourse is a result of both the model and the 
processes that have led to the construction of a model. As Johnson-Laird contends, there is no 
need for mental logic in the theory of mental models and “people do not ordinarily think in a 
truthful-functional way” (p. 51).  In our effort to make sense of prospective mathematics 
teachers’ naïve mental models for fundamental ideas in school mathematics, we find the theory 
of mental models well suited for our purpose and MCLI an informative instructional design 
framework for reconsidering the teaching and learning of school mathematics in teacher 
preparation programs. Furthermore, conceptual modeling is one of the instructional strategies 
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that can potentially support prospective teachers’ creation of valid mental models as 
conventionally accepted in the field of the subject matter (Norman, 1983; Seel, 2005). 

Methods 
Context and Participants 

This study was part of a mathematics content and methods course in the teacher preparation 
program at a state university in the Midwestern United States. The class met once a week in a 
computer lab and three times a week in a regular classroom for 50 minutes. Throughout the 
semester, the instructor adhered to mathematical modeling as an umbrella  perspective on 
mathematical problem solving involving key topics in middle grades mathematics. Key 
theoretical constructs were shared with participants using specific examples from school 
mathematics, including schemata, mental models, modeling, and simulations. Multiple 
representations were introduced using the open-source mathematical environment GeoGebra 
(Hohenwarter & Hohenwarter, 2009).  

There were 16 students who stayed through the semester; 14 of them gave consent to the 
study. They were freshman college students with an intention to major in the elementary 
education program, which requires them to be enrolled in the course. There were only four male 
students in the class. Most students had a neutral or negative attitude toward mathematics as 
shown in the institutional evaluation form. 

Data Collection 
During the first half of the semester, the instructor realized through quizzes and daily 

interactions with the participants that the majority had a rather rule-based knowledge of 
elementary mathematics, which was very consistent with the literature (Stigler & Hiebert, 1999). 
One area that most students were struggling was proportional reasoning, which required the 
coordination of several variables (Lesh, Post, & Behr, 1988). Therefore, on the mid-term exam, 
the following problem, among others, was given: Please explain why “15% of 200” can be 
written as 15% × 200? Surprisingly, no one was able to give a mathematically valid and 
reasonable explanation. The common response was “Because in math terms, ‘of’ means to 
multiply. And the multiplication symbol in mathematics is (×)”.  The rest were more or less the 
same, with a few students adding more irrelevant comments such as “one cannot divide because 
that would make the number bigger.” 

It thus became evident that the majority of the participants held a naïve mental model of the 
proportional situation that led them to the superficial inferences, namely, symbolic word 
matching. There is no mathematical or pedagogical meaning in this kind of mental model, albeit 
it could produce correct numbers and seems meaningful to the participants. 

To address this common conception held by virtually all the participants, a web-based 
dynamic conceptual model (see Figure 1) was designed using GeoGebra to demonstrate the 
structural relationship underlying the problem:  A% of Y essentially means finding a number X 
such that A is to 100 as X is to Y. The conceptual model allows the exploration of similar 
problems and was discussed in class and uploaded to the course site. As observed in class, all 
participants seemed to accept the mathematical structure of the conceptual model as a reasonable 
way to explain “why 15% of 200 can be found by 15% × 200.” 

After a month, a similar problem was given on a quiz, involving a fraction instead of a 
percent. A brief summary of the quiz was subsequently given to the whole class. After another 
month, two versions of the problem were given on the final exam, one involving a fraction at the 
beginning of the test and the other a percent at the end. With the second one, the conceptual 
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model was printed on the test form and participants were asked to respond in reference to the 
model. 

 

 
Figure 1. A dynamic conceptual models for problems in the form of “a/b of X” 

Results and Discussions 
Data collected at three points converged uniformly to the persistence of participants’ 

preconceived mental models of the problem situation. The dynamic conceptual model failed to 
bring about significant changes to the way the participants would deal pedagogically with such 
problems. Only one-third of them started to refer to the conceptual model when it was presented 
along with the problem. For example, in response to “ why 23% of 57 can be found by 23% × 57 
?”, two participants wrote as follows: 

Student A:  You are able to do this because the following model set up a scale where 
your slider configures how much you view when taking a percent (or 
partial part/fraction) of a whole number (ex. 57). In other words, percent is 
a fraction or part of the whole number you are using. This kind of set-up is 
called a proportion. It would be the same as the equation: x/57= 23/100. 

Student B:  Say ED=57. Follow the projected path of 23% to 57. Find where the path 
intersects at two points on 57. That is 23% of 57. Multiplying 23% × 57 
would get the same answer.  

Findings of this study confirm Seel’s (2003) observation that students do not always accept 
the conceptual models presented in model-centered instruction; instead, they create mental 
models on the fly in response to a specific situation, which is not necessarily consistent with the 
instruction they received.  This, however, does not mean that students did not create, at least, a 
transitory valid mental model while interacting with the conceptual model. It does imply that on 
the one hand, mental models are not fixed mental entities and, on the other hand, certain naïve 
mental models are very resistant to changes (cf. Perkins, 1986; Schoenfeld, 1985) and thus may 
call for the use of mental censors, especially in teaching practice. It is worth noting that when 
conceptual models are given, some participants tend to respond in more meaningful ways. 
Further studies are needed to explore if such conceptual models can bring about long-term 
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changes in participants’ mental models with respect to this type of problem or similar problems 
in school mathematics.  As web-based interactive and dynamic learning environments enter all 
levels of mathematics education, this study contributes to the literature of model-based learning 
and instruction (Doerr & Lesh, 2003; Zbiek & Conner, 2006) and identifies needs for future 
design and development, especially in teacher education. 
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This study sought to understand the similarities and differences between middle and high school 
students’ methods for generalizing linear patterning tasks. While high school students in Algebra 
2 performed much better than middle school students, the success rate remained low. Whereas 
middle school students frequently applied proportional reasoning on such tasks, high school 
students favored a linear strategy. Individual interviews with 24 students in grades 6-8, Algebra 
1, and Algebra 2 uncovered many conceptual difficulties for generalizing the linear pattern. 

Objectives 
Pattern generalization has been acknowledged as helping students transition from early 

algebra to formal algebra (Bezuszka & Kenney, 2008; Department for Education and Skills, 
2001; English &Warren, 1998; National Council of Teachers of Mathematics [NCTM], 2000; 
Usiskin, 1988). Some studies (Cooper & Sakane, 1986; Lannin, 2005; Steele, 2008; Stacey, 
1989) have focused their attention on investigating students’ abilities and strategies to generalize 
and justify patterns presented in a geometric context and have suggested that the visual aspect of 
the geometric structure helped students identify the patterns of change and facilitate the 
generalizing process. 

However, the participants of all these existing studies were middle school students prior to 
taking formal lessons in algebra. It is yet unknown how high school students, after having taken 
Algebra 1 or Algebra 2 classes, would perform on geometric generalizing activities and whether 
their strategies would be similar to or different from those of middle school students. Would they 
be more likely to approach this type of task by generating a rule, creating a table, or applying the 
concept of slope and y-intercept? This proposal reports partial findings of a study that 
investigated the rate of change concept with both middle and high school students. In particular, 
this report discusses middle and high school students’ performance and their methods used in 
solving a linear geometrical patterning task (Figure 1) and the conceptual challenges they faced 
when attempting to generalize this pattern during the follow-up interviews. 

  
Growing Dots Task 

 
 
 

 
 
 
 

Figure 1. A linear geometric patterning task 
 

Specifically, we seek to answer the following two research questions: 

  #1          #2         #3         #4  
#4 

How many dots will be in the 
100th picture? Show your work.  
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1. What methods do middle and high school students use to solve a linear patterning task, 
and what are the similarities and differences of methods between the middle school and 
high school students? 

2. What conceptual challenges do middle and high school students face when generalizing a 
linear patterning task, and what are the similarities and differences of these challenges 
between the middle school and high school students? 

Theoretical Framework 
Blanton and Kaput (2005) describe “reasoning algebraically” as a “process in which students 

generalize mathematical ideas from a set of particular instances, establish those generalizations 
through the discourse of argumentation, and express them in increasingly formal and appropriate 
ways” (p. 413). Students are expected to be proficient in developing two types of generalizing 
rules by the end of their algebra learning: recursive form or the close form (NCTM, 2000). For 
example, the rule of the recursive form for the Growing Dots task could be expressed as Next = 
Now + 2, starting at 3, where Now and Next represent the number of dots in the current and next 
stages. The rule of the close form can be expressed as y = 1 + 2x, where x represents the stage of 
the figure, and y represents the number of dots in that figure. There is a growing recognition that 
the development of algebraic reasoning is a long-term process that needs to be started at the 
elementary school level. 

Linear numerical and geometrical (visual) patterns are among the ones that have been used 
most frequently at the elementary and middle school levels to lay the foundation for algebraic 
reasoning. Prior studies have identified many conceptual challenges students face when asked to 
represent a general rule in symbolic forms, as well as the difficulties they experience in 
connecting the recursive and close form (Lannin, 2005; Rivera & Becker, 2008). Stacey (1989) 
conducted a paper-and-pencil test to investigate the strategies used to solve three linear 
generalizing problems by students aged 9 to 13 years old. She found that the majority of students 
found generalizing to be challenging. The rate of correct responses varied from 8% to 24% for 
various age groups. Her analysis identified four main methods of solving this type of task (Table 
1). This work was used as the framework for our initial coding, with new ones being added as 
needed. 
 
Method Stacey’s Explanations Examples from the Growing Dots Task 
Counting Counting from a drawing “I used a calculator, started with the last 

number, added 2, until I got to 100.” 

Difference Multiplying the figure number 
by the common difference 2, 
i.e., implicitly assuming that 
repeated addition of 2 implies 
that M(n) = 2n 

“It went up by 2, 2 

€ 

× 100 = 200” 

Whole object  Taking a multiple of the 
number of squares in an earlier 
figure, i.e., implicitly 
assuming that M(nm) = m 

€ 

× 
M(n) 

“There were 3 dots in number one picture. 3 

€ 

×100 = 300” 

Linear Using a pattern that recognizes “1 + 100 

€ 

× 2 = 201” or “3 + 100 

€ 

× 2 = 
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both multiplication and 
addition are involved and that 
the order of operation matters; 
i.e., implicitly using a linear 
model M(n) = an + b with b ≠ 
0. 

203” 

Unclassified  3 

€ 

× 5 

€ 

× 7 

€ 

× 9 

€ 

× 11 = 10,395 

Table 1. Explanations of common student methods with Stacey and Growing Dots Task 
Methods 

Participants 
The study was conducted in a rural school district in a Midwestern state of the United States. 

The district had only one middle school (grades 6-8) and one high school (grades 9-12) with 
about 650 and 840 students, respectively, in 2010. The student population was 80% non-
Hispanic White and 11% Black. Fifty-one percent of the students received free or reduced lunch. 
Both middle and high schools had student test scores on state mandatory tests close to the state 
means. Both schools used mathematics curriculum from McDougal Littell. Students from grade 
7 and above had studied units in terms of either linear equation or linear function in their 
mathematics classes prior to the start of the study. 

Procedures 
A paper-and-pencil test was administrated at the end of the school year in the spring of 2010 

during the regular math class. One hundred pairs of parents/students gave consent to have their 
student data included in the study. The numerical break-down of these 100 students by class can 
be seen in Table 2 below. 

The test had three main sections that contained tasks embedded in various patterns of change, 
such as linear, piece-wise linear, exponential, and quadratic. Based on the written work, 24 
students (5 sixth graders, 4 seventh graders, 4 eighth graders, 5 Algebra 1 students, and 6 
Algebra 2 students) were interviewed individually for 45-60 minutes to gain more in-depth 
knowledge of their mathematical reasoning on how they solved the tasks on the written test. 
When there was an error on the written test, probing questions based on the nature of the errors 
followed to help students clarifying their reasoning. Then they were asked to find another 
method to solve the given problems. The interviewer encouraged students to think aloud while 
developing their alterative methods. 

In this paper, we will focus on only the results of the task in Figure 1 and the portion of the 
follow-up interviews that aimed at identifying the various conceptual difficulties students had in 
generalizing the given linear pattern. Generally speaking, the interviewer first asked students to 
describe the pattern they saw in words or in numerical expressions. Then the interviewer asked 
the students to justify their pattern by connecting it to the pictures. In addition, the high school 
students and a few advanced middle school students were encouraged to find a “formula” that 
would help them solve the question in general. If the students seemed to be lost, the interviewer 
encouraged them to generate a table or graph to help them identify the correct formula. 

Data Processing and Analysis  
The students’ tests were first graded for the correctness of the final answers, then coded with 

the types of strategies developed by Stacey (1989). First, two individuals coded the data 
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independently. Then they compared the codes and conducted further discussion to resolve the 
discrepancies. All interviews were transcribed with the help of Trasana© and analyzed to deepen 
our understanding of the reasoning behind students’ methods and the sources of the 
misconception or partial understanding that prevented them from identifying the correct general 
rule. 

Results and Discussions  
In this section, we will first discuss the results and findings regarding students’ performance 

on the task, methods they used to solve this task on the written test, and a comparison of the 
variance between middle and high school students. We will then report the findings based on the 
analysis of the follow-up interviews. 

Methods for Solving the Task 
Table 2 shows how the participating students performed on this study, organized by their 

grade/course level. Overall, the performance level was low across the grades, and significantly 
lower than those being reported in Stacey’s study. There is a general trend of improvement over 
the grade/course levels, with the Algebra 1 students being the exception. 

 
 Grade 6  

(n = 19) 
Grade 7 
(n = 20) 

Grade 8 
(n = 22) 

Algebra 1 
(n = 20) 

Algebra 2 
(n = 19) 

% of correct 
responses 

5% 0% 13.6% 0% 26.3% 

Table 2. Student performance on the pictorial linear problem 

Similar to Stacey (1989), we also identified four methods in this study presented in the 
students’ written work. However, our analysis found more complexity of student reasoning 
within the three most commonly used methods (Whole Object, Linear, and Counting/Estimating, 
referred to as Counting by Stacey), than was presented by Stacey. Whole Object was one of four 
methods (shown in Table 3) used frequently to find the number of dots in the 100th picture. Four 
different types of reasoning were identified in this category. The student multiplied the number 
of dots in the existing diagrams by 100, which is the term in the sequence for the 100th picture, 
such as 3 × 100 and 9 × 100, where 3 and 9 represent the number of dots in the 1st picture and 4th 
picture, respectively. Another group of students used the number of dots from the existing 
diagrams multiplied by the quotient of 100 and the figure number of that diagram. For example, 
a student’s solution to “draw pictures up to #10, and then 21 × 10” showed that the students 
found there were 21 dots in the 10th picture, so the 100th picture would contain 10 times as many 
dots. In addition, some students thought they could obtain the answer by multiplying the number 
of dots in a particular picture by the difference between 100 and the position number of that 
picture. For instance, a student reasoned that since the 4th picture has 9 dots and 100 – 4 = 96, 
then the 100th picture must have 96 

€ 

× 9 = 864 dots. 
We expanded the original Counting Method identified by Stacey (1989) to be the Counting 

and Estimating method, where the student had the explicit awareness of the common difference 
of 2, but didn’t provide further explanations that would indicate that the student had used another 
method. Some examples of this include: “I would say 100 dots, you are adding 2 every time,” 
“Almost 101 dots, the dots go up by 2 and if you add 2 all the way up to 50 you get 101,” or one 
student simply put down “plus 2 each column, 103.” The answers given were quite varied in this 
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method. While they were able to recognize the constant change of 2 in the pattern, students were 
not able to coordinate that piece of information with the overall number of dots. 

While the Linear method was used by many students, not all of them reached the correct 
answer. The most common false linear method assumed the initial value to be 3, the number of 
dots in the 1st picture, and thus students gave 203 as the answer. Three high school students gave 
199 or 197 as the answer, assuming 9 (the number of dots in 4th picture) + 2x (95 or 96). These 
students recognized the need to make an adjustment for the number of 2s being added, but failed 
to come up with the correct adjustment. 

Table 3 illustrates the variance in methods used by the different grade levels. The gray cell 
indicates the most frequently used method for that particular grade. Nearly 50% of the sixth 
graders used the Whole Object method that was based on a faulty assumption that a proportional 
relationship existed in the given pattern. While many of them also recognized the constant 
difference of 2 in the pattern, the pull for proportional relationship was very strong. The 
dominating strategy used by seventh graders was the Difference method, based on the constant 
increase pattern. The more evenly distributed methods in eighth grade and Algebra 1 students 
reflected the transitional stage. Finally, more than half of the students from the Algebra 2 course 
used the Linear method.  

 
 Grade 6  

(n = 19) 
 Grade 7 
 (n = 20) 

 Grade 8 
 (n = 22) 

Algebra 1 
 (n = 20) 

 Algebra 2 
 (n = 19) 

Whole Object 9 (47%) 4 (20%) 4 (18%) 4 (20%) 2 (11%) 

Difference 2 (11%) 10 (50%)  3 (9%) 4 (20%) 1 (5%) 

Counting/Estimating  3 (16%) 3 (15%) 6 (32%) 2 (10%) 2 (11%) 

Linear 1 (5%) 1 (5%) 6 (27%) 5 (25%) 11 (58%) 

Unclassified 4 (21%) 2 (10%)  3 (14%) 5 (25%) 3 (15%) 

Table 3. Distribution of student strategies by grades 
As indicated in Table 3, the nature of the conceptual challenges for middle and high school 

students in this study was quite different. The application of the Whole Object method by close 
to 50% of the sixth and seventh grade students could be seen as part of a widespread 
phenomenon of overgeneralizing proportionality (Stacey, 1989; Van Dooren, De Bock, Depaepe, 
Janssens, & Verschaffel, 2003). This could be the result of heavy emphasis on proportional 
reasoning in mathematics curriculum at the sixth and seventh grades. Both eighth graders and 
Algebra 1 students, while showing some tendency to move away from assuming the 
proportionality in this type of task, were not certain about the alternative methods. Fifty-eight 
percent of the students from the Algebra 2 course used the Linear method, which involved the 
coordination of two quantities—the initial value and the constant change. However, while there 
is an increasing awareness of these two quantities and the need to coordinate them, few were 
able to carry out the coordination successfully to get the correct answer of 201. 

Strategies and Conceptual Challenges for Generalizing the Linear Pattern 
The follow-up interviews with the 24 students selected to reflect a wide range of methods 

used for the paper-and-pencil test attempted to identify the roots of these conceptual difficulties. 
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All interviewees were encouraged to first verbally describe the pattern they saw in the picture. 
All recognized the “plus 2” pattern among the consecutive pictures. When encouraged to 
describe a way to describe the overall pattern, three different numerical patterns with four 
different geometrical configurations emerged (see Figure 2): (a) 3 dots plus 2 dots more each 
time (Pattern #1 and Pattern #2); (b) 1 dot and a pair of 2, adding a pair each time afterwards 
(Pattern #3); and (c) the left column has the same number of dots as the picture number, and the 
right column is just one more dot than the left column (Pattern #4). When reasoned correctly, 
both Pattern #1 and Pattern #2 led to the equation of y = 3 + 2(100–1), with y being the total 
number of dots in that sequence. However, Pattern #3 would lead to the equation y = 1 + 2(100), 
and Pattern #4 to y = 100 + (100+1). All will lead to the answer of 201. Five out of the 24 
interviewees were able to come up with the correct answers on their own. Three of them used 
Pattern #4 as the basis for their solutions, and one used Pattern #3. The last student saw Pattern 
#1, but did not use the physical configuration to generate his answer. Instead, he shifted his 
attention to the numerical pattern that the number of dots was about double the corresponding 
figure number, and he adjusted this estimation with “plus 1” to get his answer. All were able to 
describe the general rules in words or in symbol form, y = 2x + 1. 
 

 
Figure 2. Students’ strategies to generalize the linear pattern task 

With probing questions that helped students to use available tools such as numerical 
expressions, graphs, or tables to make sense of the pattern they saw, 11 of the remaining 19 
students were able to come up with the generalized rule in either words or symbols. In the 
remaining part of this section, we will discuss the conceptual difficulties students encountered 
when attempting to generalize with numerical expressions, tables, and graphs. 

When the interviewees were unable to develop a generalized formula, they were encouraged 
to generate a table or a list to make the relationship between the “figure number” and the 
“number of dots in the corresponding figure” more explicit. To develop a generalized formula 
for the given pattern, it is necessarily to recognize both the “plus 2” pattern and the initial 
amount, which is either 1 or 3, depending on how students saw the pattern. When students failed 
to do so on their own, the interviewer suggested the student rewrite the 5 dots in the second set of 
dots either as 3 + 2 or 1 + 2 + 2, the 7 dots in the third set of dots as 3 + 2 + 2 or 1 + 2 + 2 + 2. 
The question then becomes, how many 2s are in each expression? There were four main 
conceptual challenges that the interviewees faced when attempting to find the generalized 
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formula from this path. First, those who saw either Pattern #1 or Pattern #2 had a hard time 
articulating that the idea of the number of 2s being added in the figure is 1 less than the 
corresponding figure number. Second, some students were unable to connect repeated addition to 
multiplication. Third, some rejected the expression 3 + 99(2) because they read it as (3 + 99)2. 
Finally, some high school students were uncomfortable with the expression 3 + (x – 1)2 because 
it did not fit their experience with y = mx + b with the constant on the back and the variable in 
front of the coefficient. 

Those who used a table or graph to identify the generalized formula faced different type of 
conceptual challenges. Out of nine students who attempted to use a table to make sense of the 
generalized pattern, only four succeeded. Three of these students did so after converting the table 
data to a graph. One made an estimate of y = 2x and adjusted for it by comparing the y values. 
None connected the concept of constant rate of increase with the concept of slope and used it to 
find the correct formula. The analysis of those that were not successful suggested three main 
types of conceptual challenges. The first one was rooted in the limited conception of the 
patterning task. For example, one student explained that the 100th picture would have a different 
number of dots depending on which given figure you used. So the 100th picture for the 1st given 
picture would be 300, and the 100th picture for the 4th picture would be 900. The second 
challenge was caused by the difficulty shifting from the recursive pattern which existed in the 
number sequences formed by the number of dots in the picture, and the close form which asked 
for the relationship between the position number in the sequence and the number of dots in the 
corresponding picture.  They believed that y = x + 2 was the correct answer. The last conceptual 
challenge was the false assumption of proportionality. In addition to the Whole Object method, 
some students believed that there was a constant multiplicative factor between the variables x, 
the figure number, and y the number of dots in the corresponding figure. For example, one 
student thought the equation would be y = 2.5x because there were 5 dots in the 2nd picture, but 
then noticed right away that this formula would not work for the 3rd picture. When urged to 
check if the proportional pattern holds for the first four given figures, all students were able to 
see that the y=mx equation they proposed did not work.   

Implications and Significance of the Study  
The findings of this study indicated that geometrical patterning tasks are accessible and 

challenging to both middle and high school students. The availability of geometrical figures in 
the pattern helped to ground students’ explanations of their methods and reasoning. Many 
research studies have reported the strong tendency for students to apply the cross-multiply 
algorithm indiscriminately which, unfortunately, is a side effect of the increased emphasis on 
proportional reasoning at the middle school level. Comparing and contrasting geometrical 
patterns that have zero and no-zero value in stage one can highlight the essential characteristics 
of linear versus proportional relationships. This type of task provides a natural setting to make 
distinctions between proportional and nonproportional relationships. The experience of using and 
interpreting complex numerical expressions is crucial to students’ work with algebraic 
expressions. The findings of this study affirmed the potential of geometrical patterning tasks to 
help students develop algebraic reasoning as suggested by Lannin (2005) and Steele (2008). 

The overall low performance of the participating students was a surprise to both the 
researchers and the mathematics teachers of these students. The follow-up interviews conducted 
with the students have led to the identification of the several conceptual challenges faced by 
students when attempting to generalize the patterns. Such information is useful in developing 
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hypothetical instruction paths that would be effective to support students with different initial 
methods for this type of task. 

The findings also suggested that while geometrical patterning tasks might be beneficial in 
helping students develop algebraic reasoning, such development is a complex process. Even 
though all the Algebra 1 and Algebra 2 students interviewed in this study have learned about 
linear functions, none of them used the concepts of slope and intercept to help them identify the 
general rule of this patterning task. The tendency to focus only on the change in y-values rather 
than on the rate of change that relates x and y values suggests the need of additional instruction 
on this important concept. Future studies are still needed to explore how geometrical patterning 
tasks might be used to assist students in developing a more robust understanding of the rate of 
change as a main conceptual tool to differentiate linear and nonlinear relationships. 
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This study examined the development of thirty-seven elementary and middle grades teachers’ 
algebraic connections and representational fluency during a six-month professional learning 
project. To evaluate the collaborative nature of designing professional development, the team of 
professional developers/researchers used the collective self-study method (Samaras & Freese, 
2006) to examine how purposively designed experiences such as the content-focused institute in 
the summer with school-based follow-up Lesson Study cycles (Lewis, 2002) in the fall 
encouraged vertical articulation of algebraic connections. The analysis of teachers’ reflections 
from problem solving tasks and Lesson Study and researchers’ memos from observed research 
lessons revealed more flexibility in teachers’ representational fluency with problem solving 
strategies in the classrooms.  

Introduction 
Research and initiatives in elementary and middle school mathematics emphasize the 

importance of both fostering algebraic reasoning through problem solving and laying the critical 
foundations before students encounter formal algebra instruction (Blanton, 2008; Driscoll, 1999; 
NCTM, 2000; NMAP, 2008). This leads to some important practical questions: what experiences 
are required for elementary and middle grades teachers to effectively teach algebraic reasoning 
through problem solving, especially if they never learned mathematics in a reform oriented 
manner? What opportunities can professional development providers design for teachers to 
develop teachers’ representational fluency? Reform oriented mathematics teaching presents 
challenges as teachers learn to change their practices (Remillard, 2000; Boaler, 1999). Such 
changes that advocate a reform-based vision of teaching algebra along with the great need for 
effective algebraic instruction in the K-12 curriculum has motivated mathematics educators, 
mathematicians and school leaders to emphasize more on studies about teachers’ understanding 
of algebraic thinking and reasoning. Teaching algebraic reasoning in the earlier grades through 
problem solving requires depth of mathematical content knowledge for teaching. Hill, Sleep, 
Lewis and Ball (2007) suggest that specialized content knowledge is partially domain-specific 
and that the specified content knowledge for mathematics is not obtained based on an 
intelligence level, or ability to understand mathematics. Mathematics knowledge for teaching 
(Hill et. al, 2007) includes understanding of general content but also having domain specific 
knowledge of students and knowledge of content in algebra, patterns, and functions.    

The purpose of the study was to provide a coherent picture of how teachers’ algebraic 
connections and representational fluency develop through a content focused and practice-based 
professional development project. Our study set out to identify the key practice-based skills 
necessary for teachers to acquire the specialized knowledge for early algebra that would help 
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them make algebraic connections to enhance their teaching and promote algebraic thinking in 
students.  

Theoretic Framework 
     “Early algebra is not the same as algebra early. To move algebra-as-most-of-us-were-taught-
it to elementary school is a recipe for disaster” (Carraher, Schelimann & Schwarts, 2008, p. 
235). The notion of teaching early algebra then is both a paradigm shift and a novel way of 
teaching that requires extensive professional development. According to Carraher et al. (2008), 
early algebra builds on background contexts of rich problems where early algebra tightly 
interweaves existing topics of early mathematics and formal notation is introduced gradually and 
“judiciously”.  Many researchers have explored teaching early algebra for the elementary grades 
and found that elementary students are capable of reasoning algebraically (Kaput, Carraher, & 
Blanton, 2008; Kaput, 2008; Bastable & Schifler, 2007; Kieren, 2004; Carpenter & Levi, 2000; 
Greenes & Findell, 1999; Moses, 1993). This integrative approach of algebraic reasoning and 
arithmetic connections is common in many international elementary and middle school 
mathematics curriculum (e.g., China, Russia, Singapore, and South Korea), where students begin 
the formal study of algebra much earlier (Cai, 2004). Such integrative approaches have helped 
these students in building mathematical understanding with skill development, in embedding the 
arithmetic in interesting and challenging problem situations, in enhancing their number sense 
through purposeful calculations, and in relating problems to one another and to other essential 
mathematics content knowledge they are building constantly. 

According to the NCTM (2000) the underlying concepts of algebra are patterns, relations, 
and functions and the way in which they are utilized to: 1) represent and analyze mathematical 
situations and structures using algebraic symbols; 2) represent and understand quantitative 
relationships; and 3) analyze change in various contexts (NCTM, 2000, p. 39). Blanton and 
Kaput’s (2008) Generalizing to Extend Arithmetic to Algebraic Reasoning (GEAAR), project 
goal was to embed algebraic thinking into instruction and to build teacher capacity to “algebrafy 
their classrooms” (p. 384). The evidence to support their findings was gathered from teachers’ 
reflections and written work, students’ reflections and written work, observations, and 
interviews. This professional development addressed both teacher content knowledge as well as 
classroom practices.  Blanton and Kaput (2008) reported that teachers become better at teaching 
algebraic reasoning when the teachers’ own mathematical knowledge and understanding are 
increased. According to Blanton and Kaput (2008), teachers develop their algebra “eyes and 
ears” which allow them to bring out the algebraic reasoning while looking at student work and 
carefully listening to their discussions and questions. This requires teachers having an integrated 
depth of algebra content knowledge to know what to look and listen for in the classroom. 
Developing algebraic habits of minds (Driscoll,1999) include the idea of seeing algebra as: 1) 
doing and undoing; 2) building rules to represent a function; and 3) abstracting from 
computation. Developing algebraic habits of mind is critically important to the success of our 
elementary, middle and high school teachers. It takes a teacher who has a deep and profound 
understanding of fundamental algebra to provide opportunities for elementary and middle grades 
students to explore the foundation concepts for algebraic reasoning through patterning, relations, 
functions, and representations using algebraic symbols and utilizing mathematical models to 
represent relationships (NCTM, 2000). 

For our study, we defined ‘algebraic connection’ as the integrated knowledge developed by 
applying algebraic concepts to interdisciplinary problem-solving opportunities through multiple 
representations and flexible strategies. Such connections help to discover and comprehend the 
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Figure 1 

 

applications of mathematical concepts to real-world problems in a way that is beyond what is 
taught in a traditional classroom.  Thus, ‘algebraic connection for teachers’ included some very 
specific practiced-based skills (such as, making: 1) cross-curricular (horizontal) connections-
algebraic connections to real world situations and interdisciplinary problem-solving; 2) ‘algebra-
arithmetic’ (vertical) connections- connecting arithmetic structures such as addition, subtraction, 
multiplication, division, ratios, proportional thinking, rational numbers and geometry to algebra; 
making generalizations about a concept; 3) algebraic connections through representations 
orchestrating mathematics discussions through the use of students’ physical, tabular graphical 
models, verbal and 
symbolic notations to 
build representational 
fluency.  

One of the key 
performance skills was 
for teachers to teach 
algebraic lessons using 
the five star 
representations for all 
algebra lessons. The five 
star representation 
connected 
representational systems 
such as using pictures, 
number lines, graphs, 
tables, arithmetic 
notations and verbal 
description. (Figure 1) 
Representational fluency, the ability to use multiple representations and translate among these 
models, has been shown to be critical in building students’ mathematical understanding (Goldin 
& Shteingold, 2001).  

Methods 
Research Questions 

The goal of the study was to understand the processes of change in participants’ teaching 
practices and examining what professional development activities and events were pivotal in 
influencing that change. This study explored the following two research questions: 1) what 
changes in teachers’ development of the algebraic connections were evident through the 
activities and professional learning opportunities and 2) what are some essential professional 
development opportunities and support necessary for teachers as they transition into teaching 
through problem solving and making algebraic connections? 
Data Sources 

This study examined teachers’ reflections and field notes from two phases of the professional 
development project: the summer institute where teachers were immersed in algebra problem 
solving activities as learners and the second phase with the follow-up Lesson Study where 
teachers implemented teaching practices that promoted algebraic connections through rich 
problem solving.  
Participants 
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Thirty-seven elementary and middle grades teachers from grades 3 - 8 met for a one week 
summer institute and continued as school teams in Lesson Study (Lewis, 2002) during the 
academic year.  A majority of the teachers (78%) taught in Title One schools that served 
underrepresented and underserved populations. On average, teachers had 12 years of experience, 
where 18 held baccalaureate degrees and 19 held Master degrees. Six teachers were mathematics 
specialists, and three teachers were special educators. 
Procedures 

To evaluate the collaborative nature of designing professional development, the team of 
professional developers/researchers used the collective self-study method (Samaras & Freese, 
2006) to examine how purposively designed experiences such as the content-focused institute in 
the summer with school-based follow-up Lesson Study cycles in the fall encouraged vertical 
articulation of algebraic connections. The method for analysis involved a mixed method 
approach of survey analysis and qualitative analysis. Using the Grounded Theory approach 
(Strauss & Corbin, 1994), we used a constant comparative method. This method allowed for us 
to systematically gather and analyze data through the summer institute and Lesson Study cycle 
and to generate a theory that was grounded in these data. The researchers used Self-Study to 
determine what designed activities promoted the development of representational fluency. 
During the summer and follow-up Lesson Study session, we debriefed on the project activities 
and analyzed the teachers’ reflections from the activities. Upon analysis, we searched for 
recurring themes and categories that linked various data. The analysis of the data from teacher 
reflection began with the reading of the reflections from the summer institute during which 
patterns in the participants responses were identified. The data analysis was aimed at answering 
the research questions and identifying themes, categories, or types (Miles & Huberman, 1994). 
Successive readings of the data necessitated modification and further development of the coding 
categories. 

Results 
Opportunities to Deepen Teacher Mathematical Knowledge and Algebraic Connections 
To address research questions, “what changes in teachers’ development of the algebraic 

connections were evident through the activities and professional learning opportunities”, and 
“what essential professional development opportunities and support are necessary for teachers as 
they transition into teaching through problem solving and making algebraic connections?” we 
analyzed the reflections from problem solving tasks during the content-focused summer institute 
and from the Lesson Study.   

The analysis of teachers’ reflections revealed four main themes: teachers developed a) an 
awareness of their own metacognitive process during problem solving tasks; b) an appreciation 
of the need for specialized mathematics knowledge; c) connections to teachers’ classroom 
practices based on one’s own reflection from tasks; d) awareness of the affective nature revealed 
during the learning processes. Below are representative excerpts from the qualitative analysis. 
Awareness of Teacher’s Own Metacognitive Process During Problem Solving Tasks  

The developing awareness of one’s own metacognitive process encouraged reflection upon 
personal learning and problem solving style preferences, identification of common pitfalls and 
misconceptions that accompanied the problem solving process, and the ability to internally 
perform task analysis in order to generate multiple problem solving ideas. 

After Dr. S. shared how Gauss’ thinking connected to this problem, it seems to keep coming 
up in other problems we have solved.  It all started with the handshake problem and then it 
appeared again in the toothpick problem, the fruit stack problem, and the penny jar problem.  
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While I could identify and extend a triangular number pattern, the importance of the pattern 
was not something I thought was significant.  I don’t ever recall noticing this triangular 
number pattern, and it seems to keep coming up in numerous problems.  1, 3, 6, 10…now, I 
keep seeing this pattern everywhere. – Elementary math specialist 

Appreciation of the Need for Specialized Mathematics Knowledge  
Participants noted that using multiple strategies and representations to solve rich questions 

that required deeper mathematical thinking increased their understanding of algebra concepts. 
Teacher learners immersed in a content-focused institute and asked to explore novel approaches 
and unfamiliar tools and technology experienced an expanded appreciation of algebraic 
connections and representational fluency. 

I noticed that when he explained his strategy to our other partners, his visual really seemed to 
be clearer than my abstract expression.  That was very powerful for me because I need to 
always keep in mind as a teacher that all of my students learn in different ways and are all at 
very different levels.  While some of my students may be ready for the algebraic expression, 
there are so many important benefits that can be gathered from the pictorial/graphical 
representations as well. -7th grade teacher 

Making Connections to Teachers’ Classroom Practices Based on One’s Own Reflection From 
Tasks 

Throughout the institute, participants grappled with problems as students themselves and saw 
the value of rich problems that encourage multiple approaches and rich discussion.  They 
personally experienced the connections that exist algebraically within and between the 
mathematical strands of number, geometry, measurement, and statistics. Scaffolding 
opportunities, differentiation potential and readiness assessment were all named as benefits of 
this type of learning environment. However, many did voice concern over barriers within their 
schools that could impede implementing these newly learned and appreciated reform practices. 

Obviously I have thought about how I might use this problem in my own classroom this year. 
I am excited to see what algebra I can bring out for my students and how I can modify a 
lesson focused on inequalities to a new lesson focused on algebraic expressions. 
As I think through how I will adjust and focus this lesson for my sixth grade students I am 
oriented on two main factors. First, I need to consider multiple representations and access 
points in my classroom. I need students to feel comfortable seeing problems in multiple 
representations and then get them comfortable trying to use these approaches (concrete, 
pictorial, graph, symbolic, verbal) to solve problems. I also must consider how I present a 
problem—how can I make sure all of my students have an access point to solving a 
problem?- 6th grade teacher 

Awareness of the Affective Nature Revealed During the Learning Processes 
The teacher learners voiced both struggles and satisfaction during the problem solving 

processes. They appreciated the collaboration and support from colleagues and emphasized the 
importance of mathematics communication to building mathematical ideas. 

The next two classes were painful to say the least, by Thursday I was ready to tell my partner 
I couldn't do this.  She talked to me all the way to class but I was not really convinced.  Then 
like a flash, all start falling into place.  As I pass the pages, I look at the pizza problem.  That 
was the one that gave me confidence.  I saw the connection with the handshake problem.  I 
thought, what was different this time.  As I was thinking about that, Habits of Mind came to 
my thoughts.  I realized that I was beginning to use them in my problem solving.  That is 
something I want to impart in my students! – 4th grade teacher 
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Catalysts for Change: Essential Opportunities for Teachers to Develop Algebraic Connections  

   As we coded teachers’ reflections from the designed project activities, key events stood out 
as being pivotal points in eliciting teachers to rethink their practices. We identified these key 
activities as the Catalysts for Change in our teachers because these activities seemed to be the 
events in which teachers realized they needed to change their way of thinking about their 
instructional practices for mathematics teaching and learning. 
Key Activity 1: Teachers Immerse in Rich Problems with Algebraic Connections 

It was important for teachers to grapple with the problems and experience disequilibrium. 
This opportunity allowed for teachers to make connections to the fundamental algebra and 
increase their understanding of the topic. It was a “relearning” process for many who were 
making sense of the algebra that they had learned procedurally; void of context or real life 
applications. These connections were made by both experienced and novice teachers. We coded 
this as ‘making connections and see algebra in a new way’. An experienced eighth grade teacher 
who currently taught Algebra was able to see the content in a new way. One excerpt from her 
reflection said, 

Just as I needed to make connections between the context, my rule, and why it worked, 
students of all ages need these same opportunities.  Previously when teaching students about 
triangular numbers, I focused on the number pattern and the geometric pattern.  It was solely 
identifying what is happening by doing and undoing and extending the pattern, perhaps even 
getting to build a rule.  What was totally missing from my instruction?  Problems in which 
triangular number patterns actually appeared!  Pretty big I think.  Just as my understanding of 
triangular numbers and algebra deepened, students will receive the same benefit by having 
opportunities to take their understanding of patterns and apply it to more complex situations.  
-8th grade teacher 
We also noticed that these activities elicited teachers developing representational fluency and 

valuing the use of multiple representations. A novice 5th grade teacher excerpt was coded 
‘developing representational fluency’ because she expressed using multiple representations as 
she solved and made sense of the problem and also made connections to how her students might 
gain access to the problem through a visual approach. 

Reflecting back on how I solved the problem I notice that I used many different 
representations to help me solve the problem. First I drew a picture, then I used a table, and 
last I used symbols. This idea of multiple representations was accented in class and made me 
process how students might need different entry points to be able to engage in this problem. 
It made me think about how to set up a problem and get students started on a problem. The 
visual used in class was extremely helpful for me, even though I could access the problem in 
other ways. It reinforced what I saw was going on in the problem, but had I been a child that 
could not see what was going on, it would have given me an opportunity to engage in the 
problem (5th grade math and science teacher). 

Key Activity 2: Opportunities for ‘Teacher Math Talk’ on Algebra and Vertical Articulation  
The importance of collaboration and vertical articulation came to the forefront as teachers 

discussed problems with their colleagues and talked about the grade level mathematics 
expectations. One teachers commented how her team members helped her build on her existing 
ideas about algebra.  

As we have worked through problems this week, I have been very fortunate to sit with 
colleagues who teach at a range of grade levels. Our table actually represented grades 3-6. As 
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we shared our thinking and problem solving strategies, I learned to see the big, intricate 
picture from them. There were times when it seemed that they gained a lens by hearing about 
my analysis of a table, my exploring with manipulatives, or through my illustrations. -3rd 
grade teacher 

This was a great connection to what research has noted about how students learn from class 
discussion (Hufferd-Ackles, Fuson, & Sherin, 2004). We observed teachers learning from the 
mathematical discussions, questioning, explaining mathematical thinking, and debating 
mathematical ideas. This critical activity also elicited teachers’ responses to recognizing the 
importance of breaking down the essential mathematical learning, identifying the common 
student misconceptions and scaffolding and differentiating for diverse learners.  

I feel most prepared to teach my students to use multiple representations, to notice patterns, 
and build rules. I think it was most helpful to solve problems collaboratively in the summer 
class and to share our solutions. It was interesting to see the various ways my classmates 
solved the problems. -Special educator who teaches in an inclusive classroom 

In many ways, this opportunity allowed teachers to simulate the math talk that they would 
conduct in their own classroom. Having a chance to discuss potential misconception, analyze 
sophistication of solution strategies, and ways to create parallel tasks for differentiation allowed 
teachers to have a natural conversation of progression of mathematical ideas and vertical 
articulation.  

Discussion 
At the end of the course, participants reflected on how their participation in the yearlong 

professional development session had impacted their ideas of algebra in the early grades.  The 
most common themes were that they “relearned” the math by being in the “shoes of the student” 
and having to solve challenging problems while breaking down the important mathematics 
helped them see the early building blocks for creating algebraic connections. These experiences 
not only increased their confidence in the teaching and learning of mathematics but also helped 
the participants to develop a productive disposition towards mathematics.  

This study revealed that engaging teachers in challenging activities that created some sense 
of disequilibrium led teachers to reflect on their knowledge, their problem solving process, and 
their instructional practice. Participants’ positive experiences during the learning process helped 
develop a more productive disposition towards teaching algebraic reasoning through problem 
solving and through multiple representations, and value collaborating with other mathematics 
educators in translating their learning into practice. In addition, the study demonstrated the 
effectiveness of the choice of rich problems that helped us to study teacher’s developing 
knowledge and that also provided the teachers with useful examples for algebraic instruction and 
student learning assessment. It is the authors’ hope that the results of this study contribute to the 
growing body of knowledge documenting how professional development serves as a catalyst for 
change in teachers as they take time to reflect and relearn specialized knowledge for teaching 
algebra in the early to middle grades. 
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Equivalence in algebra has different meanings in different contexts and a sophisticated 
understanding of equivalence is required to solve increasingly complex problems. This study 
builds upon previous design research studies that illuminate how mathematical constructs can 
be mapped to social relationships to support mathematical meaning making. We follow how 
one student’s conceptions of equivalence changed as he worked with three different partners 
on four algebra learning activities in two novel classroom network based learning. We 
illustrate how differing affordances in the learning environment lead to different forms of 
mediation when disagreements accompany differing mathematical conceptions in a classroom 
network environment. 

Introduction 
Algebra gains much of its power from the flexible use of equivalence (Gattegno, 1974), and 

students often find it difficult to negotiate different kinds of equivalence in different contexts 
(Linchevski & Herscovics, 1996). Peer discussions mediated by technology and instruction 
support convergence of mathematical meaning (Moschkovich, 1996) and the development of 
more sophisticated conceptions of equivalence. Our own ongoing design based research project 
aims to foster mathematical conversations and interactions in pairs and small groups using 
handheld network technology (White, 2006; White, Sutherland, & Lai, 2010). Broadly, and 
building on prior research involving classroom network systems (Stroup, Ares, & Hurford, 
2005), our design approach involves mapping social relationships between students to 
mathematical constructs embedded in technology to create opportunities for students and the 
teacher to interact in ways that make mathematical relationships explicit. 

The present study focused on investigating students’ developing ideas about equivalence in 
the context of two different learning activity designs, each of which featured an equivalence 
engine intended to support students’ joint engagement with algebraic expressions as they 
constructed polynomials and transformed equations. We follow one student as he worked with 
three different partners over four different sessions using these two different activity designs, and 
examine instances in which disagreement between partners occurred when students differed in 
their conceptions of equivalence in a particular context. Disagreements in discourse signal a 
dialogical conflict of meaning (Bakhtin & Holquist, 1981) that both emerges from and is 
mediated by agents and tools in a particular context (Kozulin, 2003). The episodes presented 
here are the result of an ongoing exploration of how student understanding of equivalence in 
different contexts emerges from and is mediated by resources, tools, teachers and other students.  
In particular we highlight the way disagreements between students accompany differing 
mathematical conceptions of equivalence and how different affordances of two activity designs 
influence mediation of these disagreements in a classroom network learning environment (Ares, 
Stroup, & Schademan, 2009; Stroup, et al., 2005).  
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Equivalence in Algebra 
Students initially conceive of the equal sign as a signal that a solution will follow. This 

operational understanding of equivalence gradually gives way to an understanding equivalence 
as a comparison of equal values (Kieran, 1981; Rittle-Johnson, Mathews, Taylor, & McEldoon, 
2010; Sfard & Linchevski, 1994). A sophisticated understanding of equivalence becomes 
increasingly important as problems become more complex (Knuth, Stephens, McNeil, & Alibali, 
2006). Operational conceptions of equivalence in certain contexts can persist into college even 
for students who do well on standardized tests (McNeil & Alibali, 2005). Below, we introduce 
two different classroom network-based collaborative learning activity designs intended to 
address these challenges by supporting an instructional sequence in which students jointly 
explore and negotiate meaning of algebraic equivalence relations in different settings. 

Two Learning Environment Designs for Exploring Equivalence 
The learning activities in this study featured two different classroom network designs: Terms 

and Operations, focused on students’ collaborative efforts to construct polynomial expressions, 
and Two-Sides, centered on pairs’ joint transformations of shared equations. Both learning 
environments were created with the NetLogo modeling platform (Wilensky, 1999) and HubNet 
architecture (Wilensky & Stroup, 1999) connected to a class set of TI-83 graphing calculators 
that function as handheld devices on the network. 

Equivalence of Expressions in Terms and Operations 
The Terms and Operations activity design allows the teacher to populate a field with floating 

monomial terms (Figure 1). Pairs of students each construct a collective expression by alternately 
adding, subtracting, multiplying or dividing a term captured from the field.  To complete each 
transaction the student must enter the result of the operation as an equivalent expression. 
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Figure 1. Terms and Operations shared display with floating terms and collective expressions. 

 
Figures 2a and b. Student calculator screens featuring a) captured term and operation choices and b) a 
collective expression under the chosen term and operation and an equivalent student entry. 

The system updates the collective expression only if the result of the operation and the 
expression entered by the student are equivalent.  When the expression entered by the student is 
not equivalent the collective expression remains unchanged.  The Terms and Operations design 
verifies equivalence of expressions by providing feedback in the form of updates to the collective 
object. 

 

Equivalence of Equations in Two-Sides 
The Two-Sides activity design builds on previous designs by verifying both equivalence in 

the context of expressions and equivalence in the context of equations.  Each member of the 
student pair is assigned to either the left or right side of an algebraic equation.  To create a new 
equation each student in the pair must enter a valid algebraic expression.  The networked 
relationship between the two student’ calculators in the Two-Sides environment acts as an equal 
sign for the equation they share. Each member of the pair can transform her own side of the 
equation by entering any equivalent expression. The system updates the equation to reflect the 
transformation only if the new expression is equivalent to the original expression. When the pair 
wants to transform the entire equation they must coordinate the transaction by pressing the 
operate button and entering equivalent operations on both sides.   

 
Figure 3a and b. Two-Sides left student calculator screens showing the coordination of operating on both sides 
of an equation. 

The system updates the equation only if the operations by both students are equivalent.  Two-
Sides maps the algebraic equation to the partner relationship by acting as the equal sign between 
them, making it necessary for the pair to reach agreement when transforming the equation. 
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Method 
The data considered in this study were drawn from a yearlong project in which ninth grade 

students at a non-traditional urban charter school organized around project-based learning 
participated in classroom network activities for one hour-long session each week as a supplement 
to regular pre-algebra and algebra 1 instruction. On the basis of informed consent two to three 
student pairs were selected as focus groups and videotaped for all activities. All screen states of 
the public computer display were recorded as a video file for each class session, and an 
additional camera with a wide zoom setting captured this projected display along with the 
whiteboard at the front of the room, as well as whole-class discussions and other teacher moves. 
Server logs recorded all activities on both the shared displays and the student calculators. 
Episodes involving disagreements between partners were flagged and coded by topic of the 
disagreement.  Disagreements that did not involve a conflict of mathematical meaning were 
dropped.  Conflicts over the meaning of equivalence in a particular context were selected, 
annotated and transcribed.  The present study follows one student, Jamal, as he worked with 
three different partners over four different class sessions—two each in the Terms and Operations 
and Two-Sides activity designs.  Disagreements that signaled dialogical conflict of the meaning 
of equivalence between Jamal and his partner during the four sessions were considered for 
analysis.  The segments presented here were selected to illustrate how the activity design 
illuminated and mediated student conceptualization of algebraic equivalences in different 
contexts. 

Analysis 

Episode 1: Differentiation of X term and Constant Term Equivalence 
Jamal and his partner (Sara) had been introduced to Terms and Operations in a previous 

session but had worked in different pairs.  In this session the teacher instructed students to 
construct an expression using the four basic operations (add, subtract, multiply and divide), 
recording each step on paper and simplifying along the way.  They had constructed a -20 using 
the sequence -1 * 5 * 4 when Jamal captured a -5X and subtracted it from the -20.  The following 
disagreement occurred over the simplification of -20 - -5X: 

 
1.  Sara: That’s going to be -25X 
2.  Jamal: Hold up.  It’s -20… 
3.  Sara: Yes it is… 
4.  Jamal: [Thinking aloud] -20 + 5X. 
5.  Sara: Hold up, hold up… -100X  … -100X 
6.  Jamal: Really?  What? 
7.  Sara: I’m subtracting… 
8.  Jamal: A hundred… How did you get a hundred? 
9.  Sara: No wait wait (he he) 
10.  Jamal: It’s -20 + 5X 
11.  Sara It’s a positive… wait it’s a negative [as Jamal enters -20 + 5X into the calculator] 
12.  Jamal: Got it!  It’s -20 + 5X [both looking at the shared classroom display] 
13.  Sara So what’s the answer? 
14.  Jamal: -20 + 5X 
15.  Sara: Huh? 

 
The disagreement occurred when Sara attempted to construct a single equivalent term for an 

expression that included a linear term and a constant term. Note that Sara took into account all 
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three negative signs when constructing a negative term (line 1).  In contrast Jamal assigned the 
first negative symbol to the constant term and correctly interpreted the double negative on the X 
term (lines 2, 4, 10-12). Jamal’s confidence in his version of the expression exposed Sara’s 
uncertainty as she abandoned -25X in favor of -100X (line 5). Sara expected an answer in the 
form of a single term and expressed surprise (line 15) when the system verified the equivalence 
of Jamal’s binomial expression. The Terms and Operations design exposed the differing 
conceptions of equivalence in the two students and provided important mediation by confirming 
the equivalence of Jamal’s suggestion. 

Episode 2: Ascribing the Rules for Equivalence in an Equation to an Expression 
Jamal joined another partner (Irene) for the next Terms and Operations session. The teacher 

explained the distributive property and instructed the students to construct any expression 
equivalent to 2(X + 3) + 4. The following disagreement between the pair and the teacher 
occurred after Jamal and Irene had successfully constructed 2X + 10. They asked the teacher if 
they could divide by 2 to simplify the expression to get X = 5: 

 
16.  Teacher: X = 5.  Okay.  Where is the equal sign in here right now? [pointing to 2X + 10] 
17.  Jamal: Or, X + 5. 
18.  Teacher: X + 5.  So you want to divide this thing by 2… [writes (2X + 10)/2] You’re dividing this whole 

expression by 2.  On the calculator you would write it out like this.  Yes, Jamal you are right if I 
did divide this by two 2X/2 = X and 10/2 I = 5.  So this is what (2X + 10)/2 would equal. 

19.  Irene: It’s 5X. 
20.  Jamal: No 5. 
21.  Teacher: X + 5.  No? 
22.  Jamal: [Looks stumped] 
23.  Teacher: Okay what were you saying Jamal. 
24.  Jamal: [Shakes head] Nothing. 
25.  Teacher What are you thinking Irene? 
26.  Irene: [giggles] 
27.  Teacher: Not sure?  Here’s the thing: is X + 5 = 2(X + 3) + 4? [Points to board] 
28.  Jamal: No. 
29.  Teacher: Why not? 
30.  Jamal: [Tentatively] Well, it is.  It’s confusing me. 
31.  Teacher: Here’s one thing we could do.  Let’s say we knew what X was.  Let’s say X = 1.  What would X + 

5 be equal to if X = 1. 
32.  Jamal: [writing on paper] 6 and the other one would be 13… or no it would be 12. 
33.  Teacher: How do you make a 6 equal to a 12? 

 
Implicit in the instructions for this task was the notion that 2(X + 3) + 4 would equal some 

equivalent expression.  Jamal and Irene successfully constructed 2X + 10 which does equal 2(X 
+ 3) + 4, but the Terms and Operations collective display showed only 2X + 10. Terms and 
Operations verifies equivalence of expressions but does not check for equivalence of equations, 
so Jamal attempted to verify the next move by asking the teacher if they could divide 2X + 10 by 
2 to make X = 5.  Clearly Jamal and Irene drew on prior experience of solving equations to make 
this suggestion, attempting to apply rules for equivalence in the context of equations to an 
expression.  Irene combined the constant term and X term by suggesting that 5X might be a 
better candidate.  The teacher mediated the disagreement by suggesting that a 1 be substituted for 
X.  Jamal did the calculations and realized that 6 ≠ 12.  The learning environment did illuminate 
the misconception of equivalence proposed by Jamal and Irene, but the teacher provided 
mediation because Terms and Operations does not address equations.  
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Episode 3: Equivalence in Equations versus Expressions Revisited 
The teacher began the session by explaining that to solve an equation the X must be isolated 

on one side through the use of equivalent operations to both sides.  Providing a list of equations 
to solve, the teacher introduced the Two-Sides activity design for the first time and challenged 
the students to solve as many of the equations as they could using the calculators. Jamal and his 
partner (Megan) had just restarted the program after a technical glitch and found that they had 
reversed roles.  A disagreement occurred over what they should do to each side of 3X + 4 = X - 6 
to move toward a solution. 

 
34.  Megan: Yes. Minus X. [Selects operate and chooses subtract X] 
35.  Jamal: I have to, like, subtract 4.  Huh. [Selects operate, chooses subtract and types a 4] 
36.  Megan: No. Minus X. [Almost grabbing the calculator so Jamal will subtract X instead of 4.] 
37.  Jamal: Yeah. 
38.  Megan: No. We’re supposed to do the same thing.  You have to do the same thing so minus X. 
39.  Jamal: Minus…X.  No… Dammit! [Types as he talks and presses enter] 
40.  Megan: You got it… There you go. 
41.  Jamal: Oh, dooney! [surprised and puzzled] 

 
Both Jamal and Megan attempt to eliminate a term from their own side of the equation, but 

Megan understands the additional requirement that equivalent operations must be performed. 
Jamal expressed puzzled surprise (line 41) when the system validated subtracting X from both 
sides. The disagreement between Jamal and Megan corresponded to differing conceptions of 
equivalence in the context of equations.  The Two-Sides system mediated the disagreement in a 
way that Terms and Operations did not by checking for equivalence of both equations and 
expressions. 

Episode 4: Equivalence in Equations versus Expressions Resolved 
Jamal rejoined Megan in a later session in which the students were challenged to enter any 

equation that contained at least one X term and a constant term on the same side.  Megan entered 
2X – 3 and Jamal entered 9 to form 2X – 3 = 9.  The disagreement occurred over the first step in 
solving the equation. 

 
42.  Jamal: 2X – 3 = 9 
43.  Megan: …X – 3 = what? 
44.  Jamal: 9.  I’m supposed to put the right 9.  You’re suppose to put 2X – 3… Then you subtract 3 and I 

add 3. 
45.  Megan: No. We both add it. 
46.  Jamal: Both add or both subtract? 
47.  Megan: No.  We both add it. 
48.  Jamal: [Jamal watches the screen intently as the system updates]  Oh, yah [unintelligible.] 
49.  Megan: Ok.  Now simplify 
50.  Jamal: So 9 + 3 is 12. [They arrive at 2X = 12] 
 

Jamal continued to struggle with the requirement that the same operation must be performed 
on both sides of an equation (line 44).  Even after agreeing that the same operation must be 
performed on both sides Jamal struggled to anticipate the consequences on the equation as a 
whole (line 46).  Jamal’s intense concentration on the shared display indicated that the result 
meant something important to him.  This conjecture was further supported by his affirmative 
response to the result (line 48), and his immediate simplification of his own expression (line 50).   
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The teacher began to explain to the class how the graph on the Two-Sides shared display 
related to the equation Megan and Jamal had made.  Jamal decided to test his newfound 
understanding despite the fact that the teacher was using the graph of their equation as an 
example. 

 
51.  Jamal: [While Teacher talks Jamal initiates a divide by 2 and taps Megan to show her what he’s doing.] 
52.  Megan: [Megan also divides by 2 and the shared display updates to X = 6.  Changing the graph the 

teacher is using as an illustration] 
 

Jamal recruited Megan to divide by 2 on both sides.  The teacher was unaware of the update, 
which caused a few moments of levity in the class.  Here the Two-Sides design was able to verify 
the equivalence of Jamal’s proposal in the context of equations in a way that Terms and 
Operations could not, supporting Jamal’s prediction that dividing both sides by 2 would produce 
the desired result.  Unlike the prior instance during this episode (lines 45-47), Megan readily 
agrees because their conceptions of equivalence for this operation were the same.  It is possible 
that Jamal used a guess and check strategy to arrive at the correct solution for the equation, but 
he was required to divide both sides by two to verify this. Two-Sides and Jamal’s partner Megan 
provided mediation in the form of positive feedback. 

Discussion 
The Terms and Operations and Two-Sides activity designs enabled Jamal and his partners to 

jointly construct expressions and equations.  In Episode 1 the Terms and Operations design 
mediated the disagreement between Jamal and Sara over the equivalence of expressions. 
However, when Irene and Jamal ascribed the rules of equivalence for equations to an expression 
in Episode 2, mediation shifted to the teacher because Terms and Operations did not verify 
equivalence for equations.  The Two-Sides design tested equivalence for both expressions and 
equations providing mediation for Episodes 3 and 4.  The different affordances of the two tools 
led to different forms of mediation of the disagreements between Jamal and his partners. 

The design of the learning environment mapped the social relationships to the mathematical 
construct.  Each move by the pair necessitated an agreement on a conception of equivalence in a 
particular context.  Disagreement created the need to test one competing conception using the 
tools in the learning environment.  When the Terms and Operations could not verify equivalence 
of equations the students turned to the teacher to resolve the disagreement. 

The contrast in the mediation of equivalence between the two designs shifted mediation away 
from the teacher in certain contexts and toward the teacher in others.  Collaboration supported by 
technology gave way to more teacher directed forms of instruction when the technology could 
not mediate disagreements.  Student conceptions of equivalence were mediated, but the form of 
mediation differed depending upon the affordances of the learning environment. 

Jamal shows increased sophistication in his understanding of equivalence over the course of 
the four sessions.  He could negotiate equivalence of expressions (Episode 1), but ascribed rules 
for equivalence of equations to expressions (Episode 2).  Working in the in the Two-Sides 
learning environment he began to differentiate between equations and expressions (Episodes 3 
and 4).  The technology both informed and supported different forms of instructional practice 
and promoted new kinds of classroom interactions that led to learning for Jamal. 

This study took place in a non-traditional charter school with mix of both algebra 1 and pre-
algebra students.  Students volunteered to participate in the study on a once per week basis.  The 
influence of mediation cannot be generalized beyond this study, and the influence of technology 
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should be taken as an example of how pedagogical possibilities emerge from designs like these.  
Further research will be required to explore these possibilities in the context of classroom 
network learning environments.  
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VALIDATING TWO PROBLEM-SOLVING INSTRUMENTS FOR USE WITH SIXTH-
GRADE STUDENTS 

A validation study was conducted to explore properties of two problem-solving measures. One 
hundred sixty-nine students responded to two problem-solving instruments that were adapted 
from prior research (Verschaffel et al., 1999). Students completed the instruments during their 
mathematics class with one week between test administrations. There was sufficient evidence of 
good fit using a one-factor model for both measures. Item difficulty and discrimination were 
examined using Item Response Theory.  

Introduction 
Mathematically proficient students at any age make sense of word problems, evaluate their 

progress while problem solving, and interpret their solution (Chief of Council State School 
Officers (CCSSO), 2010; Kilpatrick, Swafford, & Findell, 2001). Unfortunately, data suggest 
that adolescents in the U.S. have difficulty solving complex word problems (Gonzales, Williams, 
Jocelyn, Roey, Kastberg, & Brenwald, 2009). With many states adopting standards that reflect 
the Standards for Mathematical Practice (CCSSO, 2010), assessments that capture students’ 
problem-solving performance and align with these new standards are necessary. Instruments 
drawing on Item Response Theory (IRT) concepts and procedures are likely to produce more 
accurate estimates of problem-solvers’ abilities than Classical Testing Theory (CTT) approaches 
(de Ayala, 2009; Embretson & Reise, 2000). Problem solving is briefly discussed followed by 
the benefits of IRT and a brief description of key terms typically used in IRT. The goal for this 
study was to revise and validate problem-solving tests from Verschaffel et al. (1999) using IRT 
and factor analysis.  

 
Literature Review 

Problem Solving 
“A problem occurs when a problem solver has a goal but lacks an obvious way of achieving 

the goal” (Mayer & Wittrock, 2006, p. 288). Verschaffel et al. (1999) suggest that word 
problems should be open, realistic, and complex. Open problems provide learners multiple entry 
points and can be solved in different ways. A realistic task is developmentally appropriate and 
draws on a problem solver’s prior knowledge. A complex problem requires an individual to 
employ sustained reasoning to solve it. More accurate and appropriate evaluations of students’ 
problem-solving ability may be possible with problems drawing on these components. Problem 
solving goes beyond procedural thinking typically associated with solving exercises (Polya 
1945/2004; Mayer & Wittrock, 2006). Problem solving  

 
usually involves several iterative cycles of expressing, testing and revising mathematical 
interpretations – and of sorting out, integrating, modifying, revising, or refining clusters 
of mathematical concepts from various topics within and beyond mathematics. (Lesh & 
Zawojewski, 2007, p. 782)  
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Exploring the ways students solve word problems in addition to their performance adds to the 
literature on students’ problem solving and strategy use.  

Prior research provides a foundation for creating new instruments with tasks that are open, 
realistic, and complex. Verschaffel and his research team (1999) explored the impact of teaching 
mathematics through problem-solving contexts on fifth-grade students’ problem-solving 
performance. Four classes received 20 lessons meant to foster effective problem solving while 
seven classes continued with their normal instruction. A total of 232 participants completed both 
a pretest and posttest. Instruments were composed of ten open, realistic, and complex word 
problems. Each item on the pretest had a similar task on the posttest. Reliability for the tests was 
.56 and .75. Items were scored as correct, technical error, or incorrect. Technical errors were 
characterized as minor arithmetic errors, which were counted as correct responses in terms of 
students’ performance. The tasks’ open-ended nature would have supported explorations into 
students’ strategy use; however, these analyses were not conducted. Results from the posttest 
indicate that on average, students from the intervention group had better problem-solving 
performance than those in the comparison group on the posttest, p < .05. Verschaffel et al. (1999) 
note a lack of problem-solving instruments using open, realistic, and complex tasks suitable for 
adolescents. Measures with well-documented and appropriate psychometric qualities could not 
be borrowed hence tests were created to suit the aim and scope of the study. Further research is 
necessary to make a version of the instruments for English-speaking students but also, the items’ 
contexts may need updating. A second limitation Verschaffel et al. (1999) discuss was the lack 
of validity-related evidence associated with their instruments. The large number of participants 
would have afforded an investigation to gather statistical validity using IRT (de Ayala, 2009; 
Embretson & Reise, 2000).  

Item Response Theory 
IRT has four critical assumptions, (1) ability is a unidimensional trait, (2) the items are 

locally independent, (3) the probability of answering items increases as ability increases, and (4) 
item parameters are independent of respondents’ abilities (de Ayala, 2009; Embretson & Reise, 
2000). Results from IRT methods produce trait-level estimates of a person’s abilities that depend 
on the individual’s responses and the item properties (Embretson & Reise, 2000). Ability 
estimates are often more precise than CTT results and require fewer items (de Ayala, 2009). 
Each individual has a standard error estimate instead of assuming one for all respondents 
(Embretson & Reise, 2000). Respondents’ scores can be linked when they take tests that measure 
the same trait; CTT requires strictly parallel tests (i.e., equal means, variances, and covariances). 
Finally, results from tests created with IRT procedures can be compared with results from 
different populations. Advancements in IRT methodologies facilitate updating and improving 
older problem-solving instruments that relied on CTT. By reexamining tests from earlier 
research, it may be possible to better estimate a learner’s problem-solving ability and facilitate 
enhanced contexts that support problem solving.  

The simplest IRT model is the Rasch model, which suggests that the odds of an examinee 
answering an item is modeled by the ratio of an examinee’s ability and an item’s difficulty (de 
Ayala, 2009; Embretson & Reise, 2000). Item difficulty characterizes the ability needed to have 
a 50% likelihood to give a correct response is 0.5 (de Ayala, 2009). Generally, an item difficulty 
below 0 indicates an easier problem whereas greater than 0 characterizes a harder item (de 
Ayala, 2009). Problem-solving tasks tend to be somewhat more difficult than standard 
mathematical exercises therefore larger item difficulties are expected. A useful trait of the Rasch 
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model is the Sufficiency property, which indicates that respondents can be rank ordered by their 
total score. The second property of all IRT models is item discrimination, which characterizes 
the degree an item can distinguish respondents of differing abilities. The Rasch model constrains 
item discrimination to a specific value (e.g., 1) or it can vary for the measure. The 2-PL model 
allows item discrimination to vary for each task but participants cannot be rank ordered.  

 
Method 

Participants 
All sixth-grade students in ten classes of two sixth-grade teachers from a school in Florida 

were approached for their consent, 169 students agreed to participate. Approximately 33% of 
students at the school are eligible for free-or-reduced-lunch (Florida Department of Education 
(FLDOE), 2010). Sixty-nine percent of students at the school are white, 12% are African-
American, 11% characterize themselves as Hispanic, 5% are multiracial, and 3% are of an Asian 
ethnicity (FLDOE, 2010).  

Instrumentation 
The problem-solving instruments used by Verschaffel et al. (1999) were translated into 

English by an individual who previously taught Dutch at the university level. Items consisting of 
only one sentence were not revised because they were significantly shorter than most tasks. One 
item-pair relied on pictures and was not selected because the item format was unique from all 
other tasks. After examining the items, a total of eight item pairs were selected for translation 
and revision. The problems were revised to update contexts, to reflect U.S. students’ experiences, 
and to clarify the language. For instance, an updated task described food options available in a 
U.S. school cafeteria (i.e., sandwich, pizza, and hamburger) rather than lunch choices typical of 
school cafeterias in the Netherlands. The first and second tests are located in Appendix A and B, 
respectively. When a near-exact translation of an instrument is used, a back-translation may be 
necessary; however, the contexts of the problems changed dramatically thus a reverse translation 
was unnecessary.  

Two mathematics educators reviewed the tasks for open-ness, relevance to sixth-grade 
students in the U.S, and complexity. The tests were also evaluated by a fifth-grade mathematics 
teacher for these same characteristics as well as to verify that the items were realistic for children 
living in the U.S. and could be solved in multiple ways by students entering sixth-grade. The 
teacher indicated that the items were open, realistic, complex and further indicated that students 
entering sixth-grade could answer every question.   

Data Collection 
Measure administration occurred during students’ mathematics class, which lasted 45 

minutes. The measures were completed one week apart. Most students completed the first test 
over one-and-a-half mathematics periods whereas they finished the second test during one 
mathematics period. The measures were distributed to the students, the directions were read out 
loud, and students who asked for assistance were told to reread the problem and answer the 
question to the best of their abilities. Students did not have access to calculators during testing.   

Analysis 
Initially tests were scored using Verschaffel et al.’s (1999) scheme including incorrect (0 

points), incorrect because of an arithmetic error (1 point), and correct (2 points). There were very 
few occasions of arithmetic errors (i.e., less than two percent of all responses) and a dichotomous 
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IRT model effectively suited the tests without sacrificing loss of information hence the scoring 
scheme was simplified to incorrect and correct (i.e., zero and one, respectively). Responses with 
arithmetic errors were collapsed into the correct category. A sample consisting of 20% of tests 
was randomly selected, two coders scored these tests independently and interrater agreement 
(IRA) using rwg (James, Demaree, & Wolf, 1984) was calculated. IRA is more appropriate than 
interrater reliability because IRA provides evidence that ratings from the two coders would be 
identical for all other tests from that sample (LeBreton & Senter, 2008). IRA for both test 
administrations was within an acceptable range (rwg = .99) (LeBreton & Senter, 2008).  

Structural equation modeling procedures were employed to examine the fit of the tests with a 
single proposed construct: problem-solving ability. IRT analyses were conducted to determine 
item difficulty and item discrimination. Reliability of each measure was calculated using 
Cronbach’s alpha and Pearson’s r characterized alternate forms reliability. De Ayala (2009) 
stresses that a calibration sample with a few hundred respondents “should not be interpreted as a 
minimum, but rather as a desirable target” (p. 43) and a smaller sample may suffice to estimate 
item parameters. M-PLUS and R facilitated the model fit and IRT analyses, respectively.  
 

Results 
Test and Item Characteristics 

The test of model fit for the one-factor solution for the first test was not significant 
, p = .45 and Root Mean Square Error of Approximation (RMSEA) indicated 

excellent fit, RMSEA = .005. The Confirmatory Factor Index (CFI) and Tucker-Lewis Index 
(TLI) were both 0.99. Similarly, the test of model fit for the one-factor solution for the second 
test was not significant  p = .37, RMSEA = .021. CFI and TLI for the second 
measure were 0.99. Root Mean Square Error of Approximation values less than or equal to .06 
indicate close fit (Bryant & Yarnold, 1995/2005). CFI and TLI values greater than .90 provide 
evidence of good fit (Ullman & Bentler, 2009). 

Three dichotomous IRT models were explored: Rasch with discrimination constrained to 
one, Rasch with unconstrained discrimination, and the 2-PL model. A 3-PL model was not 
considered because the sample was not large enough and guessing the answer on a constructed-
response item is unlikely. Data were subjected to analyses and then each model was compared 
using ANOVA to support the decision for the most appropriate model. Statistical comparisons 
are helpful, but simplicity of models should take precedence when there appears to be little 
information gained from using a more complex model (de Ayala, 2009). The Rasch model with 
unconstrained discrimination showed a slight improvement over the Rasch model with 
constrained discrimination for the first test, F(1)=3.09, p = .08, and there was no statistical 
improvement with the 2-PL model, F(7)= 10, p = .19. For the second test, the Rasch model with 
unconstrained discrimination was an improvement over the Rasch model with constrained 
discrimination, F(1)=4.62, p = .03, and the 2-PL model was statistically better than the 
unconstrained Rasch model, F(7)=15.92, p =.03. The first test fit the constrained Rasch model fit 
best whereas the 2-PL model was selected for the second test. Tables 1 and 2 provide the item 
information for each instrument.  

Table 1. Item information for first test 
Test Parameters Item 
  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 
Difficulty -0.49 2.82 2.47 1.74 0.99 1.65 1.69 1.53 
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Std. Error 0.17 0.39 0.34 0.25 0.19 0.24 0.24 0.23 
Discrimination 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 
Std. Error 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

 

Table 2. Item information for second test 
Test Parameters Item 
  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 
Difficulty -0.38 4.07 3.32 0.99 0.75 1.01 1.31 0.68 
Std. Error 0.38 2.13 1.38 0.17 0.19 0.27 0.34 0.13 
Discrimination 0.71 1.03 0.79 2.31 1.44 1.1 1.05 2.8 
Std. Error 0.25 0.67 0.38 0.71 0.38 0.31 0.31 1.02 

 
These results suggest that overall, the first test had fairly difficult items and it discriminated 
between participants well. The second test also had a number of difficult items and each item 
tended to discriminate fairly well. Cronbach’s alpha for the first and second test was 0.60 and 
0.62 respectively. Approximately 75% of the participants earned two or fewer total points on the 
first measure and 60% of the participants earned two or fewer points on the second measure. The 
minimum correlation coefficient to link scores across tests measuring the same latent trait was 
.60 (Ary et al., 2009). Pearson’s correlation indicated the alternate forms reliability was 0.60, 
sufficient for exploratory studies with new instruments (Ary et al., 2009).  

Discussion 
These items were reasonably difficult and discriminated fairly well among participants. Most 

items’ difficulty ranged from 0.69 to 1.74, which is within De Ayala’s (2009) suggested range 
from negative one to positive two. This range for the problem-solving measures indicates that a 
student with above-average ability had a good probability of answering the item correctly. Items 
with a discrimination parameter value from 0.5 to 2.5 are satisfactory items (De Ayala, 2009); 
every item was within this range. The lack of negatively discriminating items suggests that 
students with higher abilities were able to answer more difficult tasks.  

These results confirm that sixth-grade students experiencing typical mathematics instruction 
tend not to perform well on problem-solving tasks. Fifth-grade students’ mean score, M=1.6 
(Verschaffel et al., 1999) was similar to these sixth-grade students score on the first test. The first 
test is not necessarily harder than the second test, even though participants’ average score was 
higher. For instance, items one, two, and three are easier items than items four through eight.  

Results from this study indicate directions for future research using these instruments. First, 
items two and three on the measures should not be used in their present form because the item 
difficulties were exceedingly high. De Ayala (2009) suggests that item difficulties greater than 
two may not function well with a normal sample thus some items should be revised and 
reexamined. Second, students tended not to use pictorial strategies, which would have been 
efficient and effective. Participants might have fared better had they considered pictorial 
approaches, which would have elucidated the solution to questions two and three rather quickly. 
Research investigating the degree to which non-symbolic strategies are a part of instruction is 
necessary. Future studies using these instruments should continue to refine the tasks while 
maintaining their open, realistic, and complex nature. 
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Appendix A 
1) Ruth is planning to serve ice cream sundaes to guests at her birthday party.  She purchased 3 
flavors of ice cream: vanilla, chocolate, and strawberry, 2 different sauces: chocolate and 
caramel, and 4 different toppings: bananas, nuts, sprinkles, and whipped cream.  How many 
different types of sundaes can be made if every guest selects only one ice cream flavor, one type 
of sauce, and one topping? 
2) Jerome needs 1 gallon of paint in order to paint a bedroom ceiling that is shaped like a square 
and measures 12 feet on each side.  How many gallons of paint would he need to paint a living 
room ceiling that is shaped like a square and each side measures 24 feet? 
3) Bill is making a gate for a wooden fence to keep his dogs in his yard.  He bought four boards 
of wood from the home improvement store.  Each board measures 10 feet in length.  He needs 3 
foot 6 inch pieces of wood to build the gate.  How many pieces can Bill make from his four 
boards? 
4) A youth group and their adult chaperones want to visit a water park. The admission fees for 
this water park are listed below: 
Children: $6.00   
 
Adults: $10.50 
The total cost for all 17 people in the group to enter the park is $129.00.  How many children 
were in this group? 
5) A group of 150 tourists were waiting for a shuttle to take them from a parking lot to a theme 
park’s entrance.  The only way they could reach the park’s entrance was by taking this shuttle.  
The shuttle can carry 18 tourists at a time.  After one hour, everyone in the group of 150 tourists 
reached the theme park’s entrance.  What is the fewest number of times that the shuttle picked 
tourists up from the parking lot? 
6) Aunt Marie purchased 80 Silly Bandz for her two nephews Elijah and Jordan.  She gave Elijah 
10 more Silly Bandz than Jordan.  How many Silly Bandz did Elijah and Jordan each receive? 
7) A family is planning a camping trip to a national park and receives the following information 
about the costs per day:   
Camping Fee  
     Children 12 years and younger  $3.00 per day 
     All others  $7.00 per day 
  
Parking for trailer $9.00 per day 
  
Use of common areas  $1.50 per person per day 
The family will camp for 10 days and need to park their trailer each day.  The family consists of 
4 people including a father, mother, 8 year-old child, and a 14 year-old child.  Each person will 
need to use the common areas on a daily basis.  How much will they pay for their camping trip? 
 
8) Maria wanted a bicycle so she started saving all of her money.  For every $6.00 that Maria 
saved, her mother gave her $2.00.  Maria had $56.00 after three months.  How much money did 
Maria’s mother give her?  
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Appendix B 
1) Students at Sandhill Elementary School purchase their lunches from the cafeteria. There are 3 
choices for a main dish: hamburger, slice of pizza, or a turkey sandwich, 4 different fruit options: 
apple, banana, orange, or peach, and 2 drink options: milk or juice.  How many different types of 
lunches can be made if every student selects only one main dish, one piece of fruit, and one 
drink? 
2) It takes Jeff 1 hour to mow a lawn that is shaped like a square and is 200 feet on each side.  
How many hours would it take him to mow a lawn that is shaped like a square if each side 
measures 400 feet? 
3) Mr. Lee wants to make jump ropes for his students to use on the playground.  He purchases 
four packages of rope from the home improvement store.  Each package contains one piece of 
rope that measures 25 feet.  Each jump rope needs to measure 8 feet 6 inches.  He can cut the 
rope but cannot join pieces together.  How many jump ropes can Mr. Lee make? 
4) A youth group and their chaperones want to visit the Butterfly Rainforest exhibit at the 
museum.  The admission fees for the Butterfly Rainforest exhibit are listed below:  
Children: $6.00 
 
Adults:  $10.50 
The total cost for all 17 people in the group to enter the museum is $129.00.  How many adults 
were in this group? 
5) A group of 150 people were waiting for a glass bottom boat to take them on a trip through a 
nature preserve.  The boat can carry 18 people on each trip.  After several hours, everyone in the 
group of 150 people had gone through the nature preserve.  What is the fewest number of trips 
made by the boat? 
6) Natasha and Marianne went to a theme park.  Together, they spent $80.00.  Natasha spent 
$10.00 more than Marianne.  How much money did Natasha and Marianne each spend? 
7) A family is planning to leave their pets at Animal Day Care while they are on vacation.  They 
receive the following information about costs per day: 

Kennel costs 
      Dog 
      Cat 
 
Food 
 
Walk  

 
$11.00 per day  
$9.00 per day  
 
$1.50 per animal per day  
 
$3.00 per dog per day  

The family will need to leave their pets at Animal Day Care for 10 days.  They have 1 dog and 3 
cats.  All of the animals need to receive food on a daily basis and the dog must be walked each 
day.  How much will the family pay for their pets’ stay at Animal Day Care? 
8) Janice went shopping at the grocery store and saw the following special offer.  “If you buy 6 
oranges, you get 2 free.”  She purchased her groceries and left the grocery store with 56 oranges.  
How many oranges did she get for free? 
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This report describes data from a pilot study conducting a textual analysis of a recently 
published Algebra 1 curriculum using a conceptual framework developed from Assessment for 
Learning (AfL) principles. AfL uses assessment results to change instruction in order to increase 
student learning. The study sought to explore how the first unit of the chosen curriculum 
conceived of AfL. Results of this analysis indicated that three categories of AfL were found in the 
curriculum (Goals, Teaching Planning, and Evidence of Learning) while a fourth category was 
nonexistent (Constructive Feedback). 
 

Introduction 
The literature on Assessment for Learning (AfL) and Formative Assessment (FA) is 

expansive. In the past twenty-five years, multiple reviews of literature have taken place (Black & 
Wiliam, 1998a; Crooks, 1988; Natriello, 1987; Sadler, 1989; Wiliam, 2007) as well as critiques 
of this research base (Dunn & Mulvenon, 2009). The field of mathematics education in particular 
has accepted the results of this AfL research, as can be seen in the Assessment Standards in the 
National Council of Teachers of Mathematics (NCTM) Principles and Standards for School 
Mathematics (2000) as well as Wiliam’s (2007) review in a recent mathematics education 
research handbook. 

In his review of the AfL literature, Wiliam (2007) expands on the research behind five AfL 
strategies also found elsewhere (Leahy, Lyon, Thompson, & Wiliam, 2005; Wiliam & 
Thompson, 2007):  

1) “Clarifying and sharing learning intentions and criteria for success” 
2) “Engineering effective classroom discussions, questions, and learning tasks that elicit 

evidence of learning” 
3) “Providing feedback that moves learning forward” 
4) “Activating students as instructional resources for one another” 
5) “Activating students as the owners of their own learning” (Wiliam, 2007, p. 1054). 

Wiliam and Thompson (2007) connect these five research-based Afl strategies to three questions 
derived from Ramaprasad (1983): (1) Where is the learner right now? (2) Where is the learner 
going? and (3) How does the learner get there? This research has been used to help shape 
professional development (Black, Harrison, Lee, Marshall, & Wiliam, 2003) to elicit more 
evidence of the positive effects of AfL already reported (Black & Wiliam, 1998b). Research in 
AfL has not yet included studies examining written mathematics curriculum, nor the connections 
any AfL in the written curriculum might have with the enacted curriculum. 

The Principles and Standards for School Mathematics (National Council of Teachers of 
Mathematics, 2000) incorporates AfL into one of its six principles. The assessment principle 
suggests that “assessment should enhance student learning” (p. 22) and “assessment is a valuable 
tool for making instructional decisions” (p. 23). The enhancement of learning espoused by this 
document closely follows what Black and Wiliam (1998a) reviewed. In terms of decision-
making, this assessment principle emulates the three AfL questions mentioned already, 
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especially the final one: how the learner reaches his or her learning goal. As the major standards 
document distributed nationally, the NCTM shows its support of AfL in the mathematics 
curriculum across school mathematics. 

Harlen and Winter (2004) maintain that there is a need to assess problem solving, 
communication, and reasoning as part of the mathematics curriculum. The authors also contend 
that these strands are not readily assessed in normal testing situations. Harlen and Winter 
promote FA and AfL as being able to help assess aspects of the curriculum that regular testing 
are unable to assess. As one criterion for effective formative assessment, Shepard (2007) asserts 
that the formative assessments should be embedded within the written, enacted, and assessed 
curriculum. This pilot study sought to explore the depth of AfL in the written curriculum, 
specifically asking the following: What potential assessment for learning design features are 
contained in one unit of a standards-based curriculum? 

 
Perspectives 

The following analytic framework (Figure 1), based in part on the Assessment Reform 
Group’s (2002) 10 Principles of AfL and in part on the previous research already mentioned, was 
developed by a colleague and I (Bentz & Engelman, 2010). Figure 1 represents half of the full 
framework. This framework acted as the tool for analyzing the design features of the curriculum 
studied in this project. In the framework, “curriculum resources” refer to all curriculum resources 
available to the teacher and the student. Evidence of Learning seeks to answer AfL question 1, 
Goals help answer AfL question 2, and Constructive Feedback attempts to answer AfL question 
3. Teacher Planning is required for all three questions to be answered. 

 
Figure 1: AfL Analytic Framework 

 
Methods 

Research Design 
To answer the research question, an exploratory study was conducted. Maxwell clarifies that 

the goal of an exploratory study is to “generate an understanding of the concepts and theories 
held by the people you are studying” (p. 79). The pilot study in this report seeks to understand a 
curriculum rather than people or behavior. The main goal is to describe phenomena and 
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document the characteristics of the phenomena, in this case, phenomena in a mathematics 
curriculum (Johnson, 2001). 

In order to answer the pilot study research question, the case study (Yin, 1998) is modified to 
investigate a single unit of one reform oriented mathematics curriculum. One unit is defined as 
the case itself. Since case studies require multiple sources of evidence in order to triangulate 
(Yin, 1998), three different sources of data were chosen from the same curriculum. My goal in 
applying the AfL analytic framework is to both discover how easily it can be applied to 
mathematics curricula while at the same time discover the extent to which that curriculum pre-
packages assessment for learning strategies. 

 
Sources of Data 

The curriculum chosen was the National Science Foundation funded Center for Mathematics 
Education (CME) Algebra 1 curriculum (Education Development Center, 2009). The author 
team incorporated Cuoco, Goldenberg, and Mark’s (1996) habits of mind for mathematics into a 
four-course high school mathematics curriculum. These habits of mind closely follow the ideas 
put forth by the 2000 NCTM Standards. Because these standards include language supporting 
AfL, this study endeavored to determine the extent to which the CME curriculum contained AfL 
strategies. 

Within the CME Algebra 1 curriculum, three main data sources were used. The first data 
source analyzed was the Implementing and Teaching Guide (IG). The entire IG was coded first 
to get a sense of the intent of the authors – the principles of design the curriculum was built 
around – as well as certain structural components. By coding the IG first, specific aspects of the 
analytic framework began to be formulated for their use with certain elements of the student 
textbook and teacher resource materials. This helped code later sources more accurately. 

The second data source was the Student Edition (SE) of the textbook. This source was 
analyzed second to determine what AfL the students would see independent from anything found 
in the annotations of the Teacher’s Edition. The final data source analyzed was the Teacher’s 
Edition (TE). When analyzing this source, information that exactly duplicated information from 
the student text was not coded. Only the annotations from the peripheral materials in the TE were 
analyzed. 

The chosen unit analyzed in CME Algebra 1 was Chapter 1 (Arithmetic to Algebra). This 
curriculum has just eight chapters, each about fifteen lessons long. One chapter of this 
curriculum is considered a unit. This chapter was chosen to see how the first chapter of the first 
course in the CME high school curriculum began to use AfL strategies from the outset of the 
entire CME program. 

 
Potential for Assessment for Learning 

Throughout the coding process, any elements of the curriculum coded as AfL did not 
necessarily make those elements AfL in actual classrooms. Rather, these elements have the 
potential to become AfL depending on how they are enacted in the classroom. For instance, the 
Check Your Understanding element is coded as EL 1, EL 4, and TP 1. This means that any 
Check Your Understanding section in the curriculum offers the teacher three AfL strategies:  

(1) an opportunity to formatively interpret and judge for evidence of student learning and 
improvement (EL 1) 
(2) an opportunity for students to demonstrate acquisition of understanding (EL 4), and 
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(3) opportunities for teachers to obtain and use information about students’ progress towards 
learning goals (TP 1). 

In order for the Check Your Understanding section to be considered AfL, the results of student 
work in these sections must be used to make instructional decisions. Thus, any code applied to 
the CME curriculum in this project can be seen as an element of the curriculum with the 
potential to become enacted AfL 
 
Data Analysis 

Coding the three data sources took place in two stages. The first stage coded the sources in 
the order mentioned in a previous section. After the preliminary coding, an initial analysis of this 
data was completed, triangulating among the three data sources. As the coding progressed from 
one source to another, more was learned about various elements of the curriculum. Specific 
design elements found throughout the curriculum received new codes over time. Through 
triangulation, the codes for a given element were combined from the three data sources, thus 
developing a more thorough coding scheme. With this new coding scheme, all three data sources 
were coded a second time, obtaining coding not found during the first round of coding. This 
ensured that items coded early on in the coding process had the updated code for that element. 

The Check Your Understanding sections occur throughout the lessons in Chapter 1, and each 
of these sections was considered a single element of the curriculum. The IG states that “students 
should do Check Your Understanding exercises in class. By giving students some class time to 
work on these exercises, you can assess their preparation for individual work on the On Your 
Own exercises that follow” (p. 84). The Check Your Understanding exercises are intended to 
discover where students are in their learning for the purpose of formatively interpreting whether 
the students are ready to move on to the On Your Own exercises. From the framework (Figure 1), 
this curriculum element receives the codes EL 1 and TP 1. 

During this process of triangulation, the SE helps show a different aspect of the Check Your 
Understanding exercises. This exercises focuses on eliciting evidence of student understanding:  

“1. Derman opens a checking account on June 14. He records his check withdrawals and 
deposits, but he does not calculate his balance for a week. On June 20, the bank tells Derman 
that he has overdrawn his account.  
a. When did Derman first overdraw his account? 
b. How much money does he need to deposit to reach a positive balance? 
c. How could Derman have avoided overdrawing his account?” (EDC, Student Edition, p. 

14). 
These three questions delve into the understanding students have about the mathematics. Thus, 
this section received the code EL 4. 

The TE adds to what the SE brings to Check Your Understanding by offering multiple ways 
the teacher can elicit student understanding of the material: “Exercise 1 Some students may 
never have used a checkbook ledger before. Explain what each column represents [in a 
checkbook ledger]. Explain the difference between a deposit and a check (withdrawal). You may 
wish to provide students with copies of Blackline Master 1.2 to complete” (EDC, Teacher 
Edition, p. 14). This peripheral segment points the teacher to possible misunderstandings 
students may have. This confirms the code EL 4 given when looking at the SE. 

Therefore, the Check Your Understanding sections have the potential to be used formatively 
to change the direction of the lesson should students not be ready to move on in their learning 
(EL 1, PL 1). As this item elicits evidence of understanding, it had to be coded with EL 4. This 
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process of triangulating using all three data sources to determine which codes to apply was 
duplicated for each element in the curriculum that was repeated throughout the chapter. 

 
Results 

Teacher Planning 
Teacher planning yielded more codes that any other piece of the analytic framework. The 

Assessment Reform Group’s 10 Principles of AfL (2002) focus so much on the idea that AfL 
must be pre-planned – they claim that AfL cannot just happen in the course of a lesson. Thus, it 
is crucial for a curriculum to present a teacher with AfL strategies. The CME curriculum offers 
numerous instances where opportunities are given for the teacher to obtain and use information 
about students’ progress towards learning goals (TP 1) – see Figure 2. This necessarily requires 
that G 1 and G 3 be appropriately accomplished. In the SE, TP 1 occurs nine times through In 
Class Experiments, thirteen times through Check Your Understanding, and sixteen times through 
Additional Practice web codes. 

 
Figure 2: Teacher Planning Code Counts 

Another aspect of AfL that is so important is the idea that instruction should change based on 
what students know and understand during a lesson (TP 2). The TE gives 58 such opportunities 
in the first chapter alone. Twelve occurrences of TP 2 came from Additional Practice sheets (the 
teacher could assign these based on the needs of their students), while thirty-one instances came 
from pacing suggestions. Pacing suggestions came in the form of exercises in the text being 
assigned as core problems (for all students to complete), extra practice worksheets (for those 
who need more practice), and extension problems (for those who understand the material thus far 
and can move on). As this chapter contains fifteen lessons total, a teacher averages two instances 
in class each day where they have the potential to make pacing and instructional changes. 

One of the strengths in this curriculum is the intention that there is some flexibility with 
which the teacher can implement the curriculum. This flexibility enhances the learning for all 
students (TP 3) and encourages students to achieve their best (TP 4). Many of these instances 
come from the IG, which mentioned that it was the authors’ goal to ensure that all students of 
CME have the opportunity to succeed at mathematics. 

Goals 
This category of the framework addresses the need for AfL to direct students toward the 

goals of learning. Of the three codes within this category, one of the three codes was never found 
(G 2). There were no instances where the curriculum suggested that students should partner with 
the teachers to set goals. The remaining two codes were used with the potential for AfL in mind 
– see Figure 3 for a summary of these code counts. Goals in the curriculum were similar to the 
following: “You will learn how to identify, describe, and justify patterns in arithmetic and in 
multiplication tables…You will develop these habits and skills: Gain a sense of how a 
mathematician works” (EDC, Student Edition, P. 8). These goal statements were in the 
curriculum using student friendly language (G3). They also have the potential to be G1 (students 
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understand the goals of learning) if the teacher actually has the students read through them as 
well as keep the goals in mind throughout the lesson. 

 
Figure 3: Goal Code Counts 

 
Evidence of Learning 

In order for the first AfL question to be answered (Wiliam & Thompson, 2007), evidence of 
learning must be elicited. A vast majority of these codes come from the SE – see Figure 4. The 
first code is another of the major codes that has the potential for being AfL. In the first chapter, 
teachers have the opportunity to formatively interpret and judge for evidence of student learning 
and improvement 72 times combined in the three data sources. The key word in this code is 
formatively, where the teacher has the chance to change the direction of student learning based 
on current levels of skills, knowledge, and understanding. This means that the interpretations 
must take place in order to change instruction. This includes any assessment item completed at 
home as well as those completed in class. In the first chapter, the curriculum materials include 51 
opportunities to elicit knowledge, 48 opportunities to elicit skills, and 92 opportunities to elicit 
understanding. 

Six categories of student exercises contain most of the codes for Evidence of Learning. 
Check Your Understanding occurred thirteen times in the chapter, and contained EL 1 and EL 4. 
For You To Do occurred twenty times, coded with EL 2 and EL 3. Maintain Your Skills occurred 
sixteen times, as did On Your Own, Take It Further, and Additional Practice. Codes used for 
these four sections were EL 3; EL 2 and EL 4; EL 4; and EL 1, respectively. 

 
Figure 4: Evidence of Learning Code Counts 

Constructive Feedback 
Feedback is the backbone of the AfL literature (Black & Wiliam, 1998b; Wiliam & 

Thompson, 2007). The IG, SE (Chapter 1), and TE (Chapter 1) did not contain a single instance 
of constructive feedback. Constructive feedback is required for AfL to be completed (Sadler, 
1989). There were numerous instances where the TE suggested ways for teachers to work with 
student answers. However, since these instances did not both point students to where they should 
go and how to get there, these could not be classified as constructive feedback. 

 
Discussion 

Overall, the first chapter of CME Algebra 1 presents learning goals in student-friendly 
language. The curriculum has great potential for ensuring students understand these goals. If a 
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teacher endeavors to enact AfL, this curriculum will help begin that process by clearly outlining 
the learning goals prior to learning. In order for this potential to be realized, the teacher must do 
more than simply place these goals in front of the students. As the analytic framework suggests, 
teacher plans should ensure that information is elicited about students’ progress toward these 
goals (TP 1). These goal statements also help to answer the second AfL question: Where are 
students going? (Wiliam & Thompson, 2007). CME Algebra 1 accomplishes this. 

The numerous instances where students have the opportunity to show their knowledge, skills, 
and understanding help the teacher to have the chance to formatively interpret this evidence for 
further instruction. Moreover, the teacher is directed to use this information to make instructional 
decisions. This process helps answer the first AfL question: Where are students at in their 
learning? (Wiliam & Thompson, 2007). The CME curriculum offers the teacher opportunities 
each day of class to make instructional decisions based on where students are at in their learning. 
It is not enough that teachers simply find out where students are at in their learning – the teacher 
must change their instruction to help the students move on. 

The final AfL question, directly related to feedback, is not addressed in the CME Algebra 1. 
This would mostly come through feedback. The fact that this major piece of AfL is missing 
could lead one to believe that the CME Algebra 1 curriculum does not accomplish this strategy 
of AfL. Bringing in the concept of potential for AfL, though, helps temper this major gap. In 
other words, the CME Algebra 1 curriculum has the potential to answer the first two AfL 
questions all by itself. The teacher still must enact these pieces of the curriculum. If these are 
enacted, then the teacher, outside of what the curriculum brings to the classroom, has the 
potential to put constructive feedback into the classroom on their own to complete the three AfL 
questions. 

Because CME Algebra 1 helps answer the first two AfL questions, it does have the potential 
to provide the conditions under which AfL can be enacted. The key to making this so is how the 
teacher decides to use the curriculum. The teacher must decide whether or not they will take the 
time to not only go through the goals of learning with the students, but also point back to these 
learning goals throughout the learning process, especially as they elicit evidence of student 
learning. The lack of information the curriculum brings to help answer the final AfL question 
leads me to conclude that this curriculum is not a complete, pre-packaged, AfL curriculum but it 
does have great potential to enact AfL in the classroom. 

Endnotes 
This research was funded by the National Science Foundation, under Project Contract (DRL-
0733590). All views in this report are those of the author and do not represent the views of the 
National Science Foundation. 
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The processes of communication and representation are essential mathematical ways of thinking, 
and assessments can provide opportunities to evaluate the evidence of their communication and 
representation of their problem solving. We examined the pretest and posttest responses to an 
open-ended story problem of 83 second-grade students from four classrooms. The implemented 
coding system differentiated the responses not only by the correctness of the response, but also 
by how explicitly the strategy or solution process had been communicated. We found that not 
only did students’ responses show evidence of greater communication of strategy and process 
from pre- to posttest, but that answer accuracy was associated with well-communicated 
responses. Our results provide the grounds for emphasis on process communication in early 
elementary school and for future investigation into effective instruction and assessment.  
 

Young Children’s Communication of Mathematical Thinking 
 Variations of the idea that “the answer is not enough” pervade current mathematics teaching 
at all levels (e.g., Sterenberg, 2004). Intertwined with mathematics students’ ability to use 
strategies to solve problems is their ability to communicate their mathematical thinking 
effectively – to show more than that final answer. According to the National Council of Teachers 
of Mathematics (2000), communication offers “a way for students to articulate, clarify, organize, 
and consolidate their thinking” (p. 128). For young mathematics students, in particular, to use 
strategies effectively, especially for more advanced arithmetic such as multi-digit subtraction, 
they must be able to “organize subgoals into a coherent process without getting lost within 
particular subgoals” (Fuson et al., 1997, p. 151).  

To support learners’ mathematical communication, teachers’ instruction should emphasize 
documenting their solution processes. Whitenack, Knipping, Novinger, and Underwood (2001) 
studied a second-grade class during a unit on multi-digit addition and subtraction. Throughout 
the unit, the teacher emphasized students’ organization of recording the regrouping process, 
applying strategies across multiple contexts, and sharing their processes. This instructional 
sequence not only allowed students to deepen their understanding of multi-digit operations, but 
also fostered organized problem solving and communication for their benefit and for the benefit 
of their peers and the teacher.  

 
Assessment of Children’s Mathematical Understanding and Communication 

 In spite of the emphases on problem solving and communication in instruction, assessments 
have traditionally focused largely on students’ ability to reproduce facts and computational 
procedures (Pegg, 2002). Problem solving and communication are essential mathematical skills, 
and thus, assessments should focus not only on students’ accuracy, but also on the quality of 
students’ thinking (Pegg, 2002; Cai, Jakabcsin, & Lane, 1996; NCTM, 2003).  
 In the early elementary grades, when students are just learning to communicate in written 
form, assessments of students’ problem solving and communication skills can be challenging to 
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design. On the other hand, written assessments are often the most efficient to administer, 
compared to other methods that might yield problem-solving insights such as observation or 
interviews with students. Thus, well-designed written assessments hold the potential to assess 
students’ problem solving and be efficient to administer, but these assessments should not only 
include ways to incorporate students’ communication of their solution process, but also ways for 
evaluators to make sense of these responses to maximize the information they yield. Open-ended 
tasks, scored with a holistic rubric, may be effective to assess the quality of students’ thinking 
(Cai, Lane, & Jakabcsin, 1996).  
 In the present study, we examined the quality of second-graders’ responses on an open-
ended mathematics task that dealt with multi-digit subtraction concepts. We were specifically 
interested in examining how students’ communication and representation of their thinking 
changed over the course of an academic year. We were also interested in examining possible 
connections between quality of communication and accuracy.  
 

Method 
Data Source 
 In order to explore these questions, we examined pre- and post-test responses to an Ohio 
Department of Education second-grade assessment, designed to provide diagnostic information 
about students’ ability to meet the second-grade state content standards. We chose to examine 
students’ responses to one open-ended, constructed response item which read: A girl has a 
dollar. She wants to buy a new pencil for 76 cents. How much money will she have left after she 
buys a pencil? Show how you found your answer. This item had several key features: it 
addressed multi-digit subtraction concepts, important grade-level content, its story problem 
format required students to identify and apply an appropriate operation, and it involved money, 
which poses both conceptual and representational challenges for students. Finally, we felt that 
the open-ended format of the question would yield a rich and diverse range of responses.  
Participants 

We examined the responses of 83 second-grade students from four classes in a suburban 
primary school for whom both pretest (October) and posttest (May) scores were available. The 
students came from four classrooms. A mathematics coach worked with two of the four 
classrooms for several weeks during the year.  
Coding 
 Coding Scheme. Our interests were centered on the quality of students’ communication and 
representation of their mathematical thinking. The state-supplied three-point rubric for this item 
did not differentiate responses based on the quality of students’ communication, so we decided to 
design a new rubric with this specific purpose (see Appendix). Our rubric categorized responses 
into five major levels of quality of communication, including responses: 1) that showed no work, 
2) that showed some work but did not provide evidence of strategy use, 3) that provided 
evidence of an inappropriate strategy, 4) that provided evidence of an appropriate but 
insufficiently communicated strategy, and 5) that sufficiently communicated an appropriate 
strategy. Within each of these five levels, the score for a correct answer was given one point 
more than the score for an incorrect answer. We reserved the highest score (10) for responses 
that included an especially clear communication of a student’s thinking either by demonstrating 
how their work was connected to the givens in the problem or by using multiple representations 
to communicate their thinking. Two coders achieved 90.1% simple agreement, periodically 
performing coding checks and ultimately reaching agreement on all coding.  
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 Analysis. Upon coding completion, we calculated the frequency of responses that received 
each value on our rubric. Within each of the five main categories of communication quality, we 
examined scores for differences between correct and incorrect responses, with regard to 
communication quality and accuracy. 
 

Results 
 From fall to spring, the mean scores increased not only in accuracy but also in the students’ 
mathematical communication, from an overall mean score of 3.95 (of 10) in autumn to 5.77 in 
spring. Examining the responses more closely, we also observed trends in the way that students’ 
mathematical communication and strategy use was correlated with their accuracy. We used the 
frequency of each response type to determine the percentage of correct and incorrect responses 
that were given within each level of communication. For example, of the 20 responses in which 
no work was shown, only 2 (10%) were correct. Similarly, we observed low rates of correct 
responses that used no identifiable strategy (35% of 26 responses) or an incorrect strategy (19% 
of 30 responses). Unsurprisingly, students who did not record appropriate strategies were less 
likely to provide correct answers than those students who did. 
 What was more notable, though, was the trend among responses that did indicate the use of 
an appropriate strategy. Our scoring rubric included two categories of responses that used an 
appropriate strategy but differentiated those that were sufficiently communicated (either an 8 or 
9) from those that were not (either a 6 or 7). The difference between insufficient and sufficient 
communication, even when an appropriate strategy is used, does matter in terms of accuracy:  
while 92% (23 of 25) of the well-communicated responses yielded an accurate answer (see 
Figure 1), only 54% (23 of 50) of the insufficiently communicated responses yielded an accurate 
answer. This association between correctness and explication of mathematical communication 
provides a rationale for encouraging the development of communication in problem solving.  

 
Figure 1: Proportion of Correct and Incorrect Responses for Two Types of Appropriate 

Responses 
 

Although we were not able to conduct classroom observations, the student data came from 
four classrooms in the same school, and we examined the student responses by classroom for 
trends in responses. We found that the students in the coached classrooms, classrooms 1 (mean 
improvement of 2.76 points) and 4 (2.57 points) improved more on average than students in the 
uncoached classrooms, classrooms 2 (1.22 points) and 3 (0.63 points). When we looked at each 
class’s spring data, we found that certain forms of communication and strategy use were favored 
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by certain classes: in class 1, many responses (43%) included drawn coins; in class 2, a plurality 
of the responses (30%) used tally marks, used by none of the students in the other classes; Class 
3 had the highest percentage of responses (74%) which included subtraction sentences. Within 
these, half had subtraction sentences shown both horizontally and vertically, and 43% showed 
the partial differences (e.g. 100 – 70 = 30; 30 – 6 = 24; 100 - 76 = 24), used by respondents in no 
other class. In class 4, a majority of responses (57%) involved drawing base ten blocks, while 
only 3 responses from other classes did.  

The mathematics coaching experienced in two of the classrooms focused on engaging 
students in problem solving and developing their understanding of the five NCTM mathematical 
processes, including communication and reasoning and proof.  We note that in Class 4, one of 
the coached classrooms, predominant responses involved multiple representations, including 
base-ten iconic representations, and in the other coached classroom, students favored another 
iconic representation, the coins. In the uncoached classrooms, students favored either basic 
iconic representations, tally marks to count (Class 2), or numeric equations. The relation between 
teachers’ instructional and expectations for students’ responses within class and students’ 
methods of communication on standardized assessments merits further investigation, but these 
by-classroom trends support the idea that specific expectations for students’ mathematical 
communication can be taught and that students respond to instruction about how to communicate 
their thinking.  

 
Discussion 

 In our study, we sought to examine students’ mathematical communication and strategy use 
on an open-ended story problem task on a standardized assessment, and we documented the 
relation between students’ mathematical communication and answer accuracy on the 
mathematics assessment. Traditionally, mathematics educators and assessments may have 
emphasized accuracy more than communication, but our results suggest that good 
communication may support accuracy. 
 In examining the differences between insufficiently communicated responses and well-
communicated responses, we found that students’ organization and labeling of their work was 
associated with both the clarity of their communication and their accuracy. Teachers can help 
students learn to communicate their mathematical thinking clearly and support students’ 
accuracy on mathematical tasks by encouraging them to record their thinking in an organized and 
well-labeled manner. In tasks like the one studied, teachers could emphasize the importance of 
labeling drawings clearly by encouraging students to cross out the coin or base-ten block that 
they are partitioning and draw an arrow to the group of coins or blocks that they have drawn in 
its place. More generally, teachers should expect students to “show their work” and should 
provide ongoing opportunities for students to engage in mathematical communication and by 
offering feedback on students’ communication of their mathematical thinking.  
 Our study also has implications for those who design mathematics assessments for early 
grades children. With mathematical communication as an important goal for instruction, 
designers of standardized mathematics assessments should ensure that students’ communication 
is encouraged, clearly stated as an expectation, and measured. With such provisions built into 
assessment tasks, test results could provide more specific, and thus, more formative, information 
about students’ performance. While the rubric used for this study is likely more detailed than a 
rubric a school district would use, it is important that scoring rubrics give some attention to 
mathematical communication. Assessing students’ communication on standardized mathematics 
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assessments not only emphasizes that communication is an essential component of mathematics, 
but it also gives teachers and district staff evidence of strategies and different representations that 
students used. Future investigations will involve classroom observations and documentation of 
instruction and student work to identify the processes that lead to growth in students’ 
mathematical communication.  
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Appendix: Scoring Rubric 
10 Response is very well articulated; as is evidence by: 

• A clear connection between student work and the information given in the problem. (e.g. 
indicates that the initial value is $1.00 rather than simply representing the number 100) 

• The presence of multiple clear representations of the strategy used (e.g. student includes 
a clearly labeled drawing of base-ten blocks AND a subtraction sentence) 

9 Response is correct and well communicated. An appropriate strategy is used. 
8 Response is incorrect, but well communicated. An appropriate strategy is used. 
7 Response is correct and there is evidence that an appropriate strategy was used. However, the 
process of arriving at an answer is not well enough communicated. This may occur as the following: 

• A response including a subtraction sentence does not communicate the solution steps. 
• A response including a counting strategy is disorganized, and thus requires some 

inference on the part o the evaluator. 
• A response including drawings of coins or base-ten blocks does not label trades that 

were made, requiring some inference on the part of the evaluator. 
6 Response is incorrect, but there is evidence that an appropriate strategy was used. However, the 
process of arriving at an answer is not well communicated. This may occur in any of the following ways: 

• A response including a subtraction sentence does not communicate the solution steps. 
• A response including a counting strategy is disorganized, and thus requires some 

inference on the part o the evaluator. 
• A response including drawings of coins or base-ten blocks does not label trades that 

were made, requiring some inference on the part of the evaluator. 
5 Response is correct; there is evidence of a strategy, but it is not appropriate for the problem. 
4 Response is incorrect; there is evidence that a strategy was used, but the strategy is not 
 appropriate for the problem or does not seem to be connected to the problem. 
3 Response is correct, but no identifiable strategy is used. Some work is shown, such as a 
 representation of coins or tallies, but there is no evidence of the process used to get an answer. 
2 Response is incorrect, and no identifiable strategy is used. Some work is shown, such as a 
representation of coins or tallies, but there is no evidence of the process used to arrive  at an answer. 
1 Response is correct, but no work is shown. 
0 Response is incorrect, and no work is shown. 
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This comparative study examines three groups of high school students’ understanding of the 
foundational concepts needed for calculus. Students completed one of three courses: (1) 
traditional precalculus, (2) novel precalculus, or (3) Advanced Placement (AP) Calculus AB. 
Student scores on the Precalculus Concept Assessment (PCA) and two open-ended tasks which 
focused on functions and rate of change provided the data. Student work was analyzed for 
strategies employed and efficiencies with their strategies on the two tasks. The results revealed 
that students who completed the novel precalculus curriculum gained a deeper understanding of 
the fundamental concepts for calculus by performing higher than the traditional precalculus 
students and comparably to the AP Calculus AB students. 
 

Introduction 
Precalculus is a mathematics course offered in high schools across the United States with 

approximately 18.5% of all high school students enrolling during their third or fourth year of 
high school. Yet a growing student population is required to enroll in precalculus when they 
enter college because they either did not complete it in high school, but more often students do 
not score high enough on the individual college mathematics placement exams and therefore are 
required to enroll in a course they may have completed during high school. Parents, students and 
educators are asking: (1) What are students not learning in high school precalculus that is 
causing them to have to retake the course when they enter college and (2) What mathematics 
content is missing from the high school precalculus curriculum that could help students better 
prepare to enter college calculus?  

Over the past 20 years researchers have focused on college students understanding of 
function and the different reasoning patterns they need to be successful in higher level 
mathematics, such as calculus (Breidenbach, Dubinsky, Hawks, & Nichols, 1992; Carlson, 1998; 
Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Carlson & Oehrtman, 2005; Engelke, Oehrtman, & 
Carlson, 2005, October; Ferrini-Mundy & Gaudard, 1992; Ferrini-Mundy & Graham, 1991, 
1994; Markovits, Eylon, & Bruckheimer, 1988; David Tall, 1992; David  Tall, 1997; Thompson, 
1994a, 1994b). However, less research has been conducted at the high school level to understand 
what secondary students who are enrolled in precalculus understand or do not understand about 
function and if the reasoning patterns and frameworks used for undergraduate students can or 
should be applied to high school precalculus students. Therefore, in this study we seek to answer 
the following two research questions: (1) How do high school precalculus students who used 
either a traditional precalculus curriculum or a research based conceptually–oriented curriculum 
compare on the foundational concepts needed for calculus and their efficiency and use of 
mathematical strategies? (2) How do high school precalculus students who completed a 
conceptually-oriented curriculum compare with AP Calculus AB students on the foundational 
concepts needed for calculus and their efficiency and use of mathematical strategies? 
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Theoretical Framework 
The concept of function is an essential knowledge students need to be successful in higher 

level mathematics. For students to understand the concept of function they must first obtain a 
process view of function (Breidenbach et al., 1992), meaning they understand that they are 
mapping a set of input values to a set of output values and it is a continuum. Second, students 
must develop covariational reasoning (Carlson, 1998), described as “the cognitive activities 
involved in coordinating two varying quantities while attending to the ways in which they 
change in relation to each other” (Carlson et al., 2002, p. 354).  

Typically precalculus teachers and the curriculum they use focus student attention on 
learning the algebraic manipulations and procedures rather than the conceptual understanding of 
function that provides foundational knowledge needed to build on for  studying higher level 
mathematics. Breidenback et al. (1992) and Dubinsky and Harel (1992) described two views of 
functions students have: action or process. An action view of function is described as “the ability 
to plug numbers into an algebraic expression and calculate” (Dubinsky & Harel, 1992, p. 85). 
Students tend to think about the function in a procedural way as they input a value into a specific 
function to calculate the correct output doing “plug and chug” without any conceptual 
understanding of function which may eventually hinder their understanding of calculus concepts 
such as limit, derivative, and integrals.  

Carlson and Oehrtman (2005) extended Breidenbach et al. (1992) and Dubinsky and Harel’s 
(1992) research on the action and process views students have of function arguing that student’s 
ability to answer function focused tasks was related to two types of reasoning.  

First, … students must develop an understanding of functions as general processes that 
accept input and produce output. Second, they must be able to attend to both the changing 
value of output and rate of its change as the independent variable is varied through an 
interval in the domain. (Oehrtman, Carlson, & Thompson, 2008, p. 5) 

For example, students who hold an action view of function have multiple misconceptions about 
piecewise functions being several functions and do not reason over an entire interval. Students 
tend to focus on specific points instead of interpreting the entire function. They also tend to not 
relate the domain and range to the inputs and outputs of the function. Without an understanding 
of functions accepting inputs and producing outputs students will struggle to reverse (inverse 
functions) the process. Most students are able to find the inverse of a function algebraically 
(switch the x and y and solve for the y variable) or geometrically (reflect the function over the 
line y = x); however, their answer typically has no meaning (Carlson & Oehrtman, 2005). 
Students who hold an action view are able to work with functions procedurally, but have little 
conceptual understanding. 

On the other hand, students who hold a process view of function can imagine an entire 
function and how the input values affected the output values. This is described as covariational 
reasoning, the ability to vary inputs and outputs at the same time and interpret or understand their 
influence on the rate of change. Students who demonstrate a process view of inverse functions 
use a reversal process that defines a mapping of output values to input values. A process view of 
function is essential for understanding calculus concepts such as the limit, derivative, and 
integral. 

Carlson, Oehrtman, and Engelke (2010) developed a taxonomy of foundational knowledge 
for beginning calculus representing the key concepts of precalculus students should know and 
understand prior to entering calculus. The PCA taxonomy was used to develop the Precalculus 
Concept Assessment (PCA), a 25 multiple–choice item exam that assesses rate of change, 
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function, and covariational reasoning that students will build upon in their study of calculus. The 
PCA and PCA taxonomy have gone through multiple refinements as research on student thinking 
is conducted (Carlson et al., 2010). Although the details of the PCA taxonomy  are not part of 
this paper it is imperative to note that the existence of such a taxonomy is one of the reasons why 
the PCA is a valid tool for assessing students understanding of the foundational concepts of 
precalculus prior to entering calculus.  

The PCA was developed over a 15 year time period based on numerous college students’ 
interviews of what they thought and understood as they answered open–ended questions about 
functions. The distracters on the PCA are common misconceptions that college students have 
about functions (Carlson et al., 2010). More recently, the PCA was used by high school 
precalculus teachers to determine their students’ understandings and misconceptions after 
completing the year long course and entering AP calculus (Teuscher, 2008). These data were 
influential in helping teachers discover holes in their mathematics curriculum and making 
changes to help students develop the key precalculus concepts prior to entering calculus. 

 
Methods 

In this study we examined high school students’ understanding of the foundational concepts 
of calculus as described by the PCA and two open–ended tasks focused on rate of change. We 
coded students’ strategies in solving these tasks and compared their efficiency in using the 
strategies. In this section we describe the instruments and participants. 
Precalculus Concept Assessment 

The PCA was developed by faculty from the Department of Mathematics at Arizona State 
University and was designed to reflect core content and common misconceptions students have 
about functions (Carlson et al., 2010). Carlson et al. (2010) administered the PCA to 902 college 
precalculus students and found the “Cronbach’s alpha of 0.73 indicating a high degree of overall 
coherence” (p. 137). Carlson and colleagues also conducted clinical interviews with more than 
150 college students so as to validate the PCA items. Each question was tested and validated to 
guarantee that students who selected a specific distracter (i.e., answer choice) consistently 
provided similar justifications during interviews (Engelke et al., 2005, October).  
Open–ended Tasks 

The Piecewise Functions (PF) task was adapted from a released 2003 AP Calculus free 
response item by an AP Calculus teacher for precalculus students; it gives students the graph of a 
piecewise function and has them find rates of change and then write equations for the function. 
The Filling the Tank (FT) task was taken from examples developed by Peter Taylor (1992) and it 
requires students to compare average flow (rate of change) with instantaneous flow as water is 
flowing in and out of a tank simultaneously. Both tasks build on the foundational concepts of 
functions and rate of change that students need before calculus and require students to use 
reasoning and demonstrate their understanding of the meaning of functions; however, one task is 
based in a contextual setting and the other is not.  

Students worked on the two tasks individually during a scheduled class period during the first 
week of class and the student work was scored for correctness using scoring guides and coded 
for solution strategies on specific questions for both open–ended tasks. The items coded for 
solution strategies were PF questions 1, 2 and 4 and FT questions B and E. The five categories of 
strategies were: Formula, Graph, Table, Multiple, and None or can’t tell. The scoring guides for 
the open–ended tasks required 22 scoring decisions on each of the PF and FT tasks and the 
average reliability of scoring was 95% and 96% for the PF and FT tasks respectively. 
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Participants 
High school students from Rover High School located in the southwestern region of the 

United States, who completed either Precalculus or AP Calculus AB during the 2009-2010 
school year and enrolled in AP Calculus BC for the 2010–2011 school year were asked to 
participate in the study. All mathematics teachers at Rover High School are part of a National 
Science Foundation Math and Science Partnership grant (No. EHR–0412537). The students in 
this study (N = 36) were taught by one of four different teachers in their previous mathematics 
course (Precalculus or AP Calculus AB). Four mathematics teachers taught students in 
precalculus during the 2009–2010 school year. Three of the four teachers used Precalculus: 
Mathematics for Calculus (Stewart, Redlin, & Watson, 2005) and the fourth teacher used a 
research based conceptually–oriented curriculum Precalculus: A Pathway to Precalculus 
(Carlson & Oehrtman, 2010). All precalculus students took the PCA at the end of the 2009–2010 
school year. Students who enrolled in AP Calculus BC for the 2010–2011 school year completed 
the two open–ended tasks, PF and FT during the first week of class. 

Please note that the three groups of students were not selected deliberately; they naturally 
emerged as a result of the mathematics classes they were enrolled and the choice of curriculum 
followed by their teachers. As a matter of fact, only one teacher chose to use Precalculus: A 
Pathway to Precalculus and this is how the PP students, who are of major interest in this paper, 
were selected.   

 
Results 

The goal of this study was to assess student understanding of the foundational concepts for 
calculus. Therefore, we compared precalculus students’ performance based on the curriculum 
they used. We also compared the precalculus students (N = 25) who used the Pathways 
curriculum to the AP Calculus AB students (N = 11) who enrolled in AP Calculus BC the 
following year. To summarize and clarify, the three groups of students of interest in this study 
were: (1) students who were taught using Precalculus: Mathematics for Calculus (Stewart et al., 
2005), which we refer to as Traditional Precalculus (TP; N = 11); (2) students who were taught 
using Precalculus: A Pathway to Precalculus (Carlson & Oehrtman, 2010), which we refer to as 
Pathways Precalculus (PP; N = 14); and (3) students who completed AP Calculus AB which we 
will refer to as AP Calculus AB (AB).  

The analyses in this study are presented in four parts. First, we provide descriptive and 
comparative analyses to compare the PP students with both the TP students and the AB students. 
Second, we present a breakdown and distribution of student scores to the items on each task and 
compare the PP students with the other two groups (TP and AB). Third, we describe the solution 
strategies used by students based on the three groups. Finally, we compare the effectiveness of 
students’ solution strategies for the PP students with the other two groups (TP and AB).  
Statistical analyses and descriptives  

The first analysis compares TP and PP students; in order to identify whether these groups 
were statistically different prior to entering AP Calculus and completing the open–ended tasks 
the PCA scores were compared. A t–test was conducted and PP students had a statistically 
significant higher mean on the PCA than TP students (t = –3.37, p = .003); therefore, further 
analysis to compare students’ performance from these two groups on the open-ended tasks used 
PCA scores as a covariate to account for difference in learning prior to entering AP Calculus BC. 

An analysis of covariance (ANCOVA) was conducted to determine the statistical difference 
between the mean total score on the PF task for the two groups (PP and TP) of students adjusted 
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for PCA scores. No statistically significant difference was found between the two groups (PP and 
TP) for the mean total score on the PF task (F = 0.98, p = 0.333). A similar analysis was 
completed to determine the statistical difference between the mean total score on the FT task for 
the two groups (PP and TP) of students adjusted for PCA scores. Results indicated no 
statistically significant difference between the two groups (PP and TP) for the mean total score 
on the FT task (F = 0.20, p = 0.658).  

An analysis of variance (ANOVA) was conducted to determine the statistical difference 
between the mean total score on the PF task for the two groups (PP and AB) of students. Results 
indicated no statistically significant difference between the two groups (PP and AB) for the mean 
total score on the PF task (F = 0.10, p = 0.753). A similar analysis was completed to determine 
the statistical difference between the mean total score on the FT task for the same two groups of 
students. No statistically significant difference was found between the two groups for the mean 
total scores on the FT task (F = 2.10, p = 0.161).  

PCA scores for the AB students were not available because data collection on precalculus 
students for the MSP project began the year these students were in AP Calculus. However, the 
results of the two ANOVA’s confirmed that there was no statistically significant difference 
between the PP and AB students for the mean total scores on both open-ended tasks meaning 
these students’ prior knowledge was similar.  
Breakdown and distribution of the scores  

 
Figure 1. Score distributions on the total scores of the PF and FT tasks for the three groups 
of students 

The distributions of the total scores for the three groups of students on the PF and FT tasks 
are displayed in Figure 1. For the PF task, respectively, 45% and 55% of the PP and AB students 
scored higher than 21 out of the total score of 24 while only 9% of the TP students scored in this 
range. Approximately 37% of the TP and AB students scored between 18 and 21 inclusively, out 
of 24. The TP group had the greatest percentage (37%) of students receive a score in the 15.01 – 
18.00 range with 36% of AB students and 22% of PP students scoring in the same range. Finally, 
the standard deviation (3.22) was the same for the PP and TP students whereas it was less for the 
AP Calculus AB students (2.26). 

For the FT task, respectively, 37%, 28%, 10% of the TP, PP and AB students scored in the 
12.01 – 15 range. Meanwhile, 46% of the AB students, 37% of the TP students and 28% of the 
PP students scored in the 15.01 – 18 range. Although none of the TP students scored in the 
highest range of 18.01 – 21.00, 14% of PP students and 27% of AB students scored in this range. 
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Finally, the standard deviation was the greatest for TP students (4.52); whereas, the AB students 
had the smallest (3.22). 
Distribution of the solution strategies 

The distributions of the strategies for all three groups on items 1, 2, and 4 of the PF task and 
items b and e of the FT task are shown in Figure 2. For item 1 of the PF task, 77% of the PP 
students, 55% of the TP students and 37% of the AB students used graphing as their solution 
strategy. While none of the PP students used a formula, approximately 45% of AB students and 
18% of TP students employed this strategy. Finally 18% of the PP students used multiple 
strategies.  

For item 2 of the PF task, graphing again was the dominant strategy for a considerable 
number of students. PP students used graphing the most (77%); while the AB students used this 
method the least (37%). None of the PP students used the formula strategy; however, 
approximately 18% of AB students and 10% of TP students employed this strategy. Only PP 
students (7%) used multiple strategies when solving this question. The AB group had the highest 
percentage (46%) of students whose work for this item revealed no strategy and the TP group 
had a slightly less percentage (36%); however, the PP group only had 16% of students whose 
work did not reveal a strategy.  

 

 
Figure 2. Distributions of strategies for the three groups of students on both of the open 
ended tasks. 

For item 4 of the PF task, the TP group had the highest percentage (64%) of students who 
used graphing to solve this item. The PP group had the highest percentage (23%) of students who 
used multiple strategies, typically graphing and formula strategies, to solve this item. The AB 
group had the highest percentage (74%) of students who used a formula to solve PF item 4. Only 
8% of PP and 9% of AB students work was not possible to code for a strategy.  

For item b of the FT task, the dominant strategy was formulas for all three groups. Of the TP 
students, 36% used formulas, 9% used graphing and the remaining students it was not possible to 
code for a strategy. Of the PP students, 79% used formulas, 7% used graphing and the remaining 
14% of the students it was not possible to code for a strategy. The majority (82%) of the AB 
students used formulas and the remaining 18% of students it was not possible to code for a 
strategy.  

For item e of the FT task, the dominant strategy (graphing) was the same for all three groups; 
respectively 64%, 79% and 74% of the TP, PP and AB students used this strategy. Only TP 
students (9%) used tables and this was the only instance where tables were employed as a 
strategy. The PP group had 7% of students use formulas; whereas, 7% of PP and 8% of AB 
students used multiple strategies. The TP group had the largest percentage of students (27%) 
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whose work was not able to be coded for a strategy, while the PP group had the lowest 
percentage (7%). The percentage of students for whom it was impossible to tell which strategy 
was used was the smallest for the PP group on items 1 and 2 of the PF tasks and items b and e of 
the FT task. 
Simultaneous Comparison of the Solution Strategies and Scores for Evaluating the Efficiency 
among the Groups 

While it is interesting to indicate strategies students used in solving the open-ended task, it is 
also vital to know their respective efficiencies (i.e. what strategies do students use when they 
receive higher scores?). For this purpose we examined simultaneously the scores and strategies 
to assess for each group the strategies employed within each score range. Particular interest was 
given to the students who could score 19 or above out of 24 on the PF task and 14 or above out 
of 21 on the FT task; these students constituted the majority (approximately 70%) of the PP and 
AB students and a minority (35%) of the TP students. For this highest scoring group, the 
dominant strategies were graphs and formulas, although AB students preferred formulas to 
graphs whenever they could whereas this was the opposite for the PP students. The TP students 
in this group primarily used graphs as well. 

 
Discussion 

This study assessed students’ understanding of foundational concepts of calculus. Two open-
ended tasks were used to compare students’ understanding after completing a precalculus or AP 
Calculus course, yet prior to entering AP Calculus BC. Thus, there was a gap of three months 
between the administration of the open-ended tasks and the last time students were in school 
learning mathematics.  

The statistical tests that compared the TP and PP students showed no statistical significant 
difference between these two groups based on their performance on the tasks; however, the 
statistical tests accounted for prior achievement by using the PCA scores as a covariate. The PCA 
is a powerful assessment tool used for evaluating students’ understanding of the key concepts in 
precalculus (Carlson et al., 2010). The fact that the PP students mean PCA scores are statistically 
higher than the TP students mean PCA scores indicates that the PP students have a significantly 
better understanding of the key concepts in precalculus when compared to the TP students. 
Moreover a second conclusion is that the mean total score for the PP students on the open-ended 
tasks were consistently higher than those of the TP students. The PCA scores for the AB students 
were not available. 

The statistical tests that compared PP and AB students showed no statistically significant 
difference between their mean scores on the two open-ended tasks (PF and FT); specifically, on 
individual items and total scores. The existence of no statistically significant differences between 
these groups (PP and AB) is particularly remarkable since theoretically the AB students should 
have performed better than precalculus student on the foundational concepts of calculus as they 
were exposed to a whole year of calculus. Yet, the AB students did not perform better than the 
PP students, which could be interpreted as AB students did not learn the foundational concepts of 
calculus deeply enough to retain them for three months over the summer break; however, the PP 
students did. This result also suggests that the precalculus curriculum, Precalculus: A Pathway to 
Calculus (Carlson & Oehrtman, 2010) is different than the traditional precalculus program.  

In fact, Precalculus: A Pathway to Calculus was specifically designed to deepen the 
understanding of mathematical concepts by improving the learners’ exploratory skills through 
analysis and synthesis; the learners in this curriculum continually study mathematical and 
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scientific contexts and use mathematics as a means to perform scientific investigations. 
Accordingly, the classroom practice is shifted from the delivery of curricular material to inquiry 
and project-based approaches centered on content. This study proves that such a shift will help 
students develop a deeper and longer lasting understanding of the foundational concepts of 
calculus. 

The sample sizes were 11 for the TP and AB students while it was 13 or 14 for the PP 
students. This is a considerable limitation which could have created power issues, however, this 
study was indeed a pilot one, carried out to assess the effectiveness of the Precalculus: A 
Pathway to Calculus program. Nevertheless, the relatively smaller sample sizes did not hinder 
the ability of the authors to come to statistically significant conclusions about the superior 
aspects of the program.  

Based on the results of this study, the Precalculus: A Pathway to Calculus is likely to create 
a positive impact on the precalculus knowledge of students prior to entering calculus. 
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This study establishes a theoretical framework for predicting the American College Testing 
(ACT) Mathematics and AP Calculus AB and BC scores from the Precalculus Concept 
Assessment (PCA) exam results and suggests a total of 16 different regression based models to 
actually perform the prediction. The strong positive correlation between the actual and predicted 
values confirm that the PCA is a powerful tool for identifying students who are at the risk of not 
passing AP Calculus AB or BC tests and thus help teachers, parents and students to take the 
necessary measures in a timely manner. 
 
Introduction 

Assessments are a major practice in the K-12 educational system as well as post secondary. 
High school students are required to take more and more assessments to demonstrate what they 
have learned. Most states require high school students to take either an end of course 
(mathematics) exam and/or a graduation exam (with a portion being mathematics) to complete a 
course or to graduate from high school (Teuscher, Dingman, Nevels, & Reys, 2008). In addition, 
most colleges require students to take a mathematics placement exam to direct students into the 
appropriate first year mathematics course. Even though students are required to send official 
transcripts and take one of the college entrance exams, they are being asked to demonstrate their 
knowledge of mathematics on multiple assessments.  

Math placement exams vary in mathematics content, the number and type of questions 
(multiple choice, open-ended, etc.), use of calculators, and time limits. The number of different 
mathematics placement exams used by institutions across the country continues to increase. 
However, there are only two commonalities among these placement exams (1) the focus of exam 
items is on content and procedures taught in remedial mathematics classes, which satisfy general 
education requirements or serves as prerequisites such as college algebra and precalculus; and 
(2) the results are not used to inform student or teachers of the possible deficiencies in student 
knowledge.  

This article reports research results on how high school students performed on the AP 
Calculus AB or BC exam, the Mathematics portion of the standardized American College 
Testing (ACT) and on the Precalculus Concept Assessment (PCA), a research developed 
instrument based on college students’ common misconceptions of functions (Carlson, Oehrtman, 
& Engelke, 2010) after completing four years of college preparatory mathematics and AP 
Calculus.  

 
Theoretical Framework 
Precalculus Concept Assessment 

The PCA is a 25-item multiple choice exam that helps researchers and instructors learn what 
students think and understand about the foundational concepts of precalculus and beginning 
calculus (see Carlson et al., 2010, for released items). The PCA was developed based on research 
with collegiate level mathematics classes, and was piloted and revised over the past 15 years.  

The PCA is based on a taxonomy developed to determine student’s understandings and 
reasoning of foundational concepts learned during a precalculus course (Carlson et al., 2010). 
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Although the PCA was not created to be used as a placement exam for Calculus, Carlson et al. 
(2010) reported that 77% of college students who scored a 13 or higher on the PCA passed a first 
semester calculus course with a C or better. The correlation coefficient for college student PCA 
scores and their calculus grades was 0.47. 

The PCA was validated with college students who enroll in College Algebra and Precalculus. 
The study reported in this paper provides a different sample of students, those who are in high 
school and enrolled in Advanced Placement (AP) Calculus. Students took the ACT, PCA and the 
AP Calculus AB or BC exams during their high school years. Although one might assume that 
precalculus at the college level is equivalent to precalculus at the high school level, the PCA had 
not been used to analyze student thinking at the high school level.  
Content of AP Calculus Courses and Exams 

The AP Calculus AB course focuses on limits, derivatives, and an introduction to integrals, 
which is typically taught in a first semester calculus course in college. The AP Calculus BC 
course focuses on the topics studied in AB; however, more depth is given to integration and 
students are introduced to sequences and series as well as parametric and polar functions, which 
is typically taught in a two semester calculus sequence in college. The AP Calculus exams award 
students with a score of one to five inclusive with five being the highest score. On each of the 
AB and BC exams, those students who score four or five pass the exam, and may use their scores 
to receive college credit for Calculus courses when they enter college. It is evident that a strong 
foundation of precalculus is absolutely essential for success in Calculus; therefore the PCA can 
be a valuable tool for identifying the students’ weaknesses in precalculus if administered to 
students prior to entering Calculus.  
Content of ACT Mathematics Exam 

The ACT mathematics exam is a 60-question, 60-minute test designed to measure the 
mathematical skills students have typically acquired in courses taken by the end of 11th grade 
(ACT, 2011). Students receive an overall score between one and 36 inclusive and three sub-
scores based on six content areas: pre-algebra (23%), elementary algebra (17%), intermediate 
algebra (15%), coordinate geometry (15%), plane geometry (23%) and trigonometry (7%). All of 
these topics are highly correlated with the content of the PCA and if used with PCA, can be 
employed as a diagnostic tool for predicting how students are likely to succeed in the AP 
Calculus system. 
Regression Analysis 

In statistics, regression analysis includes techniques for modeling and analysis of several 
variables, when attention is focused on the relationship between a dependent variable and one or 
more independent variables. More specifically, regression analysis helps us understand how the 
typical value of the dependent variable changes when any of the independent variables is varied, 
while the other independent variables remain fixed. Usually, regression analysis estimates the 
conditional expected value of the dependent variable given the independent variables (i.e. the 
mean (average) value of the dependent variable when independent variables are kept fixed). 
Regression analysis is widely used for estimation and prediction. It is also used to explore and 
comprehend the causal relationships that exist among the independent variables in relation to the 
dependent variable. In this study, regression analysis is the primary means of inquiry in order to 
explore the relationships between the AP Calculus AB and BC exam scores, PCA results and 
ACT mathematics test scores. 
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Research Questions 
In light of the scope of the PCA, the ACT mathematics test as well as the AP Calculus AB 

and BC exams, this study specifically seeks to answer the following research questions:  
(1) How are high school students’ PCA scores and AP Calculus AB or BC scores related?  
(2) Can students’ PCA scores be used to predict their performance on the AP Calculus AB or BC 
exams? (3) Can the prediction be improved when the ACT scores are available? 

 
Methodology 

In this study, the 16 different regression schemas are built upon three regression based 
models, namely, Multiple Linear Regression Model, Multinomial Logistic Regression Model and 
Cumulative Odds (CO) – Ordinal Regression Model. 
Regression Models 

Regression models were used in this study to predict students’ AP Calculus AB or BC scores 
(i.e. an integer between 1 and 5 inclusive); in other words, students’ AP Calculus AB or BC 
scores were the dependent variables. The independent variables were student responses to the 25 
individual questions in the PCA, each being a 1 (that represents a correct answer) or a 0 (that 
represents an incorrect answer); these will be referred to as PCA results in the rest of the paper. 
In some of the regression models students’ ACT mathematics scores were used as another 
independent variable. 

The Multiple linear regression model. This model assumes that a linear relation exists 
between the dependent and the independent variables where the random errors are assumed to be 
independent and normally distributed random variables with zero mean and constant standard 
deviation, (i.e., assumptions of normality, linearity, and homogeneity of variance are met). The 
dependent variable is students’ AP Calculus AB or BC score and whereas the independent 
variables are the responses to the 25 PCA questions with or without the ACT mathematics scores 
as; thus, depending on the regression model, there are 25 (without the ACT mathematics score) 
or 26 (with the ACT mathematics score) independent variables. 

The multinomial logistic regression model. Multinomial logistic regression (Kutner et al., 
2005) does not require any assumptions of normality, linearity, and homogeneity of variance for 
the independent variables. Because this regression model is less stringent it is often preferred to 
discriminant analysis when the data does not satisfy these assumptions. 

Suppose the dependent variable has M nominal (unordered) categories. One value of the 
dependent variable is chosen as the reference category and the probability of membership in each 
of the other categories is compared to the probability of membership in the reference category. 
For the dependent variable with M categories, this requires the calculation of M – 1 equations, 
one for each category relative to the reference category, in order to describe the relationship 
between the dependent and the independent variables. Please note that multinomial logistic 
regression model ignores the ordinal nature that might exist within the levels of the dependent 
variable and treats each category in a similar manner. 

The cumulative odds (CO) – ordinal logistic regression model. The CO – ordinal regression 
model (Kutner et al., 2005) calculates the probability of being at or below category m of an 
ordinal dependent variable with M categories. Ordinal logistic regression is different from 
multinomial logistic regression in that it takes into account the ordinal nature inherent within the 
levels of the dependent variable, which might be useful in some cases. 

For the two logistic regression models (multinomial or CO – ordinal) each of the AP 
Calculus AB or BC scores had five levels (i.e. an integer between one and five inclusive). For 
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multinomial the logistic regression model, the last level (AP Calculus AB or BC score being 
equal to 5) was selected as the reference category. 

The dependent variables were again the PCA results used as categorical variables (factors). 
The ACT mathematics test scores could be used as both categorical and ordinal variables. When 
the ACT mathematics test scores were used as categorical variables (factors), each level inherent 
within the score was a separate independent variable; when they were used as ordinal variables 
(covariates), they constituted a single independent variable. 
 
Participants 

At the end of a school year, 193 high school students from two high schools in a mid-western 
town were administered the PCA to assess their understandings and reasoning abilities prior to 
entering AP Calculus (Teuscher & Reys, in press). Of the 193 students who took the PCA and 
enrolled in AP Calculus AB or BC the following year, 143 students took the AP Calculus exam 
at the end of the school year; 80 of these students were enrolled in the AP Calculus AB course 
while the remaining 63 were enrolled in AP Calculus BC course.  

The AP Calculus exam is scored and then students are given a grade of one to five. Typically 
students who receive a four or five grade receive college credit for at least one semester of 
calculus. Those students who take the AP Calculus BC exam receive a BC grade and an AB sub-
grade. It is possible that a student who takes the BC exam many not receive a four or five on the 
BC exam, but receives a four or five on the AB portion of the test, which can be interpreted as 
having passed the calculus AB exam, but not the BC exam.  
Prediction Process 

The models that used the PCA results to predict the AP Calculus AB of BC scores are based 
on the three regression models (Multiple Linear Regression, Multinomial Logistic regression and 
the CO – Ordinal Logistic Regression). The predictors in all three regression models were the 
actual results of each of the 25 questions in the PCA test, (i.e. each test question was associated 
with one of two categorical values, 1 if it was answered correctly and 0 if it was answered 
incorrectly).  

The ACT mathematics score can theoretically take ordinal values between 1 and 36 inclusive 
(ACT, 2011). In statistics, higher level variables can always be downgraded to lower level ones, 
such that, a metric scale variable can be downgraded to an ordinal or a nominal variable; this 
process sometimes requires defining categories within the data and/or creating discrete values 
based on the continuous scale variables (Kent, 2001). The ACT mathematics score already takes 
discrete values, which is reason alone why it can be treated to be ordinal or nominal as well. 
While it is theoretically possible for a student to score between one and 36 inclusive (ACT, 
2011), this is usually not the case in practice; for instance the scores of a group of high school 
students attending the same school may exhibit a certain pattern. The scores of the group of 
students subject to our analyses were between 19 and 34 and none of the students scored 22. This 
is another justification for the fact that ACT mathematics score can be treated as an ordinal or 
categorical variable. 
Dependent Variable Independent Variable(s) 
AP Calculus PCA 
AP Calculus PCA and Actual ACT mathematics scores 
Table 1. The variables used for the three linear regression models to predict students’ ACT 
mathematics and AP Calculus (AB or BC) scores. 

Two different linear regression models used students’ PCA results with or without the ACT 
mathematics scores to predict students’ AP Calculus AB or BC scores; when the ACT 
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mathematics scores were used, they were treated as ordinal metric variables. The variables used 
for the linear regression models used in this study are summarized in Table 1 above. 

The Logistic Regression models (Multinomial and Ordinal) predict a categorical or an 
ordinal dependent variable using categorical predictors as factors with or without ordinal 
variables as covariates. These two models were employed to predict the AP Calculus AB or BC 
scores separately using students’ PCA results with or without the actual ACT mathematics 
scores; the ACT mathematics scores were used as categorical variables (predictors) or as ordinal 
variables (covariates). The logistic regression models used in this study are summarized in Table 
2. 
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Model 
Specification 

Dependent 
Variable 

Independent Variable(s) 
Categorical Variables  
(Factors) 

Ordinal Variables 
(Covariates) 

A AP Calculus AB or 
BC Score PCA  

B AP Calculus AB or 
BC Score 

PCA Score and  
Actual ACT mathematics Scores  

C AP Calculus AB or 
BC Score PCA Score Actual ACT 

mathematics Scores 
Table 2. The logistic regression models (multinomial or CO-ordinal) used to predict students’ 
AP Calculus AB or BC scores. 
 

Results 
As it might be expected, students enrolled in AP Calculus BC scored higher (mean of 17.51 

and standard deviation of 3.18) than students in AP Calculus AB (mean of 15.69 and standard 
deviation of 3.21) on the PCA (where the total score possible was 25) prior to entering AP 
Calculus. Eighty-one percent of the students in this study who took one of the AP Calculus 
exams pass it with a four or five.  

A positive Pearson correlation existed between students’ PCA scores and the AP Calculus 
exam grades and it was statistically significant (r = 0.40, p = 0.000). This can be interpreted as 
students who receive a high PCA score are likely to receive a high AP Calculus exam grade. 
Then again, a positive Pearson correlation existed between students’ PCA scores and the ACT 
mathematics test scores and it was statistically significant (r = 0.28, p = 0.02). This can be 
interpreted as students who receive a high PCA score and/or a high ACT mathematics test score 
are likely to receive a high AP Calculus exam grade. The AP Calculus AB scores were available 
for 80 students; the mean score was 4.00 and the standard deviation was 0.95. Whereas the AP 
Calculus BC scores were available for 63 students; the mean score was 4.13 and the standard 
deviation was 0.96. 

The AP Calculus AB scores were predicted using the two multiple linear regression models 
given in Table 1 and the Pearson correlations were calculated between the actual and predicted 
values. The actual values of students’ ACT mathematics scores were also used to assess whether 
or not their inclusion while predicting the AP Calculus AB and BC scores would in fact improve 
the prediction. The results indicate strong positive correlations and are summarized in Table 3 
which can be interpreted as follows: AP Calculus AB scores can be predicted with 48% (100 × 
0.692 = 48%) accuracy when using students PCA results alone or 75% (100 × 0.872 = 75%) 
accuracy when using students’ PCA results along with their ACT mathematics test scores. 

Model 
AP Calculus AB Scores 
Predicted from the PCA 
Scores 

AP Calculus AB Scores Predicted from 
the PCA and Actual ACT mathematics 
Test Scores 

Pearson Correlation 0.69 0.87 
N 80 48 
M (SD) 3.74 (0.83) 3.84 (0.91) 
Table 3. AP Calculus AB test scores predicted using the multiple linear regression models. 

The AP Calculus AB scores were predicted using the three distinct model specifications for 
the multinomial logistic regression models given in Table 2 and the Pearson correlations were 
calculated between the actual and predicted values. The results indicate strong positive 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

792



correlations and are summarized in Table 4. Model specifications B and C yielded perfect 
correlations with 100% accuracy in predicting the AP Calculus AB test scores. The results 
summarized in Table 4 can be interpreted as follows: AP Calculus AB scores can be predicted 
with 91% (100 × 0.952 = 91%) accuracy when using students’ PCA results alone or 100% (100 × 
12 = 100%) accuracy when using students’ PCA results along with their ACT mathematics scores 
using the ACT mathematics scores as factors or covariates depending on the model. 
Model Specification A B C 
Pearson Correlation 0.95 1.00 1.00 
N 80 48 48 
M (SD) 3.80 (0.99) 3.99 (0.99) 3.97 (0.95) 
Table 4. AP Calculus AB test scores predicted using the multinomial logistic regression models. 

The AP Calculus AB scores were also predicted using the three distinct model specifications 
for the CO – ordinal logistic regression models given in Table 2 and the Pearson correlations 
were calculated between the actual and predicted values. The results indicate strong positive 
correlations and are summarized in Table 5. Model specifications B yielded a perfect correlation 
with 100% accuracy in predicting the AP Calculus AB test scores. The results summarized in 
Table 5 can be interpreted as follows: AP Calculus AB scores can be predicted with 40% (100 × 
0.632 = 40%) accuracy using the PCA results alone; with 100% (100 × 12 = 100%) accuracy 
using both the PCA results and ACT mathematics scores as factors or with 70% (100 × 0.842 = 
70%) accuracy using PCA results along with the ACT mathematics scores as covariates. 
Model Specification A B C 
Pearson Correlation 0.63 1.00 0.84 
N 80 48 48 
M (SD) 3.76 (1.07) 3.97 (1.06) 3.94 (1.01) 
Table 5. AP Calculus AB test scores predicted using the CO – ordinal regression models. 

The AP Calculus BC scores were predicted using the two multiple linear regression models 
given in Table 1 and the Pearson correlations were calculated between the actual and predicted 
values. The results indicate strong positive correlations and are summarized in Table 6. The 
results can be interpreted as follows: The AP Calculus BC scores can be predicted with 57% 
(100 ×  0.752 = 57%) accuracy using the PCA results alone; or 95% (100 × 0.972 = 95%) 
accuracy using the PCA results along with the ACT mathematics test scores. 

Model AP Calculus AB scores 
predicted from the PCA scores 

AP Calculus AB scores predicted 
from the PCA and the actual ACT 
mathematics scores 

Pearson Correlation 0.75 0.97 
N 63 25 
M (SD) 4.15 (0.71) 3.92 (0.92) 
Table 6. AP Calculus BC test scores predicted using the multiple linear regression models. 

The AP Calculus BC scores were predicted using the three distinct model specifications for 
the multinomial logistic regression models given in Table 2 and the Pearson correlations were 
calculated between the actual and predicted values. The results indicate strong positive 
correlations and are summarized in Table 7. Model specifications B and C yielded perfect 
correlations with 100% accuracy in predicting the AP Calculus BC test scores. The results can be 
interpreted as follows: AP Calculus BC scores can be predicted with 69% (100 × 0.832 = 69%) 
accuracy using the PCA results alone; or 100% (100 × 12 = 100%) accuracy using the PCA 
results along with the ACT mathematics scores which are used as factors or covariates depending 
on the model. 
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Model Specification A B C 
Pearson Correlation 0.83 1.00 1.00 
N 63 25 25 
M (SD) 4.10 (0.98) 3.89 (0.93) 3.89 (0.93) 
Table 7. AP Calculus BC test scores predicted using the multinomial logistic regression models. 

The AP Calculus BC scores were predicted using the three distinct model specifications for 
the CO – ordinal logistic regression models given in Table 2 and the Pearson correlations were 
calculated between the actual and predicted values. The results indicate strong positive 
correlations and are summarized in Table 8. Model specifications B and C yielded perfect 
correlations with 100% accuracy in predicting the AP Calculus BC test scores. The results can be 
interpreted as follows: The AP Calculus BC scores can be predicted with 49% (100 × 0.702 = 
49%) accuracy using the PCA results alone; or 100% (100 × 12 = 100%) accuracy using the PCA 
results along with the ACT mathematics scores as factors or covariates depending on the model. 
Model Specification A B C 
Pearson Correlation 0.70 1.00 1.00 
N 63 25 25 
M (SD) 4.23 (0.94) 3.89 (0.93) 3.89 (0.93) 
Table 8. AP Calculus BC test scores predicted using the CO – ordinal regression models. 

Please note that each of the 16 regression models summarized above as well as the Pearson 
correlation values reported were statistically significant at the 0.01 level. 

 
Discussion 

Assessments are the standard for which teacher and institutions judge students’ knowledge. 
With the No Child Left Behind ACT of 2001 (NCLB, 2001) K-12 students are taking assessments 
each year to demonstrate adequate yearly progress. However, the majority of these exams were 
not developed with the intention of providing students or teachers with feedback on deficiencies 
in student’s knowledge. The college mathematics placement exams were also not developed with 
the end goal of assessing relevant and connected concepts that are foundational for calculus. 

The results of this study provide evidence that the PCA may be an exam that could be used 
for multiple settings across high schools and colleges in the US. The PCA was found to be 
significantly correlated with the AP Calculus AB and BC exams and correspondingly the PCA 
scores was a statistically significant predictor of the scores on these exams. The results verify 
that multiple linear, multinomial logistic and CO-ordinal logistic regression models can 
successfully be used in one or more of these predictions. As for the generalizability of the results 
obtained, the mean and standard deviation values calculated for each of the actual and predicted 
AP Calculus AB or BC scores were very close meaning that the results were indeed 
generalizable. 

While predicting the AP Calculus AB and BC scores, using the actual ACT mathematics 
scores as factors or covariates improved the results of the prediction; particularly using the actual 
ACT mathematics scores as ordinal variables (or factors) while performing logistic regression 
yielded very strong positive and sometimes perfect correlations between the actual and the 
predicted values. 

These findings are consistent with research reported by Carlson et al. (2010) who found that 
the PCA was a predictor of college students ability to receive a passing grade in calculus at the 
college level. The PCA was specifically created to provide feedback to instructors on what their 
students understand and do not understand about functions. Instructors could use the results from 
the PCA to determine what prior knowledge or more importantly what misconceptions students 
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have when entering a course that may cause them to not understand and grasp the new material 
they encounter. The PCA could also be used to provide instructors with diagnostic feedback on 
the specific precalculus topics that students did not understand during their precalculus classes 
and then make modifications to their curriculum for future classes.  

A considerable amount of time and taxpayer money is spent every year on students who 
retake calculus in college because they are not able to pass the college mathematics placement 
test. There are also a vast number of students who drop out of calculus in college and feel the 
urge to change their majors simply because of having the prejudice that they are unable to 
succeed in mathematics; in fact this is not a new problem and it has not been solved as of yet 
(Ma et.al., 1999). Thus, an early detection system could be part of the solution and be of 
immense assistance to students, parents and teachers to take the necessary measures early (i.e. 
when the students are still in high school). This is why a powerful tool like the PCA can be used 
to identify students who need to spend more time on precalculus and are likely to have a hard 
time in AP Calculus class or college level calculus, by predicting their AP Calculus AB or BC 
test scores even before they enter the AP Calculus system. 

However, it must be noted that the timing of the PCA test is an important factor to produce 
the results which will enable the prediction of the scores on the AP Calculus AB or BC tests. The 
PCA test should ideally be administered immediately after completing the precalculus content 
courses prior to the students starting the AP Calculus AB or BC courses. 

In closing, it is important to realize that without a purpose, assessments will become 
something that students do and not something that is useful to them or instructors. The PCA is a 
practical focused examination that can provide students and instructors with important feedback 
to improve students’ understandings of the common mathematical topics that are necessary for 
students to be successful in calculus. 
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MAKING THE FAMILIAR STRANGE: AN ANALYSIS OF LANGUAGE IN 
POSTSECONDARY CALCULUS TEXTBOOKS THEN AND NOW 
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Three calculus textbooks covering a span of about 40 years were examined to determine whether 
and how the language used has changed given the Calculus reform movement and the impetus to 
make mathematics accessible to all. Placed in a discourse analytic framework using Halliday’s 
(1978) theory of functional components, ideational, interpersonal and textual, and using the 
exposition of the concept of a function as a unit of comparison, the study showed that the 
functions and forms of language are integral indicators of the author’s view of mathematics and 
the reader’s extent of agency and construction of identity.  

 
In the late 1980s, the Calculus Consortium at Harvard (CCH) comprised of eight institutions 

including universities, a high-school, and a community college, was funded by the National 
Science Foundation to redesign the Calculus curriculum with a view to making Calculus more 
applied, relevant, and accessible. The intent was to re/think and re/present the content so as to 
focus on real-world applications, to emphasize concepts and graphical representations, and to 
take advantage of the increasingly sophisticated technology. This initiative has been extensively 
embraced leading to the calculus reform movement. As a result, Calculus is now mostly 
presented in a manner radically different from the traditional approach which relied heavily on 
abstraction, formal notation and symbolism, and algebraic conventions. Besides the ‘regular’ 
Calculus courses, Calculus courses and materials have been developed for specific disciplines 
(such as Biology and Economics) and for different modes of delivery (such as Calculus with 
Computer Explorations).  

The goal of this research is to see whether and how calculus textbooks designed for the 
postsecondary level in ‘regular’ Calculus courses have changed over the years with respect to the 
language used in the exposition and by inference, the view of mathematics manifested. One 
concept, that of a function and in particular its definition, is chosen and used to trace the 
dimensions of the language over the years and the consequent shifts in the view and presentation 
of mathematics in calculus textbooks. The questions that arise for me are: Has the language of 
calculus textbooks changed over time and if so, in what ways? From the language, how are the 
authors’ views of mathematics characterized and how have they changed over time? Has the 
language changed from one that is exclusive (mathematics as an elite subject with an elite 
community) to one that is inclusive and accessible to all? 

The three textbooks I have chosen are Calculus by Spivak (1967), The Calculus of a Single 
Variable with Analytic Geometry, 5th edition by Leithold (1986), and Single Variable Calculus: 
Early Transcendentals, 5th edition by Stewart (2003). Spivak and Leithold were both 
Mathematics Professors from American universities (Brandeis and Pepperdine, respectively) 
writing for an American audience while Stewart is an Emeritus Professor in Mathematics at a 
Canadian university (McMaster) writing for a North-American audience. Each of these textbooks 
was well-known and well-used in its time.  I chose the first two because they were the ones that I 
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still have after the many moves in my life and the third because it is one that I use in my teaching 
at this time.   

Textbooks may be studied subjectively to describe the interaction between the student and 
the written material or to describe teachers’ use of textbooks and the subsequent effect on the 
teacher (Remillard et al, 2009). However, following Herbel-Eisenmann (2007), I seek to examine 
the ‘voice’ of calculus textbooks over the years as ‘objectively given structure’ (emphasis in the 
original, p.396). This examination will be placed in a discourse analytic framework which 
attends to the aspects of text relating to language, voice, agency and identity.  In particular, 
linguistic markers such as the use of pronouns, imperatives and modality will be traced as a 
means of addressing the above questions.  

Analytic Framework 
Starting with the ideas in Pimm (1987)’s Speaking Mathematically: Communication in 

Mathematics Classrooms, discourse analysis of text (written and oral) has now acquired a firm 
footing in Mathematics Education. Discourse analysis seeks to investigate how language frames 
the ongoing conversation about the origins and constructions and knowledge and their relation to 
action and empowerment. Critical discourse analysis recognizes the power relations in this 
activity and seeks to make space for alternate epistemologies and ideologies. In Mathematics 
Education, discourse analysis and critical discourse analysis have been used to study written 
student investigations (Morgan, 1998), silence and voice in mathematics classroom discourse 
(Wagner, 2007), the ‘voice’ of a mathematics textbook (Herbel-Eisenmann, 2007), and the 
pragmatics (the ways in which context communicates meaning) of mathematical discourse 
(Rowland, 2000). 

Language has been increasingly seen as an important issue relating to mathematics teaching 
and learning.  Rowland (2000) emphasizes two principles in studying language: the linguistic 
principle (‘language as means of accessing thought’) and the deictic principle (language as a 
means of communication and a ‘code to express and point to concepts, meanings and attitudes’) 
(p. 2).  In his Language as a Social Semiotic, Halliday (1978) identifies three functional 
components or functions of language, the ideational, the interpersonal, and the textual, from 
which meaning is apprehended.   

The ideational functional component of the text answers the questions: What is the view of 
mathematics as presented in the text? How is the subject of mathematics envisioned in the mind 
of the author of the text and in what style is it rendered? The ideational function describes the 
nature of the subject matter from the ideological and epistemological stance of the author.  It is 
‘the component through which the language encodes the cultural experience and the speaker 
encodes his own individual experience as member of the culture’ (Halliday, 1978, p. 112). It also 
names the objects, concepts, and processes involved in mathematical activity and indicates 
agency on the part of the author and reader.  The ideational function is composed of the 
experiential function (dealing with transitivity and agency) and the logical function (relating to 
continuity and modes of argument). 

The interpersonal functional component describes the social and personal roles and 
relationships among the authors and readers and the ways in which the readers interact with the 
written text and the textbook itself as a whole. Evidence of this function is discerned by 
considering the use of personal pronouns (first person, I/we/us/our, and second person, 
you/your), imperatives, and modality. The interpersonal function is the ‘participatory function of 
language, language as doing something’ (Halliday, 1978, p. 112).   
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The textual functional component describes the content matter or the mathematics presented 
in the text, the theme and modes of reasoning, the arguments and their forms, and the narratives 
of mathematical activity. Halliday describes it as ‘the component which provides the texture: that 
which makes the difference between language that is suspended in vacuo and language that is 
operational in a context of the situation’ (pp.112-113). Evidence of the textual function is seen in 
the cohesive devices the text uses to preserve consistency and continuity.  

Halliday also introduces three concepts which shed more light on these three functional 
components, namely, field, tenor, and mode, respectively.  The field refers to what is going on in 
the context of the situation and what the participants are doing, the tenor to the roles of the 
author and the reader and how they stand in relation to one another, and the mode to the channel 
or wavelength that the author has chosen to use depending on ‘what function the language is 
being made to serve in the context of the situation’ (p. 222).   

I will examine each of the textbooks with respect to these three functional components and 
compare and contrast them as to the “voice” that emerges, the extent of agency, and the 
construction of the identity of the reader by the text.  

Method 
The data consists of the pages from the three Calculus textbooks that cover the exposition of 

the concept of a function. I chose this concept because it is fundamental and key to the subject. 
By exposition, I considered the preliminary introductory commentary and the definition (or 
definitions) of a function. In each textbook, there were many more pages devoted to the 
important classes of functions such as polynomial, exponential, logarithmic, and trigonometric 
functions, but I chose to limit the analysis to only those pages relating to development of the 
concept and the definition of a function.  

I mined the relevant pages (about 20 pages from each textbook) carefully with respect to the 
markers for the three functions as articulated by Halliday and elaborated by Morgan (1996). I 
paid close attention to the use of personal pronouns, imperatives, and modal auxiliary verbs. I 
also considered the use of questions and conditionals, if, if…then, given, and given that, as 
evidence of forms of reasoning and modes of argument.  

Findings and Discussion   
The results of the comparison of the textbooks across markers for the functional components 

of language with respect to the concept of a function are given in Table 1.  
 Spivak (1967) Leithold (1986) Stewart (2003) 
Pronouns - 
1st person 

we/us/our  
32 instances 

we/us 
5 instances 

we/us 
24 instances 

Pronouns –  
2nd person 

you  
9 instances 

 
None 

you 
3 instances 

Imperatives 
Inclusive 

let’s 
 
1 instance 

call, compare, let, note, 
observe, recall 
6 instances 

consider, determine, let, 
notice, remember 
7 instances  

Imperatives 
Exclusive 

 
None 

find, read 
4 instances 

draw, find, sketch, use 
6 instances 

Modal verbs may 
2 instances 

 
None 

 
None 

Questions 2 None 1 
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Conditionals 
 

if 
6 instances 
 if … then 
10 instances 

given 
3 instances 
given that 
2 instances 

if 
3 instances 
 if … then 
4 instances 

 Table 1. Comparison across Markers for the Functional Components. 

The Interpersonal Functional Component 
The most easily-detected functional component of language is the interpersonal which 

describes the roles and relationships of the author and the readers. This component can be 
discerned from the incidence of personal pronouns, imperatives, and expressions of modality. 

The most striking occurrence is that of 32 instances of first-person pronouns in Spivak as 
compared with five in Leithold and 23 in Stewart. In Spivak, there were 29 uses of we, two of us 
and one of our. My reading of this is that Spivak views the reader as someone who is part of the 
community of people doing or studying mathematics. From the opening paragraph in his liberal 
use of we and us, Spivak sets the tone of including the reader in his deliberations. He concludes 
his opening paragraph with ‘Let us therefore begin with the following:’ (p. 37). An alternative 
reading of we is given by Pimm (1987) who questions the we that authors use and wonders how 
he personally is implicated in the proceedings as to responsibility for what may ensue. Another 
possible reading is that the use of we, us, and our suggests a more general form indicative of the 
register of mathematicians, especially in written mathematics.  

In comparison to this substantial use of first-person pronouns, the five occurrences of we in 
Leithold read clinically as in ‘we see that’ or ‘we observe that’. There is an implied us in the 
following sentence from Leithold: ‘In Definition 0.5.1 the restriction that no two distinct ordered 
pairs can have the same first number assures that  

€ 

y  is unique for a specific value of   

€ 

x ’ (p. 45), 
for whom does the restriction assure, if not us, the readers?   

In keeping with Spivak’s view of the reader as a thinking and feeling partner in the 
endeavour, there are nine instances of you as he recognizes the presence of the reader, such as  
‘It will therefore probably not surprise you to learn that …’ (p. 37) and ‘you may feel that we 
have also reached the point where…’ (p. 45). However, Spivak does write at one point: ‘You 
should have little difficulty checking the assertions that…’ (p. 39), which is an assumption that 
may leave the reader a little frustrated if some difficulty is encountered. Later, he redeems 
himself with his regard for the reader in ‘If the expression     

€ 

f (s(a))looks unreasonable to you, 
then you are forgetting that     

€ 

s(a) is a number like any other number, so that     

€ 

f (s(a))makes 
sense’ (p. 40). This is an early indication of affect in mathematics learning, in recognizing the 
role of emotions and feelings. There are no instances of address to the reader in Leithold while 
Stewart has three: ‘as you can see’, ‘You can see that…’, and ‘when you turn on a hot-water 
faucet…’.  

The use of personal pronouns indicates the presence or absence of humans in the activity and 
the implied distance and degree of formal relationship between the author and the reader 
(Morgan, 1996). Spivak and Leithold are at opposite ends of the continuum in this regard. Spivak 
even employs the construction, ‘Lest you become too apprehensive about…’ and ‘let us hasten to 
point out that…’ which is by far the greatest consideration an author can give to a reader. Here 
again Spivak is demonstrating his recognition of the phenomenon of affect, despite his quaint 
sentence construction. Leithold deploys his words in a detached ‘scientific’ manner, the very 
opposite of the kind of writing that Burton and Morgan (2000) exhort mathematicians to adopt.  
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The frequency of imperatives in a text indicates the degree to which the author wishes to 
draw the reader’s attention to a point in the text (note that, observe that), to encourage the reader 
to reflect (consider, compare, recall, remember), or to give a simple command (find, sketch, use). 
Both Leithold and Stewart use a similar number of imperatives that indicate the usual textbook 
framing (consider, notice, observe, recall) and that signal the power of the author (determine, 
evaluate, find, sketch, use) to tell the reader what to do. The former are examples of inclusive 
imperatives that characterize the reader as ‘thinker’ while the latter are examples of exclusive 
imperatives that characterize the reader as ‘scribbler’ (Rotman, 1988). The use of imperatives 
shapes the relationship between author and reader and serves to construct the reader as a 
potential member of a community (Morgan, 1996). It is note-worthy that Spivak does not use 
any of these imperatives but still manages by his use of personal pronouns to convey a sense of 
introducing the reader to and including the reader in the community of mathematicians and the 
activity that mathematicians undertake.   

The imperative ‘let’ occupies a special place in mathematics (as is commonly found in 
arguments and proofs, for example, let  be…).  Spivak uses it once in ‘Let us therefore begin 
with…’ (p. 39), which is more of an invitation rather than a call for consideration. Leithold uses 
the construction, let  be…, three times. There are no instances of let in Stewart in the pages 
under consideration but there is a variety of other imperatives that are roughly equally inclusive 
and exclusive (Table 1).    

Modality, as a feature of language, enables authors and speakers to express their feelings, 
values, attitudes, and judgments about the propositions in their texts. Halliday (1978) expresses a 
preference for the term, modulation, rather than modality in that the text is modified or nuanced 
in some way. Demonstrations of modality include modal auxiliary verbs such as ‘may’ and ‘can’, 
adverbs relating to the uncertain state of knowledge such as ‘possibly’ and ‘maybe’, the use of 
moods and tenses, and the use of hedges (Rowland, 2000, p. 65). For these three textbooks there 
was little or no evidence of modality. There were two instances of ‘may’ in Spivak (‘You may 
feel that we have also reached…’ and ‘Two consolations may be offered’, p. 45). These have 
nothing to do with the mathematics involved but indicate concern for and offer solace to the 
reader. Leithold and Stewart offer no suggestion that that there is any uncertainty related to 
mathematical activity and by their lack of use of modality, indicate a view of mathematics that 
strongly holds to an absolute, ideal perspective. 

As seen from these markers for the interpersonal functional component, the tenor of the 
language in the three textbooks is marked differently. Leithold and Spivak are diametrically 
opposite in the use of the first and second person pronouns and imperatives in engaging and 
addressing the reader with Stewart striking a moderate note in this regard.  

The Textual Functional Component 
All three authors use the mode of discourse characterized by exposition (evident of the raison 

d'être of the textbook) in laying out a clear and concrete treatment of the subject matter.  
Questions as evidence of a conversational or dialogic style of exposition were barely used; there 
were two questions in Spivak, none in Leithold and one in Stewart. The one instance in Stewart 
is a perfect example of the question-and-answer cohesive form: ‘The graph of a function is a 
curve in the xy-plane.  But the question arises: Which curves in the xy-plane are graphs of 
functions? This is answered by …’ (p. 17).  

One instance of a question in Spivak is a particularly engaging example of language that 
recognizes and cements the roles and relationships in the text: ‘By what criterion, you may feel 
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impelled to ask, can such functions, especially a monstrosity like (12), be considered simple?’ 
This question manages to capture pronoun use, affect, and modality, all in one fell swoop. With 
respect to forms of reasoning, there are similar numbers of instances of conditionals in all three 
textbooks such as if and if…then which are widely used in mathematical arguments. Leithold has 
5 instances of given and given that but these are not used as conditionals in an argument. Instead 
they are used in examples such as, Given that and  are defined by  and . 
The current usage is more informal: ‘Suppose that …’ which, as a shortened form of ‘Let us 
suppose that…’, is more of an invitation. 

The Ideational Functional Component 
The ideational functional component in each of the three textbooks is very nearly identical in 

that the authors’ content and meaning are very similar. Each author is interested in 
communicating the content of the concept of a function. Further, each author conveys the 
weightiness of the subject matter and the experience of being part of the culture of being 
mathematicians and doing mathematics. Each is writing of the objects and relations that are 
under consideration when introducing and discussing the concept of a function. By the degree of 
use of the linguistic markers analyzed above, each encodes in the text his individual vision of 
mathematics. The view of mathematics evinced in all three is fixed, absolute, and formal. 

Besides the content, the ideational component, in describing which actors carry out which 
processes, speaks to the concept of agency as it is invited or suppressed. Morgan (1996) 
elaborates on the use of nominalization in order to suppress or mask agency.  Clear examples of 
suppression of agency occur in Leithold: ‘Equation (1) defines a function’ and ‘This equation 
gives the rule by which …’ (p. 45). There are no similar constructions in Spivak or Stewart. 

In summary, the three textbooks are similar in their theme and message but differ 
considerably in the interpersonal component with Stewart capturing a moderate position between 
what may be considered the extremes of linguistic markers by Leithold and Spivak.   

Conclusion 
The language of mathematics is often seen as foreign with its own lexicon, grammar, and 

modes of argument. More than being able to negotiate the language, students of mathematics 
must become fluent in it in order to be successful. Bakhtin declares that ‘[e]ach text presupposes 
a generally understood (that is, conventional within a given collective) system of signs, a 
language (if only the language of art)’ (1953/1986, p. 105).  Hence the mathematics textbook, as 
text, has a conventional system of signs which is part of a language that must be understood in 
order to be able to participate in the community involved in mathematical activity.  

While there is a core of conventions that must be observed in written mathematics such as the 
infallibility of written mathematics, the analysis above shows that the forms of language used 
encode the ideological stance of the author. Spivak wrote at a time when mathematics in 
textbooks was more theoretical and formal. While he is careful to draw the reader in and attend 
to how the reader is managing, he plots a watchful thoughtful course through the content. For 
Leithold, mathematics is austere and closed. His language is methodical and authoritative. 
Stewart begins with an applied focus with multiple representations of functions from the real 
world. His language is readable and brisk with many examples, sidebars and cautionary notes.  
Further, the linguistic devices, such as nominalization and cohesive forms, indicate the extent of 
agency afforded the reader and the construction of the identity of the reader as a potential 
member of the community of mathematicians.  
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The differences in language in a textbook account for much of the reader’s regard for the 
textbook and for the teacher’s ability to mediate the textbook with her students. In this paper I 
have teased out the subconscious linguistic markings in the text and have shown that there is 
more to the text than meets the eye; that what we have taken as familiar is indeed strange, and 
that the language of mathematics does reveal beliefs and ideas about mathematics which we 
adopt and perpetuate without realizing the implications and consequences. This analysis suggests 
that it behooves us as teachers to look again at language and its signs and to re/examine our 
textbook choices, while attending to the functions and forms of language that subtly maintain 
hegemonic practices in the teaching and learning of mathematics.  
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Whole-class discourse is an important component in developing relational understanding in 
mathematics. Teachers’ perceptions of this instructional and assessment strategy can greatly 
influence and affect its use, implementation, and overall success. However, facilitating whole-
class discourse with adolescents can be difficult as they are often reluctant to participate in 
situations that are potentially embarrassing. This study identified strategies that middle level 
mathematics teachers used to promote whole-class discourse and also compared teachers’ 
perceptions with their actual classroom practice. Several areas of concern were identified due to 
the discrepancies between teachers’ perceptions and their actual practice.  

 
The learning experiences students encounter within schools is fundamental to their academic 

achievement and attainment (Marzano, 2004). However, the selection, nature, and design of 
these experiences are largely left up to the teacher which means that teacher preferences in the 
design and implementation of these experiences will often determine how the curriculum content 
is presented to the students. Learning experiences that also include whole-class discourse (WCD) 
are important for middle level students as students’ understanding of content is strengthened 
through communication (Gose, 2009; National Council of Teachers of Mathematics [NCTM], 
2000; Pugalee, 2001; Roberts & Billings, 2009). Yet, generating mathematical discourse 
amongst adolescents can be especially challenging, particularly within a whole-class setting as 
social acceptance by adolescents’ peers is paramount; they wish to avoid embarrassment or 
appearing incompetent (Van Hoose, Strahan, & L’Esperance, 2001). 

The purpose of this qualitative multi-phase case study was to better understand teachers’ 
perceptions towards WCD as it relates to the facilitation of WCD, the utility of WCD as an 
instructional strategy to support all students in the learning of mathematics, as well as to better 
understand the methods that teachers tend to implement to support the facilitation of WCD. By 
understanding teachers’ perceptions of WCD, more informed decisions on how to support 
teachers within the classroom and improve effective instructional and assessment strategies can 
be further developed. Furthermore, knowing how teachers view their practice today can help 
educational leaders redefine and shape future classrooms.  

 
Research Questions 

The research question that guided this study focused on teachers perceptions of WCD in 
relation to their actual classroom practices. Specifically, in what ways were middle-level 
teachers’ perceptions towards whole-class mathematical discourse, as a means of supporting all 
students in learning mathematics, aligned with their actual classroom practice?  
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Relevance to Current Literature 
Mathematical discourse is certainly not a new phenomenon and there is an abundance of 

literature that supports various aspects of WCD and the benefits it provides students and teachers 
(Falle, 2004; Hoffman, Breyfogle, & Dressler, 2009; Huang, Normandia, & Greer, 2005; Kuhn, 
2005; Larsen & Bartlo, 2009; Mercer, 2008; NCTM, 2000; Roberts & Billings, 2009; Stein, M. 
K., Engle, R. A., Smith, M. A., & Hughes, E. K., 2008). Two of these benefits support students’ 
higher level thinking and provide teachers with insightful and timely assessment opportunities. 

Helping students develop as creative and complex thinkers is important in any discipline, but 
part of the beauty of mathematics lies in the creative elements that are needed to be effective 
problem solvers; skills that are dependent on students’ higher level thinking. When teachers 
foster and promote WCD, they also develop more creative and higher level thinking skills in 
students (Mercer, 2008; Roberts & Billings, 2009). Kuhn (2005) also links discourse to the 
development of thinking, and thus learning, and stresses that thinking is something that is 
typically done collaboratively. Kuhn’s classroom discourse model, the theoretical model used for 
this study, depicts the collaborative nature of discourse (see Figure 1). In this model, students are 
identified by a number; e.g. S1, S2, and S3. The arrows and corresponding numbers indicate to 
whom the question was directed and the order in which these interactions were made.    

    
Figure 1: Kuhn’s Authentic Classroom Discourse model 
 
Providing timely and appropriate feedback on student learning is important in supporting 

student learning. During WCD, when students verbally construct their responses, teachers can 
more accurately assess students’ understandings or misunderstandings (Clarke & Sullivan, 
1990). Furthermore, mathematical WCD provides assessment opportunities that may not be 
evident in other forms of assessment (Falle, 2004). Misconceptions, be they general or specific, 
can be addressed in a timelier manner and addressed immediately. As an assessment strategy, 
few other strategies can provide more real-time information than WCD. 
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Methodology 
Since teachers’ perceptions were the focus of this study, a phenomenon that is naturally 

dynamic and flexible, I used a four phase qualitative case study with a grounded theoretical 
approach (Guba & Lincoln, 2005). A grounded theoretical approach was used because I placed 
significant emphasis on the interpretations and meaning that teachers had towards discourse as 
evident in their interviews and observations. Also, as a result of the teachers’ observed 
interactions in an authentic and naturalistic setting, during which thick descriptions were created, 
theory was inductively generated (Bogdan & Biklen, 2007).   

 Phase 1 of this study surveyed 30 middle level public school mathematics teachers to 
determine their beliefs about WCD. These teachers came from four different schools that had 
similar demographics in academic mathematical achievement, ethnic and cultural diversity, and 
size of the student populations. Nine teachers from Phase 1 who indicated that they believed 
WCD was a highly effective strategy for teaching mathematics to adolescents were chosen for 
Phase 2. Phase 2 consisted of semi-structured interviews to better understand their perspectives 
and the strategies the teachers used to facilitate WCD. For Phase 3, three teachers were selected 
from the Phase 2 group for classroom observations. These teachers were selected based on the 
complexity, richness, and diversity of their responses during the semi-structured interviews. In 
essence, these three teachers seemed to exemplify WCD as a method of supporting mathematics 
learning for all students. Phase 4 consisted of follow-up interviews with the same teachers from 
Phase 3 so that I could better understand their perspective as it related to their actual practices. 

 
Findings 

Phase 1 
For Phase 1, I administered a four item survey which identified the degree to which teachers 

valued WCD. The first three items of this survey were: 1) It is important for students to talk 
about mathematics as an entire class; 2) When the whole-class has a discussion about 
mathematics, it can be more beneficial than in small groups; and 3) I feel that I can comfortably 
facilitate discussions with the entire class. Using a one-to-five scale, with one meaning they 
strongly disagreed, a five meaning they strongly agreed, and a three was listed as being neutral 
teachers indicated their perceptions. The fourth item read, “I plan for whole-class discussions” 
and gave four options. The four options were: A) nearly daily, B) about one to two times a week, 
C) about once every two weeks, and D) once a month or less. The results from the first three 
items indicated that nearly every teacher agreed or strongly agreed with the items. Finally, for 
the fourth item, 20 of the 30 teachers indicated that they planned for WCD either one to two 
times a week or nearly daily. 

 
Phase 2 

For the second phase, semi-structured interviews helped clarify the perceptions teachers’ had 
towards WCD. All of the teachers believed that WCD was a useful instructional strategy in some 
manner even though many of the teachers misunderstood. Many thought discourse was related to 
something negative; “discourse is something off track or off tangent,” or “discourse to me would 
mean something is not going very well or varying opinions on a topic, I guess. Discourse to me 
sounds bad.” However, when asked to describe whole-class discussions, one teacher who 
initially misunderstood the term discourse described it as “talking, taking turns talking. Maybe I 
would start them on a topic and it’s an organized talking that has one spokes person. It is just not 
craziness going on.” This is similar to the types of responses by the teachers who conveyed an 
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understanding of WCD. One such teacher described WCD as “ways of getting all of the students 
actively engaged in contributing to verbal expressions of a specific topic.” 

The interviewed teachers also believed that there were specific benefits for teachers and 
students alike.  For the students, these benefits included a perceived increase in understanding 
and greater individual accountability in learning. The benefits for the teachers were the ability to 
check for understanding in a timely manner and the ability to adjust instruction and intended 
learning opportunities based on students’ understanding.  

In addition, the teachers believed they had specific responsibilities in order to reap these 
benefits; the most frequently reported responsibility was being a “facilitator.” One teacher said, 
“I feel like a facilitator. I literally sit back and just let them debate themselves. And that is what I 
think is what we should be doing; letting the kids talk but you can kind of steer them too.” Other 
teachers indicated that they needed to create supportive and organized classrooms so students 
would feel comfortable participating; “to eliminate that fear of giving the wrong answer by 
showing them that you can give the right answer.” Teachers also believed that being a facilitator 
meant that they needed to probe student thinking by asking different types of questions and 
gradually shift more of the questioning responsibilities to the students; students should be the 
ones asking questions to each other without the teacher needing to prompt others to do so.   

The teachers were also quite aware of the specific social, physical, and cognitive needs of 
adolescents and tried to create learning environments that were sensitive to these needs. Several 
teachers stated that adolescents often do not want to be put in situations that could compromise 
their social or emotional security. For these “shy” students, the teachers believed it was best to 
not press the student for a response but rather leave them be. One teacher even indicated that for, 
“the ones who are really shy it is not healthy to try and get them to say anything. I get this sense 
that they are not comfortable, they are not able to speak; they are not sure about themselves.”  

Finally, many of the teachers described meaningful WCD in terms of increased participation 
and/or clear and observable physical cues such as more students raising their hands, a sense of 
excitement to share responses, and expressions on faces. Only three of the nine teachers 
described meaningful WCD in terms of an increase in students understanding.  Carrie, one of the 
teachers observed during Phase 3 believed meaningful WCD was evident when “they no longer 
look at me to determine the validity of a student’s response; they just keep going, they ask each 
other instead.” Another teacher thought that meaningful WCD in their classroom was apparent in 
students’ higher quality response.   

When asked about the techniques or strategies they used to promote meaningful WCD, their 
responses related to four common types. These included the use of questions (seven responses), 
small groups (nine responses), various technologies (four responses), and impromptu 
instructional modifications (six responses). These eventually became part of the teacher-
generated framework (TGF) used in Phase 3. 

 
Phase 3 

In the third phase of the study, three teachers were selected for observations; they were 
Carrie, Erin, and Samantha. After analysis of the Phase 2 data, an initial theoretical framework of 
how teachers perceived WCD was created. This TGF was composed of two separate facets: 1) 
Required roles and duties of the teacher and instructional strategies frequently used by teachers 
to facilitate WCD and 2) the desired student traits that would be evident as a result of 
implementing WCD. The first element for Facet 1 is grounded in the teachers’ beliefs that their 
primary duty was to facilitate WCD and this meant to keep the discourse flowing and on topic by 
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asking the class different types of questions. Facet 1 also included their strategies for promoting 
WCD; using small groups, technologies, and/or impromptu lesson modifications. The second 
element of Facet 1 was based on the teachers desire to increase engagement and participation to 
include many students. For Facet 2, teachers perceived that there would be specific and 
observable traits demonstrated by the students. They believed that through their efforts in 
facilitating WCD (Facet 1) there would be at least two traits that would aid in promoting the 
learning of mathematics. First, participation would increase because all students would be 
actively engaged. Next, students would provide higher quality responses; an indication that they 
understood the mathematics being learned. 

Based on the TGF, not all teachers’ perceptions of WCD corresponded with their actual 
practice. Although, two of the teachers, Erin and Carrie, used several of the strategies identified 
in the TGF and thus had perceptions that closely mirrored their practice in most instances. 
Carrie’s perception of WCD seemed to be identical to her practice though there were few 
student-to-student discursive interactions because all student responses were first funneled 
through her. Erin’s perceptions were also relatively close to her practice but she relied heavily 
upon voluntary responses. Even though she believed WCD was important for all students, it was 
typically the same few students who provided responses and many students were never selected 
or asked to participate. Carrie did not include every student in the WCD each class period either, 
but she used name cards to randomly select students to participate. Furthermore, Erin also had 
limited student-to-student discursive interactions because she also used the same wagon wheel 
(Okolo, Ferretti, & MacArthur, 2007) or funneling effect used by Carrie (See Figure 2).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This technique more closely aligns with a traditional initiate, response, and evaluation (IRE) 

form of communication. Finally, Samantha’s perception of WCD did not appear to reflect her 
practice at all.  Even though students were in groups, these groups were not used to promote 
meaningful WCD. Furthermore, her use of voluntary responses and IRE structures limited the 
responses to the same few students in nearly every discursive interaction.  

 
Phase 4 

In this final phase of the study I wanted to learn more about two emergent themes framed 
around the following questions: 1) How did the observed teachers come to their understanding of 
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Figure 2: The wagon wheel structure most commonly used. 
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WCD and 2) can WCD support adolescent students’ affective development? These two questions 
arose from the interviews and observations with each of the respective teachers. 

Each teacher reported arriving at their understanding of WCD through different ways. Erin 
came to her understanding of WCD through her experiences in the classroom but also mentioned 
that her understandings had changed based on the initial semi-structured interview. As a result of 
this interview she decided to think about how she could implement WCD more often as she did 
not previously view WCD as an effective strategy for teaching and learning mathematics. Carrie 
stated that she came to her understanding of WCD through observations of other teachers along 
with frequent reflections on her own practice. Observations were important to her because she 
was able to witness various strategies and then incorporated or modified them as needed. 
Whereas Samantha believed strongly that learning was a social endeavor and this was based on 
her previous college course work. During this interview Samantha also revealed that she believed 
that WCD was a naturally occurring phenomenon in her classroom and thus she did not need to 
plan for, and in fact, never planned for WCD during the observations.  

Each of the three teachers talked about how WCD supported adolescents during this time of 
their life as they grow and develop socially and emotionally. The teachers said that WCD helped 
students gain and foster a critical sense of belonging within the classroom. The teachers were 
aware that adolescents constantly seek acceptance from their peers and thus WCD provided an 
avenue through which students gained recognition as being part of the classroom and validation 
of their ideas. Carrie believed that by selecting students that did not typically participate and 
asking them to contribute they would feel more connected to the class; this was counter to many 
of the thoughts and beliefs of the other teachers interviewed. 

 
Implications and Recommendations 

After careful analysis of the findings from each of the four phases of this study, there were 
four areas of concern that were identified that could have an impact on students’ learning of 
mathematics with respect to WCD. These four areas were: 1) Connecting pedagogy to the nature 
and needs of adolescents, 2) creating cultures of participation that are inclusive to all students, 3) 
assessing for learning through collaborative and formative methods, and 4) shifting 
responsibilities from the teacher to the students to promote relational understanding.  

With respect to connecting pedagogy to the nature and needs of adolescents, teachers also 
clearly expressed a need to be mindful of students’ affective development. Unfortunately, this 
led to numerous students not being included in the mathematical learning experiences. In 
essence, students were frequently, and unintentionally, being marginalized. However, discourse 
between peers is an essential element in students’ learning and development thus all students 
should be involved (Grennon, Brooks and Brooks, 1999). 

Next, with respect to creating cultures of participation that are inclusive to all students, it is 
important to remember the tenets echoed by the NCTM (2000); meaningful interactions are built 
upon cultures of collaboration. Classroom cultures of participation are collaborative, value all 
individuals’ comments and ideas, and maintain accountability for all members within the 
learning community for contributing to and shaping the understandings that arise through shared 
discursive interactions. This also means that strict adherence, deliberately or otherwise, to the use 
of voluntary responses combined with IRE structures of discourse need to be reevaluated. 
Reliance on voluntary structures cannot effectively support classroom cultures of participation. 
Employing random selection techniques like the ones Carrie used could be one way to begin to 
shifting from IRE structures to more inclusive practices. 
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When it comes to teachers using WCD as an assessment tool, Stiggins (2002) reminds 
educators that the primary purpose of assessments is to assess for learning rather than an 
assessment of student learning. What this means is that teachers need to be using assessment 
strategies that intentionally and deliberately aim to improve student learning. An implication of 
such deliberate assessment strategies is that teachers need to be continually probing students’ 
thinking to learn what misunderstandings may exist. While each of the three teachers observed 
indicated that WCD was a beneficial method of assessing for learning, rarely were student 
responses challenged. In addition, when teacher-centered IRE approaches are combined with 
voluntary responses, as they were in these cases, only a select few students’ learning will ever be 
assessed at any given time. Therefore, the class discourse could not be accurately relied upon as 
a formative method of assessment to gauge all students’ learning. 

Questioning plays an important role in the assessment process of WCD. Stein et al. (2008) 
suggest focusing on developing deliberate and meaningful questions prior to the implementation 
of the lesson based on anticipated difficulties students may have. In doing so, teachers will be 
better prepared to facilitate WCD. Furthermore, teachers will not need to think of questions to 
ask in the moment and can then focus on the quality of the responses provided and thus help 
students link the student-directed WCD to the intended learning outcomes. 

The final area of concern dealt with shifting the primary responsibility of facilitating WCD 
from the teacher to the students. WCD should be a student-centered phenomenon, which means 
that the students need to be the leaders within the classroom; each of the three observed teachers 
stated as much during their interviews. But, because of an over use of IRE structures, teachers 
maintained the intellectual authority during the WCD. As a result, there was no apparent shift in 
responsibility to the students.  

Despite these concerns, promising change was found in the classrooms that strove to create 
cultures of participation. In the observed classrooms that created cultures of participation, or had 
elements that supported a culture of participation, students were invited, encouraged, and 
expected to participate and contribute to the mathematical understandings that were generated.  

 
Conclusion 

This study was based on Larson and Bartlo’s (2009) recommendation that classrooms should 
shift from structures that are teacher-centered, wherein the teacher is the primary source of 
knowledge, to student-centered that require all students to be active participants in the learning 
of mathematics. Mathematics should be a collaborative social endeavor that is inclusive of all 
adolescent learners; it should be explored, digested, and realized within a learning environment 
that places students at the forefront (Okolo et al., 2007; Roberts & Billings, 2009).  

Within this context, this study examined middle level public school mathematics teachers’ 
perceptions of WCD and revealed surprising discrepancies between teachers’ beliefs and their 
actual practices. This study also identified a Teacher Generated Framework in Phase 3 that 
supported the facilitation of WCD so that more students could be actively engaged in generating 
mathematical understandings.  

While this study was limited, cases of this sort assist in constructing theory and methods that 
support future research into the perceptions and instructional techniques used to facilitate 
inclusive whole-class discourse. Further research into the interaction and relationship between 
teachers’ perceptions of WCD and the instructional tools and strategies they use to implement 
and facilitate meaningful WCD will help create a more precise understanding of this 
phenomenon. 
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Brunei Primary mathematics curriculum (2006) advocates teachers on the use of questions to 
promote mathematical thinking in the pupils. When the pupils are asked and probed of their 
thinking, meaningful learning will take place. Research has made it clear that probing questions 
is one of the effective ways to promote thinking among the pupils. This paper describes the study 
which reports on the pupil’s responses to teachers’ questions supported by the pupils’ responses 
in the interviews. It was observed that the pupils’ responses in the lessons observed were mainly 
choral and consist one to three word answers. The pupils’ answers were mainly repeated 
reasons and repeated procedures. This finding is consistent with the pupils’ responses in the 
interview where the responses were mainly learned procedures and reasons that did not show 
explicit mathematical thinking.  

 
Introduction 

With reference to the Brunei new upper primary mathematics syllabus published in 2006, one 
of the aims is to develop “the ability to solve mathematical problems and think clearly and 
logically” (p. 3). In line with this aim, a few specific objectives of the new mathematics 
curriculum stated in the document are to “develop the ability to estimate, develop spatial 
awareness, develop basic skills in collecting and interpreting data, develop the ability to 
communicate mathematical ideas clearly, tackle non-routine problems systematically and apply 
what has been learned to solve real problems” (Mathematics Syllabus for Upper Primary Schools 
2006; p. 3). These developments, in particular the development of mathematical thinking and 
problem solving, are stipulated to be developed through the interaction between mathematical 
content and mathematical processes. Mathematical thinking is identified as one of the 
mathematical processes. In the document, mathematical thinking has been described in several 
sub-processes such as  “Guessing and checking, Drawing diagrams, Making lists, Looking for 
patterns, Working backwards, Classifying, Identifying attributes, Sequencing, Generalising, 
Verifying, Visualising, Substituting, Re-arranging, Putting observation into words, Making 
predictions, Simplifying the problem and solving part of the problem” (p. 5). These sub-
processes clearly represent explicit views of mathematical thinking in terms of behaviour and 
articulated thinking. 

In terms of behaviour, Wertheimer (1961), a gestalt psychologist, described the components 
of thinking from a phenomenological point of view. He mentioned that thinking processes can be 
noticed in terms of the behaviour.  Such terms can be in the form of comparing and 
discriminating (identification of similarities and differences); analysing (looking at parts); 
induction (generalisation); experience (collecting facts or grasping structure); experimentation 
(looking for differences between possible hypotheses); associating (items together and 
recognising  relationships); guessing and checking, trial and error and learning on the basis of 
success (with or without appreciating structural significance). This view suggests that 
mathematical thinking assists pupils to realise the necessary knowledge or skills for solving a 
particular problem.  It should also be seen as the driving force behind such knowledge and skills. 
This is referred to as the “mathematical attitude” (Katagiri, 2006). This view of mathematical 
thinking seems to be comparable with the current conceptual framework of the Brunei 
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mathematics curriculum which shows interwoven attitudes, processes and content (Khalid, 
2007). 

In terms of articulated thinking, Mason, Burton and Stacey (1982) identified four fundamental 
mental processes that show the progress of mathematical thinking: specialising – trying special 
cases, looking at examples; generalising – looking for patterns and relationships; conjecturing – 
predicting relationships and results and convincing – finding and communicating reasons why 
something is true. This view is related to the ability of the primary pupils that can be developed. 
When mathematical thinking is viewed in terms of articulated thinking, patterns of thinking 
develop (Fennema & Carpenter, 1996). The ability of the pupils to think by themselves, 
accompanied with conceptual understanding, strategic competence, adaptive reasoning, and 
productive disposition are the new goals in education (Kilpatrick, Swafford & Findell, 2001). 
The Brunei mathematics curriculum implemented in 2006 has similar goals and as previously 
mentioned, emphasises understanding through the development of mathematical thinking.  

A study by Cheeseman & Clarke, (2001) investigating articulation of mathematical thinking, 
found that young children (aged 5 to 7 years old) could give an account of mathematical events 
from their perspective. They also found that through interviewing them, the children could recall 
at least part of their conversations with the teacher during the mathematics lesson. They 
concluded that when teachers used interaction that challenged children to think about their 
mathematical understanding, they could reconstruct thinking. In the study, they reported that 
59% of the children could talk about their learning as a result of the lesson ─  some at a factual 
level, some at a procedural level and some at a conceptual level. The ability demonstrated by 
these children suggested that mathematical thinking can be fostered even at an early age.  
 

Research Problem and Research Question 
 The objective of the study is to investigate the mathematical thinking of the pupils by 
observing the types of pupils’ responses and supports the findings with the information from the 
interviews to assess whether year 5 pupils showed any development of their articulated 
mathematical thinking. Hence, the study seeks to answer the question: What are the pupils’ 
responses to teachers’ questions that show mathematical thinking in learning mathematics?  

 
Research Methodology 

Sample 
The participants in the study were year 5 pupils who ages between 10 to 11 years. A total of 

40 pupils were randomly selected from five year 5 classes situated in Tutong and Brunei Muara 
districts. These pupils were seen asked by the teachers in the respective classes during the 
observation.  
 
Instruments 

The research utilised two codes- the first code was used to analyse the pupils’ responses in the 
observation sessions and the second code was used to analyse the responses of the pupils in the 
interviews. Table 1 and Table 2 show the two codes mentioned. 
 
Table 1 
Pupil Response Codes 

Pupils’ Responses Description 
No response No answer to teacher’s question. 
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Chorus Whole class responds orally to teacher’s question. 
Individual pupil 
 

Denotes which pupil answers (enables link with probing 
question). 

Correct Correct response given. 
Partially correct Partially correct response or incomplete response. 
Incorrect 
Explanation 

Incorrect response given. 
Requires pupil to give information. 

Justification 
Question 

Requires pupil to explain answer or strategy. 
Pupil answers the teacher’s question with another question. 

  
Table 2  
Categories of Responses for Aspects of the Interviews 

Aspects of Interview Categories of Responses 

Recall of events 
• no recall 
• could talk about the learning with video 
• recall spontaneously 

Description of events 

• no description 
• describe the action 
• describe the outcome 
• describe the event from their perspective 
• describe their reasoning / justify their thinking 

Explanation of their learning 

• no explanation 
• learned nothing 
• learned a behaviour not mathematics 
• remembered factual information 
• learned how to do something 

Explanation of their thinking 

• no explanation 
• simple explanation of thinking such as “compare the 

digits” 
• explicit description of thinking 
• explain/reconstruct thinking, reasoning, justifying, 

evaluate thinking 
The interview data provided qualitative accounts of the pupils’ mathematical thinking in 

terms of the following areas: 
•   recall of a task or an activity; 
•   description of events; 
•   explanation of their learning; 
•   explanation of their thinking. 
The areas above followed the “complementary accounts methodology” used by Clarke 

(2001) to capture pupils’ accounts of their mathematical thinking.  
 
Data Analysis  
 The pupils’ responses in the observations were coded, counted and converted into average 
to highlight which type of responses was the most. Similarly, the pupils’ responses in the 
interviews data were also analysed by counting frequency of mention or recurring regularities 
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which then were categorised. After the responses from the observation and the interview were 
collected, the responses were entered into the SPSS package for quantitative analysis.  

 
Result and Discussions 

a) Analysis of the Observation of the Pupils’ Responses 
Table 3 illustrates the total frequency of each category of pupils’ responses in the ten lessons 

observed. The table is divided into two. The first three rows illustrate the frequency counts of 
“No response”, “Chorus” and the “Individual pupil” categories. The other rows show the 
breakdown of the individual responses which were coded as “Correct”, “Partially correct”, 
“Incorrect”, “Explanation”, “Justification” and “Question”. Some of these responses were 
classified under two categories which explain the discrepancy between the total frequency counts 
and the individual frequency counts. Only the chorus and the individual responses were added to 
give the total frequency of pupils’ responses. The “No response” frequency counts were not 
included because the study focused only the pupils who responded to the teachers’ questions to 
demonstrate mathematical thinking.  

 
Table 3 
Total Frequency of Pupils’ Responses in Primary 5 (10 lessons)  
Pupils’ Responses T1 T2 T3 T4 T5 Average 
No response 0 2  0  1 1   
Chorus* 27 (64.3%) 41 (65.1%) 38 (76%) 42 (85.7%) 56 (70%) 72.2% 
(Individual pupil)*  15 (35.7%) 22 (34.9%) 12 (24%) 7 (14.3%) 24 (30%) 27.8% 

Total* n = 42 n = 63 n = 50 n = 49 n = 80  
Correct (I) 13 (31%) 21 (33.3%) 12 (24%) 5 (10.2%) 22 (27.5%) 25.2% 
Partially correct (I) 2 (4.8%) 0 0 0 0 1.0% 
Incorrect (I) 1 (2.4%) 1 (1.6%) 0 2 (4.1%) 2 (2.5%) 2.1% 
Explanation (I) 6 (14.3%) 3 (4.8%) 0 0 1 (1.3%) 4.1% 
Justification (I) 0 0 0 0 0 0 
Question (I) 0 0 0 0 0 0 
 The frequency counts of the pupils’ responses revealed that the prevalent response in 
each lesson observed was the whole-class choral response. On average, 72.2% of the responses 
made to each teacher were choral. Consider the following discussion between the pupils and 
teacher T2 on identifying the numerator and the denominator of 3/4:  

T: “Which is greater, three or four?” 
P: “Four.” (Chorus 1) 
T: “Which is less numerator or denominator?” 
P: “Numerator.” (Chorus 2) 
T: “Yes, the numerator is less than the denominator.” 
P: “Yes.” (Chorus 3) 
T: “So the numerator is smaller than the denominator. It is called proper fraction.”   
T: “Why do we call proper fraction [sic]?” 
P1: “Numerator is small.” (Explanation 1) 
 T: “Yes the numerator is smaller than the denominator.” 
(An episode of verbal exchanges in one of T2’s lessons.)  

The episode revealed that the chorus responses 1, 2 and 3 were one word answers because the 
questions posed by the teacher were closed questions. When the teacher asked for the reason why 
it was called a proper fraction, which was an open question, the explanation given by P1 was a 
repeated reason provided by the teacher earlier in the exchanges. The responses given by 
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individual pupils were the other category of pupils’ responses with an average of 27.8% per 
teacher. Individual responses were important in two ways. First the coding assisted the writer to 
trace for probing questions and second, to analyse whether the responses were reflecting thinking 
or not. Consider the following verbal exchange between a pupil named Abdul Mateen and his 
teacher, T1, on conversion of 3 centimetres into millimetres. 

T: “Can you convert 3 cm into mm?” 
P: “Yes.” 
T: “So, what is the answer?” 
P: “30 mm.” 
T: “Why not 40 mm?” 
Abdul Mateen: “Because it is 3 cm.” 
T: “Why is that?” 
Abdul Mateen: “Because 1 cm is 10 mm.” 
T: “So what do you think?” 
Abdul Mateen: “So 3 cm is 30 cm.” 
T: “Good.” 

 (An episode of a verbal exchange between Abdul Mateen and T1.) 
In the verbal exchange between Abdul Mateen and his teacher, T1, the responses given by the 

pupil demonstrated development of thinking as his teacher asked him subsequent sets of 
questions. However, the responses were one to three word answers only and were not 
explanatory or justifying in nature. Further information on the nature of the pupils’ thinking is 
discussed in the interview section.   

Eighty individual responses were coded with an average of 25.2% correct responses per 
teacher, indicating that the individual pupils had answered what the teachers intended. On the 
other hand, per teacher, an average of 2.1% of the pupils’ responses was incorrect. Among the 
individual responses were explanatory type answers with an average of 4.1% per teacher. As 
mentioned earlier, the explanatory answers were repeated reasons which proved to be parroting 
and regurgitating the teachers’ reasons or explanation.  
 
b) Analysis of the Interviews with the Pupils 
 The interviews were conducted with individual pupils to collect data on their 
mathematical thinking developed through the teachers’ questions posed in the lessons observed. 
The interviews were necessary to support the pupils’ responses coded in the lessons observed. 
The interviews were conversational in style. The writer conducted the interviews in a bilingual 
manner which was a mixture of Brunei National Language (Malay) and English because most of 
the pupils had difficulty expressing themselves in English.  Another reason was that English was 
the second language spoken by these pupils. The data generated from the pupils’ interviews were 
quantitatively and qualitatively analysed. All of the interviews were recorded, transcribed in full 
and coded following the study done by Clarke (2001) on pupils’ accounts of mathematical 
thinking. 
 
Recall of Events 

In Table 4, about 85% of the year 5 pupils interviewed were able to recall the learning that 
occurred in their respective lessons without the need to use the video recording as a prompt for 
the recollection of the learning. Only one pupil (5%) did not respond to the “unstructured” 
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question “Do you remember when the teacher asked you questions during class?” and the other 
10% could give responses when the video recording was played for a short period of time.  
 
Table 4 
Categories of Responses of Recall of Events 
Category of response Year 5 
No recall 2 (5%) 
Could talk about their learning with video 4 (10%) 
Recall spontaneously 34 (85%) 
Total n = 40 
 
Description of Events 

In Table 5, the pupils’ recall of events were categorised in two categories. The first was that 
some of the pupils described the events in terms of what they had done in the lesson. This made 
up 70% of the pupils’ responses. The other description described the outcome (30%).  
 
Table 5 
Categories of Description of Events 
Category of Response Year 5 
No description of interaction 2 (15%) 
Describe the action 28 (70%) 
Describe the outcome 12 (30%) 
Describe the event from their perspective 0 
Describe their reasoning/justify their thinking 0  
Total n = 40 

Three examples of the interview scripts from each level showing description of actions are 
presented as follows: 
Interviewer: “So what did you say or do here?” 
Abdul Mateen: “I use ruler and a measuring tape to measure lengths.”  
Siti Nur : “I multiply using vertical format.” 
Mohd Adi: “I counted 2/2 as 1 and 2/2 as 1 to make 2 and 1/2.” 

  
Three examples of the interview transcripts from each level describing the outcome are shown 

as follows: 
Interviewer: “So what did you say here?” 
Abdul Azli: “We compare fractions. Which one is bigger or smaller.” 
Amirah :  “Change times from minutes to seconds.” 
Lailan:  “Comparing fractions less than and more than.” 
 There was no evidence of the pupils in either group describing the events from their 
perspective nor describing their reasoning or justifying their thinking. 
 
Explanation of Their Learning 
 Table 6 shows 80% of the pupils in year 5 were able to specify their learning and they 
stated that they had learned something in the lessons. However, 5% of the learning was 
behavioural learning such as drawing, shading and colouring which was not mathematics. In 
addition, one of the twenty pupils in year 5 was unable to specify mathematical learning. 
 
Table 6 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

817



Categories of Explanation of Their Learning 
Category of Response Year 5 
Unable to specify learning 2 (5%) 
Learned nothing 0  
Learned a behaviour not mathematics 2 (5%) 
Remembered factual information 32 (80%) 
Learned how to do something 32 (80%) 
Total n = 40 

An example of the description of doing something is cited below: 
Interviewer:  “What did you learn today in mathematics?” 
Siti Juliana: “Fractions.” 
Interviewer: “What about fractions?” 
Siti Juliana: “Divide an apple into half and quarters.” 
Interviewer: “Can you give me an example of fraction from that?” 
Siti Juliana: “One out of two parts because there are four equal parts” 

 
Explanation of Their Thinking 
 With reference to Table 7, the number of pupils who were able to explain their thinking 
for year 5 was significantly low at 5%.  
 
Table 7 
Categories of Explanation of Their Thinking 
Category of Response Year 5 
No explanation of thinking 38 (95%) 
Simple description of thinking 2 (5%) 
Explicit description of thinking 0 
Explain/reconstruct thinking, reasoning, justifying, evaluate thinking 0 
Total n = 40 

 
Only four of the total number of pupils in year 5 who were interviewed was able to give a 

description of their thinking. Their thinking was a simple description instead of a more explicit 
manner. However, it is difficult to ascertain whether these pupils have been trained to think 
because the time constraints of the study did not allow the writer to follow the pupils in greater 
lengths. Therefore, the category of simple description of thinking was appropriate to code 
instances of thinking among the pupils interviewed. Unlike some pupils in Clarke’s (2001) study, 
none of the forty interviewees offered an explicit description of thinking or reconstructed, 
justified or evaluated their thinking.     

 
Conclusion  

 
In conclusion, the pupils’ ability to articulate their thinking can be attributed to some extent, 

to the quality of teachers’ questions. Hence in this light, it is recommended that the pupils should 
be asked more open ended questions particularly probing questions to provoke thinking. While it 
is a fact that English is not their first language, the language use to formulate the questions 
should be common in all subjects for familiarity and for easy understanding. This is important so 
that the pupils can not only articulate but also use the language for discussion and 
argumentations. Discussion and argumentations can be cultivated from problems which are 
familiar, open and non routine. The Brunei primary mathematics syllabus has provided problems 
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that are routine and non routine embedded in every topic. Hence, it is crucial for teachers to use 
these as a platform for lessons to inculcate discussion and argumentation. Further study can be 
done to consider mathematical thinking in terms of behaviour and attitude. Such studies may also 
include bigger sample size and covers the four districts in Brunei. 
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This study uses a constructivist model of scientific debate to analyze two accounts of fruitful 
debate from separate real analysis classrooms. Our findings highlight the importance of such 
debate for helping students reconcile differences between their mathematical conceptions and 
others held in the community of practice through various forms of “conceptual triangulation” on 
shared mathematical tasks. 

Cobb (1994) argued that mathematics instructors must coordinate the dual processes of 
promoting individual student’s construction of mathematical understanding and enculturating 
students into standard mathematical meanings and processes. However, in many university 
classrooms, student conceptions remain tacit to the extent that incompatibilities between 
individual notions and standardized meanings go unrecognized or unresolved. This study 
investigates scientific debate as a pedagogical means by which members of the community of 
practice gain more faithful access to one another’s mathematical conceptions such that both the 
construction of meaning and enculturation to standard mathematics can proceed in tandem. 
Moreover, we highlight mechanisms by which scientific debate can arise and proceed in the 
undergraduate classroom.  

This study presents two accounts of successful scientific debate from different 
undergraduate, real analysis classrooms. In each, we identify the means by which the debate 
began and proceeded toward resolution. The studies came from the independent research of the 
two authors, and this paper represents one product of our collaboration to combine observations 
from separate instances of non-traditional, real analysis instruction.  

Theoretical Framework 
We draw the language of our framework for analyzing scientific debate from radical 

constructivism as outlined by Von Glasersfeld (1995). Von Glasersfeld posits that concepts are 
developed by individuals as tools for making sense of their ongoing experiences. As people 
cannot have access directly to one another’s thoughts or concepts, all communication stands as 
new experiences for a participating individual. The need for scientific debate arises when the 
conceptions held by one or more parties engaged in a discussion are incompatible for the 
purposes of the task in which they are collectively engaged. The end goal of scientific debate is 
for the parties involved to adjust their respective conceptions as related to the given task until 
they achieve mutual “fit” or compatibility. Thus the basic constituents of scientific debate are (1) 
two or more communicating parties who each have constructed (and evoked) (2) one or more 
conceptions as related to (3) a given task (or set of tasks) being discussed.  

The resolution of scientific debate depends upon the ability of the individuals involved to 
first recognize incompatibility between their respective conceptions and negotiate the process of 
altering their conceptions until compatibility is achieved. Once the incompatibility is recognized, 
the parties involved must reflect upon their conceptions to adjust toward mutual fit. Freudenthal 
(1991) described several modes of reflection under the umbrella of “shifting one’s standpoint” 
(p. 105). The two most pertinent for the present analysis are shifting the vantage from which a 
task is being viewed or transferring the concept under consideration into an alternate task. Either 
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form of shifting extends the discussion in new directions and allows constituent parties to 
identify the incompatibility(ies) in their thinking and adjust toward achieving mutual fit. We call 
these methods of shifting viewpoints “conceptual triangulation.”  

Study 1 
The first study was conducted during a real analysis course at a large American public 

university. This course consisted of two class meetings per week (80 minutes in length) for 15 
weeks. The first author of the paper observed the classroom as a researcher, and interviewed the 
instructor and 5 students most weeks of the semester (usually 7-9 interviews total) regarding the 
course content and classroom discussions. The flow of classroom discussion and all 
communication on the board were logged in the form of written notes.  

The classroom differed from traditional Definition-Theorem-Proof instruction (Weber, 2004) 
in that the instructor expected the students to make determinations regarding the mathematical 
body of theory, and at least some students adopted this role in their own deliberations (Dawkins, 
2009). The instructor always guided the classroom discussion, but consistently involved 
members of the class by presenting them with choices (of alternate definitions or possible 
theorems) about which the class voted and generated examples, arguments, and counter-
arguments. In order to involve students in defining, the instructor only introduced definitions 
after the class discussed sets of examples and/or less formal ideas to which definitions 
correspond (e.g. continuity and connectedness).  

The episode in this study occurred during the class session leading up to the definition of the 
limit of a function at a point. The instructor’s intended to present examples that did and did not 
have limits due to restricted domains so as to motivate the standard requirement that limits only 
be defined at cluster (accumulation) points of the domain of the function. We divide the episode 
according to the instructor’s introduction of various examples to guide the class to an agreement 
regarding those cases in which the limit can and cannot be defined. We particularly trace the 
viewpoints expressed by two of the most vocal students in the discussion, Cyan and Locke.  

Results from Study 1 
The instructor began class by writing the expression limx→pf(x) on the board and asking, 

“When does this have meaning?” She introduced the function f(n) = .5n defined only on the 
natural numbers and assigned the task of finding the function value and function limit at x = 3. 
Cyan asked about the domain restriction, and the instructor replied that this was a choice they 
must make. When she requested the value of the function at 3, both Cyan and Locke offered the 
value 3/2. Cyan explained that the image of f(x) approaches 3/2 as x approaches 3.  

In line with the instructor’s original intention of highlighting what “approaches” means, she 
introduced a second task involving a function f defined as x2 on the interval [–1,1] and f(5) = 2, 
but not defined elsewhere. She asked, “What does it mean for x to approach 3?” directing their 
attention to the sequence x = 1 – 1/n. One student suggested that x must be “arbitrarily close” to 
3. The instructor affirmed that “x approaches 3” means “x must get arbitrarily close to 3.” No one 
expressed disagreement regarding the existence of this function’s limit. The instructor then asked 
the class about the image of the first function at the point 2.75. Locke suggested that they should 
“pretend that it is in the domain.” Initially the instructor did not directly respond to this assertion 
and pursued the topic of cluster points. She pointed out that there are no points in the domain 
arbitrarily close to 3 other than 3, but Locke expressed further confusion on this point and Cyan 
argued that x-values near to 3 should be considered. The instructor asked the class whether they 
want to “pretend” and asked Locke and Cyan directly whether they agreed that f(5/2) = 5/4. She 
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articulated her surprise at their willingness to “define analysis” according to pretending. Locke 
protested that, “Just ‘cause it’s not in the domain doesn’t mean that the function doesn’t apply to 
it.” Though Locke and Cyan agreed in concert to evaluate the function at 5/2, other students 
articulated disagreement because of the original assumptions of the task.  

To extend the discussion, the instructor introduced another task with a function defined as 
(x2-9)/(x-3) when x ≠ 3 and as 0 when x = 3. She pointed out that f(3) = 0 and by constructing a 
table of values argued that the function limit at 3 equaled 6. The instructor persisted in 
questioning the class whether their answers depended upon “pretend games.” When students in 
the class expressed agreement that the function value was 0 while the limit was 6, she asked why 
the limit in the prior example had to equal 3/2. Cyan protested that, “We know the behavior of 
[the previous] function.” Locke, seeking to clarify the source of the disagreement, explained, 
“We were thinking of [the first example] on R to R.”  

The instructor then introduced a final task with a function defined as .5n on the natural 
numbers, but which had a vertical asymptote at x = 3. She pointed out that she could “pretend” 
that the original function was extended this way. Cyan continued to disagree with her because, 
“We have more information.” Locke revised his claim that the original function was defined 
everywhere. The instructor asked the class, “Do you see how un-mathematical this is?” Later, 
when she summarized their discussion of cluster points, the instructor wrote on the board: “In 
order to make sense of limx→pf(x), there must be points in the domain of f arbitrarily close to p. 
Otherwise limx→pf(x) becomes a ‘pretend game’.” In later interviews, both Locke and Cyan 
expressed understanding and agreement with the instructor’s argument that functions defined 
only on the natural numbers cannot have limits.  

Discussion of Study 1 
Cyan’s assertion and connected explanation regarding the first function limit made the 

instructor aware that their conceptions of the task were not fully compatible. She initially 
assumed there was a difference between their conceptions of limits, though it turned out that 
Cyan and Locke’s conception of domain was incompatible with hers. Locke and Cyan’s 
conceptions of domain, which were formed at lower levels of instruction, may only exclude 
points at which functions are not well-defined (dividing by zero, roots of negatives, etc.) such 
that restricting a linear function to the natural numbers created confusion.  

Once the first task revealed that there was some conceptual incompatibility, the instructor 
proceeded to introduce three related tasks intended to help Cyan and Locke to adjust their 
disparate conceptions toward standardized conceptions. The second task emphasized the 
“approaches” aspect of the function definition. The third task was intended to separate the 
function limit from the function value. When Cyan and Locke agreed with her assessment of the 
second and third task, the instructor understood that neither of these issues related to limits 
housed the disparity between Locke and Cyan’s thinking and her own.  

After the instructor repeatedly addressed aspects of function limits, Locke called her 
attention directly to the issue of domain (though it had been mentioned repeatedly). He explained 
that he understood the original function to be defined for all real numbers. The final task the 
instructor introduced addressed the ambiguity of assuming the value of functions outside their 
stated domain. This example displayed the instructor’s conception of domain for Locke and 
Cyan, namely that it is equally mathematically valid to assume any possible function values for 
inputs outside of the stated domain. At the time of interview after this class meeting, both 
students reported agreement with the instructor’s assertion meaning that they had adjusted their 
conception of domain to “fit” the instructors’ (standardized) conception of domain relative to the 
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tasks discussed in class. The differing assessments of the first task led the instructor, Locke, and 
Cyan to reflect upon their constituent conceptions related to the limits of functions. The 
instructor guided the students to triangulate their conception of the first task by viewing various 
constituent conceptions (“approaches”, function values and limits, function domain) in alternate 
tasks. Ultimately they were able to resolve the scientific debate after three standpoint shifts.  

Study 2 
The second study was conducted as part of a teaching experiment (Steffe & Thompson, 

2000) in a real analysis course at another large, American public university. The real analysis 
course consisted of two regular sessions (75 minutes in length) and a recitation (50 minutes in 
length, mainly for cooperative proof writing) for 15 weeks. The second author served as an 
instructor of the course. Eleven mathematics or secondary mathematics education students 
volunteered to participate in this study, working in three small groups. Although some content 
was provided in a traditional lecture style, instruction in the course mainly followed an inquiry 
approach, in which students were often asked to make and justify conjectures and to evaluate 
arguments. Each day, one student from each group was assigned rotationally as a group 
facilitator of the day. The facilitators were instructed to ensure that all members of their group 
share their ideas and thoughts freely with one another and help them attend fully to one another’s 
perspectives.  

On the day of the study, the students were asked to work with the following task: (1) Does 
there exist a real number x satisfying that for any ε > 0, |x| < ε?, and (2) If there does exist an x, is 
there any other real number x satisfying that for any ε > 0, |x| < ε? Prior to group discussion, the 
instructor gave the students a short time to think individually about the given task. The facilitator 
of each group then initiated group discussion by giving individual students time to present their 
initial thoughts about the task; group discussion followed in order to share ideas and form a 
consensus. After the group discussion, two students from each group were sent to the other two 
groups such that each group had a representative from all three original groups. Students in a 
newly formed group presented their original group’s ideas and listened to students from the other 
groups. At that stage, students asked or responded to questions from other groups to understand 
the various ideas, without debating the validity of the ideas. After sharing ideas from different 
groups, everyone returned to their original group to compare and contrast their ideas with those 
of the other groups.   

Student activities were videotaped, and students’ written work was pen-casted (synchronized 
with their voice). We focused on individual students’ shifting standpoints regarding various 
approaches to the task and how those approaches were expressed by different people. We then 
examined how this type of practice allowed constituent parties to identify and reconcile the 
incompatibilities in their thinking.  

Results from Study 2 
Our analysis in this paper focused on a group of four students: Alan, Andy, Mary, and Oliver. 

When the students received the task, Andy was assigned to be the facilitator of the group. After a 
short time to think individually, Andy asked his group to share their thoughts on the task. Oliver 
first suggested choosing x = 0 and then x = ε – 1/ε. Mary expressed that she did not figure out 
what she was supposed to do for the task, but liked Oliver’s idea. Alan also said that he did not 
understand what the task was about. Oliver reinterpreted for Alan that the task was questions 
about the existence and uniqueness of x, to which Alan assented. Finally, Andy agreed with 
Oliver to consider 0 as a value for x, and claimed that 0 would be the unique value for x. At this 
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point, the students did not address the fact that Andy and Oliver’s answers to the task were 
incompatible. After everyone presented his or her initial thoughts, Oliver went on to explain:   
Oliver: Choose x to be x = ε – 1/ε since ε  > 0 instead of going to be equal to 0. And so, ε – 1/ε 

means that no matter how small you get [uses two fingers for a small increment], there’s 
something slightly smaller. That [x] will be less than ε and the absolute value of that [x] 
would be less than ε.  

Alan and Mary immediately accepted Oliver’s idea of choosing x in terms of ε, and 
suggested 1/ε as another value for x. At that point, no one in this group noted that their values for 
x might not satisfy the inequality |x| < ε unless ε > 1, however, Andy realized that his answer was 
distinct. He insisted that 0 was the only value for x because the inequality should be satisfied for 
any positive value of ε , but the other group members did not accept Andy’s claim. Alan 
contended that there were plenty of other ways to choose x such as 1/ε.  
Andy:  As just ε gets smaller and smaller, that puts more and more of a restriction on what x can 

be. And ε will never actually reach 0, but it will get very, very close to 0, and could 
basically be any number other than 0. […] So, the only value of x that would actually 
work is 0, as far as I can tell.  

Alan:  Actually, I think this is not true. In other words, that x is not unique. […] What I’m 
thinking is along the line of what Oliver talked about. 1/ε is always gonna be smaller 
than ε because ε is greater than 0. […] Since we’re trying to show the existence of x, 
choose x = 1/ε. Alright? So, then, you can choose, I mean, there are certainly plenty of 
other choices, […] if you choose x = 1/ε, ε can be anything. ε is arbitrary as long as it’s, 
uh, it’s arbitrary, ‘cause [ε is] an arbitrary real number greater than 0. 

Andy:  Um, well, x has to be a fixed value though. You can’t put it in terms of ε. 
Oliver: I believe, I believe you can because ε is arbitrary.  
Mary:  […] It’s already part of the inequality. So, I don’t understand why you don’t think we can 

set x as 1/ε.  
At that point, the students were all aware of the arbitrariness of ε in the task. However, Andy’s 
understanding of how the arbitrariness would work in the task was quite different from the other 
students; Andy treated the arbitrariness of ε to imply the decrease of ε towards 0. This created a 
restriction on choosing x independently from ε, whereas other students allowed the dependence 
of x on ε. Alan, Mary, and Oliver seemed to perceive the given statement as, “for any ε > 0, there 
exists a real number x such that |x| < ε,” in which the order of the variables x and ε was reversed. 
(It is a similar result to Dubinsky and Yiparaki (2000) and Roh’s (2010) studies, in which 
students tended to perceive ∃∀ statements as ∀∃ statements.) Nonetheless, the students did not 
yet recognize that the difference between the ways they were interpreting the given statement 
were incompatible. Alan was first to adopt a standard interpretation of the statement, and Oliver 
adjusted his viewpoint because x preceded ε in the given task. By the end of the group discussion 
before exchanging groups, Alan, Andy, and Oliver agreed that due to the order between x and ε 
in the given task, x must be defined prior to ε.   
Alan:  x comes first, right?   
Alan:  Yeah, so we can set x to be … Oh, wait! ε doesn’t exist when x comes into existence. So, 

we can’t set x to be 1/ε. 
Andy:  Yeah, ‘cause you need to pick a value of x but if you haven’t defined what ε equals – 
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Oliver: Yeah, I would guess that we’re saying that due to the set up of the problem, 0 was the 
only choice that satisfies the first part. And, [reading part 2]. So, I would say due to the 
set up of the problem which is that x is identified first. 

Andy:  Yeah, I think that is probably the best way to go about it. 
When the instructor asked the class to exchange groups, Mary still did not understand why 0 

was the only value and 1/ε could not be chosen for x. Since she was reluctant to go alone to a 
different group, Oliver decided to stay with her when exchanging group members. It was Elise 
who joined from a different group and helped Mary understand why 0 should be the only value 
for x. Elise reported that her group concluded that 0 is the unique value for x in the task, and 
presented how her group came to this conclusion. First, Elise balled her right hand into a fist to 
represent x and stated, “‘there exist’ is an existence where you choose it [x]. There it’s just one 
number. You have to choose x and that [x] can’t change.” She moved her left hand horizontally, 
back and forth over her fist, to represent ‘for any ε > 0, |x| < ε.’ Tapping the fist, which was not 
moving, Elise also stated that, “It says ‘for any ε,’ that means no matter what you choose for ε, 
this number [x] has to work.” She then demonstrated contradictions in cases where nonzero real 
numbers were chosen for x.   
Elise:  If I choose, […] like say I choose .5 [for x], I can choose an ε greater than 0 but less than 

x. […] So, the only thing that works for x is 0. […] But because 0 is the only number that 
works, there is not anything else. Because no matter what number you choose [x] bigger 
than 0, there will be an ε smaller [than x].  

Elise’s presentation led Mary and Oliver to reflect on their group’s conceptions of the task. 
Oliver perceived that his conception and his group’s prior explanations were compatible with 
Elise’s explanation. He treated his conception that “x cannot be defined in terms of ε” as being 
compatible with Elise’s conception that “x can’t change” Mary perceived a distinction between 
her group’s explanations and Elise’s, and strongly preferred Elise’s explanation. 
Mary: We found the same thing for the first part. And the second part we thought of other ideas, 

but came to the same conclusion that there does not exist any other x’s that satisfy the 
thing – 

Oliver: For the exact same reasons. So if you change the order of how ε is in front, so ‘for any ε 
> 0, does there exist an x that’s element of the reals?’, then we would be able to choose 
something but otherwise we aren’t able to define something [in terms of ε].  

Mary: and how you explained it is exactly how I needed to hear it ‘cause they weren’t saying it, 
anything like how you’re saying it. 

Elise:  Yeah, that one. Because you have to go in order, it’s like you do there exist – 
Mary:  They said the order part, and then I still didn’t get it until you [said] – 

When the instructor asked students to return to their original groups, Andy recapitulated what 
he learned from Elise’s group as well.  
Andy:  The group [Elise’s] that I went to basically had the same train of thought that we did. 

[…] they came up with the fact that 0 would work, and they also came up with that it was 
the unique solution to the problem. They were also thinking about being able to put it [x] 
in terms of ε but realizing that you can’t do that because x comes first. […] 

Mary:  The girl [Elise][…] explained it exactly how you just explained it. I didn’t understand 
that concept before […]but now it makes sense. Like, I heard you guys saying it. I just 
couldn’t understand why, and now I get it.  

The group discussion after students returned to their original groups affirmed the sense of 
mutual compatibility between all of the group members’ assessment of the given task, where x 
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must be defined before ε. The group exchange provided students with an opportunity to compare 
various perspectives by attending to alternate interpretations made by different people. 
Consequently, students in this group, Mary in particular, were able to shift their standpoints 
toward the one shared by their group members.  

Discussion of Study 2 
The need for scientific debate in Study 2 arose when Andy’s answer to the task was not the 

same as that of Alan, Mary, and Oliver. The students constructed different conceptions about the 
arbitrariness of ε and the relationship between ε and x in the given task. The classroom 
environment introduced iterative stages into the scientific debate. Time for individual thinking 
followed by articulation enabled the students to share various answers to the task in the group 
and recognize the incompatibility between Andy and the other students’ conceptions. Alan’s 
explanation that, “ε doesn’t exist when x comes into existence,” helped Alan and Oliver adjust 
their conception regarding the logical dependencies between ε and x in the task. The group 
exchange allowed Mary to view the task in terms of Elise’s gesticulatory explanation and adjust 
her conception to fit that expressed by her group mates previously. The final exchange with the 
original group affirmed the sense of mutual fit.       

Conclusions 
Analyzing the structures of the two studies reveals parallel mechanisms that initiated the 

scientific debates and allowed them to proceed. In both studies, a shared task presented the 
means by which different parties in the classroom could assess the relative compatibilities of 
their conceptions of key mathematical topics (e.g. domain, limits, interdependence of quantities 
in a logical proposition). The phrase “shared task” should be distinguished from other 
mathematical activities in the classroom in the sense that questions which are presented and 
promptly solved by the instructor (for instance) do not provide the opportunity for different 
parties to bring their conceptions to the attention of other members of the class. By a shared task, 
we mean a mathematical task that is introduced into the class discussion with the expectation that 
multiple parties can or will share their understanding thereof with other members of the class. In 
both studies, the shared task revealed conceptual incompatibilities, but the scientific debate was 
advanced by means of conceptual triangulation. In Study 1, the introduction of alternate shared 
tasks with the same constituent conceptions provided the means of triangulation. In Study 2, the 
stages of class discussion introduced other students’ conceptions expressed in terms of alternate 
explanations as a means of triangulation on the same task. These two processes of triangulation 
are represented in Figure 1.  
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1 

Task 
2 

Task 
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Task 
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Locke 
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Mary 
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Figure 1. Alternate means of conceptual triangulation in the two examples of debate 
Though the participant members of both debates achieved acceptable compatibility in their 

conceptions relative to the original shared task, the structures of the courses, which facilitated 
this progress, differed meaningfully. We classify both of the classroom environments in question 
as non-traditional proof-based instruction in large part because they involve shared tasks in 
which the students are expected to form and express their conceptions about the topics being 
discussed. However, in the first study the classroom discussion filtered through the instructor and 
she was able to leverage her knowledge of both analysis and of student difficulties in analysis to 
introduce tasks that would likely move the debate forward. In the second study, no alternate tasks 
were introduced, but students heard a variety of explanations of the same task. Thus the second 
debate progressed and reached conclusion without instructor intervention beyond setting up the 
parameters and responsibilities of group discussion. These studies highlight the importance of 
fostering scientific debate in the classroom; the confusion that each debate overcame could easily 
have remained latent in an alternate pedagogical setting. However, such exchanges take time. 
These studies describe two points in the middle of a continuum of real analysis pedagogy 
between presentation as in Definition-Theorem-Proof instruction and guided reinvention of 
standard mathematics (Gravemeijer & Doorman, 1999; Swinyard, 2008). Each yields benefits 
and drawbacks. The second study’s structure empowered students to reach conceptual fit 
themselves; the former opened the door for a secondary discussion, prompted by the “pretend” 
term, on a meta-mathematical norm of operation that mathematicians must reason within the 
constraints of stated assumptions.  

Our central claim about scientific debate mirrors that of Cobb, Boufi, McClain, and 
Whitenack (1997) when they said, “We… conjecture that children’s participation in [reflective] 
discourse constitutes conditions for the possibility of mathematical learning” (p. 264). We do not 
claim that every student in the classrooms we described came to the same conclusions. We posit 
that classroom environments in which shared tasks arise and scientific debates are appropriately 
pursued enhance the probability that larger portions of the class will achieve higher degrees of 
conceptual fit. The process of adjustment toward conceptual fit between the members of the 
community of practice constitutes a means of tandem progress toward the dual classroom goals 
of student conceptual development and enculturation to standard mathematics.  
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Students' informal views of the notion of continuity can present challenges as they attend to the 
precise aspects of various calculus concepts. This paper explores continuity in relation to the 
limit concept in a beginning-level calculus classroom. The study uses a discursive approach 
developed by Sfard (2008) to investigate the instructor's discourse on continuity and the 
realizations of limit it supports. This is followed by the comparison of the instructor's discourse 
on continuity with those of the students. The findings indicate that, despite the instructor's 
explicit focus on the relationship between continuity and limits by means of the precise definition 
of continuity, students mainly focused on the intuitive definition in the instructor's discourse. 
Therefore, students in this study realized continuity through dynamic motion but not through 
limits.  

Introduction 
In many undergraduate calculus courses and textbooks, a precise definition of continuity is 

often given after the discussions on the concept of limit (Hughes-Hallett et al., 2005; Weir, Hass, 
Giordano, & Finney, 2008).  However, earlier assumptions about continuity may underlie 
learners' realizations of several calculus concepts. For example, the realization of infinity as a 
process that goes on indefinitely is based on the assumption of natural continuity (Lakoff & 
Núñez, 2000). Students' incorrect considerations of functions as rules given by a single formula 
also rely on an implicit assumption of continuity (Tall & Vinner, 1981). Similarly, research has 
identified many obstacles students have about limits resulting from a dynamic view of the 
concept, which is based on continuous motion (Tall, 1980; Tall & Schwarzenberger, 1978; 
Williams, 1991). In particular, Bezuidenhout (2001) argued that limit implies continuity and limit 
as the function's value are among the incorrect realizations of limit that are based on students' 
informal views of continuity. These studies suggest that students' basic informal realizations of 
continuity may later create obstacles as they attend to the precise aspects of various calculus 
concepts.  

This study explores continuity in relation to the limit concept in the context of undergraduate 
mathematics education and addresses the following questions: (a) How is the notion of 
continuity introduced by the instructor in a beginning-level undergraduate calculus course?, (b) 
Which realizations of the limit concept does the instructor's discourse on continuity support?, 
and (c) How do the elements of the instructor's discourse on continuity compare and contrast 
with those of the students?  

Theoretical Framework 
The study uses a discursive lens, namely, Sfard's (2008) commognitive framework. The term 

commognitive combines the terms cognition and communication by considering thinking as an 
individualized form of communication. This lens considers discourse as the main unit of 
analysis, where discourse is defined as "the different types of communication set apart by their 
objects, the kinds of mediators used, and the rules followed by participants and thus defining 
different communities of communicating actors" (Sfard, 2008, p. 93). From this view, 
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mathematics is a particular type of discourse that can be distinguished by its word use, visual 
mediators, routines, and narratives.  

Word use refers to the ways in which words are used in a mathematical discourse. Visual 
mediators are the visible objects that are created to enhance mathematical communication. 
Routines refer to the set of metarules that characterize the repetitive patterns in the activity of 
participants of a mathematical discourse. Narratives refer to the set of utterances describing 
mathematical objects and their relationships that are subject to endorsement or rejection. The 
narratives of a mathematical discourse that are endorsed by the majority of the experts of the 
community are considered as true (e.g., definitions, theorems). 

A critical feature of word use is objectification, which occurs through reification and 
alienation. Reification “is the act of replacing sentences about processes and actions with 
propositions about states and objects” (Sfard, 2008, p. 44), whereas alienation refers to “using 
discursive forms that present phenomena in an impersonal way, as if they were occurring of 
themselves, without the participation of human beings” (Sfard, 2008, p. 295). Said differently, 
objectification changes the talk about processes to the talk about end-states or mathematical 
entities. This study focuses on the participants' word use and routines in the context of continuity 
and its relationship to the concept of limit. 

Methodology 
This work is part of a case study that investigates the development of discourse on limits.  

The participants included one instructor and his section of undergraduate students taking a 
beginning-level calculus course in a large Midwestern university. For the instructor's discourse, 
the data consisted of field notes and eight video-taped classroom observations in which the 
instructor discussed limits and continuity. For the students' discourse, the data consisted of four 
students' responses to a task-based interview and the field notes taken during the interviews. The 
interviews were audio-taped and lasted between 53-76 minutes. Participation in the interviews 
was voluntary. The class observations and the interview sessions were transcribed with respect to 
the participants' utterances and actions.  

Although the main focus of the interviews was the limit concept, in four of the six interview 
questions, students also had the opportunity to talk about continuity. There were two questions 
consisting of piecewise functions given in algebraic form. Students were asked to find the limit 
of the functions at the break points, and at positive and negative infinity. They were then asked 
to discuss the continuity of the functions. In another question, the students were given the graph 
of a function and determined the limits of the function at various points. They then discussed 
continuity of the function at those points. The final continuity-related question was an adaptation 
of Bezuidenhout's (2001) task, where students were given the statement 3)(lim

2
=

→
xf

x
. They 

were then asked if the following are true given the statement: (a) f  is continuous at the 
point 2=x , (b) f is defined at 2=x , and (c) 3)2( =f . The purpose of this question was to 
investigate whether students had the difficulties limit implies continuity and limit as the 
function's value, which are based on assumptions about natural continuity. 

Participants' word use was analyzed with respect to the degree of objectification in their 
discourse. Particular attention was given to the realizations of limit the instructor's and students' 
discourse on continuity supported. Consistent with Sfard's (2008) terminology, participants' word 
use was considered operational if they talked about limit as a process based on natural 
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continuity; objectified if they talked about limit as a distinct mathematical object or a number 
that is obtained at the end of the limit process.  

The operational word use on limits relies on words signifying continuous motion (e.g., [the 
function values] "approach", "get closer and closer to", "go to" [the limit L]). The objectified 
word use on limits, on the other hand, either relies on words signifying proximity (e.g., [the 
function values are] "arbitrarily close to", "within ɛ distance of" [the limit L]) or refers to limit as 
a particular number (e.g., "the limit is equal to five") or a mathematical object (e.g., "the limit 
exists", "we can find the limit by plugging in").  

The following pseudonyms will be used for the participants: Dr. Brenner (the instructor); 
Amy, Jessica, Harry, and Keith (the students).   

Results 

The instructor's discourse on continuity  
Dr. Brenner introduced continuity at the end of his discussions about limit and before the 

review session he conducted for the mid-term exam. He mentioned that he was going to give one 
intuitive and one mathematical definition for continuity and asked students to use the latter in the 
exam.  Table 1 shows Dr. Brenner's intuitive definition of continuity. Since he did not utter any 
limit-related words in this definition, his word use on limits was not coded. 

What is said What is done 
[1] So what is a continuous function? He writes continuous functions on the board.  
[2] A continuous function is a function, and I 

am just going to say it in words, that I can 
graph without taking the chalk off the 
board. 

He states these verbally. 

[3] So this is really all that we need to know, 
from an intuitive perspective, about 
continuous functions. 

He states these verbally. 

[4] Continuous just means I can graph 
without taking the chalk off the board. He states these verbally.  

Table 1. Dr. Brenner's utterances about the intuitive definition of continuity 

After introducing the intuitive definition of continuity, Dr. Brenner drew graphs of a variety 
of functions and discussed their continuity based on whether he could graph them "without 
taking the chalk off the board" (Table 1, [2], [4]). While doing so, he moved his hand along the 
graphs of the functions and mentioned that "approaching and graphing like this" could be 
thought as a "limiting process". Therefore, he relied on the limit process and whether he took the 
chalk off the board when determining the continuity of a given function from its graph. Dr. 
Brenner's discourse on the intuitive definition of continuity was based on dynamic motion where 
limit was considered as a process.  

Dr. Brenner then introduced the precise definition of continuity and, unlike the intuitive 
definition, he wrote it on the board. Figure 1 and Table 2 show his precise definition of 
continuity.   
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Figure 1. Dr. Brenner's precise definition of continuity 

 

What is said What is done Type  of limit-
related utterance 

[1] So let’s try to make this precise. He states these verbally.  
[2] A function f of x is continuous at a 

point x equals a if…   
He writes these on the board but 
does not finish his sentence.   

[3] So what I want to say is what does 
it mean to be continuous at this 
point? 

He states these verbally.  

[4] The limit has to exist and it has to 
equal to the function value. He states these verbally. Objectified  

[5] So I need the limit to exist.   Objectified 
[6] So the limit as x approaches a of 

f of x has to exist and equal to f of 
a. 

He writes )()(lim afxf
ax

=
→

on the 

board.  
Objectified 

[7] Just writing this already implies that 
it [the limit] exists because it equals 
a number. 

He states these verbally. Objectified 

[8] So, in particular, f is defined at a 
and the limit exists. 

He writes these in parenthesis 
near the definition.  Objectified 

Table 2. Dr. Brenner's utterances about the precise definition of continuity 

Dr. Brenner's precise definition of continuity considered limit as a number (Table 2, [7]), 
which is equal to the function value at the limit point (Table 2, [4], [6]). His utterances about 
limits were objectified when he talked about the precise definition. In fact, 97% of his 90 
utterances about limits in this lesson on continuity were coded as objectified.  

It should be noted that Dr. Brenner did not explicitly talk about continuity prior to the lesson 
on continuity although his operational word use on limits in earlier lessons was based on 
continuous motion. The lesson on continuity was the first context in which he connected the 
notions of continuity and limit. Later in the lesson, he also said that "a question about continuity 
is a question about limits" and "the definition of a continuous function is given in terms of the 
limit" to emphasize the connections between the two concepts. 

Dr. Brenner talked about plugging in as one of the possible ways of computing a limit in 
prior lessons. However, he put extra emphasis on plugging in as a means of computing the limit 
of a continuous function during the lesson on continuity. For example, while showing 
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1
1)( 2 +

+
=
x
xxf  is continuous, he showed for every number a , )(

1
1)(lim 2 af

a
axf

ax
=

+

+
=

→
and 

mentioned that he found that limit by plugging in. He then turned back to the precise definition 
of continuity and described the relationship between continuous functions and plugging in as 
illustrated in Table 3. 

It is possible for students in Dr. Brenner's class to generalize this routine of plugging in for 
continuous functions to functions in general. However, Dr. Brenner explicitly highlighted that a 
function's value at the limit point is not related to the limit of the function at that point. He said: 
"To compute the limit as x approaches zero, what the function does at the point x equals zero is 
irrelevant. What only matters is what happens nearby". Similarly, he noted in an earlier lesson 
that 

The function value is something completely different. And here we see again that 
the actual value of the function at the point where we are looking at has very little 
to do with the limit. In fact, it has nothing to do with the limit. 

What is said What is done Type  of limit-
related utterance 

[1] In fact, we found this limit by 
plugging in. 

He shows )(
1
1)(lim

2
af

a
axf

ax
=

+

+
=

→
 Objectified 

[2] A continuous function is a 
function where we can 
always find limits by 
plugging in. 

He states these verbally. Objectified 

[3] That is really what this 
definition says. 

He goes back to the precise definition 
of limit he wrote on the board (See 
Figure 1). 

 

[4] f is continuous if you can 
find the limit at a by 
plugging in.   

He first shows )(lim xf
ax→

and then 

)(af in the definition (See Figure 1).  
Objectified 

[5] That is exactly what the 
definition says. He states these verbally.  

[6] In other words, function f is 
continuous at a if we can find 
the limit of f at x equals a by 
plugging in. 

He writes these on the board.  Objectified 

[7] These are great functions. He states these verbally.  
[8] Continuous functions are 

exactly the ones that we can 
find the limit by plugging in. 

He states these verbally. Objectified 

Table 3. Dr. Brenner's utterances about the relationship between finding the limit of a 
continuous function and plugging in  

In summary, Dr. Brenner's intuitive definition of continuity supported the realization of limit 
as a process whereas his precise definition supported the realization of limit as an end-state: a 
number. In the context of the informal definition of continuity, his word use on limits was 
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operational. In the context of the precise definition of continuity and following applications, his 
word use on limits was objectified.  

The Students’ Discourse on Continuity  
When exploring continuity of functions at particular points, students did not talk about 

continuity through limits during the interviews. Amy talked about points of removable 
discontinuity as “jumps” and attended to the “open circles”, or holes in graphs when exploring 
continuity of functions: “it [the function] is discontinuous because it has an open circle [shows 
the y value where the function does not attain its limit], which means that the function jumps 
essentially [moves her hand along the graph]”. 

Jessica’s arguments about continuity were related to "connections" and "links". When 
discussing the discontinuity of one of the piecewise functions from the graph she drew, she said:  

It is discontinuous because we cannot find a connection or link between these two 
graphs [shows the piecewise graphs on the right and the left side of the y value 
where the function does not attain its limit]. You just need to focus on the point 
[shows the y value again] that connects both continuous functions. 

In addition to her arguments about connectedness, Jessica also attended to the instances where 
the functions jumped: "It [shows the function value] jumped here [moves her hand along the 
graph]. It is not continuous".  

Harry also used the word “jump” when talking about continuity of a function at a given 
point: “it is not continuous because the value [shows the y value of the function] jumps”. He later 
mentioned taking his hand off the paper: “So the way I see if a function is continuous…Am I 
taking my hand off the paper? I had to take it off now [moves his hand along the graph] so it is 
discontinuous”. 

Keith’s main routine when determining the continuity of a function was to find the instances 
where he took his pencil off the graphs of the functions: “It [the function] is continuous because 
you would not have to pick up your pencil. I know there is a more mathematical reason but I 
can’t remember it now”. Keith was aware that this explanation lacked mathematical precision but 
could not think of a way other than the intuitive approach of tracing graphs and reporting the 
points where he picked up his pencil as points of discontinuity. He also talked about jumps: “It 
[the function] is not continuous because there is a jump”.  

None of the students talked about continuity in relation to limits when examining the 
continuity of the functions in the interviews.  This was also evident by the fact that none of the 
students uttered the word "limit" when investigating the continuity of a function. Instead, they 
often used the word "jump", which was not a word Dr. Brenner used when talking about 
continuity. Their approach was in accord with Dr. Brenner's intuitive definition of continuity in 
that they moved their hands along the graphs and attended to the instances where they took their 
hand or pencil off the graph. Note that, Dr. Brenner moved his hand along the graphs and 
determined functions’ continuity based on whether he could graph them “without taking the 
chalk off the board” (Table 1, [2], [4]) in the context of the intuitive definition of continuity. He 
also noted that approaching and graphing in that manner could be thought as the "limiting 
process". So, by referring to limit as a process, his word use on limits was operational in the 
context of intuitive definition of continuity. Although the students also used dynamic motion, it 
was not clear how, or whether, they realized limits when exploring the continuity of functions 
since they did not talk about limits in that context. 
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When working on the adapted version of Bezuidenhout's (2001) task, which particularly 
investigated the student difficulties limit implies continuity and limit as the function's value, one 
student (Amy) talked about limits in relation to continuity.  

Limit implies continuity refers to the idea that if a function has a limit at a point, then it must 
be continuous at that point (Bezuidenhout, 2001). Amy's arguments supported this idea during 
the interview. She said:  

Limits are only defined for continuous functions I believe. I am going to say it 
[the limit] does not exist because the point is open [shows the graph of the 
function where there is a hole] so it [shows the function] is not continuous.  

When working on Bezuidenhout's (2001) task, Amy mentioned that if 3)(lim
2

=
→

xf
x

, then f  

must be continuous at the point 2=x  and said “so what I know about limits is that they can only 
exist if the function is continuous at that particular point [shows 2=x ]”. Therefore, Amy clearly 
thought that limit implies continuity. The other students did not show any sign of the difficulty 
throughout the interview. They drew graphs as counter examples in which the functions were 
discontinuous but had limits. However, none of them explicitly referred to continuity when 
reasoning about their graphs. Instead, they just showed their graphs and said the limit existed.  

Limit as the function's value refers to the idea that when finding the limit of a function at a 
given point, it is sufficient to look at the function’s value at that point (Bezuidenhout, 2001). 
This view of limit is in close relation to the routine of plugging in the limit point to the function 
to find the limit of the function at that point. Amy also showed signs of this difficulty. She 
argued that the statement 3)(lim

2
=

→
xf

x
 implied the function is defined at 2=x , and 3)2( =f . 

Her main routine when finding the limit of a function at a given point was to plug in the limit 
point to the function. If she obtained a number, she reported it as the limit value; if the function 
was not defined at the limit point or if the function did not attain its limit value, she mentioned 
that the limit did not exist. Jessica, Harry, and Keith consistently attended to the right hand and 
the left hand limits and whether they were equal to each other when finding limits. Even though 
they utilized plugging in when applicable, they did not generalize this routine to all functions and 
showed no sign of considering limits as function values during the interviews. They all drew 
graphs as counter examples in which the limit of the function at the limit point was not equal to 
the function value. Yet, they did not explicitly refer to continuity when reasoning about their 
graphs but used phrases of the form "limit exists but the function value is different".  

Note that considering limit as the function's value through plugging in is consistent with the 
assumption of continuity in that, in order for the routine of plugging in to work, the function 
must be continuous at the limit point. Therefore, it is not surprising that Amy agreed with both of 
the ideas limit implies continuity, and limit as the function's value. According to her, if limits 
existed only for continuous functions, then the limit value had to be equal to the function's value.   

Dr. Brenner explicitly mentioned that a function's value at the limit point was irrelevant to 
the limit of the function at that point. However, he also frequently mentioned one could find the 
limit of continuous functions by plugging in.  Although he used different function types (e.g., 
piecewise, trigonometric, rational, etc.) for which the routine of plugging in could not be used 
when determining limits, the routine supported Amy’s focus on the function values when 
computing limits. On the other hand, his work with a variety of functions rather than everywhere 
continuous polynomials may be why the other students did not show signs of the difficulties. 
Nevertheless, those three students' realizations of continuity were still limited to the intuitive 
rather than the precise definition.   
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In summary, students in this study did not talk about limits when exploring continuity. 
Students' discussions on continuity were based on the graphs they drew and the informal 
definition of continuity rather than limits even when their exploration of continuity immediately 
followed their computations of limits for the functions. Amy's discussions of continuity when 
exploring limits resulted from her incorrect views about limits. The other students could provide 
accurate counter examples for the statements investigating the relationship between continuity 
and limits but could not elaborate on their reasoning through the precise definition that connects 
these two notions. Despite the instructor's extensive focus on continuity in relation to limits, 
students' discourse on continuity was based on dynamic motion but not on limits. Therefore, 
although their routines supported the realization of limit as a process, their lack of utterances 
about limits did not enable the categorization of their word use on limits as operational or 
objectified.   

Discussion 
While a lesson devoted to continuity may highlight the mathematical definition and how 

continuity is related to the limit concept, students’ previous informal experiences with continuity 
may interfere with their development of mathematically rigorous realizations of the concept. 
Although the lesson on continuity was the first time students in this study were formally 
introduced to the notion in this classroom, it was clear that they had some previous realizations 
of continuity. First, they often mentioned the word "jump" when talking about discontinuity, 
which was not a word the instructor uttered in the lesson. Second, Dr. Brenner did not write his 
intuitive definition on the board and so did not leave a written trace (e.g., in the form of class 
notes) for students to refer to. Yet, the intuitive approach dominated the students' discourse on 
continuity. Further, the word "continuous" is a commonly used everyday term. Therefore, 
students' use of the word "jump" may be related to their early learning experiences (e.g., with 
teachers and textbooks using the word "jump" as well as with daily uses of the term continuity). 

Some elements of the instructor's discourse seemed to help the students identify the 
mathematical features of continuity that were different than their previous realizations. For 
example, Dr. Brenner used a variety of function types that challenged the common assumptions 
about continuity. Moreover, he explicitly highlighted that a question about continuity was a 
question about limits, and the function's value was irrelevant to the limit value. On the other 
hand, some other elements in his discourse (e.g., plugging in and his "taking the chalk off the 
board" routine) may have perpetuated the dynamic view in the students' discourse on continuity.  

The dominance of the dynamic view in students' discourse on continuity has some 
implications for their discourse on limits. Besides the difficulties mentioned here (limit implies 
continuity, and limit as the function's value), research has identified other difficulties about limits 
that are based on tacit assumptions regarding natural continuity through dynamic motion. 
Therefore, students' common assumptions about dynamic motion need to be challenged. It might 
be important for instructors to use the lesson on continuity during which they relate continuity to 
limits as an opportunity to highlight the qualitative differences between an intuitive, motion-
based approach and a precise, static approach to the notion.  
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The mathematics education community values using student thinking to develop mathematical 
concepts, but the nuances of this practice are not clearly understood. For example, not all 
student thinking provides the basis of productive discussions. In this paper we describe a 
conceptualization of instances in a classroom lesson that provide the teacher with opportunities 
to extend or change the nature of students’ mathematical understanding—what we refer to as 
Mathematically Important Pedagogical Opportunities (MIPOs). We analyze classroom dialogue 
to illustrate how this lens can be used to make more tangible the often abstract but fundamental 
goal of pursuing students’ mathematical thinking. 

 
Research in mathematics teacher education suggests the benefits of instruction that builds on 

student thinking (e.g., Fennema et al., 1996), but such instruction is complex and difficult both to 
learn and to enact (Ball & Cohen, 1999; Feiman-Nemser, 2001; Sherin, 2002). Often 
opportunities to use student thinking to further mathematical understanding either go unnoticed 
or are not acted upon by teachers, particularly novices (Peterson & Leatham, 2009; Stockero, 
Van Zoest, & Taylor, 2010). Despite a growing number of teachers who are convinced of the 
value of student thinking and the need to encourage it, neither teachers nor those who educate 
them have a clear understanding of how that thinking can best be used to develop mathematical 
concepts (Peterson & Leatham, 2009; Van Zoest, Stockero, & Kratky, 2010). We address this 
issue by providing a conceptual framework for thinking about the mathematically important 
pedagogical opportunities provided by student thinking.  

Although skilled teachers and teacher educators often intuitively “know” when important 
mathematical moments occur during a lesson and can readily produce ideas about how to 
capitalize on them, the literature reveals a construct that is not well-defined. Ideas related to 
these instances are mentioned in many different ways. For example, Jaworski (1994) refers to 
such opportunities as “critical moments in the classroom when students created a moment of 
choice or opportunity” (p. 527). Davies and Walker (2005) use the term “significant 
mathematical instances” (p. 275) and Davis (1997) calls them “potentially powerful learning 
opportunities” (p. 360). Schoenfeld (2008) refers to such moments as “the fodder for a content-
related conversation” (p. 57), as “an issue that the teacher judges to be a candidate for classroom 
discussion” (p. 65) and as the “grist for later discussion or reflection” (p. 70). Schifter (1996) 
spoke of “novel student idea[s] that prompt teachers to reflect on and rethink their instruction” 
(p. 130).  
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It is clear from this literature that these instances, whatever they are called, are important to 
mathematics teaching and learning. It is also clear that there are some critical mathematical and 
pedagogical characteristics of such moments. In particular, references to them allude to 
important mathematics, pedagogical opportunities, and student thinking. We consider these three 
criteria and focus on their intersection as being the location of Mathematically Important 
Pedagogical Opportunities (MIPOs). A better understanding of the MIPO construct can inform 
the work of facilitating and researching teachers’ use of students’ thinking in mathematically 
productive ways. One difficulty in learning to use students’ mathematical thinking is that there 
are so many different ways it can interpreted and acted upon. As Lewis (2008) observed, “The 
‘real’ classroom experience is elusive: each moment is experienced differently by the actors 
involved and their perceptions of those experiences change with time and reflection. The choices 
of what to focus on, which story to follow, are endless” (p. 5). One critical role that mathematics 
teacher education can play is to provide lenses, informed by research and advocated by the 
community at large, for teachers to use both as they teach and as they reflect on and learn from 
their teaching. The conceptual framework put forth in this paper is designed to be such a lens. In 
the following, we carefully define and describe the MIPO construct, and initiate a discussion 
about how teachers and teacher educators might profitably use it to support students’ 
mathematical learning. 

 
Defining Mathematically Important Pedagogical Opportunities 

We define a Mathematically Important Pedagogical Opportunity (MIPO) as an instance in a 
classroom lesson that provides the teacher with an opportunity to extend or change the nature of 
students’ mathematical understanding. To be considered a MIPO, an instance needs to meet two 
important criteria: it needs to involve important mathematics and be a pedagogical opportunity. 

 
Mathematically Important 

To be mathematically important in a given classroom, the instance must be centered on an 
idea related to mathematical goals for student learning. In the narrowest sense, this would be a 
mathematical goal for the lesson in which it occurs, but more broadly, it could also be related to 
the goals for a unit of instruction, an entire course, or for understanding mathematics as a whole 
(see Figure 1). In the first case, the instance may focus on a particular mathematical idea or 
connections among ideas within the lesson, while in the latter cases, the instance might involve 
making connections to other areas of mathematics or developing mathematical ways of thinking. 

  

 
Figure 1. Layers of mathematical goals to which a MIPO may relate. 
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There appears to be an inverse relationship between the distance of the underlying 
mathematical idea in the instance from the goals of the day’s lesson and the needed power of the 
mathematical idea for it to meet the mathematically important requirement of a MIPO. That is, 
the threshold for mathematical importance increases the further one moves away from the center 
in Figure 1. Furthermore, the mathematical importance of an instance is relative to the context in 
which it occurs. For example, an instance considered mathematically important in a calculus 
class because it highlights a subtlety in the topic being studied would not qualify as 
mathematically important in the context of an introductory algebra course if the students did not 
have the background knowledge to make sense of it. On the other hand, an instance that 
highlights something crucial about the nature of mathematics could qualify as mathematically 
important in any classroom in which it was accessible to the students and would help them to 
better understand mathematics as a whole. 

When considering whether an instance is mathematically important, it is necessary to 
distinguish between its relationship to mathematical goals and to other goals for student learning. 
For example, helping students work more productively in small groups is a goal in many 
classrooms. Although this goal may support students’ mathematical learning, the goal itself is 
not mathematical in nature, and thus, an instance related only to this goal would not be a 
MIPO—a MIPO must be firmly grounded in important mathematics. 

 
Pedagogical Opportunity 

In addition to involving important mathematics, a MIPO requires a pedagogical opportunity. 
Pedagogical opportunities are observable student actions that provide an opening for working 
towards an instructional goal. As such, pedagogical opportunities can be cultivated by the 
teacher, but cannot be created independently of the students. Teachers routinely make 
pedagogical moves that are designed to create opportunities for students to learn mathematics, 
such as posing quality tasks, asking probing questions, assessing students’ progress and 
modifying their instruction in response to additional information.  Well-executed pedagogical 
moves can, in fact, increase the likelihood of pedagogical opportunities in a teacher’s class, but 
the opportunities themselves come from the students, not the teacher. For example, if a teacher 
were to introduce a theoretical student error into the class discussion to help clarify an issue that 
she felt her students were struggling with, it would remain a pedagogical move and not an 
opportunity until a student or students in the class interacted with the error publicly. A 
pedagogical opportunity must be grounded in an observable student action. Student actions, by 
providing insight into student engagement with an instructional goal, provide an opening for the 
teacher to work toward achieving that goal. 

 
The Intersection of Mathematically Important and Pedagogical Opportunity 

Mathematically Important Pedagogical Opportunities (MIPOs) occur at the intersection of 
important mathematics and pedagogical opportunities. In this intersection, observable student 
actions provide pedagogical openings for working towards mathematical goals for student 
learning. Although simple yes/no answers or other utterances may provide evidence that students 
are thinking, these openings only occur when student actions provide insight into what students 
are thinking about mathematical ideas. Thus, observable student thinking underlies the MIPO 
construct. Our conception of the relationship among important mathematics, pedagogical 
opportunities and student thinking is shown Figure 2. In this section we elaborate on each region 
in Figure 2 to further clarify the MIPO construct. 
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Figure 2. Relationship among important mathematics, pedagogical opportunities and student 
thinking. 
 

Region A represents situations that are mathematically important, but neither provide 
evidence of student thinking nor a pedagogical opportunity. A teacher presenting important 
mathematical information would fall into this region, as would situations in which a teacher 
makes a pedagogical move to engage students with the mathematics, but students fail to provide 
observable evidence of having done so. In general, these are situations where important 
mathematics is present, but observable evidence of student thinking is not. For example, if a 
teacher were to make a mistake on the board related to important mathematics in the lesson, it 
would be a mathematically important moment. If the teacher corrects the error and moves on 
without student engagement with the error, this moment would not provide an opportunity to 
extend or change the nature of students’ mathematical understanding. Student actions in response 
to the error that reveal their mathematical thinking, such as asking questions that illuminate the 
key mathematics behind the error, would provide an opening for working towards an 
instructional goal. This would put the moment in the intersection of the three areas in Figure 2, 
thus classifying it as a MIPO. 

Region B represents situations where student actions do not provide evidence of student 
thinking and are not mathematically important, yet provide inroads for important pedagogical 
goals. For example, if a student were to get up to sharpen his pencil in the middle of a class 
discussion, the action would not provide insight into his thinking, but it could provide a 
pedagogical opportunity to talk about important classroom norms. In fact, pedagogical 
opportunities that neither provide evidence of student thinking nor relate to important 
mathematics seem to relate to general pedagogical rather than content-specific goals.  

Region C represents student actions that provide evidence of their thinking, but the thinking 
is neither about important mathematics nor related to instructional goals. For example, a student 
might make a comment about the length of a homework assignment or reiterate a memorized 
fact. Although these comments give the teacher information about the student’s thinking, they 
neither connect to important mathematics nor provide an opening for working towards an 
instructional goal, and thus, do not meet the criteria for a MIPO. 

Region D represents situations that involve important mathematics and evidence of student 
thinking, but do not provide an opening for working towards an instructional goal. For example, 
a student in an algebra class could eloquently summarize why adding a constant to a linear 
equation corresponds to a vertical shift of the graph. While this comment could make a positive 
contribution by summarizing what students already know, it would not create the opportunity to 
extend or change the nature of students’ mathematical understanding.  
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Region E represents pedagogical opportunities that provide insight into student thinking, but 
are not related to important mathematics. For example, a student might say, “I don’t see why I 
need to think by myself for one minute before I talk with my group.” This is not related to 
mathematics, but it does provide observable evidence of student thinking and would provide an 
opening for discussing the instructional goal of allowing individuals time to formulate their own 
thoughts before being influenced by others.  

Region F represents situations in which student thinking about an important mathematical 
idea provides an opening for working towards a mathematical goal for student learning. This is 
what creates a MIPO. In this region, a student might, for instance, question or comment on a 
mathematical idea, verbalize their incomplete thoughts as they try to make sense of a 
mathematical idea, express incorrect mathematical thinking, make an error, or notice a 
mathematical contradiction. In all these instances, what is important is that the student thinking 
provides an opening for the teacher to make a pedagogical move that will extend or change the 
nature of students’ understanding of important mathematics.  

Because student thinking is at the heart of every MIPO, there is no region in Figure 2 that 
includes both important mathematics and pedagogical opportunity without involving observable 
evidence of student thinking. It is when student thinking is made public that teachers have an 
opportunity to use that thinking to further students’ mathematical understanding. Although 
MIPOs can occur in any classroom environment, they are more likely to occur in classrooms that 
provide ample opportunity for students to make their thinking public. 

 
An Example from the Literature 

In this section we illustrate the MIPO construct by using it as a lens to analyze a piece of 
transcript taken from Leinhardt and Steele (2005, pp. 107-108). The episode comes from a 5th 
grade class discussion about finding output values for the rule 3x + 1 given different input 
values. The teacher, Magdalene Lampert, added ¼ as an input value to a table of input-output 
values and asked for the output. All of the previous input values had been whole numbers. 

 
  7 Soochow: One and three fourths.  
  8              T: How would you explain it please?  
  9 Soochow: Because one-fourth times three is three-fourths and then you just  
10                  add o–  add a one.  
11             T: Okay, so first you times by three and then you add one.  
12             T: Who can explain why one fourth times three is three fourths? Sun  
13                  Wu?  
14   Sun Wu: One fourth, like one fourth of a pie and then somebody brings two  
15                  more and one times three is three—three pieces of pie that came  
16                  out of four pieces of pie? 
17             T: Okay, are they all the same size? Those three pieces of pie? Lisa?  
18         Lisa: Yes  
19             T: How do you know?  
20         Lisa: Because if you’re adding one fourth times three you’re going to  
21                  [—] [—] equal parts  
22             T: Okay. Cause I’m, I’m taking three things that are all the same  
23                  size. They’re all the size of one fourth. Ali?  
24          Ali: It could be one fourth [—] could be a whole one.  
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25             T: Can you explain what you mean?  
26          Ali: Can I come to the board?  
27             T: Yes, here take this, [chalk] it’s easier to see.  
28          Ali: Here’s like a big pie [draws circle and divides it into fourths]  
29             T: Um-hum.  
30          Ali: And then you could divide it into fourths, four pieces. And then  
31                 one fourth could be one (points to one segment of circle) and then  
32                 would be like this one (points to the 1 on the input side of the  
33                 chart).  
34            T: I don’t understand what you mean. Does anybody else under-  
35                stand what Ali means? Bridgette?  
36 Bridgette: Me-, he means that if you ha-, if you have one fourth and you  
37                  make say you color in three of the four pieces [—] equal one  
38                  whole.  
39              T: Is that what you meant?  
40 Bridgette: Yeah.  
41              T: Okay, what do you think about that? Ali is saying three times one  
42                   fourth is one fourth [sic]. Add one fourth and you’d get four so it  
43                   would be just like here [points to the 4 beside the 1 in the function  
44                   chart]. But the input number here was one [writes faint 1 in input  
45                   column beside the 4] and now the input number here is one fourth  
46                   [points to the ¼ in new chart]. What do you think Sun Wu?  
47   Sun Wu: He thinks the um, the one is like one fourth. But it’s really one,  
48                  another, four.  
49             T: What do you think about that Ali? [draws another circle]. How  
50                  many fourths are there in one whole?  
51           Ali: Four fourths [T draws new circle divided into fourths].  
52              T: Four fourths? So if I was going to put a number in here I could put  
53                   one and a fourth [sic] [writes in column]  
54              T: Is there anything I could put in there besides one and a fourth?  
55                  Elsie?  
56        Elsie: Wouldn’t it be one and three fourths?  
57              T: Oh, I’m sorry. It should be one and three fourths like that anyway  
58                   [changes chart]. Is that what you meant?  
59         Elsie: Yeah. 
 
We now use Figure 2 to analyze excerpts from this dialogue. In doing so we highlight 

examples from each region of the figure in order to help the reader distinguish instances that are 
MIPOs from those that are not. Lines 17 and 22 are examples of Region A, as in both cases the 
teacher emphasizes the same size of the pieces—an important mathematical principle. There is 
no student thinking involved and no pedagogical opportunity, but it is mathematically important. 
The student’s inquiry in Line 26 about coming to the board provides an opportunity to address 
the teacher’s expectations for sharing one’s work and using tools in the class, but neither 
provides insight in the student’s thinking nor involves important mathematics; thus, it falls in 
Region B. Lines 7, 24, 28, 36 and 51 provide evidence of student thinking, but do not involve 
important mathematics or provide pedagogical opportunities, thus they are examples of Region 
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C. Note that this dialogue also contains several student utterances that fell short of being 
observable evidence of student thinking (Lines 18, 40 & 59). Although these utterances suggest 
that the students are thinking, they don’t provide insights into what they are thinking. In Line 56 
a student provides a correction to an error made by the teacher. This is evidence of the student’s 
thinking and also involves important mathematics, but does not provide a pedagogical 
opportunity, thus it falls in Region D. In Line 20, we see evidence of a student’s thinking, but it 
isn’t clear exactly what is going on mathematically. Because of this it isn’t possible to determine 
if it involves an important mathematical issue or if it is merely a misspeaking. It does, however, 
provide a pedagogical opportunity to discuss the importance of the words that we use, thus it 
falls in Region E. Lines 9, 14, 30, and 47 all deal with observable student thinking, important 
mathematics, and pedagogical opportunities, thus fall in Region F. In Line 9, for example, 
Soochow’s explanation of how to find the output value provided an opportunity to review how to 
multiply a fraction by a whole number. Sun Wu’s explanation at Line 14 shifted the unit from the 
whole pie to a piece of the pie, providing a pedagogical opportunity for the teacher to engage her 
students in further discussion of this important mathematical idea. In each of these cases, the 
teacher expertly incorporated the MIPO into her instruction and it is possible to see how the 
discussion supported students in learning about important mathematics. 

 
Discussion and Conclusion 

Researchers and practitioners in mathematics teacher education advocate the use of student 
thinking as a means of improving mathematics instruction. Many teachers we have observed, 
particularly novices, seem to interpret this call to mean that all student thinking is equally 
valuable and, thus, should all be pursued in similar ways. We argue, however, that this is not the 
case. While teachers certainly need to carefully listen to all student ideas, this listening must be 
followed by thoughtful consideration of whether a particular idea or comment is worth pursuing.  

By highlighting three critical components of instances in a classroom that provide 
opportunities to advance students’ mathematical understanding—important mathematics, 
pedagogical opportunity and student thinking—the MIPO construct can be used as a tool to help 
teachers learn to distinguish moments that provide opportunities to further students’ 
mathematical learning from those that do not. In addition, it provides a tool for helping teachers 
make sense of classroom situations—what Levin, Hammer and Coffey (2009) call framing. From 
this perspective, whether a teacher notices the value in an event depends on how he or she frames 
what is taking place during instruction. If, for example, a teacher views a student error as 
something that needs to be corrected, he or she is unlikely to consider the mathematical thinking 
behind the error or whether the error could be used to highlight a specific mathematical idea. On 
the other hand, a teacher who views an error as a site for learning is more likely to consider both 
the mathematics underlying the error and how it could be used to develop mathematical 
understanding. In considering whether an instance is a MIPO, teachers need to frame instances of 
student thinking in terms of both mathematical importance and the pedagogical opportunity they 
provide. Framing classroom events in this way has the potential to change the way teachers 
analyze and act upon instances in the classroom. 

The conceptualization of MIPOs we have described provides both teachers and teacher 
educators a lens for analyzing the complexity of classroom mathematics discourse and a 
vocabulary for discussing the mathematical and pedagogical importance therein. We believe 
such a lens is significant because MIPOs are high-leverage instances of student thinking that 
have the potential to change the nature of mathematics instruction if incorporated well into a 
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lesson. This conceptualization of MIPOs provides a tool that can help make more tangible the 
often abstract but fundamental goal of building on students’ mathematical thinking. 
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This case study research examines the transformation of one middle school mathematics 
teacher’s pedagogic practices who has envisioned and enacted a problem centered learning 
approach to teaching and the factors he believes influenced and supported his transformation.  
The findings reveal that listening for this teacher infused the unfolding process of his 
transformation and is now an integral dynamic of his emergent mathematics curriculum.   

 
Envisioning and enacting alternatives for teaching mathematics is a difficult and complex 

task often met with challenges from outside forces and influences and frequently hampered by 
our own inability to imagine that something else is possible.  Our inability to see beyond our 
current and traditional ideas and ways of doing are often the greatest challenges we face in 
transformation. This study examined the pedagogic practices of one middle school mathematics 
teacher who has “seen” an alternative and who has enacted a problem centered learning approach 
to teaching mathematic (Wheatley, 1991) and further considered the factors he believed 
influenced and supported his transformation. He has envisioned and enacted and emergent 
mathematics problem solving curriculum in his classroom with and for his students.  As his story 
of transformation unfolded the important role of listening for this teacher became apparent.  
Listening to his students became an inherent and integral part of the process of his 
transformation as he initially tried to transition from traditional pedagogic practices to a problem 
centered learning approach to teaching mathematics.   

 
Theoretical Framework 

Strengthening students’ understanding of mathematics through communication is well 
established (Gose, 2009; Pugalee, 2001; Way, 2008) and is clearly emphasized in the National 
Council of Teachers of Mathematics (2000) Principles and Standards for School Mathematics.     
An important facet of communication for teaching mathematics is the discourse that occurs in the 
classroom between teachers and students but also between students and students when they 
articulate their own ideas and consider their peer’s mathematical perspectives as a way to 
construct meaningful mathematics understandings.  Developing a classroom environment and a 
curriculum wherein mathematical discourse is orchestrated and sustained requires of teachers to 
re-envision their role in the classroom as one of a participant in an ongoing conversation with 
mathematics at the center. 

Carpenter and Fenema (1992) suggest that listening to their students may be a critical 
behavior for teachers wanting to develop more effective mathematics instruction.  Davis (1997) 
further suggests that “attentiveness to how mathematics teachers listen may be a worthwhile 
route to pursue as we seek to understand and, consequently, to help teachers better understand 
their practice” (p. 356).  Davis (1994) believes that listening is not just hearing what someone 
has said but rather an engaged physical activity. 

When two persons converse, for example, it can be seen that they are listening to each 
other as the actions of their bodies become bodily interactions.  They lean toward and 
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reach out for each other, momentarily unaware that they are violating the Western taboos 
on proximity, touch, and extended eye contact.  They seem to focus in a way that 
suggests they are oblivious to the noise around them; they attend to each word and to 
each action as though nothing of importance had occurred prior to the discussion and 
nothing of importance awaits them at its end.  They are unconcerned that their voices are 
perhaps too loud, their bodies too animated. (p. 268). 

So listening is neither “motionless or silent” (p. 269). Listening, as Davis describes it, is an 
activity in which one is engaged and participating.  Traditional approaches to the teaching of 
mathematics are often centered around the teacher’s telling and presenting predetermined 
methods and procedures to an audience of quiet, motionless students who are assumed to be 
attending simply because they are quiet and motionless.  Davis claims that this assumption 
cannot be made, that it is something other than the motionless silence of students that can make 
us aware that they are listening. 

In the classroom … as the novel is read or as the mathematical principle emerges, the 
teacher knows the students are listening not because they have ceased to move but 
because a certain rhythm or harmony is established – there is an awareness that each is 
immersed in and conducted by the same subject matter.  The gazes are fixed not on the 
teacher nor on one another, but on that which is among them (1994, p.269) 
Davis extends his consideration of listening as a lens from which teacher practice can be 

reinterpreted with his discussion of evaluative, interpretive, and hermeneutical listening.  
Evaluative listening “tends to forget its own responsibility in interactions (1997, p. 360).  This 
type of listening occurs when the teacher is not listening to the students and the listening is 
focused on the elicitation of correct responses or “guiding” the students to a pre-determined 
method or solution path.  Interpretive listening is described by Davis as listening to what learners 
are saying and perhaps even trying to understand what they are making sense of but still 
“listening for particular responses” (1997, p. 363).   The kinds of questions that arise from this 
type of listening may allow for a greater range of responses than those accompanying evaluative 
listening but they may not foster much diversity.  Hermeneutical listening is the third type of 
listening that Davis (1997) describes. It is the 

sort of listening [that] is an imaginative participation in the formation and transformation 
of experience.  Hermeneutical listening demands the willingness to interrogate the taken 
for granted and the prejudices that frame our perceptions and actions. (p. 369-370) 

Hermeneutical listening occurs when the teacher becomes “a participant in the exploration of … 
mathematics” (p.369).  A teacher listening hermeneutically frees herself to participate with her 
students in the negotiated and evolving nature of interaction rather than simply listening to 
“take” the students to a certain predetermined point.  The alternatives, evaluative and interpretive 
listening, engage the teacher in attempting to draw students into “front-end mathematics” where 
the “mathematics concepts [are] treated as though they … are independent of learners and their 
experience” (p. 339). 

 
Methods 

Data Collection and Analysis 
This study was approached from the perspective of an in-depth case.  This case was 

purposively selected (Schwandt, 1997) because it was thought to present insights into the impact 
of and interrelationships among changing ideas about mathematics and the enactment of a reform 
mathematics curriculum. Wesley, as he is called for this study, is a middle school teacher, who 
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teaches seventh grade mathematics, pre-algebra and algebra I in a middle to upper income 
suburban public school in the Southwest region of the United States.  Wesley is known 
throughout his state as an innovative teacher and has received some notoriety as a result of his 
innovative approaches and nontraditional teaching. While some may criticize and challenge his 
non-traditional approach to teaching mathematics, which includes problem centered learning and 
not using textbooks regularly, many praise his classroom approaches to teaching as being among 
the best and most effective in his district and state. 

The purpose of this research was to identify and explicate a variety of aspects of this 
teacher’s beliefs and classroom practices and gain insight into his story of transformation by 
addressing the following two focus questions: 

1. What factors does this teacher consider to have influenced the transformation of 
his beliefs about mathematics teaching and learning? 

2. What pedagogic practices does this teacher include in his implementation of a  
problem centered learning environment? 

This study involved interviewing Wesley who had adopted and implemented an approach 
to mathematics curriculum grounded in problem centered learning (Wheatley, 1991; Wheatley & 
Reynolds, 1999) and constructivism (Ernest, 1996; von Glassersfeld, 1995) and observing and 
analyzing his classroom pedagogic practices for several months during a school year. The focus 
of these interviews was to explore the experiences Wesley believed were instrumental in 
developing his alternative view of the curriculum and in implementing a problem-centered 
learning approach in his classroom. Questions about his changing beliefs about mathematics and 
how those beliefs informed the curricular decisions he made were particularly probed.   

The data collection for this study included audio-taped formal and informal interviews, field 
notes, transcripts of video-taped classroom interactions, and documents collected which were all 
transcribed as collected throughout the study.  The transcripts were carefully read and coded for 
key words, and ideas, looking for themes or categories to emerge.  Since one of the goals of the 
study was the telling of Wesley’s teacher story, his interview transcripts were read and reread to 
determine if certain aspects of his experience needed to be further elaborated so other people 
reading about him might have a an understanding of him.  In this way the data pertaining to 
Wesley’s story were organized using an interpretational approach which is a “process of 
examining data closely in order to find constructs, themes, and patterns that can be used to 
describe and explain the phenomenon being studied” (Gall et al., 1996, p. 562). A reflective or 
interpretational approach to data analysis is described by Gall et al. (1996) as involving  “a 
decision by the researcher to rely on intuition and personal judgment to analyze the data rather 
than on technical procedures involving an explicit category classification system” (p. 570). Thus, 
data were coded and as certain patterns or themes became apparent, new segments of data were 
continually and constantly compared within and across these themes and categories (Strauss & 
Corbin, 1998).  This constant and continual comparison of data and emergence of themes guided 
the interviews with Wesley subsequent to the initial interview conducted.   

 
Setting for the Study: Wesley’s Classroom 
To conduct research for Wesley’s case two of his seventh grade classes, one pre-algebra class 

and an algebra I class were observed on a weekly basis for one semester.  The first class each day 
was the algebra I class which was comprised of twenty-four students, thirteen of whom were 
boys and eleven were girls.  The second period class was the pre-algebra class which was 
comprised of twenty-seven students, fifteen of whom were girls and twelve were boys.  The 
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students in both these classes would not be considered widely diverse in their abilities since for 
this district students are placed in these classes based on their standardized test scores and 
previous grades.  Additionally, the racial background of the students in both these classes would 
not be considered diverse with only two or three students in each class being non-Caucasian.    

 The classroom was arranged with approximately thirty student desks divided into six 
rows that faced the front of the room where a white board was hung on the wall with two 
overhead projectors and screens.  Along one side of the room there were seven computers placed 
on built-in desks with seven accompanying chairs.  On the other side of the room was the 
teacher’s desk with a computer and storage, all of which were built in and attached to the wall.  
Along the back wall of the room there were windows that extended the full length of the room 
under which were storage cabinets without doors that held a variety of manipulatives and 
materials for student access and use.  On the surface of the cabinets there were containers with a 
variety of mathematics games, challenge puzzles, and transparency sheets with pens for student 
use.  A Texas Instrument graphing calculator was attached with Velcro to each of the student 
desks for the students to use at their discretion.  The walls of the room were decorated with a 
variety of posters, some motivational in nature and others presenting mathematical ideas, and 
with the many newspaper articles and awards that Wesley had won.  The tops of the cabinets 
were lined with many trophies won in a city-wide stock market game.   

Each of the class periods lasted fifty-five minutes and typically began with either a warm-up 
activity and discussion or some discussion regarding homework assignments from the previous 
night.  Occasionally, the class period would begin with discussion about an assessment from the 
previous day.  Regardless of the focus of the initial discussion in class, this time typically lasted 
about ten minutes until there was a shift of activity to the problem or task for that day.  
Following the opening discussion students were often given a choice of two or three tasks or 
problems that they could address during class.  Students often voted on which problem they 
would consider first; this would also be the problem they would try to discuss prior to the end of 
class if they were ready.  Many times the students would ask if they could continue to look at a 
problem they had first looked at maybe the day before or in some cases maybe a week or longer 
before.  There would be some discussion about this and most often Wesley would agree that they 
could use their class time to continue looking at that problem if most everyone agreed.  During 
problem solving students worked with their “partner” by quickly moving their chairs to face their 
partner or move across the room to an open seat near their partner. Also during the problem 
solving sessions students would frequently discuss their thinking with members of other groups 
and move around the room freely, to and from the white board “showing” another student what 
they were thinking or to retrieve manipulatives or a transparency sheet and pen. As students 
worked in small groups, Wesley moved around the room listening to students and infusing the 
conversation with questions, re-directing them or providing them with further challenge as 
needed. There were other times, however when the desks remained in rows and Wesley 
presented the problem solving tasks at the overhead.  During these times, students would often 
be using their calculators or manipulatives to explore certain ideas or problems.  Even when the 
desks remained in rows with Wesley primarily in the front of the room, students were free to 
work with one another and to discuss with those around them their thinking and ideas about the 
problem.   

Typically, following problem solving where students had worked with their partners, but not 
always, class ended with student presentations of their solutions using the overhead and their 
transparency sheet.  During this time the students presenting would discuss ways in which they 
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thought about the problem that perhaps did not arrive them at a solution and then also ways in 
which they felt they had derived a solution for the problem.  The students not presenting, those at 
their seats, would raise their hands and wait to be called on by those presenting to ask questions 
about the solution being presented or to share perhaps a different way they had in looking at the 
problem.  Often this time would result in only two or three groups presenting their ideas with 
several students going to the board to explain other ideas they had regarding the problem.  There 
were many days that the “end of class” discussion did not occur at the end of class but rather the 
next day or perhaps even a week later but they always came back to each problem for a time of 
discussion.  All instructional activities emphasized student thinking, whether a warm-up activity, 
a problem solving task, or problem solving specifically with manipulatives, Wesley encouraged 
the students to complete the tasks in ways that made sense to them rather than providing them 
with specific procedures or algorithms for finding a solution (Wheatley, 1991; Wheatley & 
Reynolds, 1999). 
 

Results 
Wesley describes his pedagogical methods as beginning teacher as teacher-centered and a 

traditional type of approach during his first several years of teaching mathematics.  “It was I’ll 
explain or demonstrate from the overhead … the students would do problem sets and then they 
would come in the next day, we would grade that.”  It was not until a change in building 
administrators in the late 1980’s that Wesley was encouraged to try something that varied from 
his traditional approach. 

 
Trying New Things 

In the mid-eighties the district where Wesley teaches experienced a change in 
superintendents.  With a new superintendent whose focus was on “changing the direction of the 
district” and “innovation” several new building administrators were hired over a few years 
including a new principal at the middle school.  This new principal, Wesley recalls, “was talking 
about cooperative learning and said to me ‘when you get done with the book maybe you could 
go back and teach it without using the book, teach it with manipulatives, maybe some 
cooperative learning’.”  Describing himself as a “risk taker,” Wesley believes that he was 
approached and encouraged by his administrator to try some new teaching approaches because 
he was team leader and because he was willing and open to consider new things.  “So I started 
messing around with looking for some stuff I could do, some stuff we could do with cooperative 
problem solving and letting kids talk.”  Wesley continues, referring to urges by his principal to 
explore cooperative learning and the use of manipulatives with his students, “that kind of started 
this whole, my getting into this, my messing around with different things.”  It was these 
beginning experiences, trying some new and different things, letting his students talk and him 
listening to them, that created a sense of wanting or searching for more in Wesley.   

 
Transformation Begins 
 During the summer of 1991, the school district’s new superintendent, having been there only 
a couple of years, brought in Allan, a university professor whose primary research focus was 
children’s mathematical thinking, for an elementary and middle school mathematics professional 
development workshop.  Wesley recalls that something significant happened that day. “What 
happened that day that was different is that Allan started me thinking about mathematics, and 
what it is, what is mathematics, and so that’s been an ongoing thing.”  While believing that the 
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questions asked of him that day impacted him greatly, Wesley does not feel that it was this in 
isolation that began a process of change in the way he now teaches mathematics.  

I think I was impacted some by a middle school conference I attended with my principal.  
Some of the people there were talking about a learning pyramid that says something like 
you learn only 10% of what you read and then more if you have to teach it to somebody.  
I can remember wondering, “well, what about if you interact with others to help each 
other.”  So I know that I was really beginning to question some things and beginning to 
see the benefits of students working together to learn mathematics at that time. [Interview 
data] 

Wesley also recalls that as he has reflectively considered how and perhaps why he has changed 
so significantly as a teacher that there were many things that impacted him, influenced his 
thinking, or helped him become more open to other ways of teaching mathematics.  

When I look back I have really asked those questions like “what’s going on with 
children” and “what are we doing to children with traditional approaches” but I don’t 
think I was really dissatisfied with what I was doing in my classroom, you know when 
my approach was more traditional, I just know that I was open to trying things and 
seemed to be searching for something and I started to explore things. [Interview data] 

As Wesley continued to explore and implement new things over the course of a few years in his 
classroom, such as students working in groups more often and using manipulatives during the 
more frequent problem solving opportunities he was providing for them, he in turn was afforded 
more opportunities to listen to his students.  It was this listening to his students, trying to 
understand and make sense of what they were understanding that infused his desire to continue 
to provide more of these kinds of opportunities as a part of his teaching. 

Over a period of six or seven years Allan continued to be brought back to Wesley’s school 
district to conduct mathematics professional development for both middle school and elementary 
school teachers.  During these years the process of change and transformation in Wesley’s ways 
of thinking about mathematics teaching and learning continued as did the emergence of new 
issues to be addressed and a variety of constraints that had to be considered. 
Since those early years of perturbation and trying new things, Wesley has developed a classroom 
environment and community wherein students share their ideas, listening to one another, and are 
encouraged to come to consensus. Listening to students for Wesley not only played a major role 
in his transformation as a teacher but is now a natural and inherent part of his interaction with his 
students. 

One of the things that was really important and still is, I just don’t think about it as much 
anymore because I just do it, I think, is listening to the students.  Back when I was really 
trying things out and searching for problems it was really helpful and important to listen 
to the students while they worked on problems.  I would try to understand what they were 
understanding and what they didn’t have figured out. [Interview data] 

For Wesley this kind of listening, listening to determine what the students are making sense of, is 
more than just listening for assessment purposes, for asking questions, or for even selecting the 
next task. It is listening to participate, to be engaged in the problem solving and in the 
community with his students.  Wesley believes that this kind of listening, an active or engaged 
listening, is essential for his students to fully participate in the community he strives to develop 
in his classroom.   

 
Discussion 
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Rather than being the end product of his attempts to change from one pedagogic approach to 
another, what happens in Wesley’s classroom today is the expression of his beliefs about 
mathematics teaching and learning wherein a way of communicating with his students about 
mathematics is the learning environment in his classroom.  While Wesley states that he follows a 
problem centered learning model what he does with his students is more than a model or a set of 
steps that someone else could follow to create the same thing, it is an orientation about what is 
mathematics and what it means to teach and learn mathematics, one that views the classroom as 
a community and the teacher as co-learner.   

This study shed light on the inherent and integral role of listening in Wesley’s 
transformation. Wesley is a participant in exploring mathematics with his students.  
Hermeneutical listening is part of his orientation about teaching and learning.  He views teaching 
not as the act of telling and learning as a not as a sequence of actions but rather understands and 
views learning “in terms of an ongoing … dance” (Davis, Sumara, and Kieren, 1996, p.153), 
wherein “individual and collective meanings are seen to evolve in the course of classroom 
interactions” (Cobb, Jaworski, and Presmeg, 1996, p. 15).  Teacher and students are involved in 
the unfolding of the curriculum as knowledge emerges as meaning as their focus shifts from 
teaching or the learning of “things” to “that which is among them.”  Wesley hermeneutically 
listens to his students: the listening occurs so that he can become “a participant in the exploration 
of … mathematics” (Davis, 1997, p. 369).  Listening for Wesley infused the unfolding process of 
his transformation and is now an integral dynamic of his emergent mathematics curriculum.  
Each day Wesley actively listens as one who is participating in a conversation; a mathematical 
conversation and discourse that evolves and emerges in his classroom with his students. 
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We noted fifth grade students’ progress in making generalizations that related the independent 
and dependent variables and justifications that considered the global context of the pattern 
finding tasks during a 3-day teaching experiment. Since such development is at odds with 
previously reported research, we focused on teachers’ discursive practices that co-constructed 
students’ development of reasoning. Using Stein et al.’s (2008) framework, we found that 
anticipating, monitoring, connecting and purposefully sequencing students’ responses co-
constructed students’ development of mathematical reasoning. 
 

Introduction 
Literature shows the need for students to develop fluency in mathematical reasoning (Martin 

& Kasmer, 2010; Yankelewitz, Mueller & Maher, 2010).  We operationally define mathematical 
reasoning in this study as making and justifying inferences in pattern finding activities.  
Students’ inferences according to Lannin (2005) can be classified as recursive or explicit.  
Recursive generalizations use the term-to-term change in the dependent variable to find 
unknowns.  Explicit generalizations relate the input and output values and enable calculation of 
outputs given n inputs.  Sowder and Harel (1998) classified justifications as externally based 
schemes, empirical and analytic.  With externally based schemes, students do not show 
ownership of the justifications but instead refer to an external source.  Empirical schemes show 
students’ ownership of the justifications but do not regard the generality of the context.  Analytic 
justifications consider the generality of the mathematical task’s context. 

 Fluency in mathematical reasoning serves a lot of purposes in mathematics education.  For 
example, it supports conceptual understanding and retention of students in advanced 
mathematics classes (Martin & Kasmer, 2010; Horn, 2008). Despite such importance, research 
has shown that most students have difficulties reasoning mathematically (Ellis, 2007; Lannin, 
2005). These difficulties were observed in Lannin’s (2005) study with sixth grade students and 
Ellis’s (2007) study with seventh grade students where by students tended to make recursive 
generalization with ease in contrast to explicit generalizations. They also tended to make 
justifications that did not consider the general context of mathematical problems.  

In this study, we observed that students developed their mathematical reasoning with more 
ease than reported in previous research (Lannin, Baker & Townsend, 2006). We classified the 
generalizations as explicit or recursive (Lannin, 2005). The percentages of students using each 
class of generalization are presented in Table 1 and indicate that students tended to use explicit 
generalizations by the third day of our teaching experiment.  They also progressed to using 
empirical and analytical justification schemes (Sowder & Harel, 1998), with more students using 
the latter as in Table 2. Since it is a challenge to support development of mathematical reasoning, 
the objective of this study is to explore teacher’s discursive practices that co-produced such 
development of mathematical reasoning as presented in Tables 1 and 2 that is at odds with 
previously reported studies.   
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Table 1: Percentage of Different Generalizations Expressed by Fifth Grade Students 

Generalization 
strategy 

Task 1  Task 2 Task 3 

Recursive 69.6 30.7 8.9 
Explicit 30.4 69.3 91.3 

 
Table 2: Percentage of Different Justification Schemes Used by Fifth Grade Students 

Justification 
strategy 

Task 1 Task 2 Task 3 

Externally based 
schemes 

13.0 6.2 0 

Empirical schemes 39.1 43.8 7.7 
Analytical schemes 47.8 50.0 91.3 

 
Theoretical Framework 

Our perspective on learning which informs this study is that individuals learn as they 
participate in communities that enable them to internalize the cultural norms and appropriate the 
cultural tools that may modify their abilities and dispositions as learners (Claxton, 2002).  The 
theoretical and methodological implication of this view is that, we needed to pay attention to 
students’ assessed mathematical reasoning and the context that may explain those outcomes 
(Carlone, Frank-Haun & Webb, in press).   As such, we addressed the research question, what 
are the discursive practices that co-constructed students’ development of mathematical reasoning 
during this teaching experiment? We employed Stein et al. (2008) framework as our analytic lens 
to study the classroom elements that co-constructed student’s development of mathematical 
reasoning.  Stein et al.’s framework afforded us the discursive tools with which to discuss the 
teachers’ pedagogical practices and reasoning.  According to Stein et al., the following practices 
support productive discourse. 
Anticipating Students’ Responses 

Anticipating is the expectation a teacher needs to have about students’ possible interpretation 
of the problem, representations, solution strategies and their levels of sophistication.  It is 
therefore necessary for teachers to have knowledge of students’ thinking and different 
approaches to the tasks they give to students.  

 
Monitoring Students’ Responses 

To monitor students’ responses, the teacher moves around the classroom as students work on 
their tasks to note strategies and solutions and to listen to assess students’ understanding.  The 
teacher might also ask probing questions at this phase to help connect students’ reasoning to the 
major concepts.   

 
Purposefully Selecting Student Responses for Public Display 

A teacher selects strategies, ideas and representations to display during class discussion.  The 
decisions might be based on the mathematical ideas that are in the selected students’ work.  It is 
important at this phase for teachers to note their patterns of selection to ensure all students and 
different ideas are given attention in the class. 
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Purposefully Sequencing Student Responses 

 After selecting the responses that will be used during class discussion, a teacher also needs 
to make decisions of the sequence the responses will be presented.  This sequence might be 
dependent on the teachers’ knowledge of the students’ thinking and the objective of the lesson.  
The sequence of students’ responses affects coherence of the lesson, students’ depth of 
understanding and has ability to clarify misunderstandings.  

 
Connecting Student Responses 

 Class discussion presents a chance for teachers to guide students to connect ideas and 
strategies so as to modify their own ideas for better understanding.  This can be accomplished if 
students evaluate each other’s arguments and ideas.  Teachers who carefully use questioning 
strategies and sequencing of tasks also provide helpful connections. These connections assist 
students’ identification of the consequences of using different strategies. 

According to Stein et al. (2008), this model integrates the teachers’ practices that were 
discussed separately by different authors.  Stein and colleagues also argue that the ability to use 
these five practices is dependent on teachers’ understanding of students’ reasoning and the 
teachers’ current thinking.  This study contributes to this model and mathematics education by 
discussing how these practices, integrated as in this model, are enacted in an elementary 
mathematics classroom and the teachers’ thinking that might take place in making the decisions 
at each of these phases.  This study also associates this model to students’ development of 
mathematical reasoning.  Additionally, it contributes to ways in which teachers may balance the 
support of discourse and mathematical reasoning, which has been reported as challenging 
(Baxter & Williams, 2010; Sherin, 2002). 

 
Methodology 

Data for this study were collected during a three-day teaching experiment.  The lesson for 
each day took about 90 minutes.  The participating students were 23 fifth graders at a science 
magnet elementary school in the South Eastern US.  One of the researchers, referred to in this 
study as teacher/researcher, replaced the classroom teacher during the teaching experiment.  
Other researchers assisted in collecting video and audio data.  Field notes and student artifacts 
were collected at the end of each lesson as sources of data.  The teacher/researcher’s reflections 
on her reasoning behind the observed discursive practices were also part of the data collected. 

 Students worked on pattern finding tasks. Task 1 involved trains of square tables as modeled 
in figure 1. Task 2 involved trains of triangle tables and task 3 involved trains of hexagon tables.  
They were asked to find the maximum number of people that would sit around a train of one, 
two, three and 100 tables given that only one person can sit on one side of each smaller table.  
They organized their data using t-tables, observed the patterns, made and justified their 
generalizations. Small group discussions were followed by whole class discussions. We used 
Stein et al. (2008) framework to analyze the data. 
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Figure 1: Task 1 
  

 
 

 
Results 

 
Anticipating Student Responses 

The teacher/researcher explained in episode 1 what she anticipated students’ strategies and 
reasoning to be. 

Episode 1 
Teacher/Researcher:  I have used this task in two previous teaching experiments and several 
graduate classes. I have learned from the first teaching experiment that triangle tables are 
difficult for students to find an explicit rule so I like to start the pattern block tables with 
squares. Generally students at all levels start off with a recursive strategy to find the 
pattern… 
From this episode, her previous experience with teaching the task helped in anticipating what 

the students’ responses might be. What she anticipated influenced her planning stage as she 
made decisions on how to sequence the tasks for optimal reasoning by students. She also 
anticipated that the students might not have had a lot of experience with finding patterns. As 
such, she planned to spend enough time to introduce pattern finding activities and the language 
(e.g. building models, input/output tables, and justification, and rules or generalizations) 
associated with such activities. 

 
Monitoring Students’ Responses 

The teacher/researcher walked around the classroom to note students’ responses as students 
worked on the tasks in pairs. This gave a chance to students to ask for clarifying questions about 
the tasks and for the teacher/researcher to ask probing questions to further students’ reasoning. 
Episode 2 is one example where the teacher/researcher was walking around the classroom as 
students were working on justifying their rules about how many people can sit around a train of 
triangle tables. 

Episode 2 
Teacher/researcher [to Jane and Freddy]:  So, have you figured this out yet (how to justify 
t+2 = p as a rule for finding number of people who can sit around a train of n triangle tables)?   
Jane:  The two comes from the two more people.   
Freddy:  From the two sides of the – 
Teacher/researcher:  Which two sides?   
Freddy:  Actually from the two sides of the triangle that you add to.   
Teacher/researcher:  Okay, build a model and show me where those two are. 
By asking questions to the students, the teacher/researcher got a chance to note students’ 

reasoning and responses. Other questions were meant to challenge students to move beyond the 
recursive rules they expressed to developing explicit rules.  Monitoring students’ responses also 
informed the teacher/researcher on how to effectively progress with the lesson. The following 
episode 3, whereby the teacher/researcher was thinking aloud during the lesson on the first day 
of the experiment is one example of such a case. 

Episode 3 
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Teacher/researcher:  I’ll wait until they build their models and then we’ll talk about the T 
table or the input/output table. 
Although she planned to spend ample time discussing how to collect data into input/output 

table, monitoring students’ responses redirected that plan. In her reflection she explained “I 
decided to abandon giving directions on building the t-table. Brenda and Dan already understood 
how to collect their data.” After noticing that some students already knew how to build 
input/output tables, we observed that she briefly discussed the tables. This was done to make 
sure each student in the classroom understood how to collect data using T charts and for the 
students to “learn how to collect data in a systematic manner.”  

 
Purposefully Selecting Student Responses for Public Display 

Responses were selected for different purposes.  The teacher/researcher repeatedly 
mentioned that she was selecting responses from students so as to give each student a chance to 
display their work and explain their thinking.  Students’ generalizations and justifications that 
were expressed differently or were different from or conflicting each other were selected too. 
She did this as she communicated that reasoning tasks can be approached using different 
strategies. This gave a chance to students to evaluate strategies and responses. It also created 
opportunities for students to adopt strategies and responses that made more sense to them. 

 
Purposefully Sequencing Student Responses 

During whole class discussions, she generally ordered presentations of students’ reasoning 
from less to more efficient.  According to the teacher/researcher, this was purposefully done to 
include more strategies and solutions for public display while simultaneously staging the 
students to notice how the strategies and tasks were related to each other.  This approach 
supported mathematical argumentation, conceptual understanding and co-construction of ideas.  
An example of this was on the second day when students were justifying their rules.  Becky 
explained that the rule n+2=p was valid for a train of triangle tables because every time 2 tables 
were being put together; the train was losing 2 sides that were previously available.  The 
following argumentation and thinking in episode 4 followed. 

Episode 4 
Sam: … speaking of the way she said, you’re not subtracting two, you’re adding two. 
Teacher/researcher: Oh, okay.  Becky? 
Becky: Yes? 
Teacher/researcher: He said that you’re (your rule is) not taking away, you’re adding two to 
the number of blocks. 
This argumentation based on students’ perceptual schemes went on, bringing in new 

understandings. The teacher/researcher finally asked another student, Benny, with a different 
justification who explained that the rule t+2=p holds because “the plus 2 comes from the end 
sides of the triangle table (train)” and number of people is constantly equal to number of tables in 
that pattern.  

In general, students’ generalizations were also purposefully sequenced from recursive to 
explicit during whole class discussions. This was achieved by having whole class discussions in 
multiple phases.  There were mainly three phases. Phase 1 discussions were after or when 
students built the models and collected data into the input/output tables. Phase 2 was after 
students explored patterns and were prompted to respond to questions that could be answered 
using recursive rules. Finally, whole class discussions were held after students were challenged 
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to develop explicit rules. This practice created a context in which recursive rules were presented 
before explicit rules. 

 
Connecting Student Responses 

Connecting different students’ responses. Whole class discussions at each critical phase of 
the tasks (modeling and data collection, generalizing recursive rules, generalizing and justifying 
explicit rules) afforded students opportunities to connect their reasoning to other students’ 
reasoning. Similarly, teacher/researcher constantly encouraged students to evaluate each other’s 
argument.  Episode 5 is one instance on the first day of the teaching experiment as students were 
working on task 1 where the teacher encouraged students to reason as to why their classmates’ 
rules were valid or not. In this episode, Brenda presented a rule for finding number of seats 
available on a train of n square tables and the other students evaluated why that rule could be 
valid. We observed that this approach encouraged students to incorporate other students’ 
strategies into their own. For example, after one student used a geometric representation to 
justify the rule 2n+2 =p for a train of square tables, most students incorporated this 
representation into their explanations. 

Episode 5 
Brenda:  Multiply the tables times two and then add two to find the number of chairs. 
Teacher/researcher [to the whole class]:  Think about that (rule) one more time, does that 
work? 
Stan:  Yeah. 
Teacher/researcher:  How do you know it works? 
King:  Because T (input) times two every time is two less than C (output) and if you add 
two plus T it works. 
Teacher/researcher:  And Sam, what did you say? 
Sam:  It does work. 

Connecting responses across tasks. Several attempts were made by the teacher/researcher to 
connect students’ reasoning across tasks. Her choice of isomorphic tasks was one attempt. 
Furthermore, during the lessons she asked questions that encouraged students to reflect on 
previously worked out tasks (as in episode 6) as they reasoned about the tasks they were working 
on. This approach supported development of reasoning as evidenced in students’ reasoning in 
episode 7 that followed the teacher/researcher’s prompt.   

Episode 6 
Teacher/researcher:  Alright, most of you have some great ideas.  Most of you are thinking 
very hard and working very hard on this and I’m going to give you a hint….  Remember on 
the first day when we did squares (Task 1)?  And you said there would be a hundred tables 
here (showing a model developed by a student)? And that meant that there were hundred 
(seats) on the top and a hundred (seats) on the bottom and one on each end?  That was a hint.  
(Use it) to think about the hexagons.  

Episode 7 
Jane: So, a hexagon has two sides (on the top), so it has two hundred on each side (top and 
bottom). 
Teacher/researcher: Right. 
Jane: And two hundred times two is four hundred plus the two on the ends is four hundred 
and two.  Is that right? 

Discussion 
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Stylianides and Ball (2008) recommend that teachers need to have content knowledge for 
teaching mathematical reasoning. Such knowledge includes knowledge about reasoning tasks 
and the type of reasoning that tasks can support. To recap, the teacher/researcher anticipated 
generalization and justification about a train of triangle tables to be more challenging since she 
used this task with undergraduate and graduate students. Knowledge about the tasks and 
students’ reasoning were important in her expectation of students’ responses and consequently 
planning.  Teachers can prepare at the anticipation stage by trying out different strategies that 
students might use or keep a variety of student work to review when tasks are repeated with 
other students. Keeping such a record helps the teacher to be flexible if student responses are 
different from what the teacher anticipated. 

Since past research (Lannin, et al., 2006) reports that students develop recursive 
generalizations with relative ease, discussing recursive generalizations is one way to include 
responses from more students during whole class discussions. Discussing recursive 
generalizations before explicit generalization potentially supports students’ ability in using both 
types of generalizations while simultaneously appreciating the usefulness of explicit 
generalizations. Also, some mathematical tasks in their curriculum may require students to use 
recursive generalizations.  

There is substantial research (Cobb, Gresalfi & Hodge, 2009; Mueller, 2009; Store, Berenson 
& Carter, 2010) that supports the view that discussions nurture mathematical reasoning. We add 
to this body of research, that teachers need to purposefully select responses for public display. 
Selection of responses may be based at including all students’ thinking in the discussions and 
sequencing responses to connect to the goal of the lesson. Selecting responses that are expressed 
differently and correctly may support students’ appreciation of mathematical reasoning as a 
discipline that can be approached using different strategies. Purposeful selection of responses 
that are contradictory also creates opportunities for the classroom members to reflect on their 
thinking and develop their reasoning (Komatsu, 2010). 

It is important to emphasize the nonlinearity of the sequence of these practices. As 
mentioned, the discussions were held in different phases. On each phase, the teacher/researcher 
walked around the classroom to monitor students’ responses and made decisions of what student 
responses should be displayed publicly, and how to sequence and connect displays of student 
responses.  
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Given the dynamic landscape of mathematics instruction, programs that were once deemed 
effective need to be periodically examined to insure that their benefits continue to be realized. 
This study focused on an implementation of Cognitively Guided Instruction (CGI) in an 
economically disadvantaged school district serving a large percentage of English Language 
Learners.  This setting and instructional context was considerably different from those of earlier 
studies of CGI’s effectiveness. Results of a written test administered in the spring of each school 
year showed that the more CGI training a teacher had, the more story problems their first 
graders could solve. 
 

As Slavin and Lake (2008) pointed out “the mathematics performance of America’s students 
does not justify complacency. In particular, schools serving many students at risk need more 
effective programs.”  In their review of research on effective elementary school mathematics 
programs, they claimed, “programs found to be effective with any subgroup tend to be effective 
with all groups.” On the other hand Raudenbush (2005) cautioned that interventions do not 
always “work” for every population of children so research should include clarifying the subsets 
of children who benefit from specific interventions.  In Slavin and Lake’s review a large 
proportion of the studies they examined were conducted before 2000. The demographics of the 
country have changed dramatically in the last ten years especially with the influx of English 
Language Learners into schools, and the conditions of mathematics instruction have changed 
drastically for teachers. The programs found to be effective in the 1980s and 90s may be more 
difficult to implement with the advent of the stress on standardized testing in recent years. Given 
the dynamic landscape of mathematics instruction, programs that were once deemed effective 
need to periodically be examined to insure that their benefits continue to be realized, and they 
need to be researched with different populations of students to determine their generalizability. 
 

Theoretical Framework 
Our study focused on one of the programs, Cognitively Guided Instruction (CGI) (Carpenter, 

Fennema, Peterson, Chiang, and Loef, 1990), that Slavin and Lake(2008) deemed to be effective, 
and we explored the degree to which this program was effective in 2007 – 2010 in an 
economically disadvantaged school district serving a diverse population of students including a 
sizeable number of English Language Learners. While descriptive studies indicate that CGI has 
been implemented with great success in diverse settings including high-poverty predominantly 
African-American schools in Prince Georges County, Maryland (Carey, Fennema, Carpenter & 
Franke, 1995) ; Oneida Indian Reservation schools in Wisconsin (Henkes, 1998), and 
predominantly Hispanic schools in the Los Angeles area (Franke & Kazemi, 2001), these studies 
did not include student achievement data. The only study with achievement data and a 
comparison group documenting CGI’s success with economically disadvantaged students of 
color is over 15 years old (Villasenor & Kepner, 1993). We felt the need to re-establish CGI’s 
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effectiveness with the kind of research-based evidence valued by decision makers at this point in 
time. 

The CGI project demonstrated that when teachers learn about children’s mathematical 
thinking, teachers change their mathematics instruction to address the mathematical development 
of the individuals in their classroom, and their students outperform children from control 
classrooms on measures of problem solving (Carpenter, Fennema, Peterson, Chiang & Loef, 
1990).  In CGI workshops teachers learn about a framework describing the relationship between 
the difficulty of word problems and the level of sophistication indicated by children’s solution 
strategies. The framework assumes that teachers feel free to choose problems for their students to 
solve and can take the time to discuss solution strategies with them. Teachers in our study were 
facing more constraints than teachers in previous CGI studies so it remained to be seen if their 
students would benefit from their participation in CGI professional development in the same 
ways as students in previous studies had. One of the findings from the longitudinal CGI study 
indicated that teachers’ knowledge of CGI developed over time, with some teachers taking up to 
three years to become effective CGI teachers (Fennema, et al., 1996). Teachers with less freedom 
to experiment with using story problems in their classrooms, might take more time to become 
effective CGI teachers than teachers in previous studies, therefore we looked for a dosage effect 
to see how the number of years of a teachers’ participation with CGI affected their students’ 
achievement. 

 
The research question guiding our analysis was:  

 
What are the differences in first graders’ problem solving performance according to the 

number of years their teachers have participated in Cognitively Guided Instruction professional 
development? 

 
Methods 

Professional Development Format   
The project took place over a three-year period. The teachers attended meetings once a 

month afterschool. They also had three days of training each summer. The focus of all meetings 
was children’s mathematical thinking. The CGI problem type and solution strategy frameworks 
were developed early on and were revisited frequently. Teachers were videotaped interviewing 
three of their students twice a year and these videotapes were shown and discussed in meetings. 
Teachers engaged their children in problem solving in their classrooms and brought student work 
to meetings to analyze and discuss. One of CGI the facilitators visited each teacher’s classroom 
once a month to observe a problem solving session and discussed her observations of children’s 
mathematical thinking at the meetings.  
 
Setting  

The professional development took place in one elementary school district with five 
elementary schools. The majority ethnic group in the district was Latino (37%) followed by 
Asian (19%), White (16%) and African American (15%). Eighty-six percent of the students 
received free or reduced price lunch and 43% of the students were designated as English 
Language Learners. Teachers in the district felt pressure to increase student test scores to meet 
the No-Child-Left-Behind Adequate Yearly Progress targets. Among the district norms were 
daily timed facts tests and close adherence to the mathematics textbook. 
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Design of Study 

The data for this analysis came from the evaluation component of the CGI professional 
development project. As in many projects of this kind, during our three-year project the district 
had budget issues such that some of the teachers who began participating with us lost their 
positions by the third year of the project. We had to alter our research plan to accommodate this 
change. While the research design that we ended up with and describe here is not ideal, we felt 
that the data merited dissemination nonetheless.  

To provide a comparison group we employed a delayed treatment design. Teachers at two of 
the schools began participation in the first year of the program and teachers from two other 
schools joined professional development in the second and third year of the program.  

We collected two sets of data described in more detail below, a written test given to all first 
graders in the district and an interview done with a random sample of six children from each 
classroom. Timeframes and participants in these two data sets are distinct and will be discussed 
separately. 

 
Written Test  

In late May of each school year, all of the first graders in the district took a written test 
administered by their classroom teacher. The test consisted of 4 free-response story problems 
(see Table 1). Teachers read the problems aloud to students as needed, and children were told 
that they could draw a picture or use their fingers, blocks or equations to solve the problems.  
 
Table 1. Story Problem Test Items. 
Separate Result Unknown Maria had 13 balloons. 5 balloons popped.  How many 

balloons did she have left? 
Join Change Unknown Juan has 6 baseball cards. How many more baseball cards 

does he need to collect to have 14 altogether? 
Multiplication Sam has 3 packs of gum. There are 6 pieces of gum in each 

pack. How many pieces of gum does Sam have altogether? 
Compare Difference 
Unknown 

Lee has 12 pennies. Luis has 7 pennies. How many more 
pennies does Lee have than Luis? 

Participants. First graders taking the test had teachers with various levels of experience with 
CGI ranging from no experience to three years of experience. Table 2 shows the number of 
children and classrooms associated with each of the levels of CGI experience. 

 
Table 2. Numbers of children and classrooms for each level of CGI experience 

 No Experience 
with CGI 

Teacher with 1 
year of CGI 

Teacher with 2 
years of CGI 

Teacher with 3 
years of CGI 

Number of 
classrooms 

14 12 6 5 

Number of 
children  

284 238 115 106 

 
Problem Solving Interviews  

First graders worked one-on-one with trained interviewers in the fall and spring of the first 
grade in the second and third year of the project to solve story problems (see Table 3). 
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Interviewers read the problem out loud to the children and encouraged them to use any tool that 
they needed to solve the problem. The interviewer read the problem as often as the child needed. 
When a child stated a number, the interviewer asked the child if this was their answer, and if it 
was elicited an explanation by asking, “how did you get that answer?” All children were given 
the first three problems. If children were successful on two of these, they were given the other 
two problems. 
Table 3. Story Problems for Interview 
Separate Result 
Unknown (SRU) 

The bear had 10 cookies. He ate 3. How many did he have then? 

Multiplication 
 

Robin has 3 bags of cookies. There are 5 cookies in each bag. How 
many cookies does she have? 

Join Change 
Unknown (JCU) 

You have $7. You want to buy a game that costs $11. How much 
more money do you need to earn so that you will have enough for 
the game? 

Partitive Division Four kids are sharing 12 candies. How many candies should each 
child get? 

Compare 
Difference 
Unknown (CDU) 

You have 12 balloons. Your friend has 7 balloons. How many 
more balloons do you have than your friend? 
 

Participants. First graders participating in the interviews were in classrooms with teachers 
with various levels of professional development (see Table 4). Children were randomly selected 
in the fall of the school year and a few of these children left the district during the school year so 
were not available for interviews in the spring. 

Table 4.  
 No Experience 

with CGI 
Teacher with 1 
year of CGI 

Teacher with 2 
years of CGI 

Teacher with 3 
years of CGI 

Number of 
classrooms 

4 6 6 5 

Number of 
children  

24 27 30 26 

 
Data Analysis 

For both the Written Test and the Problem Solving Interviews, students received one point 
for every correct answer, one half if they used a correct strategy but miscounted, or zero points if 
they incorrectly solved the problem. Total scores were computed, analyzed, and descriptive and 
inferential statistics are discussed here. For the Written Test, a one-way analysis of variance 
(ANOVA) was conducted to determine if the mean student scores for each CGI experience group 
were statistically different from each other. Because there were four groups that represented the 
number of years of teachers’ CGI experience, a Scheffe Post Hoc test was performed to 
determine which groups performed significantly differently from other groups. For the Problem 
Solving Interviews, a one-way analysis of covariance (ANCOVA) was conducted to determine if 
the mean scores for each CGI experience group were statistically different while using the 
students’ pretest scores as a covariate. 

 
Results 

Written Test 
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The longer the teachers had participated in the CGI professional development, the higher 
their students’ scores on the written test were. As is illustrated in Table 5, the mean scores for 
students whose teachers had three years of CGI were almost one point higher than the mean 
scores of children whose teachers had no CGI training.  
 

Table 5. Mean Performance on Story Problem Written Test 
Teachers’ Experience with 

CGI 
Mean number of items 

correct (4 possible) 
0 years (n=284) 1.76 
1 year (n = 238) 2.18 
2 year (n = 115) 2.29 
3 years (n = 106) 2.6 

 
Table 6 summarizes the results of the Scheffe Post Hoc test of the differences in means for the 
written test. Students with teachers who had one or more years of CGI experience, scored higher 
than those students with teachers who did not participate in the CGI professional development 
program. Those students with teachers who participated in the CGI professional development for 
three years scored higher than those students with teachers who only participated one year in 
CGI experience. There were no differences found in student scores for teachers who participated 
one or two years and two or three years.  
 
Table 6. Difference in students’ mean performance on written test according to Teachers’ 
Dosages (number of years of CGI training) 
 0 1 2 3 
0 X -.43* -.53* -.85* 
1 .43* X -.10 -.42* 
2 .53* .10 X -.32 
3 .85* .42* .32 X 
* = statistically significant at p <.05 level 

 
An examination of students’ performance on the written test by problem types (see Figure 1) 

shows that teachers’ experience made a small difference for students’ performance on the 
Separate Result Unknown problem (SRU); while one year of experience made the biggest 
difference for the Join Change Unknown (JCU). For the other two problems  [Multiplication 
(Mult) and Compare Difference Unknown (CDU)]  the longer the teachers participated in CGI, 
the greater percentage of their students were able to solve these problems. 
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Problem Solving Interview 

First graders’ performance on the problem solving interview varied in the fall with children 
whose teachers’ had no experience with CGI having the lowest performance (see Table 7). This 
can be explained by the fact that as kindergarteners these children had been with teachers 
without any CGI training while the children in the other groups tended to have been in 
kindergarten classrooms with teachers who had been involved in the CGI training. This fact does 
not account for the fact that in the fall children in first year teachers’ classrooms outperformed 
children in the other classrooms, and we do not have an explanation for this beyond being due to 
chance. The difference between the fall and spring means were statistically significant for all 
four groups. 
 
Table 7. Children performance on Problem Solving Interview (highest possible score 5) 

Teachers’ Experience with 
CGI 

Fall  
Mean 
Performance  

Spring  
Mean 
Performance 

Difference in 
Mean  
(Spring – Fall) 

No CGI     n = 24 children .75 2.38 1.68* 
One Year   n = 27 children 1.46 2.74 1.28* 
Two Years  n = 30 children 1.22 2.90 1.68* 
Three Years    n = 26 children .94 2.96 2.02* 

 
Table 7 shows that children in all the groups tended to improve in their performance from the 

fall to spring with the children in classrooms of teachers with three years of CGI experiences 
tending to improve the most. Although the students that changed the most were those who had 
teachers with three years of CGI training, none of the comparisons between groups proved to be 
statistically significant. 

An analysis of students’ performance by problem type showed similar trends as the written 
test for the Join Change Unknown problems with success rates being higher for students in 
teachers’ classrooms with at least one year of CGI experience and a steady increase in the 
percentage of children successful on the Compare Difference Unknown problems with each year 
of CGI training (see Figure 3). The Partitive Division problem had the lowest success rate for all 
groups, with the greatest success rate going from 25% for the No CGI experience group to 38.5% 
for the 3 years CGI experience group. 
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Conclusion 
The results of the written test show that for this implementation of CGI in this particular 

school district, children tended to be more successful solving story problems when their teachers 
had CGI training. Moreover their seemed to be a dosage effect because as children’s teachers had 
more CGI experience, more of their students were able to solve problems. We propose two 
explanations for differences in student achievement. First, we posit that participation in CGI 
training led the teachers to do more problem solving with their students. This has been the case 
in previous CGI studies (Carpenter et al., 1990, Fennema et al., 1996). While we did not have the 
resources to observe the teachers on a regular basis, their reports to us in the workshops support 
this assertion. In addition, they brought student work to our meetings so they were engaging their 
students in problem solving at least once a month. 

The second explanation relates to our analysis of particular problem types showing that 
differences in overall success rates were due to differences in performance on the less 
conventional problem types. During CGI training, teachers learn about these problem types and 
the ways that children think about them. For example, they learn that children can readily solve 
Join Change Unknown problems but children do so using additive strategies rather then 
subtractive strategies. In our workshops the teachers readily picked up on the distinction between 
Join Change Unknown and Separate Result Unknown problems, and we posit that their students 
encountered this problem type more frequently than children whose teachers did not have CGI 
training. In addition when their students solved these problems, we posit that their teachers 
supported them in solving the problems in ways that aligned with an additive interpretation 
rather than imposing a subtractive interpretation on to the children. Compare Difference 
Unknown problems tend to be the hardest problem type for students (Fuson, Carroll & Landis, 
1996) and our data suggest that as teachers had more opportunities to ponder this problem type 
over time, they became more effective at facilitating their students in solving it.  

While the data show that teacher participation in CGI training affected student achievement, 
first graders in this sample did not perform as well as kindergarteners in Wisconsin in 1993 
(Carpenter, Ansell, Franke, Fennema & Weisbeck, 1993). In that study the majority of the 
children were native English speakers and the teachers had a great deal more discretion over 
instruction than teachers in our study. Teasing apart which factors, language issues or instruction, 
might account for the difference in our students’ performance as compared to that of the 1993 
sample is impossible to do with the data that we have. The teachers in our group reported feeling 
limited in the amount of time they could devote to problem solving because of the emphasis on 
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getting through their textbook. Their use of timed tests and other drill activities may also have 
affected children’s beliefs about mathematics making them more hesitant to solve problems 
using manipulatives or drawings. Insuring problems were comprehensible to English Language 
Learners through careful wording and choice of context, added to the complexity of 
implementing CGI in this setting. Given these differences in the conditions of implementing 
CGI, we felt that the students’ performance was encouraging. The added complexity of this 
setting suggests that teachers may take longer to become effective in employing CGI in their 
instruction than did the teachers in previous studies. 

We continue to work with teachers in the district and are now working with the 3rd and 4th 
grade teachers who are teaching the cohort of students who participated in this study. If there are 
cumulative effects of having CGI teachers over time, we will be able to demonstrate these effects 
with case studies of some individuals, many of who are English Language Learners.   

We acknowledge that our sample size is small and our study inadequate to make strong 
claims, nonetheless we do think the data show positive effects for CGI and suggest that its 
benefits generalize to economically disadvantaged English Language Learners in this time of 
heightened accountability. We hope that these tentative findings can be supported with a larger, 
more robust study of implementation of CGI with this student population. 
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This study adds to current literature on hybrid space with a focus one fifth-grade mathematics 
teacher. The researchers conclude that the teacher’s instructional practices allowed her to 
create opportunities for a hybrid space to emerge in her classroom. The framework developed in 
Barton and Tan’s (2009) work in science is applied to a mathematics classroom to investigate 
the use funds of knowledge and Discourses. Evidence from this case study found that two themes 
were present in the classroom: family funds of knowledge and Discourse and peer funds of 
knowledge and Discourse. The implications of this study could help teachers and researchers 
better understand how to motivate students concerning mathematics. 

 
Purpose 

The purpose of this study is to examine the instructional practices of one 5th grade 
mathematics teacher through the lens of hybrid space. Hybrid space is a classroom environment 
where teachers can engage students in learning by bridging the mathematics content with the 
knowledge and background of their student (Moje, Ciechanowski, Kramer, Ellis, Carrillo, & 
Collazo, 2004). Investigating the teaching methods of one teacher and funds of knowledge and 
Discourses in a classroom can inform researchers and practitioners on how to make learning 
applicable to students’ lives (Barton & Tan, 2009). A case study was used to answer the research 
question: How can teacher practices create a hybrid space in a mathematics classroom? 

 
Perspectives 

The National Council of Teachers of Mathematics (NCTM) acknowledged the importance of 
discourse in teaching mathematics through principles and standards that call for teachers to build 
on discourse in the classroom (NCTM, 1991, 2000). Cobb and his colleagues (1997) discuss the 
concept of discourse and theorize that it can provide support to students’ mathematical 
development that is more consistent with reform shifts to have students engage in verbalizing 
their mathematical reasoning. Discourse is also an important construct in Gee’s (2000) work on 
identity, which defines Discourse as a “way of being ‘certain kinds of people’” (p.110). Their 
“way of being” might entail being a math person or being a member of a sports team. 
Importantly, Gee’s definition of Discourse encompasses the verbal discourse NCTM 
recommends but also expands to include how students interact with the content and express 
themselves in relation to the content (Barton & Tan, 2009). For example, students might interact 
with the content of mathematics by discussing what a meter is and how it is defined, but they 
may also choose to create representations of a meter with physical objects or use tools to assist 
them in their understanding of the mathematics content. Students may even become to see 
themselves as mathematics experts and an important contributor to mathematical understanding 
in the classroom.  

Hybrid space is a classroom setting where a teacher fosters students’ participation so that 
they become engaged with the content in a meaningful way (Moje et al., 2004). Barton and Tan 
(2009) further define a hybrid space as “a supportive scaffold that links traditionally 
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marginalized funds of knowledge and Discourses to academic funds and Discourse” (p.52). 
Academic funds in that definition refers to the mathematical content. Funds of knowledge in 
their view refers to the base of knowledge that students have from their experiences and cultural 
backgrounds (Gonzalez & Moll, 2002). Students may enter a classroom with minimal knowledge 
of how to add fractions, but they may have used fractions in cooking or dividing candy among 
siblings. Teachers can use a hybrid space as a bridge between the students’ previous funds of 
knowledge and academic funds of knowledge to build on the students’ Discourse with 
mathematics. It is a combination of funds of knowledge and Discourse that is integral in creating 
a hybrid space. Flessner (2009) stressed the importance of creating an environment that was 
conducive for creating a hybrid space. His classroom allowed students to feel “safe, respected, 
and confident” in addition to being “contributing members of the classroom community.” 
(Flessner, 2009, 432) In this view, it is important that a teacher allow students to contribute their 
own knowledge about content. A teacher need not be the sole supplier of expertise. Teachers can 
add contextual content that relates to student experiences to provide opportunities for a hybrid 
space in the classroom. For example, a teacher can present problems that relate to real life 
situations such as games the students play or provide materials that the students have experience 
with such as measuring cups or scales. This view is also discussed by NCTM which calls for the 
use of contextual methods of instruction so that students learn mathematics that is in relation to 
real world scenarios (NCTM, 2000). Whereas contextual learning is an important part of reform 
in education, Boaler (1993) found that contextual problems are not necessarily increasing student 
learning because they may not incorporate realistic, real world problems that students were able 
to make their own. This idea emphasizes that it is important for context to relate to the students’ 
experiences and backgrounds so that they are engaged in meaningful Discourse. 

The present study examines how creating a hybrid space in a classroom can allow 
students to build on their Discourse in mathematics through the use of funds of knowledge and 
Discourse. Barton and Tan (2009) created a framework for viewing a hybrid space in the context 
of a science classroom. This framework included four specific constructs: (a) family funds of 
knowledge & Discourse, (b) community funds of knowledge & Discourse, (c) peer funds of 
knowledge & Discourse, and (d) popular culture funds of knowledge & Discourse (Barton & 
Tan, 2009). Family funds of knowledge and Discourse refers to how students draw on their 
experiences of family life such as shopping trips or playing school with siblings to participate in 
classroom mathematics. Community funds of knowledge and Discourse relates to how students 
draw from their community such as their participation in their school or neighborhood 
community to participate in classroom mathematics. Peer funds of knowledge and Discourse is 
how students draw on their experiences with peers to help and support each other in learning 
mathematics such as validating each other’s responses in class or showing concern for peer 
understanding. Popular culture funds of knowledge and Discourse refers to how students draw on 
their experiences with popular culture such as television or music to participate in classroom 
mathematics (Barton & Tan, 2009).  This present study utilizes Barton and Tan’s framework to 
examine a hybrid space in an elementary mathematics classroom.   

 
Methods 

This study came out of a larger study on student motivation in elementary mathematics 
(Linder, Smart, Cribbs, 2011). Based on the findings from the original study, it was determined 
that one teacher in an elementary setting in the Northwest region of South Carolina had students 
who displayed significantly higher levels of motivation than all other students in the school. This 
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5th grade teacher became the focus of the current study to determine what teacher practices might 
account for these results.  

A case study analysis of this 5th grade teacher’s instructional practices in mathematics was 
conducted in the spring of 2009. Data was collected through classroom observations and paired 
student interviews. Nine classroom observations were conducted, recorded, and later transcribed 
by a member of the research team. Student interviews were also conducted in pairs using a semi-
structured protocol to get a better idea of how students perceived mathematics and their teacher 
in relation to mathematics. A member of the research team later transcribed the interviews. Data 
analysis included repetitive readings of all transcriptions and viewing of videos to create an 
initial theoretical explanation of what was occurring in the classroom. This theory was then 
strengthened by supporting evidence gleaned from the data collected (Yin, 2009). 

The school that this study took place is a Title I school where 81% of the school population 
receives free or reduced lunch. The teacher observed taught four different classes through the 
course of the day, and interviews were conducted with 21 different students from these classes. 

 
Results 

Classroom Environment 
It was apparent from the first observation that the teacher had a strong command of her 

classroom. She was firm and purposeful with her students and their activities, but she also 
nurtured students with a friendly and open demeanor. Even in the midst of noisy and mobile 
activities, the teacher maintained control and kept students on task. One of the defining 
characteristics to creating an engaging classroom was the teacher’s constant questioning of 
students and challenging them to think about the content. She often engaged the students in 
discourse with her and with each other. The following interaction is an example of this discourse 
between the teacher and the students as they discuss weight. The students have been broken up 
into groups of 3 or 4. They have also been given a bag of popcorn, one for each group, to 
investigate together.  

Teacher: “…Now, I have a question for you, or several questions for you. What is a 
reasonable estimate for the weight of this bag of popcorn in pounds? What would be a 
reasonable estimate for that?” The teacher called on one student with her hand raised. 
Student: “One pound.” 
Teacher: “Ok, Alice says one pound. Does anybody else have another…? You say one 
pound.” The teacher pointed to a student at the front and then called on another student. 
Student: “Two pounds.” 
Teacher: “Ok, two pounds …Ok, so we’ve got one pound, we’ve got two pounds, ok. What 
is a reasonable estimate for the weight of popcorn in ounces? Think about the estimate that 
you gave me and what would be a reasonable estimate in ounces? What would be a 
reasonable estimate in ounces?”  Teacher called on another student who responded with 20 
ounces. 
Teacher: “Ok, [student] says twenty ounces. What would you say?” The teacher called on 
another student. “He says sixteen. Why do you say sixteen?”  
Student: “Because it feels like a pound.” 
Teacher: “It feels like a pound. Ok, why’d you say twenty?” 
Student: “Because it feels like a pound and it has some ounces left over.” 

The teacher continued the discussion by asking the students to give examples of what other 
objects might weight the same as the bag of popcorn. The teacher asked the students questions 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

872



that were open ended and required them to explain their reasoning. The students were asked to 
interact with the content in the form of a bag of popcorn and also relate it to their own 
experiences. This type of interaction was seen repeatedly in classroom observations of the 
teacher. 

When students were asked in interviews how they would describe their teacher, they stated 
that she was “smart”, “funny”, “helpful”, and “a good teacher” among many other similar 
comments. In response to the question “Do you think [your teacher] thinks math is important?” 
two students stated the following:  

Student 1: “She like applies it to real life things…Like with geometry, like with like 
structures, how they need to be built. Like construction. How they need to be built just to 
stand.” 
Student 2: “And sometimes in math like she compare (sic), like when she doing geometry, 
she compare it to real things in life. Like a rectangular prism as a cereal box. A sphere as a 
ball. She can explain it as to real life things.” 

It was through these methods of instruction along with the comments made by students in 
interviews that the researchers began to see a pattern that allowed for students to bridge the gap 
between the mathematics content being taught and their background. This concept will be 
discussed further in the next section through a framework of hybrid space. 
 

Creating a Hybrid Space 
Two of the four constructs from Barton and Tan’s (2009) framework emerged through our 

analysis present in this study. These constructs are discussed below with reference to how they 
were present in the classroom with supporting evidence from student interviews. It is important 
to remember that the teacher was not intentionally creating a hybrid space but rather this space 
occurred spontaneously as a result of her teaching practices. Flessner (2009) discusses this idea 
by stating that it was only when he stopped trying to create a hybrid space that one occurred, and 
that it may be best for teachers to focus on creating the conditions that are conducive for a hybrid 
space.  

 
Family Funds of Knowledge and Discourse 

Family funds of knowledge and Discourse is related to the student’s family life such as 
events or activities that were discussed by the students Barton and Tan (2009). In the first lesson 
that was observed, the teacher brought items from her house for students to compare and 
contrast. The essential question that was posted for the lesson was “What is capacity?” The 
teacher asked the students to make a decision as a class as to how items should be ordered from 
the smallest to largest capacity without looking at any labels. The students were presented with 
the following list of items: soda bottle, stomach medicine, marinating sauce, milk carton, throat 
spray, cooking oil, and olive oil. One student told the teacher that she thought the stomach 
medicine should go next as the teacher lined the items up from smallest to largest capacity on the 
desk. The teacher asked her to explain her rationale as detailed below. 

Student: “…because, like, when I take it, it’s very thick.” 
Teacher: “Ok, so, you based it on the thickness of it?” The teacher holds up the Pepto-Bismol 
Student: “Yeah. I based by how it looks.”  
Teacher: “You didn’t feel it.” 
Student: “Like, yesterday I had to get some.” 
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Teacher: “Oh, ok, ok, so, you’re using your knowledge that you might have used before by 
holding it, but let me ask you this…Ok, let me ask you this. You didn’t hold any of these 
other ones.” 
Student: “No” 
Teacher: “So how do you know that this [teacher holds up Pepto-Bismol] is heavier than this 
[holding up the throat spray]? “ 
Student: “I know the soda is heavier than all.” 
Teacher: “So because it’s thicker, you think it is heavier? Ok, we’ll check all of that out.” 

Another student is called on immediately after this discussion and relates her experience at 
home with capacity. 

Student: “Um, in my house my sisters, they be trying to say that, well, they put two cups out. 
They put a big, it’s small and all thin and stuff, and they have a little small one. And they say 
the ones that’s small has more liquid inside it when it doesn’t.” 
Teacher: “Ok, um, because it’s smaller, anyone have one of those, than something that’s 
taller?” 
Student: “It’s wider.” 
Teacher: “It’s wider. It could have more liquid than something that’s taller. And that’s true.” 

The teacher discussed the idea of wide versus tall with the rest of the class, and the students 
began to order the items again. This interaction indicates that the teacher was open to the 
students sharing their experiences with capacity as well as discussing how it related to the 
current lesson. This helped the students to connect new concepts to previously developed 
understanding of the content.  

During another classroom observation, the teacher put up the essential question “How are 
pounds and ounces used in the customary system?” Students were again asked at the beginning 
of the lesson to not only tell the teacher what they already knew about the topic but also 
encouraged to share how they used pounds in their lives. The discussion below began shortly 
after the lesson had started. 

Teacher: “She said there are sixteen ounces in a pound. Where have you seen pounds and 
ounces used.” The teacher called on students to respond. 
Student 1: “At the doctor.” 
Student 2: “The store.”  
Student 3: “Bi-lo” 
Teacher: “Alright, at a store, Bi-lo, you said Bi-lo, and you’re weighing what?” 
Student 3: “Like food.” 
Student 4: “Like vegetables.” 
Teacher: “Food, alright, wait a minute. One person at a time.” 
Student 3: “Like food or vegetables.” 
Teacher: “Ok, vegetables, ok. Where else?” The teacher called on another student. 
Student 5: “At home.” 
Teacher: “At home, how’d you use it at home?” 
Student 5: “Like when you want to know how much rice you want to use.” 
Teacher: “Ok” the teacher called on another student. 
Student 6: “You can also use to how much milk you want to put in a cake.” 

The teacher asked for a few more comments and then moved the discussion on to how to 
estimate weight by looking at an item. The teacher had brought bags of popcorn that was given 
to each group in the class. Students were asked to weigh the bag in their hands and later to 
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compare it to other items in the class and in their book bags. Though conversations such as these 
can occur spontaneously in a classroom, the teacher fostered an environment where students 
could discuss mathematical concepts in relation to their own experiences. She also encouraged 
discussion and questions in the class. The brought household items for students to interact with 
and asked them to use their own items to help understand the concepts. Students were eager to 
participate and seemed to be excited about sharing their experiences. 
 

Peer Funds of Knowledge and Discourse 
In this study, peer funds of knowledge is related specifically to a subcategory that 

Barton and Tan (2009) refer to as a studenting Discourse. Studenting is how students 
provide peer support or specifically help each other with mathematics (Barton & Tan, 
2009; Moje et al., 2004). This concept was evident in how students grouped together and 
helped each other to understand concepts. The following discussion between two students 
occurred during the lesson on capacity as described in detail in the previous section. The 
students are looking at a plastic measuring cup that the teacher has given them and asked 
the class to come up with inferences.  

Student1: “Thirty-two equals is one quart and on this scale is always skipping fifty 
and one liter…”  
Student2: “No, it’s skipping like a hundred and fifty, I mean a hundred. Look.” 
Student1: “Yeah, yeah.” 
Student2: “It’s skipping a hundred.” 
Student1: “One liter equals one thousand milliliters.” 
Student2: “It’s skipping one hundred.” 
Student1: “Oh, I see. I already got confused with it.” 

Student 2 helps student 1 to understand what the intervals on the measuring cup indicate. During 
another observation, this type of studenting was observed again as one student struggled to 
understand a warm-up problem that was posted on the board at the beginning of class. The 
students are trying to determine what a flat diagram on the board will look like if it is folded to 
make a 3D image.  

Teacher: “Ok, what shape does that make?” The teacher called on a student. 
Student 1: “A cylinder” 
Student 2: “The cylinder wouldn’t look like that…one circle would be at the bottom. One 
circle is at the top.” The teacher looked confused by the student’s comment, so the student 
walked up to the board to show the teacher his explanation. 
Student 2: “A cylinder would be like this. A circle would be here. The other circle would be 
right here, so when the wrap…” The student indicated with his hand what he was doing with 
the figure on the board.  
Teacher: “Ok, what is it then?” 
Student 2: “I thought it was a prism.” 
Student 1: “no” 
Student 3: “Can I, can I…” This student goes up to the board to help the other student. The 
teacher lets them think through the problem together on the board.  
Teacher: “We have a debate going on here.”  
Student 3: “If you put this side together with this side, it will make a round side like this. 
Then you pull this down like that right there and down there and it becomes a cylinder.” 
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Student 2: “But the, but look, a cylinder it usually this circle’s right here and this circle’s 
right here.” 
Student 3: “These two circles up, and you fold it this way.”   
Teacher: “You probably, that’s probably the way you’re used to seeing it. Have you thought 
that this can actually be folded like this?” The teacher attempted to demonstrate the folding 
with her hands. “And then you’re going to have this part here and that part here.” The teacher 
is referring to the circles. “Can you see that?” 
Student 3: “It’s not a prism.”  
Student 2: “Oh, yeah”  
Teacher: “Ok, guys. Ok, this is interesting. Do you see it now?” 
Student 2: “Yeah, I see it.” 

This construct is repeated throughout the observations and supported in interviews. When two 
students were asked in their interview if they ever got to ask for help from friends in class, one 
student responded with “Like some people like didn’t know how to do it. ‘Cause I got a 100. 
And we had to help other people, so they could get a 100 too.” In several of the interviews, 
students stated how they were concerned about their fellow peers understanding. When asked if 
they got to work in groups, one student stated the following. 

“She [the teacher] placed us as in, like, she has like, I’m one of the high students. She has 
like certain high students with some people who don’t learn as quickly and has some people 
who learns quickly. And then some people like for others to help.”  

It was clear from this comment that the students were engaged in helping each other through 
grouping. This pattern became even more apparent when the students were asked in an interview 
if their teacher would listen to them if they came up with a new strategy or idea in class. 

Student 1: “Yes, she’ll listen ‘cause like we come up with new strategies to use in math. We 
come up with new strategies to see, try a strategy, um, like on a problem. And if she get it 
right, she’ll say it’s right. If she get it wrong, it’s like, she’ll tell you it’s wrong. For some 
strategies, is like only on that problem. You a strategy on only that problem not on other 
problems like on the same subject, or the same thing.” 
Student 2: “She’ll like accept it ‘cause it might help…” 
Student 1: “Other students.” 
Student 2: “Yeah, it might help other students. And like it might help her explain it better.” 

Not only were students supporting the idea of helping each other through sharing strategies, but 
they also felt that what they had to say was significant to the class. Both classroom observations 
and interviews revealed that students were concerned with each other’s understanding and were 
willing to help each other. Their teacher often put them in groups or pairs in an effort to facilitate 
their learning and also encouraged them to explain their rationale to each other.   
 

Discussion 
This study suggests that a hybrid space can be created in a mathematics classroom 

and some of the constructs that have been found in other content areas are also present in 
a mathematics context. Two constructs from Barton and Tan’s (2009) framework were 
evident after analyzing the data: family funds of knowledge and Discourse and peer funds 
of knowledge and Discourse. The reason why the other two constructs were not present 
could be that the teacher was not trying to create a hybrid space in her classroom. If the 
teacher had been intentional in her instruction for creating a hybrid space, all of the 
constructs in Barton and Tan’s framework (2009) might have been present. The study 
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was also limited in scope in that the lessons observed were over a short period of time. If 
observations were conducted over the course of the year, it is possible other constructs 
would be seen in the data. It is also possible that different constructs are more readily 
seen in different content areas as Barton and Tan’s (2009) framework was based on a 
science classroom and that further research needs to be done to further investigate the 
framework for mathematics.  

This study also presents the possibility that a hybrid space can contribute to student 
motivation in mathematics. The larger study that led to this case study was on student 
motivation. Students in this fifth-grade setting displayed higher levels of motivation for 
mathematics than all other K-5 students at the same school (Linder, Smart, Cribbs, 2011). 
The fact that students are active participants through Discourse in the lessons observed 
could contribute to their motivation. Sfard (2009) stated that “learning to speak, to solve 
mathematical problem or to cook means individualization of these activities, that is, a 
gradual transition from being an only marginally involved follower to other people’s 
implementation to acting as a competent participant, with full agency over the activity” 
(p. 56). This statement could hint at the interplay that is occurring in the classroom.  

The findings from this study suggest that teacher practices do impact the development 
of a hybrid space in a mathematics classroom. This study also suggests that a hybrid 
space in a mathematics classroom may provide a method of improving motivation. The 
Discourse that was present in this teacher’s classroom shows a picture of how students 
are trying to make meaning of the mathematics content and add it into their funds of 
knowledge.  Further research needs to be done to better understand the relationship 
between teacher practices and hybrid space as well as influence a hybrid space can have 
on student learning. It is useful to investigate these teaching practices in more depth and 
examine the long-term impact to student learning and motivation when they are members 
of a classroom that allows for a hybrid space to exist. 
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The research reported in this paper has a bearing on qualitative proportional thinking, for which technology is used; 
specifically an interactive computational program which supports the construction of the concept of proportion in a 
qualitative way is developed. The indicators of this concept are constructed and the ones of the development of qualitative 
proportional thinking, the design of didactic activities and their insertion in the interactive computational program is shown, 
as well as its implementation, to finish with the analysis and discussion of results.   

Introduction 
The development of proportional thinking is important since basic educational levels, as from 

it depend that children be able to comprehend and face everyday situations which are linked with 
the concept of proportion. At the same time, as it is established by XXX (2002) in order for the 
student at basic level to be able to assign sense and meaning to proportion it is fundamental to 
develop his proportional thinking, both the qualitative and the quantitative. That is to say, for the 
development of proportional thinking it is required, among others that the subject constructs the 
concept of proportion, and in order for him to be able to construct this concept it is required to 
have proportional thinking. In other words, there exists a bidirectional relationship between the 
mathematical concept of proportion and proportional thinking.    

In order for a child to identify the proportional, in accordance with Piaget (1978), this should 
be made starting from the concrete to reach the abstract. Similarly, the construction of this 
mathematical concept is represented both at a qualitative level and at a quantitative one, which 
determines the proportional thoughts both qualitative and quantitative, respectively.  

From another perspective, nowadays, within the educational contexts there exists the 
possibility of designing and developing technological materials of an interactive type. Whatever 
classroom experience can use electronic technology as mediation way, but it is necessary to 
value dimensions such as: objectives to be reached, organization of the themes which enable the 
development of the preferred contents to be included, learning activities and the evaluation both 
of the learning and the overall process.  

On the other hand, the increment of technological materials is amazing; however, didactic 
strategies designed with theoretical elements are not always included.  In the research being 
shown, in this paper, the educational theory named Mathematics within the Context of Sciences is 
used, by means of which the mathematical themes and concepts should be treated is such a way 
that they are linked to the environment, to everyday activities, to labor and professional 
competencies, as well as to the other sciences studied by the pupil.  

From what has been described, a research has been dealt with whose problem is the 
construction of the concept of proportion and the development of proportional thinking both 
qualitative and quantitative, by means of didactic activities with electronic technology, in sixth 
grade children from elementary education. Since the research is so vast, this presentation only 
reports one didactic activity for the development of qualitative proportional thinking, as well as 
its implementation and analysis, which constitutes a partial research.  
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The objective of the partial research which is reported is to design didactic activities for the 
construction of the concept or proportion (in a qualitative way) and the development of 
qualitative proportional thinking, by means of an interactive computational program.  

The supposition of research emerges from the fact that upon constructing or reconstructing 
the concept of proportion, there will be, to some extent, a bearing on the development of 
proportional thinking, for this report, on the qualitative proportional thinking.  

 
Methodology 

The design of the activities for the development of qualitative proportional thinking, by 
means of an interactive computational program, uses a methodology provided in the following 
three steps: 1. To determine the indicators associated with the construction of the concept of 
proportion (in a qualitative way), as well as the indicators associated with the development of 
qualitative proportional thinking (by means of the mathematical concept). 2. To design the 
didactic activities on the concept of proportion and their insertion in the interactive 
computational program. 3. To implement the interactive computational program and, to analyze 
and to discuss the results.  

 
Theoretical Foundation 

Mathematics within the Context of Sciences 
The theory of Mathematics within the Context of Sciences establishes that mathematics 

should be presented to the student, at any educational level, through contextualized events, 
(Camarena, 2005, 2009). This theory conceives the learning and teaching process as a system 
where the five phases of the theory intervene: curricular, cognitive, didactic, epistemological and 
educational.  

Research Development 
1. Determination of Indicators 

The authors who are mentioned in this section also belong in the section of theoretical 
foundation, it is just that in order not to duplicate the information they have only been located in 
the present section. It is through them that the indicators for the development of the concept of 
proportion are identified, as well as the indicators for the development of qualitative proportional 
thinking. It is worth mentioning that the identified indicators have been highlighted in bold type.  

As an antecedent of what has just been mentioned stands the research by Ruiz (2002) who 
designed and applied a teaching proposal dealing with the concept of proportion and who found 
out different difficulties presented by students in the last year of elementary education, among 
them we find the two following: 1. Qualitative thinking of elementary school students revolving 
around proportionality is barely developed. 2. Students showed confusion when establishing 
proportions in an intuitive way and explicitly in geometric figures, since they were not able to 
establish proportions when they compare it in figures of similar length with the width of another.  

Piaget (1978) argues that between 11 and 12 years of age, it is possible to observe in the 
subject the presence of the notion of proportion in different fields, such as: spatial proportions 
(similar figures), the relationships between weights and lengths of the arms of the scales, the 
probabilities, etc. Piaget also mentions that through his experiments he points out that the child 
acquires the qualitative identity before quantitative conservation and makes a distinction between 
qualitative comparisons and the true quantification. In fact, for Piaget (1978) the notion of 
proportion always starts in a qualitative and logical way, before being quantitatively structured. 
He stresses that I order for the student to develop his qualitative proportional thinking it is  
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necessary to start from the notions of enlargement  and reduction (1), following the idea of a 
photocopy or a scale drawing, assuming that the student at a really early age manages to 
recognize what is proportional using perception and observation. One way to express his 
qualitative thinking is to use linguistic expressions such as “greater than…” and “lesser than…”, 
that is to say, using verbal categories (2) 

In accordance with Piaget and Inhelder (1978), after the student develops the perceptual part 
(qualitative proportional thinking) an ordering when making comparisons appears (which is 
located in the shift from qualitative proportional thinking to quantitative proportional thinking), 
this can be verified when the student compares figures superimposing them taking as origin the 
indicator to compare (3). In this respect, Piaget points out that in this shift from the qualitative to 
the quantitative the student can build a figure enlarging it or reducing it, thus constituting the 
indicators to enlarge and to reduce (5). Later on, the student uses the measurement when 
making comparisons, firstly confronting parts of the object and superimposing one figure over 
another and then using a measuring instrument, conventional or not. Thus, measuring with 
instruments (6) represents another indicator, allowing the development of his quantitative 
proportional thinking.  

It is important that the student when developing his qualitative proportional thinking 
manages to use the rule of three (7) assigning sense to this and not merely in a mechanical way 
(Ruiz, 2000), with which one more indicator is defined.  

In terms of Freudenthal (1983), in order to establish proportions, both intuitively (that is, 
qualitatively) and explicitly (that is, quantitatively), the comparisons are expressed in two 
modalities: direct and indirect. The direct modality of comparing is when and object is 
superimposed over another object, which defines the indicator to compare directly (8), whereas 
the indirect one is when there are two objects and an instrument to compare them, like the use of 
a ruler or simply by counting obtaining as a result the indicator compare indirectly (9). The child 
is able to compare two objects indirectly and is able to do it in a qualitative and/or quantitative 
way.  

It is important to mention that authors such as Piaget (1978) and Streefland (1991) mention 
in a natural way qualitative proportional thinking is first developed, through the perception of the 
empirical. On the other hand, it has been demonstrated that in the educational practice the use of 
algorithm is given priority, thus students developing a quantitative proportional thinking in a 
mechanic way, when in many occasions they have not developed qualitative proportional 
thinking. Thus, the qualitative-quantitative sequence is not always present in students.  

Freudenthal (1983) points out that the comprehension, in an intuitive way, (i.e. qualitative), 
of proportion can be guided and delved in by the use of visualization and the latter can be 
illustrated using detailed constructions, where the drawings are differentiated and show what 
points correspond among themselves in the original and in the image. Freudenthal also suggests 
that upon working on the proportion of lengths flat figures are used as means of representation, 
for its expressiveness is more global, in the sense that they make it easier for the student the 
qualitative and quantitative comprehension between magnitudes by means of visual perception. 
From this perspective of mathematics, it is also important that the student manages to express 
proportion as a fraction (10) which constitutes one more indicator. Moreover, for Freudenthal 
(1983), it is precise that in teaching it is precise to take into account both internal proportions 
(11) and external proportions (12), defining the former as the relationships which are established 
between different values of the same magnitude, and the latter as relationships between values of 
different magnitudes; both proportions express two indicators to be taken into account.  
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 Resorting to what has been mentioned by researchers in the previous paragraphs, a table in 
which the indicators referred to proportion as well as to qualitative proportional thinking is 
shown next; the didactic actions associated to such indicators are established as well.  
 
Objects of 
study 

Objectives Indicators Didactic actions 

 
 
 
The 
mathematic
al concept 
of 
proportion 

To establish 
proportions in a 
qualitative way 

Compares directly (8) 
Compares indirectly(9) 

♦ To superimpose figures 
♦ To use a measuring 
instrument 

To establish 
proportions in 
quantitative way 

Compares indirectly (9) 
Uses internal and 
external proportions (11, 
12) 
Expresses proportion as a 
fraction (10) 

♦ To use a measuring 
instrument 
♦  To use a table relating data 
and writing the proportion as a 
fractions 

 
The 
developme
nt of 
qualitative 
proportiona
l thinking 

To contribute to the 
development of 
qualitative 
proportional thinking 

Enlarges and reduces (1) 
Uses verbal categories 
such as “greater tan” or  
“lesser tan” (2) 

♦ To select reduced figures or 
enlarged ones by means of  
♦ To use linguistic expressions  

To contribute to the 
shift from qualitative 
proportional thinking 
to quantitative. 

Compares (3) 
Counts (4) 
Enlarges and reduces 
figures (5) 

♦ To superimpose figures 
♦ To count the sides of squares 
in one grid  
♦ To draw enlarged or reduced 
figures in a grid  

Table 1. Indicators and their didactic actions. 
It can be observed in table 1 the diverse didactic actions which students should work upon, and 
which they can carry out in the interactive computational program. These didactic actions are 
expressed in a generic way like: To superimpose figures, To use verbal categories* To use 
measuring instruments, To use tables*, To select figures, To draw figures in a grid, To count the 
squares in a grid.  
The actions marked with an asterisk, require of a recorder, which is external to the interactive 
computational program. When the student carries out these didactic actions it is necessary to use 
the recorder to have evidence. The verbal categories are recorded in the audio, as well as the 
comments by the students. The didactic actions “to use tables”, allows the student to relate date 
from the same column, between two columns or that the table can be filled out by him. For the 
case of relating data, the audio allows to identify this indicator.  

The link between didactic actions and computational actions. The computational program 
was developed in order for the student to be able to carry out the didactic actions. For this 
research the computational program which has been developed allows to incorporate actions 
such as to drag figures, to access the figures of a box, to use a virtual pencil as though it were 
real, to make use of a grid to count the squares or to draw upon it, to make measurements with 
instruments such as a virtual ruler, to use tables to be filled out; al the actions afore mentioned 
are named computational actions.  
In table 2 the link between didactic actions and computational actions, necessary for the 
constructions of the concept of proportion, as well as the concept of qualitative proportional 
thinking is established. That is, computational actions are the ones which allow that didactic 
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actions associated with each indicator of the construction of the objects of study can be carried 
out.  
 

Didactic actions Computational actions 
To superimpose figures To drag figures 
To use measuring instruments To use a virtual ruler 
To use tables  To fill out a table 
To select figures To  access figures  
To draw figures in a grid To use a virtual pencil 
To count the squares in a grid To use a grid 

Table 2. Link between didactic actions and computational actions. 

2. Design of Didactic Activities and Insertion in the Interactive Computational Program 
In this section are first described the pedagogical elements from the interactive computational 

program which was overtly designed for this project. Later one the didactic activity is shown, 
specifying its purpose, which in founded upon the theoretical elements previously shown; the 
contextualized event which identifies it, in accordance with the theory of Mathematics within the 
Context of Sciences; the didactic actions which can be used by the student when dealing with the 
activity and, the computational action associated with this event; to finish with the insertion in 
the interactive computational program.  
We present next the pedagogical elements from the interactive computational program. The 
pedagogical elements form the computational program allow the representation and visualization 
of instructions, the activities to be carried out, the help and options which the user can resort to, 
etc., in general the elements which are used in the learning process.  
 

                           1(a) Familiar context                                                1(b) Motivation                                                 1(c) Follow up 
Figure 1. Screens from the interactive computational program 

In accordance with Mathematics within the Context of Sciences, a familiar environment as 
well as metaphors of the real world adapted to sixth grade elementary students are presented, see 
figure 1a. The program is user friendly as it allows the user to log out, log in and send. For 
instance, you hold a click on the door to log out, see same figure 1a. A visual style is presented 
by means of font types, buttons and general aspects focused on elementary school children. 
Brevity in the texts is used, incorporating sounds and graphics to substitute possible content in 
the text. The type, style and size on fonts are legible. Messages are simple and concise, so as to 
avoid the user being confused.  
The user is given tolerance of three attempts to correctly solve the activities and when he carries 
out an activity correctly, he is warned as a motivating means, see figure 1b. In the interactive 
computational program the student can look up his advance, see figure 1c.  
When the student does not accomplish to carry out the activity correctly, then, animations are 
used to illustrate the concepts by means of examples and thus the association between concepts 
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is immediately generated. Next we present the activity and its insertion in the interactive 
computational program.  
Purpose of the Activity   

The activity pursuits the construction of the concept of proportion and in consequence the 
development of qualitative proportional thinking. We start from what has been pointed out by 
Piaget (1978), Streefland (1991) and XXX (2002), on the fact that early teaching of proportion 
should start from qualitative levels of recognition of them, for this reason, the activity does not 
require of the use of quantities for its solution.  
Contextualized event of the Activity 
“Ricardo is ten years old, he went to Veracruz and at the harbor he saw a ship which liked him 
very much, the child drew it in a sheet of pager. When he came back to school he showed it to 
his teacher. She asked for four versions of the ship at the photocopier, some of them enlarged 
and others reduced, in different sizes. After that she took the photocopies to her students and 
asked them to choose the figure of the ship which was enlarged twice the size. Help them to find 
the ship which is enlarged”.  
Didactic and Computational Actions of the Activity 

In order to solve this activity the student can make use of the following didactic action: to 
select the reduced figure or the enlarged one to the given one. This corresponds to indicator (1): 
to enlarge and reduce, from the development of qualitative proportional thinking and is 
associated with the computational action of accessing figures.  
The student can also make use of the didactic action of superimposing figures, this didactic 
action corresponds to indicator (8) of directly comparing when we aim at establishing 
proportions in a qualitative way (intuitive), similarly, it corresponds to indicator (3) of 
comparing the development of the shift from qualitative proportional thinking to the quantitative 
one. 

In order to superimpose the figures, the student has the option to drag, with the mouse, 
whichever of the four figures to superimpose them over the original one and revise, by the use of 
visualization, whether the figures is enlarged or reduced in all the sides in the same quantity, the 
computational action involved corresponds to drag figures.  
The recorder is turned on all the time in order to have the comments by students and their 
linguistic expressions which allow us to identify the qualitative proportional thinking through 
indicator (2) of using verbal categories.  
If, not even in a second attempt is the student able to select the correct figure, it means that his 
qualitative proportional thinking is scarcely developed; however, as it has been mentioned, some 
students develop more of a kind of thinking than another, that is why they are given the option to 
move to didactic actions from quantitative proportional thinking. Then, there is the didactic 
action of using a measuring instrument, associated with indicator (9) of comparing indirectly, 
which corresponds to the construction of the concept of proportion both in a qualitative, and in a 
quantitative way, it will depend on whether the proportion is established in a numerical way 
(quantitative) or it is only verbalized (qualitative). At the same time, this didactic action is 
associated with indicator (6) of measuring with instruments from quantitative proportional 
thinking. The corresponding computational action is a virtual ruler, which allows the student to 
measure each side of the original figure, as well as each side of the figures that appear to select 
the one which is enlarged. It is worth mentioning that this interactive computational program 
randomly generates the figures (it is not always a ship), as well as their enlargement or reduction 
in different scales (which are not always expressed in whole numbers), with the purpose that it 
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does not become a mechanic activity and that it is not memorized. In general the computational 
program randomly generates the data, the figures, the contexts and the tables.  
Insertion of the Activity in the Interactive Computational Program  

In a first screen the figure of the ship and 4 figures which are similar are shown, but with 
Little differences among them, see figure 1b. For instance, they can be twice the size, thrice the 
size, reduced to half or to one third of the original size and the child is asked to choose from the 
4 figures the one which is enlarged to twice the size of the original.  
When the child has selected one of the figures, it is because he has visualized the enlargement (1) 
or has dragged the figures in order to superimpose them and then be able to compare them 
directly (8) and define which one is enlarged twice the size. After selecting the figure, the 
computational program analyzes the choice made and following it sends an answer with the 
result of the analysis: a) If it is correct, another activity is shown to the child. B) If the selection 
is incorrect, the program sends a written message saying “the selection is not correct” and it asks 
if the child wants to have another attempt. If the child answers affirmatively, then, the same 
activity with the same data appears, but now with an auxiliary tool which is a virtual ruler, as it 
has been mentioned, which enables him to measure and make comparisons (indirect 9,6). If even 
with this support of the virtual ruler the selection is again incorrect, then, the interactive 
computational program presents another version of the same activity, which is randomly 
generated with other figures and other data, in order for the child to try again.  

If after these attempts the student has not been able to select the correct figure, then, he is 
presented with one simulation of the activity, with other figures and other date, in such a way 
that the simulator superimposes figures and drags the virtual ruler, appearing the data of the 
measurements of the figures, in this way it can be by the actions performed by the simulator 
which figure is enlarged or reduced, in accordance with what is being asked. This allows the 
child to associate these actions with the ones he should have made in the attempts he carried out.  
3. Implementation, Analysis and Discussion of Results  

For the implementation we had a group of 29 students from sixth grade of elementary 
education in Mexico, specifically from a public school in Mexico City. The ages of the students 
ranged fluctuated between eleven and twelve years old. Six sessions were devoted for the work 
with students, each one lasting two hours.  
The analysis and discussion of results are carried out in relation to the indicators of the 
construction of the concept of proportion (in a qualitative way) and to the ones of the 
development of qualitative proportional thinking.  
Seven out of twenty-nine students are identified who chose the enlarged figure (Ind. 1), by 
means of visualization, though; it is worth mentioning that two of them managed to do that in the 
second attempt. However, in general it can be said that 24% of students, by means of 
visualization are able to identify the proportions and select the correct figures, that is, they have 
developed their qualitative proportional thinking. This can be observed through the recordings of 
the verbal categories (Ind.2) by students, such as “this is greater than the other”, “it appears that 
this is twice the size”, which were expressed, by six out of the seven students, during this 
activity.  

The students who have not developed this qualitative proportional thinking are unable to 
visually identify the correct figure and they need to resort to direct comparisons and indirect 
ones. In the direct comparison they make use of the didactic action of superimposing figures, 
whereas in the indirect comparison, the didactic action is the use of a measuring instrument.  
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During the activity, eight out of twenty nine students drag figures thus fulfilling the indicator of 
comparing directly (Ind.8), which provides evidence that they can establish proportions in a 
qualitative way. Note that the action of superimposing figures also determines the indicator of 
comparing (Ind.3), which favors the shift from qualitative proportional thinking to the 
quantitative one. Thus, 28% of the students start to develop their qualitative proportional 
thinking and shifting to quantitative proportional thinking. Moreover, comments by three out of 
the eight students are recorded,  such as: “this side is twice the size of the other” or “this side fits 
twice in the other”, denoting the use of internal proportions (Ind.11) see table 1, which provides 
evidence of an incipient use of proportions in a quantitative way.  
The remaining fourteen out of twenty-nine students used the two attempts which are given by the 
system to make a selection by means of visualization or the dragging of figures, without success. 
Moreover, in the audio recordings they registered linguistic expressions that show their difficulty 
to make the selection such as “the tree figures which are greater resemble each other”. It is 
possible to say that these students have not managed to develop their qualitative proportional 
thinking.  

Upon not being successful, the interactive computational program provides them with a 
virtual ruler. Only six out of the fourteen students measured (Ind. 6) the sides of the figures and 
compared them using this instrument identifying the correct figure, with which the indicator of 
comparing indirectly (Ind.9) is verified. Upon being measuring, the students obtain numerical 
values which compare sides to corresponding sides, establishing internal proportions (Ind. 11); 
which gives rise to establish ratios in an explicit way; six out of the fourteen students when 
carrying out this actions show signs of the development of their quantitative proportional 
thinking.  

The remaining eight students out of the fourteen who used the virtual ruler, only measured 
one of the sides and selected the figures which had twice the size of the homologous side, but 
they did not notice that they had to measure all the sides of the figure to compare them to the 
figure they selected. These errors led them to the unsuccessful selection of the correct figure, 
which shows us that these eight students have not developed their qualitative proportional 
thinking either.  

Conclusions 
The different computational actions, dragging with the mouse, and using a virtual ruler, have 

a bearing on the didactic actions of superimposing one figure over the other to make the 
comparison or using a measuring instrument. All that depended on the kind of proportional 
thinking which students had previously developed either the qualitative or the quantitative one.  
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Nearly a century of research has established a relationship between the complexity of children’s 
block play and mathematical thinking and reasoning in other contexts and in later years. 
However, most of this research has evaluated complexity by examining children’s completed 
structures. This video-ethnographic study looks at mathematical thinking and reasoning during 
block play as a way of contributing to learning trajectory research in early childhood 
mathematics that values diverse ways of thinking. The paper highlights opportunities for 
mathematical reasoning that emerged during the construction of “less” complex structures. 
 

The importance of children’s block play for developing spatial thinking and geometric 
reasoning has been established through multiple studies (e.g., Casey et al, 2008; Guanella, 1934) 
These studies, dating back almost a century, have looked at ways to increase the complexity of 
children’s block structures as well as ways that this complexity can support more complicated 
mathematical thinking, particularly in reference to spatial visualization skills, such as imagining 
flips and rotations (e.g., NRC, 2009). In addition, this body of work has documented 
relationships between block play and mathematical thinking more broadly (e.g., Caldera et at, 
1999; van Nes & van Eerde, 2010).  For example, recently Wolfgang, Stannard and Jones (2003) 
demonstrated a relationship between complex block play at age 4 and mathematics achievement 
in the 7th grade.  

One emerging line of research, developed in response to increased interest in young 
children’s mathematical learning trajectories (NRC, 2009), is the role that teachers can play in 
scaffolding children’s spatial and geometric learning through block play (Clements & Samara, 
2007; Kersh, Casey & Young, 2008; NRC, 2009).  Gregory, Kim and Whiren (2003) 
demonstrated that trained educators could support students in creating more complicated block 
structures by talking with children as they played with blocks. Their study, like most others, 
evaluated the complexity of the block building through the examination of the qualities of 
children’s completed structures.  

The purpose of the current study is to add to this emerging line of research on children’s 
learning trajectories in block play by evaluating children’s thinking and reasoning as they go 
about the process of building with blocks. In doing this work, we hope to contribute to diverse 
ways of evaluting and scaffolding children’s mathematical thinking during block play. Nearly all 
previous researchers have based their analysis of complexity on the completed block structures. 
For example, in 1934 Guanella described block structures as ranging in complexity from “pre-
organized,” where no structure is built, to piles and rows, to solid forms that include closed 
spaces, to three-dimensional structures (Guanella as cited in Casey et al, 2008).  In their recent 
study, Gregory, Kim and Whiren (2003) expanded on the categories for analysis developed by 
several previous blocks researchers to evaluate student structures based on three broad 
categories: the complexity of the building, the complexity of arches, and number of dimensions 
(use of points, lines and planes) in the finished structures.  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

888



We would like to consider the possibility that complex mathematical thinking might not be 
entirely represented by increased complexity of completed block structures. In other words, a 
child might set a task for herself in work with blocks on a single plane that is more 
mathematically complex than one involved in creating a structure on multiple planes. We believe 
that the documentation of children’s learning paths in their work with blocks ought to include an 
examination of the various cognitive demands and opportunities made throughout the building 
process as well as documentation of progression in creating more and more complex structures.  

Guiding our study were the following research questions: 
● What kinds of mathematical thinking and reasoning emerge during children’s play 

with various kinds of blocks in both formal and informal contexts? 
● How do interactions with others shape the mathematical thinking and reasoning 

that occurs?  
 

Theoretical Framework 
 This study draws on Vygtoskian (1978) traditions that see play as central to children’s 
development and see learning as an outcome of engagement in social activity. In his work, 
Vygotsky emphasized the tools that children draw on in their learning. These tools include the 
physical – such as Lego or wooden blocks – and also the social – such as ways of thinking or 
playing that are learned from other humans in social settings. Although Vygotsky’s work around 
scaffolding is most often taken up to analyze interactions between children and adults, in this 
study we would like to acknowledge the role that children can play as the knowledgeable others 
in their peers’ play.  Particularly, during free time where some children may spend far more time 
than others with certain materials and thus develop expertise, children themselves may be able to 
scaffold the block play of their peers toward more complexity. Vygotsky also described the role 
that a cultural tool like “self-talk” can play in scaffolding a difficult task. He describes a child 
standing on a chair to reach a cookie, vocalizing each step in the process as a way of managing 
the difficult task. In a similar way, many children talk to themselves as they play with blocks. 
Following Vygotsky, we believe it is important to capture and analyze this talk as a way of 
gaining further access to children’s mathematical thinking and reasoning. 

 
Methods 

This project is embedded in a larger ethnographic study of children in a rural community as 
they move from kindergarten to first grade, which seeks to explore their mathematical learning 
during this time span. As a small, rural school, Taylor County Public School is an ideal site for a 
longitudinal study because there is only one classroom for each grade. Nearly all of the students 
who attend the school are eligible for free lunch and about 90 percent are African American. 
These characteristics make this an important site for broadening the research base on learning 
trajectories around block-building because much of the reseach on blocks has occurred in 
settings where a majority of the children are European American and come from middle-income 
families. Data collection for the larger project includes weekly classroom observations supported 
by video- and audio-taping, individual video-taped assessment interviews with each child, audio-
recorded parent interviews and focus groups, and video- and audio-taped observations of Parent 
Math Nights. Data collection and analysis for this paper has been informed by the multi-year 
relationship the first author has with the school. 

As an ethnographic study, the research team seeks to understand children’s experiences 
through both observation and participation. For this aspect of the project, this means that rather 
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than comparing students’ play and their block structures to pre-existing criteria, we attempted to 
document the mathematical interactions students engaged in during the process of play. In the 
preschool classroom, we took fieldnotes, audio-recorded conversations, and documented 
interactions with video cameras during both formal mathematics lessons and  free-choice time, 
when children were allowed to choose among the many materials in the room, including Lego 
blocks, wooden blocks, and unfix cubes.  

Data analysis was supported by the qualtiative data analysis program NVivo9. Using this 
program, the research team was able to code excerpts of field notes as well as segments of video 
clips for analysis. For example, a 30-second video segment could be identified and coded 
separately from a longer video clip. The observer who recorded the video also used the Nvivo9 
program to describe the action going on in the video and transcribe some speech. Initially, data 
were coded based on the setting, the type of interaction, the materials used, and the mathematical 
concepts. The current codes are listed in the text box to the right; however, coding, particularly 
around describing the block play and mathematics, is being continually refined. At the time of 
writing this proposal, we still have another three months of scheduled observations in the 
prekindergarten. As a result, the analysis reported in the following section is tentative and still 
evolving. Over time, we hope to create a map of the opportunities for thinking and reasoning 
possible in the midst of block play.  

Results 
 In this section, we describe several representative episodes of block play captured by 
videotape or fieldnotes over the course of the study. These episodes were chosen to demonstrate 
the mathematical thinking and reasoning that occurred as children interacted with different kinds 
of blocks, in different settings, and with different people. While all are unique, the kinds of 
thinking and interactions that occurred in each episode can be found across our data record. 
Episode 1: Carter and Wooden Blocks 

One afternoon, Carter, who frequently played with all kinds of blocks during free choice 
time, chose to build with wooden blocks. The block set available in the classroom was relatively 
traditional, with a variety of rectangular and triangular prisms, cylinders, and arches. On this 
occasion, Carter decided to build a road out of blocks, announcing his intention to no one in 
particular. Carter began by laying down a 6-by-3-inch block. He then put together four 3-by-1.5-
inch blocks, choosing from dozens of blocks spilling from the tub around him.  For the next road 
segment, he chose two 6-by-1.5-inch blocks, putting them side by side.  He then used another 6-
by-1.5-inch block and then two 3-by-1.5-inch pieces. Finally, he chose two 3-by-3-inch blocks 
for the last segment in the road.    
 The wooden blocks, which were designed to make many equivalent shapes possible, allowed 
Carter to experiment and practice with composing and decomposing shapes. Carter seemed to 
embrace this activity as part of his play. After all, several of the large 6-by-3-inch blocks were 
available and Carter could have chosen to create a road out of identical blocks. Instead, he 
seemed to go out of his way to make as many equivalent combinations as possible in the building 
of his road. This ability to compose and decompose shapes has been highlighted as an important 
mathematical concept for young children because children “who can compose shapes develop 
better understanding of composing and decomposing numbers” (NCTM, 2010, p. 56) as well as a 
foundation for geometric concepts.  In addition, play like this afforded Carter the opportunity to 
practice visualization because he needed to orient blocks in the proper direction to make 
equivalent shapes and to choose the desired block from a pile in the tub. 
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 It is also important to note Carter’s intention to build a “road.” Traditional rubrics for scoring 
the complexity of block structures would categorize the road as less complex than other 
structures because of the lack of vertical building, arches and enclosures. However, this analysis 
does not take into account Carter’s intentional construction of an object that he likely visualized 
in his head before he created it as well as his efforts to create equivalent segments. In considering 
complexity, it is important to consider not just the finished product (in this case, a straight line), 
but also the particular tools used to construct the line (blocks of various sizes and shapes rather 
than all identical blocks and equivalent block units rather than varyingly-sized units). In this 
episode, Carter played by himself with little scaffolding from others; however, the available tools 
contributed to his mathematical thinking. This includes both the opportunities for visualization, 
identification, composing, and decomposing provided by the blocks, but also the story 
scaffolding provided by other toys. Casey and colleagues (2008) found that telling stories 
contributed to children building more complex block structures, and in many ways available toys 
served this purpose for children in the classroom. For example, in this case, it is unlikely that 
Carter would have chosen to build a road if cars and trucks had not been available to drive on it. 
 
Episode 2: Markus and Unifix Cubes 
 One morning toward the end of free-choice time, Markus came upon a bucket of unifix cubes 
scattered across the carpet. Initially, he bent and began to stack as many as he could into a tower 
nearly as tall as himself. After holding his tall tower against himself, he sat and began breaking 
the tower into smaller chunks. He then picked up one of these smaller towers and counted each 
cube, touching it as he said the number. After counting seven cubes, he reached out grabbed a 
loose cube and added it on. He then repeated the process, making four other towers of eight 
cubes each. He then laid these towers against each other on the floor. When he made his fifth 
tower, he laid it down by the others to check its length and then took off two blocks when he 
realized it was too tall. At this point, Dahlia and Trevor approached and began to stack the 
blocks into tall towers. Markus corrected them, saying “We need to make eight! For Bingo.” 
Trevor and Dahila accepted this and began to make towers of eight blocks, each of them 
counting the blocks in their finished towers one at a time, touching each block and laying their 
completed towers down next to the pile Markus had made. Other children started to approach, 
making various lengths with the cubes. Markus reiterated that the towers had to be eight long. At 
this time the teacher approached and asked Markus, “How many are in your tower?” He picked 
one up and counted for her, touching each block, “1,2,3,4,5,6,7,8.” She replied, “Very good.” 
 Unifix cubes are not often considered in block research; however, as we watched children 
play with them during the informal moments in the classroom, it seemed odd to exclude them. 
Because these cubes could only be used as isolated ones or as towers, the mathematical thinking 
they were most likely to elicit involved counting and comparison. Students compared towers to 
each other (as Markus did when he was making units of eight), compared them to themselves (as 
Markus did when he made his first tall tower), and compared them to objects in the room. 
Students also often counted these blocks, practicing one-to-one correspondence as they did so. 
Sometimes, this counting seemed to serve a particular purpose, as it did for Markus, who knew 
that the blocks were passed out in groups of eight for Bingo because the boards had eight spaces. 
However, more often students seemed to count simply because they had the blocks. This may 
have been because the teacher frequently used these blocks for counting in formal lessons and 
also tended to ask children to count the blocks whenever she saw them being used during free-
choice time. The unifix cubes seemed to offer fewer opportunities for spatial reasoning than 
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other blocks, although opporutnities to compare lengths did encourage students to talk about 
more, less, longer and shorter, and to make adjustments to their towers as a result of these 
analyses. Markus’s use of his already constructed towers of eight to measure his new towers 
demonstrated an ability to reason about length and quantity as he was able to recognize that 
towers of the same length would have the same amount of cubes without having to count again 
and was also able to adjust towers by taking off or adding on cubes to get the correct lengths. 
The task Markus set for himself and the way he set about it reveal aspects of his thinking and 
reasoning that would not be apparent in the completed pile of towers of eight blocks. 
 In this episode, the blocks themselves and the potential of a Bingo game later provided 
scaffolding for Markus to explore length and comparison and to practice counting. Markus, 
himself, provided this scaffolding for other students, by repeatedly naming the task at hand. 
Although the other students did not talk about the Bingo game, it is likely that this real-world 
purpose, served to persuade them to engage in the counting activity Markus set up.  On the other 
hand, the teacher’s intervention in this case did little to scaffold mathematical thinking. Markus 
had already counted the blocks in multiple towers by the time the teacher asked him to count. 
Indeed, he already knew there were eight blocks in the tower he was holding when she asked him 
to count the blocks. He performed the task anyway and her response did little to either 
acknowledge the thinking he had already done or to push him toward new mathematical 
engagements. 
 
Episode 3: Xavier, Carter and Legos 

At the beginning of free-choice time, Carter pulled out the Dulpo Lego blocks. He placed a 
large blue mat (25 by 25 nodes) on the floor and began to attach blocks along the perimeter of 
two sides. Nearby, Xavier began to build a tower of 2-by-4 blocks. Once the tower was 10 blocks 
tall, Xavier attached it to the mat on which Carter was working. Carter rejected this effort, saying 
“No, I’m making something right here.” He reached out and removed Xavier’s tower. Xavier 
accepted this correction and moved away from Carter, who followed him asking, “You want to 
help me?” Xavier tried one more time to make a tower and attach it, but Carter again removed it 
from the board. He gestured to the blocks he had placed along the perimeter and said: “I’m doing 
this.” Xavier began to join Carter in filling up the board with a single layer of blocks. This went 
smoothly until the entire board was nearly full. The boys then began to search for pieces that 
would exactly fit the few remaining holes. Carter dug through the box to find a 2-by-2 square, 
which he placed in a matching open space in the center of the board. Xavier turned a rectangular 
block to fit a remaining hole. The last space in board required a 2-by-8 block; however, one of 
the surrounding blocks had plastic googly eyes projecting from the side, which made it 
impossible to fit an appropriately sized block in the adjacent space. After both Carter and Xavier 
tried a number of correctly sized blocks with little success, they appealed to the researcher 
observing. She asked them to feel the side of the block with the raised eyes. Xavier did so and 
then took that block out, replaced it with an identically sized one, and then filled in the last hole 
before beaming up at the camera. In all, this process took Xavier and Carter 25 minutes.  

The Dulpo Legos, with their defined working spaces on mats, primarily rectangular shapes, 
and ease of fitting together, scaffolded different kinds of mathematical thinking than wooden 
blocks or unifix cubes. Children were able to build much taller structures with the Dulpo Legos 
than with the wooden blocks. In addition, the concepts of area, perimeter, and rotations were 
frequently explored during Lego block play. As Carter did in this example, students frequently 
created a perimeter first and then filled it in. This required choosing blocks that would be exactly 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

892



the same length as the mat and negotiating the tricky business of turning corners.  Carter, who 
spent a lot of time in the block area, performed these tasks with certainty, rarely needing to 
remove a block and replace it with one that had a different length or width, while other children 
frequently needed to make such adjustments.  

These differences in the ways children went about building similar structures reveal 
differences in development of visualization skills and understandings of length and width and 
would be unlikely to be captured in the evaluation of a final product. Similarly, in this case, 
many of the scoring systems for complexity would rank a structure as more complex if it had the 
tower that Xavier proposed adding; however, Carter’s sustained commitment to filling the board 
demonstrated perseverence with a task and also created an opportunity for both him and Xavier 
to think about how to fit geometric pieces together exactly, which required anlysis of shapes, 
lengths and widths and work with rotations. Typically, when children added towers to 
constructions the play became focused on creating cities or sometimes parking garages, rather 
than on a task like filling all of the available space on the mat. Thus, Carter scaffolded a more 
mathematically complex task for Xavier through his commitment to working only in one layer. \ 

 
Episode 4: Dahlia, Her Mother & Legos 
 At the Parent Math Night, one of the stations consisted of several boxes of Legos, including 
special pieces, such as wheels and trees, and written directions for making specific projects. 
Dahlia came to the event with her mother and her six-year-old sister, Tamara. Her mother took 
the written directions for a house, held them in front of Tamara, and quietly talked her through 
the process of building. Dahlia looked on for a moment and then began to build a tower with 2-
by-8 blocks. After watching Tamara for a moment, she searched through the box to find window 
and door pieces the same size as the blocks. She pulled on her mother’s sleeve and said “See my 
house.” Her mother looked over, saying, “That’s pretty, Dahlia. What you going to do next?” 
Dahlia pressed her tower onto a Lego board and began to add blocks to her board. After a 
moment her mother smiled told her to look at Tamara’s house, which had a roof, doors, and other 
accessories, as well as four walls creating the structure. Dahlia looked on for a moment and then 
began to add additional blocks to her construction. 
 In this episode, Dahlia, with her mother’s help, used her older sister’s construction as a 
model for her own work so that while Tamara constructed a house that mirrored the one pictured 
in the Lego directions, Dahlia turned her tower into a “house.” In someways, viewing the tower 
as a house was merely cosmetic, such as in Dahlia’s decision to add the clear bricks to stand in 
for windows. However, Dahlia’s building of a tower was her independent translation of 
Tamara’s four-walled enclosure. In her attempt to emulate her older sister, she needed to watch 
what Tamara was doing and decide how to replicate it with the blocks available to her, a process 
that encouraged the development of visualization skills and manipulation of geometric figures. 
Her mother encouraged her to add complexity to her structure by prompting her to think about 
what she should do next and presenting Tamara’s house as a model. Unlike the teacher and 
parapro, both in the classroom and at the Math Night, the parents we observed rarely asked their 
children to count or to name shapes. Rather, parents scaffolded their children’s work and 
thinking through engagement in the same or similar tasks. For example, the father and son at the 
table with Dahlia both made their own airplanes. This sort of scaffolding seemed to allow more 
opportunities for spatial thinking and reasoning to unfold than the teachers’ efforts, which 
continually redirected children back toward traditional preschool mathematics, such as counting.   
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Discussion 
Given the concerns expressed in many recent reports (e.g., NAEYC & NCTM, 2002; NRC, 

2009) about the quality of mathematics experiences many young children receive, particularly 
poor and minority children, we believe it is important to consider ways that opportunities for 
complex thinking and problem solving can be incorporated into preschool and kindergarten 
school days in both formal and informal spaces.  In the current climate of standardized testing, 
many early childhood teachers have become focused on basic skills, which has led to a reduction 
in free play. However new research has shown that these play opportunities are critical for 
complex mathematical thinking later (NRC, 2009). 

This ethnographic analysis of block play raises a number of issues for mathematics educators 
to attend to as they develop early childhood mathematics curricula, engage in professional 
development with early childhood teachers, and do further research on young children’s learning 
trajectories. First, it is important to recognize that the complexity of mathematical thinking 
young children engage in during block play may not be entirely captured in the finished 
structures. The research community would benefit from increased attention to creation processes, 
and children and teachers would benefit from increased opportunities to talk about their thinking 
during and after their work. Second, children’s play with blocks needs to be scaffolded to 
maximize opportunities for mathematical thinking; however, this scaffolding does not always 
need to come from a teacher in either a formal or informal setting. Well-chosen materials can 
scaffold particular kinds of thinking, and other children and parents can also support children in 
problem solving. More research needs to be done on how to build on the strengths parents and 
children bring to this process. In addition, teachers need to learn both how to watch children 
during block play to figure out the mathematics that may be present and to recognize the more 
complex process skills that young children need to develop along with counting and shape 
recognition. Finally, we would be remiss not to note that in our study, as in much previous work 
(e.g., Kersh, Casey & Young, 2008), gender mattered in block play. Nearly all of our classroom 
clips with Legos, wooden blocks, and unifix cubes show the work of boys. However, during 
Parent Night and in the assessment interviews, girls engaged enthusiastically with the blocks, as 
Dahlia did in the described episode. Creating spaces where girls were expected to build with 
blocks and where they did not have to struggle to maintain access to the materials seemed 
important in giving girls access to these learning opportunities. Guided play as part of formal 
lessons in classrooms could potentially provide another welcoming space for girls to engage in 
block play. 

Developing learning trajectories around blocks that include both images of what finished 
structures may look like and descriptions of processes that children go through as they engage 
with these materials is important to the study of children’s early learning broadly and, more 
particularly, to the study of the relationship between formal and informal learning. Teachers will 
be able to use these trajectories to learn about the deeper mathematics embedded in block play 
and to make connections between formal and informal lessons. It is important to both theory and 
practice to develop these trajectories by looking at the thinking that goes on during block 
building in a variety of social settings not simply at a progression of completed structures. This 
theoretical view is likely to be more inclusive of diverse mathematics and of diverse children. 
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This study is conducted to understand the sociocultural contexts of pre-k children’s 
mathematical experiences in their school lives.  Through interpretive ethnographic research, I 
observed pre-k children’s natural mathematical experiences in the classroom focusing on the 
sociocultural contexts embedded in their mathematical learning.  This study was drawn from 
Bruner’s idea about the culture of education, and Bakhtin’s ideas of language were employed in 
the analysis.  This study discusses the influence of teachers’ directed mathematics activities on 
children’s informal experiences and cultural dynamics in mathematical experiences in pre-k 
classrooms. The implications of pre-k children’s meaningful mathematical learning are 
provided. 

Children’s lives are always related to mathematics, and many mathematical attributes are 
derived from everyday life.  Through their ordinary life experiences, children naturally engage in 
significant levels of mathematical activity (Trafton & Schulte, 1989; Clements, Sarama, & 
DiBiase, 2004).  Considering children’s early ordinary experiences not only as significant 
practices for present mathematical learning but also as a cornerstone for later mathematical 
learning, many mathematics education scholars have been paying more attention to informal 
mathematics.  With a heightened awareness of values of informal mathematical experiences, a 
number of researchers of mathematics have explored children’s mathematical experiences while 
considering the social and cultural contexts in which the children reside (Ginsburg and Russell, 
1981; Stigler and Baranes, 1988; Nunes, Schliemann, & Carraher, 1993; Tudge and Doucet, 
2004; Seo and Ginsburg, 2004).  However, many studies have been primarily concentrated on 
the children’s social and cultural backgrounds in generic ways.  For example, in many of those 
studies, artificial factors, such as X, representing children’s social backgrounds were used to 
compare or examine their influences on or their associations with children’s mathematical 
learning.  Graue and Walsh (1998) note, “researchers who look too widely risk losing the chance 
to look very carefully” (p. 10); a more careful analysis that pays attention to social and cultural 
contexts within children’s mathematical experiences in school and the relationship between the 
local context and the larger context is necessary.  The purpose of this study is to understand the 
sociocultural contexts of pre-k children’s mathematical experiences in their school lives.  Before 
zooming in on the main foci of this study, I first position the perspective of the sociocultural 
contexts adopted here by mainly referring to Bruner’s idea about the culture of education.  
Second, I introduce Bakhtin’s idea of language which was employed in the analysis of this study. 

 
Theoretical Framework 

The Sociocultural Context of Mathematical Experience 
In his book, Culture of Education (1996), Bruner states that “school is a culture itself” (p. 

98).  He also presents the classroom as a “living context” (p. 44) where “teachers and pupils 
come together to effect that crucial but mysterious interchange that we so glibly call education” 
(p. 44).  A school classroom itself is a sociocultural context in which mathematical knowledge 
and experiences are shared, negotiated, and constructed.  Bruner (1996) considers the influences 
of the broader society on the school classroom as well as the impact of school culture on the 
individual child: 
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[S]chool can never be considered as culturally “free standing.” What it teaches, what modes of 
thought and what “speech registers” it actually cultivates in its pupils, cannot be isolated from 
where the school is situated in the lives and culture of its students. For a school’s curriculum is 
not only about “subjects.” (p. 28) 
According to Bruner, the classroom is, rather than the physical setting as an instructional 

environment for young children, a living context which reflects implicit cultural values of the 
larger society where shared and negotiated ways of thinking and collective cultural activities are 
produced.  Bruner (1996) adds that “education is never neutral, […] education is always 
political” (p. 25); therefore, social values reflected in school curricula and classroom culture 
cannot be free from moral-political considerations of social class, gender, race, and other 
prerogatives of social power.  Bruner’s view of the classroom as a culture itself is consistent with 
Stigler and Baranes’ (1988) account of the cultural attributes of mathematics learning.  They 
argue that mathematics by its very nature is cultural: 

The practice of mathematics is not seen as the discovery of truths existing outside of the 
realm of human activity; rather, it is considered to be as domain-specific, context-bound, and 
procedurally rooted as are other forms of knowledge. Mathematics learning is not uniquely 
immune to the influences of culture, but rather, it is as cultural as is learning in other domains. (p. 
258) 

I consider the sociocultural context of children’s mathematical experiences not only as an 
important influential factor on their learning but also as a mirror reflecting cultural values about 
mathematics in our society.  

Another concept discussed by Bruner is important to the purpose of this study: “mental life—
and what we call ‘intelligence’—is interactive, not just within the individual’s head.  Intelligence 
depends hugely on interaction, on understanding what others have in mind” (Bruner, 2008, p. 
101).  Graue and Walsh (1995) also note that “the context is the world as realized through 
interaction and the most immediate frame of reference for mutually engaged actors” (p. 9).  Even 
though mathematics can be conceived as an entirely mental activity, it is socially constructed and 
shared through reciprocal interactions.  In order to understand children’s mathematical 
experiences in schools, it is necessary to consider the sociocultural contexts which the children 
create as well as reside in.  That is, children’s mathematical experiences need to be understood 
within their sociocultural contexts, which include individual and social meanings derived from 
their interactions and relationships with people and objects.  

Bakhtin’s Idea of Language 
Heteroglossia vs. Unitary Language 

Bakhtin’s view on language provides valuable insights on social, cultural, and political 
phenomena of education.  By contemplating the social nature of language, he shows the 
dynamics of world views and socio-ideological phenomena in which we are influenced by, and 
sometimes controlled by, the means of language.  Introducing the concepts of heteroglossia and 
unitary language, Bakhtin (1981) explains that a living language is in tension-filled dynamics 
between centripetal forces, “verbal-ideological centralization and unification,” and centrifugal 
forces, “decentralization and disunification,” which “intersect in the utterance” (p. 272).  
Bakhtin’s notion of heteroglossia can be referred to as a social diversity of speech types, 
individual voices, or different dialects, which is centrifugal force that opposes centripetal force 
of unitary language—socially, historically, and culturally constructed norms of language.  
Therefore, each utterance undergoes and participates in this process of centralization and 
decentralization and is stratified.  In addition, to Bakhtin, language is not just a means of 
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conversation, but a pathway of social and ideological dynamics.  Even though he employs 
linguistic terms, he expands his ideas of language to sociology, affirming that language is 
“conceived as ideologically saturated, language as a world view, even as a concrete opinion” 
(Bakhtin, 1981, p. 271).  Based on this concept of language, the nature of language is broadened 
to include “processes of indexical meaning that anchor utterances to their linguistic and 
nonlinguistic contexts and to unspoken background assumptions” (Shweder, et al., 2006, p. 742). 

  Dialogic Living Language vs. Monologic Dead Language 
One of the Bakhtinian scholars, Volosinov (2000)—a Russian linguist and also Bakhtin’s 

close friend, whose work largely coincides with Bakhtin’s work—introduces the concept of 
dialogic living language as opposed to monologic dead language. According to Volosinov, 
isolated, finished, monologic utterances are “divorced from its verbal and actual context and 
standing open not to any possible sort of active response but to passive understanding” (p. 73). 
Volosinov (2002) considers dialogic living language as “the actual reality of language-speech” 
(p. 94) and argues that “language is a continuous generative process implemented in the social-
verbal interaction of speakers” (p. 98).  According to Volosinov (2000), a word is “the product of 
the reciprocal relationship between speaker and listener, addresser and addressee”, and “the 
immediate social situation and the broader social milieu wholly determine” (p. 86) the structure 
of an utterance and the meaning of a word.   

Bakhtin (1981) also places an emphasis on word’s orientation “toward the listener and his 
answer” (p. 280).  In living dialogue, any speakers, speech subjects, or addressers mutually 
reflect one another.  Individual utterances are not “indifferent to one another, and are not self-
sufficient” (Bakhtin, 1986, p. 91).  Bakhtin (1986) elaborates this idea that “each utterance is 
filled with echoes and reverberations of other utterances to which it is related by the 
communality of the sphere of speech communication” (p. 91).  Volosinov’s emphasis on 
reciprocal relationship between addresser and addressee and immediate social situation of 
communication has a resemblance to Bakhtin’s illustrations of a living word and dialogue.  
Consequently, dialogic living language can be resumed in the words of continuously generative 
process implemented in reciprocally reflective social-verbal interactions.  

I appropriate Bakhtin’s idea of the dynamic nature of language because his idea of language 
as social phenomenon provides the view on language as a culture and informs cultural dynamics 
in the school classroom.  Based on these two conceptual contrasts regarding language as 
discussed by Bakhtin, this study explores the sociocultural contexts of children’s mathematical 
experiences in the pre-k classroom.  Research questions are as follows:  

1. What mathematical practices and concepts do pre-k children experience in school life? 
2. How are the mathematical practices and concepts that pre-k children experience in the 

classroom related to the sociocultural contexts of their experiences? 
3. What are the educational meanings which the children’s mathematical experiences imply? 
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Methods 
I appropriate interpretive ethnographic research, and research site and participants are as 

follows: 
Site Participants 

- A rural area public school located in central Georgia 
- Total population of county: 1,863  
                              (U.S. Census Bureau, July,2008) 
- High poverty rate (Nearly all students, free lunch) 
- A single public school in a county which serves  
  PK-12 grades with fewer than 300 students  

- One pre-k classroom, 2 teachers 
- Pilot study (2009-2010): 20 children 
- New school year (2010-2011): 18 
children   
(mostly African American children,  2 

White girls, 1 Mexican American ESL 
learner) 

Multiple data were collected though the method of participant observation.  As part of a larger 
study, I observed the pre-k classroom for 6 sessions from February 1 to April 19, 2010, for a 
pilot study and for 8 sessions from September 9, 2010, to February 10, 2011.  For the pilot study, 
I observed calendar time, breakfast time, whole group lessons, and free play time in order to get 
familiar with the research site and recognize various situations in which mathematical practices 
occurred.  After the pilot study, I observed this pre-k classroom with newly enrolled children for 
8 more sessions while focusing more on large group activities, small group activities, and 
children’s free play.  The collected data include jotting notes, expanded field-notes, voice 
records, and video records.  While recording videos and audios, I took jottings and tried to record 
all my momentary thoughts, initial impressions, or additional information about the situations.  
After each observation, I wrote the expanded field-notes.  Data analysis was an inductive 
process.  Reading through the large amounts of collected data, I made preliminary notes of what 
seemed relevant.  Then, I repeatedly investigated the collected data and made more focused 
coding.  These were mostly based on the research questions and classified under the specific 
themes of children’s social contexts in mathematical experiences focusing on the relationship 
between their learning and cultural experiences.  

Results: Pre-K children’s Mathematical Experiences in Context 
Adult Directed Mathematical Experiences 

Even though the pre- k teacher’s roles were different depending on the class time schedule in 
each day, the teacher played a director’s role by introducing materials and activities, asking 
questions, and reading books to the children during large group circle time, small group activity 
time, and free play time.  Regardless of the different forms of activities, the teacher-children 
interactions were limited to the typical form of closed question-answer type.   

The teacher starts reading the title of the book, Run, Bunny, Run.  After reading the first page, she 
points at the number on the shirt that the character Bunny wears and asks a question: 
Teacher: What number is Bunny?  /  Children: Three.  /  Teacher: Three. What number is bear? 
Children: Two.  /  Teacher: Two. What number is beaver?  / Children: One.   
Teacher: One. What number is chicken?  /  Children: Four. 
Teacher: Who is in the lead? (She points at the first animal Bunny.)  /  Children: Bunny. 
Teacher: Bunny. Bunny, first. Can you … say, he is first.  /  Children: He is first. 
Teacher: Bunny is first. O.K.? Now, who’s last? (She points at the last animal in the race.) 
Children: Bear.  /  Teacher: Bear. Bear is in the end; he is last. Bunny’s first. 
                                                                                 - From observation field-notes, Nov. 14, 2010 
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The teacher’s questions related to mathematics predominantly consisted of counting, reading the 
numbers, and matching the quantity of objects to the numbers: What is this number? How many 
dots? Can you count? What comes after ten? Can you find the number 8?  During whole group 
time, the teacher’s questions were directed to the whole group, and sometimes one of the 
children was called on and asked to answer the teacher’s question.  When the teacher asked 
questions to the whole group of children, only a few of them answered.  The teacher always gave 
the children cues by gesturing to indicate that she wanted the children to stop counting or by 
making first sounds of the answers.  Then, the children just stopped when the teacher said or 
showed stop cues.  Therefore, many of the children counted the numbers without paying much 
attention to what they were saying.  In small group, the children took turns one by one in a 
group. The children were required to accomplish mathematical tasks individually in a group 
activity.  Compared to large group activities, in a small group activity, the children were more 
restricted because the teachers could manage their behaviors more efficiently with a small 
number of children.  Teacher’s questions were almost same with those in whole group activities.  
During free play time, the teacher intentionally asked the children to count objects they had in 
that moment when she found any situations related to counting, or sometimes without any 
consideration of children’s play contexts.  Her intentional questions sometimes promoted the 
children to practice counting and recognize how many objects they had.  Nevertheless, when the 
teacher’s question was out of context, these questions cut off the children’s play and did not 
stimulate the children’s meaningful counting.  Likewise, the teacher’s interaction with the 
children primarily centered on her main goals of subject area such as counting and naming 
numbers when it comes to mathematics.  

Mathematically Interactive Experiences among Peers 
During the large group activities or the small group activities, the children’s interactions were 

limited and sometimes rather restricted.  Mostly, they took turns to accomplish same 
mathematical tasks.  They were required to quietly see what other children did and to answer the 
questions that the teacher asked to all the members in a group.  In free play time, relatively more 
peer interactions related to mathematics were observed, particularly in the block area.  When the 
children played with Lego blocks, they shared the shapes of Lego pieces and explored the form 
and the shapes of blocks.  Even when they did not verbally interact with their peers by using 
mathematical language, there were mathematical interactions among children, in which they 
shared geometric information and their thoughts about others’ mathematical works.  The most 
common pattern of “playing numbers” is that they reported to peers how many objects they had, 
for instance, shouting “Look! I(we) got two!”: 

Joseph and Ted are playing with the magnetic numbers. They are putting them on the wall of the 
teacher’s desk. With the magnetic numbers, they create some images on the wall. Ted picks up 
the number four and puts it on the wall. He says, “I got a four! You want me four!” (Do you want 
my ‘4’?”) He puts it by the number four previously placed on the wall. He makes these two 
“four” closer and says, “We got two fours.”           - From observation field-notes, Nov. 18, 2010 

 “I got (number)!” game encouraged children to count the number of objects or name the 
numbers.  Playing with other peers, the children not only shared mathematical concepts but also 
promoted each other to engage in mathematical play.  However, their interactions were still 
limited in a variety of mathematical concepts.  Usually, verbal interactions among children that 
contain mathematical concepts were concentrated on the matter of how-many.  There was no 
interaction related to measuring, comparing size or quantity, or sorting.  Moreover, such 
mathematical interactions were observed only occasionally.  
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Silent, BUT Engaged Learning Experiences 
Through building blocks and Lego, playing with puzzles and toys, drawing, and making 

artwork, the children naturally engaged in mathematical practices.  They counted a quantity of 
materials, measured amount and space, identified numbers and shapes, compared size or 
quantity, and sorted objects based on the characteristics such as colors, shapes, and uses.  When 
they played alone, the children sometimes paid longer and higher attention to their play and 
spontaneously repeated mathematical practices.  For example, Dayton, who was very good at 
counting and naming numbers during the formal mathematics lesson, played with a clock puzzle.  
He repeated counting and reading numbers, putting puzzle together, and building tower with 
puzzle pieces and continued his play longer than 30 minutes: 

Dayton is playing with a clock puzzle. (…) After finishing the puzzle, he takes out all the puzzle 
pieces one by one in an order.  He makes a tower with the pieces from the number one to seven 
in order. From the number eight, he makes another tower beside of the first one. Now, he has two 
puzzle piece towers: one 5-story tower and one 7-story tower. When he was about to move the 
piece on the top of the 7-story tower, this tower fell down. He gathers the fallen puzzle pieces. 
With seven gathered pieces, he makes one 3-story and one 4-story tower. He takes all three 
puzzle pieces from the 3-story tower. Grabbing these puzzle piece with his right hand, he moves 
the pieces of the 4-story tower one by one to the side of 5-story tower. Finally, he has three 
puzzle pieces in his right hand, a 4-story and a 5-story tower. He puts one more piece on the 4-
story tower and makes two same-story towers. He carefully puts the last two pieces on each of 
the towers. He shouts, “Look! Look! I made towers!”      - Observation field-notes, Nov. 14, 2010 

While managing the height of the towers in order to make same stories of two twin towers and 
building towers in this way and that, Dayton did mathematical work such as comparing heights, 
dividing numbers, and making in order and generated his own mathematical meanings from that 
task.  Playing with this puzzle, even though this child worked very silently and independently 
without verbal and social interactions with others, he was more deeply engaged in his 
mathematical work than any other experiential contexts.  He used and experienced a variety of 
mathematical concepts, spontaneously repeated these mathematical practices, and generated 
mathematical meanings in play. 

Discussion: Educational Meanings in Children’s Mathematical Experiences 
First of all, this study found that children’s mathematical experiences were more limited 

when the teachers directed the mathematical lessons or the children’s free play than when the 
children played alone or with peers.  During free play, their experiences with and explorations of 
mathematical factors were relatively more diverse.  They used informal mathematical 
knowledge, such as sorting, ordering, measuring quantity or sizes, and comparing, and practiced 
these mathematical concepts spontaneously.  Meanwhile, the teachers’ concentration on the 
children’s numerical abilities had an influence on the children’s use and employment of their 
mathematical knowledge and skills in their free play.  Teachers’ mathematical interactions 
helped the children frequently recognized the numbers and were autonomously engaged in 
counting the numbers of objects during free play.  However, even though the invisible 
interactions among the children included some mathematical concepts other than numeracy, their 
verbal interactions mostly referred to naming numbers and counting.   

Mathematics in this pre-k classroom reflects the tension-filled cultural dynamics between 
predominant, centralized, and unitary values and decentralized, disunified, and heteroglot values, 
which are discussed by Bakhtin.  Children’s heteroglot informal mathematical experiences 
appeared during free play time.  However, unitary mainstream school mathematics centralizes 
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children’s heteroglot mathematical experiences and informal mathematical knowledge and 
values, closing the diversity of mathematics by practicing them mainstream unitary rote 
methods.  Current schools’ and teachers’ inclinations to conventional school curriculum reflect 
Bakhtin’s (1981) discussion of unitary language as a utopian philosopheme.  Schools have 
concentrated on utopian unitary knowledge, which “makes its presence felt as a force for 
overcoming this heteroglossia” (Bakhtin, p. 270) and have ignored their own heteroglot nature.  
In school, pre-tailored and pre-established conventional school knowledge is generally 
transmitted to students as a universal and singular language by teachers without inner 
meditations.  While emphasizing unitary mathematics curriculum, schools might neglect or 
devalue other potentials of children’s informal math experiences.  Bakhtin (1981) explains 
underlying political aspects of language by stating that “[a]s a result of the work done by all 
these stratifying forces in language, these are no ‘neutral’ words and forms” (p. 293).  Likewise, 
the tension-filled cultural dynamics between unitary and heteroglot cultural values in 
mathematics can all be associated to social and political stratification of powers, distinctions, and 
rewards. 

This finding puts more emphasis on the importance of adults’ roles in amplifying children’s 
informal mathematical knowledge and experiences. Wheatley (2003) indicates that teachers do 
not make use of children’s informal mathematical knowledge and skills for their meaningful 
learning experiences.  According to Wheatley, teachers have either too little content knowledge 
to recognize mathematical concepts, which are embedded in children’s ordinary lives, or are 
unable to naturally expand these children’s informal mathematical knowledge to their learning. 
Clement, Sarama, & DiBiase (2004) also point out that pre-k children bring their informal 
mathematical knowledge to school and that teachers should help them to “mathematize” their 
pre-experienced knowledge.  Gutstein, Lipman, Hernandez, & Reyes (1997) argues that “helping 
teachers build on children's informal knowledge in mathematics classrooms helps children use 
their intellect well, make meaning out of mathematical situations, learn mathematics with 
understanding, and connect their informal knowledge to school mathematics (p. 711)”. 

Second, children’s mathematical interactions with peers rarely occurred.  In particular, during 
teacher’s directed lessons, not only were children’s peer interactions restricted, but also, the 
teachers’ closed questions did not promote the children’s discussions related to mathematical 
knowledge and expected them to work independently.  During free play time, mathematically 
interactive conversations were not frequently observed among the children.  This result reflects 
Hatano and Inagaki (1998) discussion of “American teachers’ inclination toward individualism” 
(p. 90), which is opposed to Japanese teachers’ sharing students’ experiences and ideas. These 
authors explain that American teachers tended to believe “students benefit most from 
individualized lessons, [and the American teachers] tried to optimize their instructions by 
individualizing it” (p. 90).  Rogoff (2003) also demonstrates this prototypical structure of dyadic 
interaction in American schools by affirming, “U.S. classrooms are commonly structured with 
the teacher taking a speaking turn between each child turn” (p. 148).   

Moreover, teacher’s guided repeated questions as “what is this number?” and “how many?” 
are deplete of contexts of classroom discourse.  While tossing about the simple, rote, and 
monologic questions and answers, the teacher and the children give and take abstract words 
without any deeper contextual understanding and without openness to possible diverse responses.  
This classroom discourse’s abstraction of the contents of number, without consideration of the 
placed temporal and spatial contexts, is comparable to Bakhtin’s notion of monologic dead 
language.  According to Volosinov (2000), monologic dead language is “already an abstraction” 
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(p. 72), and the abstract objectivism neglects “the dynamics of speech,” “living multiplicity of 
meaning and accent,” and “the inner generative process of language” (Volosinov, p. 77).  
Volosinov (2000) notes, “In reifying the system of language and in viewing living language as if 
it were dead and alien, abstract objectivism makes language something external to the stream of 
verbal communication” (p. 81).  In this classroom, the contents of speeches are externalized from 
the stream of verbal communication while decontextualizing the contents and knowledge which 
each utterance infers.  Therefore, someone else’s hackneyed postulations are handed down from 
individual to individual, from people to people, from generation to generation, in the shape of 
formalized and systemized speech, which has depleted its histories and contexts. Therefore, 
through this monologic dead language of classroom discourses, to which children are routinely 
exposed, they are socialized to the school language uses and conceptual and ideological 
meanings of mathematical knowledge.  Schools make children concentrate only on predominant 
school knowledge dehumanized, decontextualized, and abstracted and disregard the heteroglot 
nature of the world, their living world, without meditation. 

Finally, I question, “What are meaningful mathematical experiences to pre-k children?”  I 
first argue that a school should be where heteroglot cultures, world views, and diverse voices are 
welcomed, respected, and included.  When the formal mathematical activities only emphasize a 
certain kind of mathematical concept, children might lose opportunities to articulate a variety of 
informal heteroglot mathematical experiences and concepts, even though they are exposed to this 
heteroglossia of mathematics in ordinary experiences.  Children are subordinated in pre-tailored 
school mathematics, while losing their abilities to vitalize their meaningful heteroglot 
mathematics in their lives.  This does not mean there should be no unitary language—centralized 
and unified school mathematics curriculum.  The tension-filled dynamic of culture is rather a 
natural phenomenon.  It means that schools should revive their nature of heteroglossia and be 
open to children’s diverse world views, informal experiences, and voices.  When schools are 
opened to diverse heteroglot cultural voices, the centralized unitary language would be able to 
overcome possible risks of cultural narrowness and stagnancy and of alienating potential values.  
Second, children should be invited to join in the dialogic living discourses in the classroom in 
order to revive meaningful learning and their rights to share their thoughts and to respond to 
others’ words.  More specifically, classroom discourses should be reflective of the concrete 
temporal and special contexts and have a certain story-line. This discourse includes not the 
decontextualized but the contexualized knowledge.  Then, children attain their agencies in school 
discourse, and school discourse would gain “the dynamic flow of generative process” 
(Volosinov, 2000, p. 78).  Through a true dialogic living discourse, “[school] language acquires 
life and historically evolves precisely here, in concrete verbal communication” (Volosinov, 2000, 
p. 95). 
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In this report we summarize part of a recent effort to synthesize the state of knowledge of 
preservice elementary teachers (PSTs’) subject matter knowledge and the development thereof. 
This research was conducted by a recent PME-NA Working Group across all content areas, in 
this report we focus on whole number and operation. Our review of the literature resulted in 
only 12 papers drawn from research and practitioner journals and 4 conference proceedings. 
The scarcity of research on PSTs’ subject matter knowledge and the development thereof was 
characteristic across content areas. The few studies that we found reported that PSTs enter and 
exit our teacher education programs with weak conceptions in whole number and operations and 
illuminate the need for further research to (a) better understand PSTs when they enter our 
programs and (b) better understand how PSTs’ conceptions develop.  

Introduction & Rationale 
Consider a PST solving 527 – 135 (see Figure 1) using the standard algorithm and explaining 

regrouping as follows: 
 

You put a 1 over next to the number and that gives you ten. … I don’t get how the 1 can 
become a 10. One and 10 are two different numbers. How can you subtract 1 from here 
and then add 10 over here? Where did the other 9 come from?”  

 
This PST clearly solved the problem correctly and got the right answer, but was not able to 

provide an explanation for why this solution method results in the correct answer.  
 

 
Figure 1: One PSTs’ explanation of regrouping in 527 – 135. 

 
Now consider another PST’s reflection on her inability to explain regrouping: 

 
I learned [at the beginning of my elementary mathematics methods class] that there was a 
lot more to the concept [of number and place value] than I was aware of. I am able to use 
math effectively in my everyday life, such as balancing my checkbook, but when I was 
presented with questions as to why I carry out such procedures as carrying1 and 
borrowing in addition and subtraction, I was stuck. I could not explain why I followed 
any of these procedures or rules. I just knew how to do them. This came as a huge shock 

                                                
1 Note that students in the United States often term regrouping in the context of addition carrying 
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to me considering I did well in most of my math classes. I felt terrible that I could not 
explain simple addition and subtraction.  
 

Both of these PSTs have determined that they want to teach children, however at this point 
neither of them would be able to conceptually help an elementary-aged child make sense of why 
regrouping works when using the standard algorithms taught in the United States. 

At the core of elementary school mathematics is the teaching of number concepts and 
operations. The National Council of Teachers of Mathematics (NCTM) stressed that all pre K-12 
students should: (a) understand numbers, ways of representing numbers, relationships among 
numbers, and number systems; (b) understand meanings of operations and how they relate to one 
another; and (c) compute fluently and make reasonable estimates (NCTM, 2001, p. 32). A 
conceptual understanding of number and operation underlies all future mathematics (and other 
STEM fields) learning. “Number pervades all areas of mathematics. The other four Content 
Standards [other than Number and Operations] as well as all five Process Standards are grounded 
in number.” However, research has shown that elementary teachers and PSTs in the United 
States and Australia continue to lack a conceptual understanding of number concepts and 
operations (Ball, 1988/1989; Ma, 1999; Southwell & Penglase, 2005; Thanheiser, 2009a, 2010). 
To be in a position to help PSTs develop more sophisticated conceptions we (mathematics 
educators) need to understand the conceptions with which the PSTs enter our classrooms so we 
can build on those conceptions (Bransford, Brown, & Cocking, 1999). As the authors of The 
Mathematical Education of Teachers suggest, “The key to turning even poorly prepared 
prospective elementary teachers into mathematical thinkers is to work from what they do know” 
(CMBS, 2001). Recent efforts have highlighted the need for teachers to have a deep and 
multifaceted understanding of the mathematics they teach (Hill, Ball, & Schilling, 2008; Ma, 
1999). Less clear, however, is how this teacher knowledge is established.   

In our synthesis work we thus examined the current state of knowledge in the field of 
mathematics education on (a) what we know about PSTs conceptions and the development 
thereof from research (focus on whole number and operation for this paper) and (b) identify 
further research needs on what we still need to know about PSTs conceptions and the 
development thereof.  

 
Methods 

We began our synthesis effort by breaking into content groups. Each content group followed 
the same search criteria. We began by searching ERIC with the search terms listed in Figure 2. 
We limited the search to the years 1998 – 2010 to get an overview of what research occurred 
during those years. Each combination of search terms was entered into the ERIC data base. All 
results were checked for a focus on preservice elementary teachers’ content knowledge of whole 
numbers and operations. We read the title and abstract to determine whether the paper fit our 
criteria. If the title and abstract did not suffice to make a determination of fit, we read the whole 
paper. We included all papers that:  
• Focused on our target group – preservice elementary teachers.  

o We included preservice middle school teachers as well as some certification programs 
that focus on K-8, since not all countries follow the same school system. By doing so 
we also determined a student’s age range from 5 years to 12 years (possibly 14 years). 
As a result, we excluded papers focusing on high school teachers.  
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o We included papers focusing on both pre- and in-service teachers (i.e. mixed groups) 
but excluded papers focusing only on in-service teachers.  

• Focused on content knowledge of whole numbers. We included papers that focused on whole 
numbers as well as other topics. We excluded papers that focused on beliefs or general 
content knowledge.  

• Published research studies in peer reviewed research journals [for the purpose of this report 
we are including papers published in PME-NA conference proceedings and research papers 
published in practitioner journals]. We included all research studies published in peer-
reviewed research journals. In the end, we excluded all papers that were not research studies.  
 

Search Terms Round 1 Search Terms Round 2 
 

preservice + whole number 
prospective + whole number 
preservice + operation 
prospective + operation 
preservice + place value 
prospective + place value 

preservice + algorithm 
prospective + algorithm 
preservice + multidigit 
prospective + multidigit 
preservice + whole 
number 

 

elementary education +  whole 
number 
teacher + number sense 
student teacher  + mathematics + 
number 
teacher + whole number 
 

Figure 2. Search terms for whole number group. 
 
Round 1 initially resulted in 22 studies. Round 2 of our search resulted in no additional studies. 
After exclusion criteria were applied, we were left with 16 studies. These studies were entered 
into a database listing the reference, content area, research questions, study type, research design, 
lens or approach used, selection criteria, description of participants, conditions of and procedures 
for data collection, data analysis, findings, and conclusions/implications. At least 2 researchers 
met to discuss in-exclusion of papers and determine the entries into the database. All 
disagreements about in-exclusion into the database were resolved through discussion.  

 
Results 

With Number being such a pervasive topic in elementary school mathematics, surprisingly 
few papers have focused on PSTs’ conceptions of whole numbers. A review of the research 
literature on preservice teachers’ understanding of whole numbers resulted in 12 papers drawn 
from research journals and 4 from conference proceedings.  

Of the research papers reviewed, three categories emerged. The first contained two research 
studies focused on conceptual aspects of understanding numbers (Thanheiser, 2009a, 2010) and 
four on the development thereof (McClain, 2003; Mills & Thanheiser, 2010; Thanheiser, 2009b; 
Thanheiser & Rhoads, 2009).  The focus of the second group of research papers consisted of 
three studies on alternative computational algorithms (Harkness & Thomas, 2008; Lo, Grant, & 
Flowers, 2008; Nugent, 2007). The final grouping included two studies on number sense (Tsao, 
2005; Yang, 2007), two studies on understanding operations and order of operations (Chapman, 
2007; Glidden, 2008), one study about PSTs’ struggle with number concepts (Southwell & 
Penglase, 2005), and one study on manipulatives usage (Green, Piel, & Flowers, 2008). Below 
we briefly describe each of these categories beginning with papers focusing on PSTs’ 
conceptions of number and the development thereof. 

 
PSTs’ Conceptions of Number and the Development Thereof 
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Two papers focused on PSTs’ conceptions of number. Thanheiser (2009, 2010) examined 
PSTs’ conceptions of number and identified and categorized PSTs’ conceptions of multidigit 
whole numbers into four major groups: thinking in terms of (a) reference units, (b) groups of 
ones, (c) concatenated-digits plus, and (d) concatenated-digits  only.  See Table 1 for the 
definition and distribution of the conceptions among the PSTs in that study. 

 
Table 1 Definition and Distribution of Conceptions in the Context of the Standard 

Algorithm for the 15 U.S. PSTs in Thanheiser’s Study  

Conception # of PSTs 
1. Reference units.  PSTs with this conception reliably2 conceive of the 
reference units for each digit and relate reference units to one another, seeing the 
3 in 389 as 3 hundreds or 30 tens or 300 ones, the 8 as 8 tens or 80 ones, and the 
9 as 9 ones. They can reconceive of 1 hundred as 10 tens, and so on. 

 
3 

2. Groups of ones.  PSTs with this conception reliably conceive of all digits 
correctly in terms of groups of ones (389 as 300 ones, 80 ones, and 9 ones) but 
not in terms of reference units; they do not relate reference units (e.g., 10 tens to 
1 hundred). 

 
2  

3. Concatenated-digits plus. PSTs with this conception conceive of at least 
one digit as an incorrect unit type at least on occasion. They struggle when 
relating values of the digits to one another (e.g., in 389, 3 is 300 ones but the 8 is 
only 8 ones). 

 
7  

4. Concatenated-digits only.  PSTs holding this conception conceive of all 
digits in terms of ones (e.g., 548 as 5 ones, 4 ones, and 8 ones).  

 
3  

 
Thus, Thanheiser (2009a) found that 2/3 of the PSTs in that study saw the digits in a number 

incorrectly in terms of ones at least some of the time. In follow up studies Thanheiser (2010) 
further examined the PSTs’ interpretations of regrouped digits and refined the concatenated-
digits plus conception into three further categories: 

a. Regrouped digits consistently explained as 10 (regardless of whether it is in the context 
of addition or subtraction),  

b. Regrouped digits explained consistently depending on context (i.e., 10 in subtraction, 1 in 
addition or vice versa)  

c. Changed interpretations of the regrouped digit depending on the question posed (i.e., 
regrouped 1 in the ten’s place in the context of addition as 10 or 1 in different tasks).  

In this study, 3 of 33 PSTs were able to correctly explain the values of the regrouped digits in the 
in both addition and subtraction contexts and 5 PSTs saw the values of all regrouped digits as 1 – 
consistent with the concatenated digits conception. The distribution of the remaining 25 PSTs 
who fell into the concatenated digits plus category can be seen in Table 2. 

Three studies focused on the development of PSTs’ conceptions (Mills & Thanheiser, 2010; 
Thanheiser, 2009b; Thanheiser & Rhoads, 2009). Thanheiser & Rhoads (2009) found that 
exploring the Mayan numerals (understanding/reading numbers and inventing algorithms for 
addition and subtraction) helped PSTs explicate the structure of the base-ten system. This 
allowed PSTs who typically used the terms “tens” and “hundreds” etc. as labels rather than 

                                                
2 Reliably in these definitions means that after the PSTs were first able to draw on a conception in their explanations 
in a context, they continued to do so in that context. 
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quantities to move beyond labels and consider the quantities each digit represents. By working 
with a number system with which they are less comfortable, PSTs were able to explore the 
meaning of a place-value system. In another study Thanheiser (2009b) explored the development 
of PSTs’ conceptions in a teaching experiment setting and found that simply exposing students to 
correct conceptions (telling them the meanings of the digits) does not necessarily help them 
develop such conceptions. And even though PSTs may sit in a classroom in which alternative 
methods are explored and made sense of, they may do so in a perfunctory manner. They may 
cling to the standard algorithms (possibly without making sense of it) as superior methods of 
solving problems. To allow those PSTs to move beyond the standard algorithms we need to 
expose them to problems with the standard algorithms and with seeing each digit as representing 
ones. This can be done by introducing artifacts of children’s mathematical thinking to highlight 
these shortcomings (Thanheiser & Mills, 2010). 
 

Table 2 Conceptions of the 33 PSTs in the Context of Standard Algorithms (Detailed) 

Conception across addition and subtraction tasks Number of PSTs 
One of the two correct conceptions (reference units or groups of ones 3 
Concatenated digits plus 

Refined Conception Number of 
PSTs 

Regrouped digits consistently explained as 10 
(regardless of whether it is in the context of 
addition or subtraction) 

7 

Regrouped digits explained consistently 
depending on context (i.e., 10 in subtraction, 1 in 
addition or vice versa) 

10 

Changed interpretations of the regrouped digit 
depending on the question posed (i.e., regrouped 
1 in the ten’s place in the context of addition as 
10 or 1 in different tasks). 

8 

 

25 

Concatenated digits only 5 
 

McClain (2003) examined the development of PSTs’ conceptions of place value and found 
that research on children’s development of conceptions can support the PSTs’ development. She 
stated, “This finding also has broader implications—that the broad base of research conducted in 
elementary classrooms can feed forward to inform efforts at supporting the development of 
preservice teachers’ content knowledge” (p. 301). As a result, PSTs also came to a realization 
that in order to teach for conceptual understanding, they themselves would need to possess this 
type of understanding.  
 
PSTs’ Working with [Alternative] Algorithms for Basic Operations 

Three papers focused on exploring PSTs’ working with alternative algorithms. Harkness and 
Thomas (2008) found that PSTs’ understandings of invented algorithms is more procedural than 
conceptual. They found that getting at the mathematics is difficult and learned that if they expect 
PSTs to write about the mathematics they must explicitly ask them to do so. Lo, Grant, & 
Flowers (2008) found that teachers’ ability to develop and justify reasoning strategies for 
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multiplication develops slowly. They found that PSTs struggled recognizing the difference 
between procedural and conceptual descriptions of solutions to multiplication problems. They 
also found that PSTs struggled coordinating the area/array interpretations as well as the equal 
groups interpretation with various strategies for multiplication. It was not clear whether students 
needed more time or different kinds of experiences to continue to develop this understanding. As 
a result, the authors suggest more research be conducted to investigate this. They also 
emphasized that we need to highlight the “ineffectiveness of memorizing and applying 
rules/procedures without understanding why they work” (p. 20). Nugent (2007) also concluded 
that teachers need to understand why an algorithm works and how the arithmetic extends to 
algebraic procedures while exploring the lattice methods.  

 
PSTs’ Understanding of Number Sense and Number Concepts and Addressing 
Misconceptions with Manipulatives. 

Two papers focused on number sense (Tsao, 2005; Yang, 2007) and one on number concepts 
(Southwell & Penglase, 2005), one on operations (Chapman, 2007) and one on order of 
operations (Glidden, 2008).  

Tsao and Yang both found that PSTs, especially the ones who struggled, focused on 
procedures rather than number sense when solving problems. Tsao found that many PSTs are not 
ready to be immersed into a curriculum that reflects the vision of less emphasis on paper-and-
pencil computation and more emphasis on number sense and mental arithmetic, as stated in the 
NCTM Standards. The data indicates that the high ability students were more successful on each 
type of number sense item than the low ability students. Compared to high ability students the 
low ability students in this study (a) tended to use the rule-based method more frequently when 
answering interview items and (b) preferred the use of standard written computation algorithms 
rather than the use of number sense based strategies. The high ability students tended to use 
benchmarks, to apply "number sense" based knowledge. Yang examined the following four 
categories: (1) understanding the meanings of numbers, operations, and their relationships, (2) 
recognizing relative number size, (3) judging the reasonableness of a computational result by 
using strategies of estimation, and (4) developing and using benchmarks appropriately. He found 
that for each category, about two thirds of participants relied on rule-based methods to answer 
the questions. Thus, procedural thinking seemed to be a powerful method of approaching 
problems especially for low ability students.  

Southwell and Penglase focused on number concepts. In the whole number area they 
examined basic concepts (numeration), basic facts, four basic operations, order of operations, 
and word problems. They found that place value concepts seem to have caused the most 
difficulty in their survey of various number concepts, however, PSTs performed poorly across 
tasks. Chapman focused on operations and found that PSTs’ initial knowledge of arithmetic 
operations was inadequate to teach conceptually and in depth. Glidden focused on order of 
operations and found that PSTs hold superficial knowledge of the order of operations.  

Thus PSTs tend to approach problems procedurally because they lack a conceptual 
understanding of place value, operations, and order of operations.  

One paper focused on addressing PSTs’ misconceptions with the use of manipulatives. 
Green, Piel, & Flowers (2008) explored the use of manipulatives and found that manipulative-
based instruction resulted in statistically significant decreases of arithmetic misconceptions and 
statistically significant increases of arithmetic knowledge, with respect to the basic operations. 
They state that manipulatives can effectively reverse most arithmetic misconceptions of PSTs 
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and that the same activities used to reverse misconceptions can also improve the accuracy and 
depth of arithmetic knowledge. Thus, they conclude, manipulatives can and should be used 
effectively in PST classrooms.  
 

Discussion/Conclusions 
So What Can We Say? 

In our synthesis of research, three distinct categories examining PSTs’ content knowledge of 
whole numbers emerged. The categories include PSTs’: (a) conceptions of whole number 
concepts and development thereof; (b) working with alternative algorithms for basic operations; 
and (c) understanding of number sense and number concepts.  The results are promising. 
However, given the dearth of research published in peer-reviewed research journals during the 
last ten years, it has been determined there is still a need to examine PSTs’ development in this 
content area. As exemplified by the two prospective teachers highlighted in the introduction of 
this paper, prior research has documented that PSTs heavily rely on memorized procedures in the 
content area of whole numbers and operations. In addition, many PSTs struggle to conceptually 
explain why the procedures work. Whereas, some research has been conducted on examining 
how we (mathematics educators) can help these PSTs develop more sophisticated conceptions, 
there is still much work is left to do for us (mathematics education community) to fully 
understand how PSTs concepts develop and how this development can be facilitated. This may 
be accomplished by conducting research in our teacher preparation courses to address the 
conceptions and misconceptions preservice teachers have when learning whole number concepts. 
For example, having PSTs explore whole number concepts in numeration system other than 
base-10 may provide the cognitive dissonance needed for more mathematics educators to 
research PSTs’ development of whole number concepts in a meaningful way. 
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We juxtapose the history of integers with current pedagogical approaches. We also present 
findings concerning children’s reasoning about negative numbers prior to instruction. We see 
alignment between children’s intuitions and the avenues that afforded progress for 
mathematicians, while the textbook approaches tend to run counter to lessons learned from 
history. 

 
Introduction 

The introduction of the notion of signed numbers is a critical point in children’s learning of 
mathematics. As with fractions, the advent of integers widens the domain of numbers in 
children’s mathematical worlds and, as such, presents notorious difficulties. Some of the 
challenges that children experience in coming to grips with the notion of negative numbers 
parallel those that mathematicians encountered historically. On the other hand, the experience of 
most children today as they learn about integers is quite distinct from that of mathematicians of 
old. After all, at the time when Diophantus was denying the possibility of negative solutions to 
linear equations – a position that was perfectly reasonable based on his conceptions of number – 
he had no teacher or textbook telling him otherwise (Gallardo, 2002; Henley, 1999). 

We looked to the history of integers to guide our review of current textbook approaches to 
integer instruction. The juxtaposition of these two bodies of evidence raises questions about the 
utility of prevalent textbook approaches. At the same time, we have seen children in interviews 
engage productively with ideas concerning positive and negative numbers prior to formal 
instruction. These findings suggest potentially fruitful alternative directions for textbook 
instruction concerning integers. 
 

Theoretical Framework: A Historical Perspective 
Before there were positive and negative numbers, there were simply numbers. The notion of 

positive is only meaningful in contrast with negative. Thus, the history of integers is largely the 
history of negative numbers. Negative numbers arose from the operation of subtraction, and they 
came about in at least two ways:  

1. There is sense in which a subtrahend can be regarded as a subtractive number (Henley, 
1999), which is to say that the subtraction operation is subsumed into the quality of the 
number. For example, instead of interpreting the expression 9 – 5 as meaning that we 
subtract 5 from 9, we might instead think in terms of 9 and “subtract 5” being combined 
additively. Under this interpretation, “subtract 5” becomes an entity that we can think 
about, even in the absence of any particular minuend. We can reason about -5 without 
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having a notion of this entity as a negative number, but simply as an amount to be taken 
away. Thus, 3 – 8 = -5 since we still must take 5 more away. 

2. The natural numbers are not closed under subtraction. We must either restrict subtraction 
to cases in which the minuend is greater than or equal to the subtrahend, or we must 
confront situations in which the subtrahend is greater.  

Negative numbers, or at least their ancestors, arose for mathematicians in these ways. For 
centuries, mathematicians struggled to make sense of such numbers by relating them to 
quantities. Some real-world situations were amenable to interpretation in terms of positives and 
negatives, while in other cases negatives were nonsensical (Colebrooke, 1817; Henley, 1999). 

The history of negatives is a history of progress in the face of resistance. The mathematical 
machinery continued to be developed even as mathematicians held negatives in dubious regard, 
and some objected vehemently to their use. Resistance derived from legitimate paradoxes: How 
is it possible to take something from nothing? How could -7 be “smaller” than 3, let alone 0? 
Such questions plagued great thinkers and stymied progress (Hefendehl-Hebeker, 1991). 
Nonetheless, over time, more and more mathematicians used and came to embrace negatives 
because of their usefulness. The resistance to negatives stemmed from attachment to concrete or 
quantitative interpretations of number. Acceptance followed from an alternative, purely 
mathematical stance: Negative numbers were legitimate because they solved uniquely 
mathematical problems, not because they were necessary for solving problems concerning 
money, elevation, temperature or any such thing, and not because they made sense in all the 
same ways that that regular (non-negative) numbers made sense. Ultimately, it was the advent of 
abstract algebra that led the mathematical community to fully accept negatives as numbers, on 
par with positives. The integers came to be recognized as a domain, distinct from other domains 
such as the natural numbers, and it was unproblematic for different domains to have different 
properties (Henley, 1999). 
 

Children’s Introduction to Integers 
The extension of the natural numbers poses challenges for both teachers and students. 

Children are expected to expand their mathematical worlds to include negative integers and 
(non-negative) rational numbers, on the way to real numbers (Bruno & Martinón, 1999). These 
extensions challenge students’ previous conceptions, which often involve overgeneralizations of 
their experiences with the natural numbers. There is a wealth of research concerning teaching 
and learning in the rational number domain (e.g., Empson & Levi, 2011; Fosnot & Dolk, 2002; 
Lamon, 1999; Sowder, 1995). However, few reports exist that address the challenges of students’ 
learning about integers (Kilpatrick, Swafford, & Findell, 2001). 

Integers and integer operations present conceptual difficulties for students (Janvier, 1983; 
Vlassis, 2004). These difficulties can be appreciated in light of the history of mathematics, 
wherein mathematicians struggled with counterintuitive notions associated with negative 
numbers (Henley, 1999; Gallardo, 2002; Thomaidis & Tzanakis, 2007). Mathematicians of old 
struggled with the distinction between magnitude and order that arises with negatives: There is a 
sense in which -7 is more than 3; however, it comes before 3 on the number line, and we use the 
term “less than” to refer to this relationship. Children encounter these same issues when 
introduced to negative numbers. However, our world has changed such that mathematically 
literate adults today can take negative numbers for granted. Thus, teachers may treat the 
introduction of negatives matter of factly, whereas for children it involves a conceptual 
revolution. 
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It was only after considerable conceptual struggles that great mathematicians such as 
Descartes and Newton came to accept negatives as numbers. It is no wonder, then, that children 
would face difficulties in making sense of negative numbers and operations involving them. At 
the same time, however, researchers have found children to be capable of reasoning about 
integers in relatively sophisticated ways, even in the lower elementary grades (Behrend & Mohs, 
2006; Bishop, Lamb, Philipp, Schappelle, & Whitacre, 2011; Hativa & Cohen, 1995; Wilcox, 
2008). For example, Bishop et al. found that first graders who had never heard of negative 
numbers nonetheless began to invent and reason productively about them in the contexts of 
playing a number line game and solving open number sentences. 

 
Methods 

There are three branches of this study: historical review, textbook analysis, and analysis of 
children’s thinking. In this section, we discuss our methods of data collection and analysis with 
respect to each of these three branches. 
Historical Review 

We reviewed sources concerning the history of mathematics with a focus on ideas associated 
with negative (and positive) numbers, especially the integers. We identified in the literature 
aspects of the extension to negatives that troubled mathematicians, as well as trends and insights 
that led to the acceptance of negatives as numbers. These findings further informed our analysis 
by providing a lens through which both the textbook approaches and children’s reasoning could 
be interpreted. 
Textbook Analysis 

We analyzed the treatment of integer topics in 18 fifth- and sixth-grade mathematics 
textbooks currently adopted by the State of California. Our methods of analysis were both 
quantitative and qualitative. We counted the numbers of textbooks employing particular 
approaches or types of problems, so that descriptive statistics would provide a sense of the 
frequency of these approaches. We focused our analysis on those chapters/sections of textbooks 
devoted to integers directly – those lessons concerning what integers are and how to operate with 
them. Our qualitative analysis of the textbook content began with a process of open coding 
(Strauss & Corbin, 1998). We used principles of grounded theory (primarily the constant 
comparative method) to identify emergent, distinguishing themes and features of how integers 
are presented in textbooks (Strauss & Corbin, 1998). We balanced emergent codes from the data 
itself with historical and theoretical findings from the literature. We report on trends seen across 
the sample of textbooks and highlight pedagogical issues that stand out to us. In particular, we 
examine these textbook approaches through a lens informed by the history of integers. 
Analysis of Children’s Thinking 

We conducted interviews with 55 elementary school students from Texas and California. 
Twenty-nine of these children were in grades K-2 at the time of the interviews; the rest were in 
grades 3-5. The responses that we discuss in this paper were to open number sentences, such as 
the problem 3 – 5 = . These were used with interview participants at all grade levels because, 
whether or not K-5 children have been introduced to negative numbers, the question is at least 
sensible. They are familiar with the natural numbers and with subtraction. Those children who 
did have some familiarity with negative numbers were posed problems that explicitly involved 
negatives, such as -5 + -1 = . The interviews themselves were conducted at the children’s 
school sites, during the school day. They lasted between 30 and 50 minutes and were videotaped. 
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Our analysis of the videotaped interviews was qualitative, focusing on children’s solution 
strategies as well as their underlying ways of reasoning. Through constant comparative analysis, 
we identified various themes concerning students’ reasoning about integers. We then related 
these to the history of mathematics, identifying parallels in the form of obstacles to progress in 
dealing with negative numbers, as well as ways of thinking that afforded innovations. In this 
short paper, we highlight certain productive ways of reasoning. 

 
Results: Textbook Approaches to Integer Instruction 

A hallmark of current textbook approaches to the teaching of integers is the use of contexts 
and models. The most typical contexts used in textbook presentations of the integers themselves 
or of addition or subtraction involving integers are the following: money (used in 94% of the 
textbooks sampled), elevation (89%), temperature (89%), and movement forward and back 
(61%). The typical models employed in instruction involve (1) number lines and (2) colored 
chips (or, in some cases, “charged particles”) that are used to represent positive ones and 
negative ones. An example of the use of a money context would be a person’s bank account 
balance and how it is affected by one or more transactions. The following story problem and 
example solution appear in the integer addition section of a sixth-grade textbook: 

The Debate Club’s income from a car wash was $300, including tips. Supply expenses 
were $25. Use integer addition to find the club’s total profit or loss. 
 

300 + (-25)   Use negative for the expenses. 
300 – 25   Find the difference of the absolute values. 
275    The answer is positive. 
The club earned $275. (Burger, Bennett, Chard, Jackson, & Kennedy, 2007) 

 
Perhaps the most poignant theme concerning story problems related to integers is that these 

tend to be quite accessible without the use of negative numbers. In fact, problems in real-world 
contexts can be solved without invoking negatives, and this generally seems to be more natural. 
For example, in the Debate Club problem above, the use of integers is entirely unnecessary. The 
debate teamed earned $300 from a car wash, and they spent $25 on supplies. So, their profit is 
$300 - $25 = $275. The only reason to represent this situation as involving addition of a 
negative, rather than whole-number subtraction, is the book’s instruction to do so. (In fact, the 
same story problem would be identified as a subtraction problem if it appeared in a second- or 
third-grade textbook.) Furthermore, even when the problem is framed as involving the addition 
of two integers, the way that this “addition” is performed is to subtract! 

The character of the role of the context here is not that integers are useful for solving 
problems in certain contexts. Rather, the message we get is that there are contexts than can be 
described in terms of integers if we choose to do so. In other words, integers do not appear as 
tools that are necessary for solving problems in the world, but as an artificial, purely 
mathematical lens that we can apply to real-world contexts when that is the game to be played. 
We note that this is not merely a matter of poorly chosen story problems. Two years into a 
project concerning integers, our team has yet to identify a real-world context that actually 
requires one to use negative numbers. When one considers that Greek mathematicians, for 
example, solved a wide variety of real-world problems without the use of negative numbers, the 
lack of appropriate contexts for which negative numbers are necessary seems less surprising.  
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In most textbooks, students are expected to translate a story problem into an expression 
involving integers (as in the example above) and then to evaluate that expression by appealing to 
sign rules or to a procedure associated with a prescribed model. That is, we do not see students’ 
intuitions about the contexts being tapped to guide solution strategies (beyond the task of 
translating to a number sentence). Furthermore, it is difficult to find power in the rules that 
students are expected to use to evaluate integer expressions. While algebraic equations may 
enable students to solve problems that they could not solve otherwise, number sentences 
involving integers represent extra work required of students in the name of solving otherwise 
readily accessible tasks. 

We do not mean to suggest that the only reason to relate integers to contexts would be that 
they provide indispensable tools for solving problems. There could be legitimate pedagogical 
purposes for doing so. Certainly, experts in reasoning about integers are capable of relating them 
to real-world contexts. However, in our review of textbook treatments of integer topics, we have 
found that these contexts tend to be used in a contrived fashion that may undermine the utility of 
the integers within mathematics. 

 
Children’s Intuitions about Integers 

We look to interviews with elementary children to reconsider opportunities for learning about 
negative numbers. We have seen powerful examples of children reasoning about positive and 
negative numbers prior to formal instruction about integers. We discuss the reasoning of two 
children, a first grader (Jackson) and a fourth grader (Roland), in the context of solving open 
number sentences. (We use pseudonyms for the children’s names.) 
Jackson’s Reasoning 

Jackson, a first grader, had heard of negative numbers and had seen a number line that 
included some negatives in his classroom. He had received no formal instruction concerning 
negative numbers. This minimal exposure to the notion of negatives was enough to enable him to 
extend his counting strategies to the left of zero. For example, Jackson solved -2 + 5 =  by 
starting at -2 and counting up five: -1, 0, 1, 2, 3. Although he had not been taught to solve 
addition problems involving negatives, Jackson’s previous experiences with addition enabled 
him to solve this novel problem. 

Early in his interview, Jackson had said that he could not solve problems such as 6 + -3 = . 
He had no way of making sense of starting with six of something and then adding negative three. 
However, following Jackson’s solution above (-2 + 5 = 3), he was presented with 5 + -2 = . 
Based on his answer that -2 + 5 = 3, Jackson concluded that 5 + -2 also equaled 3, explaining (in 
the language of a first grader) that the results must be the same due to the commutative property 
of addition. When asked what 5 + -2 meant, Jackson decided that it meant the same as 
subtraction since 5 – 2 was also 3. He went on to solve the problem 6 +  = 4 by thinking about 
how much he would have to subtract from 6 to get 4. 
Roland’s Reasoning 

Roland was in fourth grade. Like Jackson, he had heard of negative numbers but had not 
received formal instruction concerning operations involving them. Nonethless, Roland 
reinvented common sign rules for addition and subtraction of integers by reasoning about 
negative numbers as “the opposite” of positives. For example, Roland solved -5 + -1 =  by 
reasoning that adding two negative numbers “would make it further from the positive numbers.” 
Since he knew that the sum of 5 and 1 was 6, he reasoned that -5 plus -1 should equal -6. Roland 
was also able to solve -5 – -3 =  by building on his previous reasoning. He said, -5 – -3 “would 
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probably be… minus two, because if you use addition… it would be farther from positive 
numbers, so if you do the opposite it should be closer.” Roland reasoned that adding -3 to -5 
would result in moving futher into the negatives, so subtracting -3 from -5 should result in 
moving toward the positives instead. The opposite operation had to have the opposite effect. 

Mathematical Insights. Jackson had productive insights concerning the properties of integers. 
He made these by drawing on basic understandings of the natural number domain, together with 
simple familiarity with the notion of negative numbers as numbers less than, and to the left of, 
zero. He made progress by reasoning within the realm of mathematics, not by looking outside of 
it. Similarly, Roland used logic, together with an understanding of + and – as opposites, to 
effectively reinvent sign rules for addition and subtraction of negative numbers. Middle school 
textbooks go to elaborate lengths to present these rules in such ways that hopefully students will 
remember them. Roland, a fourth grader, figured them out for himself. 

Roland and Jackson did not make the leaps described above by relating integers to a context 
or by applying a chip model. Rather, they leveraged logic and familiar mathematical properties 
to solve novel problems. These moves opened up new possibilities for them. At an elementary 
level, these children’s productive insights echo the work of mathematicians such as Newton who 
overcame difficulties associated with negatives through a pragmatic approach, driven by 
mathematical utility and logical necessity. 

 
Implications 

In light of the history of the integers, it seems worthwhile to reconsider the ways that 
contexts and models are typically used in integer instruction. In the history of mathematics, 
attempts to relate integers to contexts and models both facilitated and constrained progress. The 
notion of negative numbers arose not out of real-world situations involving directed magnitudes, 
but from within mathematics itself. Ultimately, mathematicians made sense of and accepted 
negatives as numbers not because of any relationship to real-world quantities, but on pure 
mathematical terms. Resistance to negatives was alleviated by a shift in perspective. 
Mathematicians let go the search for clarifying models and came to view numbers as abstract 
entities. They recognized that the natural numbers and the integers are distinct domains with 
different properties, and that the integers are useful for solving mathematical problems (as 
opposed to story problems). 

Our purpose is not to denigrate contexts, models, manipulative materials, or textbooks. On 
the contrary, when it comes to many topics, we support approaches that relate numbers to 
quantities. In the case of young children learning to reason in the natural number domain, we see 
real-world contexts and materials such as Unifix cubes and base-ten blocks as extremely helpful 
resources. However, integers are different! The notion of a negative number is a strange idea and 
one that does not correspond well with the experiences of people in the world. Even individuals 
who have come to accept negative numbers within mathematics tend to regard them as fictitious 
entities with respect to the physical world. One child that we interviewed described negatives as 
belonging to a “ghost world” in which faint images of objects could be seen, although the objects 
were not really there. 

It is no wonder that attempts to relate integers to contexts often appear contrived. Why do we 
insist on such an approach? Consider instead an honest, purely mathematical alternative whereby 
students are asked to confront issues that were previously swept under the rug: Why can’t we 
subtract bigger from smaller? What if we could? We can add and multiply without restriction. 
Suppose that we wanted to be able to subtract and divide with as little restriction as necessary. 
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How could we do that, and how might we interpret the results? These are fair, mathematical 
questions that children are capable of exploring. Rather than think up elaborate ways of getting 
students to learn and remember the sign rules for operations with integers, we could invite 
children to establish for themselves what those rules ought to be. Preliminary evidence from 
interviews suggests to us that children could come to construct the integers from the natural 
numbers, given appropriate support for doing so. 

 
Endnote 

This material is based upon work supported by the National Science Foundation under grant 
number DRL-0918780. Any opinions, findings, conclusions, and recommendations expressed in 
this material are those of the authors and do not necessarily reflect the views of NSF. 
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Using the psychological construct of resilience, we analyze research on mathematics identity, 
race and ethnicity. Findings in the literature show the existence of a meta-framework, a 
trajectory from a framework of violence to one of positive growth. The foundational frameworks 
of Ogbu elucidate the lived adversity whereas later works, such as Nasir, illustrate lived positive 
responses that promote academic success. Illustrating and supporting studies are included. 

 
Purposes of the Study 

The construct of identity has become an important tool for mathematics education research. 
Many researchers have used identity to make sense of questions about differences in students’ 
mathematical thinking and learning (Author 2, 2008; Boaler & Greeno, 2000; and Oslund, 2010), 
and especially to consider unyielding questions about differences in mathematical performance 
across racial and ethnic lines (Jilk, 2007; Martin, 2000; and McGee, 2009). Identity, as a tool, 
has been used to frame differences in academic performance since at least the 1980’s when John 
Ogbu first wrote about voluntary and involuntary minorities, suggesting that external factors 
associated with identity contribute to student success. As researchers continue to study race, 
mathematics, and identity, some have built upon the work of Ogbu (and others), crafting new 
research trajectories and constructs of identity. The purpose of this paper is to examine changes 
in these constructs, seeking patterns in the changes and drawing conclusions about them. 

As we explored the history and uses of identity that explore mathematics education and 
race/ethnicity, we were struck by a common trajectory that began with notions of adversity or 
violence then moved towards a positive adaptation. Foundational frameworks (like Ogbu’s) 
tended to invoke adversity and violence to describe the relationship between racial identity and 
success and failure in academic mathematics. Subsequent authors seem to build from the premise 
of violence toward more non-violent framings. Intrigued by this trajectory, we sought framings 
that might clarify these trends and settled on a framework of resilience. In the next section of this 
paper, we will elaborate the framework of resilience and then, in our findings, demonstrate how 
that framework plays out in research on racialized mathematics identity. 

 
Theoretical Framework 

Resiliency is a psychological construct that refers to the process of positive adjustment to 
adverse circumstances. This definition implies two important conditions: exposure to adversity 
and a positive response (Luthar, Cicchetti, & Becker, 2000). We recognize that it is unusual to 
draw upon a psychological construct to analyze research; our purpose is not to comment upon 
the resiliency or psychological condition of any of the authors of the articles we cite. However, 
we are purposeful in drawing upon the conditions of resiliency to make sense of our findings. 

Psychological researchers have broadly defined the first condition, exposure to adversity: 
Adversity can range from traumatic, short-term life events (such as a moment of physical 
violence) to long-term stressful conditions (such as living in poverty) (Luthar, et al., 2000). This 
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adversity is experiential and includes the history of slavery and other oppressive acts against 
non-majority peoples as well as current physical and psychological violence resulting from the 
persistence of racism and segregation in the United States. We use the notion of adversity to 
examine how research on math identity acknowledges the lived adversity (physical and mental) 
faced by racial and ethnic minorities in the United States. We are also interested in the second 
condition of resiliency: the lived positive response. The positive response suggests the existence 
of productive activities of racially/ethnically minoritized students as they engage in learning 
mathematics. For example, as students draw upon the mathematics in their daily lives to make 
sense of school mathematics, they frame their lived experiences in a positive light and use these 
experiences as a resource for mathematical learning. 

Both lived components of the definition of resiliency give rise to theoretical constructs. In 
other words, researchers use theoretical adversity to metaphorically frame identity in ways that 
focus on violence and adversity. One example is Herzig’s reference (2004) to the term 
“egotistical suicide”. This theoretical construct is used to describe graduate student attrition in 
mathematics departments: Herzig suggests that students who voluntarily withdraw from the 
mathematics community are committing “suicide”. By purposefully using this term, Herzig 
situates her theoretical framework in the context of violence and adversity. Herzig’s use of 
suicide is an example of what we are calling theoretical violence. 

The lived positive response also has a theoretical counterpart, the theoretical positive 
response. Researchers who use a theoretical positive response frame race and identity in ways 
that focus on positive, productive adaptations. For example, the work on Funds of Knowledge 
(Moll, Amanti, Neff, & Gonzalez, 1992) starts with an orientation toward experiences and 
background as cognitive resources that can support academic success. 

It is our assumption that researchers use the lived adversity and lived positive responses of 
involuntary minorities to inform their theoretical framings of identity in their study of student 
achievement in mathematics. Although these researchers acknowledge the violence experienced 
by minority communities, some decentralize the lived adversity within these communities and 
celebrate the potential therein. In our findings, we offer a limited exploration of how adversity 
appears in research on race, identity, and mathematics education and explore an evolution in the 
literature that demonstrates a positive response in the portrayal of the minority student. 

 
Methods 

We performed a comprehensive search for articles on mathematics identity. We utilized the 
following search engines: JSTOR, ERIC, EBSCO, PsycINFO, Social Sciences Citation Index, 
ProQuest, and Sociological Abstracts. Approximately 1,200 citations were compiled using 
search terms such as “mathematics identity, education” and “math*, identity, education”. The 
term “education” was included to eliminate extraneous articles that focus on the mathematical 
use of the word identity. A hand search completed this phase with the help of Google Scholar. 

These 1,200 citations were refined to remove duplicates and irrelevant articles. For example, 
we removed articles on STEM (science, technology, engineering and mathematics) majors, 
cognitive science, and articles on academic identity with little mention of mathematics. Finally, 
we removed articles in languages other than English. This reduced the list to 303 papers. 

Next, the articles were categorized into groups such as gender, race/ethnicity, and teacher 
identity. Sixty-nine articles were categorized under race/ethnicity. Articles where identity was 
not central were then eliminated. For example, we did not include articles that addressed the 
mathematical achievement gap among ethnicities but did not expressly invoke identity. A clear 
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framework or definition of identity was not required since some authors’ definition of “efficacy” 
or “goals” resembled other’s definition of “mathematical identity”. Finally, dissertations were 
removed. This left a final count of sixteen articles to analyze. 

We examined these articles by mapping and exploring commonalities and differences across 
theoretical frameworks, the definition of mathematical identity, problem construction/resolution, 
and citations. We noticed violence used as a theme in some foundational articles and observed 
that violence or nonviolence arose as researchers built upon these foundational pieces. Our 
findings elaborate on the use of violence and the movement away from it. We include the articles 
that best illustrate our observations on the theoretical construct of resilience and its implications. 

 
Findings 

John Ogbu, Involuntary Minorities, and a Culture of Opposition 
Several mathematics education researchers build from the foundational frameworks of John 

Ogbu (e.g. Martin, 2000; Nasir, 2002; and Stinson, 2008). Ogbu’s work (1987, 1992, and 1998) 
acknowledges the lived violence of minority people and reflects that violence in his theoretical 
framework. His theoretical differentiation of involuntary and voluntary minorities arises from 
differences in their experiences of lived violence in the United States. Involuntary minorities are 
non-immigrant minorities whose ancestors have been enslaved, conquered, or colonized and who 
have been made members of American society against their will. Thus, the category of 
involuntary minority is predicated on this history of violence. In contrast, voluntary minorities 
emigrated from their homeland to the United States in search of greater opportunities (Ogbu & 
Simons, 1998). Because of their recent arrival, voluntary minorities lack the same legacy of 
violence (in the United States) as involuntary minorities and they see their presence in the United 
States optimistically and not dictated by the government or the White1 hegemony. This does not 
imply that voluntary minorities have had no exposure to violence – Ogbu’s framework 
emphasizes the contrasts between the lived experiences of minorities in the “adopted” country. 

Ogbu draws upon the differences in lived violence to account for variation in academic 
performance between these two groups. The violent sociohistorical legacies and lived adversities 
of involuntary minorities cause them to develop an identity opposing that of White America’s 
middle-class. This oppositional culture counters the hegemonic group by redefining the values 
placed on role models, paths to economic, social and academic success and government-
controlled institutions. As a result, based on the rejection of school, a White institution, 
involuntary minority parents give their children contradictory signals on the value of knowledge; 
they value education but reject the institution of school (Ogbu & Simons, 1998).  

Ogbu also develops a framing of three influencers that contribute to academic failure among 
minorities: society, school, and community (Ogbu, 1987). These influencers are affected by and 
contribute to the lived adversities of involuntary minorities. Societal traditions of denying 
lucrative jobs and equal opportunities (in vocation and education) teach involuntary minorities 
that personal investment in education will not yield the expected results, and thus contribute to 
lived adversities. Likewise, schools, a reflection of the larger society, contribute to lived 
adversities when they prevent minority students from receiving an equitable education. Finally 
the communities who take up the oppositional culture contribute to failure by sending the 
message that academic success is success in a White institution and therefore undesirable.  

The lived adversity seen in the language of opposition and conflict is felt in some studies that 
build on Ogbu’s theoretical framework. Lim (2008) analyzed the school mathematics 
experiences and illustrated the lived adversity of two Black sixth-grade girls. One student, Stella, 
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had a naturally boisterous, outgoing spirit but became shy, subdued and deeply self-alienating in 
her mathematics class. This was due to her knowledge of the simultaneous existence of two 
conflicting worlds within the school, the academic world and the social African-American world. 
Stella’s parents reinforced this conflict by encouraging her to succeed but sharing anecdotes of 
failure in mathematics based on theirs and others’ lived adversities. The conflict between socially 
conforming and learning mathematics led to indecision between studying pre-algebra and 
rejecting social alienation. Stella’s understanding of how these diverging cultures clashed, 
suppression of her academic desires and opposition to the academic, White, world returns us to 
Ogbu’s framing of identity based on adversity and oppositional cultures. Stella not only regarded 
the culture of her mathematics class as oppositional and violent, but she labeled it dangerous. 

Lim’s second student, Rachel, offers a slightly different enactment of oppositional culture. 
Rachel did not compromise her identity in the mathematics classroom and excelled in class. She 
routinely completed her class work early but was never made aware of challenging mathematics 
tracks. Rather than consider a “White”, hegemonic track to academic success, Rachel looked to 
the defined oppositional path, sports, as the best way to meet her life’s goals. Although Rachel 
discussed the importance of education, she visualized her world through a lens of opposition that 
does not see the value and potential in her work as a scholar. To both girls, school was not an 
area to grow and thrive; it was an arena of conflict. Both girls were candidates for pre-algebra 
but neither placed in that course and thus were limited by responses to their lived adversity. 

Ogbu’s frameworks respond to the violent lived adversities of African-Americans. In violent 
or threatening academic settings, students isolate themselves and do not consider positive effects 
of the academic world. Ogbu’s frameworks are critical because they clearly acknowledge and 
proclaim the role of violence and adversity in minority students’ (lack of) educational 
opportunities. This acknowledgement provides the essential foundation for subsequent 
frameworks that, to borrow from Dr. Martin Luther King, Jr., “hew out of the mountain of 
despair a stone of hope” (1963). The next two sections explore how researchers have leveraged 
Ogbu’s affirmation of violence to “hew… a stone of hope” and construct new insights into the 
mathematical learning of minority students. 

 
Moving from Violence toward Positive Adaptation 

While researchers who study ethnicity and race in mathematics education cannot ignore the 
lived adversity of involuntary minorities, some developed frameworks that recognize but lead 
away from violence. Martin’s work (2000) on African-American students’ mathematical identity 
uses Ogbu’s work to link identity and mathematics learning and establishes the importance of 
racialized experiences in the mathematics classroom. Martin expands Ogbu’s school and societal 
influences (Ogbu, 1987) on the failure in academic mathematics among Black students to include 
success. Martin acknowledges the opposition and lived adversity of African-Americans but also 
adopts a stance that moves away from violence by analyzing Ogbu’s influencers for success 
factors and lived positive responses, shifting his framework towards resilience.  

Martin finds that African-American students who succeeded in academic mathematics 
resisted or opposed influences seen by them as negative, whether from Black or White society. 
They took ownership of their academic development but experienced social pressures as a result. 
Teasing, ridicule, and severe taunting by their African-American peers ostracized students for 
their achievements. This tension reflects Ogbu and Simons’ ideas (1998) on the discord that 
occurs when a student thrives in the White academic world. Yet these students react to their lived 
adversities by succeeding academically, a move, which can be seen as a positive response. 
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Martin notes the lack of research on the successes of African-Americans and indicates that 
much can be learned from understanding how positive responses can develop from lived 
adversities. Inspired by Martin’s call to increase this research, Stinson (2008) wrote about four 
Black boys and their mathematical success by analyzing the sociocultural and sociohistorical 
discourses outside the mathematics classroom that affected their agency. Stinson found that the 
students understood the importance of academic success. Yet, because sociocultural discourses 
identify African-American men in certain ways, these students were compelled to renegotiate 
perceived adverse images of them with teachers and community members in order to succeed in 
the classroom. They responded positively to adverse images either by controlling others’ 
perceptions of them or by not thinking of success as being racialized “the term nerd could be 
applied to all races” (p. 998); they resisted Ogbu’s notion of an oppositional culture.  

The students also developed a double-consciousness; an awareness and understanding of the 
positions of both marginalized, excluded populations and hegemonic groups. This positive 
response proactively avoided violence and minimized the lived adversity. Stinson argued that an 
individual, whose identity is formed outside the dominant discourse and develops a double-
consciousness deliberately or inadvertently, tends to be motivated to be self-empowered or to 
transform society. By being aware of the hegemonic discourses surrounding Black men, these 
students understood, and worked to control and alter, others’ perceptions of them. They 
appropriately tailored their behavior in and out of the classroom. Furthermore, the students either 
rejected or renegotiated Ogbu’s ideas on African-Americans’ rejection of academic excellence.  

These counter-stories contradict theoretical constructs on the failure of African-American 
boys in mathematics. Two generations after Ogbu’s work, Stinson’s work looked at positive 
responses and the success stories of African-American boys to bring the intellectual conversation 
to a new level. He considered an example, where students are not limited by violence, but are 
empowered by the positive responses in understanding how society labels them. By controlling 
the Discourse, these students gained greater control over their destiny. Ogbu’s frameworks set 
the stage for these realizations, since these students found success in both of their worlds by 
simultaneously accepting and rejecting the lived adversity that comes from both. 

Stinson’s ideas are illustrated in Jones (2003), which used action research to help a third-
grade girl develop a “hybrid identity” in an after-school math club. Similar to the two girls in 
Lim’s work, Patti experienced lived adversity because she enacted two conflicting identities. Her 
personal, home identity was that of a boisterous, active, African-American girl who was 
encouraged by her mother to adopt an academic identity (White, middle-class) in school by 
excelling in mathematics. In contrast, she did not successfully conform to the limited notions of a 
girl’s appropriate behavior in the classroom, which limited her mathematical success. In fact, her 
teacher did not recognize Patti’s mathematical talent and held low expectations for her. Jones 
used an after-school math club as a third space where Patti and others were encouraged to 
develop a hybrid identity, a positive response to their lived adversity which included teachers’ 
discouraging remarks. In the club, academic and cultural and personal experiences were valued 
and encouraged to be part of the discourse, learning was stimulated, and the lived adversity was 
minimized. Because the math club was a safe space where Patti’s identity did not need to be 
compromised or suppressed, Patti enjoyed mathematics, developed her skills and a strong 
mathematical identity. Jones’ intervention may have prevented results mimicking Lim, showing 
how the positive response can help a student move away from lived adversity.  

Further adding to the success stories of African-American men in mathematics, Berry (2008) 
documented how a group of Black middle-school boys’ mathematics learning experiences’ were 
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racialized and how they persisted and succeeded to enroll in Algebra I. Four boys were tested for 
the academic program at the insistence of their parents or another adult. Their teachers did not 
recognize the potential and cognitive abilities of these boys; others rejected those notions and 
advocated on behalf of the child. The parents each believed their child was not considered for the 
gifted program because of race. These parents did not use what they perceived to be a teacher’s 
racism to develop an oppositional worldview; they did not subscribe to the violence of racism to 
reify Ogbu’s theories. Instead, these parents understood that teachers and principals hold the key 
to knowledge in the classroom and worked to change their views. The parents developed a 
positive response to their lived adversity by being involved with school activities to reject any 
notion that they did not care about their child’s academic progress. The parents taught their 
children that being a Black boy required them to work harder for less recognition, as indicated by 
the struggle to have school personnel recognize intellectual talents and potential.  

As researchers step away from violence to focus on the academic successes of involuntary 
minorities, they deemphasize violence and consider positive responses. Martin and Jones expand 
the canon of student experiences from what Ogbu and Lim portray. Stinson conveys a theoretical 
framework on dual-consciousness, a positive response to one’s lived adversities. Berry shows 
that parents did not develop a segregated worldview that opposes the culture of power; rather 
based on their lived experiences these parents challenged the hegemonic powers in the schools to 
respond positively and ensure their children the best education possible. 

 
Beyond Violence: The Positive Response 

Ogbu’s influence extends to researchers who use his work to frame the positive response. 
Looking at learning through a cultural lens, Nasir (2002) theorizes how mathematical learning, 
identity, and goals interact within a community of practice. Nasir, like Martin, builds on Ogbu’s 
framework by suggesting that race and culture influence academics and that identity and learning 
are connected. Nasir advances Ogbu’s theories by supplementing identity and learning with 
goals. However, rather than emphasize the lived adversity of minority students and their 
opposition to learning, Nasir portrays minority students as advancing their own learning (albeit 
in nonacademic contexts) through goal setting and changes in identity.  

Nasir examines two practices of African-American culture: dominoes and basketball, and 
illustrates how mathematics is pervasive and valued in these practices and thus in Black culture.  
She emphasizes that minority students who are sometimes seen by their teachers as 
mathematically weak are, in fact, mathematical beings, eager and willing to learn mathematical 
ideas. Unlike Lim’s work (2008), Nasir does not require students to redefine themselves in order 
to succeed. She does not see sports as a rejection of academics. Instead, she embraces athletics as 
a way to reach the academic potential of African-American students and places the burden for 
change upon schools, suggesting that students will excel in learning when learning is well 
designed. Thus Nasir, while acknowledging and building from Ogbu’s work, has, in this article, 
moved from an emphasis on adversity and violence to a focus on the resiliency of Black youth, 
showing their celebration of learning in spite of unsuccessful school contexts. 

  The move toward resiliency is also illustrated in Thompson and Lewis’ (2005) case study of 
a Black high school boy, Malik, in an urban school. Malik’s goal was to be a pilot. This 
motivated him to enroll in upper-level mathematics courses in high school. Such coursework 
would provide knowledge and strengthen his transcript and applications to competitive colleges. 
Malik began high school defining success through athletics. Living in a violent neighborhood 
with high crime rates, drug activity, and low participation in school, Malik witnessed first-hand 
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the detrimental effects of the culture of opposition and rejected it completely. Malik’s witnessing 
of the lived adversity of his community initiated the positive response of setting his personal goal 
and motivating himself to accomplish this goal in multiple ways, including comparing his 
academic development with national averages to minimize a false sense of confidence. 

Malik’s goal redefined his identity as a dedicated student and he consequently petitioned his 
principal to offer a Pre-Calculus / Calculus course. The principal was hesitant; he felt there was a 
lack of interest in upper-level mathematics courses. However, he was willing to establish the 
course if a certain number of students expressed interest. In the end, 16 percent of the graduating 
students at the school did so, contradicting the notion that African-Americans are not interested 
in education. This principal did not decide the students’ fate, he left it to Malik’s agency and the 
students’ motivation, laying the foundation for a positive response and reducing the possibility of 
contributing to the culture of opposition by denying students their intellectual desires. 

Using Ogbu’s foundational work, Nasir deemphasizes adversity and develops a framework of 
positive responses in mathematics learning. Thompson and Lewis illustrate how the lived 
adversity of the culture of opposition triggered the positive response in a student so strongly that 
they petitioned and succeeded in having their school offer advanced mathematics classes. 
 

Conclusion 
We applied a non-traditional meta-framework to research on mathematics identity and race. 

This meta-framework starts with violence as a basis for the theoretical constructs that draw from 
the lived adversities of involuntary minorities. The pervasive experiences that contribute to 
adversity cannot be ignored when explaining achievements in mathematics. However, they are 
the beginning and not the ending of frameworks that explore mathematical achievement gaps. 
These frameworks give way to frameworks that draw upon positive responses. For example, 
Martin acknowledges that racializing mathematics and recognizing adversity is essential. 
However, he also contends that race does not have to limit one’s mathematical potential. Nasir 
moves one step further from adversity in her work. She formulates a theoretical positive response 
based on a lived positive response and celebrates possibility. Her theoretical stance emphasizes 
strength and power among involuntary minorities while minimizing violence.  
 Although Nasir and Martin and others do not describe their work in terms of resilience, their 
acknowledgment of Ogbu’s work as a foundation and their work to establish positive theoretical 
framings suggests that resilience is an appropriate label for the trajectory of their work. 
 Our meta-framework of resilience suggests that the acknowledgment, proclamation even, of 
adversity, might be important to the trajectory of research on situations of violence and adversity. 
It also suggests particular ways in which research that explores lived adversity might develop 
over time. Finally, it embraces the inspirational call of many nonviolent protestors like Dr. 
Martin Luther King, Jr.; Nelson Mandela and Mahatma Gandhi who each enacted the belief that 
injustice could be resolved by first recognizing the multiple kinds of violence and then moving 
through a positive response toward a more just world. 
 

Endnotes 
1. The literature is inconsistent on the use of racial terms and their capitalization. We will use 
“Black” and “African-American” interchangeably and capitalize all references to race. 
 

References 
Berry, R. Q. (2008). Access to Upper-Level Mathematics: The Stories of Successful African 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

927



American Middle School Boys. Journal for Research in Mathematics Education, 39(5), 464-
488. 

Boaler, J., & Greeno, J. G. (2000). Identity, agency, and knowing in mathematics worlds. 
Multiple perspectives on mathematics teaching and learning, 171-200. 

Herzig, A. H. (2004). Becoming Mathematicians: Women and Students of Color Choosing and 
Leaving Doctoral Mathematics. Review of Educational Research, 74(2), 171-214. 

Jilk, L. (2007). Translated mathematics: Immigrant women's use of salient identities as cultural 
tools for interpretation and learning. (Doctoral dissertation). Michigan State University, East 
Lansing, MI. 

Jones, S. (2003). Identities of race, class, and gender inside and outside the math classroom: A 
girls' math club as a hybrid possibility. Feminist Teacher, 14(3), 220. 

King, M. L. (1963). “I have a dream.” Speech given at the Lincoln Memorial, Washington, D.C. 
on August 28, 1963. 

Lim, J. H. (2008). The road not taken: two African-American girls' experiences with school 
mathematics. Race, Ethnicity and Education, 11(3), 303-317. 

Luthar, S. S., Cicchetti, D., & Becker, B. (2000). The construct of resilience: A critical 
evaluation and guidelines for future work. Child development, 71(3), 543–562. 

Martin, D. B. (2000). Mathematics success and failure among African-American youth: The 
roles of sociohistorical context, community forces, school influence, and individual agency. 
Lawrence Erlbaum Associates. 

McGee, E. (2009). Race, identity, and resilience: Black college students negotiating success in 
mathematics and engineering. University of Illinois at Chicago, Illinois. 

Moll, L. C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of knowledge for teaching: 
Using a qualitative approach to connect homes and classrooms. Theory into Practice, 31(2), 
132-141. 

Nasir, N. S. (2002). Identity, goals, and learning: Mathematics in cultural practice. Mathematical 
Thinking and Learning, 4(2), 213–247. 

Ogbu, J. U. (1987). Variability in minority school performance: A problem in search of an 
explanation. Anthropology & Education Quarterly, 18(4), 312–334. 

Ogbu, J. U. (1992). Understanding cultural diversity and learning. Educational Researcher, 
21(8), 5. 

Ogbu, J. U., & Simons, H. D. (1998). Voluntary and Involuntary Minorities: A Cultural-
Ecological Theory of School Performance with Some Implications for Education. 
Anthropology Education Quarterly, 29(2), 155-188. doi:10.1525/aeq.1998.29.2.155 

Oslund, J. A. (2010). Stories of change: Narrative perspectives on elementary teachers' 
identifying and implementation of new mathematics teaching practices. (Doctoral 
dissertation). Michigan State University.  

Stinson, D. (2008). Negotiating Sociocultural Discourses: The Counter-Storytelling of 
Academically (and Mathematically) Successful African American Male Students. American 
Educational Research Journal, 45(4), 975. 

Wood, M. B. (2009). Mathematizing, identifying, and autonomous learning: Fourth grade 
students engage mathematics. ProQuest Information & Learning, US. 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

928



STUDENT PERSPECTIVES TOWARD UNDERGRADUATE  
MATHEMATICS COURSES 

 
Michael D Dornoo 

The Ohio State University at Newark 
dornoo.1@osu.edu 

Lynda R Wiest 
University of Nevada, Reno 

wiest@unr.edu 

This research was an investigation of 208 undergraduate students’ perspectives toward 
undergraduate mathematics instruction. Survey ratings and limited student written commentary 
were analyzed as a whole and by gender and race/ethnicity. Overall, students tended to report 
somewhat favorable affect and experiences. However, some students, particularly females, 
expressed negative perspectives. Participants noted the role of both the instructor and 
themselves as important factors in defining the undergraduate mathematics experience. The 
results suggest improvements for undergraduate mathematics instruction. 

Purpose of the Study 
Most undergraduate students must successfully complete at least one mathematics course to 

obtain a bachelor’s degree (Gupta, Harris, Carrier, & Caron, 2006). Mathematics is important 
preparation for many fields of study. Mathematics-oriented fields tend to be lucrative, offering 
workers secure positions that can impact life quality. For example, in 2009 Computer and 
Mathematical Science Occupations ranked third in mean annual wages ($76,290) out of the U.S. 
Bureau of Labor Statistics’ (2007) 22 major occupational groups. 

Nevertheless, many students enter college with insufficient preparation for or poor 
dispositions toward mathematics courses (e.g., Gupta et al., 2006; Schmidt, 2007). They may fail 
to see the utility of the subject. They may avoid mathematics coursework beyond that which is 
required and even avoid careers with substantial mathematics demands. Some research findings 
associate attitudes and beliefs with mathematics performance and participation (e.g., Watt, 
Eccles, & Durik, 2006). Perspectives on mathematics may differ by students’ “social identities,” 
such as gender and race/ethnicity. For this reason, some researchers (e.g., Lubienski, 2008) 
encourage mathematics education researchers to study gaps among different student groups as a 
springboard from which to launch equity efforts. More research is needed to examine the 
undergraduate mathematics experience as a starting point for improving undergraduate 
mathematics courses. Accordingly, the survey research reported here investigated 208 
undergraduate students’ perspectives toward undergraduate mathematics instruction. The data 
were analyzed as a whole and by race/ethnicity and gender. 

 
Theoretical Framework 

The following topics related to undergraduate mathematics learning are discussed briefly 
below: occupational importance of mathematics, mathematics anxiety, instructional strategies 
and mathematics performance, and the relationship of race/ethnicity and gender to mathematics. 

 
Occupational Importance of Mathematics 

Many jobs call for mathematics skills, as does daily life itself (e.g., Bureau of Labor 
Statistics, 2007; Stubblefield, 2006). According to Bureau of Labor Statistics (2007) projections, 
many jobs that once required little mathematics background will call for specific skills in 
algebra, geometry, measurement, probability, and statistics. Prevot (2006) found that many 
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fields, such as economics, commerce, and medicine, are taking on mathematical aspects, so that 
individuals unfamiliar with algebraic symbolism and higher mathematics may struggle to read 
some of the current literature in these fields. Goodman and Stampflii (2001) report that many 
employers prefer mathematically trained candidates for secretarial and administrative assistants, 
especially where statistical or accounting work may be required. They also note that life 
insurance companies and industrial research organizations provide numerous positions for 
mathematicians.  

 
Mathematics Anxiety 

Most students resist taking mathematics courses due to anxiety toward the subject. This 
anxiety is so strong that many students defer taking mathematics courses until their last semester 
of undergraduate studies (Liljedahl, 2005). Tobias and Weissbrod (1980) define mathematics 
anxiety as the panic, helplessness, paralysis, and mental disorganization that arise in some people 
when they are required to solve a mathematical problem. Mathematics anxiety, a common 
phenomenon among college students, exceeds a dislike of mathematics (Perry, 2004; Vinson, 
2001). Many researchers have documented that mathematics anxiety stems from students’ fear of 
failure and feeling of inadequacy. In particular, Krantz (1999) describes this extreme form of 
mathematics anxiety as the inability by an otherwise intelligent person to cope with 
quantifications and, more generally, mathematics. If students suffer from mathematics anxiety, 
their willingness to enroll and succeed in mathematics courses is diminished (Stubblefield, 
2006). Consequently, many students at the undergraduate level tend to view mathematics with 
negative attitudes and feelings, which have been found to explain a significant portion of the 
variance in student learning (Gupta et al., 2006; Papanastasiou, 2003). Students who do well in 
mathematics have more positive attitudes about the subject; they are thus likely to take more 
courses and may perform better (Tapia & Marsh, 2004). However, many students enter 
undergraduate programs with an already developed attitude toward mathematics instruction 
(Gupta et al., 2006). 

 
Instructional Strategies and Mathematics Performance 

An instructor’s method of teaching can impact students’ attitudes toward mathematics. 
According to Walczyk and Ramsey (2003), students complain that instruction that is primarily 
lecture is boring and hard to relate to, grading does not reflect achievement, competitive rather 
than cooperative learning is emphasized, memorization receives greater focus than 
understanding, concepts are not linked, demonstrations are rarely used, little class interaction 
takes place, and faculty are indifferent. On the other hand, students report that good teaching 
practice consists of consciously constructing a supportive learning environment that can increase 
students’ interest and success in mathematics and show students various ways to approach the 
same mathematics problem (Carlan, 2001).  

 
The Relationship of Race/Ethnicity and Gender to Mathematics 

Mathematics performance and attitudes have been found to differ by race/ethnicity and 
gender, thus making these demographic factors important to consider in conducting research 
(e.g., Acherman-Chor, Aladro, & Gupta, 2003; Ma, 2006). These “social identities” intersect in 
ways that further complicate simple data interpretation (Riegle-Crumb, 2006). Tapia and Marsh 
(2004) posit that among college students, feelings about mathematics mainly relate to individual 
personal experiences. Ma’s (2006) research found that racial/ethnic differences in mathematics 
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were more evident among students from socially advantaged than from socially disadvantaged 
backgrounds. For example, Hispanic students from socially advantaged families failed to do well 
in mathematics courses. Thus, Ma (2006) cautions that a family’s socioeconomic background 
may not predict participation and success in mathematics course work; rather, “It actually 
depends on the racial-ethnic background of students” (p. 145). 

In their research on a cohort of college algebra students, Acherman-Chor, Aladro, and Gupta 
(2003) found that ethnic minorities received more encouragement and motivation from their 
parents than White students. In terms of role models, African American teachers can help shape 
how African American students perceive themselves as learners and doers of mathematics, as 
well as stimulate a sense of belonging in the mathematics classroom and eventually in the field 
of mathematics (Moody, 2004). Acherman-Chor, Aladro, and Gupta (2003) found, “Contrary to 
the established assumption that minority parents do not understand the value of higher education, 
both Hispanic and Black students reported higher levels of parental educational expectations than 
did their White counterparts” (p. 141). 

Most students, in general, tend to have positive attitudes about the pursuit of mathematics 
when they feel inspired and determined to succeed (Liljedahl, 2005; Tapia & Marsh, 2004). 
Although women exhibit high levels of math anxiety, they perform well in relation to men in 
college mathematics (Acherman-Chor et al., 2003; Van Nelson & Leganza, 2006). As noted, 
Tapia and Marsh (2004) posit that among college students, feeling good about mathematics 
relates to individual personal experiences more than the social construct of gender. 

Methodology 
Participants and Data Collection 

The study included 208 undergraduate students enrolled in mathematics courses at a large 
western U.S. public university during the spring semester of 2007. Participants whose instructors 
consented to participate in the study were enrolled in Intermediate Algebra, Number Concepts 
for Elementary School Teachers, Precalculus and Trigonometry, Calculus I, Calculus II, or 
Calculus III. The participants, who ranged from freshmen to seniors, consisted of 99 females 
(47.6%) and 106 males (51.0%) from 11 undergraduate mathematics classes. (Three students’ 
gender, accounting for the remaining 1.4%, was not disclosed,) Of the 208 participants, 1.9% 
were American Indian or Alaskan Native, 1.9% Black, not of Hispanic origin, 8.2% Hispanic, 
9.1% Asian, Native Hawaiian, or Pacific Islander, 73.1% White, not of Hispanic origin, 3.4% 
other, and 2.4% racially undisclosed. 

The research was a quantitative study based on survey-item ratings that were supported by 
limited qualitative data in the form of written comments. Students’ written comments helped the 
researchers interpret the ratings. The quantitative and qualitative data were collected at the same 
time and were both considered integral to the data analysis. According to Hanson, Creswell, 
Plano-Clark, Petska, and Creswell (2005), “Using both forms of data allows researchers to 
simultaneously generalize results from a sample to a population and to gain a deeper 
understanding of the phenomena of interest” (p. 224). 

A 29-item, author-developed questionnaire was used to assess participants’ perspectives 
toward undergraduate mathematics. Items were based on undergraduate students’ experiences 
with and perspectives toward mathematics, as gleaned from the professional literature and the 
authors’ professional experiences as college instructors in mathematics and mathematics 
education. Questions addressed such areas as perceptions of the difficulty level of mathematics 
and expectations for students’ performance in mathematics. Participants responded to the first 28 
items on a five-point Likert scale with choices of “strongly disagree,” “disagree,” “unsure,” 
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“agree,” or “strongly agree” for each statement. Participants had the option to provide comments 
after each of the 28 items to explain their ratings. The final item was an open-ended invitation to 
provide any other comments participants might want to make. The survey was administered to 
ten of the eleven classes at the beginning of class and one at the end of class.  

 
Data Analysis 

Survey ratings were assigned scores ranging from 1 for “strongly disagree” to 5 for “strongly 
agree.” These quantitative data were analyzed using SPSS statistical software. Descriptive 
statistics were figured for the data as a whole and the data disaggregated by gender and 
race/ethnicity. The number of participants in each racial/ethnic minority group—American 
Native or Alaskan Native; Black, not of Hispanic origin; Hispanic; Asian and Native Hawaiian 
or Pacific Islander—were small compared to White participants, so race/ethnicity was put into 
two groups, non-White (n = 51; 24.5%) and White (n = 152; 73.1%), for the purpose of data 
analysis. A Mann-Whitney test was used to compare mean scores for survey items by gender and 
race/ethnicity with an alpha level of .05 established for determining significance. 

Student written comments were analyzed by performing multiple readings of the data to 
construct conceptual categories that appeared to reflect participant perspectives (cf. Bogdan & 
Biklen, 2007). The authors repeatedly coded student comments separately and together until they 
agreed on the coding categories used, classification of student comments, and general themes 
observed. Written commentary was analyzed as a whole and separately by gender and 
race/ethnicity. 

Findings 
Quantitative Analysis 

The ten most extreme mean ratings, those farthest from a rating of “unsure” (3.0), are 
weighted more heavily toward positive portrayals of the undergraduate mathematics classroom, 
as shown below. (Scores above 3 tend toward “agree” and those below 3 toward “disagree.”) 
One possible exception is the tendency to perceive classroom instruction as mainly lecture, if 
presumed that lecture is construed as an undesirable method (which does appear to be the case 
based on some written comments). However, as worded, the item is descriptive rather than 
evaluative. 
• I believe that I am capable of doing well in mathematics  (4.1). 
• I am provided with challenging, thought-provoking problems in math class. (4.0) 
• Tutoring or other help outside of math class would help me improve my math performance. 

(3.9) 
• My math instructors encourage me to do my best in mathematics. (3.9) 
• I am encouraged to ask questions in math class. (3.8) 
• The main teaching method for my math classes is lecture. (3.8) 
• My math instructors hold high expectations for my performance. (3.7) 
• My math instructors give me extra time and assistance in and out of class when I need it. (3.7) 
• Some students are expected to do better in mathematics based on their race/ethnicity and/or 

gender. (2.3) 
• Classmates often intimidate me in math class. (2.3) 

Ratings for some items tended toward more negative positions but not as strongly as the 
more positive perspectives indicated above. The most salient is, “Mathematics is a difficult 
subject area” (3.5). Gender differences, and to a much lesser degree race/ethnicity, are evident. 
Significant differences according to these participant subgroups are shown below. Effect sizes 
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also appear in parentheses, with the magnitude characterized as small (.01), medium (.06), or 
large (.14). 
      Gender. Males assumed a more favorable score for each rated comment below. In most 
cases, both mean scores tended to be favorable or unfavorable but were nevertheless significantly 
discrepant. 
• I fear mathematics. (p < .001; .66, large effect) 
• I feel fear/anxiety when taking mathematics tests. (p < .001; .67, large effect) 
• Instructors often intimidate me in math class. (p < .01; .04, medium effect) 
• Classmates often intimidate me in math class. (p < .001; .055, medium effect) 
• Mathematics is taught in a way that matches the way I think and learn. (p < .01; .04, medium 

effect) 
• I would like to take more math courses than what is required for my major. (p < .01; .04, 

medium effect) 
• I believe that I am capable of doing well in mathematics. (p < .05; .02, small effect) 
• My parent(s) hold high expectations for my math performance. (p < .05; .02, small effect) 
• My parents have actively encouraged me in mathematics (e.g., said I was good at it or 

encouraged me to take more/higher math). (p < .05; .02, small effect) 
Race/Ethnicity. White students rated the first two items below significantly more favorably 

than non-White students. Non-Whites rated the final two comments more strongly. These four 
differences have small effect sizes. 
• I believe that I am capable of doing well in mathematics. (p < .05; .02, small effect) 
• Classmates often intimidate me in math class. (p < .05; .02, small effect) 
• Tutoring or other help outside of math class would help me improve my math performance. (p 

< .05; .02, small effect) 
• Mathematics is taught in a way that matches the way I think and learn. (p < .05; .02, small 

effect; .02, small effect) 
 
Qualitative Analysis 

One-fourth of the sample (52 students) provided a written response to the final, open-ended 
response: “Please add any other comments you would like to make.” Despite the influence of 
gender, and to a lesser degree race/ethnicity, noted above, written comments indicated that 
students’ perspectives on mathematics also bear a strong association with individual personal 
experiences apart from demographic characteristics. Individual experiences include, for example, 
presence or absence of strong role models, parental or self-expectations for performance, and 
personal work ethic. Three dominant themes, each described briefly below, appeared across 
students’ written comments: the role of mathematics or test type, instructional factors, and 
student preparation and effort.  

Mathematics/test type. As noted earlier, the survey ratings show that students tend to believe 
they can do mathematics despite a somewhat lesser tendency to find mathematics difficult. 
Written comments indicate that these perceptions depend, however, on the type of mathematics 
and mathematics problem or exam given. Typical student responses were, “I have trouble with 
Integral Calculus more than any other kind of math,” “It can be really easy and it can be 
extremely difficult, often depends on the question,” and “It depends. I do better in some math 
topics than others.” 

Instructional factors. In general, students credited instructors with a strong role in the 
undergraduate mathematics experience. Many claimed that the difficulty level depends on the 
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instructor. For example, one said, “If teacher is good it can be easy” and another the opposite: 
“Some teachers make it harder than it really is.”  Students expressed a desire for good, 
comprehensible explanations that include examples and meaningful applications. They indicated 
that they want a slower instructional pace and greater engagement. Several students suggested 
smaller class sizes through comments such as the following: 
• I strongly believe math classes should have way less students. The classes are too big and the 

instructor can’t engage with everyone and answer every single question. 
• Smaller class sizes are much more effective in teaching because students will actually ask 

questions. It’s intimidating to ask a question in a large lecture hall. 
Student preparation and effort. In their commentary, participants tended to acknowledge 

their own responsibility in exerting effort and investing sufficient time to be properly prepared 
for and successful in their mathematics classes. They made such comments as, “Math is not 
difficult if you attend class,” “It only depends on how much work and effort you are willing to 
put in,” and “I can do anything… I’m just lazy.” In accepting the relationship of their work effort 
to performance and evaluation outcomes, several students described associated stress and time 
constraints, as the following comments illustrate: 
• I have to work really hard, and it’s really stressful.  
• Math takes a lot of time and self-discipline, if given the time I think I can do well. 
• I would have to spend time I don’t have to do better. 

Student effort also includes seeking help outside of class. As gleaned from students’ written 
comments, the three most common sources where students attained help were, in order, the 
university mathematics center (which provided tutoring), peers/friends, and course instructors. 
Some students contend that they can perform well if the instructor provides extra help outside of 
class or they seek tutoring. Females reported a slightly greater tendency than males to need or 
seek mathematics help outside of class, especially through structured academic services such as 
tutoring and mathematics centers. 

Significant differences by student subgroups. Student comments support ratings that portray a 
somewhat less positive experience for females than males in mathematics. For example, females 
made seven of the nine negative comments displaying negative attitudes or beliefs in relation to 
survey item “I fear mathematics”. They wrote statements such as “I am just not good at math.” 
and “I go in knowing I [am] not going to do well.” Likewise, for the item “My parent(s) hold 
high expectations of my math performance,” females provided all three written responses that 
indicated a lack of high parental expectation for their mathematics performance, for example: 
“They understand that it’s not a strength of mine.” In reference to whether they would take more 
mathematics courses than required for their major, females tended to make much stronger 
assertions. Two said, “No way!” Others said, “No more than necessary please!,” “No thank you,” 
and “Once my major requirements are fulfilled…I am done with math. Period.” Male students’ 
comments were much less dramatic, often indicating that they might take more mathematics and 
sometimes suggesting practical reasons for not pursuing more, such as “Would like to, but major 
requirements don’t leave room for extra coursework” and “I would love to learn more, but…pure 
math will only hurt my GPA.” No prominent differences by student race/ethnicity are evident in 
the written commentary. 

Limitations 
A minor limitation of this study is that one class completed the survey at the end of class, 

whereas the others were completed at the beginning of class. It is possible that students in this 
class spent less time and conceivably less thoughtfulness in providing survey responses. Another 
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limitation is that race/ethnicity was divided into two categories for the purpose of analysis. 
Although this categorization is convenient for analysis and bears merit in the general sense that 
White students are presumed to have greater privilege than students of color on the whole, 
important distinctions among racial/ethnic groups are ignored in this type of classification. 
Further, the subsample size for non-White students was somewhat small. Finally, performing 
multiple Mann-Whitney comparisons increases risk of Type I error and thus interpretations must 
be considered tentative. 

 
Closing Discussion 

Somewhat contrary to what one might presume based on research regarding students’ 
mathematics anxiety, this sample’s strongest ratings tended to be somewhat favorable in relation 
to the undergraduate mathematics experience, although this varied by type of mathematics and 
instruction. Nevertheless, a sufficient number of students, in particular, females, report 
unpleasant experiences in the subject, calling for continued efforts to improve undergraduate 
mathematics instruction. The method of delivering instruction as it relates to such factors as the 
instructor’s role and class size appeared to be the most important component in crafting 
classroom climate. A number of students suggested, for example, a slower pace of instruction. 
Within our math-phobic society, this is something we can control and should give due 
consideration. One female urged, “This study should be seriously considered.” 

The results of this study indicate that gender is still an important issue in mathematics 
instruction. Regardless of student achievement levels, student dispositions continue to matter in a 
number of ways, such as their potential impact on future course and career participation. In 
addition to showing less favorable attitudes and beliefs than males, females reported less parental 
support. This resonates with other research that females are significantly less likely than boys to 
receive maternal encouragement to participate in out-of-school STEM (science, technology, 
engineering, and mathematics) activities or parental provision of activity-related materials 
(Jacobs & Bleeker, 2004; Simpkins, Davis-Kean, & Eccles, 2005). This points to the continued 
importance of educating parents and the public at large of the value of mathematics for all 
students. 

Gender appeared as a greater concern in these study results than race/ethnicity. Nevertheless, 
racial/ethnic minorities were less likely than Whites to believe in their mathematics abilities and 
were more susceptible to classmate intimidation, although they tended not to experience such 
intimidation in general. It is not surprising that females were less likely than males to rate 
mathematics instruction as matching the way they think and learn, but it seems unusual that 
students of color found classroom instruction a better match for them than Whites. This small 
effect may be real or a product of a relatively small subsample size and the fact that all 
racial/ethnic minority groups were combined into one group for statistical comparison, blurring 
distinctions among groups. Nevertheless, this finding would be worthy of further study. 

It is encouraging that many students seemed to recognize the importance of their own effort 
and preparation. In addition to an externalized focus on instructional methods, this means that 
students also accept a substantial amount of responsibility for their own learning and view their 
degree of success as something they can influence, an important belief. Some students expressed 
frustration with a lack of time to sufficiently apply this work ethic. This returns to the idea of the 
fast pace of instruction that may hinder understanding and foster hopelessness in students. In 
conclusion, it seems that undergraduate mathematics instruction would benefit from a balanced 
approach of improving mathematics instruction (e.g., using a slower and more conceptual 
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approach), seeking to influence high societal expectations for all students in mathematics, and 
reinforcing students’ understanding of the importance of personal effort in learning mathematics, 
which includes seeking available outside resources. 
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MRS. THOMAS: A CASE CONCEPTUALIZING A TEACHER’S KNOWLEDGE OF 
EQUITY IN TEACHING MATHEMATICS 
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University of Kentucky 
christa.jackson@uky.edu 

 
Mathematics educators constantly discuss equity in the classroom, but do we know what equity 
in mathematics looks like? Establishing an equitable classroom environment that results in 
student learning for African Americans requires specialized teacher knowledge, productive 
dispositions and beliefs, and effective teaching practices. In this case study, I use the Knowledge 
of Equity in Teaching Framework to unpack a successful elementary mathematics teacher’s 
knowledge of equity in teaching mathematics to African American students. The results of the 
study reveal the components of the framework influence each other. 
 

W. E. B. Du Bois, one of the founders of The National Association for the Advancement of 
Colored People (NAACP), envisioned that the education of African Americans would equip 
leaders to protect the political and social rights of the Black community. Realizing Du Bois’ 
vision requires more effective teacher education as well as support structures for teachers. 
Unfortunately, the majority of teachers are not fully equipped to educate a diverse population of 
students. Currently, in the best of circumstances we have mathematics teachers who have strong 
mathematical content knowledge and high levels of pedagogical content knowledge, yet African 
American students are still underperforming in mathematics (Martin, 2009).  

Research has described different knowledge bases required for teaching including knowledge 
of mathematics content that relates directly to the mathematics they teach, typical student errors 
and misconceptions and how to deal with them, and how to work in diverse school settings, 
including an understanding of the conditions of their students’ lives and of the social factors that 
affect schooling (Ball, Hill, & Bass, 2005; Ma, 1999; Shulman, 1986). Yet, no research has 
involved understanding teacher knowledge related to equity in teaching mathematics to African 
American students.  

The purpose of this case study is to understand an elementary teacher’s knowledge as it 
relates to equity in the instruction of mathematics to African American students. The research 
questions underlying this study are: 

1.   What knowledge related to equity in teaching African American students does a 
successful elementary mathematics teacher draw upon?  

2.   What beliefs related to teaching mathematics to African American students influence the 
mathematics teaching of a successful elementary mathematics teacher? 

 
Conceptual Framework 

Teachers must develop and draw from numerous knowledge bases to effectively teach 
mathematics to all students. Although mathematics education researchers have studied 
knowledge for teaching over the past two decades (e.g., Carpenter, Fennema, Peterson, & Carey, 
1988; Hill, Ball, and Schilling, 2008; Hill, Rowan, & Ball, 2005; Ma, 1999), the 
conceptualization and research related to the knowledge of equity has not been pursued. As a 
result, I developed a conceptual framework related to teachers’ knowledge of equity issues, 
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beliefs, and teacher’s knowledge of equity pedagogy based on a review of the literature (see 
Figure 1).  

 

Social Processes 
 

       1.   Norms 
2.   Expectations 
3.   Relationships 
4.   Engagement 

Student 
Learning 

Teachers’ Knowledge of Equity Issues 

1. Structural inequities that persist in larger societal contexts 
where schools are situated 

2. Influence of race, ethnicity, language, and class on teaching, 
learning, and schooling 

 
  

 
Teachers’ Knowledge of Equity 

 
Pedagogy 

 
1. Culturally relevant pedagogy 
2. Cultural Competence 
3. Critical Consciousness 

!

Teachers’ Beliefs 
1. African American students 

and how they learn 
2. Instruction of African 

Americans students 
3. Themselves 

!

 
Figure 1. Knowledge of equity in teaching framework. 

The top section of the framework emphasizes that teachers should develop knowledge about 
structural inequities that persist in larger societal contexts where schools are situated as well as 
the influence of race, ethnicity, language and class has on teaching and learning. Pai (1990) 
suggests:  

Our goals, how we teach, what we teach, how we relate to children and each other are 
rooted in the norms of our culture…In a society with as much sociocultural and racial 
diversity as the United States, the lack of this wonderment about alternative ways often 
results in unequal education and social injustice. (p. 229 as cited in Gay, 2000, p. 23)  

The rectangle on the right side of the framework emphasizes teachers’ beliefs. Philipp (2007) 
asserts beliefs are “psychologically held understandings, premises, or propositions about the 
world that are thought to be true…beliefs might be thought of as lenses that affect one’s view of 
some aspect of the world or as dispositions toward action” (p. 259). Teachers need productive 
beliefs specifically related to African American students, how African American students learn, 
and effective teaching practices for African American students. Moreover, they need productive 
beliefs related to themselves as teachers and the roles they play as they teach mathematics 
through an equitable lens.  

On the left-hand side of the conceptual framework, I include three components within 
knowledge of equity pedagogy: culturally relevant teaching, cultural competence, and critical 
consciousness. Ladson-Billings (1994) defines culturally relevant teaching as a “pedagogy that 
empowers students intellectually, socially, emotionally, and politically by using cultural referents 
to impart knowledge, skills, and attitudes” (p. 17). Gay (2000) extends this definition by stating 
culturally responsive teaching is “using the culture knowledge, prior experiences, frames of 
reference, and performance styles of ethnically diverse students to make learning outcomes more 
relevant and effective for them” (p. 29). Culturally relevant teaching is designed to teach the 
“whole” child through acknowledging and addressing the child’s race, language, ethnicity, and 
class through teaching. Students’ “identities” are not ignored or subsumed in the deficit model of 
teaching and learning, but are contributors to the teaching and learning of students. For example, 
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culturally relevant teachers use the strengths, experiences, and accomplishments of students in 
their instructional approaches.  

Cultural competence includes teachers’ knowledge about their own culture and the role it has 
in their lives; knowledge of students’ cultures; the necessity to study their students (Ladson-
Billings, 2001); and the ability to communicate (both verbal and nonverbal), understand, and 
interact with people from different cultures. A culturally competent teacher has the capacity to 
function in other cultural contexts.                                       

Critical consciousness engages both teachers and students to critically question, reflect, 
participate in meaning making, and act in their sociopolitical environment. Ladson-Billings 
(2001) suggests teachers who promote critical consciousness: (a) have knowledge of the larger 
sociopolitical context; (b) invest in students and understand students are important for who they 
are and who they can become; (c) plan and implement academic experiences that connect 
students to the larger social context; and (d) believe the success of students has consequences for 
their quality of life.  

The conceptual framework outlines the critical components of knowledge of equity issues, 
beliefs, and knowledge of equity pedagogy. It guided the design and implementation of a larger 
study (see Jackson, 2010). In this article, I report the findings of the three components of the 
framework for one teacher. 

 
Methods 

Participants 
Participants were identified based on the following criteria: (1) Teach mathematics in grades 

3-5; (2) Composition of mathematics class is at least 20% African American students; (3) Have a 
minimum of 4 years of teaching experience; (4) Recommended by knowledgeable mathematics 
educators based on competence in teaching African American students; and (5) Recommended 
based on mathematics achievement of African American students on state and/or local 
assessments.  

I contacted the Hartville School District’s Superintendent (all names are pseudonyms) who 
placed me in contact with the mathematics coordinator. The mathematics coordinator identified 
seven teachers whose African American students had high average achievement scores on the 
district assessment (75% and above). She also confirmed with the building principals that these 
teachers have a positive rapport with their African American students. Through their 
recommendations, Mrs. Thomas was asked, and agreed to participate.  
Data Collection 

The data sources included semi-structured initial and final interviews to determine Mrs. 
Thomas’ knowledge related to equity in teaching mathematics to African American students. 
Each interview lasted approximately one hour. In addition, I observed and videorecorded her 
teach eight mathematics lessons during the months of November-January. I wrote field notes 
during each observation and then followed up with four unstructured stimulated-recall 
interviews, which lasted 35-50 minutes each.   
Data Analysis 

After conducting audio-recorded interviews, I transcribed the data. The transcripts were then 
uploaded into QSR NVivo 8 software and coded using a microanalysis with nodes related to the 
Equity in Teaching Framework. I used the coding categories shown in Table 1. After the initial 
coding, other themes emerged. I then conducted a second layer of coding with these emerging 
themes. Two doctoral students each coded an interview transcript using the coding dictionary. 
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All discrepancies were resolved and clarified. Finally, I mapped out Mrs. Thomas’ knowledge of 
equity. Reliability was confirmed with another faculty member. 
Table 1 
Coding categories for teachers’ knowledge of equity in teaching 

Teachers’ 
Knowledge of 

Equity 
 

• knowledge about structural inequities that persist in larger societal contexts where schools 
are situated  

• knowledge related the influence of race, ethnicity, language and class on teaching and 
learning 

Teachers’ Beliefs 
 

• productive beliefs specifically related to African American students  
• how African American students learn  
• effective teaching practices for African American students 
• productive beliefs related to themselves as teachers and the roles they play as they teach 

mathematics  

Teachers’ 
Knowledge of 

Equity Pedagogy 
 

• Culturally relevant pedagogy 
• view themselves as part of a community 
• help students to make connections between their racial,    

               cultural, local, national, and global identities 
• establish relationships with students that extend beyond the   

               classroom environment 
• establish a community of learners 
• believe knowledge is constantly recycled, re-created, and shared by students and 

themselves – it is not static 
• view teaching as students developing their knowledge 
• use a variety of instructional strategies 

• Cultural competence 
• knowledge about their own culture and the role it has in their lives 
• knowledge of students’ cultures 
• understand the necessity to study their students  
• ability to communicate (both verbal and nonverbal), understand, and interact with 

people from different cultures. 
• Critical consciousness 

• knowledge of the larger sociopolitical context (i.e., knowledge of political and social 
realities in which they live beyond the television and newspaper articles) 

• invest in students and understand students are important for who they are and who 
they can become 

• plan and implement academic experiences that connect students to the larger social 
context 

• believe the success of students has consequences for their quality of life 

  
Results 

Mrs. Thomas, an African American woman, began her teaching career 13 years ago at a 
school in the eastern section of the United States. After her husband received a job transfer, she 
accepted a position as an elementary teacher in a suburban district in the Midwest. During the 
past four years, Mrs. Thomas has taught third grade at the same school within this district. 
Currently, this school reports a student population that is 30.1% African American.  

Mrs. Thomas’ Knowledge of Equity Issues  
Mrs. Thomas believes many teachers of African American students do not understand their 

culture and misinterpret their actions. As a result, they are essentially penalized for their African 
American identities. Mrs. Thomas explains: 

When we’re teaching African American students, a lot of times we punish African 
American students for behaviors that they’ve been conditioned to. A student who goes 
to the principal’s office for shouting out in class for disruptive behavior when the 
student was participating, the student was disrespectful or because the student was 
shouting out and the teacher had rules. And one of the things was we had to reconsider 
our rules based on the needs of the students. So, it’s like you can’t make students 
conform to a society when it’s something that they’re doing in their own home. And 
it’s something that is considered normal, or when they go to a church it’s considered 
normal. We’re not saying that it’s the way to function, but it’s a way of understanding. 
(Stim-recall 1, 2009)  

A statement like this suggests that Mrs. Thomas believes that teachers, white or black, are 
indoctrinated to filter students’ actions through Eurocentric culture and beliefs. This culture 
dictates what is valued and how students need to behave and respond in a classroom setting. 
She works hard to try to help her white colleagues realize they need to understand African 
American culture and build relationships with students. Mrs. Thomas expresses,  

A [white] teacher thinks, well if I pay more attention to this student is because it’s the 
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white guilt. And so, I think they are missing the mark. Like I don’t think they 
understand. They think well, I don’t want to give special treatment to African 
American students. And it’s not special treatment, it’s just understanding differences. I 
mean I can’t help it. There are differences. (Final Interview, 2010) 

This quote illustrates that Mrs. Thomas believes white teachers feel they need to treat all of their 
students the same. However, she knows that equal treatment is not possible. Teachers need to 
acknowledge and understand there are differences and use those differences to support and build 
students’ mathematical knowledge.  

Mrs. Thomas’ Beliefs and Knowledge of Equity Pedagogy 
Mrs. Thomas believes effective mathematics teachers of African American students 

understand why individual African American students act in certain ways, and learns these 
aspects when he/she builds and establishes relationships with students. Mrs. Thomas explains: 

We don’t want to stereotype them and say oh well since African American students are 
like this, I will teach like that because sometimes they don’t fit a stereotype. There 
really isn’t a stereotype. It’s just that sometimes culturally in a household you know 
you just respond to things differently. Some students may talk in an aggressive way, 
but an aggressive way is joking. And if you don’t understand that then you are always 
making that student have some kind of consequence. So, I think just understanding 
students culturally, where they’re coming from, and when students do certain things it 
may not be an aggressive behavior, it’s just who they are. If you pretty much have that 
relationship with that student and understand who those students are, then I think you’ll 
be an effective teacher. (Final Interview, 2010) 

Once Mrs. Thomas establishes relationships with her students, Mrs. Thomas contends her 
students cooperate because they trust her. They feel they can relate to her. She knows the 
students feel comfortable with her when they begin to call her “Mommy” (Final Interview, 
2010). She believes her identity and cultural background allows her to make mathematics 
relevant. She clarifies, “If we go back to me being an African American, when I present 
something they think it’s relevant because I’m doing it. They can trust me. I have that face that’s 
familiar to them” (Final Interview, 2010).  

Mrs. Thomas believes mathematics lessons must be relevant and African American students 
learn mathematics best when they solve mathematics problems that are related to their life 
experiences. As a result, Mrs. Thomas creates mathematics lessons using stories that her students 
share with her. For example, one of her students talked about a trip he made to the store to 
purchase an item. She had the class pretend they were going to the store to purchase a pack of 
gum and then posed problems about the amount of change the cashier returned. Mrs. Thomas 
finds that when she relates mathematics to real life experiences, her students are more successful. 
Further, Mrs. Thomas believes when she relates mathematics to something the students enjoy 
this connection enhances their mathematical knowledge. For example, one of her male students 
likes to dance. Mrs. Thomas used the context of the number of beats he used while dancing to 
help him build understanding for multiplication. Multiplication finally made sense. 

Furthermore, Mrs. Thomas believes her African American students are visual and tactile 
learners. Mrs. Thomas believes her non-African American students also learn in a similar 
manner, yet she contends that her African American students have “unique learning styles” 
(Final Interview, 2010). She describes a student who constantly hears music when none is 
playing, and he likes to move. Mrs. Thomas realizes that if this boy is seated while she explains a 
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mathematical concept, she loses him. To accommodate his learning culture, she incorporates 
movement during her mathematics lessons. She describes, “I try to incorporate having kids move 
around, do a lot of clapping, or do something with rhythms. I think that African American 
students, they participate more. They say, ‘ooh this is fun.’ They don’t say, ‘this is boring’” 
(Initial Interview, 2009). Mrs. Thomas believes all of her students benefit from movement, 
clapping, and rhythms, not just her African American students. Mrs. Thomas remarks, “I do pay 
attention to how they’re learning” (Initial Interview, 2009), and she believes it is imperative that 
she integrates ideas into her daily plans that will facilitate learning.    

Mrs. Thomas uses a variety of instructional strategies to help her students develop their 
mathematical knowledge. She understands the African American culture and adapts her 
instruction to meet their needs. She explains: 

When you’re teaching students, especially students in the African American 
community, they like to shout out answers. Instead of penalizing them for shouting out 
answers, make it part of your lesson. So there are times when shouting out is okay. And 
I let them know that they don’t have to sit and wait on me to call you out or wait for a 
spinner. Sometime they just have to get it out…So I give them the opportunity to shout 
it out. (Stim-recall 1, 2009) 

Mrs. Thomas recognizes this strategy is also effective with her non-African American students. 
She comments, “They love it” (Stim-recall 1, 2009). Further, Mrs. Thomas engages African 
American students by capitalizing on their cultural identity. She understands that part of the 
African American culture is participating in a call and response environment. Therefore, she 
creates informal dialogues during her mathematics lessons. These instructional strategies 
facilitate the participation of Mrs. Thomas’ African American students. Mrs. Thomas remarks, 
“Sometimes, unfortunately, you can’t get the students to learn the way that you want them to 
learn, but you have to find a way to make them successful (Final Interview, 2010). Mrs. Thomas 
understands that when she builds on her students’ strengths and makes the mathematical content 
relevant, her students are successful.  

In Mrs. Thomas’ classroom, everyone must discuss his or her mathematical strategies. They 
cannot simply say, “Oh I did the problem, here it is.” They must explain their strategies to their 
peers and make sure their peers understand. In other words, students assume the role of the 
teacher. This instructional approach not only gives students ownership in developing their 
mathematical knowledge, it also deepens their mathematical understanding.  

Mrs. Thomas believes that African American students must be active in the mathematics 
classroom. She thinks they should play mathematical games, discuss what they learn, and 
participate in hands-on activities and math workshops. Teachers need to instruct students by 
building conceptual understanding of mathematical concepts. Mrs. Thomas asserts: 

Kids become robotic with math. And they will say okay, you add the 6 plus 2 then you 
add this and then you put it together, but they don’t understand what it means. And so 
they have to talk while they’re doing it. So, they are talking about it, doing it to go with 
what they’re saying, and incorporating the vocabulary words. And they put all of that 
together they learn their best. (Initial Interview, 2009) 

Mrs. Thomas does not want students to experience frustration or say that mathematics is hard 
because they have to solve a problem one particular way. She believes this is one of the reasons 
why there is an achievement gap in mathematics between African American students and other 
ethnicities. Consequently, Mrs. Thomas encourages students to use a variety of strategies to 
solve mathematics problems. She recalled a time when one of her African American students 
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struggled to solve subtraction problems. He began to use a number line and counted up to solve 
subtraction problems. This approach worked for him and he was able to get the correct answer. 
Mrs. Thomas wants her students to understand there are many different ways to solve 
mathematics problems. When she gives her students a multiplication problem, some of them use 
their fact knowledge, some draw pictures, while others use repeated addition. They all end up 
with the same result although they use different strategies. Mrs. Thomas adds, “That’s what I 
love about it, the possibilities. It’s something I can always apply.” (Final Interview, 2010).  

Moreover, Mrs. Thomas realizes all of her students are not A students, yet she understands 
that her students do not leave her class with the same knowledge they came in with. She wants 
her students to pass third grade so they can move to 4th grade, yet she desires more for her 
students. She explains: 

I think about where they’ll be 20 years from now. How will they compete in this type 
of economy? You can graduate from high school learning the basics, but not the higher 
level thinking, like matrices, calculus to get you into the 21st century…We have to get 
into what is beyond mathematics number sense. You know, why numbers are a certain 
way, why it makes sense, and always finding a way to incorporate it with real life 
experiences. That’s the big thing. So, I look at my kids, I want them to be able to do 
well in 10 years and give them all the skills that they need. (Initial Interview, 2009) 

Above all, Mrs. Thomas aspires to equip her students with the mathematical knowledge they 
need to successfully compete in today’s society. 
 

Discussion 

Mrs. Thomas’ Knowledge of Equity in Teaching 
Mrs. Thomas’ knowledge of equity in teaching focuses on knowledge that teachers, both 

black and white, are indoctrinated to structure the mathematics classroom and filter African 
American students actions through Eurocentric culture and beliefs. But, Mrs. Thomas uses the 
cultural capital of her African American students to help them become successful in the 
mathematics classroom. As a successful mathematics teacher of African American students, she 
believes she understands why African American students act in certain ways. Thus, in her 
pedagogy she positively incorporates those “actions,” which are manifested in her social 
processes. In this context, Figure 2 represents how Mrs. Thomas’ social processes are influenced 
by the interconnection among her knowledge of equity issues, beliefs and knowledge of equity 
pedagogy. 
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Mrs. Thomas’ Knowledge of Equity Issues 
Many teachers filter African American students’ actions through 
Eurocentric culture and beliefs. Teachers, both black and white do 
not understand African American culture, misinterpret their actions, 
and penalize them for their behaviors. 

 
  

 
Mrs. Thomas’ Knowledge of  

 
Equity Pedagogy  

Adapts mathematics instruction to 
support African American students’ 
learning culture 

• Movement 
• Rhythmic clapping 
• Shout out answers 
• Mathematical games 
• Peer teaching 
• Hands-on activities 

Makes mathematics lessons relevant and 
plans lessons with students in mind 

• Connects mathematics to 
something they enjoy, such as 
dancing 

• Connects mathematics to life 
experiences 

• Determines what students excel 
in and what makes them excited 

Builds a positive classroom community 
Encourages students to learn mathematics 
beyond basic skills to be successful in the 
21st century  

Mrs. Thomas Believes… 
• Effective mathematics teachers 

of African Americans 
understand why they act in 
certain ways  

• Her identity as an African 
American helps make 
mathematics relevant to her 
African American students 

• African American students 
have unique learning styles 

• African American students 
learn best when material is 
related to their life experiences 
and when they work with their 
peers 

• African American students 
must be active in mathematics 

• Different cultures affect 
learning 

• All students can learn 
mathematics 

Mrs. Thomas’ Social Processes 
 

• African American students are actively 
engaged in mathematics  

• Students freely move around without 
fear of being punished 

• Students solve mathematics problems 
using multiple strategies 

• Students pay attention to what peers are 
saying and doing 

• Everyone discusses mathematical 
strategies  

 
Figure 2. Mrs. Thomas’ knowledge of equity in teaching. 

 
Conclusion  

The underlying theme of the Equity Principle in the Principles and Standards for School 
Mathematics (NCTM, 2000) is all students can learn mathematics. Unfortunately, many African 
American students are consistently demonstrating low mathematical achievement. Researchers in 
mathematics education have explored and studied a variety of methods to raise the mathematics 
achievement of African American students using what they term as equitable practices. In this 
study, I chose not to advocate yet another approach for teachers to use in the classroom. Instead, 
I qualitatively investigated an elementary mathematics teacher’s knowledge of equity in teaching 
mathematics. I find that teachers who have been successful in teaching mathematics to African 
American students have productive beliefs about African American students, which influences 
and are influenced by their knowledge of equity issues and their knowledge of equity pedagogy.  

If we want African American students to succeed in mathematics, we need to better 
understand the necessary knowledge base related to equity in teaching African American 
students. Currently, equity in mathematics education has not been fully theorized (Gutierrez, 
2002). The findings from this study suggest this framework is a constructive approach to 
theorizing teachers’ knowledge of equity in teaching mathematics to African American students.  
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This paper describes a Family Math Night designed to engage preservice teachers with parents 
in a high-poverty, minority setting and presents the results of a pre/post/follow-up survey 
examining the impact of the experience on preservice teachers’ perceptions about low-income 
parents and their engagement in the education of their children. 
 

Theoretical Framework and Context 
     There is little controversy about the benefits of parental involvement in children’s education. 
Research indicates clear links between parental involvement and various indicators of school 
performance such as grades, test scores, graduation rates, and enrollment in institutions of higher 
education (Epstein & Dauber, 1991; Fan & Chen, 2001; Garcia & Hasson, 2004; Ingram, Wolfe, 
& Lieberman, 2007). Additionally, research indicates parental involvement impacts attitudes, 
school attendance, motivation, and behavioral outcomes such as suspensions, drug usage, and 
violent behavior (Ingram et al., 2007).  

Perhaps because the connections between parental involvement and student performance are 
so strong, teachers often point to the lack of parental involvement as a key factor in poor student 
performance and in the achievement gap between poor and often minority students and their 
higher-income peers. Walker (2007) reports a common perception that the lower levels of 
support provided by low-income parents impedes their children’s achievement. For example, 
educators surveyed about their beliefs regarding the reasons for African American male high 
school students’ low achievement cited home factors as a primary factor (Lynn, Bacon, Totten, 
Bridges, & Jennings, 2010). Similarly, studies suggest that preservice (Gonzalez & Ayala-
Alcantar, 2008) and in-service teachers (Patterson, Hale & Stessman, 2007/2008) attribute poor 
student performance and behavior to low-income Hispanic parents who, from their perspectives, 
do not value education and are not involved with the school.  

Studies of teachers’ perceptions of influences on student achievement in mathematics also 
point to the significance of parental involvement. Teachers report believing the lack of parental 
support for schoolwork and mathematics is a significant factor in the achievement gap (Bol & 
Berry, 2005).  Sheldon and Epstein (2005) reviewed literature on mathematics achievement and 
concluded lack of home involvement is one of four explanations for low achievement.  Yet, 
despite national policy calling for increases in parent involvement (US Department of Education, 
2003) and evidence that increasing parental involvement improves students’ attitudes toward 
school and their perceptions of their competence in math (Dearing, Kreider, & Weise, 2008), 
little attention has been devoted to improving home-school connections as a part of mathematics 
reform efforts (Sheldon & Epstein, 2005).  

Increasing parent involvement requires that teachers believe parents will be involved and 
work actively to invite and encourage parents (Epstein & Dauber, 1991). Family Math Nights, 
first described by Stenmark, Thompson and Cossey (1986), are one such strategy for involving 
families.  The goal of a Family Math Night is to help parents and children have fun and build 
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positive connections with school and mathematics. Math games, a carnival-like atmosphere, and 
the provision of food are an integral part of the event (Hall & Acri, 1995; Kyle, McIntyre, Miller, 
& Moore, 2006; Taylor-Cox, 2005).  

One wonders why Family Math Nights have not become common given the policy 
imperative to increase family engagement. The challenge, perhaps, is that many teachers believe 
poor and minority parents will not come, and therefore do use invitational strategies. 
Additionally, although universities have increased their focus on family involvement in recent 
years, the dominant focus is on topics like conducting conferences and using volunteers with 
little focus on skills related to conducting workshops like family nights (Epstein & Sanders, 
2006).   

Hindered by their assumptions that low-income parents do not value school and/or 
mathematics achievement and/or by the lack of skills, many teachers fail to invest time in 
strategies to involve parents. Lachance (2007) incorporated a Family Math Night field 
component into a preservice course to help teach parent-engagement skills. Participation in the 
event helped preservice teachers see families having fun and see students’ various learning styles 
that must be accommodated. However, this event was not held in a low-income environment and 
the impact on preservice teachers’ perceptions of parental involvement was not examined.   

Practical field-based experience related to family involvement should be a component of 
preservice preparation programs (Epstein & Sanders, 2006). This paper reports the impact of a 
Family Math Night field component in a mathematics methods course on preservice teachers’ 
perspectives about low-income African American parents and their engagement in the education 
of their children. 

 
Methods and Data Sources 

Participants 
     Preservice teachers (64 women, 3 men) in their fourth year of a five year elementary teacher 
preparation program participated in this study. The median age was 21. The participants came 
from three sections of an elementary mathematics methods course. Other than participation in the 
intervention, there were no differences in the content taught across the three sections. One of 
these was a treatment section (23 women, 1 man) and the other two were control sections 
(Control A: 20 women, 1 man; Control B: 21 women, 1 man). The majority of participants in 
each section identified themselves as Caucasian. Of the 24 participants in the treatment group, 18 
(17 women, 1 man) responded to a follow-up survey one year later.  
 
Intervention 
     The treatment group participated in a Family Math Night held at a local elementary school 
that serves a predominately African American (92%) community; 86% of the students receive 
free/reduced lunch. The school has been one of the lowest performing schools in the area 
according to the State Assessment System.  

All students, their parents and other family members, were invited to attend. Food was 
provided at no charge. Students and their families were given free tickets, which they turned 
used to play a game. After completing a game, they were given raffle tickets for a door prize 
drawing. These characteristics of the event, as well as rigorous advertizing and responsiveness to 
parent needs, encouraged parents to attend, and created a fun atmosphere in which families could 
interact. 
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The Family Math Night was held approximately midway through the semester. 
Approximately 200 students and families attended. As a component of the course, members of 
the treatment section were required to participate. They were provided instructions for the 
games, assisted with preparation. Their role was to coordinate games on the evening of the event. 
Preparation of participants prior to the event focused on their role in facilitating the games. They 
were coached on how they should model the games, and how to explain the games to parents so 
they would be able to utilize similar games at home. The focus on the preparation activities was 
not on the games themselves, but rather on the idea that the preservice teachers should interact 
with parents in an engaging and non-threatening manner. At the event, attendees were provided 
with handouts that described the purpose of each game along with suggestions on how similar 
games could be played. The participants in the treatment group were encouraged to use this 
handout to facilitate parents’ ability to transfer their experiences at the Family Math Night into 
mathematics activities at home. 
 
Measures and Procedures 
      Participants in both the treatment and control groups completed a survey about their 
perceptions of parental involvement prior to and after the event (see Fig. 1). A follow-up online 
survey was administered to participants in the treatment group approximately one year later to 
determine if the changes observed were sustained after participants left the treatment and 
completed full time internship experiences.  

 

Figure 1. Pre/post survey used for data collection. 
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Results 
 

Treatment and Control Groups Comparison 
     A Chi-Square test was used to determine whether there were differences between the 
treatment and control group before and after the intervention. There were no significant 
differences between the three groups on the pretest. However, there were four significant 
differences observed on the posttest. All differences were in the positive direction, demonstrating 
changes in perceptions of parents’ willingness to: 1) to do an at home game or activity with their 
child (Chi-square(6)=13.09, p=0.04); 2) attend parent-teacher conferences (Chi-square(8)=15.35, 
p=0.05); 3) attend school activities such as PTA meetings and Family Nights (Chi-
square(6)=26.89, p<0.001); and 5) assist students with homework (Chi-square(6)=11.81, 
p=0.07). 
 
Treatment Pretest and Posttest Analysis 
     The Shapiro-Wilk test for normality was used to determine if a dependent t-test would be 
appropriate to explore differences between the pretest and posttest data within the groups. This 
test, as well as exploration of the graph of the normal probability plot and frequency distribution 
histogram, revealed that the data violated the normality assumption. Therefore the Wilcoxon 
Signed-Rank Test, the non-parametric equivalent to the t-test, was used to analyze the data. 
There were no significant differences between the pretest and posttest data for the control 
groups. In the treatment group, significant differences were observed on six of seven questions. 
All differences were in the positive direction, demonstrating changes in perceptions of parents’ 
willingness to: 1) to do an at home game or activity with their child (Z=-2.92, p=0.003); 2) attend 
parent-teacher conferences (Z=-1.72, p=0.085); 3) attend school activities such as PTA meetings 
and Family Nights (Z=-2.62, p=0.009); 5) assist students with homework (Z=-2.43, p=0.015); 6) 
examine completed work that the student brings home (Z=-2.24, p=0.025); and 7) ask for ideas 
about how to help their child at home (Z=-2.55, p=0.011). 

 
Treatment Pretest, Posttest, and Follow-Up Analysis 
      Due to similar conditions considering the normality of the distribution of the responses on the 
follow-up tests, the Wilcoxon Signed-Rank Test was used to compare the pretest, posttest, and 
follow-up test data. Three separate tests were performed to compare: 1) pretest to posttest data; 
2) pretest to follow-up test data; and 3) posttest to follow-up test data for the 18 participants who 
completed the follow-up questionnaire. 

On the pretest and posttest analysis, significant differences were observed on five questions. 
The question that did not have a significant difference on this analysis, but did in the analysis of 
the entire treatment group, was the one concerning parents’ willingness to attend conferences. 
All significant differences were in the positive direction and related to parents’ willingness to: 1) 
to do an at home game or activity with their child (Z=-2.23, p=0.026); 3) attend school activities 
such as PTA meetings and Family Nights (Z=-1.98, p=0.048); 5) assist students with homework 
(Z=-1.71, p=0.088); 6) examine completed work that the student brings home (Z=-1.73, 
p=0.083); and 7) ask for ideas about how to help their child at home (Z=-1.77, p=0.077). 

On the pretest and follow-up analysis, significant differences were observed on only one 
question. This difference, again in the positive direction, was related to parents’ willingness to: 
7) ask for ideas about how to help their child at home (Z=-1.89, p=0.059). 
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There was also only one significant difference in the analysis of the posttest and follow-up 
test data. This difference occurred in the negative direction with the ratings dropping 
significantly from the posttest to the follow-up. This question related to parents’ willingness to: 
3) attend school activities such as PTA meetings and Family Nights (Z=-2.14, p=0.033). 

 
Educational Significance 

     Parents play an important role in their children’s academic success (Epstein & Dauber, 1991; 
Fan & Chen, 2001; Garcia & Hasson, 2004; Ingram et al., 2007), yet teachers often believe low-
income, minority parents to blame for the achievement gap and don’t reach out and encourage 
their participation (Bol & Berry, 2005; Lynn et al., 2010; Gonzalez & Ayala-Alcantar, 2008; 
Patterson et al., 2007/2008; Walker, 2007). These beliefs are neither productive nor professional, 
and must be remedied. The results of this study support previous research (e.g. Philipp et al., 
2007) that coursework coupled with fieldwork can have a strong impact on preservice teachers. 
The participants who attended Family Math Night had more positive views toward low-income, 
minority parents and their involvement in their child’s education than their peers. These effects, 
however, were not sustained after their internship experience, where they had very little control 
over interactions with parents and where events such as Family Math Night were not held. This 
suggests that sustained change in preservice teachers’ beliefs about parental involvement may 
require multiple field experiences with opportunities for positive engagement with parents. 
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This research examined whether mathematically-relevant play between a mother with a visual 
impairment and her sighted 15-month-old daughter could be facilitated by a five-week 
community-based early numeracy program. We aimed to identify the similarities and differences 
in mathematically-relevant input by comparing the 30-minute naturalistic free-play session 
conducted separately between the mother-daughter dyad and the sighted father-daughter dyad. 
Our findings reveal that the mother produced fewer mathematically-relevant utterances than the 
sighted father who did not participate in the early numeracy program. Implications for engaging 
in mathematically-relevant input by parents with a visual impairment with their sighted toddlers 
will be discussed.  
 

Introduction 
Empirical evidence suggests that the human brain is hardwired to engage in mathematical 

ideas and concepts (Butterworth, 1999; Dehaene, Molko, Cohen, & Wilson, 2004; Dehaene, 
Spelke, Stanescu, Pinel, & Tsivkin, 1999). However, empirical evidence also points to the 
critical importance of the environment on mathematical development. Parents and other 
significant adults have a pivotal role in supporting children’s early mathematics development 
during the period between ages one to three years old.  For example, parental or significant 
adults’ teaching of mathematical concepts such as counting or providing mathematically-rich 
input has been found to relate to children’s emergent numeracy skills (Klibanoff, Levine, 
Huttenlocher, Vasilyeva, & Hedges, 2006; LeFevre, Clarke, & Stringer, 2002; Saxe, Guberman, 
& Gerhart, 1987). Mathematically-relevant input, as used in this context includes instances of 
joint attention between a caregiver and a child that mathematize elements of play, or engage in 
explicit mathematical play (e.g., counting, comparing, ordering, etc.) (van Oers, 1996). 
Additionally, mathematically-relevant input includes mathematical talk or language, as well as 
gestures (Klibanoff et al., 2006; Lee, Kotsopoulos, Tumber, & Dittmer, 2009; Nührenbörger & 
Steinbring, 2009; Singer, Radinsky, & Goldman, 2008).  

Very few studies have examined adult mathematically-relevant input children receive at 
home on numeracy during their first few years of life. The few existing studies using interviews 
and checklists suggest that parental mathematical input is related to four- and five-year-olds’ 
level of number knowledge, such as knowing differences in quantities and that numbers have 
magnitudes (e.g., Saxe et al., 1987; Blevins-Knabe & Musun-Miller, 1996; LeFevre, Clarke & 
Stringer, 2002). Given existing evidence on the importance of mathematically-relevant input in 
the environment for supporting the further development of mathematical understanding in young 
children, this research contributes to the dearth of studies by identifying (a) the nature of the 
mathematically-relevant input provided by parents with a visual impairment, and (b) how early 
educational programs such as LittleCountersTM (a community-based early numeracy program for 
parents with children between 12 and 36 months old, Kotsopoulos & Lee, 2009) could be 
tailored to overcome the challenges posed by visual impairment.     
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Our research questions for this case study were as follows: (1) Were there observational 
differences in the nature of mathematical talk during play between the parent-child dyads 
(mother-child versus dad-child)? (2) What are the potential learning implications of those 
differences (or not) for the sighted children of parents who are visually impaired?  

 
Theoretical framework 

Vision is important to the communicative and language development. It provides the ability 
of both the caregiver and child to be in tune with one another during conventional and normal 
cycles of interactions. Mutual gaze and visual exchange are important actions made to convey 
and understand messages during early communication, between parents and their sighted infants 
(Kekelis & Andersen, 1984; Rowland, 1984). Vision, is often seen as the primary integrative or 
mediating mode of communication. Visual information (i.e., eye gaze and gestures) aids the 
caregivers in understanding, interpretation and appropriately responding to their children’s early 
speech or language (Kekelis & Andersen, 1984). 

Maternal visual status has been found to influence children’s early communicative 
development such as infant vocalizations (Rattray & Zeedyk, 2005). Infants of sighted mothers 
were found to be more vocal than infants with mothers with a visual impairment, particularly 
after 14 months of age (Rattray & Zeedyk, 2005). To date, most studies on visual impairment 
have focused on infants with the impairment and their language development. To the best of our 
knowledge, there is no known published research that examines how parental visual impairment 
would influence the provision of a mathematically rich environment for their sighted children, 
and might subsequently influence their children’s mathematical development. The importance of 
the amount of mathematical talk children receive in the daily lives during the early years of life 
and its impact on their acquisition of mathematically language and concepts must be 
underscored. For example, developmental studies suggest that early mathematics representations 
such as numerosity (1 unit or 2 units of something) are linked to mathematics language, for 
example, the knowledge of count words (e.g, one and two) (e.g., Huttenlocker et al., 1994; Jeong 
& Levine, 2005). Thus, we currently do not have a good overview of what kind of mathematical 
talk young toddlers receive at home under the care of parents with a visual impairment. 

The descriptive sentence ‘parents leading from behind’ becomes a very important reference 
in relation to caregivers doing more than just acknowledging or interpreting their child’s 
communication attempt such as putting gesture into words, expanding on two-word utterances 
into complete sentences, and adding descriptive labels for him/her (Bruinsma et al., 2004; 
Kekelis & Andersen, 1984). Caregivers are teaching their children how to expand on ideas 
during speaker’s turns, as well as how to respond contingently to their partner. Though existing 
research has been conducted on children with a visual impairment and their parents with sight, 
measurable research pertaining to visual impairment and parent-child dyads involving 
communication via gesture, speech, and touch does not examine how a child acquire linguistic 
and mathematical concepts with a parent who is visually impaired during the early stages of 
development (Bruinsma et al., 2004; Colombi et al., 2009; Kekelis & Andersen, 1984; 
MacDonald et al., 2006).  

By examining the interactions between the two caregivers and their sighted daughter in a free 
play session with a standard set of toys picture books, differences in the quality of talk in terms 
of introducing mathematical-related words (e.g., ‘one, two, three’, ‘how many’) could be 
identified. The free play sessions were able to capture both the verbal and nonverbal ways in 
which mathematical words are presented to the child. Without the need for questionnaires or 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

954



checklists that rely on parental memory, this approach allows us to examine the input that 
occurred in a more naturalistic manner and to obtain the frequency and nature of incidental 
mathematically relevant input that the child received at home with her parents.  

Method 
Participants 

The current case study included a family of three individuals: a mother (age 32), a father (age 
29), and a female child (15 months during the first home visit with mother and 19 months during 
the second home visit with father). The mother was born sighted. Due to a medical condition, she 
lost partial vision by eight years old before losing it completely at the age of ten. The mother is 
bilingual and speaks both English and Polish to her daughter. The father is a sighted Chinese-
Canadian, currently working as a lawyer and only speaks English to the daughter. Both parents 
are highly educated and have completed four years of university education. The mother has 
completed three years of graduate work and the father has completed two years of professional 
work as a lawyer. The mother has reported informally that her sighted daughter is able to 
understand both English and Polish words, although she has yet to produce many words in either 
language.  

Both parents engaged in a separate (mother-daughter dyad and father-daughter dyad) 30-
minute naturalistic free play session in their home with the child. The first 30-minute naturalistic 
free play session occurred between the mother-daughter dyad in their home when the child was 
15 months of age. The second 30-minute naturalistic free play session occurred approximately 
four months later between the father-daughter dyad in their home when the child was 19 months 
of age. The four-month interval between the two play sessions was due to the busy schedule of 
the father and the family’s move to a new house. The family received a $10 gift card for their 
participation.  

The mother and child participated in the LittleCounterTM program (Kotsopoulos & Lee, 
2009) at a local library. As a result of participating in the program and the case of a caregiver 
with a visual impairment, the family was recruited for the current case study. In addition to 
participating in the LittleCountersTM program, the child was involved in other local community 
activities (e.g., educational programs) with the mother for approximately five to six hours a 
week, but does not attend daycare. The maternal grandparents, who speak Polish, also provided 
respite care to the child during the week.  

 
Early Numeracy Program 

The LittleCountersTM program consisted of five, 45 minute sessions (10:00 a.m. to 10:45 
a.m.) over a span of five weeks at a local library. This community-based early numeracy 
program is offered free to families with young children between 12 and 36 months old. The goal 
of the program is to teach parents how to integrate mathematical relevant input into their child’s 
play through the use of songs, games, stories, and movements. Supporting the development of 
the counting principles (i.e., stable order, one-to-one correspondence, order irrelevance, 
cardinality, and abstraction) was the basis of each of the five sessions. Additionally, a different 
mathematical concept is featured during each of the sessions: cardinality (i.e., last number 
represent counted represents total in the set), magnitude (i.e., more or less), ordinality (i.e., first, 
second, third, etc.), internal number line (small to large, left to right) and spatial effects (i.e., 
difference between bigger in size versus more in quantity), and parity (i.e., equal or the same).  

For each of the sessions that the mother attended with her daughter, an instructor’s aide (the 
third author) was by the mother’s side to directly assist her with the activities of the program. 
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The instructor’s aide assisted with the mathematical play and also ensured that the daughter was 
safe as she moved around the room independently. 

 
Materials & Procedure 

For the play session at home, in order to reduce variability between the activities in which the 
mother-daughter dyad and the father-daughter dyad engaged in, each dyad was provided with a 
standard set of toys. The toys included: four hand puppets, four oversized foam dice, one toy 
truck, three backpacks, a shape sorter bucket with plastic shapes (four green squares, four red 
triangles, and three blue circles), 40 small transportation toys (fire trucks, school buses, trains, 
cars, planes, and boats), 40 small animal toys (horse, cows, calves, pigs, piglets, ducks, rabbits, 
and sheep), 68 foam blocks in a variety of shapes (17 yellow, 17 blue, 17 red, 17 green), two 
children’s pop-up books (one on color and one on numbers), three plastic squares, three plastic 
triangles, three plastic circles, three plastic rectangles (one blue, one yellow, and one red of each 
shape). The mother was told orally about the toys and invited to touch the toys prior to 
commencing. 

 
Transcription and Coding 

Each free play session of the parent-child dyads was videotaped, transcribed and coded using 
a portable Observer XT system (Noldus Information Technology, 2009) that allows the 
experimenters to work the two cameras using a remote control in a separate room from the dyad. 
The parent-child dyad was also asked to wear a wireless microphone each to ensure a high audio 
quality. Such an arrangement ensured that the free play session was as naturalistic as possible.  

For the current research, mathematically-related talk referred strictly to utterances produced 
by parents and children to denote mathematical relations such as cardinality and quantity. All the 
adult speech were transcribed and coded by two trained research assistants for the 
mathematically-related input in the following categories: i. quantity or equivalence/non-
equivalence words (e.g., how many, less than, more), ii. counting words (e.g., one, two), iii. 
counting objects in an array or in sets, iv. cardinality (stating or asking for the number of items in 
a set without counting), v. transformation of object arrays involving addition or subtraction (e.g., 
“If one cow went missing, how many do you have now?”), and vi. ordering numbers (e.g., 
‘Three, what comes after three?’). The coding scheme was adapted from Klibanoff, Levine, 
Huttenlocher, Vasilyeva, and Hedges (2006). Additionally, nouns and verbs used outside the 
context of mathematically-relevant input were also coded to account for the amount of non-
mathematically-related talk.  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

956



 
 

Table 1. Coding scheme of mathematically-relevant input 

  
Quantity or Equivalence/nonequivalence 
words  

• How many, how much, so much, several, some, a 
few, altogether, most, more, same (only in the 
context of quantity, and not in the other context such 
as color), greater than, less than, count, lots, another, 
all, ones, all, some, little, little bit, a little, any, a 
couple, bunch…  
(Note: “match”  or “anything else” are not quantity 
words) 

  
Counting words • Recite counting words such as ‘one’, ‘two’, ‘three’ 

(Similar to reciting the alphabets) 
• Count each word said as one occurrence. E.g., If the 

caregiver says “One, two, three”, count = 3, and not 
1 because there are three count words in the 
utterance. 

• Number words such as ‘one’, ‘two’… Not 
associated with an object or an array of objects.  

  
Counting objects • Counting objects in an array or in sets (1,2,3,4..) 

  
Cardinality words • Stating or asking for the number of things in a set 

without counting them (e.g., Point to the child the 
number ‘2’ and ask him/her to point or show two 
items/objects or the above example “There are 3 
books.”) 

• The number word (‘one’, ‘two’..) here is associated 
with an object or a set of objects (E.g., ‘SIX sides of 
a cube’, ‘THREE trucks’) 

• No counting involved 
  

Transformation of object arrays • Add, subtract, take-away (e.g., “If you take away 
from three, how many do you have?”) OR 

• One object item removed from an array of objects 
(e.g., 1 bird flew away, how many are left?) 

  
Ordering numbers (different from reciting 
a list of number words) 

• “Three, what comes after three?’ 
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Results  
Both parents produced more non-mathematically-relevant input than mathematically-relevant 

input during their 30-minute play session with their toddler. Since the daughter did not produce 
any words during both sessions, we did not include any of her data in Table 1. The coding of 
both visits by both coders individually was checked for inter-coder reliability by calculating the 
Cohen’s Kappa and the population coefficient (Rho) for the entire 30-minute free-play session: 
the mother-daughter dyad (Kappa 0.83, Rho 0.99), the father-daughter dyad (Kappa 0.88, Rho 
0.99). In terms of mathematically-related input, our results indicate that only two categories – 
counting and quantity words were produced by the parents. Though the mother with a visual 
impairment attended the 10 sessions of the LittleCounters TM program, she produced fewer 
instances of both counting and quantity words than the father with sight, who did not participate 
in the early numeracy program. A recent study on mathematically-relevant input produced by 19 
sighted parents with 12 girls and 7 boys (with a mean age of 21.08 months, S.D. = 4.32) that 
have participated in the LittleCountersTM program revealed that these parents produced an 
average of  9.84 counting words and 48.42 quantity words (Lee et al., 2010). 

 
Table 2. Instances of word categories produced 

Participants Nouns Verbs Counting 
words 

Quantity 
words 

Total 

Father 152 140 28 34 354 

Mother 79 92 1 17 189 

Total 231 232 29 51 543 

Discussion  
To begin our discussion, it is important to note that existing research on parents with a visual 

impairment who have children with sight has predominantly focused on practical considerations 
of parenthood such as caring for the infant. Our research examined the play environment 
between a caregiver (mother) with a visual impairment and her sighted 15 month-old daughter to 
explore the extent to which mathematically-relevant input was observed. Our findings did not 
suggest that the mother applied any skills taught within the two five-week sessions (10 sessions 
in total). Other related research on the LittleCountersTM program has shown that participating 
parents produce more mathematically-relevant input than parents who have not participated in 
the program, over the same observation period (i.e., 30 minutes), using the same set of toys and 
books provided and the same research methodology (Lee et al., 2010). 

Our findings also raise some questions in terms of the LittleCountersTM program. Although 
an instructor’s aide was provided to assist the mother during each of the sessions, perhaps the 
type of support was not consistent to what may have actually been necessary. For example, the 
support for the parent could have included building in strategies, with the parent’s input, on ways 
in which the parent could communicate to the child on a particular object. Additionally, more 
hand-on-hand instruction for both the parent and the child could have been useful. Strategies for 
showing approval to the child could have also been useful. For example, when engaging in 
counting of fingers, we could have had all families stop to physically touch each other’s fingers 
to ensure that the appropriate amount of digits was shown.  It is possible that we may have relied 
too much on gesture and vocalization during our sessions which may not have been sufficient for 
a parent with a visual impairment.   
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Several studies have reported that mathematically-relevant input increases mathematical 
ability in young children (Klibanoff et al., 2006; Miller et al., 2000). Although this research is a 
case study, it provides us with a rare opportunity to examine the nature of the play environment 
between a mother with a visual impairment and her sighted child. For example, our results raise 
some concern over the level of cognitive engagement, particularly mathematically-relevant 
engagement that a child of a parent with a visual impairment may receive.  Future policy and 
support directions could include provisions for providing additional resources to support parents 
during the crucial early developmental periods of childrearing. The early years of life have 
increasingly been found to be crucial in success or failure in formal schooling (Heckman, 2004).   

Parents with a visual impairment could provide mathematically-relevant input by engaging in 
more “give me” instead of “can you show me” task during play. For example, a parent with a 
visual impairment, who is looking to determine whether a child understands one-to-one 
correspondence (one object is counted once), may need to hold the child’s hand while doing the 
task to check the child’s understanding. In sum, parents with a visual impairment may require 
additional coaching and support to learn how to assist young children during early childhood 
where shared understanding is much dependent on vision and gesture. 
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Stereotype threat has been shown to undermine the achievement of women within the domain of 
mathematics. This paper will review studies relevant to conditions that give rise to stereotype 
threat in women, types of mathematical tasks that are susceptible to stereotype threat, how 
stereotype threat interrupts performance, and interventions which lessen the effects of stereotype 
threat. Research on this phenomenon has far-reaching implications, not only for women, but also 
mathematics educators and university administrators as stereotype threat has been shown to 
account for most of the gender gap on the SAT, which in turn directly affects admissions and 
eligibility for scholarships. 
 

Introduction 
Performance differences between the sexes across mathematical content areas, problem 

types, and various instruments have been documented (Gallagher & Kaufman, 2005; Hyde, 
Fennema, & Lamon, 1990; Paek, 2002; Willingham & Cole, 1997), and in some situations these 
differences may be due to a lack of opportunity to learn about particular mathematical topics on 
the part of females. However, it has also been demonstrated that stereotype threat can contribute 
to performance gaps by causing equally qualified females to falter in the face of complex 
numerical reasoning tasks or word problems and opt to guess at an answer while their male 
counterparts are unaffected (Quinn & Spencer, 2001; Spencer, Steele, & Quinn, 1998). This 
paper brings together studies on stereotype threat, its affect on women’s problem-solving 
strategies, the interaction between stereotype threat and cognitive capacity, and interventions 
which can limit the influence of stereotype threat on women. 
 

Theoretical Perspectives 
A landmark study (Steele & Aronson, 1995), that introduced the term stereotype threat, 

presented a possible explanation for some of the differences in achievement between males and 
females exhibited on mathematics assessments. Stereotype threat is defined in this study as a 
feeling of “being at risk of confirming, as self-characteristic, a negative stereotype about one’s 
group.” Further, it is stated that stereotype threat “may interfere with the intellectual functioning 
of these students [affected by stereotype threat], particularly during standardized tests” (Steele & 
Aronson, 1995, p. 797). This initial study focused on Black students who are stereotypically 
considered less able than White students in terms of general intellectual aptitude.  

In the study, the researchers, working with a group of Black and White students, explicitly 
“primed” the stereotype for one subgroup of students (the experimental group) before 
administering the SAT verbal test. Specifically, before the experimental group took the exam, the 
researchers told them of historical diagnostic differences (that Blacks had generally scored lower 
on this test than Whites and that the test was diagnostic of ability). As a result, the Blacks in the 
“ability-diagnostic” group significantly underperformed (as measured by their previous SAT 
scores), while Blacks in the control or “nondiagnostic” group did not (Steele & Aronson, 1995).  
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The findings of Steele and Aronson’s seminal study are relevant to research on performance 
gaps between the sexes on standardized mathematics tests since females must also deal with 
stereotype threat. In particular, females are susceptible to the stereotype that they are publicly 
perceived to be less able in mathematics than males. Steele and Aronson note the broad 
applicability of stereotype threat: “This threat can befall anyone with a group identity about 
which some negative stereotype exists, and for the person to be threatened in this way, he [or 
she] need not even believe this stereotype” (Steele & Aronson, 1995, p. 798).  

The effects of stereotype threat on women’s mathematics performance were later confirmed 
among college females who excelled at math and identified strongly with the subject (Spencer, 
Steele, & Quinn, 1998). In this study, on a relatively difficult test (composed from the advanced 
GRE [Graduate Record Examinations] in mathematics), females underperformed compared to 
males when informed before they took the test of historic sex differences in test performance, 
while they performed on par with males when told that the test was gender-insensitive. This 
study’s findings confirmed what Claude Steele had concluded in an earlier article: That 
“stereotype threat may be a possible source of bias in standardized tests, a bias that arises not 
from item content but from group differences in the threat that societal stereotypes attach to test 
performance” (Steele, 1997, p. 622). 

A test item can be linguistically biased if it uses terms that are unfamiliar to some subgroups, 
while the overall content of an item might be biased if it refers to situations that are less familiar 
for certain subgroups (Hambleton & Rodgers, 1995). While bias in item content has been 
confirmed and addressed by test developers over the years, the effects of stereotype threat are 
situational (dependent on the testing environment) and cannot be remedied by simply changing 
the language or premise of specific test items. One study (Shih, Pittinsky, & Ambady, 1999), that 
demonstrates the situational aspect of stereotype threat, examined the effects of racial and gender 
stereotype threat combined. While Asian-American women are stereotyped positively in 
mathematics due to their ethnicity, they are stereotyped negatively because of their sex. On a 
standardized mathematics test (SAT I quantitative section) given to Asian-American women, 
those whose ethnicity was primed performed better, and those whose gender was primed 
performed worse, than a control group for whom neither attribute was made salient (Shih et al., 
1999).  

A similar boost in achievement due to a positive stereotype was also observed in previous 
studies for White students when race was primed (Steele & Aronson, 1995) and for males when 
gender was primed (Spencer et al., 1998). This potential positive effect of certain stereotyping is 
supported by social cognitive theory: “Indeed, people who believe strongly in their problem-
solving capabilities remain highly efficient in their analytic thinking in complex decision making 
situations, whereas those who are plagued by self-doubts are erratic in their analytic thinking,” 
and “when faced with difficulties, people who are beset by self-doubts abort their attempts 
prematurely and quickly settle for mediocre solutions, whereas those who have a strong belief in 
their capabilities exert greater effort to master the challenge” (Bandura, 1989, p. 1176). This 
boost in performance for test-takers who are not part of the negatively stereotyped subgroup has 
been referred to as stereotype lift. A meta-analysis of 43 studies found that merely representing 
tests as diagnostic of ability was enough to induce stereotype lift in non-negatively stereotyped 
subgroups. Further, while the average effect size of stereotype lift (d =.24) was only half that of 
stereotype threat (d =.48) in these studies, it was still substantial (Walton & Cohen, 2002).  

Stereotype threat can be primed in various ways. One is under the condition of evaluative 
scrutiny. In this situation test-takers know their results will be available to others, such as 
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parents, teachers, administrators, or colleges. On standardized tests such as the SAT or ACT, 
some degree of evaluative scrutiny is always present. Another way to induce stereotype threat is 
via the condition of identity salience. This condition can be thought of as “the likelihood that the 
identity will be invoked in diverse situations” (Hogg, Terry, & White, 1995, p. 257). 
Participating in a mixed testing environment (e.g., males and females together) or having to 
identify one’s sex prior to a standardized test, as is often the norm, can cause one’s identity to 
become salient. 

The effects of identity salience have been measured in studies conducted by the Educational 
Testing Service, commonly known as ETS, and the College Board. In one experiment, 
researchers administered the mathematics section of the GRE general test to males and females 
on an individual basis (GRE Board, 1999). In this study, the gap in scores between males and 
females was less than half that from the regular administration of the GRE general test (d =.40 
versus d =.97) that same year, in which students generally tested in a mixed environment.  

Another study measured the effect on performance from identifying one’s sex before a test 
(College Board, 1998). The experiment focused on students taking the Advanced Placement 
Calculus AB exam, and for those who indicated their sex on a standard background information 
sheet before the test, the performance gap effect size between males and females (d = .41) was 
more than triple that for those who identified their sex after the test (d = .12). These studies 
clearly demonstrate that while subtle in nature, the condition of identity salience can induce 
stereotype threat and thus cause women to underperform on standardized mathematics tests. A 
more recent study has actually measured the effects of stereotype threat on females’ SAT 
performance and found that it accounts for the majority of the gender gap on the quantitative 
section. In particular, the researchers (Walton & Spencer, 2009) found that stereotype threat is 
responsible for 19-21 points of the 34 point difference in scores between men and women. 

 
Differences in Strategies Used by Males and Females under Conditions of Stereotype Threat 

A study by Quinn and Spencer (2001) attempted to replicate a previous Gallagher and De 
Lisi (1994) experiment, which looked at the kinds of strategies employed by males and females 
when solving SAT I mathematics word problems. Gallagher and De Lisi found that females 
relied more on conventional strategies, while males resorted to using more unconventional 
strategies. Quinn and Spencer (2001) found further that a significant number of females were 
unable to come up with any problem-solving strategy at all.  

In the second part of Quinn and Spencer’s study, when stereotype threat was primed by 
evaluative scrutiny and identity salience, females underperformed compared to males on a test of 
all mathematical word problems, but not on a test of the same problems reduced to their 
numerical equivalents (that is, no words, just equations). Quinn and Spencer concluded that 
stereotype threat lowered women’s mathematics achievement by hindering their capacity to 
generate and use problem-solving strategies (2001). They suggested that women had a 
diminished cognitive capacity as a result of having to deal with the effects of stereotype threat.  

On the surface, the results of this part of Quinn and Spencer’s study might seem 
contradictory, since women, due to their documented edge in verbal skills, would seem to be 
favored in the domain of word problems. In this part of the study, however, the reason for 
women’s underperformance seemed to lie in difficulty with the processes and strategies of 
converting word problems into equations (Quinn & Spencer, 2001). Since then, another study 
(Bielock, Rydell, & McConnell, 2007) has confirmed that in particular, stereotype threat most 
greatly affects women’s performance on mathematical problems that rely heavily on verbal 
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working memory resources. It was also demonstrated in this study that underperformance can 
spillover to tasks outside the domain of the stereotype that are reliant on verbal working memory 
resources (Bielock, Rydell, & McConnell, 2007). This may help to explain why women, who 
traditionally perform better than men on tests of verbal skills, score lower than men on the SAT 
critical reading exam, which is taken in conjunction with the SAT mathematics exam. 

 
How Cognitive Capacity Interacts with Stereotype Threat 

The human mind has been described as a “limited-capacity information processor” 
(Weinstein, 2005), and the attempt to control one’s mental state can be broken down into the two 
processes of operating and monitoring (Wegner, 1994). Wegner notes that the operating process 
“promotes the intended change by searching for mental contents consistent with the intended 
state” of mind, while the monitoring process “tests whether the operating process is needed, by 
searching for mental contents inconsistent with the intended state” of mind. Both processes 
working together provide an individual’s mental control and since these processes share the same 
mental space, at times (for example, when the mind is working on difficult or complex tasks) 
they must compete for limited mental capacity. Under conditions that reduce capacity, the 
monitoring process may override the operating process and thus lessen a person’s focus on their 
intended task. Thus, the operating process is susceptible to distractions, either in the form of 
stress or from multitasking. “Anything that distracts the person’s attention from the task of 
mental control will undermine the operating process and so enhance the effect of the monitoring 
process” (Wegner, 1994, p. 40).  

Arousal plays a major role in many learning theories and is affected by levels of anxiety and 
stress. The Yerkes-Dodson Law, which describes the psychological effects of physiological 
arousal on performance, says that with appropriate levels of arousal, performance increases, but 
that when levels of arousal are too low or too high, performance decreases. The law (it is referred 
to as a law because the results of Yerkes and Dodson’s experiments have been replicated 
numerous times since the original study) suggests that an inverted U-shape describes the 
relationship between arousal and performance (Yerkes & Dodson, 1908). At low levels of 
arousal, the subject (in our case, a student) is simply not motivated enough to perform well, 
while moderate levels of arousal are healthy and conducive to optimal functioning.  

However, overarousal, caused, for example, by anxiety or stress, can negatively affect 
performance physiologically, cognitively, and psychologically. It can disrupt physiological states 
when the body reacts to stress by releasing hormones from the adrenal medulla (adrenaline) and 
the adrenal cortex (cortisol). This hormone release in turn increases heart rate, respiration, and 
blood pressure, which leads to hyperactivity (Selye, 1956). In addition to these physiological 
symptoms, cognitive activity can be disrupted via forgetfulness, confusion, and an inability to 
concentrate as a result of overarousal (Broadbent, Cooper, FitzGerald, & Parkes, 1982).  

Overarousal can also disrupt emotional states through anxiety. It has been shown that 
overanxious persons entertain more task-irrelevant thoughts than nonanxious persons, and that 
these thoughts are frequently focused on negative personal characteristics, most notably during 
ability assessments such as achievement tests (Wigfield & Eccles, 1989). In particular, 
overarousal in the form of anxiety as a result of stereotype threat conditions has been shown to 
accompany the underperformance of females on standardized mathematics tests (Harder, 1999; 
Spencer et al., 1998). Further, it has been demonstrated that anxiety and evaluation apprehension 
are significantly related to females’ performance on such tests (Spencer et al., 1998). Bandura 
(1989) states in an article on human agency that “threat is a relational property concerning the 
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match between perceived coping capabilities and potentially aversive aspects of the 
environment,” and “those who believe they cannot manage potential threats experience higher 
levels of stress and anxiety arousal” (p. 1177). 

There is also evidence to support the notion of decreased performance for females under 
stereotype threat conditions (because available capacity for the operating process is reduced due 
to an increase in the monitoring process) in terms of working memory capacity. Working 
memory capacity can be thought of as the ability to maintain focus on a particular task while 
disregarding competing irrelevant thoughts (Engle, 2001). It is strongly related to performance 
on complex cognitive tasks such as problem solving. One study found that a measure of working 
memory capacity correlates significantly with scores on both the quantitative and the verbal 
sections of the SAT I (Turner & Engle, 1989). That is, those with more working memory 
capacity tended to perform better on these SAT I sections. Furthermore, there is strong evidence 
that “stereotype threat reduces an individual’s performance on a complex cognitive test because 
it reduces the individual’s working memory capacity” (Schmader & Johns, 2003, p. 449). A 
recent study suggests that, in particular, stereotype threat undermines performance through 
physiological stress, attempts to curb negative thinking, and an overactive monitoring process 
(Schmader, Johns, & Forbes, 2008). 

The general notion that stereotype threat reduces cognitive capacity is supported by the 
results of earlier mentioned studies on sex differences in use of strategies on standardized 
mathematics test problems. In particular, these study results indicate that females rely more on 
standard classroom-presented algorithms, while males more often use unconventional strategies 
or short cuts (Gallagher, 1992; Paek, 2002). This difference might suggest that while females 
were limited to standard algorithms as a result of diminished cognitive capacity (caused by 
anxiety induced by stereotype threat), males had either more cognitive capacity available or a 
less distracted focus, which allowed them access to other, more direct methods to solve 
problems. 

Females have also demonstrated less prior knowledge and fewer strategies than males who 
had similar mathematical backgrounds when working mathematics problems in mixed testing 
situations (e.g., males and females in the same group) (Byrnes & Takahira, 1993). This 
difference again could suggest that females in these situations may have been the victim of 
reduced working memory capacity. Another study of strategy use, based on mathematics items 
from the SAT I and the GRE general test, found that males had more strategy flexibility, and, as 
a result, outperformed females (Gallagher, De Lisi, Holst, McGillicuddy-De Lisi, Morely, & 
Cahalan,  2000). This greater flexibility demonstrated by males could also suggest that they had 
more cognitive capacity available than females burdened by stereotype threat resulting from 
mixed testing situations. 

Along with stereotype threat, the rigor associated with a standardized test plays a major role 
in affecting the amount of cognitive capacity available. It has been documented that gender gaps 
in mathematics achievement widen as the difficulty level of problems increases (Feingold, 1988). 
The work by Spencer and colleagues (1998), described earlier, provides further support for this 
idea. The first part of their study focused on males and females who had performed well, both in 
a college calculus course (receiving a final grade of B or better) and on the SAT I or ACT 
quantitative sections (scoring above the 85th percentile). The control group was given a 
relatively easy (for their background) test (composed from the quantitative section of the GRE 
general exam), while the experimental group was given a difficult test (composed from the 
advanced GRE exam in mathematics). Although identity salience (from mixed gender testing) 
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was a condition for females in both the “easy” and the “difficult” test groups, females 
underperformed compared to males only on the more rigorous test (Spencer et al., 1998). For 
these high-ability students, the general GRE quantitative section was not as challenging and 
made fewer demands on their cognitive capacity, which allowed the females to deal effectively 
with any intrusions by stereotype threat. The more rigorous test, however, required greater 
cognitive resources which due to stereotype threat were not fully available to the women. 

 
Interventions that Mediate the Effects of Stereotype Threat 

In this same group of studies (Spencer et al., 1998), the researchers sought to find out what 
would happen when they told an experimental mixed group of students in advance that the test 
they were about to take was insensitive to sex differences. As with the previous study, all the 
students were subject to identity salience from the mixed testing environment, but those who 
were unprimed (experimental group) exhibited no differences in achievement between males and 
females, while in the control group (students who were told nothing prior to the test) males 
outperformed females. McGlone and Aronson (2006) found that getting females in a mixed 
testing situation to consider positive personal attributes (such as their status as students at a select 
school) resulted in improved scores on the Vandenberg (Vandenberg & Kuse, 1978) mental 
rotation test. Seemingly, these types of interventions help to ease the condition of identity 
salience, thereby lessening the effects of stereotype threat. Further, it has been shown that 
practicing representative tasks prior to testing, thus moving the knowledge of procedures and 
concepts to long-term memory from the working memory, also moderates the effects of 
stereotype threat and improves female performance (Bielock et al., 2007)  

 
Conclusion 

Stereotype threat has been shown to have an effect on both the problem-solving strategies of 
females (Quinn & Spencer, 2001; Bielock et al., 2007) and their cognitive capacity (Turner & 
Engle, 1989; Schmader & Johns, 2003). However, various types of interventions have proven 
successful in mitigating the effects of stereotype threat (Spencer et al., 1998; McGlone & 
Aronson, 2006; Bielock et al., 2007). Even so, there has been little effort to date on the part of 
those who administer high stakes, standardized mathematics assessments or those who rely on 
the outcomes of such instruments to recognize or deal with existing inequities.  

Approximately 92 % of four-year institutions require SAT/ACT scores from potential 
students and 75% routinely use these scores in making decisions on admissions (College Board, 
2002). SAT scores also play a significant role in many institutions’ scholarship decisions. 
Likewise, AP and GRE scores play a role in students’ access to undergraduate and graduate 
education. The common thread between all these instruments is that they are high stakes 
assessments produced by the College Board and its psychometricians and they all exhibit 
significant gender gaps favoring males in mathematics that are not reflected in students’ future 
college performance (Bridgeman & Wendler, 1991; College Board, 2008; NACAC, 2008; 
Wainer & Steinberg, 1992). Studies conducted by the College Board affirm the effect of 
stereotype threat on females’ mathematical achievement (College Board, 1998; GRE Board, 
1999) and the majority of the gender gap on the SAT quantitative section (boys outscore girls by 
approximately one third of a standard deviation) has been attributed to stereotype threat (Walton 
& Spencer, 2009).  

Thus, the general underperformance by females on these instruments, resulting from 
stereotype threat, leads to inequities in terms of access to post-secondary opportunities. In 
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particular, relatively low and unrepresentative scores on high stakes, standardized mathematics 
exams can serve as a roadblock to women interested in pursuing careers in the STEM fields, 
where females are currently and historically underrepresented. Mathematics educators at all 
levels and college officials need not only to be made aware of these inequities, but also what can 
be done to level the playing field.  
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In Saskatchewan, the renewal of mathematics education has two major initiatives to contend 
with: the incorporation of transformative teaching and learning strategies, and the infusion of 
First Nations and Métis content, perspectives and ways of knowing. Playing leading roles in the 
development and implementation of Saskatchewan’s renewed curricula, we have struggled with 
the enormity of these changes and their effective implementation. This has led us to reflect upon 
the traditional Western Paradigm as it relates to mathematics education, and to consider the 
importance and role of other paradigms, in particular, an Indigenous paradigm to our work. In 
doing so, however, we have come to question the actual origins of the foundations to the current 
trends in transforming mathematics education, and whether the acknowledgement of non-
Western knowledges and perspectives is not due in this regard. 

In Saskatchewan, as is happening in numerous places throughout North America and the world, 
mathematics curricula and resources are being rewritten, renewed, and transformed to address 
the most current findings in mathematics education research. This most recent renewal process 
for Saskatchewan, as a member jurisdiction of the Western and Northern Canadian Protocol 
(WNCP), began with the reflecting upon and revising of the original Western and Canadian 
Protocol (the predecessor of the WNCP) Common Curriculum Frameworks. Representatives of 
the WNCP jurisdictions met regularly in order to make “optimum use of the limited resources” 
(WNCP, 2000) of the individual jurisdictions, resulting in the completion of the Common 
Curriculum Framework (CCF) for K-9 Mathematics (WNCP, 2006) and Common Curriculum 
Framework for 10-12 Mathematics (WNCP, 2008). Among numerous other sources of research, 
the National Council of Teachers of Mathematics’ Principles and Standards for School 
Mathematics (2000) was foundational to the renewal process.   
There were, however, some issues related to mathematics education, such as assessment and time 
allotments for courses, were, through consensus, left out of the renewal process and frameworks. 
From the onset, the infusion of First Nations and Métis (FNM) content, perspectives, and ways 
of knowing was believed by at least one member WNCP jurisdiction to be too contentious to 
reach consensus, resulting in no attempt being made. The compromise, a brief description of the 
learning styles of Aboriginal students, was included in the introduction to the CCFs. In 
Saskatchewan, the number of self-declared FNM students in provincial schools has been steadily 
increasing (Saskatchewan Ministry of Education, 2010, p. 52, 53). As well, these numbers do not 
reflect the students within the Federally controlled Reservation schools in Saskatchewan, who, 
for the most part, also follow Saskatchewan’s curricula. These numbers, in and of themselves are 
by no means worrisome, but when one considers that self-declared FNM students are 
consistently scoring below non-FNM students by as much as 18.6% in grade 10 mathematics 
(Saskatchewan Ministry of Education, 2010, p. 49), the seriousness of this situation becomes 
much clearer. 
In the process of “Saskatchewanizing’ the WNCP CCF’s, it was decided that the outcomes and 
indicators of the CCF, and not just the upfront matter of the curricula documents, needed to be 
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written to reflect teaching strategies that are supported by the Constructivist Learning Theory 
and to support the infusion of FNM content, perspectives and ways of knowing. Throughout the 
writing process, and the accompanying research and deliberations (with a fair share of disputes), 
however, the realization of the complexity of the situation emerged. Not only did the curriculum 
writers need to find ways to address the two initiatives within outcomes and indicators, but they 
also began to worry about how such major changes were to be accepted and enacted the field.  
But are these two sites of debate, research and action in mathematics education - the 
transformation of mathematics teaching and learning and the infusion of FNM content, 
perspectives, and ways of knowing - really distinct phenomena? In this research paper, we will 
present arguments and examples to support the notion that transformative educational strategies 
being proposed and implemented today are in fact the implementation of an Indigenous 
paradigm onto the realm of mathematics education.  
To set this stage for this discussion, we need to consider not only Constructivist Learning 
Theory, but also the fields of Ethnomathematics and Multicultural Education. The following 
literature review provides a brief introduction to these areas. 

Literature Review 
This literature review is divided into two sections. The first, on Constructivist Learning Theory 
speaks to the current research that has informed both the WNCP CCFs (WNCP, 2006; WNCP, 
2008) and Saskatchewan’s Renewed curriculum documents (e.g., Saskatchewan Ministry of 
Education, 2009). The second part of the literature review considers the fields of 
Ethnomathematics and Multicultural Education that have helped to infuse Saskatchewan’s 
mathematics curricula with FNM content, perspectives and ways of knowing. 

Constructivist Learning Theory  
Constructivist Learning Theory emerged from the work of two researchers, working separately 
and unknown to each other: Jean Piaget and Lev Vygotsky. Although the two researchers varied 
in how they believed children moved from one stage of learning to another, both based their 
work on the idea that, as humans we generate our own knowledge through the interaction of our 
experiences and ideas.   
In Vygotsky’s work, the role of the more knowledgeable other, someone other than the learner 
who helps in the scaffolding of the learning to move the learner through and beyond his or her 
current zone of proximal development, is key to knowledge development.  Thus, social 
interactions, and especially play in the early years, are seen as important tools for the learner. It 
is through these interactions that the learner explores new contexts and ideas, being guided by 
the knowledge and experiences of not only themselves, but also of those around them. Vygotsky 
proposed a variety of stages of development within learners, according to different types of 
contexts such as the development of tools and communication, each of which the learner 
negotiated and moved through at a rate that was supported by their experiences and social 
interactions (Vygotsky, 1962; Vygotsky, 1978). 
Piaget, proposed that learners go through developmental stages (sensory-motor, pre-operational, 
concrete operational, and formal operational), however; in his work, Piaget’s focus was on the 
cognitive, and not the social. Piaget believed that all learners move through these stages at 
roughly the same ages, and in the case of the formal operational stage, many people would never 
reach it. Piaget argued that the learners construct their own knowledge through interactions 
between their experiences and their ideas, within the constraint of their developmental stages.  
As learners interact with their environment, Piaget asserted that they had to go through process 
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of accommodation and assimilation to make new experiences and new ideas “fit” into their 
knowledge schemata. (Piaget, 1970; Gallagher & Reid, 1980). 
Out of these ideas of social and cognitive constructivism, teaching and learning strategies for 
supporting the learner as they construct new knowledge have emerged. These strategies vary 
from broad spectrum approaches to learning, such as inquiry and problem solving, to more 
specific methods, such as the use of children’s literature, and multiple representations, that 
support teachers and students in engaging in the more broad spectrum approaches. 

Ethnomathematics and Multicultural Education 
The notion of a field of study of mathematics in other cultures has existed since at least the late 
1890s (for examples, see Taylor, 1874; Smith, 1923, or Struik, 1948), but in the 1980s, the field 
of Ethnomathematics, influenced by the groundbreaking work of Ubiratan D’Ambrosio, 
emerged. D’Ambrosio (1997) reflects “Not much has been done in ethnomathematics, perhaps 
because people believe in the universality of mathematics” (p. 14). Ethnomathematicians, 
however, continue to provide evidence of the cultural biases in the mathematics within North 
American schools.  Despite Kline’s claim that the plant of mathematics remained “dormant for a 
thousand years” (as cited in Powell & Frankenstein, 1997, p. 52), mathematics was alive and 
expanding in those parts of the world that were beyond the grip of the Dark Ages that 
encompassed much of the European world. Ethnomathematics as a field has exposed the fact that 
there is not one mathematics, not one way to think mathematically, and not one way to do 
mathematics. It should be noted that Ethnomathematics does not, as a whole, question the role 
that Western mathematics (that which is currently taught in North American society) plays in the 
dispositions of modern society, but it does question the claim of singularity and absolute 
authority that mathematics has been afforded. By recognizing and valuing the mathematics of 
other cultures and societies, past and present, Ethnomathematics is expanding the world of 
possibilities for mathematics and mathematics education. 
Banks and Banks (1995) define Multicultural Education as  
 a field of study and an emerging discipline whose major aim is to create equal educational 
opportunities for students from diverse racial, ethnic, social-class, and cultural groups. One of its 
important goals is to help all students to acquire the knowledge, attitudes, and skills needed to 
function effectively in a pluralistic democratic society and to interact, negotiate, and 
communicate with peoples from diverse groups in order to create a civic and moral community 
that works for the common good (p. xi). 
In order to facilitate the creation of these equal educational opportunities for students, Banks 
(2002) identified four different approaches taken in curriculum writing and reform: 
contributions, additive, transformative, and decision-making and social action. In the 
contributions approach, ethic heroes, holidays, and celebrations are added into the curriculum on 
certain days, but set aside, or presented as distinct from, the rest of the curriculum. When 
curriculum writers include content, themes, or perspectives from certain ethnic groups, but do 
not change the actual structure or purposes of the overall curriculum, the approach being used is 
called additive and can often be identified by the addition of a book by an ethnic author or the 
inclusion of an additional, ethnicity-based, unit. When a curriculum’s basic assumptions of a 
singular point of view and perspective is changed to embrace students’ engagement with content 
and issues through multiple ethnic perspectives, the transformative approach is being applied. 
Finally, the decision-making and social action approach to curricula builds upon the 
transformative approach by requiring the students to make decisions and engage in social action. 
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Reflections from a Saskatchewan Curriculum Renewal Perspective 
In the renewal of the Mathematics curricula in Saskatchewan, the Constructivist Learning 
Theory played a major role in the wording of outcomes and indicators, as well as in the writing 
of upfront matter regarding the teaching and learning of mathematics within which those 
outcomes and indicators are couched. With respect to the infusion of FNM content, perspectives, 
and ways of knowing, Ethnomathematics provided a sense of the breadth of possibility and its 
importance, while the theory of Multicultural Education encouraged and provided support for 
teachers to step away from the contributions and addition approaches used in past curricula to a 
more transformative approach. This approach is supported by the inclusion of a new goal for K-
12 mathematics education in Saskatchewan, that of understanding mathematics as a human 
endeavor: “Through their learning of K-12 Mathematics, students should develop an 
understanding of mathematics as a way of knowing the world that all humans are capable 
of with respect to their personal experiences and needs” (Saskatchewan Ministry of 
Education, 2009), which opens up the classroom to students’ sharing and valuing of different 
personal and cultural perspectives and ways of knowing mathematics. Through their learning of 
all the mathematics outcomes, it is a curricular expectation that students will achieve this goal. 

Theoretical Framework 
All of the research done for the renewal of both the CCF and the Saskatchewan curricula did not 
shed light, or even hope, on the ever-looming question of “how will Saskatchewan’s teachers 
manage all these changes – effective incorporation of new teaching and learning strategies and 
the infusion of FNM content, perspectives, and ways of knowing. Throughout the renewal and 
implementation process, the notion that if one effectively incorporated the new teaching and 
learning strategies that the FNM component would or could happen was in the air, but 
justification for such a claim was nowhere to be found. The question that then arose was, perhaps 
it is because the two ideas (pedagogical change and FNM infusion) are being housed 
(unnecessarily?) in two different paradigms, or within a single, non-Western paradigm. 
Consider first, the paradigm from which the new teaching and learning strategies have been 
emerging – that of the Western or Eurocentric world. This paradigm has its own “ontological, 
epistemological, sociological, and ideological way of thinking and being” (Kovach, 2009, p. 21) 
that can be distinguished from other paradigms, such as Eastern or Indigenous paradigms. 
Examples of the many characteristics attributed to the traditional Western paradigm include: 
claim to holding a monopoly on knowledge, the existence of one true or right answer, a society 
of specialists, scientific knowledge being based solely upon measurable attributes, reliance upon 
linearity, and the necessity of objectivity (Kovach, 2009; Little Bear, 2000; Meyer, 2003). This 
underlying paradigm makes the valuing and incorporation of FNM perspectives, content, and 
ways of knowing into education difficult as such action would call into question many of the 
fundamental principles assumed within society.  How can there be multiple ways of knowing or 
perspectives if one believes there is only one true answer; and what happens to objectivity when 
one allows for multiple interpretations and understanding? 
Although there is no one FNM or Indigenous paradigm, as each Indigenous group has 
fundamental differences from each other (Kovach, 2009; Little Bear, 2000), there are common 
characteristics across Indigenous groups that allow for the presentation of an overarching and 
broad Indigenous paradigm.  An Indigenous paradigm is one that values wholeness with focus 
being on the group rather than the individual, on interdependence rather than independence; it 
values relationships, not just between people, but with all of creation; it values reciprocity; it 
values diversity within the group; and it values the place where knowledge is constructed and 
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lives (Ermine, 1995; Hogan, 2000; Kovach, 2009; Little Bear, 2000; Meyer, 2003; Youngblood 
Henderson, 2000). Thus, an Indigenous paradigm invites varying perspectives and ways of 
knowing; it considers not only the impact of actions and beliefs on individuals, but on all people 
and on the world around them; and it seeks not only to gain, but to give back as well.  
Are there benefits to considering the seemingly disparate sites of mathematics curriculum 
renewal – new teaching and learning strategies and the infusion of FNM content, perspectives 
and ways of knowing – through the non-Western lens of an Indigenous paradigm? The analyses 
from this perspective, as well as from the perspective of the traditional Western paradigm (which 
follow) will not only reveal the benefit of such a consideration, but also call into question the 
origins of the current transformations to mathematics education. 

Analysis 
In our analysis, we consider the question of which paradigm – traditional Western or Indigenous 
– best accommodates the changes to mathematics education that are supported by current 
Western research. To do so, we examine both initiatives (the new teaching and learning 
strategies and the infusion of FNM content, perspectives and ways of knowing) in light of the 
characteristics of each paradigm to determine whether one paradigm better aligns with where we 
are trying to go with mathematics education. 

The Traditional Western Paradigm 
Being from a world dominated by the traditional Western paradigm, we begin by considering 
how the initiatives of incorporating new teaching and learning strategies and the infusion of 
FNM content, perspectives and ways of knowing align themselves within the traditional Western 
paradigm. Within this paradigm, the notion of infusing content, perspectives and ways of 
knowing that are not inherently part of the traditional Western paradigm, which is the case for 
FNM knowledge, is in contradiction to the paradigmatic belief that the Western world holds a 
monopoly on knowledge. Acceptance and action upon this initiative within the traditional 
Western paradigm would be tantamount to admitting that there is some knowledge and some 
ways of knowing that do not originate within Western society. Moreover, FNM perspectives and 
ways of knowing value relationships and diversity, giving the resulting knowledge both 
subjective and objective attributes which also contradicts the traditional Western paradigm.  
What of the new teaching and learning strategies that are emerging from ongoing Western 
research into mathematics education? How well does Constructivist Learning Theory fit into the 
traditional Western paradigm? At first glance and at the broadest level possible, the theory and 
the traditional Western paradigm would seem to fit. Both Vygotsky’s and Piaget’s theories 
assume a linear nature to learning, and the evidence for the theories is based upon scientific 
measurement and the application of objectivity. It is in the application of these theories, 
however, that a divergence from the traditional Western paradigm begins to occur. Inquiry and 
problem-based learning, although frequently taken to consensus, encourage students to consider 
alternative perspectives and representations, and the goal is no longer just the final ‘truth’, but 
also the processes and relationships developed along the way. Moreover, the use of literature in 
mathematics teaching and learning brings forward context and subjectivity, both of which are 
foreign to the Western paradigm of true mathematical knowledge. Likewise, strategies such as 
the use of multiple representations conflicts with the Western belief in one correct answer, and 
must ultimately give way to the penultimate symbolic mathematical form of representation. 
Thus, we contend that the traditional Western paradigm does not support the current 
transformative teaching and learning strategies proposed by mathematics education research.  
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An Indigenous Paradigm 
We begin our analysis of recommendations for the transformation of mathematics education with 
respect to an Indigenous paradigm by considering the infusing of mathematics education with 
FNM content, perspectives and ways of knowing into mathematics curricula. In an Indigenous 
paradigm, the consideration of alternative perspectives and ways of knowing is a foundation 
rather than a contradiction to one’s beliefs. An Indigenous paradigm not only recognizes, but 
welcomes new content and perspectives as a way of understanding the continuous flux of life 
(Kovach 2009; Little Bear, 2000; Meyer, 2003), making the infusion of FNM content, 
perspectives, and ways of knowing not only a possibility, but recognizing it as a necessity for the 
creation and application of knowledge. In an Indigenous paradigm, knowledge is grounded in 
place, and the infusion of FNM content into mathematics education is also about understanding 
the relationship between place and knowledge. As is probably not a surprise, the infusion of 
FNM content, perspectives and ways of knowing into mathematics education is one that is not 
only supported, but also endorsed by an Indigenous paradigm. 
As noted previously, Constructivist Learning Theory, whether it be Piaget’s cognitive 
development theory or Vygotsky’s social development theory, does not, at the outset, require an 
Indigenous paradigm to fit into mathematics education; however, when one begins to consider 
the application of these theories to the actual acts of teaching and learning there becomes a much 
stronger alignment with an Indigenous paradigm over the traditional Western paradigm. Our 
earlier analysis noted how this realignment with paradigms begins to be apparent with the 
introduction of inquiry and problem-based learning.  Now consider strategies such as the 
incorporation of children’s literature, integration of subjects, and the use of multiple forms of 
representation in communicating and exploring mathematical ideas. 
For Indigenous peoples around the world, language and oral communication are essential to the 
creation and maintenance of their cultural identities and knowledges (Absolon & Willet, 2005; 
Battiste, 2000; Kovach, 2009; Leavitt, 1995; Meyer, 2003).  Little Bear (2000) notes that within 
Indigenous cultures, and thus within an Indigenous paradigm, “Storytelling is a very important 
part of the educational process. It is through stories that customs and values are taught and 
shared” (p. 81).  The increasing use of children’s literature books in mathematics instruction and 
learning in Western classrooms shares in these same paradigmatic beliefs about storytelling.  
In an Indigenous paradigm, holistic views of the world and of knowledge are foundational - 
knowledge is not categorized into distinct disciplines; rather, it exists within the context of life 
experiences in a particular place (Ermine, 1995; Little Bear, 2000). Unlike the traditional 
Western paradigm, based in the Eurocentric belief that all knowledge falls into dualities and 
differences, an Indigenous paradigm does not try to separate out component parts of an 
experience, rather it encourages the valuing of the whole. In this way, the movement towards 
teaching and learning through the integration of different Western subject areas, is also in much 
closer alignment with an Indigenous paradigm than a Western one. 
Likewise, the encouragement of students and teachers to learn, incorporate, and relate between 
multiple forms of representation, including oral communication, pictures, and concrete objects, 
and not just using abstract symbols, also pulls the teaching and learning of mathematics from the 
traditional Western paradigm and towards an Indigenous one. The openness of these teaching 
and learning strategies to alternative strategies and ways of knowing about mathematical ideas 
contradicts the Western need for objectivity, linearity, and a single, correct answer. These same 
features, however, bring such teaching and learning strategies in direct alignment with an 
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Indigenous paradigm by inviting students and teachers to openly consider and value alternative 
ways of knowing and understanding, and to celebrate diversity in thinking.   

Discussion 
Our analysis of the two initiatives of change facing mathematics education within the province of 
Saskatchewan, and undoubtedly elsewhere in the world, that of the infusion of FNM content, 
perspectives and ways of knowing and the introduction of new teaching and learning strategies, 
demonstrates how at least a significant portion of the transformations occurring in mathematics 
education are not supported by the traditional Western paradigm within which school 
mathematics currently sits. Instead, there is much evidence to suggest that an Indigenous 
paradigm might be a more appropriate choice for the enactment of these initiatives. One could 
argue that the new teaching and learning strategies aimed at mathematics education are as much 
a consequence of thinking within an Indigenous paradigm as they are aligning with the 
traditional Western paradigm. It is in this realization that the complexity of the changes being 
called for within mathematics education may find some resolution and simplification; that is, 
perhaps what we need to do in mathematics education is to focus on changing our Western 
paradigm to that of a more Indigenous paradigm, and thereby the educational changes we desire 
will become natural consequences of our beliefs rather than being at odds with them. 
Perhaps, also, our analysis is an indication that the traditional Western paradigmatic view of 
mathematics education is already moving towards a more Indigenous paradigm. If so, perhaps 
we need to consider the words of Youngblood Henderson (2000) “In the Eurocentric construct of 
three-dimensional time, whoever masters the present moulds the past” (p. 65), and Smith’s 
(2000) concern that the traditional Western paradigm seems to see the world as a “huge 
supermarket in which knowledge can be packaged up to be bought and sold…[without 
considering] the intellectual cultural property rights”  (p. 218) of Indigenous peoples. If we are to 
let go of only some aspects of the traditional Western paradigm to let these transformations 
easily enter the world of Western mathematics education, then do we not need to be careful that 
credit is given where credit is due? Should we not be careful to avoid laying claim to the present 
findings by ignoring the past knowledge of others; should we not be taking care to not package 
someone else’s wisdom under our own label? As much of the world struggles with the 
devastating impacts of colonization and other forms of intolerance and unsubstantiated assertion 
of power, do we not as mathematics educators and mathematics education researchers have an 
important role to play in this struggle?  We believe that this convergence between an Indigenous 
paradigm and the transformation of mathematics education is not a mere coincidence, but the 
gradual evolution of parts of Western thinking into more Indigenous ways of knowing, and 
although the application of this thinking may be taking on forms different from those historically 
found within an Indigenous paradigm, the foundations for such thinking, which are also 
foundations of an Indigenous paradigm, should be recognized and honoured. 
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Most research on teaching mathematics to students with learning disabilities has focused on 
explicit procedural instruction or rote learning. Instead, this study focused on what two first 
grade boys with language delays learned about patterns from Choral Counting, an instructional 
activity designed to encourage communication of mathematical ideas.  This focus led to the 
research question: What do elementary students with language delays learn about identifying 
patterns as they engage in Choral Counting? Video interaction analysis taking a sociocultural 
perspective enabled me to investigate the resources that they use to express their mathematical 
ideas. Findings indicated that Choral Counting was a valuable instructional activity for these 
students: they grew in their abilities to count by various numbers, to identify patterns, to express 
their mathematical ideas, and to use nonverbal communication methods to clarify their meaning. 

Introduction 
 Most research on teaching mathematics to students with learning disabilities has focused 
on explicit procedural instruction or rote learning (Miller, Butler, and Lee, 1998). The problems 
are broken down into their component parts, and the students are expected to master the 
components on their way to solving the problem. This type of instruction is time-efficient, makes 
overt the covert thinking strategies that support mathematical problem-solving, and does not 
depend on students’ ability to intuit concepts from experience, or to work in a self-directed 
manner (Karp and Voltz, 2000, p. 208). Procedural instruction, however, also has its 
disadvantages. The students become dependent on the teacher’s assistance, and there is limited 
opportunity for in-depth understanding, which leads to limited retention, generalization, and 
ability to apply the information (Karp and Voltz, 2000, p. 208). Because students may develop 
little conceptual understanding of the procedures, the procedures are also liable to be error prone 
(Woodward and Montague, 2002, p. 95).  
 Given the disadvantages of overemphasizing explicit procedural instruction and rote 
learning, research is needed on other instructional methods for students with learning disabilities. 
In particular, teaching through mathematical discussions has potential and is worth studying 
(Woodward and Montague, 2002, p. 97). In this study I focus on what students with language 
delays can learn by engaging in a particular instructional activity that encourages the 
communication of mathematical ideas. Specifically, I focus on what students with language 
delays learn about patterns when they engage in the instructional activity of Choral Counting. 
 Choral Counting is a 10-15 minute warm-up. Prior to the count, the teacher has thought 
about where to start and end the count, what to count by, whether to count forwards or 
backwards, and how to record the count. The class counts together out loud while the teacher 
records the count. At a strategic point, the teacher stops the count and encourages the class to 
discuss numerical patterns that students notice. During Choral Counting students practice 
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counting, identify patterns, and engage in mathematical reasoning as they predict numbers that 
will occur in the count (http://sitemaker.umich.edu/ltp/home). 
 This study is an example of a self-study, as I was the resource teacher of the students 
being studied and was motivated by my own experiences. I tried to teach mathematics through 
direct instruction for a couple of years and was dissatisfied with the limited progress that my 
students were making in mathematics.  While my students were able to do simple sums, they 
fared poorly on the state test that required them to solve novel problems and give explanations 
for how they had solved the problems. Consequently I wanted to experiment with another way to 
teach mathematics. 
 In my university, prospective teachers were being taught five routine instructional 
activities that encouraged students to interact with one another and communicate mathematical 
ideas and develop fluency with mathematical concepts and procedures (Lampert et al, 2010). 
Although I adopted most of these routines in my Resource Room class, in this paper I focus on 
one routine: Choral Counting. This decision led me to my research question: What do elementary 
students with language delays learn about identifying patterns as they engage in Choral 
Counting? 

In the process of investigating this question I present the progression of numerical pattern 
identification of two first grade students with language delays over a three-month period. I 
present how they first thought of patterns and how they changed their conceptions of patterns as 
the months progressed. I present the differences between these two students in the types of 
patterns they tended to observe. I also present how they communicated their understandings of 
the mathematics. This paper expands current studies of mathematics learning because it 
examines a group of students who are rarely asked to communicate their mathematical ideas. 

 
Conceptual Framework 
 A sociocultural perspective guides the view of learning in this study. From this 
perspective, learning is transformation of participation in a “skilled, valued sociocultural 
activity” (Rogoff, 1990, p. 39) and takes place within a social context with experts and novices 
engaging together in the activity. Participants have relationships with each other that mediate the 
individuals’ learning and this mediation occurs through discourse—communication that occurs 
through words, gestures, and actions (Cazden, 2001). 
 Moschkovich (2007) argued for using a sociocultural framework for understanding the 
resources that bilingual students use when communicating mathematically. These students 
struggled to find the words to describe the mathematical concepts that they had, and had 
Moschkovich looked at their words alone she would have concluded that they were not 
understanding the mathematical concepts. Instead she looked at the whole social context and 
realized that these students were using gestures, objects, artifacts, and their first language to 
express their mathematical ideas. When Moschkovich studied bilingual students’ participation in 
mathematics lessons from a sociocultural perspective, she could see all of the resources that they 
were using to construct meaning.  

Like Moschkovich, I have chosen a sociocultural perspective to investigate the resources that 
students with language delays use when communicating mathematically, because this 
perspective allows me to examine their strengths. Students with language delays struggle to 
express their ideas verbally, but an interaction analysis taking a sociocultural perspective enables 
me to investigate other resources that they use to express their mathematical ideas. Students may 
use gestures and artifacts to communicate mathematical ideas that they are unable to express 
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verbally. Such analyses afford a fuller estimation of the ability of students with language delays 
to do mathematics than a limited examination of students’ verbal functioning. 

Students with special needs do not often get the chance to talk about mathematics because 
“such children are assumed not to be linguistically prepared to participate in reform-based 
practices” (Hufferd-Ackles, Fuson, & Sherin, 2004, p. 82). However, students with language 
delays may actually need more opportunities to participate in mathematics discussions than 
typically developing students. They may need more practice communicating mathematically, just 
as they need more practice communicating in other modes. This means that mathematics lessons 
should be designed to support students’ language goals as well as the mathematical content. 
These language goals will be more readily addressed with mathematical discussions than by 
direct instruction.  

Methods 
Subjects 

The participants in this study were two first grade students receiving Special Education 
Resource Room services at Uhuru School (all names are pseudonyms) in the 2008-2009 school 
year. Their school was in an urban area in the Northwest U.S.A. 

Martin (M) and Ali (A) were both members of my primary Resource Room mathematics 
group. They both had language delays (LD), with expressive language skills more typical of a 4 
year-old than the 6 years-old they actually were. They tended to use 2-3 word sentences, often 
missing out grammatical features of the sentences such as verbs. Martin spoke more clearly than 
Ali, who tended to skip some of the consonants in words, which made his speech hard to 
understand. Despite these language delays, they both spent the majority of their school day in a 
general education first grade classroom and were making progress in the general education 
curriculum. 

I chose to study Martin and Ali because at the beginning of the study they both had 
Individual Education Plan (IEP) goals related to counting, so the Choral Counting routine was 
directly related to their IEP goals. In September 2008, they both had mathematics goals on their 
IEPs that referred to rote-counting, one-to-one counting of objects, and recognizing numerals. 
Although these students had similar mathematics goals, there were differences in their goals. 
Martin’s goals involved higher numbers than Ali’s—reflecting their relative skill levels. In 
September, Ali still had difficulties counting above 12 by ones, whereas Martin could count to 
100 by ones. Ali could reliably count ten objects, whereas Martin could count up to thirty 
objects. Ali recognized 5 numerals reliably--1, 2, 3, 8, 10—at a stage when Martin could 
recognize the majority of the numbers up to 50. 

Martin and Ali had different home languages. Martin’s family spoke English in the home. 
Ali’s family spoke Somali at home, although his mother reported that he was more comfortable 
speaking English than Somali. Ali was receiving ELL services as well as Special Education 
services. 

Procedures 
 In my primary mathematics class we engaged in Choral Counting approximately weekly 
from November 2008, until March 2009. We then continued to engage in Choral Counts once or 
twice a month from April 2009, until June 2009. 
 First, I chose a counting sequence for the students. These counting sequences were either 
by twos, fives, tens, ones, or backwards by ones. When counting by ones, the count started from 
a number in the low double digits because the students were very familiar with counting by ones 
from one. These counting sequences were selected because they are the ones that the state has 
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identified as the essential counting sequences for first grade students.  The Washington k-12 
Mathematics Standards (2008) state that first grade students should be able to, “Count by ones 
forward and backward from 1 to 120, starting at any number, and count by twos, fives, and tens 
to 100” (p. 11). 
 Once I had introduced the counting sequence to the students, we would start counting 
together and I would write the numbers as we said them, having chosen ahead of time how to 
arrange the count on the board so that patterns would be discernable. After three or more rows or 
columns of numbers were written, I would stop the count and ask the students what patterns they 
were seeing. I would represent those patterns on the count and ask the students to predict the next 
number in the pattern (Kazemi and Hintz, pp. 5-9). 

Data Collection & Analysis 
 The data for this study was collected by videotaping thirteen of my Choral Count lessons 
from November 2008 until June 2009. After watching all the videotapes, I chose to analyze three 
episodes that showed how Ali and Martin changed their understandings of what a pattern 
consisted of across the course of the study. I analyzed a count from mid-December, which was 
towards the beginning of my study when the students still believed that patterns consisted of 
shapes. The next count I analyzed came from mid-January, where both boys showed an 
understanding and recognition of patterns in the numbers. The final count that I analyzed came 
from early March, where Martin recognized a more sophisticated pattern than he had previously 
recognized. The December count was a count by 2s, the January count was a count by 10s, and 
the March count was a count by 5s. 
 I then transcribed the three episodes, just focusing on the parts of the counts where 
Martin and Ali were talking about the patterns that they had observed. I transcribed these 
episodes using conventions commonly used in interaction analysis (Schegloff, 1997). I wanted to 
pay close attention to both the words and actions of the discussion participants, because the 
words, hesitations, gestures, and the physical location of the participants were important clues to 
what the students understood about patterns and how confident they were about their answers. 
 I then repeatedly reviewed the video alongside the transcript and coded for instances of 
student learning and understandings, and students’ interactions with the artifacts. I annotated the 
transcript with notes about how the students were currently thinking about patterns, their 
positioning in relationship to the numbers on the board, and their interactions with the numbers. 
 

Results 
Growth in Pattern Identification 
 In this section I show a sequence for the growth in the types of patterns recognized: (1) 
shapes as patterns; (2) patterns where the digits stay the same; (3) digits that change 
systematically; and, 4) digits that show repetition while changing systematically. I also show 
how the boys established a norm for communicating about the numbers. 
Shapes as Patterns 
 In the December episode, Martin thought that when I asked him to tell me about a pattern 
he saw, he was expected to respond with the name of a shape: 
T: What’s a pattern you see Martin? 
M: Umm. A square right there. 
This was a reasonable answer if I had been looking for a shape answer. The count at that moment 
was a five by six grid plus two extra numbers (See Figure 1). 
Figure 1: Count by 2s, December 
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  2   4   6   8 10 
12 14 16 18 20 
22 24 26 28 30 
32 34 36 38 40 
42 44 46 48 50  Martin’s pattern 
52 54 56 58 60  Ali’s pattern 
62 64     
 In Martin’s world, patterns were shapes so even though there were no obvious other shapes to be 
seen in the count, he continued to look for shapes: 
M: Ooh! A triangle 
T: I don’t see a triangle 
M: Circle 
A: I see it 
M: Rectangle 
These answers were less reasonable given the count, but emphasized his conviction that 
questions about patterns had a shape as an answer. 
Patterns where Numbers Stay the Same 
 This was the second time that I had introduced these students to the idea of looking for 
patterns in the numbers, but Martin’s responses made it clear that he was still focused on looking 
for shape patterns. So I reminded the students about the previous lesson where I had modeled 
finding a pattern in the numbers, “I’m seeing patterns in the numbers. Like last time we saw 
patterns in the numbers, Jose and I?”  
 Ali was the first to give me a number response, but it is unclear from his initial response 
whether he was just saying a number or he had seen a pattern, 

A: Uh. I see fourteen? 
T: Fourteen? Yeah? [Points to the number 14 on the board] What about fourteen? 
A: Uh. Ecos e ba one an four {Because it has a one and a four.} 
I decided to take his answer and emphasize a pattern that he could be seeing that involved 14, 
T:  What’s the same about the one’s place [Drops finger down along the 4s in the ones place] 
all down here? What’s the same? [Moves finger up and down along the 4s.] 
M: The four 
A:       four [Says number at the same time as M.] 
At this point both boys were focused on looking at the numbers and they simultaneously 
responded that the 4s stayed the same in that column (See Figure 1). 
Martin was able to take the idea of looking for digits that stayed the same and communicate a 
new pattern independently, 
M: I see um zeroes 
T: Where. Tell me where. [Martin gets up.] Tell me. 
M: Uhhh. Right here [MF goes to the board and points to the zeroes in the final column. As 
he counts he points to each number.] Ten. Twenty. Thirty. Forty. Fifty. 

He now saw that the final column always had a zero at the end (See Figure 1). In a minute and a 
half, Martin went from seeing patterns as always being about shapes to being able to 
communicate a pattern that he saw in the numbers. 

In this interaction Martin initiated a norm for communicating about the numbers. I asked him 
to tell me which numbers he was talking about and instead he chose to go to the board and 
show me the numbers. This innovation was taken up by the other student and by January it 
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had become a norm for the students to come to the board when they were trying to explain 
which numbers they were talking about. 
In December it was not clear whether Ali really understood what it meant to look for a 
pattern in the numbers, but by the January episode he showed that he was looking for 
similarities between the numbers and he communicated this similarity. He saw that there was 
always a 10 in the numbers in the first row, 10, 110, 210 (See Figure 2). 
A: Uh, a tens [comes to board, points to the first 10] got a number one zero, one one zero 
[points to 110.]  
T: OK. So you've seen ten, ten, ten, ten. [T underlines 10 and the ten in 110, in 210, and 
310. A walks back to his desk.] 
In the January episode, Ali showed growth in pattern recognition from December. He 
now knew that he was meant to look for patterns in the numbers. He communicated that 
he saw a similarity between the numbers in the first row. The words that he said,  “Uh, a 
tens…got a number one zero, one one zero,” could have been easily misconstrued but 
because he came up to the board and pointed at the relevant numbers, I knew exactly 
which tens he was talking about. This growth in his communication skills allowed me to 
comprehend the pattern that he was indicating. The pattern that he saw in January was 
more sophisticated than the one he saw in December because this one involved two digits 
that stayed the same rather than just one digit. 

Figure 2: Count by 10s, January 
  10 110 210 310  
  20 120 220 320 
  30 130 230 330 
  40 140 240  
  50 150 250 
  60 160 260 
  70 170 270 
  80 180 280 
  90 190 290  Martin’s pattern 
100 200 300  Ali’s pattern  

Patterns where Numbers Change Systematically 
 In the January episode, Martin also shows that he is now focusing on patterns in the 
numbers rather than shapes. He shows a pattern in the tens place where the tens place 
systematically changes by one (See Figure 2), 

M: I see 2, 3, 4, 5, 6, 7, 8, 9, [points to each number in the tens column as he says it.] te... 
A: Ten 
M: Ten 

As I did not ask him to continue his pattern in the second column, it is unclear whether he saw 
the pattern in the tens place as a repeating pattern: 123456789123456789123456789; or as a 
pattern that incorporates the hundreds place into the pattern he was seeing in the tens: 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17. I suspect that this latter pattern is the way that he saw 
his pattern because of his use of the word “ten”. In later counts, he consistently used this latter 
pattern, which strengthens my conviction that this is how he was seeing the pattern in this 
episode. However, his hesitation at “te…” suggests that he was unsure at this point and was not 
sure how his pattern continued. 
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 In January, Martin shows that his understanding of patterns has evolved from seeing 
patterns as shapes, and even from looking for similarities between numbers. He is now looking 
for patterns in how numbers change systematically. 
Patterns with Repetition within Systematic Change 
 In March, Martin identifies a new pattern. He sees a pattern of the form: 11223344, etc. 
(See Figure 3), 

M: 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 [M points to every number in the tens place as he comes to it.] 
T: Ok. Let...let me. So in the tens place it goes 1, 1. Then it goes 2, 2 [Circles the numbers as 
she says them.] 
This pattern shows that Martin has grown in his understanding of what a pattern can be. He 
can now see repetition within systematic growth. 
Figure 3: Count by 5s, March. 
    5   10   15   20   25   30   35   40   45   50 
  55   60   65   70   75   80   85   90   95 100 
105 110 115 120 125 130 135 140 145 150 
155 160 165 170 175 180 185 190 195 200 
205 210 215 220 225 230 235 240 245 250 
255 260 265 270 275 280 285 290 295 300 
305 310  
        Martin’s pattern 
When Martin got to the number 95, he hesitated and so I asked him what came next: 
T: Wha...What happens here? 
M: Zero. 
T: So does it go back to zero or does it go on to ten. 
M: Goes on to ten right here. [Pointing to 10 in 100.] 
T: OK. [Circles the number he indicates.] 
M: Don't circle that one [Points to 0 in ones place.] 
T: Ok. Ten 
M: Ten [Points to number.] 
T: Mm 
M: Eleven [Points at the number.] 
T: Eleven 
M: Eleven [Points at the number.] Twelve...[Points towards number but does not touch it.] 
Twelve...Thirteen, thirteen, fourteen, fourteen, fifteen, fifteen, sixteen, sixteen, seventeen, 
seventeen, eighteen 

Martin’s hesitation after 95 showed that he was not sure how his pattern progressed once the 
numbers were in the hundreds, but he eventually decided that his pattern incorporated the 
hundreds place into the pattern he was seeing in the tens. 
 

Discussion 
 Choral Counting was a valuable mathematical routine for these students with language 
delays. It helped them become more adept at counting by various numbers, including 3-digit 
numbers. Choral Counting was a useful routine to help these students with language delays grow 
in their ability to identify patterns—an important mathematical skill. It exposed them to the idea 
of using patterns as a way to help them skip count by various numbers. Choral Counting allowed 
the students to express their mathematical ideas and helped them become used to using 
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nonverbal communication methods to clarify their verbal explanations. From a sociocultural 
perspective, these students learned these mathematical skills because they had the opportunity to 
engage in Choral Counting, so their ideas shaped and were shaped by their participation in the 
activity. 
 In three months, both students made growth in their ability to identify patterns. They 
moved from looking for shapes as patterns to looking for patterns in the numbers. Ali 
independently identified patterns where the digits stay the same. Martin could identify several 
different types of patterns in the numbers: digits that stay the same, digits that change 
systematically, and digits that show repetition while changing systematically. The routine of 
Choral Counting has encouraged these students to search for patterns in numbers, which is one of 
the major tasks of mathematicians. 
These boys also showed growth in their communication skills over the course of the study. They 
both had difficulties communicating verbally due to their disabilities, but they found other ways 
to communicate what they were thinking. They established a norm that the student who had the 
floor would come up to the board to point at, and thus clarify, the numbers they were talking 
about. 

One of the limitations of this study was that the two roles that I had in this study—teacher 
and researcher—were difficult to negotiate. Did I really see that evidence of understanding in the 
video? Or did I see evidence in some other part of the lesson that is not recorded and then read 
into the video evidence that is not there? Did I see some glimmer of understanding because I am 
their teacher and am invested in these children’s lives, while an outside observer might not see 
the same evidence of understanding?  

In future studies it would be interesting to compare the participation of students with 
language delays in activities that elicit their mathematical thinking, such as Choral Counting, 
with their participation in other activities that are typically found in mathematics lessons. 
In future studies it would be interesting to work with groups of students with different 
disabilities. For which groups of students is Choral Counting a worthwhile activity? 
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This study contributes to a growing body of research considering professional development 
focused on both mathematics and equity. The study examined how lived experiences provide a 
foundation for ways teachers take up equity in their mathematics teaching practice. Constructs 
of praxis and figured worlds frame the study. The figured worlds of teachers participating in 
professional development were explored with a focus on how they contributed to where the 
teachers located praxis for equity in mathematics. Contributions were noted from the figured 
worlds the teachers inhabited both in and out of the professional development. 
 

Attention to issues of equity and diversity within mathematics education is an area of 
growing interest. For some, this interest grows out of an effort to understand the gap in 
achievement between historically underserved students and their White, middle-class peers 
(Lubienski, 2008). For others, a focus on the achievement gap masks circumstances at the local 
level (e.g., access to courses and experienced teachers, procedurally-focused instruction) that 
significantly impact school performance (DiME, 2007; Gutiérrez, 2008; Martin, 2006). While 
there is a rich body of research on professional development (PD) that focuses on attending to 
student thinking in mathematics (Franke, et al., 2009; Kazemi & Franke, 2004; van Es & Sherin, 
2010) and a separate but equally fertile body of literature on PD that address general issues in 
attending to diverse learners (Cochran-Smith & Lytle, 2001; Sleeter, 1997), literature that attends 
to both is emerging. In this paper we report on a study that contributes to this growing body of 
literature that considers PD focused on both mathematics and equity (See for example Civil, 
2002; Crockett & Buckley, 2009; Foote, 2010; Weissglass, 1994).  

Contributing to a lack of equity in schools, is a socio-cultural distance that has been noted 
between the majority of teachers, over 85% of whom are White and middle class (Howard, 
1999), and the ever more diverse groups of students whom they teach. PD provides a vehicle for 
researchers to examine this gap in lived experiences between teacher and student (Foote, 2010). 
Such a PD program was designed to provide elementary school teachers with an opportunity to 
examine their mathematics classrooms with an explicit focus on equity.  

 
Theoretical Perspectives  

Research suggests that high quality professional development: (a) is situated in the work of 
teaching, (b) is focused on student thinking and learning, (c) supports professional learning 
communities, (d) is sustainable and credible, and (e) is research based and supported (Whitcomb, 
Borko, & Liston, 2009). The PD we studied not only incorporated all of these elements, but also 
incorporated another that we think needs more attention in the PD research - how teachers’ 
experiences in figured worlds shape how they take up the goals of PD and where they locate the 
praxis that the PD intends to support.  
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Praxis 
In discussing actions teachers either took or envisioned in an effort to achieve greater equity 

in mathematics learning we are referring to praxis. The term praxis regularly appears in the 
discourse on PD without being specifically defined. In our work we draw on the definition used 
in critical race theory (CRT), “the connection between theory and practical work aimed at 
transforming concrete social institutions” (Delgado & Stefancic, 2000, p. 591). This definition 
goes beyond the Aristotelian view of praxis that considers human activity as directed at a 
particular end with a goal of realizing something worthwhile (Carr, 1995) and incorporates 
Freire’s (2007) view of action for transformation. In our use of the CRT perspective, the “goal of 
realizing something worthwhile” is more specifically defined as working toward achieving 
equity. Praxis is not the end itself nor a product but action that leads to the goal, the process of 
putting theoretical knowledge into practice. Potential sites for praxis that a teacher might target 
include the classroom, school, district, and society. These sites exist in a nested configuration of 
classrooms within schools, within districts, within society, although we do not intend to suggest 
a linear interaction. Additionally, we view society as incorporating but not limited to such things 
as families and communities.  
 
Experiences in the Contexts of Figured Worlds 

As suggested by Gutiérrez (2002), teachers’ practices are not just limited to their knowledge, 
beliefs, and experiences, but are influenced by the context in which they teach. In addition to the 
teaching context, the context of PD (and other contexts outside of the school setting) influences 
teachers’ views on changing their practice (Borko, 2004; Kazemi & Franke, 2004). Identity is 
developed through participation in and interaction with this complex matrix of communities 
(contexts) with which we engage throughout our lives (Holland, Lachiotte, Skinner, & Cains, 
1998). Holland and colleagues argue that identity develops within what they call figured worlds. 
For them, identity is situated (or contextual) and socially dependent (or relational) and therefore 
cannot be appreciated apart from its social context. This notion of figured worlds and the 
movement of teachers among the various worlds they inhabit is a useful one for considering the 
development of their identities as mathematics teachers and understanding why they identify 
particular places as needing change. To understand all the contributions to identity or to develop 
a complete explanation of the development of any individuals’ identity is well beyond the scope 
of this paper. We can, however, consider how particular lived experiences in the figured worlds 
they have and continue to inhabit may contribute to the ways in which teachers take up certain 
issues, in this case equity in mathematics.  

From among the figured worlds that participants inhabit and because of their experiences 
within these worlds, they identify the space in which they hope to take action or believe that 
action is necessary; in other words, where praxis should be located. This leads us to question 
how teachers’ experiences in different contexts influence how and where they locate praxis 
regarding equity and the teaching and learning of mathematics? 

 
Methods 

Background of the PD and Participants 
A yearlong PD seminar was developed to support and study teachers as they considered 

issues of equity in their teaching of elementary mathematics. In considering ways to weave 
together discussions of equity and mathematics, the researchers drew on scholarship in algebraic 
thinking (Carpenter, Franke, & Levi, 2003), PD linking equity and mathematics (Weissglass, 
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1994), multicultural PD design (Sleeter, 1997), and multicultural education (Nieto, 2004). 
During each seminar session, teachers discussed one chapter from Affirming Diversity (Nieto, 
2004) and observed one video text of third graders working on algebraic thinking problems. 
Between seminar meetings each teacher considered a target student in her classroom from the 
perspective of two lenses: (a) algebraic thinking, and (b) how issues of equity and diversity 
might be impacting that child’s mathematics performance in the classroom.  

The PD met once per month during the school year for a total of nine, two-hour meetings. 
Participants were randomly assigned to one of four subgroups that were purposefully maintained 
throughout the year in hopes that participants could build community with a smaller group of 
teachers, something that we believed might be an important consideration during difficult 
discussions that can arise when equity issues such as race and poverty are raised.  

 The participants in the PD were 18 elementary school teachers from a single school district 
in a moderately sized Midwestern city. Participants included 10 classroom teachers, one 
substitute, two ESL teachers, two math resource teachers, and three district resource staff. From 
among these participants, we identified one case study teacher from each of the subgroups. 
Because of space constraints, in this paper we will consider one of our case study participants, 
using her as an exemplar of how past experiences, current experiences, and the PD itself 
contributed to where she located praxis 
Data Generation 

In order to support teachers in positioning themselves in terms of their experiences and 
contextual positions and to develop a deeper understanding of who the teachers were and how 
they might engage with PD (Connelly & Clandinin, 1988), teachers wrote a mathematical and 
diversity autobiography. These autobiographies revealed prior experiences and beliefs regarding 
the teaching and learning of mathematics on one hand and issues of equity on the other. In order 
to capture the nature of the conversations within each group, all group discussions were audio 
recorded and later transcribed for analysis. Each month, teachers wrote reflections about their 
target student and their own experiences in their school setting. Through this use of both written 
and verbal perspectives, we were able to triangulate the data. 
 
Data Analysis 

There were two phases of data analysis. First we examined the small group discussions to 
develop an understanding of the group contexts. Second we developed trajectories of individual 
teachers around their engagement in the figured worlds that they had and currently do inhabit. In 
analyzing the small group discussions, we drew on grounded theory (Charmaz, 2005; Glazer & 
Strauss, 1967) to identify and develop an understanding of the group contexts as they emerged 
and influenced our participants. Members of the research team met regularly to discuss their 
impressions of the sessions as a whole and the small group discussions in particular. This sharing 
of impressions helped inform a general view of the small groups which was then further refined 
based on analysis of the transcripts. After identifying the overall orientation of the different 
groups, the data sources were analyzed to develop an understanding of the initial positioning and 
trajectories of the case study teachers. Autobiographies were read to gain insight into the 
experiences and figured worlds contributing to teachers’ identities as they entered the PD. The 
transcripts for the monthly meeting of each group were read and re-read; emergent themes were 
noted. Teacher reflections for each month were read and coded as to whether the teacher 
discussed the Nieto (2004) text, the video text, her target student, or her teaching practice more 
generally. Using these data, narratives for each of the case study participants were developed 
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independently by each of the authors and then compared. These narratives provided both 
background on the initial positioning of the case study teacher and insight into her trajectory. 
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Results: Case Study of Reflection on Praxis 
We present our results by focusing on our participant Deb. We first discuss the influence of 

experiences in her figured worlds on the where she started her thinking in the PD. We then turn 
to considerations of the individual PD group to which Deb belonged. Finally, we discuss the 
influence of identity and group dynamics on how she developed and where she located praxis.  
 
Deb 

Deb had a middle-class, suburban upbringing, but taught in two large urban districts for 16 
years before moving to her present school. She completed a traditional teacher education 
program in a large city and became a classroom teacher in a school that was 100% African 
American and all of whose student body (with the exception of three students) lived in nearby 
public housing. She was horrified by the conditions at the school and the treatment of the 
students. This fueled an early interest in producing large scale change; Deb recognized early on 
that major changes were required well beyond her classroom. Deb brought some of this zeal with 
her to teaching in another urban district, but after the events of September 11, 2001, reconsidered 
life in a large city and eventually moved to the smaller city where the study takes place. At the 
time of the study, Deb was a school-based mathematics resource teacher in a school that was 
experiencing a rapid shift in student demographics. It was her first year teaching in the school 
and she was frustrated with many of the other teachers in the school who she saw as wanting the 
new, more diverse students to assimilate before they could be taught. She saw her target student 
as marginalized by his classroom teacher who dismissed the knowledge he brought to school. 
Deb was very conscious of what she perceived as racist attitudes in her school and in her target 
student’s classroom. She also likened the problems she read about in a chapter in Affirming 
Diversity (Nieto, 2004) to those she saw with district sponsored PD on racism. Although she was 
aware she had more experience than most of her colleagues in teaching children from diverse 
backgrounds, Deb was also conscious of jumping to conclusions about her colleagues. 

Despite the fact that teachers had been randomly assigned to subgroups, four of the five 
teachers in Deb’s group were resource teachers either for mathematics or English as a Second 
Language (ESL) and all had extensive multicultural experience. All these teachers considered 
themselves and each other to be strong multicultural educators. Feeling that they had already 
explored their own selves and responsibilities, they looked instead at their schools as sites where 
improvement was necessary. Because of this orientation, there was limited space within the 
group for interrogating individual views; they adopted a taken-as-shared orientation in which 
they agreed that teaching mathematics for understanding was an important pedagogical stance 
and that valuing children’s out-of-school experiences was important to student success. Together 
they were empowered to criticize other teachers at their schools who they felt (a) did not share 
their orientation toward mathematical teaching and learning and (b) did not appreciate the funds 
of knowledge (e.g., linguistic and cultural) that diverse students were bringing to the classroom. 

Deb joined her colleagues in agreeing about what other teachers did wrong. She used her 
journal to consider ways she could help others change. The low expectations teachers at her 
school had for her target student and others like him worried her, and although she judged the 
teachers’ views of the students, Deb was also aware of her own judgmental stance, “Maybe I am 
the judgmental one who needs an attitude adjustment. I will watch myself.” (Oct. reflection). 
Toward the middle of the year, as she continued to experience resistance from the classroom 
teacher of her target student to reconceptualizing the student’s abilities, her viewpoint shifted 
away from working with that teacher. Instead, she began to intervene directly with the target 
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student to support him academically. Yet, in another instance, toward end of the year Deb began 
to question how, in her position as mathematics resource teacher, she could support teacher 
development when her estimation of what was necessary for teacher development went beyond 
mathematics and included understanding students.  

How can we move teachers toward understanding of the concept of “mutual 
accommodation” and the mindset of “academic success with cultural integrity?” How can 
we help her to understand what accommodation means, and show her that it is [currently] 
her students who are unlike her who have doing the accommodating? Can this 
understanding be taught to a veteran teacher who up until a few years ago worked only 
with students from similar backgrounds to her own? (May reflection) 

Deb located her praxis within her school. Deb followed a patterned trajectory throughout the 
year from questioning and evaluation of a situation to developing a plan of action. She located 
the need for change in other teachers at her school and questioned how she could support change 
in the way teachers taught mathematics and in how they worked with diverse populations of 
students. Deb used Nieto (2004) to reify her beliefs about the teachers in her school. By April 
she wondered what her role could be if others had deeply held beliefs that must be changed first, 
both with regard to mathematics and with regard to equity. Yet, she defined places where she 
could take action instead of merely identifying others as in need of change. She developed plans 
for the following school year which included both (a) an immersion in mathematical problem 
solving for teachers at school-based PDs she would be planning, and (b) approaching the 
principal with ideas gleaned from the Nieto (2004) text and the PD more generally as to how to 
address teacher expectations of the new population of students entering the school.  

 
Discussion 

We return to our initial question about the ways in which teachers’ experiences in different 
contexts influence how they locate praxis regarding equity and the teaching and learning of 
mathematics. In discussing the influence of the figured worlds, we look at Deb’s experiences 
outside of the PD and how that shaped her initial positioning. We then draw attention to Deb’s 
experiences within her small group where our discussion centers on what Horn (2007) refers to 
as the “conceptual resources” teachers bring in terms of their beliefs and how individual beliefs 
can influence the shared belief. Finally, we explore how these influences converged in the 
location of of her praxis. 
 
Influence of Membership in Particular Figured Worlds 

Deb brought a particular history to her participation in the PD. These varying experiences 
influenced the ways in which she took up the ideas of the seminar and brought them to bear on 
her practice. As a result of years of living and teaching in poor sections of major cities, Deb 
positioned herself as an expert on equity issues within her school setting and one who was in a 
position to support teachers with less multicultural experience. In addition she noticed and was 
offended by the teachers who she perceived were dismissive of what students (particularly her 
target student) brought to school and who looked at the home and community environments of 
their students from a deficit perspective.  
 
Influence of Context 

As mentioned earlier, there are multiple contexts that influence teachers’ work. In looking 
specifically at the PD, this study revealed the impact of group context on engagement and 
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participation. Deb, along with other members of her group, often engaged in a self-
congratulatory discourse during the discussions in the PD, not using it as a place to examine 
closely their own practice, but as a place to criticize other teachers at their schools. Nonetheless, 
Deb used her journal as a vehicle to reflect on actions that she might take. This seems to have 
supported her in moving toward an action plan of her own within the context of her school.  
 
Locating Praxis 

Deb’s focus was on the teachers at the school level. This is understandable given that her job 
was that of school-based mathematics resource teacher. She was explicitly interested in 
supporting teachers in reaching those students who were unlike the teacher in background and/or 
culture. She was further interested in supporting teachers in appreciating the knowledge and 
strengths that children had and brought with them to school and that the teachers often dismissed. 
We see specific examples of this in her dismay at the ways in which the classroom teacher of her 
target student marginalized him within the classroom and disregarded strengths in mathematical 
thinking and understanding he exhibited. Deb’s discouragement at making headway with this 
teacher caused her to abandon her efforts to support the teacher. Instead she began to work 
directly with the student, supporting him in developing his mathematical understandings. Yet, 
ultimately Deb took action at the school level, the site she identified as in need of change. 

Deb turned to working with her target student when efforts to support his classroom teacher 
in doing so failed. Yet Deb also continued with action plans at the school level on two fronts. On 
one hand she considered how during the next school year she would engage teachers in school-
based PD that she was planning on children’s mathematical thinking. On the other hand she 
thought of how she could interest the principal in exploring with the faculty in the subsequent 
year, some of the activities in Affirming Diversity (Nieto, 2004).    

 
Conclusions and Implications 

This	  study	  revealed	  how	  one	  teacher’s	  experiences	  in	  her	  figured	  worlds	  contributed	  to	  the	  ways	  she	  engaged	  
with	  PD	  and	  where	  she	  located	  praxis.	  This	  is	  a	  critical	  finding	  in	  that	  PD	  goals	  may	  not	  be	  attained	  unless	  attention	  
is	  given	  to	  teachers’	  experiences	  both	  in	  and	  out	  of	  PD.	  Specifically	  in	  this	  study,	  the	  initial	  goal	  of	  the	  PD	  was	  to	  
support	  teachers	  as	  they	  identified	  ways	  in	  which	  they	  could	  change	  their	  own	  practice	  to	  teach	  mathematics	  with	  
an	  explicit	  attention	  to	  equity	  (i.e.	  locating	  praxis	  within	  themselves;	  taking	  action	  in	  their	  own	  teaching	  practice).	  
Not	  all	  of	  the	  teachers	  responded	  to	  the	  PD	  this	  way.	  Rather,	  their	  experiences	  in	  their	  figured	  worlds	  positioned	  
them	  to	  identify	  other	  sites	  for	  praxis	  (i.e.	  locating	  praxis	  in	  other	  teachers,	  schools,	  or	  society).	  Had	  we	  been	  more	  
attuned	  to	  this,	  as	  PD	  facilitators	  we	  could	  have	  been	  more	  responsive	  to	  where	  teachers	  were	  locating	  the	  need	  
for	  their	  praxis.	  For	  example,	  Deb	  saw	  the	  need	  for	  change	  in	  others	  yet	  she	  took	  action	  to	  support	  them	  in	  doing	  
so;	  thus	  her	  own	  praxis	  supported	  the	  praxis	  of	  others.	  Had	  our	  initial	  PD	  design	  included	  a	  space	  for	  those	  
teachers,	  such	  as	  Deb,	  whose	  experiences	  in	  their	  figured	  worlds	  support	  a	  more	  active	  role	  in	  working	  with	  
others,	  we	  could	  have	  explicitly	  attended	  to	  that	  action.	  In	  the	  end,	  we	  conclude	  that	  it	  is	  critical	  to	  consider	  the	  
role	  of	  teachers’	  figured	  worlds	  on	  teachers’	  interaction	  with	  PD.	  

Because of the structure of this PD we had the opportunity to notice how the context of the 
PD was different for each group (see Wager & Foote, 2011 for a more extensive discussion of 
this point than this paper allows). We were able to conclude that the context of any PD is critical 
in supporting teachers toward action. Our initial, more limited view of the PD assumed that the 
structure would support teachers in thinking about praxis in their classrooms. A consideration of 
the teachers’ experiences and the constraints or supports offered by the differing dynamics of the 
small groups in the PD has revealed that a broader view of PD was called for. These two topics, 
experiences and PD context, shaped where teachers located praxis. We suggest that this study 
reveals an important consideration in future PD and studies of PD.  
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PD to support teaching mathematics with understanding is grounded in the premise that 
teachers first identify the strategies that their students bring and build on that understanding. In 
PD on equity and mathematics, this notion is further extended to consider the funds of 
knowledge students bring as well. Ironically, PD on equity and mathematics does not necessarily 
identify the strategies and funds of knowledge that the teachers bring. As discussed earlier, 
scholars have identified elements of PD that have proven successful (Whitcomb, Borko, & 
Liston, 2009). We argue that this vision for PD should be extended so that facilitators take into 
consideration the experiences within figured worlds of their teachers as well as the context of the 
PD itself. This consideration is necessary if the goals of PD are to be met. The questions 
facilitators should explore include: (a) how do the structures of the PD align with teachers’ 
experiences and (b) what opportunities do teachers’ experiences offer to extend the initial goals 
of the PD? In examining the structure of PD relative to teachers’ experiences, facilitators might 
first assess teachers’ understandings and then determine the best organization for small group 
and whole group discussions. Reflecting on our PD, had we redistributed the small groups in 
order to take advantage of varying expertise, there may have been more even distribution of 
participation. In closing, we suggest that linear views of PD, in which the facilitators’ goals drive 
the process, underestimate the learning that might actually occur.  
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What mathematics teachers believe about teaching ELLs affects which mathematics teaching 
practices they employ (Sztajn, 2003). This study compares beliefs of mathematics teachers from 
Illinois, Texas, and Wisconsin. Surveys and quantitative analysis methods are used to compare 
beliefs of teachers by district demographics (high ELL population vs. low ELL population) and 
region (Midwestern school districts vs. Southwestern school districts). It was found that 
teachers’ beliefs about teaching ELLs mathematics were mostly similar regardless of 
comparison made. One main difference was that districts with low ELL populations looked for 
outside help to address challenges in teaching ELLs mathematics while high population ELL 
school districts relied more on their own teachers’ expertise to address challenges. 

Since teachers provide ELL students access to mathematics, it is essential to understand how 
teachers implement curricula with these students. Research studies suggest the manner in which 
teachers interpret and implement curricula is influenced by their knowledge and beliefs (see 
Thompson, 1992). Thompson (1984, 1992) reports that teachers frequently treat their beliefs as 
knowledge. Sztajn (2003) noted that teachers’ practices were based on their conception of 
students’ needs. A teacher may implement problem solving with students from upper 
socioeconomic backgrounds, while using repetitive instruction and memorization with students 
from lower socioeconomic backgrounds. This variation in teaching strategies and activities based 
on teachers’ perceptions is important, because teachers may perceive that ELL students would be 
more successful with memorization and lecture when the opposite is true (Winsor, 2007). 
Creating innovative, high quality lessons for students is most likely to occur when teachers are 
part of a collaborative learning community supporting such experiences (McLaughlin, 1993). 

In order to be equitable, it is essential that ELLs receive a high quality mathematical 
education (NCTM, 2000) therefore, the present study focuses on mathematics teachers’ beliefs 
about teaching ELLs in three states, Illinois, Wisconsin, and Texas (González, 2009). The 
comparison of different regions allowed the researchers to compare beliefs between teachers who 
teach in highly and sparsely Latino-populated areas. The hypothesis of the study was that 
teachers in regions with large Latino populations would hold similar beliefs. It was also 
hypothesized that teachers in regions with small Latino populations would hold beliefs that were 
quite different than the regions with relatively large Latino populations.  

Literature Review 
Teachers’ practice affects ELL students’ success in the classroom (Boaler, 2002). Two 

factors that affect teacher practice are their attitudes towards teaching ELLs and knowledge and 
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beliefs that motivate attitudes towards teaching ELLs (e.g. Batt, 2008; Byrnes, Kiger, & 
Manning, 1997). 

Boaler (2002) states that teachers do not hold malicious beliefs toward teaching ELL 
students; they just have misconceptions about how ELL students learn. One such misconception 
is that teachers believe ELL students’ linguistic backgrounds keep them from participating in 
activities requiring a higher level of cognitive demand, such as problem solving (Hansen-
Thomas & Cavagnetto, 2010; Sztajn, 2003). Hansen-Thomas and Cavagnetto (2010) found that 
teachers from all academic fields believe mathematics is the easiest course for ELLs to study 
because it uses only numbers and symbols. Reeves (2006) reports that teachers believe it takes 
two years or less to learn English, which leads them to believe ELL students’ academic 
difficulties are due to ability and not fluency. Cummins (1999) proposed that in fact it takes 
ELLs four to seven years to gain sufficient fluency that allows them to negotiate academic 
situations.  

There are two other teacher beliefs that seem to be systemic challenges. First, teachers feel 
unprepared to teach ELLs (Batt, 2008; Reeves, 2006), which often makes them reticent to teach 
such students; however, the vast majority want to learn effective teaching techniques to use with 
ELLs (Hansen-Thomas & Cavagnetto, 2010). Teachers also face added responsibilities that 
come with teaching ELLs (Batt, 2008), such as paper work and additional meetings outside of 
class.  

Byrnes, Kiger, and Manning (1997) and Youngs and Youngs (2001) describe several factors 
that affect teachers’ attitudes towards teaching ELL students. Both studies found that training 
specific to linguistic diversity had a positive impact on attitudes towards teaching ELLs. Training 
such as taking a foreign language class or a multicultural class (Youngs & Youngs, 2001) are 
examples of training that focused on linguistic diversity. Moreover, teachers that had ELL 
specific training in an in-service setting had positive attitudes towards teaching ELLs.  

Another factor that had a positive effect on attitudes towards teaching ELLs was more direct 
experiences with linguistic diversity. Experiences such as living or teaching in a foreign country 
are examples of direct experiences with linguistic diversity (Youngs & Youngs, 2001). Byrnes, 
Kiger and Manning (1997) found that the region teachers live in affected their attitudes towards 
teaching ELLs. Youngs and Youngs (2001) found that teachers who had students from multiple 
language backgrounds were more positive towards teaching ELLs. Taken together, these studies 
suggest that if teachers have experiences that help them better understand and relate to ELL 
students, then they may be more likely to have positive attitudes towards teaching ELLs. 

Methods 

Research Hypotheses 
1) Teachers from a district sparsely populated with Latino/ELL students will have different 

beliefs about teaching ELLs mathematics than teachers from districts densely populated with 
Latino/ELL students. 

2) Teachers from Midwestern districts densely populated with Latino/ELL students will have 
similar beliefs about teaching ELLs mathematics to teachers from a southwestern district densely 
populated with Latino/ELL students. 

Research Participants and Settings 
Eighty-six secondary mathematics teachers from school districts in Illinois, Texas and 

Wisconsin participated in this study. Participants were recruited from school districts meeting 
criteria for (high vs. low) proportion of ELLs and that had established working relationships with 
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the researchers.	  The four school districts will be referred to as follows: a high-ELL urban school 
district in the Southwestern United States (HUs); a high-ELL urban school district in the 
Midwest (HUm); a high-ELL rural school district in the Midwest (HRm); and a low-ELL 
suburban school district in the Midwest (LSm).  

 
School 
District 

Study participant 
demographics 

District population that is Latino District population 
classified as ELL 

HUs 76% Hispanic 92% 24% 
HUm 79% Caucasian (total 

participants from the 
Midwest) 

20% total population, individual 
schools range from 40 – 97% 
Latino 

5 % total, individual 
schools range from 20% 
to 47% ELL 

HRm 71% 52.% 
LSm 5% 3% 

Table 1: Description of participant and school district demographics.  
Forty-two secondary mathematics teachers taught at HUs. HUs school district was chosen 

because it was recognized as an urban district that is succeeding in educating their students (see 
Kitchen, DePree, Celedón-Pattichis, & Brinkerhoff, 2006). Twenty-three participants taught at 
HUm and HRm school districts, which were chosen because they had similar student 
demographics as HUs but were located in the Midwest. Twenty-one participants came from LSm 
school district, chosen for comparison purposes because of the scarcity of Latino students in the 
district.  

Instrument 
Researchers generated questions for a survey that focused on teachers’ beliefs about teaching 

ELLs mathematics. The foundation for the questions came from research conducted on teaching 
ELLs mathematics (see González, 2009 for details). At an authors’ university, the survey was 
piloted with a class of preservice middle school mathematics teachers. The results from the pilot 
helped researchers to refine questions based on preliminary responses. Data for this study was 
collected using a paper-pencil or an online version of the survey, depending on the preference of 
the school administrators and convenience for their teachers. 

The data analyzed for this report came from two different sections of the survey. One section 
of the survey asks, “How effective are the following strategies in helping ELLs succeed in 
school?” Examples of these strategies are: grouping students by language proficiency level, 
hiring more Bilingual Education Assistants, hiring more ESL or Bilingual Ed certified teachers, 
etc. Rating categories were: “Strong Positive Impact”, Weak Positive Impact”, “No Impact”, 
“Weak Negative Impact”, “Strong Negative Impact” or “N/A”.  

The other section asks teachers to share their level of agreement (on a seven-point Likert 
scale) on statements about teaching ELLs mathematics. Two examples of statements are, “I use 
the same teaching methods with English Language Learners (ELLs) as I do with Native English 
Speakers (NESs)” and “Technology can help ELLs learn mathematics.” 

Data Analysis 
For each survey item, one-way ANOVAs were conducted in Minitab to evaluate the 

relationship between a secondary mathematics teacher’s beliefs and each of the two independent 
variables in the research hypotheses: (1) teachers’ geographic region (either Midwest or 
Southwest) and (2) the ELL proportion of the district’s student population. The latter was 
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categorized into two groups -- a district predominantly Caucasian (70%), and less than 3% ELLs, 
and districts with at least 20% ELLs. A Bonferroni correction was applied to the simultaneous 
tests to guard against Type I error.  
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Findings 
The first research hypotheses that LSm School district teachers would have different beliefs 

than those of teachers from the HUs, HUm, and HRm school districts might be seen as true. 
There are several responses where LSm teachers’ beliefs are significantly different than those of 
teachers in HUs, HUm, and HRm (see table 2). LSm teachers also gave responses that were not 
significantly different than the teachers in HUs, HUm, and HRm. An example of two questions 
where there was no significant difference are: a) ELLs can be taught to problem solve as well as 
Native English Speakers (NESs) can and b) ELLs have the skills and content knowledge to 
contribute to my class that NESs do. All teachers in the study held positive beliefs towards both 
of the previous statements.  

The second null hypotheses that HUm and HRm school district teachers would hold similar 
beliefs to those of teachers from HUs school district might be seen as false. Teachers from HUm 
and HRm held several beliefs that were significantly different than the beliefs of teachers from 
HUs (See table 1). There are multiple questions from the survey where there were no significant 
differences between the responses of the school districts. 
 
 Strategy teachers were asked to rate effectiveness of Comparison 
1. Group students by same language proficiency.   (b) 
2. Hire more Bilingual Education Assistants. (a)  (b) 
3. Hire more ESL or Bilingual Ed certified teachers. (a)  (b) 
4. Create an ESL consulting teachers position to help teachers in math. (a)  (b) 
5. Use a different education model. (a)  (b) 
6.  Change the ESL curriculum.  (b) 
7. Create a sheltered English academy within the school for ELLs.  (b) 
8.  ELLs can be taught to problem solve as NES can.  (b) 
9. I use a variety of teaching methods with ELLs as I do with NES. (a)  
10. I collaborate with my colleagues to plan lessons for my ELLs (a)  
11. Technology can help ELLs learn math. (a)  
12. I feel adequately trained to teach ELLs math (a)  

Table 2: Statements with significant differences by comparison (a) LSm vs. HUs, HUm, 
& HRm (b) HUm & HRm vs. HUs. 

Comparison by Districts’ ELL Population  
The first section’s statements related to strategies in helping ELLs succeed in schools. 

Statements that had significant differences, with p < 0.05, between LSm teachers’ responses and 
HUs, HUm, and HRm teachers’ responses were 2, 3, 4, and 5. The responses were in a Likert-
type scale, in which 0 meant strong negative impact; 1, weak negative impact; 2, no impact; 3, 
weak positive impact; and 4, strong positive impact. (see table 3) 
 
Statement F(dfw,dfb)=F M (SD) of LSm M (SD) of HUs, HUm, HRm p-value 
2 F(1,69) = 18.92 3.36 (0.63) 1.53 (1.54) 0.000 
3 F(1,69) = 33.09 3.71 (0.47) 1.30 (1.55) 0.000 
4 F(1,68) = 21.66 3.31 (0.63) 1.25 (1.57) 0.000 
5 F(1,58) = 5.70 2.55 (0.69) 1.68 (1.62) 0.020 

Table 3: Means, standard deviations and ANOVA results of the statements’ of the two 
groups of districts classified by ELL population.  
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The second section of the survey used a scale from 1 (strongly disagree) to 7 (strongly agree), 
with 4 being neutral. Statements 9-12 had significant (p < 0.05) results (see table 4). 
 
Statement F(dfw,dfb)=F M (SD) of LSm M (SD) of HUs, HUm, HRm p-value 
9 F(1,77) = 9.00 5.00 (1.73) 6.00 (1.0) 0.004 
10 F(1,76) = 4.90 2.64 (1.90) 3.89 (1.91) 0.030 
11 F(1,79) = 5.72 5.44 (1.03) 6.08 (0.94) 0.019 
12 F(1,80) = 6.25 3.00 (1.97) 4.22 (1.74) 0.014 

Table 4: Means, standard deviations and ANOVA results of the statements of the two 
groups of districts classified by ELL population.  

Comparison by Region  
In the comparison between regions, all statements in the first section had significant (p < 

0.05) results (see table 5). 
 

Statement F(dfw,dfb)=F M (SD) of HUm, HRm M (SD) of HUs p-value 
1 F(1,58) = 23.54 3.35 (0.99) 1.55 (1.50) 0.000 
2 F(1,55) = 123.95 3.77 (0.80) 0.70 (0.88) 0.000 
3 F(1,55) = 177.68 3.35 (0.86) 0.43 (0.71) 0.000 
4 F(1,55) = 135.27 3.17 (1.10) 0.36 (0.71) 0.000 
5 F(1,47) = 18.87 2.60 (1.06) 1.27 (0.96) 0.000 
6 F(1,47) = 16.67 2.57 (1.22) 1.20 (1.00) 0.000 
7 F(1,52) = 5.90 2.19 (1.38) 1.21 (1.34) 0.019 

Table 5: Means, standard deviations and ANOVA results for the statements of the two 
groups of the two regions. 

Only the statement #8, “ELLs can be taught to problem solve as NES can,” had a significant 
difference, with p = 0.37< 0.05. 

Discussion 

LSm vs. HUs, HUm, and HRm School Districts 
The researchers hypothesized that LSm teachers would have different beliefs than the other 

school districts because LSm teachers and students were predominantly Caucasian. There are 
certain factors that promote a positive attitude towards teaching ELLs (Byrnes, Kiger, & 
Manning, 1997; Youngs & Youngs, 2001) and few of these are present in LSm.  

For the most part, there was not a significant difference between the responses that LSm 
teachers provided and responses from teachers in the other three school districts. Responses to 
two particular questions are especially intriguing. The first question where teachers in LSm gave 
similar responses as teachers in the other three school districts is “ELLs can be taught to problem 
solve as well as NESs can.” In both the literature (e.g. Hansen-Thomas & Cavagnetto, 2010; 
Sztajn, 2003) and in the researchers’ experience working with teachers in in-service settings, 
mathematics teachers tend to believe that ELLs cannot engage in mathematics that require higher 
levels of cognitive demand. However, both LSm and the other three school districts had a 
positive response to the question. 

The second question where LSm teachers held the same beliefs as the other three school 
districts was, “ELLs have the skills and content knowledge to contribute to my class that NESs 
do.” All of the school districts had positive beliefs towards the prompt. Once again, this conflicts 
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with the literature (Vollmer, 2000) and the researcher’s experience with other mathematics 
teachers, school administrators, and counselors. It may be that because teachers at LSm have not 
had many opportunities to work with ELLs, the teachers are just hypothesizing that ELLs could 
contribute to their class.  

One area where LSm teacher responses were significantly different than teachers’ in the 
other school districts was mostly with the questions that addressed effective strategies that help 
ELLs succeed in school. The four questions where LSm teachers significantly differed from 
teachers in the other schools are #2-5 in table 1. In each of the four questions, LSm teachers 
believed that each strategy had a weak positive impact (mean ≈ 3) on helping ELLs succeed in 
school. Teachers in the other school districts believed that each strategy would have a weak 
negative impact (mean ≈ 1) on helping ELLs succeed in school. It seems that the teachers in 
LSm are looking for outside help with teaching ELLs. The other school districts seem to believe 
that they do not need outside help. Perhaps, since the HUs, HUm, and HRm teach more ELLs, 
their teachers believe that they are already successful and do not need external help. 

There are two other questions where LSm teachers differ significantly from teachers in HUs, 
HUm, and HRm school districts. The first is “I collaborate with my colleagues to plan lessons for 
my ELLs.” It is not so much that the school districts’ responses to the question differ 
significantly that is interesting; it is that teachers’ responses had means that fell in the disagree 
range (2.6 and 3.8 respectively, where 4 is neutral and 1 is strongly disagree). It is unsettling that 
all teachers in this study generally choose not to collaborate in planning lessons for ELLs. In 
order to ensure students, including ELLs, receive innovative, high quality instruction, the 
literature indicates that collaboration is essential, but is less likely when working independent of 
a teacher community that values such work (McLaughlin, 1993). It may be that the prevailing 
culture of mathematics teachers is to work independently on all lesson planning, but working to 
change that culture appears essential to improving the instruction of ELL students. 

The other question where LSm teacher responses significantly differed from teachers’ 
responses in the other three school districts is “I feel adequately trained to teach ELLs math.” 
Once again, the means of the two groups raises questions. The mean for LSm is 3, meaning that 
they feel unprepared to teach ELLs. The mean of the other three school districts is 4.2, which is a 
neutral response. It seems that this finding points to the necessity of training teachers how to 
teach ELLs mathematics. It is not surprising that teachers from LSm do not feel prepared to 
teach ELLs given ELLs’ scarcity. In Batt, 2008 and Reeves, 2006, it was found that teachers 
from districts similar to LSm did not feel prepared to teach ELLs. What is surprising is that 
teachers in school districts with higher proportions of ELLs did not voice feeling at least 
somewhat prepared as a group to teach ELLs mathematics. 

HUm and HRm vs. HUs 
For the majority of the questions in the survey, the HUm and HRm teachers gave responses 

similar to the Hus teachers. There were eight questions where HUm and HRm teachers’ 
responses differed significantly from the responses of teachers from HUs (See table 2). Seven of 
the eight questions fell under the category of “strategies that help ELLs succeed in school.” What 
is interesting is that for questions #1-4 (see table 2) HUm and HRm had means of roughly 3, 
which indicates that the teachers felt that the strategies would have a weak positive impact on 
ELL’s success in school. The means for the HUs for the same questions range from 1.5 (Weak 
negative impact) to 0.42 (Strong negative impact). It would seem that the HUm and HRm are 
looking for someone to help them teach their ELLs where HUs teachers feel that they do not 
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need outside help. Perhaps many of the teachers at HUs had tried the different strategies and 
found them to be less effective. For questions 5-7, all three school districts responded on the 
negative end of the spectrum (Weak negative impact or Strong negative impact), with the HUs 
teachers answering more negatively on all there questions than the other two school districts’ 
teachers.  
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Implications 
Follow-up interviews with teachers would help researchers more fully understand 

participants’ responses. Despite this limitation, the findings suggest several implications. First, 
teachers do not feel trained to teach ELLs mathematics. There is a need for specialized sustained 
training aimed at mathematics teachers in order for them to learn how to effectively teach 
mathematics to ELLs. Next, mathematics teachers need to cultivate a culture of collaboration 
within their community. Regardless of the students mathematics teachers are teaching, they 
should collaboration dramatically increases the likelihood of planning effective mathematics 
lessons that engage students (McLaughlin, 1997). Finally, further research needs to be conducted 
to understand teachers’ beliefs with respect to teaching ELLs mathematics. Once researchers 
more completely understand the beliefs of teachers, training can be organized to effectively 
address teachers’ misconceptions and reinforce positive beliefs and practices. 
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This paper examines the work that students do in instruction and the tacit knowledge that could 
guide this work. Classes of high school geometry students engaged with an animated scenario of 
geometry instruction and attempted to explain the actions of the animated students. Their 
responses to the animation were used to construct a model of the work of ‘studenting’: A set of 
instructional norms that partially accounted for the actions that students considered reasonable 
to do in high school geometry classrooms.  

Objectives  
As the actions that teachers take within instruction are often referred to as ‘teaching,’ in this 

study we look at the corresponding student actions, referred to as ‘studenting’ (Fenstermacher, 
1986). We argue that studenting, while it may not be rational in the sense of correct, does reflect 
a rationality of sorts adapted to enacting the position of student. By the position of student we 
mean the expectations about how they should act in relation to the teacher, their peers, and the 
mathematical content they that they are expected to learn that individual adolescents come to be 
subject to when they enter high school. Even students who do not act according to these 
expectations are still exposed to them and are aware of them. It is these expectations of how a 
student should act that we are concerned with in this study. 

This paper presents an empirical discussions of the question, ‘what is the work of 
‘studenting’ in high school geometry instruction.’ The results of this study present a set of 
instructional norms that can be used to partially account for students’ actions in classrooms. This 
report provides a brief example of the type of empirical analysis that was done and a brief 
overview of the results. For more details on this work see Aaron (2011). 

The following are the primary research questions we explore in this paper: 
• What are the actions that students consider reasonable to do in high school 

geometry instruction?  
• How can hypothesized norms of instruction be used to justify student actions? 

To study this question we begin with a list of hypothesized norms and examine the data to 
see whether and how students’ comments in response to an animated classroom scenario reflect 
adherence to or departure from these hypothesized norms. 

This paper begins with a discussion of a theoretical framework for viewing classroom 
interaction.  We then describe the data and analytic methods used in this study.  The results 
section consists of one in-depth example of the data supporting one instructional norm and the 
complete list of norms supported by the data in this study.   

Theoretical Framework 
To understand classroom interactions we use a model of classroom interaction developed by 

Herbst that is based on Bourdieu’s notion of symbolic economy (1990, 1998) and Brousseau’s 
notion of didactical contract (1997). According to this model, teachers and students act as if they 
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are trading classroom work for claims that they have taught and learned a bit of the geometry 
curriculum. The foundational hypothesis is that inside educational institutions the teacher and her 
students enter into this economy because of their obligation to a didactical contract that brings 
students and teachers together to teach and learn geometry. A didactical contract specifies in 
rather general terms what it means to teach and learn geometry and what the geometry is that 
needs to be taught and learned. 

The didactical contract can be modeled (by an observer) as a set of norms, or tacit rules that 
describe how instruction should proceed. Norms one set of cultural resources that actors use to 
construct their performances in particular settings. They are akin to Bourdieu’s (1990) 
dispositions, “structured structures predisposed to function as structuring structures (p. 53)”. That 
is, these structures for action are preexisting in the culture but when a particular actor enacts 
them in a particular moment they feel (to the actor and his companions) as if they are 
spontaneous improvisations in response to the current circumstances. 

An important problem that a teacher and her students have to solve daily is to find out how 
the norms of the contract apply to specific chunks of work, or conversely, how their work on a 
specific task (Doyle, 1983; Doyle, 1988) contributes to meeting the demands of the contract. In 
“normal” instruction, this problem is handled through the existence of instructional situations 
(Herbst, 2006). Instructional situations are recurrent patterns of activity that organize the actions 
of the students and teacher so that they can engage in work that exchanges for claims on the 
contract. In general we hypothesize that these customary, recurrent patterns of activity make 
room for some canonical tasks saving people the need to negotiate how the contract applies for 
the task. In this study we focus on the instructional situations of ‘making conjectures’ and ‘doing 
proofs’ (Herbst & Brach, 2006). For a description of these situations see Aaron (2011). 

This theoretical view of classroom interaction is useful in this current study because it 
highlights the role that norms play in shaping instructional activities.  It also highlights the 
difference between instructional situations and the norms that support these situations.  The 
results section contains three sets of norms; contractual norms that could be perceived to apply to 
any instructional situation in high school geometry classrooms, situational norms of ‘making 
conjectures,’ and situational norms of ‘doing proofs.’ 

Data 
The data used in this study was collected during one-time focus group sessions with classes 

of high school geometry students. These data come from eight classes in two schools. School 1 is 
a high-achieving public school serving 2,800 students in grades 9-12. School 2 is a low-
achieving public school serving 1,200 students in grades 9-12. At School 1 we collected data in 
two honors level classes taught by Megan and two regular level class taught by Madison. At 
School 2 we collected data in two regular level classes taught by Jack and two remedial level 
classes taught by Sharleen. These schools, teachers, and classes were chosen so that the data 
corpus would represent a diverse group of students and experiences. 

Near the end of the 2007-2008 school year the first author met with each class of students for 
one class period (about 50 minutes). Each class of approximately thirty students was shown the 
animated scenario, The Square (1), in five short clips. Each of the clips was between one and two 
minutes in length and highlighted the actions of a small group of animated students. The first clip 
was an exception because it featured only the animated teacher posing the angle bisectors 
problem to the class. After viewing each of the clips the moderator lead a discussion, in the form 
of a semistructured interview (De Groot, 2002), among participants with the aim of collecting 
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general comments about what the participants had just viewed as well as collecting comments 
regarding the participants’ views of the animated students they saw in the scenario. 

While watching The Square, participants worked to make sense of the actions of the 
animated teacher and students: they reported on the actions that drew their attention, evaluated 
those actions, provided justifications for those actions, and suggested alternatives. These sessions 
were video and audio recorded and then transcribed and indexed for analysis. This indexing 
consisted of dividing the transcript based on the clip of the animated scenario being discussed. In 
the following section we describe the analytic methods that were used to examine the data and 
the methodology of collecting the data. We also include a description of the animated classroom 
scenario. 

Methods 
We consider the focus groups with students as modified breaching experiments (Garfinkel, 

1964; see Aaron, 2011, for a full description of the use of animated scenarios as breaching 
experiments): The scenarios ushered students into a representation of their ordinary experiences 
where some of the usual features of such experience had been altered; participants were able to 
point to what they perceived as abnormal in familiar situations. We hypothesized that by 
showing participants the animated scenarios, which were designed to display actions that the 
participants could perceive as breaches in the normal running of a high school geometry class, 
we would be able to elicit from them the tacit perceptions they had of the norms of the work of 
being a geometry student. Because these perceptions are tacit, participants might not have been 
able to share them with an interviewer in a traditional interview. The immersive quality of the 
animated scenarios coupled with the provocation of the embedded hypothesized breaches of 
normal instruction prompted participants to share their perception of the geometry classroom. 

Summary of the Square 
The following is a brief summary of the actions of the animated teacher and animated 

students in The Square. This animation of high school geometry instruction was shown to the 
participants in this study as a data collection prompt. The animation can be seen in 
www.lessonsketch.org. 

The Square begins with the teacher reminding her class that the angle bisectors of a triangle 
meet at a point. She then asks her class to make conjectures about the angle bisectors of a 
quadrilateral. The students work in groups on the task and then the teacher asks a student, Alpha, 
to share his conjecture with the class. He comes up to the board says that the diagonals of a 
square bisect each other. The teacher reminds Alpha that the problem is about angle bisectors, 
not diagonals. Alpha responds by saying that the diagonals cut the square in half and another 
student, Beta, interprets this to mean that the diagonals are the same as the angle bisectors. 
Another student, Gamma, points out that this is not true for a rectangle. Gamma comes to the 
board to present a counterexample. This leads to a restatement of Alpha’s conjecture: The angle 
bisectors of a square meet at a point. The animated teacher asks the students how they might 
prove this and another student, Lambda, volunteers an argument using congruent triangles. After 
Lambda finishes, the teacher writes the ‘given’ and the ‘prove’ on the board and asks for a proof 
of the statement (2). 

Coding for Norms 
To analyze the data we look at participants’ responses to the actions of the animated students. 

By examining these reactions one can see how appropriate the animated students’ actions are 
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from the students’ perspective. The participants’ comments are examined to see if they reflect a 
norm of instruction. 

First, each comment from the participants was tagged as being in reference to a particular 
moment dealing with an animated student or the animated teacher. Second, within these 
moments, comments were summarized and similar comments were compiled. Third, the 
summarized and compiled comments were then coded as reflecting any situational norms. The 
full list of hypothesized instructional norms in not listed here but can be found in Aaron (2011). 

Perceptions of animated students’ actions, in relation to a norm, could be coded in one of 
four ways. The participants could see that the animated students complied with a norm and that 
this compliance was appropriate. The participants could also see that the animated students 
complied with a norm, however this compliance could be seen as inappropriate. That is, the 
participants could think that the animated student should have breached a norm. The participants 
could also report that a norm was breached by the animated students and that this breach was 
appropriate. Finally, the participants could report that a norm was breached by an animated 
student and that this breach was inappropriate, that is, the animated student should not have 
breached that norm. 

Results 
The follow section contains two types of results.  The first is an example of the data that 

supports the claim that students perceived the instructional norm, students’ interventions should 
address the topic that the teacher has proposed.  The second is an entire list of the instructional 
norms, contractual and situational, that were examined in the current study. 

Example of Data Supporting the Norm, Students’ Interventions Should Address the Topic 
that the Teacher has Proposed 

Below is an example of the results from this study. We describe one hypothesized norm, 
students’ interventions should address the topic that the teacher has proposed, as well as 
animated student actions that activate this norm and evidence from the student focus groups that 
point to the existence of this norm. The norm students’ interventions should address the topic 
that the teacher has proposed says that when students are responding to problems posed by the 
teacher, their responses should match that problem. This is, their responses should use the 
appropriate mathematical concepts, should connect their answer to the question, and students 
should not change the problem from how it is posed by the teacher. This norm was activated by 
two actions seen in The Square that are listed in Table 1. Also included is evidence from the data 
that supports the view that this norm was either appropriately breached or appropriately 
complied with by the animated students. 

Table 1: Actions related to the norm, students’ interventions should address the topic that 
the teacher was proposing 

Action Perceived relation to norm 
A student presents an ambiguous solution Appropriate Breach  
A student provides a counterexample to another 
student’s idea 

Appropriate Compliance  

The actions related to this norm are a student presenting an ambiguous solution, and a student 
providing a counterexample to another student’s idea. These actions are preformed at different 
moments in The Square. In the beginning of The Square Alpha can be seen presenting an 
ambiguous solution, and later Gamma can be seen providing a counterexample to Alpha’s idea. 
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A Student Presents an Ambiguous Solution (Appropriate Breach) 
The participants’ comments reflected the opinion that the first of these actions, a student 

presents an ambiguous solution on the board, was an appropriate breach of the norm students’ 
interventions should address the topic that the teacher was proposing. The participants saw that 
Alpha’s action in The Square was a breach of the norm because it was not clear how his 
conjecture connected to the problem that the teacher posed. However, the participants suggested 
reasons why it was appropriate for Alpha to provide the response that he did. Each of these 
reasons points to a cognitive difficultly that participants saw that Alpha could have had while 
working on the problem. One cognitive difficulty suggested by participants was that Alpha could 
have been thinking about perpendicular bisectors instead of angle bisectors. Art from Madison’s 
third period class said that Alpha was “thinking of, like, perpendicular bisectors [instead of] 
angle bisectors.” If this were the case, then the participants claimed that Alpha could have been 
making the conjecture that the diagonals of a square are perpendicular bisectors of each other. 

Another cognitive difficulty suggested by participants was that Alpha did not have a fully 
formed conjecture, but simply had the idea to look at the case of the square. Denise from 
Madison’s third period class said Alpha “doesn’t know the answer, he just went up there and did 
a square.” Gordon from Megan’s fourth period class said, “Sometimes it’s hard to put your 
thoughts into words especially if you are, um, shaky on the topic, so I think that’s kinda what 
happened to Alpha.” Gordon explains Alpha’s breach of the norm by hypothesizing that the 
material was taxing for Alpha and therefore it was difficult for him to communicate his idea. 

These comments from participants support the norm that students’ responses should address 
the problem and provide an example of a cognitive difficulty that participants attribute to Alpha 
to explain why he was unable to comply with the norm. The participants see Alpha attempting to 
answer the animated teacher’s questions but lacking the mathematical understanding needed to 
provide an acceptable conjecture. 

A Student Provides a Counterexample to Another Student’s Idea (Appropriate Compliance) 
The participants’ comments reflected the opinion that the second of these actions, a student 

provides a counterexample to another student’s idea, is an appropriate compliance with the norm 
students’ interventions should address the topic that the teacher has proposed. Participants saw 
that Gamma’s contribution of thinking about the diagonals and angle bisectors of a rectangle was 
a counterexample to Alpha’s conjecture and had an important mathematical component in terms 
of answering the problem posed by the teacher. That is, Gamma noticed that Alpha’s conjecture 
was only true for squares and that Alpha’s conflation of angle bisectors and diagonals is only 
non-problematic in certain quadrilaterals. The participants recognized Gamma’s point, that in 
rectangles the angle bisectors are not the diagonals, as a mathematically valid point to make 
because the problem posed by the teacher is about quadrilaterals in general, not only squares. 
Bob from Madison’s third period class said, “[Gamma] was trying to make it more general 
because [Alpha] was just talking about a square.” Bob’s comment reflects the opinion that it is 
appropriate for Gamma to provide a more general response than Alpha, which was too specific to 
answer the question posed by the teacher. 

Also in light of Gamma’s counterexample and this norm, some participants said that special 
cases, like Alpha’s square, are not useful or are irrelevant when responding to general questions, 
like the angle bisectors problem. Muna from Megan’s third period class said, “[Gamma] was just 
trying to point out that, um, what Alpha was saying was sort of irrelevant because they were 
talking about all quadrilaterals not just squares. So, I guess, answer the actual question.” This 
comment from Muna highlighted the view that Alpha’s conjecture did not address the teacher’s 
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problem, so it was appropriate for Gamma to provide a counterexample that was more clearly 
connected to the teacher’s problem. 

Other participants agreed that Gamma was making a distinction between squares and other 
quadrilaterals, but unlike Muna, these participants did not see the hierarchical relationship 
between squares, rectangles, and quadrilaterals so they did not see that Gamma’s counterexample 
was a move towards answering the teacher’s problem. Mary from Madison’s third period class 
said, “Like, I don’t know if [Gamma] realized it, but she was kind of saying that the rules for the 
squares are different than the rules for the rest of the quadrilaterals.” Mary’s comments showed 
recognition of Gamma’s counterexample, but did not award mathematical value to Gamma’s 
move from squares to rectangles. 

The norm students’ interventions should address the topic that the teacher has proposed was 
activated twice. The participants saw that it was appropriately complied with once and 
appropriately breached once. In the first case the participants saw that the norm was 
appropriately breached because a student did not have the cognitive capabilities to respond to the 
problem that the teacher posed. On the second case the participants saw that this norm was 
appropriately complied with since a student provided a counterexample to another student’s idea. 
The participants saw that Alpha provided an answer to the teachers’ question that only addressed 
a special case, so Gamma appropriately expanded on Alpha’s response to make it a better answer 
to the teacher’s original question. 

List of Contractual and Situational Norms 
The following is a list of the norms that were elicited in the conversations with the focus 

groups of high school geometry students.  The first column labels the specificity of the norm as 
either applying to all instruction through the didactical contract, or only in the situations of 
‘making conjectures’ or ‘doing proofs.’ The second column lists the norm. The third column 
describes the student action from the animation that prompted participants to discuss the norm. 
The final column relates the participants’ stance toward the perceived norm. 
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 Norm Action Perceived 
relation to norm 

C
ontract 

Students should share their 
ideas that are different than 
other students' ideas 

A student comes to the board to 
share her idea 

Appropriate 
Compliance  

Students should complete 
incomplete arguments given 
in class 

A student whispers a contribution 
to a solution 

Appropriate 
Compliance; 
Inappropriate 
Breach 

 Students’ interventions 
should address the topic 
that the teacher has 
proposed 

A student presents an ambiguous 
solution 

Appropriate 
Breach 

A student provides a 
counterexample to another 
student’s idea 

Appropriate 
Compliance  

Students should be disposed 
to share ideas in public 
when so asked 

A student is hesitant to present his 
solution at the board 

Inappropriate 
Compliance 

A students shares his solution from 
his seat 

Inappropriate 
Breach  

 Students in the audience 
should support the presenter 
in public 

A students whispers while another 
student is presenting a solution at 
the board 

Appropriate 
Compliance  

A student clarifies another student’s 
idea 

Appropriate 
Compliance; 
Inappropriate 
Breach 

 Students should be 
amenable to assessment 

A student shares an ambiguous idea 
with the class 

Appropriate 
Compliance  

‘M
aking C

onjectures’ 

Students should 
communicate their 
conjectures to the class 

A student is hesitant to share his 
idea at the board 

Inappropriate 
Compliance 

A student whispers while another 
student presents a solution at the 
board 

Appropriate 
Breach 

A student clarifies another student’s 
conjecture 

Appropriate 
Compliance 

Students can respond to 
other students’ conjectures 

A student provides a 
counterexample to another 
student’s idea 

Inappropriate 
Compliance 

Students should stop talking 
about a conjecture once it 
has been agreed upon or 
refuted 

A student comments on a 
conjecture after it has been agreed 
up on or refuted 

Inappropriate 
Breach  
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‘D
oing 

Proofs’ 

Students should not make 
changes to the proof 
problem 

A student requests to modify a 
problem 

Appropriate 
Breach 

From these results one sees that the participants, while responding to the animated scenario, 
did provide evidence to support the hypothesized norms. This list of hypothesized norms is not a 
complete list, at least in regard to the norm ‘doing proofs’ in geometry instruction (Herbst & 
Brach, 2006; Herbst et al., 2009), but it does reflect the primary norms that can be seen to be 
active in The Square. Unlike previous research on instructional norms in geometry classrooms, 
this study focuses both on perceptions of norms during instruction (unlike Herbst & Brach, 2006 
which focused on students’ perceptions of norms while working on proof tasks in isolation) and 
on instructional norms from the students’ point of view (unlike Herbst et al. 2009, which 
primarily looks at instructional norms from the perspective of the teacher). 

Discussion 
By understanding the student’s position in geometry instruction we will be better able to 

understand geometry instruction as a whole. Understanding the complex system of geometry 
instruction is the first step to making informed improvements to the system. A change in 
curriculum could result in an unexpected student action that could be explained in terms of an 
instructional norm. That is, changes to any part of the system should take into account their 
effect on other parts of the system, and these possible interactions can only by predicted by first 
understanding the system as a whole. The current paper represents an attempt in that direction. 

Unlike teachers, students go through no professional training for how to be a student, so their 
actions are guided solely by the rationality that they develop from doing the work of studenting. 
There is, therefore, a self-perpetuating relationship between studenting and the rationality of 
studenting. The actions that students engage in mold the rationality of studenting and the 
rationality of studenting shapes future actions. It is difficult, if not impossible, to change 
students’ instructional actions directly, but if we can uncover the rationality of studenting we can 
use this as a lever for changing student action (see Lampert, 2001, chapter 10). The first step 
after understanding student rationality would be to design instructional activities where students’ 
rationality could be use to enable instruction. That is, in cases where students’ actions are 
undesirable due to students’ interpretation of a task or situation, that task or situation could be 
reengineered in such a way that the students’ rationality would result in more beneficial 
instructional actions. As students spend time engaged in mathematical tasks, performing actions 
that embody more desirable mathematical work, then their rationality of studenting could 
possibility change to naturally support more productive mathematical work. 

Endnotes 
1. The Square, along with all of ThEMaT’s animated scenarios, can be viewed at 
www.lessonsketch.org 
2. The authors would like to acknowledge the work of Ander Erickson in developing this 
summary of The Square. 
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This article focuses on six fifth grade students’ responses to area measurement tasks involving 
square and right triangular units. Data were collected during individual interviews as part of a 
four-year teaching experiment. Although all six students were able resolve a square unit area 
measurement task, they struggled to resolve similar tasks with right triangular units. Results 
indicate that engaging in the triangular unit tasks helped our students realize the necessity of 
coordinating linear measurements, relating linear and area units, and constructing and iterating 
a row (or column) composed of identical units. Implications for instruction and future research 
are discussed.  

The importance of area measurement is evident in both daily life and school mathematics. As 
students study area measurement, they “develop ways to mentally structure the spaces and 
objects around them,” which provide a context for the development of mathematical reasoning 
(Cross, Woods, & Schweingruber, 2009, p. 35). However, most elementary and middle school 
students have developed an inadequate understanding of area measurement concepts (Outhred & 
Mitchelmore, 2000). In 1986, only 40% of 13-year old students correctly answered that the area 
of a 6 cm by 4 cm rectangle (with only these number labels demarcating the dimensions of 
length and width) was 24 square centimeters on the Fourth National Assessment of Educational 
Progress [NAEP] (Lindquist & Kouba, 1989). More recently, in 2000, only 14% of 13-year old 
students could determine the number of square tiles to cover a rectilinear region with number 
labels demarcating the dimensions on the Eighth NAEP (Sowder et al., 2004).  

Kordaki and Potari (2002) and Outhred and Mitchelmore (2000) attributed the lack of 
understanding area measurement to the required coordination of multiple ideas. “The concept of 
area measurement is a rather complicated one for students to grasp as it consists of a network of 
concomitant related concepts: the conservation of area, the unit and its iteration and the counting 
of units” (Kordaki & Potari, 2002, p. 65). Other researchers have formally asserted that this 
inadequate understanding of area measurement is characterized by a rote application of the 
rectangular area formula (Simon & Blume, 1994). A relational understanding of the area formula 
depends on students’ abilities to develop an understanding of multiplication-as-repeated addition 
with the notion of an iterated row of identical area units (Outhred & Mitchelmore, 2000; Sarama 
& Clements, 2009). Thus, research has demonstrated that students can structure a two-
dimensional array and use the rectangular area formula by rote but without understanding crucial 
area concepts and principles, including identification of unit, coordination of linear and area 
units, tessellation of the plane, and relation of area measurement to multiplication (Battista, 
2003; Clements & Sarama, 2007). 

When area measurement is focused on counting units, students are sometimes unable to link 
area measurement to a structure that is two-dimensional and multiplicative (Outhred & 
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Mitchelmore, 2000; Sarama & Clements, 2009). Research indicates that the use of physical tiles 
and square units has the potential to hide misunderstandings. Using concrete materials to tile a 
rectangular figure “may conceal the very relations they are intended to illustrate” (Outhred & 
Mitchelmore, 2000, p. 146). Because manipulatives pre-structure the array, students can 
correctly determine the area of a region without attending to the structure (Lehrer, 2003; Outhred 
& Mitchelmore, 2000). Thus, removing the concrete manipulatives has the possibility to reveal 
misconceptions.  

Using square units to cover a rectangular figure – even if the concrete materials are not 
available – allows students to determine correctly area without attending to both dimensions. 
Because the rectangular array structure is not self-evident for children (Battista, Clements, 
Arnoff, Battista, & Borrow, 1998), they often imitate global organization without conceptually 
understanding it. In other words, some students can correctly structure an array with square units 
by relying on discrete counting of objects and using one-dimensional structuring techniques, or 
partial row structuring (Battista et al., 1998; Sarama & Clements, 2009). Students using one-
dimensional structuring techniques struggle to coordinate the linear measurements because they 
do not use the width and the height of both the unit and the region. This coordination is 
especially non-trivial with non-square units when the orientation of the unit with respect to the 
region matters. These students also struggle to relate linear and area units because they do not 
understand the concept that the side length determines the number of area units that will fit along 
that length (Battista, 2003; Outhred & Mitchelmore, 2000; Sarama & Clements, 2009). However, 
missing from the literature is how students structure rectangular regions when provided with 
non-rectangular, non-concrete area units. 

Theoretical Framework 
The tasks presented here have been designed as part of our efforts to test and improve a 

hypothetical learning trajectory for area measurement (Sarama & Clements, 2009). A 
hypothetical learning trajectory consists of three components: a learning goal, a likely path for 
learning as students progress through levels of thinking, and the instruction that guides students 
along the path (Sarama & Clements, 2009). We used the hypothetical learning trajectory to focus 
our attention on students’ internal representations, or mental images, and their external 
representations, or drawings, in the context of area tasks. In the construction of the hypothetical 
learning trajectory for area, Sarama and Clements (2009) reflected upon the interactions between 
external and internal representations, giving equal credit to how students construct both of them. 
This trajectory also guided our ideas concerning the underlying conceptual foundations of area 
measurement in terms of comparing, connecting the iteration of identical rows of area units with 
an understanding of multiplication-as-repeated addition, relating linear and area units, and 
coordinating linear measurements. 

Purpose 
It is our conjecture that area tasks involving only square units are not sufficient for revealing 

students’ conceptions or misconceptions regarding area measurement. We claim that tasks 
involving right triangular units provide a rich context for teachers and researchers to investigate 
and also develop students’ understandings of area structuring. We believe these tasks provide an 
opportunity for students to demonstrate their ability to adapt the standard area formula, which in 
these instances will not result in the number of triangular units needed to fill a region. The 
purpose of this report is to describe and analyze student responses as they engaged in area tasks 
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involving right triangular units, specifically in terms of relating linear and area units, 
coordinating linear measurements, and understanding multiplication-as-repeated addition. 

Research Question 
1. How do area measurement tasks involving triangular units impact students’ ability to 

relate linear and area units and coordinate linear measurements? 
2. How do area measurement tasks involving triangular units impact students’ application of 

the area formula? 

Methodology 
The sample consisted of six children (Abby, Anselm, Arielle, Danny, Jessie, and Owen) from 

two fifth grade classes at a Midwestern public school. Each student has been regarded as a case 
study within a four-year longitudinal study investigating children’s thinking and learning across 
length, area, and volume for Grades 2-5.   

The tasks described below were developed within the context of a teaching experiment 
(Steffe & Thompson, 2000). The teaching experiment consisted of a series of teaching episodes 
for which the research team generated a set of tasks and predictions for student responses and 
then later checked student responses against these predictions. Each teaching episode was 
videotaped, transcribed, and analyzed by a group of researchers, the authors. In this report, we 
consider data collected in a single teaching episode consisting of two 25 to 30 minute interviews, 
an initial interview and a follow up interview, for each student during the months of October and 
November of 2010. 

We varied the tasks in terms of the area unit provided and followed the sequence of a square 
and two right, scalene triangular units. These task variations allowed us to assess and compare 
students’ performance with the traditional square units as well as triangular units. 

The development of each task we posed in this teaching episode was guided by a two-step 
framework (Cullen et al., 2010). We presented the students with two figural objects, a unit and a 
rectangular region, and asked them to compare the objects by area. We then asked, “How does 
the area of this tile compare to the area of the larger region?” If the student gave a qualitative 
comparison, we asked, “How much bigger?” in order to elicit a quantitative comparison. We 
conjectured that these two steps would draw students’ attention to the underlying concepts of 
area measurement: comparing, connecting the iteration of identical rows of area units with an 
understanding of multiplication-as-repeated addition, relating linear and area units and 
coordinating linear measures. 

Initially, we did not allow the students to use a writing utensil or their hands in order to 
prompt them to verbalize their internal representations of the area structuring. As a second part 
of each task, we asked the students to show how the unit would cover the region by drawing or 
creating an external representation. This allowed us to attend to both students’ internal 
representations, or mental images, and their external representations, or drawings to be consistent 
with the learning trajectory in our analysis of students’ understanding of area measurement.   

The interviewer inferred the strategies children used to solve area tasks through both careful 
questioning as the students provided verbal descriptions of their internal representations and 
observations as students created external representations. The data analysis involved identifying 
and then classifying students’ strategies for solving each of the four area tasks. Next, these 
classifications were examined for commonalities and variations among the six students. 
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Results 
The results for this study are presented below and include descriptions of student responses 

to each of the three tasks. In each task, we asked students to compare an area unit of measure and 
a rectangular region to be measured, first verbally and then using their hands and a writing 
utensil to record their thinking.  

Task 1: Compare area of a 5 by 7 rectangle to area of a 1 by 1 square-unit inside rectangle 
The area unit for Task 1 was a square, inside of a rectangle (Figure 1). The linear units were 

represented as number labels on rulers along each side of the rectangular region.   
 

  
Figure 1. Task 1 Figure 2. Abby’s drawing for 

Task 1 
 
Five students, Abby, Arielle, Danny, Jessie, and Owen, correctly used the rulers to determine 

the dimensions and correctly applied the rectangular area formula (i.e., a=lw) to calculate 
mentally that 35 squares would cover the rectangle without drawing. The sixth student, Anselm, 
used the rulers incorrectly, reporting the last numerals displayed on the rulers as the dimensions, 
thus missing the final linear unit for each. When asked to make a record of his thinking, Anselm 
drew one row of the units, realized that there were 7 units instead of 6, and changed his answer 
to 35. All six students could show how the tiles would cover the rectangle by either drawing the 
individual tiles or alternating between drawing individual units and parallel row and column line 
segments. Abby’s drawing was the most sophisticated; she was the only student to draw a 
complete covering of parallel line segments from the linear unit markings on the four rulers to 
form a row and column structure of square area units (Figure 2).  

Despite the variety in their drawings, all six students aligned square-units in rows and 
columns. All of them seemed to relate length and area units, coordinate linear measurements, and 
apply the rectangular area formula with understanding. 

Task 2: Compare area of a 9cm by 8cm rectangle to area of a 3cm-4cm-5cm right triangle 
The area unit for Task 2 was a right, scalene triangle (Figure 3). The linear units were 

represented as number labels along each segment in both the rectangle and the unit.   
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Figure 3. Task 2 Figure 4. Owen’s drawing for Task 2 
 
Owen was the only student who could give a correct answer before drawing. All of the 

students except Jessie eventually resolved the task correctly by drawing. Owen discussed 
constructing columns of rectangles composed of triangles. Despite his correct explanation, he 
drew an entirely different representation without conserving the shape of the triangular area unit 
(Figure 4). After Owen completed his drawing, the interviewer asked him to reflect on his work 
in the preceding task in which he constructed a correct drawing of rows and columns of units, 
which is not mentioned here. This seemed to prompt him to draw row and column line segments; 
thus, he drew a second covering of triangles in rows and columns consistent with his initial 
verbal description. Jessie and Abby drew a complete covering of two columns and two rows of 
rectangles composed of triangles but did not attend to both dimensions. With prompting to think 
about what the number labels were referring to, Abby coordinated linear measurements and drew 
a correct covering.  

Anselm and Danny gave incorrect initial estimates; however, while drawing, they correctly 
attended to linear measurements and operated on columns of rectangles composed of triangles. 
Arielle operated arithmetically on measures and thought about covering with columns of 
rectangles composed of triangles. She applied the area formula to both the rectangular region and 
the rectangular composite unit; she divided these quantities and obtained a quotient of 6. 
However, she incorrectly reasoned that she needed 5 more rectangular units or 10 more 
triangular units to cover the rectangle. When asked to make a record of her thinking, Arielle used 
both dimensions to correctly draw three rows and two columns of completed triangles inscribed 
in rectangles and stated that 11 more triangles would be needed.  

Although all of the students successfully resolved Task 1, Task 2 was a challenge for them. 
During this task, we noticed that students struggled to resolve the task without drawing, to relate 
linear and area units, to connect linear measurements, and to connect the iteration of identical 
rows of area units with an understanding of multiplication as repeated addition. 

Task 3: Compare area of a 12 by 8 rectangle to area of a scalene right triangle 
The area unit for Task 3 was a right, scalene triangle (Figure 5). The linear units were 

represented as tick marks around the inside border of the rectangular region. 
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Figure 5. Task 3 Figure 6. Jessie’s drawing for 
Task 3 

 
Each student discussed the placement of units in rows or columns, but only three students, 

Arielle, Abby, and Owen, successfully resolved the task without drawing. Danny and Anselm 
used a non-adaptive area formula to resolve the task before drawing. Danny discussed placing 
eight triangles in a row and eight triangles in a column. He multiplied these quantities and said 
that the area of the rectangle would be 64 triangular units. Anselm discussed placing four 
columns and four rows but then multiplied 12 by 6 for an area of 72 triangular units, which he 
was unable to explain. While drawing, both Danny and Anselm realized their initial errors. 
Arielle, Abby, Owen, Danny, and Anselm attended to an organized row and column structure 
and related linear and area units in their drawings. The only student who did not resolve this task 
successfully was Jessie. She described a row and column structure of three rows of eight 
triangles for a covering of 24 triangular units. As she drew these three rows of eight units aligned 
in columns, she attended to only one dimension (Figure 6). 

Discussion 
Throughout the analysis of the students’ responses and strategies when working with 

triangular units in area measurement, three main themes emerged. The first two themes 
concerning the underlying conceptual foundations of area measurement are already present in the 
existing area hypothetical learning trajectory (Sarama & Clements, 2009): 1) relating linear and 
area units and coordinating linear measurements and 2) connecting the iteration of identical rows 
of area units with an understanding of multiplication-as-repeated addition. The third theme 
emerged as the learning trajectory focused our attention toward students’ internal and external 
representations; some mismatches appeared. The themes are explained in detail below. 

1. Relating linear and area units and coordinating linear measurements 
In Task 1, all six students correctly computed the area in terms of square units and justified 

their answers by showing how the tiles would cover the rectangle. In this task, Abby covered the 
array solely with row and column line segments. However, when covering with triangular units 
in Task 2, she demonstrated less sophisticated drawing strategies and only attended to one 
dimension. After Abby was prompted to use the linear measurements for both dimensions in 
Task 2, she not only resolved the task correctly, but also successfully drew an array in Task 3 
with single row and column line segments. In other words, Abby’s covering of a region with 
triangular units improved after she realized the necessity of coordinating linear measurements 
and relating linear and area units. Although Jessie successfully resolved Task 1, she was unable 
to coordinate linear measurements and relate linear and area units for the triangular unit tasks. 
While all six students seemed to demonstrate an understanding of the conceptual foundations of 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1020



area measurement when working with square units, they were unable to do so when working 
with triangular units. 

2. Connecting the iteration of identical rows of area units with an understanding of 
multiplication-as-repeated addition 

By analyzing the results of Task 1 in isolation from the rest of the tasks, one could assume 
that the students were applying the area formula for rectangles meaningfully for square units. 
However, conflicting results occurred with the use of triangular units in the subsequent tasks. 
Therefore, we can conclude that they are unable to adapt the area formula, missing the 
underlying process. For example, Arielle’s unit confusion in Task 2 made her end up with 
incorrect calculations as a result of inappropriate use of the formula. For Task 3, both Anselm 
and Danny applied a non-adaptive area formula; they did not connect using multiplication for 
area measurement with counting the number of area units needed to cover. In other words, their 
multiplication did not reflect the construction of a column as a composite unit of triangular units 
or the application of this composite unit repeatedly over the rectangle to cover (Sarama & 
Clements, 2009). The students did not have an understanding of why multiplication generates an 
array for square-units (e.g. Lehrer, Jaslow, & Curtis, 2003; Lehrer, 2003); as a result, they 
incorrectly applied the same formula for the triangular units.   
 
3. Connecting internal and external representation  
 Asking students first to compare areas of regions without using their hands or a writing 
utensil and then to create a drawing of their thinking revealed some mismatches between 
students’ internal and external representations. For example, Anselm gave incorrect initial 
answers for Task 1 when explaining his thinking. For this task, he counted incorrectly and 
realized his error while drawing, or translating his internal representation to an external 
representation. The drawing intervention also seemed to help Arielle and Abby. In contrast, 
Owen initially gave a clear description of his internal representation, which was correct. 
However, his external representation in the form of a drawing did not match his well-structured, 
internal representation as he described. These results indicate that some students, such as 
Anselm, Arielle, and Abby, may need to show their internal representations as external 
representations in order to correctly resolve tasks. However, for other students, such as Owen, 
showing their internal representations as external representations may be a challenge. The results 
of this study indicate that students’ external representations may be mismatched from their 
internal representations.  

Conclusion 
Although all of the students successfully resolved the square unit task (Task 1), the results 

from the triangular unit tasks (Tasks 2 and 3) indicate that students may have a disconnect 
between the area formula and underlying area measurement concepts, including relating linear 
and area units, coordinating linear measurements (Battista, 2003; Outhred & Mitchelmore, 2000; 
Sarama & Clements, 2009), and connecting multiplication-as-repeated addition with the notion 
of an iterated row of identical area units (Outhred & Mitchelmore, 2000). By working with right 
triangular units, our students were confronted with novel situations, causing them to reflect upon 
their rote area measurement conceptions. We found that these tasks challenged them to adapt and 
extend the rectangular area formula to cope with this new situation. Engaging in these tasks 
helped our students realize the necessity of coordinating linear measurements, relating linear and 
area units, and constructing and iterating a row (or column) composed of triangles. These results 
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indicate that students need more meaningful experiences with building and iterating identical 
rows (or columns) of area units to understand why multiplication works for determining the area 
of rectangular arrays using square units. We suggest that one such experience is to compare 
covering rectangular regions with square units to covering with triangular units. 

By focusing separately on students’ internal representations, or verbal descriptions of their 
mental images, and their external representations, or drawings (Sarama & Clements, 2009), we 
revealed mismatches between these representations. Therefore, in order to probe students’ 
understanding in area measurement comprehensively, we suggest that researchers and classroom 
teachers ask students to describe their internal representations verbally and to display what they 
are thinking by creating external representations. One cannot assume that students’ external 
representations are congruent to their internal representations. 

Because of our small sample size, our conclusions concerning right triangular unit tasks can 
be regarded as researchable conjectures regarding fifth grade students’ conceptions of area 
measurement. Further research is needed to investigate these conjectures across grade levels and 
in the context of classroom studies to establish the effectiveness of developing students’ 
understanding of area measurement with non-square units, including but not limited to triangular 
units. 
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This study expanded on research about incorporating technology into the geometry classroom by 
investigating specifically how the technology is used and if the different methods have any effect 
on students’ conceptual understanding of angle.  The primary purpose was to discover whether it 
would be beneficial for students to create their own constructions with Dynamic Geometry 
Software given definitions or discover definitions using teacher-constructed diagrams while 
learning the concept of angle. We provide evidence that students’ understanding improved more 
when they were given teacher-constructed diagrams to learn the concept. Additionally, certain 
subgroups of students benefited from the DGS in more significant ways. 
 

Introduction 
Envision a class of average geometry students who had learned bits and pieces of geometry 

throughout several mathematics courses and enter into their only high school geometry class 
with previous knowledge from a variety of somewhat disconnected instructional experiences.  As 
they discussed the description and properties of angle after looking at a geometric figure in a 
Dynamic Geometry System (DGS), one student defined angle as “basically a bend in a line, so it 
becomes two rays coming out of a single point.”  While two students analyzed a dynamic 
diagram of an angle they discussed how the degree of the angle “either increases or decreases 
and goes in a 360 degree” rotation.  Finally when a student is asked to identify the angles in a 
quadrilateral you listened to a student express how a quadrilateral contains only four angles, 
“unless you count the over 180-degree ones,” which would bring the total to eight angles. The 
question of how to best use DGS in a classroom is motivated by these kinds of experiences with 
students in classrooms.    

Additionally, in recent years, more classroom emphasis has been placed on the multiple 
definitions of angle; research shows that the concept of angle is hard to comprehend (Keiser, 
2004, p. 286). This can be a significant learning issue for students without which they cannot 
completely understand geometry or how an angle is represented every day in their lives. 
Therefore, we paid close attention to high school geometry students’ understanding of angle and 
how to understand this essential concept with the use of technology.   By connecting these two 
research areas, student understanding of angle, and DGS as a tool for instruction, we expanded 
upon the research on incorporating technology into the geometry classroom by concentrating on 
how the technology is incorporated and if the method has any affect on students’ conceptual 
understanding.  The primary purpose was to research whether it would be beneficial for students 
to create their own constructions with DGS or discover new information using teacher-
constructed diagrams while learning the concept of angle. This new research will contribute to 
the mathematics education literature as well as provide ideas for using DGS in the classroom. 

 
Literature Review 

Angle 
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 Close (1982) studied the assortment of angle definitions used in mathematics along with 
many authors who have noted the difference between the definitions as well as between dynamic 
(movement) and static (configurational) angles (Close, 1982; Kieran, 1986).  In the traditional 
high school geometry class curriculum the definition of angle used is the definition described by 
Euclid.  According to The Elements an angle is “the inclination to one another of two lines in a 
plane which meet one another and do not lie in a straight line” (Health, 1956, p. 153).  Euclid 
then continued to define angle introducing what we refer to in this research as the straight angle 
in which “the lines containing the angle are straight” this angle is called rectilinear (p. 153).   
“When Euclid specified the rectilinear angles contain straight lines, he was suggesting that other 
angles could be composed of lines that are not straight” instead they are curved (Keiser, 2004, p. 
297).  Mitchelmore and White (1998) suggested three different definitions in which the 
conceptual understanding of angle can occur.  They proposed that an angle could be a rotation, a 
pair of half lines that extend from a common point, or as angle in a curve. These definitions were 
used in our study. 

There are several articles that provide evidence that students have difficulty understanding 
the concept of angle (e.g. Mitchelmore & White, 1998; Munier & Merle, 2009; Kieran, 1986; 
Close, 1982; Clements & Burns, 2000).   In elementary school, when students are introduced 
to the concept of angle, they are given a pictorial representation of an angle and taught how to 
classify it by measurements without really understanding the concept but instead memorizing a 
picture and a definition (Keiser, 2004).  Keiser continues to explain that teachers consider the 
concept of angle to be a difficult concept to teach even at a preliminary level of understanding.  
Students do not understand the concept that the size of an angle has no dependency on the length 
of its rays (Munier & Merle, 2009, p. 1865).  Close (1982) discussed the difficulty that students 
have the understanding that two rays with the same endpoint actually compose two angles.  
According to Close (1982) students have a hard time understanding that these two angles add up 
to 360˚. 
  Clements and Battista (1989) and Kieran (1986) discuss the fact that students often have 
many misconceptions about angle and experience difficulty learning the complex topic.  In order 
to better prepare students for future mathematics courses teachers should use a more 
comprehensive approach, presenting angle using the variety of definitions given throughout 
history (Keiser, 2004).  Teaching a diverse array of definitions may cause confusion about what 
is actually being measured when referring to an angle and therefore angle should be taught in 
great depth with concern for conceptual understanding as to reduce any misconceptions the 
students may gain with this multifaceted approach (Keiser, 2004).   

Clements and Burns (2000) also mention a different misconception held by students about 
the turn of an angle and how they find it difficult to measure turn.  In order to master this concept 
Clements and Burns (2000) use a piece of DGS called LOGO.  “LOGO activities can be 
beneficial to students’ development of turn concepts and turn measurement” (Clements and 
Burns, 2000, p. 31).  LOGO provides a situation of visualizing the turn of an angle (Clements 
and Burns, 2000). With the use of LOGO, students build active and flexible conceptual 
protractors unlike the traditional protractors used in everyday classrooms (Clements and Burns, 
2000). The research on LOGO provides knowledge that supports the DGS research in angle. 

 
Dynamic Geometry Software 

Monoghan’s research supports the use of software can help the students' understanding of the 
concept “more easily than otherwise possible.  Geometry software can provide dynamic 
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diagrams that students can manipulate to understand concepts, which can’t be done with 
traditional paper diagrams (Hollebrands, Laborde & StraBer, 2008).  “When an element of such 
a diagram is dragged with the mouse, the diagram is modified while all the geometric relations 
used in its construction are preserved. … It is as if diagrams react to the manipulations of the 
user by following the laws of geometry, just like material objects react by following the laws of 
physics” (Hollebrands, Laborde & StraBer, 2008, p. 167).  

A study conducted by Erez & Yerushalmy (2006) concluded that it is beneficial and 
“important to the study of learning basic concepts in geometry with the aid of the dragging tool” 
seen in a variety of DGS (p. 293).  “Dragging allows changing a shape by direct translation of 
parts of its components on the screen… dragging the shape preserves the geometric relations 
according to which is was initially defined.  Thus the critical attributes associated to this 
definition are preserved during dragging but the non-critical attributes are changed” (Erez & 
Yerushalmy, 2006, p. 274).  Unlike constructing diagrams with pencil and paper, DGS can help 
students not only construct the diagrams but by being able to drag the points, lines, segments 
they can discover new information using previous knowledge (Skemp, 1976).  Using previous 
knowledge with well-connected, conceptually grounded ideas provide a greater opportunity for 
students to gain a deeper understanding of the concept (Skemp, 1976).  

Students may learn properties of the geometric representations with DGS, since the properties 
hold according to the constructions, and there could be fewer misconceptions due to the 
manipulation of the diagrams.  There are numerous studies that have been conducted about the 
use of DGS in geometry classrooms.  Mitchelmore and White (2000b) advocate a teaching method 
called ‘teaching by abstraction’, wherein ‘students become familiar with several examples of the 
concept before teaching the concept itself.” This kind of teaching works well with dynamic 
diagrams if it involves some exploration of the concept (familiarity).  Then ‘the concept is taught 
by finding and making explicit the similarities underlying familiar examples of that concept’ 
(similarity).  Lastly, ‘as students explore the concept in more detail, it becomes increasingly 
mental object in its own right’ (Munier & Merle, 2009, p. 1861).   
 Another study by Monaghan (2000) brought about similar results as the study by Erez & 
Yerushalmy (2006).  “In this study, the cognitive conflict is brought about by asking students to 
describe in their own words the differences between pairs of quadrilaterals” (Monaghan, 2000, p. 
180).  Monaghan’s (2000) underlying assumption is that students will gain a deeper 
understanding through conversation and hopefully reveal insights about quadrilaterals with the 
use of software and class activities creating an environment in which students can learn and 
share their discoveries (p. 180). The study concluded that these misconceptions about 
quadrilaterals would be reduced using software to aid the instructional activity, allowing students 
to explore their ideas about quadrilaterals.    
 The importance of technology in the mathematics classroom has been investigated 
through a variety of venues about a variety of topics throughout mathematics education research.  
This study is designed to use this research and expand upon it while investigating the importance 
of angle comprehension in the geometry classroom.    
 

Methodology 
The following research questions frame the overarching idea of researching whether using 

teacher-constructed sketches, called pre-constructed sketches by Sinclair (Sinclair, 2003, p. 289) 
or student-constructed sketches were more effective when teaching the concept of angle. 
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1. How do students learn the concept of angle supported by the use of dynamic geometry 
software and does the use of dynamic geometry software support diverse subgroups of 
students differently?  

2. How is student learning of angle influenced by the use of student-constructed diagrams 
compared to the use of teacher-constructed diagrams using dynamic geometry software? 
The study took place in the spring of 2010 in two academic geometry (non-honors) high 

school classrooms at the same urban school located in a large city in the Southeastern United 
States.  There were a total of 27 subjects. In the SCD class, there were 7 females and 8 males, 
with more than half of the subjects being black or Hispanic.  In the TCD class, there were 8 
females and 4 males with the majority of the subjects being black.  The student’s ages ranged 
from 15 years of age to 17 years of age.  Each of the subjects was first introduced to DGS in the 
current geometry classroom.  The teacher and primary researcher had three years of previous 
teaching experience in two different schools. She has a bachelor’s degree in mathematics 
education, has since completed her Master’s Degree in Mathematics Education, and is pursuing a 
PhD in Mathematics Education. 
 The study consisted of a pre-test for students (45 minutes on Day 1), instruction using DGS 
in two different formats described below(270 minutes on Day 2, 3, and 4) and a post-test for all 
students (45 minutes on Day 5 which was 4 weeks after the completion of the instructional 
activity).  The two classes were randomly assigned to be the student-constructed diagram (SCD) 
class and the teacher-constructed diagram (TCD) class. Each class was given the same pre-test 
and post-test but the two classes participated in a different set of instructional activities.  The 
students in the SCD class were given definitions of introductory terms in geometry and asked to 
construct pictorial representations based on the definitions.  The students in the TCD class were 
given teacher-constructed diagrams, figures created in DGS by the teacher prior to class, of the 
same terms as in the SCD instructional activity and asked to provide the definitions to go along 
with the pictorial representations. In both classes, the students worked as pairs in order to gain a 
deeper understanding through discussion and were required to expand upon prior knowledge 
from previous mathematics courses.  Allowing this type of collaborative work helped the 
students gain a wide range of understandings (Keiser, 2004).   
     In both classes the students worked individually on their computer but discussed their 
findings with the DGS as a pair while they recorded their results on their investigation.  After the 
students in both classes completed the three days of instruction using the DGS class continued as 
normal, going through the curriculum until a month had passed.  One month after instruction, the 
students were given the post-test.  There were also nine questions in the post-test similar to the 
questions in the pre-test, the questions were superficially different yet conceptually the same.  
The only question that differed conceptually was question 8; therefore, it was not used in the 
analysis of the study.  The pre-test and post-test were used to compare the results in order to 
discover if the students showed a deeper understanding of angle due to the instructional activity, 
if any subgroups of students gained a better understanding with the instructional activity, and if 
one activity was more efficient than the other.   
 

Data Analysis 
 Data analysis consisted of both qualitative and quantitative analysis.  After the collection of 
data in the pre-test, instructional activity, and post-test all of the written responses were entered 
into a spreadsheet in order to make conjectures from patterns throughout the subjects and the 
questions.  The written responses were coded and assigned a number to represent their level of 
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understanding of the topic.  After we identified the common misconceptions the students 
possessed before the study by analyzing the coding of the pre-test, we started considering 
categories or levels of some sort to demonstrate students’ conceptual understanding of angle.  

After consideration of the data collected and the instruction used, we decided to use a 
modification of the Mitchelmore & White (2002) categories (See Table 1 and 2). 
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Table 1 
The categories for angle as defined in Euclidean geometry. 

Category Definition 
A0 Subject shows no comprehension of angle. 
A1 Subject understands angle as a single fixed measurement. 

A2 Subject understands angle as multiple fixed measurement, such as right, acute, obtuse or 
straight. 

A3 Subject understands angle as an intersection of two lines, or two lines that meet as a point. 
A4 Subject understands angle as a bending line with an array of measurements 

A5 Subject shows a complete conceptual understanding of angle as defined in Euclidean 
geometry 

 
Table 2 
The categories for angle as defined by a rotation about a single point. 

Category Definition 
B0 Subject shows no comprehension of angle as a rotation about a point. 
B1 Subject understands angle as a single rotation about a point. 
B2 Subject understands angle as a variety of rotations about a single point . 
B3 Subject shows a complete conceptual understanding of angle as a rotation about a single 

point.   
  

The scoring described above was used to compare students gain scores from the pre-test to 
the post-test.  The scores were analyzed using statistical software to perform a paired t-test.  A 
paired t-test was used to see if the means on these two normally distributed interval variables 
differ from each other.  A paired t-test is used when you have two related observations (for 
example, two observations per subject, in this case pre-test and post-test) (Rao, 2007, p. 143).  In 
each case, the null hypothesis was that the results of the pre-test and post-test were equal and the 
alternative hypothesis was that they were different. The results of the t-tests were used to see if 
either, or both, methods of instruction were beneficial to student learning of angle and if the 
learning with SCDs or TCDs were more beneficial.  Finally, we analyzed if particular subgroups 
of students were supported differently by the two styles of DGS use.   

   
Results  

All of the students had been introduced to angle in earlier mathematics courses, but this was 
their first exposure in their current geometry course.  Every student showed some knowledge of 
angle, which is evidenced considering 27 out of 27 (100%) of the students could either identify 
an angle within a variety of shapes, draw their own angle, or both.  After analyzing the 
instructional activity, we analyzed each student’s specific responses during three phases of the 
study: Pre-test & Basic Terminology, Classifications and Relationships, and Postulates & Post-
Test.  The categories in which the responses were given in each of the three phases are described 
in the methodology section and shown in Table 1 and Table 2.  There were two different sets of 
categories, one for the definition of angle according to Euclidean geometry (A) and as a rotation 
about a point (B).  None of the students in the SCD class mentioned angle as a rotation so 
category B was not used in this section of the analysis.  

Looking at the students within each phase of the study demonstrated at which category the 
student’s responses were in throughout the study.  When analyzing the categories for the SCD 
class, we found that 4 out of 15 (27%) students showed an improvement of conceptual 
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understanding of angle throughout the study.  7 out of 15 (47%) were categorized the same in the 
1st and 3rd phase of the study, yet each had different results during phase 2.  4 out of 15 (27%) 
students’ conceptual understanding of angle decreased as a result of the study.  After analyzing 
the SCD class we went on to analyze the TCD class.  6 out of 12 (50%) students showed an 
enhanced conceptual understanding of angle throughout the study.  4 out of 12 (33%) were 
categorized the same in both the 1st and 3rd phase of the study, yet each had different results 
during phase 2.  2 out of 12 (17%) students’ conceptual understanding of angle seemed to 
decrease as a result of the study.  Only 2 out of 12 (17%) of the students mention the rotation of 
an angle and the sum of a single rotation being 360 degrees.  After comparing the categorizations 
of both classes, the SCD class did not gain the level of understanding of angle needed to be in 
category A4 or A5.  This along with the number of students who improved their level of 
understanding throughout the study shows the value of the TCD class.  The TCD class seems to 
be more successful and this was shown with the results of the quantitative analysis. 
 A paired t-test was used to compare the difference between the pre-test score and the post-
test score of each individual student from each class to determine if one method was more 
successful than the other.  The null hypothesis of the paired t-test’s performed in this study are 
assuming that there is no difference between the students’ score on the pre-test and the post-test, 

€ 

H0 : µd ≤ D0.  The alternative hypothesis is assuming that the use of the software did in fact 
affect the students’ scores on the post-test in comparison to the pre-test scores for each of the 
different classes, 

€ 

Ha : µd > D0.  After analyzing the results from the paired t-test for the SCD 
class, we were not able to conclude that the instructional activity improved the students’ level of 
understanding at a 90% confidence level (p-value of .1159).  However, the result from the gain 
scores (+1.53) does show that the instructional activity did improve their understanding, just not 
at a significant level.  After analyzing the results from the paired t-test for the TCD class (+2.92), 
it is evident that the instructional activity did improve the student’s level of understanding with a 
95% confidence level (p-value of 0.0087).  Therefore, both instructional activities are successful 
yet the TCD classes’ improvement from the pre-test to the post-test was significant. 

To answer the other research question about which methods were best for different groups, 
more quantitative analysis was done.  Table 3 shows the results of the categorized groups of 
students: male vs. female, minority vs. non-minority, and sophomores vs. juniors.   
Table 3 
Group Number of 

students 
Average 
Gain Score 

Significant at 95% 
confidence level? 

Significant at 90% 
confidence level?  

p-value 

Female (SCD) 7 2.857 No Yes 0.0701 
Female (TCD) 8 3.429 Yes Yes 0.0219 
Male (SCD) 8 0.750 No No 0.6955 
Male (TCD) 4 5.000 No No 0.1152 
Minority* (SCD) 10 2.600 No Yes 0.0559 
Minority *(TCD) 10 2.400 Yes Yes 0.0145 
Non-Minority (SCD) 5 -0.600 No No 0.5291 
Non-Minority  (TCD) 2 5.500 N/A N/A N/A 
Sophomores  (SCD) 11 2.273 No Yes 0.0683 
Sophomores (TCD) 9 3.667 Yes Yes 0.0100 
Juniors  (SCD) 4 -0.500 No No 0.7027 
Juniors  (TCD) 3 4.000 No No 0.5286 
*African American and Hispanic. 
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Discussion and Conclusion 
 This study was conducted to investigate DGS use in developing students’ conceptual 
understanding of angle. Results show that the use of DGS was a significant aid for the students to 
gain insight into the concept of angle as defined by Euclid (1956).  Additionally, a few students 
showed a better understanding of angle as a rotation and no students demonstrated a better 
understanding of angle in a curve.  The software was an important teaching tool yet the SCD 
class struggled whereas the TCD class did not report a high level of difficulty using the software.  
It was more difficult for the SCD class due to the fact that they had to learn how to use the 
software while learning what the terms looked like in order to be able to construct the terms, 
whereas the TCD class did not need to be extremely familiar with the software to explore their 
instructional activity.  Being unfamiliar with the software created some frustrations throughout 
the activity. Although, the software used in the study did have the drag mode, the SCD class was 
not as apt to use the drag mode. Therefore they demonstrated less conceptual understanding than 
the TCD class, which was totally dependent upon the drag mode. The pictorial representations 
created by the SCD students with the help of the software was beneficial, especially since some 
of the terms were completely new information to the students, as they had not covered it in 
previous mathematical courses.  The pre-constructed diagrams the TCD class used to define the 
introductory terms helped them visualize and define the terms with the use of the software and its 
many features.  Although each instructional activity had its own instructional advantages, 
according to the mean gain scores and the paired t-test conducted on the data the TCD group 
improved significantly where as the SCD group did improve, but not significantly.   
  As far as the subgroups, for each group of female students, the software was beneficial and 
significant in helping their understanding of angle but had little influence on the male students 
conceptual understanding according to their mean gain score from the pre-test to the post-test.  
Looking at the results from the t-test for the minority students for each group, one can see that 
the instructional activity was obviously beneficial for their understanding unlike the results from 
the non-minority students who did not improve as much.  After analyzing the results from the t-
test for sophomores and juniors it is evident that the sophomores improved significantly where 
the juniors did not.  Therefore, the use of the software was more beneficial for the younger 
students of the class.    
  According to these results the pre-constructed diagrams were more beneficial for entry-level 
geometry students, which might not be the case for upper level students or adult learners using 
the software.  This issue of pre-constructed diagrams vs. constructed diagrams needs to be 
researched for all ages because constructed diagrams have been proven important to the study 
and learning of geometry, yet for this age the pre-constructed diagrams were more apparent.  In 
summary, the software was more beneficial for the TCD class than the student constructed class 
no matter if the student was male or female, minority or non-minority, or if they were a 
sophomore or a junior.  Therefore, dynamic geometry software would be best used in the 
classroom with teacher-constructed diagrams with similar conditions as the study conducted at 
hand.  More research is needed to answer this question definitively, yet for this study, and for 
other classrooms with similar dynamics, teacher-constructed diagrams were shown to be more 
advantageous to promote student conceptual understanding of angle.   
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This paper reports the results of analyses conducted to explore future and novice mathematics 
teachers’ basic geometric knowledge of plane figures. Test scores suggest that teachers’ 
responses to definition construction tasks often failed to include all necessary information to 
define a given figure. Other responses included redundant information and went beyond the 
information needed for a sufficient mathematical definition. Most teachers’ responses 
corresponded to a van Hiele level of analysis, which aligns with national expectations for 
students in grades 3-5. Some teachers’ responses were of the lowest van Hiele level, 
visualization, within which students should be operating in grades PreK-2. 

van Hiele Theory and Geometry Instruction 
 The van Hieles’ work to propose levels, as outlined in Table 1 below, for the acquisition of 
geometric knowledge is well known in the mathematics education research community (Fuys, 
Geddes, & Tischler 1988). As a framework, the van Hiele theory is useful when considering an 
individual’s growth in geometric understanding (Malloy, 2002). 

Level Individual is able to… 
Visualization Focus on figures holistically; recognize and identify figures as general shapes 

Analysis Focus on the physical properties of figures; characterize figures by their 
attributes; describe the properties of figures. 

Abstraction 
Focus on the geometric properties of figures; order figures by their 
properties; interrelate properties and classes of figures using informal 
arguments. 

Deduction Focus on deductive reasoning; prove theorems deductively; establish 
relationships among theorems 

Rigor Focus on deductive geometry systems; establish theorems in different 
axiomatic systems; analyze and compare these systems 

Table 1. van Hiele levels of thought 
 Researchers have shown that preservice and inservice teachers at both the elementary and 

secondary levels often are unable to operate at appropriate van Hiele levels for the material they 
are required to teach (Mayberry, 1983; Fuys, Geddes, & Tischler, 1988; Mason & Schell, 1988; 
Chappell, 2003; van der Sandt & Nieuwoud, 2003; Pandiscio and Knight, 2006). Concerns 
regarding preservice and inservice teachers’ acquired van Hiele levels are not limited to the 
United States but rather seem to be a global problem (Gutiérrez, Jaime, & Fortuny, 1991; de 
Villiers, 1997; van der Sandt & Nieuwoud, 2003; Halat, 2008). 

The National Council for Teachers of Mathematics (NCTM, 2000) in their Principles and 
Standards for School Mathematics have provided a cohesive vision for geometry instruction in 
the U.S. that involves expectations that students “analyze [the] characteristics and properties of 
two- and three-dimensional geometric shapes and develop mathematical arguments about 
geometric relationships” (2000, p. 41). According to the NCTM (2000) students are expected to 
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perform tasks which reflect the increased cognitive sophistication typical of higher van Hiele 
levels as they progress through the Pre-K-12 curriculum. 

In grades PreK-2 students are expected to operate at the visualization level. Students are 
encouraged to use their own vocabulary to describe geometric objects. By Grade 2, tasks typical 
of visualization level cognitive activity have evolved to include identifying and sorting shapes by 
similarities and differences. Such tasks hint at analysis level cognitive activity. In Grades 3-5 
students are expected to operate at the analysis level. Students should develop more precision 
when describing shapes. The NCTM (2000) indicates that during these grades appropriate 
terminology is of increased importance as is the use of the “specialized vocabulary associated 
with the shapes and properties” under consideration (p. 165). In Grades 6-8 students are expected 
to operate at the abstraction level. By this time the interplay of properties should become evident 
to students allowing them to classify shapes into a hierarchy. Students should be capable of 
synthesizing their knowledge of the interplay of figural properties and the mathematical 
hierarchy to generate proper mathematical definitions. Initial abstraction level activities include 
investigating the diagonals of geometric figures and using observations to create alternate 
definitions for the figures under consideration. In Grades 9-12 the NCTM expects students to 
operate at the highest van Hiele level, rigor. Expectations include analysis of properties, making 
conjectures and using mathematical proof. 

Considering national expectations that students’ van Hiele levels should be increasing with 
grade level, it is reasonable to wonder if teachers possess the necessary knowledge to facilitate 
students’ acquisition of higher levels of geometric reasoning.  

van Hiele Theory and Definition Construction 
 As key components of geometric understanding (Sfard 2000), definitions and their 
construction allow insight into the depth of teachers’ conceptualization of geometric figures. 
Research focusing on reasoning processes has related definition construction to the van Hiele 
theory. Gutiérrez and Jaime (1998) have identified four processes of reasoning in geometry: 1) 
recognition of types, components, properties, and families of figures; 2) definition of geometric 
concepts; 3) classification of geometric figures (or concepts) into different families; and 4) proof 
and ways of convincing regarding geometric figures and statements. Of the four processes, they 
further parse definition into use of definitions and formulation of definitions. In their 1998 work, 
Gutiérrez and Jaime offered a matrix with distinctive attributes related to their processes of 
reasoning (recognition, use of definitions, formulation of definitions, classification, and proof ) 
that provide evidence that an individual is operating at one of the first four van Hiele levels1. 
Table 2 reveals the attributes for the formulation of definitions by van Hiele level offered by 
Gutiérrez and Jaime.  
 

 Visualization Analysis Abstraction Deduction 

Formulation 
of definitions 

Able to list 
physical 
properties of 
figure 

Able to list 
mathematical 
properties of 
figure 

Able to provide 
necessary and 
sufficient 
properties of 
figure 

Able to prove the 
equivalence of 
definitions 

Table 2. Distinctive attributes of the process of reasoning in each van Hiele level 

Individuals operating at the visualization level often classify figures based on basic 
prototypes of those figures. Analysis of the properties of figures is absent; rather the individual 
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views geometric figures holistically. This can lead to identification and classification of figures 
based on visual properties that are irrelevant (Burger & Shaughnessy, 1986) including 
descriptions using words like “pointy,” “round,” “skinny,” and “fat” (Clements et al., 1999; 
Gutiérrez & Jaime, 1998). Moving from visualization to analysis involves more than just 
acquiring new vocabulary to describe properties; it involves recognizing existing and new 
relationships between properties (de Villiers, 2010). At the level of analysis, individuals are able 
to use definitions; however they are likely to reject alternate definitions counter to the definitions 
they hold to be true (Burger & Schaunessy, 1986). Definitions constructed at this level are not 
restricted to sufficient properties (Gutiérrez & Jaime, 1998, Burger & Schaunessy, 1986). When 
asked to construct a definition, individuals are likely to make a long list of properties with no 
regard for redundancies (Gutiérrez & Jaime, 1998). Whereas analysis involves recognizing 
properties within figures, abstraction involves recognizing the interplay of those properties via 
logical relationships (de Villiers, 2010). Individuals working at the abstraction level understand 
the hierarchy of geometric figures and are able to recognize relationships among geometric 
figures. Mathematical activity at the abstraction level consists of interrelating and deducing 
properties within and among geometric figures (Adele, 1996). Individuals at this level are 
capable of constructing economical mathematical definitions (Burger & Schaunessy, 1986; 
Gutiérrez & Jaime, 1998), although some redundancy may be present if the relationship between 
properties is not immediately recognized as being related (Gutiérrez & Jaime, 1998). Individuals 
operating at the level of deduction are aware that definitions are arbitrary. They accept 
equivalent definitions and are capable of proving their equivalency.  

Because	  definitions	  are	  the	  foundations	  of	  geometric	  understanding,	  the	  process	  of	  definition	  
construction	  and	  the	  associated	  van	  Hiele	  levels	  are	  of	  paramount	  importance	  to	  the	  teaching	  and	  
learning	  of	  geometry.	  It	  is	  critical	  that	  teachers	  have	  knowledge	  of	  geometric	  figures	  needed	  to	  construct	  
definitions	  as	  well	  as	  the	  ability	  to	  operate	  at	  the	  level	  of	  deduction.	  Research	  in	  the	  past	  has	  utilized	  the	  
van	  Hiele	  theory	  as	  a	  framework	  to	  explore	  teachers’	  and	  students’	  geometric	  understanding.	  The	  van	  
Hiele	  theory	  has	  been	  used	  to	  reorganize	  curriculums	  in	  Soviet	  Russia	  in	  the	  1960s	  and	  more	  recently	  in	  
the	  United	  States	  (Adele,	  1996;	  NCTM,	  2000).	  Definition	  construction	  too	  has	  been	  considered	  a	  crucial	  
component	  of	  the	  mathematics	  classroom	  (Mariotti	  &	  Fischbein,	  1997;	  Sfard,	  2000;	  Fujita	  &	  Jones,	  2007).	  
The	  van	  Hiele	  theory	  has	  had	  a	  strong	  influence	  on	  the	  course	  and	  scope	  of	  geometry	  instruction	  at	  an	  
international	  level,	  coupled	  with	  the	  fact	  that	  definitions	  are	  a	  fundamental	  component	  of	  the	  teaching	  
and	  learning	  of	  geometry,	  it	  is	  surprising	  that	  no	  single	  work	  has	  used	  the	  van	  Hiele	  theory	  to	  consider	  
teachers’	  responses	  to	  definition	  construction	  tasks.	  The	  goal	  of	  this	  work	  is	  to	  build	  upon	  prior	  research	  
by	  exploring	  future	  and	  novice	  mathematics	  teachers’	  basic	  geometric	  knowledge	  of	  plane	  figures.	  
Teachers’	  responses	  to	  definition	  construction	  tasks	  will	  be	  analyzed	  to	  determine	  both	  the	  completeness	  
of	  their	  responses	  as	  well	  as	  the	  van	  Hiele	  level	  associated	  with	  their	  responses.	  

 This work addresses the gap in the literature. The research explored novice and future 
teachers’ responses to 12 definition construction tasks.  More specifically the goal was to answer 
the following questions. 

1. Do	  teachers	  have	  the	  knowledge	  of	  planar	  figures	  needed	  to	  construct	  concise	  mathematical	  
definitions?	  How	  many	  key	  components	  do	  future	  and	  novice	  teachers	  include	  when	  asked	  to	  
create	  definitions	  for	  basic	  geometric	  figures?	  	  

2. In	  which	  van	  Hiele	  levels	  do	  teachers	  operate	  when	  constructing	  definitions	  for	  basic	  planar	  
figures?	  
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Methodology 
Participants 
 The 21 participants (16 females and 5 males) in this study were students in a graduate-level 
mathematics education course during the fall 2009 semester at a large research university in New 
York State. Eleven were future teachers; all of whom had Bachelor’s degrees and were taking 
graduate courses in order to fulfill state certification requirements for mathematics teachers. 
While some of the future teachers had temporary teaching experience, none had experience as a 
full-time classroom instructor. The remaining 10 participants were novice teachers, full-time 
teachers with up to three years of experience. These 10 novice teachers had Bachelor’s degrees 
and the first level of state teacher certification in mathematics. Four of the novice teachers had 
prior experience teaching a secondary school geometry course, while one novice teacher was 
teaching geometry for the first time while taking the course. 

Data Collection and Scoring 
The data collection instrument for the study was a paper and pencil test with four 

components. The first component collected demographic information including prior coursework 
and teaching experience. The second component included items that addressed basic geometric 
figures. The third component included items that addressed geometric calculations, theorems, 
and proofs. The fourth and final component included items related to pedagogical decisions 
related to geometry instruction. The four components of the instrument were administered on the 
first day of the course as a pretest. This study analyzes the second section of the pretest, focusing 
on the teachers’ responses related to definition and drawings tasks of basic planar geometric 
figures. 

The teachers were instructed to give a written definition for each of the following figures in 
the order listed: circle, triangle, quadrilateral, vertical angles, isosceles triangle, rectangle, 
parallelogram, chord, kite, trapezoid, sector, and rhombus. These geometric objects will be 
referred to as figures throughout this paper. This research considered the teachers’ written 
definitions. 

A four-point rubric with values ranging from zero to three was developed to score the 
teachers’ pretest responses. In general there were two to three components for each of the written 
definitions and sketched diagrams making the four-point scale most appropriate. The scores for 
each level of the scale for the teachers’ written definitions follow. 

0 Incorrect: Blank, incorrect, or irrelevant response; response yields no real 
conceptualization of geometric figure; all key components are missing 

1 Mostly incorrect: Incorrect, or limited correct information is given however two 
key components of the definition are missing 

2 Mostly correct: Partially correct information is given however one key component 
of the definition is missing 

3 Correct: Complete, correct response all key components of the definition are 
present 

The second rubric used to analyze the data assessed the teachers’ responses to the definition 
construction task and assigned a corresponding van Hiele level. The nature of a definition task 
involving geometric figures is such that it can reveal information only as high as abstraction 
level cognitive activity. In order to assess cognitive activity at levels higher than abstraction one 
would need to include tasks that involve deductive reasoning such as determining the 
equivalence of multiple definitions. Since such tasks are outside the scope of this investigation, 
the rubric has a maximum value corresponding to the level of abstraction. The rubric employed 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1036



in this study was based on Gutierrez and Jaime’s (1998) work related to definition construction 
processes (see Table 2). The rubric was scored using integer values from 0 to 3 as shown below. 
Examples for each level are provided in Table 3. 

0 Provided no definition or a definition with irrelevant/incorrect information 
1 Visualization: Provided a definition based on the physical properties of the figure 
2 Analysis: Provided a definition that listed the mathematical properties of the figure  
3 Abstraction: Provided a definition based on a set of necessary and sufficient properties of 

the figure 
 
Teacher Definition for Rectangle Scoring Rationale Score 

A 
A quadrilateral w[ith] 2 distinct sets of 
congruent sides 

Definition is incorrect, exhibits 
signs of hierarchical 
classification error 

0 

B 

A figure with 2 sets of opposite sides 
which are parallel. 1 pair of sides are 
equal. The other pair are also equal but not 
the same as the first pair 

Definition is based on a 
prototypical image of the figure 1 

C 

A closed figure consisting of four line 
segments with the following conditions. 
• 4 rt [angles] 
• 2 pairs of opposite sides  
• 2 pairs of opposite sides  

A list of mathematical 
properties is given 

2 

D 
A parallelogram whose diagonals are  Necessary and sufficient 

conditions are given with 
minimal to no redundancy 

3 

Table 3. van Hiele level sample responses for rectangle definition construction task 
Results 

The grand mean for the teachers’ scores on definitions was 2.31. As mentioned above, a 
rubric scale value of 3 indicated that the definitions were complete whereas a mean score of 2 
indicated that a teacher’s response was missing a key component on the majority of the 
definitions. Mean scores of 1 indicated very little demonstrated understanding of the twelve 
figures present on the pretest.  

Assuming interval level measurement, mean scores for the teachers’ responses to the 
definition tasks ranged from 1.00 to 3.00 with a grand mean of 2.31. Nine of the 21 teachers’ 
responses to the definition tasks had mean scores between 2.50 and 3.00, nine of the teachers’ 
responses had mean scores between 2.00 and 2.50, and three teachers’ responses had mean 
scores between 1.00 and 2.00. For measures of dispersion standard deviation values ranged from 
0.00 to 1.35. Six of the 21 teachers’ responses resulted in standard deviation values greater than 
1.00. One teacher in particular received the highest possible scores on some items and lowest 
possible scores on others.3 

The teachers’ responses to the definition tasks for three figures were assigned mean and 
median rubric values of 2 or less. Two teachers did not respond to the chord definition task (M = 
1.95, SD = 1.16; Mdn = 2, IQR = 2). One teacher referred to a personal concept image indicating 
                                                

3 Interval and ordinal descriptive statistics supported each other; however, more precision was evident 
when using mean scores. For the sake of brevity means scores are reported. 
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that a chord was “a combination of notes…” These three teachers’ were assigned scores of 0. 
Teachers who were assigned scores of 1 or 2 for their responses most often referred to the chord 
as a line rather than a segment, or disqualified the diameter as a special case of the chord. 

Two teachers did not respond to the kite definition task (M = 1.33, SD = 1.11; Mdn = 1, IQR 
= 1). Three teachers referred to a personal concept image. One teacher referred to a kite as “a 
recreational item used in high wind,” another said “something you fly,” and a third said “a 
diamond shaped polygon.” Another teacher simply wrote the word “rhombus.” These six 
teachers did not indicate and of the key components of the figure and were assigned scores of 0. 
Those teachers who were assigned scores of 1 or 2 for their responses to the kite definition task 
most often described the figure in terms of the parallelism of opposing sides or congruence of 
angle measurement. The key component of congruency of adjacent sides was absent in these 
responses. 

Two teachers did not respond to the sector definition task (M = 1, SD = 0.95; Mdn = 1, IQR 
= 1). Two teachers referred to a personal concept image. One teacher referred to a sector as “a 
section of a vector,” and another said “in business, it is used to explain that the office building is 
split into sections.” These four teachers’ responses were assigned scores of 0. Although a sector 
refers to the region enclosed by two radii and an arc of a circle, the remaining teachers whose 
responses were scored 0 most often believed that sector referred to bisection of a figure like a 
rectangle. Those teachers who were assigned a score of 1 indicated that the sector was the region 
bounded by a circle and a chord. Three teachers indicated that sector dealt with the perimeter of a 
circle rather than its area. One of these teachers referred to a sector as “a[sic] arc or line between 
two points,” and another wrote “a piece of the circumference of a circle.” These teachers were 
assigned scores of 2 as they included two key components the center point and radii. 

The grand mean for the van Hiele level assigned to the teachers’ responses for the definition 
tasks was 1.58 with no teacher’s responses to the definition tasks resulting in mean values at a 
level of abstraction. A mean or median van Hiele level value of 3 indicated that a teacher’ 
responses to the 12 definition tasks contained only those conditions that were necessary and 
sufficient to define the figures. In contrast values of 2 and 1 for a given figure indicated that 
some of the teacher’s responses were analysis level or visualization level or both. Analysis level 
definitions and drawings included lists of the properties of the 12 figures while visualization 
level definitions were based on prototypical versions or the physical properties of the 12 figures. 

For interval measures mean values for the teachers’ responses to the definition task ranged 
from 0.33 to 2.67. Six of the 21 teachers’ responses to the definition tasks had mean values 
between 2.00 and 2.67 corresponding to a level of analysis. Fourteen of the 21 teachers’ 
responses received values between 1 and 2 corresponding to a level of visualization for the 
definition tasks. One of the 21 teachers’ responses received a mean value of 0.33. For measures 
of dispersion standard deviation values ranged from 0.49 to 1.44. Twelve of the 21 teachers’ 
responses resulted in standard deviation values greater than 1. For many teachers low values 
assigned to responses to the chord, circle, kite, and sector definition tasks resulted in larger 
spread.2 

Discussion 
Despite the fact that all of the teachers in the study had extensive mathematical coursework 

in their undergraduate degrees, their results on the pretest were unimpressive. It was 
hypothesized that the definition tasks would pose no difficulty for the teachers due to the basic 
nature of the 12 figures under consideration. The expectation was that the teachers would receive 
scores at or near the highest assessable score, a rubric score of 3; however, the grand mean for 
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the teachers’ responses to the definition tasks was M = 2.31. Results suggest that most teachers 
were missing one key component according to the scoring rubric. Mean scores by teachers for 
definitions provide evidence that many teachers’ definitions were incomplete with ninety-five 
percent of the teachers scoring less than 3. Fourteen percent of the twenty-one teachers scored 
less than 2 indicating that their definitions were missing more than one key component. Many 
teachers demonstrated trouble recalling the components of the geometric figures in their 
definitions. 

These low scores are attributable in large part to incomplete knowledge of the figures. These 
results suggest that the teachers in this study did not possess knowledge of geometric figures 
sufficient to teach the material indicated in the New York State Education Department’s (2005) 
Learning Standards for Mathematics or the NCTM’s (2000) PSSM document. Results support 
researchers’ claims that there are deficits in teachers’ content knowledge (Chappell, 2003). 

Overall scores for definitions provided additional evidence that many of the teachers’ 
definitions were not at a level appropriate for the coursework that they would be expected to 
teach. The teachers’ responses to the definition task corresponded to low levels on the van Hiele 
model. Most teachers’ definitions corresponded to analysis and were appropriate for grades 3-5 
expectations according to national standards. Some teachers’ responses aligned with the lowest 
van Hiele level, visualization, and were appropriate for grades Pre-K-2 according to national 
standards. 

Recent curricular revisions in New York State, as well as suggested revisions in other states 
(e.g., Georgia), have brought a sharper focus on geometry content in the curriculum. This 
renewed focus on the geometry curriculum reminds us how important teachers’ geometric 
knowledge is. The ability to define, and to do so with an awareness of what it means to define, is 
a critical component of effective instruction in geometry. Although the sample size in this study 
is limited and any attempt to extend these finding to a broader audience should be done with 
extreme caution, the data presented here are a platform for further exploration of teachers’ 
knowledge of geometric figures, in general, and definition construction, in particular. Future 
work will address the use of the van Hiele theory to explore teachers’ use of multiple 
representations when considering geometric figures. 

Endnotes  
1. Gutiérrez and Jaime (1998) purposely omit the rigor level indicating that they do not include it 
because its existence has not been confirmed. Level 4, rigor, is outside the scope of this research 
so its absence is of little import. 
2. As with scores, the ordinal and interval statistics for van Hiele level values supported each 
other. 
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This paper proposes that groups of middle school students who pose sub-problems as they solve 
open-ended mathematics problems might be considered to be “authoring” their mathematics. 
Using a definition of authoring as “the means through which a learner acquires facility in using 
community validated mathematical knowledge and skills”(Povey et al, 1999, p. 232) and of 
bricolage as a negotional form of reasoning, this paper argues that through problem posing 
students become bricoleurs, making discoveries by reassembling what they already know. In 
doing so, they create a storyline through their actions and ideas, in effect, becoming authors of 
their own mathematics. 
 

Introduction 
Mathematical work does not proceed along the narrow logical path of truth to 
truth to truth, but bravely or gropingly follows deviations through the 
surrounding marshland of propositions which are neither simply and wholly true 
nor simply and wholly false (Papert, 1980, p. 195). 
 

As a middle school teacher, I’ve found myself straddling the divide between mathematics 
and the humanities, teaching both math and English as my major subjects rather than the usual 
combination of math and science. One of the ways I’ve bridged this divide is through Problem of 
the Week (POW) (Tsuruda, 1994) assignments. Students are presented with a rich mathematics 
problem and given class time, and the opportunity to choose their own groups, to work on their 
ideas before composing a written account of their reasoning. They have quickly learned that the 
problems require thought, and can be solved in different ways. Despite the groaning that 
inevitably occurs whenever I announce it is time for another POW, at the end of each year when 
I survey students about what has gone well  (or poorly) for them in math class, POWs are often 
highly rated. Although the questions are “hard,” students often report that they like the challenge, 
the different kinds of math that they explore, but most of all, they are proud of their work. There 
is a sense of ownership similar to what I observe during English class when they share their 
creative writing with their peers. What is going on? 

 For my master’s research, I had used my students’ work on POW to consider the 
phenomenon of group flow. Looking at the transcripts again a few years later, it struck me that 
each of the groups that I considered to be functioning well (i.e. on task and working together) 
were asking questions – posing sub-problems as it were – about the POW as they worked 
towards an overall solution. This problem posing appeared to be a way of making the POW their 
own, of framing the mathematics in their own way. 

Recalling my own experiences with English literature, it occurs to me part of the pleasure of 
being an author comes from the little conflicts you set for your characters and watching how 
their resolution serves to drive the main plot. Consider “classic” storylines that recur time and 
time again. Shakespeare’s central problem of “star-cross’d lovers” in Romeo and Juliet is echoed 
in our contemporary West Side Story and even the more recent High School Musical – and 
Shakespeare’s play itself is a descendant of Arthur Brookes’ 1562 poem The Tragicall Historye 
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of Romeus and Juliet, which is itself a translated interpretation of one of Bandello’s Italian short 
stories Novelle (Drabble, 1985). Yet each author has made the storyline his/her own. While the 
overarching problem is the same (young couple from warring worlds come to a tragic end), it is 
how the smaller problems, or conflicts, are settled that makes each text unique. Might the same 
be said of middle school math? While the students are unlikely to develop ground-breaking 
theorems, there is much that is worthwhile to be drawn from playing around within the 
parameters of a larger problem and, in doing so, finding their own path through it.  Could what 
the POW groups were doing in their problem posing be considered to be authoring in math? And 
might authoring be a way for students to be a part of the larger math community, to do math 
rather than to have math done to them? 

 
The Art of the Bricoleur 

The bricoleur “derives his poetry from the fact that he does not confine himself to 
accomplishment and execution: he speaks not only with things…but through the medium of 
things” (Lévi-Strauss, 1966, p. 21). 

The central issue in this paper is: are we so conditioned to expect the act of mathematizing in 
school to proceed in a certain abstract formalized way that we are neglecting other ways in which 
mathematical understanding may emerge? 

Papert is one thinker who has touched on this issue in his consideration of bricolage as a 
method students use when exploring geometrical concepts with computer tools (LOGO). 
Bricolage is a term that originates from Claude Lévi-Strauss’s anthropological work The Savage 
Mind (1966). In it he contrasts what he considers to be the analytic method of scientific 
theorizing of the Western world, with the more concrete theorizing, or bricolage, employed in 
other more “primitive” cultures. He writes: 

The “bricoleur” is adept at performing a large number of diverse tasks; but, unlike 
the engineer, he does not subordinate each of them to the availability of raw 
materials and tools conceived and procured for the purpose of the project. His 
universe of instruments is closed and the rules of his game are always to make do 
with ‘whatever is at hand’, that is to say with a set of tools and materials which is 
always finite and is also heterogeneous because what it contains bears no relation 
to the current project, or indeed to any particular project, but is the contingent 
result of all the occasions there have been to renew or enrich the stock or to 
maintain it with the remains of previous constructions or destructions. (Lévi-
Strauss, 1966, p. 17-18) 

While the “engineer” carefully plans ahead and gathers the specific tools required before the 
project begins, the bricoleur does what he/she can with what is immediately available. 

Some have argued that bricolage is an inferior form of reasoning, although not one limited to 
particular cultures as Lévi-Strauss appears to suggest (Berry & Irvine, 1986). In teaching, for 
instance, the bricoleur teacher borrows and uses old teaching methods and resources without 
improving them, resulting in pedagogical inadequacies (Hatton, 1989). In a slightly less negative 
view, bricolage is depicted as a method teachers are forced to fall back on due to working 
conditions – without enough time or resources to engage in proper planning, the bricoleur 
teacher ends up gathering lesson and unit plans from here and there in order to get by (Scribner, 
2005). 

These interpretations of bricolage as just wholesale “borrowing” are too simplistic. A teacher 
using another’s lesson plan may be using what’s on hand, but in doing so he/she is “reinventing 
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based on evolving intentions” (Reilly, 2009, p. 383) and the results may be far different from the 
purpose of the sources. Although original meaning is sedimented in the artifact being used, 
because these artifacts are being recombined with other ones, the resulting connections develop 
into new codes of meaning (Barker, 2004). One can see this, for instance, with fashion 
(Harajuku, a Japanese street style that mixes, for instance, traditional Japanese attire with modern 
Western wear), or with writing (punk writer Kathy Acker’s Great Expectations which 
“plagiarizes” heavily from Dickens’s novel of the same name but to a much different effect). 
Bricolage, then, has the potential to be both creative and subversive. 

Papert suggests that learning is itself bricolage: 
The process reminds one of tinkering: learning consists of building up a set of 
materials and tools that one can handle and manipulate. Perhaps most central of 
all, it is a process of working with what you’ve got. We’re all familiar with this 
process on the conscious level, for example, when we attack a problem 
empirically, trying out all the things that we have ever known to have worked on 
similar problems before. But here I suggest that working with what you’ve got is 
a shorthand for deeper, even unconscious learning processes (1980, p. 173). 

In a later study of computer programming students, Turkle and Papert define bricolage as “a 
style of organizing work that invites descriptions such as negotiational rather than planned in 
advance” (1990, p. 144). Working from Piaget’s theory of intellectual development, although 
rejecting the hierarchy of his proposed stages, the authors characterize the engineer, who they 
call the “planner,” as having a “formal” method as compared to the bricoleur who uses a 
“concrete” method. In comparing these learners, they write: 

The bricoleur resembles the painter who stands back between brushstrokes, looks 
at the canvas, and only after this contemplation, decides what to do next. For 
planners, mistakes are missteps; for bricoleurs they are the essence of a navigation 
by mid-course corrections. For planners, a program is an instrument for 
premeditated control; bricoleurs have goals, but set out to realize them in the spirit 
of a collaborative venture with the machine. For planners, getting a program to 
work is like "saying one's piece"; for bricoleurs it is more like a conversation than 
a monologue. In cooking, this would be the style of those who do not follow 
recipes and instead make a series of decisions according to taste. While hierarchy 
and abstraction are valued by the structured programmers' planner's aesthetic, 
bricoleur programmers prefer negotiation and rearrangement of their materials 
(1990, p. 136). 

I quote this passage at length because it highlights important aspects which I will discuss 
further later, namely:  the importance of mistakes as “mid-course corrections”, the contemplation 
that takes place during the work process, and the characterization of it being “more like a 
conversation than a monologue” involving a negotiation and rearrangement of ideas. This, I 
believe, describes in part how a small group works. However, what tends to be privileged in 
mathematics classes is the more formal thinking that underlies the planner’s process, the abstract 
reasoning that theorists like Piaget see as evidence of a later more mature stage of development. 
Turkle and Papert (1990) argue, however, that formal and concrete reasoning are not different 
stages of development, just different styles of organizing work. 

 
Mathematics as Bricolage 
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That mathematics is largely perceived in North American schools as a timeless truth, external 
to human existence should be no surprise. There is a long tradition in Western thought stretching 
back to Plato and his ideal forms, of mathematics as an eternal absolute, and that it is only 
through thinking and theorizing by an elite group (i.e. mathematicians) that its laws and axioms 
can be uncovered. Lakoff and Nuñez call this “standard folk theory of what mathematics is for 
our culture” (2000, p. 340) the Romance of Mathematics, and they argue that its influence has 
had a number of negative effects:  

It intimidates people, alienates them from math, maintains an elite and justifies it. It rewards 
incomprehensibility, and this inaccessibility perpetuates the romance.  The alienation and 
inaccessibility contributes to the division in our society of people who can function in an 
increasingly technical economy and those that can’t – social and economic stratification of 
society (2000, p. 341). 

In the past century, however, an alternate view of mathematics has arisen – that of 
mathematics as a human invention that has been developed and refined by various societies 
throughout history. Lakatos, the philosopher who first set this idea out clearly (Ernest, 1998), 
argued for what he called “quasi-empiricism” in his Proofs and Refutations (1976). Here 
mathematics is not portrayed as static Platonic form that is discovered, but as a process, an 
evolving aspect of culture. The conversation between teacher and students as they discuss the 
Euler characteristic at first seems to be a Socratic dialogue where the teacher is apprenticing his 
students into traditional conventions of proper mathematical arguments. However, the alternative 
narrative provided by the footnotes undermines this interpretation, showing how “acceptable” 
mathematical strategies have varied during different eras of history, and pointing to an analogy 
between political ideologies and scientific theories (Lakatos, 1976, p. 49). Returning to the main 
storyline of the book, it becomes clear from the characters’ arguments that the process of refining 
a mathematical proof is never-ending. There is always something else to consider. In the 
working, and reworking of Euler’s axioms, Lakatos illustrates how mathematics is produced 
through a process of bricolage.  

 
Authoring in Math 

As math evolves, an invented tapestry of concepts, problems and invented rules is passed 
along in the community. Yet, even as an invention, mathematics is still largely presented to the 
general public as one unattached to any names or faces, ahistorical as it were. Unlike science, 
where Newton supposedly discovers gravity after being hit on the head with an apple, and 
Galileo defies the Church in his support of a heliocentric view of the universe, math has few 
founding stories. We can point to “the ancient Greeks,” and maybe associate one particular 
ancient Greek (Pythagoras) with a hypotenuse, but there is little else to link math to the popular 
imagination. “The human meaning-making has been expunged from the accounts of mathematics 
that appear in standard texts; the contents are then portrayed in classrooms as authorless, as 
independent of time and place…. Mathematics becomes a cultural form suffused with mystery 
and power” (Povey et al, 1999, p. 235). 

As a result, school mathematics is perceived by many students to be a series of rules imposed 
by an outside source, be it textbook or teacher, with little recognition that human thinking, even 
student thinking, generates math. “All the mathematical methods and relationships that are now 
known and taught to schoolchildren started as questions, yet students do not see the questions. 
Instead, they are taught content that often appears as a long list of answers to questions that 
nobody has ever asked” (Boaler, 2008, p. 27). And there are many teachers continue to present 
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math as a set of rules and conventions, and to perceive math education as the indoctrination of 
their pupils into this long list of answers. 

The concept of authoring math struggles against this sense of mystery. Brown (1996) 
suggests that, as the focus of math educators turns more to math activities rather than to the 
mathematics itself, interpretation plays far greater a role – for instance, the students’ 
understanding of a mathematical situation, and how their interpretation changes as they notice 
new aspects of the situation and make new connections. This emphasis on interpretation, Brown 
argues, is similar to Gadamerian hermeneutics in that the meaning of the mathematics arises 
from the activity and the language used to frame it. And in that sense, it opens up the possibility 
of authorship to any of us who choose to engage in mathematics and communicate our 
interpretations to others. Mathematician Jonathan Borwein writes, “we respect authority, but 
value authorship deeply however much the two values are in conflict. For example, the more I 
recast someone else's ideas in my own words, the more I enhance my authorship while 
undermining the original authority of the notions” (2006, p. 3). 

Povey et al (1999) define authoring as “the means through which a learner acquires facility 
in using community validated mathematical knowledge and skills” (p. 232). They use the term 
author/ity to play with the concept of authority –  the traditional view of mathematical 
knowledge as external, fixed and absolute – splitting up the word to foreground the idea of there 
being an author (or authors) behind the scenes who negotiates and creates this knowledge. In this 
scenario, they write, “teachers and learners… work implicitly (and, perhaps, explicitly) with an 
understanding that they are members of a knowledge-making community.... As such, meaning is 
understood as negotiated. External sources are consulted and respected, but they are also 
evaluated critically by the knowledge makers, those making meaning of mathematics in the 
classroom with whom author/ity rests" (Povey et al, 1999, p. 234). In a knowledge-making 
community students are aware of the fact that someone did author the math in the books around 
them, and that in their work as bricoleurs they too are part of this authoring tradition. This helps 
to demystify math, and to alleviate students’ fear of the subject. As well, not only does the notion 
of author/ity foster a more equal relationship between learners and teacher, but it also gives 
responsibility to the students to break away from the role of passive empty vessels waiting to be 
filled with facts, and instead make meaning of mathematics for themselves. 

 
Problem Posing as Pushing the Story Along 

In math, problem posing can be defined as both “the creation of questions in a mathematical 
context and to the reformulation, for solution, of ill structured existing problems” (Pirie, 2002, p. 
929). One might say there are two kinds, depending on the purpose of the problem being posed 
(Silver, 1994), and where it occurs in relation to the problem solving process – i.e. when during 
the mathematical story process you happen to enter.  

If you walk into the story outside of the problem solving process, either before it has begun, 
or when it is finished, the problem posing has the purpose of problem formulation, or “What new 
problems are suggested by this situation, problem or experience?” (Silver, 1994). Here the 
problem is generated from the situation itself, perhaps using techniques such as “what-if-not” 
(Brown & Walters, 2005). Silver (1994) suggests that it also occurs after a problem has been 
solved, akin to Polya’s “look back and reflect” stage, to consider any new situations or problems 
that have arisen. Others disagree, arguing that “working from situations… is not the same as 
working from problems. Part of the activity is, in fact, the formulation of [local] problems that 
may arise out of definitions and rules that are developed in the discussion of the situation” 
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(Banwell, Saunders and Tahta, 1972). Perhaps the difference in these points of view is between 
creating a story based on your experiences of what’s around you, and being inspired by the plot 
of another’s story to develop your own. 

If you walk into the middle of the story, while problem solving is occurring, problem posing 
takes the form of problem reformulation, or: “How can I (re)formulate this problem so that it can 
be solved?” (Silver, 1994). Here a related problem is generated in response to the original 
problem, as a way of making that original problem more accessible (Polya, 1957). This could 
take the form of modifications (Whitin, 2004), perhaps rewording the original problem, or setting 
it in a more accessible context, so that it can be directly solved. It could also take the form of 
purposely extending the original problem (Whitin, 2004) to see what else there is to investigate. 
Finally, problem reformulation might occur through the creation of sub-problems that are 
produced as one pursues the original problem, as a way of breaking the original problem up into 
more digestible pieces, or of dealing with situations that need to be resolved before the problem 
itself can be tackled. Despite what on the surface may seem a very pragmatic way to go about 
solving a problem, this reformulation is a creative process with the evolving problem taking on a 
life of its own (Kilpatrick, 1987):  

Duncker (1945) offered the insight that each stage of the solution of a problem constitutes the 
problem's reformulation. Thus the mediating phases provide opportunity for problem-posing 
along the way. These re-formulations are products of creative thought. Finding and posing the 
problem is the critical outer layer of the problem solving process. Once that layer is peeled away, 
it reveals further layers within which new problems reside problems that must be addressed as 
steps in the finding of a grand solution (Lewis, Petrina & Hill, 1998).  

Just as a literary story is propelled along through a series of unanswered questions, so too is a 
mathematical story. In describing how painters work, Sawyer notes that some artists have an 
improvisational style called problem-finding by creativity researchers, one which involves 
“constantly searching for her or his visual problem while painting” (2000, p. 153). He then 
argues that “[a]n improvisational theater performance is also, of necessity, a problem-finding 
process – albeit a collective one, akin to a brainstorming session” (2000, p. 154).  

Improvisational theory is helpful in framing the interaction involved in these 
communications, “provid[ing] a means to characterize this process [the notion of self 
organization fundamental to the emergence of the collective] and offer[ing] a way of pointing to 
the conditions under which the collective might grow and develop” (Martin, Towers & Pirie, 
2006, p. 159).  

The nature of human behavior itself is improvisational: 
(T)o be thinking what he is here and now up against, [someone] must both be 
trying to adjust himself to just this present once-only situation and in doing this to 
be applying lessons already learned. There must be in his response a union of 
some Ad Hockery with some know-how. If he is not at once improvising and 
improvising warily, he is not engaging his somewhat trained wits in a partly fresh 
situation. It is the pitting of an acquired competence or skill against 
unprogrammed opportunity, obstacle or hazard. It is a bit like putting some new 
wine into old bottles (Ryle, 1979, p. 129). 

Thanks to the popularity in recent years of improvisational groups such as Second City, and 
television shows like Whose Line is It Anyways, “improvisation” has become synonymous with 
spontaneity in North American popular culture. However as Ryle points out, with ad hockery 
comes know-how, and what is new is based on the old. It is, in this sense, a form of bricolage 
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that recombines and reworks old ideas into new patterns. There is both structure and the freedom 
to work with/within that structure. 

In an interview with musicologist Paul Berliner (1994, p. 66-71), jazz musician Lee Konitz 
suggests  that there is a range of behaviours that can be considered improvisational, depending 
on the proportion of structure to spontaneity, a concept Weick terms “full spectrum 
improvisation” (1998). On the most rigid side of the spectrum (“Interpretation”), there is little 
change from the original structure. In jazz, this occurs when a song is performed and the 
musicians play all the notes in the original order, but they stress them differently in order to 
create their own interpretation. In theatre, the players follow the script, saying all of the words in 
the correct order, but they use their voices and make gestures to provide their own interpretation 
of what the written text means. An interpretation in a mathematics class might occur when 
students are first learning to work with example spaces (Watson & Mason, 2005). They are 
provided with an example (e.g. ½) and then asked to generate more on their own (e.g. 0.5, 4 ÷ 8, 
¼ + ¼, etc). Interpretation, then, is like following a path through the woods – you can walk, you 
can skip, you can run, you can do a series of somersaults, but you keep to the constraints of the 
path. 

At the other end of the spectrum (“improvision”) there is the potential for complete 
transformation. The song provides a starting point but parts of the melody are changed, or 
completely replaced, to such an extent that the resulting song does not resemble the original. In 
theatre, the actors may start with Cinderella, but then surround her with other characters 
(Superman, Jay Leno, etc.), strand them on a desert island, note that it’s Thanksgiving, and take 
it from there, throwing in other ideas and characters, and changing or removing others as the 
story moves along.  

It is at this end of the spectrum that I propose mathematical problem posing belongs. “The 
learner becomes a bricoleur who assembles new things from old. In the process, an idea for an 
entirely new object may arise, leading to new mathematical questions, new exploration, and 
possibly revision of previous ideas” (Watson & Mason, 2005, p.157). In each of these cases, it is 
only when the performers/students look back that they can discern a pattern, or storyline, to their 
actions and ideas: “The improvisational process is one of laying a path down in walking” 
(Montuori, 2003, p. 246). It is through the laying down of this path that students become authors 
of mathematics. 
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This study examined whether professional development (PD) related to integers improved 
pedagogical content knowledge (PCK) of teachers. The three week program involved 22 
teachers and 341 grade 8 students from an urban district. The teachers and students explored a 
comprehensive representation for integers using vectors on a number line and engaged in 
argumentation about strategies for modeling integer operations. The results showed significant 
growth in teacher PCK following the PD and a significant association between teacher posttest 
PCK and student improvement in understanding even when controlling for years of teaching 
experience, teacher pretest knowledge, and student pretest knowledge. 

Improving student understanding of integers and operations with integers is important for 
many educators; however, there is not one instructional model for integer operations that seems 
satisfactory in explaining all integer operations.  Integers are the set of positive whole numbers, 
negative whole numbers and zero. Integers are a number and operations concept that is 
foundational in mathematics, and used in applications in other fields such as science, business, 
and statistics.  However, students struggle with this foundational concept, particularly around 
negative numbers (Ryan & Williams, 2007).   

Introduction 
The mathematics education community has struggled to find an instructional model that 

effectively supports students in constructing a rich conceptual understanding of integers and of 
negative numbers, in particular.  Such a model would need to address the purpose of the negative 
numbers and justify the arithmetical operations on them in order to be comprehensive.  The 
following models are commonly used in classrooms K-8: Annihilation model with counters or 
chips, movement on the number line; transformations of an object’s position and state (Schwarz, 
Kohn, & Resnick, 1993/1994); elevator or elevation model ; use of metaphors for example, 
people getting on and off a bus; technology, such as, calculators and virtual manipulatives; and 
other real world applications, to name a few, money, temperature, and yardage in football.  

These models lack the comprehensiveness needed to address all operations with negative 
numbers (Fischbein, 1994).  Due to the lack of a comprehensive instructional model, many 
students struggle with understanding integers and integer operations, developing misconceptions 
about these numbers (Ryan & Williams, 2007).  This study is a step towards developing an 
effective and comprehensive instructional model using a number line vector representation along 
with professional development (PD) for teachers to build pedagogical content knowledge (PCK) 
focusing on engaging students in classroom discourse through argumentation.   

Theoretical Framework 
Teaching mathematics is a complex profession which requires more than just knowledge of 

the subject matter.  According to Fennema and Franke (1992), the components of mathematics 
teachers’ knowledge include the following: knowledge of mathematics, knowledge of 
mathematical representation, knowledge of students, knowledge of students’ cognitions, and 
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knowledge of teaching and decision making.  Mathematical representations play an important 
role in helping students connect abstract mathematics into something they can understand. Some 
researchers have focused on developing what is referred to as pedagogical content knowledge 
(PCK). Grouws and Schultz (1996) include in their description of PCK the ways teachers 
provide students with useful unifying ideas, clarifying examples and counter examples, helpful 
analogies, important relationships, and connections among ideas. This interpretation includes 
more of the behaviors of teachers rather than just the types of knowledge they possess.  

The theoretical framework for this study is informed by research on the relationship between 
teacher PCK and student learning.  Turnuklu and Yesildere (2007) in their research of PCK in 
mathematics of 45 pre-service teachers in Turkey and their approaches to teaching fractions, 
decimals, and integers, found that many of the pre-service teachers had difficulty understanding 
student misconceptions related to integer operations, facilitating mathematical discussions that 
would engage students in mathematical thinking about integers, and asking questions to assess 
student understanding.  Their work was informed by the research of An, Kulm, and Wu (2004) 
which they used to construct the following theory: (a) PCK is associated with teacher beliefs, 
content, knowledge and how one teaches, (b) teaching is associated with PCK and knowledge 
about students’ thinking, (c) knowledge about students’ thinking is associated with addressing 
students’ misconceptions, engaging students in math learning, building on students’ ideas, 
promoting students’ thinking about mathematics, and (d) student learning is most closely 
associated with knowledge about students but due to the interrelationship of the model, student 
learning is associated with all of the four components. 

This integrated approach of improving teacher PCK, developing the ability of teachers to 
facilitate conversations about mathematics among students in their classrooms, and the resulting 
student conversations, I propose, is vital to improving student learning. There is growing 
evidence that students in elementary, middle, and high school can reason, justify their thinking, 
make claims and warrants in a supportive classroom that is a mathematical community (e.g., 
Enyedy, 2003; Francisco & Maher, 2005; Goos, 2004; Mueller & Maher, 2009). However, 
developing this kind of environment requires expectations for behavior, norms for making claims 
and warrants, activities that promote different ideas, and facilitation of the development of 
reasoning through teacher questions to advance student thinking (McCrone, 2005). 

Most mathematics teachers are familiar with mathematical reasoning, but formal reasoning is 
often reserved for students in high school when they are taught how to construct proofs as 
mathematical arguments using accepted statements considered facts such as definitions and 
theorems established by the mathematical community.  They learn the acceptable form of 
justifying their thinking in the proof format expected by their teacher or the textbook.  However, 
Stylianides (2007) and Francisco and Maher (2005), argue that this concept of mathematical 
proof can occur as early as elementary school where students are given opportunities to reason 
and justify their thinking.  Students and teachers can collaborate to establish classroom norms for 
what is acceptable for a proof in their class community.  These experiences can be important 
prerequisites for future work with more formal mathematical proofs used by participants in the 
larger mathematics community to communicate to other mathematicians.   

Therefore, I determined that mathematical reasoning using argumentation would be an age 
appropriate activity for students in this study. My hypothesis was that teacher understanding of 
integer operations would improve by exposing them to activities that apply integers in real world 
contexts related to vector forces and temperature change and activities that explore integer 
operations using a number line. I also hypothesized that teachers would be enabled to facilitate 
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student argumentation around misconceptions after experiencing their own use of argumentation 
around misconceptions and solution strategies and creating structures for their classroom to 
facilitate argumentation. Finally, I proposed that student understanding of integer operations 
would improve when they were provided with opportunities to engage in classroom discourse 
and argumentation about doing mathematics, which would be evident by improved performance 
on a posttest compared to the pretest.  Specifically, the following research questions were 
investigated:  

 What are the general patterns of teacher content and pedagogical knowledge of 
integers based on responses to a pretest and posttest? 

 To what extent does PD impact teacher content and pedagogical knowledge as 
measured by growth between pretest and posttest? 

 Is there a significant difference between the growth between students’ pretest and 
posttest scores for 2010 compared to the growth made by students in 2009? 

 Do differences in teacher content and pedagogical knowledge explain more of the 
variance in student performance than years of teaching experience of a teacher? 

Methods 
This research was conducted during a three-week summer program for grade 8 students in a 

large urban school district in Central Texas.  This program serves students who had not passed 
the state mathematics assessment, Texas Assessment of Knowledge and Skills (TAKS) test, 
required for promotion to high school.  Each year, program administrators are challenged to find 
teachers to teach in the program.  Most of the teachers participate in summer school, so few 
remain that are available or interested in teaching in this program.  Each year there have been 
several first year teachers teaching in the program.  There is a need to ensure that the teachers 
understand the mathematics in the curriculum activities in the program as well as understand 
common misconceptions that students may have by including PCK features in the PD for the 
program.   

Participants 
There were 341 students and 22 teachers in the summer program. Twenty-one of the 22 

teachers attended the PD and consented to participate.  The age of the teachers ranged from 21 to 
63 years with an average age of 34 years. Sixty-two percent of the teachers were female. The 
average years of teaching experience for these teachers was 7 years (ranged from 1 to 31 years). 
There were 24 percent of the teachers with a masters’ degree and only 10 percent with an 
undergraduate major in mathematics. Thirty-eight percent had previously taught in this summer 
program which started the summer of 2008. 

Intervention 
This research study was considered an intervention that supplemented the current PD that 

had occurred in the past two years with additional emphasis on the development of teacher PCK 
related to integers, rather than just exposure to the student activities as was done previously. The 
six hours of PD that constituted the intervention for this study focused on improving teacher 
understanding of integers and integer operations.  During the PD, the teachers read a chapter 
from Children’s Mathematics 4-15: Learning from Errors and Misconceptions by Ryan and 
Williams (2007) entitled “Children’s Mathematical Discussions.”  The discussion among the 
teachers resulted in the selection of three important features of a classroom environment that 
would enable this kind of safe argumentation: students are accepting of wrong answers, 
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misconceptions are an opportunity to learn together, and students share their thinking and 
question the thinking of others. 

The design of the PD for this study  was also based on the guidance provided by Thompson 
and Zeuli (1999) for creating a transformative learning experience for teachers.  To create 
cognitive dissonance, several problem were provided for teachers to engage in reasoning and 
sharing of their thinking with others that would bring up questions and uncertainty that would 
need to be resolved through inquiry and discussion, and to provide sufficient time for that 
process to occur. Through these experiences teachers were challenged to support their own 
claims about their understanding of integers which deepened their understanding and enabled 
them to experience the value of argumentation. An engaging discussion broke out when two 
groups were arguing over the claim that the number line was acceptable for addition, but it was 
not a good model for subtraction.  The discussion that followed lasted almost an hour as teachers 
struggled with the meaning of representing subtraction on a number line, whether their method 
would work all the time or just sometimes, and the challenges they felt students would have with 
the model.  In the end the teachers agreed that the number line model might make more sense to 
students then other models used previously, such as the cancellation model with colored chips. 

For the purpose of this study, the curriculum for the integers unit of the program was revised 
based on a review of research literature on improving student understanding of integer operations 
to include more activities exploring integers with a number line. During the development of the 
unit, feedback was provided on improvements that could be made by university professors, 
graduate students, teachers in the district (including those who previously taught in the program), 
and the district Secondary Mathematics Supervisor.  The goal was for this revised unit to develop 
the concept of operations on positive and negative numbers in a way that connects the concepts 
to a real world experience and a number line representation that is comprehensive in its 
application to all operations of integers.  The number line revised unit for integers incorporated 
the use of vectors on a number line that integrated an application called NUMLIN on the TI-73 
calculator with publicly available lessons called “Walking the Line” from the Texas Instruments 
education technology portal.  Figure 1 provides an example of how multiplication of integers 
was explored with the calculator in these activities, where multiplication is represented as 
repeated addition or subtraction.   

 
 
 
 
 
 
 
 

Figure 1. Number line Model for Multiplication of 4 x -2  
 
The students used these number line explorations to discover the way operations on integers 
work by manipulating the vectors on the TI-73 calculator number line. The curriculum for the 
summer program also included activities from the Navigator: Positive and Negative Numbers  
curriculum module (America's Choice, 2008), which was developed to address student 
misconceptions and includes the vector number line representation.  Daily journal activities were 
written for students to practice responding to misconceptions of other fictitious students  

   -8 -7 -6 -5 -4 -3 -2 -1 0 
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Data Collected 
Teacher demographic data was collected with a short survey given to teachers during the PD. 

To measure teacher PCK, an assessment was designed based on three sources: a pre-service 
teacher’s guide entitled Fostering Children’s Mathematical Power: An Investigative Approach to 
K-8 Mathematics Instruction (Baroody & Coslick, 1998), research by Turnuklu and Yesildere 
(2007) with pre-service teachers in Turkey about their mathematical understanding of integer 
operations, and data collected in a pilot study from interviews of students in grades 7, 9 and 11 
(Varma, Harris, Schwartz, & Martin, 2008). To measure student achievement the pretest and 
posttest from the America’s Choice (2008) Positive and Negative Numbers curriculum were 
used, since they had been used for the two previous years, so that the student results of the 2010 
summer program could be compared to the results of the 2009 summer program.   

Data Analyses 
The teacher PCK assessments were scored based on a rubric created from a review of the 

responses of a volunteer sample of 13 people (teachers and graduate students). The student 
assessment was scored according to the curriculum guidelines in the teachers’ guide. A 
Hierarchical Linear Model (HLM) was used to examine the relationship between teacher content 
and pedagogical knowledge of integers and mathematics learning related to the fourth research 
question.  A two-level Hierarchical Linear Model with student math scores as the level one 
outcome variable (a within-class model) and individual class variables, such as mean math score, 
as the level two outcome variables (a between-class model) was used to determine the variance 
in student test scores from pretest to posttest as a function of their class assignment.  Classroom-
level predictors (teacher content and pedagogical knowledge of integers and years of teaching 
experience) were added into the level two models to determine whether they explained the 
variance in mean class scores and pretest/posttest performance slopes.  Because the relationships 
between variables measuring student learning are at least partially dependent on the larger 
context (the classroom) in which learning occurs, teacher PCK should partially explain the 
variance across classes, as should the years of teaching experience of a teacher. It was of interest 
to see whether PCK following PD would outweigh experience in explaining the variance across 
classes.  In addition, an independent samples t-test was used to compare the performance of 
students in the 2010 program to the previous year’s students.  

Results 
When the pretest and posttest responses of the 18 teachers were compared the change from 

pretest to posttest in teachers’ PCK was positive and statistically significant (t = 3.29, p < .01).  
There was also a statistically significant increase (t =2.37, p <.05) in teachers’ ability to explain 
the sign of the answer to the problem -5 x (-8) as shown in table 1.  Teachers also made 
statistically significant improvement (t =2.55, p < .05) in providing real world and domain 
examples of applications for integers. 
Question 
(N = 18 teachers) 

Pretest 
Mean 
(SD) 

Posttest 
Mean 
(SD) 

Difference 
(SE) 

t p-value 

Q1.  5 – (-8) .67 
(.77) 

1.11 
(.96) 

.44 
(.32) 

1.41 .18 

Q2.  -5 x (-8) .39 
(.70) 

1.00 
(.97) 

.61 
(.26) 

2.37 .03* 

Q3.  (-6) + (+7),  6 – (+7) 1.28 1.83 .56 3.34 p < .01 
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(.83) (.38) (.17) 
Q4.  4 – 7 = 3 1.44 

(.62) 
1.61 
(.61) 

.17 
(.12) 

1.37 .19 

Q5.  3 – 5, 3 + (-5) .50 
(.71) 

.89 
(.68) 

.39 
(.20) 

1.94 .07 

Q6.  Prior Argumentation 1.06 
(.87) 

1.22 
(.88) 

.17 
(.20) 

.83 .42 

Q7.  Applications  1.06 
(.54) 

1.33 
(.59) 

.28 
(.11) 

2.55 .02* 

Note.  (a) These values represent the average raw score out of 2 points earned by 
teachers on the pretest and the posttest for each question.  Teachers could earn 0, 1, 
or 2 points per question.  The total questions were worth 14 points. (b) *Statistically 
significant difference at the p < .05 level.  

Table 1. Improvement in Teacher PCK Following PD 

When the pretest and posttest performance of students in the 2010 program was compared to 
the performance of students in the 2009 program there was statistically significantly difference 
between the improvements made for the students in the 2010 program compared to the 2009 
program as shown in table 2.  

 
Percent 
Correct  
out of 100 

2010 Mean 
(n=177) 

(SD) 

2009 Mean 
(n = 177) 

(SD) 

Difference 
(SE) 

t p-value 

Pre-test 37 
(17) 

43 
(19) 

-7 
(4) 

-1.77 
 

.08 
 

Posttest 51 
(15) 

49 
(21) 

2 
(4) 

.41 
 

.68 
 

Improvement  14 
(17) 

06 
(19) 

8 
(3) 

2.20 
 

.03* 
 

Table 2. Comparison of Student Knowledge of Integers 2010 vs. 2009 
The HLM conditional model was as follows: 
 Level-1 Model 
  Yij = β0 + β1*(Pretest) + rij 
 Level-2 Model 
  β0 = γ00 + γ01*(Teacher Experience) + γ02*(Teacher PCK Pretest) +   
  γ03*(Teacher PCK Posttest) + u0j 
  β1 = γ10  

The findings for this conditional model are summarized in table 3. The findings reveal that, 
after controlling for prior student and teacher knowledge as well as teacher experience, teacher’s 
PCK significantly predicted student posttest performance (t (14) = 2.37, p = .033). Thus, as 
teacher’s post-intervention PCK increased by one point, there was a 0.22 increase in student 
math posttest performance. When comparing the conditional model to the unconditional model, 
the addition of the teacher experience, teacher pretest knowledge and teacher posttest knowledge 
covariates explained 27 percent of the variance after adjusting for differences in student pretest. 
This positive relationship between teacher posttest PCK and posttest student math achievement 
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suggests that when teachers have the necessary PCK related to integers and integer operations, 
students’ overall learning of integer concepts and procedures for solving integer operation 
problems improve.  

Parameter 
 

Unconditional Model  Conditional Model 
Estimate SE t p Estimate SE t p 

Fixed effects          
Intercept 50.79 1.73 29.28 .000  50.49 1.59 31.70 .001 
Student Pretest .44 .06 6.78 .000  .45 .06 7.03 .000 
 Mean Teacher  
 Experience — — — —  .04 .23 .17 .866 

 Mean Teacher  
 PCK Pretest — — — —  .00 .09 -.04 .968 

Mean Teacher  
PCK Posttest — — — —  .22 .09 2.37 .033 

Random effects Variance df χ2 p  Variance df χ2 p 
Intercept 33.80  17 53.74 .000  24.58 14 36.26 .001 
Level 1 variance 135.02 — — —  135.31 — — — 

Table 3. Comparison of Results of Conditional vs. Unconditional HLM Analysis 

Discussion 
The observations made during the PD were that most of the teachers were engaged in the 

activities where they experienced argumentation around representations of addition and 
subtraction of integers.  There was evidence during the stations activities, that teachers were 
already making connections as to how they could use certain activities and certain questions to 
form the problem that would be the center of the argumentation for the students. On the teacher 
PCK posttest, several teachers shared experiences with students resisting participation in 
discussions due to low confidence in mathematics and a concern about being wrong.  Others 
shared the challenges of facilitating small group discussions when one of the students was overly 
confident and verbal, causing the other students just to listen and not share their ideas for fear of 
being wrong. Twenty-four percent of the teachers admitted to not engaging students in 
argumentation. Close to 50 percent of teachers on the posttest continued to believe that the only 
way to understand why -5 x -8 was positive was because of a rule that when one multiplies two 
negatives (or an even number of negatives) one gets a positive, despite their exposure to other 
representations and strategies during professional development and through the curriculum they 
implemented with students. 

In conclusion, the professional development and curriculum modifications resulted in 
statistically significantly positive gains in teacher PCK and student achievement. The change in 
the professional development, compared to the previous year resulted in less of a focus on 
student activities and more on developing teacher PCK. As a result, teachers who were originally 
unable to explain why multiplying two negative numbers results in a positive number were now 
able to explain their reasoning conceptually on the posttest. Other teachers who did not 
differentiate between an operation of subtraction and the negative sign of a number at pretesting 
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made improvements in understanding the distinct roles of each of these components of a 
mathematical expression. The resulting positive change in teacher PCK was associated with 
positive gains in student understanding on the posttest. To have such a positive effect on teachers 
and students in just six hours of PD and three weeks of a curriculum and instruction intervention 
is encouraging for future PD development.  
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This research examined preservice teachers’ knowledge of probability and statistics.  Clinical 
interviews were conducted with 2 preservice teachers in which they solved stochastics problems 
dealing with perceptions of randomness and strategies for a probabilistic game.  Results 
highlight strengths and weaknesses of their stochastics understanding, as well as their 
perceptions of probability and statistics education in secondary schools.  The implications for 
teacher education are discussed. 
 

Purpose 
Statistics and probability (stochastics) topics have been included as essential ideas in both 

National Council of Teachers of Mathematics (NCTM) standards documents (1989, 2000).  
However, there is a concern that mathematics teachers do not have the necessary background 
knowledge for teaching stochastics (Jones, Langrall, & Mooney, 2007; Shaughnessy, 2007; 
Stohl, 2005).  This lack of knowledge is not surprising considering many elementary and 
secondary teachers have had few or no university courses or professional development dealing 
with stochastics (Stohl, 2005; Watson, 2001). 

As noted in Jones et al. (2007), there is limited research on the stochastics knowledge of pre- 
and in-service teachers.  This study aims to add to the body of research by examining the 
stochastics knowledge of two preservice teachers (PSTs).  The purpose of my research is to 
discover what they know about probability and statistics and how that knowledge will affect their 
future teaching. 

Literature Review 
In this review of the literature, I will focus on several studies that examine preservice (or in-

service) teachers’ knowledge of stochastics and how teacher education programs prepare future 
teachers of probability and statistics.  Specifically, I will highlight research concerning teachers’ 
stochastic understandings and misconceptions. 

Although there is little research on stochastics in teacher education, some studies have found 
areas of strength and weakness in PST knowledge (Batanero, Godino, & Roa, 2004; Baturo, 
Cooper, Doyle, & Grant, 2007; Canada, 2006; Koirala, 2003) and the knowledge of in-service 
teachers (Liu & Thompson, 2004; Watson, 2001). 

In Canada’s (2006) study of thirty elementary PSTs’ notions of variability, subjects were 
enrolled in a mathematics content course in which they performed various stochastic activities.  
Canada found the participants had a good understanding of the difference between theoretical 
results and experimental results.  However, a negative aspect of this understanding led 
participants to believe that if theoretical predictions did not match actual results, then all results 
are possible and equally likely.  When Canada asked subjects to evaluate statistical graphs, most 
subjects referenced the idea of average. Some focused only on average, while many also looked 
at the other three components of distributional reasoning (Canada, 2006): range, shape, and 
spread.  This study also commented on the link between proportional reasoning and probabilistic 
thinking.  “An over-reliance on proportional reasoning can lead to a restricted expectation of 
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variation, but an under-reliance on proportional reasoning can also lead to poor expectations” (p. 
42). 

Koirala (2003) focused on secondary PSTs’ use of formal and informal reasoning when 
solving probabilistic problems in both individual and paired settings.  On the individual task, 
PSTs used both formal (learned from university courses) and informal (based on intuitions and 
experiences) probabilistic reasoning.  When in pairs, the PSTs wanted to use formal reasoning.  
When a formal thinker (from the individual task) was paired with an informal thinker, the formal 
thinker began the conversation and the informal thinkers agreed with their partners’ solutions.  In 
final individual interviews, all eight subjects initially offered formal reasoning.  However, one 
informal thinker changed her mind and reverted to her informal (incorrect) answer in which she 
used a representative heuristic.  In a similar but more difficult problem, only three of the PSTs 
used formal reasoning.  The author attributed these inconsistencies to “conflict between their 
informal beliefs and their mathematical knowledge of probability” (Koirala, 2003, p. 153).  Even 
students with a thorough math background did not have a complete understanding of probability.  
Many were likely to solve a problem incorrectly despite having the requisite formal reasoning 
required to solve the problem.   

Koirala’s (2003) results show the differences in reasoning when students are working alone 
or with a partner.  However, she seems to imply that formal reasoning always led to correct 
solutions, while informal reasoning did not.  It was not clear why Koirala seemed to think formal 
reasoning was always the preferred solution method. 

In Liu and Thompson’s (2004) work with eight high school teachers, they found their 
subjects held many viewpoints on probability, including using subjective judgment, not knowing 
a solution because the predicted event has not actually occurred, and a formal stochastic 
viewpoint.  Positive findings included that teachers understood how variability decreases as 
sample size increases.  Negative results showed that the teachers were not familiar with 
hypothesis testing, even though some of the teachers were required to teach that topic. 

The study (Liu & Thompson, 2004) also found that some teachers thought that a probabilistic 
situation could have multiple interpretations, while others did not. Both groups, though, wanted 
to find the “correct answer”.  In trying to find those answers, the teachers trusted solutions by 
those they viewed as experts, but they were not confident in their own reasoning.  Despite the 
discussions on formal probability theory, the teachers thought a correct answer could always be 
determined using a computer simulation.  The teachers’ reliance on computer models is 
interesting, because the teachers stated they believed students learned about probability by 
simply hearing the concepts explained correctly.  “This way of teaching was also projected by 
the ways in which teachers negotiate meanings.  We found that teachers often dismissed the 
opposing point of view as “mistakes”, convincing others that they are wrong by telling them they 
are wrong, instead of trying to understand the other person’s intention” (Liu & Thompson, 2004, 
p. 6). 

Through the implementation of a self-designed survey, Watson (2001) sought to understand 
teachers’ strengths, weaknesses, and opinions on the teaching of stochastic topics.  Her subjects 
were 28 secondary and 15 primary level teachers in Australia.   

When asked to identify important factors for teaching chance & data, teachers’ responses 
were grouped into four themes: teacher, student, content, and school issues.  Twelve teachers 
listed similar topics as being the most enjoyable for their students and their selves: graphing, 
normal distribution, surveys and data collection, analyzing and interpreting data, and various 
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topics in probability.  Many teachers said their students enjoyed hands-on activities such as 
probability games. 

Teachers rated nine topics by their confidence in teaching each topic, ‘odds’ had the lowest 
mean, ‘graphical representation’ had the highest.  All mean confidence ratings by secondary 
teachers were higher than the highest mean by primary teachers except ‘odds’. Secondary 
teachers were significantly more confident about six topics: equally likely outcomes, average, 
basic probability calculations, median, graphical representation, and sampling.  The difference in 
confidence levels was attributed to stronger mathematical backgrounds of the secondary 
teachers. 

In one section of the survey, Watson (2001) asked participants to read stochastic problems, 
anticipate different ways students might respond, and explain how they might use this problem in 
teaching their classes.  The author compared teacher responses with actual student responses to 
these same questions.  In a problem dealing with odds, teachers successfully anticipated student 
answers. 

Baturo et al.’s (2007) study highlighted some misconceptions held by elementary PSTs.  The 
subjects were given a task in which they had to determine if a spinner was fair and confirm their 
answer by using three testing methods.  After examining the spinner, only 41.9% of the 
participants correctly thought the spinner was fair.  After using the first testing method (an 
overlay that divided the circle into 6 equal parts), many maintained the spinner was unfair, even 
though they could see that each color had an equal area.  After performing & recording trials 
using the spinner, many teachers were still not convinced of the spinner’s fairness.  Baturo et al. 
attribute this to the PSTs’ deterministic view of mathematics that would not validate a result that 
did not show exactly a third of the trials resulting in each color. 

 
Methods 

My initial goal for this study was to conduct a teaching experiment in which I would observe 
PSTs as they worked through a series of stochastics problems.  I wanted to recreate Batanero et 
al.’s (2004) study, and compare their results with mine.  Due to time limitations, my research 
was not a full-scale teaching experiment, but rather consisted of two separate clinical interviews 
in which I simulated the two learning experiences described by Batanero et al. (2004). 

Batanero et al.’s study focused on preservice primary and secondary teachers enrolled in a 
mathematics methods course.  All PSTs were statistics majors in their fourth or fifth years of 
study at the University of Granada in Spain.  Throughout the course, the PSTs engaged in 
learning activities designed to engage them in learning and discussion of probability and 
statistics topics.  The two activities presented in the study (Batanero et al., 2004) dealt with 
perceptions of randomness and developing a winning strategy in a probabilistic game.  These 
experiences highlighted the PSTs understandings and misconceptions concerning stochastics 
topics. 

The participants in my study were two PSTs enrolled in a master’s of education program at a 
large southeastern university in the United States.  Both students, Anna and Eric, majored in 
mathematics and took Statistics for Engineering as undergraduates.  Neither PST had taken a 
teacher preparation course focused on probability and statistics. 
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Results 
In this section, I will describe the learning activities and results from my clinical interviews, 

as well as report the findings from Batanero et al.’s (2004) research.  The first task (Figure 1) 
concerns perceptions of randomness.  
Perceptions of Randomness 

Some children were each told to toss a coin 40 times. Some did it properly. Others just made 
it up. They put H for Heads and T for tails. These are Daniel and Diana's results:  

 
Daniel: H T H T T H H T H T H H T T H T T H H T T H T H H T T H T H T H T H T H T 

T H T  
Diana:  H T T T H T T H T H T T T H T T T T H H T T T H T T H T T H T T T T H T T T 

H T  
 
Did either or both Daniel or Diana make it up? How can you tell?  
 

Figure 1.  Perception of randomness task.  Batanero et al. took this task from Green (1991). 
I told the PST this task had been used with secondary students to understand their ideas about 

randomness.  The PST then gave their thoughts on this task.  Both PSTs began by comparing the 
number of heads and tails in each sequence.  They saw both patterns as possible, but each said 
that Daniel’s was more probable because the outcome was closer to the expected number of 
heads and tails for forty coin tosses.  In order to learn more about Eric and Anna’s 
understandings, I asked them for their thoughts on the patterns of the sequences.  Even with 
leading questions, they confused the probability of a certain sequence of heads and tails with the 
total outcomes of heads and tails.  This finding is similar to Batanero et al. (2004); they also 
found that students recognized frequency properties more easily than run properties. 

Next, I presented the PST with data from secondary students’ work with the initial task as 
shown in Table 1.  The results show that more students considered Daniel’s sequence to be 
random, as well as differences between the 14- and 18-year-olds’ responses.  When asked to 
explain the students’ thinking, Anna said that more students think Diana is cheating because they 
believed it was unlikely for her to obtain four tails in a row.  This is the first mention of the 
pattern of the outcomes as opposed to the count of heads and tails.  Anna did not see a noticeable 
difference between the younger and older students.  Eric studied the table quietly for a few 
moments, and then noticed that a higher proportion of older students responded, “I don’t know.”  
He explained that more 18-year-olds might understand there is no way to actually tell whether 
Daniel or Diana cheated, because each sequence is a possible outcome.  He went on to discuss 
how some students, possibly the 14-year-olds, would have a more rigid belief that when flipping 
coins, heads should occur close to (or exactly) half of the time.  This idea is mentioned in the 
original study (Batanero et al., 2004), “Whilst a student can think he/she has ‘proven’ that a 
sequence is random, the statistician would just say that there is no reason for rejecting the 
sequence randomness” (Section 4.3, last para.).  Batanero et al. (2004) did not report specific 
PST responses to the table, but they described how changes in the sequences or wording of the 
task might lead to different student results. 
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 14 year-old 18 year-old 

 (n=147)  (n=130)  

Response Daniel  Diana  Daniel  Diana  

He/she made it up 54 (37%)  83 (56%)  30 (23%)  63 (49%)  

He/she did it correctly 86 (58%)  53 (36%)  82 (63%)  48 (37%)  

I don't know 7 (5%)  11 (8%)  18 (14%)  19 (14%)  

Note. This table shows the responses to the previous question obtained by Serrano (1996) 
from 277 secondary school students.  

Table 1.  Frequencies and percentages of secondary school students' answers. 
The final discussion of the task occurred after I showed examples of student reasoning 

(Figure 2) to the PST.  Both Anna and Eric explained what a student might be thinking if they 
gave each of the three responses.  I then asked them to put themselves in the role of a teacher, 
and to consider what they would do with students to continue to explore the idea of randomness.  
Both of the PSTs suggested letting student perform the coin flipping activity in class.  Anna 
would have her students compile their results and compare the aggregate data with the original 
data.  This would help students see the likelihood of obtaining Daniel or Diana’s results.  Eric’s 
reasoning behind performing additional trials was to show students that it is possible to obtain 
many heads or tails in a row.  He was concerned that students would not believe that a long 
sequence of heads was possible unless they saw it happen.  During this discussion, Eric brought 
up the idea of the gambler’s fallacy, and mentioned that he would observe the students to see if 
they held that misconception. 

Batanero et al.’s (2004) results focus mainly on how secondary students interacted with this 
problem.  They explain how students consider irregular patterns and even distributions as 
indicators of randomness.  Students considered Diana’s outcome as too different from the 
expected outcome, so they labeled her as the cheater.  For students who analyzed the runs, they 
either thought Diana’s was too irregular to be random, or Daniel’s was too regular to be random. 

Some reasons given by students in Serrano’s (1996) research to justify that Daniel or Diana 
were cheating were the following:  

• The sequence pattern is too regular to be random, results almost alternate;  
• The frequencies of heads and tails are too different;  
• There are too long runs; heads and tails should alternate more frequently.  

Figure 2.  Explanations of randomness task responses. 
Strategy for a Probabilistic Game 

The second activity began with the description of a game shown in Figure 3.   
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We take three counters of the same shape and size. One is blue on both sides, the second is 
red on both sides and the third is blue on one side and red on the other. 

We put the three counters into a box, and shake the box, before selecting a counter at 
random. 

After selecting the counter, we show one of the sides. The aim of the game is to guess the 
color of the hidden side. We repeat the process, putting the counter again in the box after each 
new extraction. We make predictions about the hidden side color and win a point each time our 
prediction is right.  

Figure 3.  Description of probability game. 
After making sure the PST understood the game, I explained how we would be using Fathom 

statistical software (Finzer & Swenson, 2001) to create a simulation of the game.  Each game 
would consist of ten trials, so I gave the PST a sheet of paper to record their responses and 
outcomes (Figure 4).  The purpose of the activity was to devise a winning strategy for the game. 

 

Figure 4.  Game score sheet. 
Anna discovered the correct winning strategy immediately.  She realized that if she predicted 

the same color as the seen color, then she would have a two-thirds chance of winning each trial.  
Before we played the game a second time, I asked her how many trials she expected to win.  She 
said she would win about five or six of the ten trials.  I asked her to elaborate, because she earlier 
she had mentioned a two-thirds probability.  Anna explained that theoretically, she would win 
66.6% of the time using her strategy.  Since someone cannot win exactly two-thirds of ten 
games, she expected to win around six or seven games in each round.  Anna pointed out that 
even with using the strategy, there could be a variety of outcomes, but on average, she expected 
to win two-thirds of the time. 

It took Eric a few rounds to realize the winning strategy of the game.  He was focused on the 
total reds and blues in the bag.  Since there were three red sides and three blue sides, he correctly 
identified the probability of the counter being either color was one-half.  I asked guiding 
questions to lead him to the correct strategy.  Upon further review of the interview recording, I 
believe that I did not explain the game well and Eric did not realize I wanted him to develop a 
strategy.  His thinking was at first centered on the final outcome of the counter, without 
regarding the ‘seen’ side.  After Eric discovered the winning strategy, he was able to prove why 
the strategy worked.  He used a tree diagram to help him understand the probability and justify 
his reasoning. 

Batanero et al. (2004) found that less than half of the PSTs chose the correct strategy at 
beginning of game.  They were given class time to discuss their strategies and try to convince 
each other of their reasoning.  Even after most of the teachers came to the solution, not all could 
provide mathematical justification for why the strategy worked.  This was surprising to the 
researchers because of the simplicity of the problem and the strong statistics training of the PSTs. 
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Finally, I showed Eric and Anna some of the strategies used by the PSTs in Batanero et al.’s 
study (2004) which are displayed in Figure 5.  The PSTs gave examples of student conceptions 
that would lead them to each of the strategies.  They also gave suggestions on how they might 
lead the student to discover the correct strategy.  Using this problem with a group of students, 
both PSTs suggested playing the game multiple times and aggregating the win and loss data for 
various strategies employed by students. 

 
Common strategies in this game are:  

A: Predicting red and blue alternatively;  
B: Choosing red (blue) in all the trials  
C: Predicting the color at random;  
D: Two blues, one red (or something similar)  
E: Predicting the color shown on the visible side  
F: Predicting the color contrary to that shown on the visible side.  

Figure 5.  Possible strategies for the game. 
 

Conclusions 
Although my study only considered two PSTs, I present some information that leads us to a 

better understanding of the stochastic knowledge of PSTs.  Both PSTs in the study see the 
importance of teaching probability and statistics.  Eric feels comfortable with teaching it, while 
Anna does not; however, both PSTs have strong content knowledge that will help them in the 
classroom.  Even more encouraging is the way that each PST engaged with the mathematics.  
They seem confident that they can reason through a stochastics problem to find the solution, 
even if they do not initially have a strategy.  I was also pleased that both PSTs stressed the 
importance of experimentation when learning probability and statistics.  The idea of teaching 
rules or formulas was not suggested in either PST conversation. 

Another outcome I noticed is that neither PST used much probability and statistics 
vocabulary to describe their thoughts.  For example, although both PSTs discussed the idea of 
variability, neither one used the term.  In addition, Anna and Eric were both not familiar with the 
term ‘sample space’.  They both seem to have a strong stochastics understanding, but I would not 
be surprised if they did not score high on a probability test, given their unfamiliarity with the 
vocabulary.  The difference between test scores and actual problem solving ability might be an 
interesting area for further research. 

Another possible topic for further study is to summarize the stochastics experience of 
mathematics teachers during their undergraduate, graduate, or in-service trainings.  I would like 
to see if certain mathematics education courses made teachers more comfortable and competent 
at teaching probability and statistics topics. 

In conclusion, the results of my study show promise for the future of stochastics education.  
More work must be done to ensure that all teachers are prepared to teach this important part of 
the mathematics curriculum. 
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Reasoning informally about statistical inference is being able to make inferences about data 
without using any formal statistical method or procedure. In this paper we aim to share a 
probabilistic inference framework we developed to describe how students’ informal probabilistic 
inference changes while being exposed to instruction. The study investigated changes in six 
middle school students’ reasoning before, during, and after a 12-day instructional sequence 
using a probability simulation software tool. Findings indicate that students are more aware of 
the effect of sample size when drawing conclusions and making probabilistic inference at the end 
of the instructional program. 

Introduction 
Interpreting data and being able to use it to make predictions and decisions are essential tools 

in order to be informed, educated, and competent citizens in our modern society. Individuals 
must have the ability to critique, interpret, evaluate, and express their own opinion about the 
information they receive (Shaughnessy, 2007). Being able to evaluate evidence (data) and claims 
based on data is an important skill all students should learn as part of their educational programs 
since they will need to informally infer conclusions from data presented through different 
representations (e.g., tables, graphs) by the media  in their everyday lives. According to 
Shaughnessy (2007) research has started to pay attention to students’ understanding of statistics 
and students’ statistical thinking. Building informal notions of inference within statistical and 
probabilistic contexts has been advocated for over the past decade within the U.S. (NCTM, 2000; 
CCSSO, 2010). 

Theoretical Foundations 
Many authors have described informal statistical inference in different ways. Rubin, 

Hammerman, and Konold (2006) described it as a reasoning that involves consideration of 
properties of aggregate including signal and noise and types of variability, the effect of sample 
size on the accuracy of population estimates, and controlling for bias in order to get a sample that 
is representative of the population. Zieffler, Garfield, delMas, and Reading (2008) defined it as 
the way students use argumentation and data-based evidence to support the connections they 
build between observed sample data and the unknown population. Pfannkuch (2005) stated that 
statistical inference is concerned with drawing conclusions about specific characteristics of a 
particular population based on evidence obtained by a sample. The authors have defined informal 
statistical inference as making generalizations beyond the data, using proper language, 
argumentation, and data-based evidence to support their findings. The inference is informal in 
the sense students have not had any formal instruction of methods of statistical inference. 

A wide selection of studies have been conducted in order to study students’ informal 
statistical inference (Ben-Zvi, 2006; Rubin et al., 2006; Shaughnessy, 2007). Research has found 
that even young children can collect data, display it in an adequate way, and make inferences 
about the underlying population based on the data collected. Most of these studies have had 
students using dynamic statistical software to analyze data and make informal statistical 
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inference about a specific characteristic of a population based on a collected sample. For 
example, in Ben-Zvi’s (2006) study, students were asked to make generalizations about height 
and arm span using data students collected through a questionnaire among peers.  

Probabilistic inference is also based on data collected and the main objective is to predict the 
underlying probability distributions, obtained theoretical or empirically through experimentation 
or simulations.  Probabilistic inference has been widely used with students in contexts where a 
theoretical probability distribution can be easily estimated (i.e., coins, dice, and spinners) (Jones, 
Langrall, Thornton, & Mogill, 1997); but how do students reason about situations where a 
theoretical probability distribution is not easily estimated? According to NCTM (2000), “through 
the grades, students should be able to move from situation for which the probability of an event 
can readily be determined to situation in which sampling and simulations help them quantify the 
likelihood of an uncertain event” (p. 51). Probabilistic inference can be use as a preamble to 
informal statistical inference, starting with contexts in which the theoretical probability is known, 
and then moving to situations in which a theoretical probability is unknown where sampling and 
simulations can be used to quantify the likelihood of an uncertain event.   

From a wide selection of research on students’ statistical informal inference a narrow 
selection have examined the growth of students’ probabilistic reasoning while being exposed to 
instruction (Jones et al., 1997; Shaughnessy, 2007; Stohl & Tarr, 2002), and only a few have 
used technology as a tool for students to carry out simulations (e.g., Lee, Angotti, & Tarr, 2010; 
Pratt, Johnston, Ainley, & Mason, 2008; Stohl & Tarr, 2002). Various technology tools have 
been used with positive results to study students’ probabilistic reasoning. Of importance to our 
work, the results of these studies have shown that using simulation tools help students develop a 
better understanding of empirical probability, particularly the importance of sample size in being 
able to make generalization beyond data. 

This study intends to bring some insights on how students develop important concepts in 
probabilistic inference, and how they may be  influenced by instruction. In particular, we seek to 
answer the question: How do middle school students’ ability to make probabilistic inferences 
change over the course of instruction? 

Methods 
The data in this study was part of a larger study that took place in a public middle school in 

the southern United States. A 12-day instructional program engaged an average-level 6th grade 
mathematics class (n=23) in a probability unit using Probability Explorer (Stohl, 1999-2002) as 
a simulation tool during the first month of classes (see Stohl & Tarr, 2002, for details on the 
instructional design). Prior to instruction, six students were carefully selected to be used as case 
studies. The selection was based on students’ scores from two tests: a standardized mathematics 
achievement test, and a pretest on probability concepts. The students were chosen by their 
relatively consistent ranking on both tests (high, middle, low). The six students included four 
boys (two Caucasians, one Hispanic, and one African-American) and two Caucasian girls. Six 
sources of data collected in the larger study were used for the current focused study: a pre-
interview and a post-interview of six case study students, students’ worksheets, a pre-test, post-
test, and a retention test. The pre-test was used to obtain evidence about students’ knowledge of 
probability and students’ informal statistical inference before instruction. After the pre-test, but 
before instruction started, semi-structured interviews were conducted with six case study 
students. During instruction, students worked in pairs and completed a series of tasks and 
recorded their work on handouts. Immediately after the instructional sequence, a post-test was 
given that was parallel in construction to the pre-test. Within a week after the last day of 
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instruction, a post-interview was conducted with the six case study students. Ten weeks later a 
retention-test was administered. After examining all sources of data,13 tasks, some from each 
data source, were selected to be used to more closely analyze for evidence of students’ 
probabilistic inference (see Table 1). Tasks were selected based on whether or not students were 
explicitly asked to make inferences and whether or not responses from all six students were 
gathered. 

Task and 
Sources Context Concepts/Constructs 

Task1PreT 
Task2PreT  
(Pre-Test) 

Fairness of an old 
buffalo nickel found 
on the street. 

• Importance of sample size. 
• Variability within and across samples.  
• Propose data collection (sample size larger than 50) and how 

data would be analyze (looking at the distribution). 

Task3PreI  
(Pre-Interview) A bag of marbles • Given the total number in the bag, predict its content. 

• Importance of sample size. 

Task4PreI 
(Pre-Interview) 

Estimate the 
likelihood a plastic 
cup would land upside 
down. 

• Estimate proportion of unknown population. 
• Importance of sample size in order to make generalizations 

beyond the data collected. 

Task5Inst 
(Instruction) 

Bag of Marbles with 
known total, but 
unknown content 

• Given the total number in the bag, predict its content using PE 
• Importance of sample size. 

Task6Inst 
(Instruction) 

Fish in Lake with 2 
types of fish, but 
unknown total 

• Estimate proportion of unknown population. 
• Importance of sample size. 

Task7Inst 
(Instruction) 

Decide whether or not 
the dice produced by 
certain companies 
were fair or not  

• Estimate proportion of unknown population 
• Importance of sample size. 
• Variability within and across samples  

Task8PostT 
Task9PostT 
(Post-Test) 

Bottle cap found in the 
sidewalk. Is it fair? 

• Importance of sample size. 
• Variability within and across samples. 
• Propose data collection (sample size larger than 50) and how 

data would be analyze (looking at the distribution). 

Task10PostI 
(Post-Interview) 

Two flavors in the jar. 
Proportion of each 
flavor? 

• Given the total number in the bag, predict its content using PE 
• Importance of sample size. 

Task11PostI 
(Post-Interview) 

Estimate likelihood 
toothpaste cap would 
land upside down 

• Estimate proportion of unknown population. 
• Importance of sample size. 

Task12RetT 
Task13RetT 
(Retention Test) 

Fairness of unusually 
shaped button 

• Importance of sample size. 
• Variability within and across samples. 
• Propose data collection (sample size larger than 50) and how 

data would be analyze (looking at the distribution). 
Table 1. Tasks and items selected from the sources of data 

Development of a Probabilistic Inference Framework 
In order to characterize the complexity of students’ ability to make informal statistical 

inference within a probabilistic context, it was necessary to develop a coherent framework. 
Although several frameworks were found in the literature (Jones et al., 1997; Makar & Rubin, 
2009) there was not a framework to study students’ inferential reasoning in a probabilistic 
context. Similar to the frameworks developed by others, we based our framework on the SOLO 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1069



Taxonomy (Biggs & Collis, 1982). The SOLO (Structure of the Learned Outcomes) Taxonomy 
postulates that all learning occur in five modes of functioning: sensorimotor, ikonic, concrete 
symbolic, formal, and post-formal. The growth within each mode is characterized through a 
learning cycle. The sequence of levels refers to a hierarchical increase in the structural 
complexity of the responses in a particular mode and can be used to classify the outcomes of 
learning within any given mode. The five levels of response within each mode are: (1) pre-
structural – the learner is frequently distracted or mislead by irrelevant aspects of the situation; 
(2) uni-structural – the learner focuses on the problem, but uses only one piece of relevant 
information; (3) multi-structural – the learner uses two or more pieces of data without perceiving 
any relationship between them; and (4) relational – the learner can now use all data available, 
integrating each piece of information. 

Comparing the literature on students’ informal statistical inference there are similarities and 
differences in the key principles researchers believe are important when investigating how 
students reason about informal statistical inference. We identified three constructs as important 
key principles to be included in the framework: generalization, variability, and investigation (see 
Gonzalez, 2010, for details about the development of the framework). Once an initial draft of the 
framework was developed based on the research literature, successive refinements were made 
through sampling students’ work on a task and considering how well the categories characterized 
their work. A sample of tasks was separately coded by both authors and when disagreement 
existed, the authors discussed the coding in order to reach agreement. Several back and forth 
coding and refinements were made to result in the final framework shown in Table 2. For each 
construct, a brief description is included for what was expected for each of the four levels.  
 Pre-structural Uni-structural Multi-structural Relational 

G
en

er
al

iz
at

io
n 

(G
) • Makes 

generalizations 
based on their 
previous 
experiences and 
their intuitions. 
Ignores sample 
size. 

• Makes 
generalizations 
based on a single 
part of the 
information given 
ignoring the others. 

• Makes generalizations 
based on most of the 
given information or data 
collected but still 
ignoring others. 

• Make generalizations 
based on all the 
information given or 
the data collected. 
Recognizes the 
importance of large 
samples to make 
generalizations. 

V
ar

ia
bi

lit
y 

(V
) 

• Attributes 
variability to 
luck or chance 
in all contexts. 
No recognition 
that variability 
can be 
described/contr
olled. 

• Recognizes 
variability among 
individual results 
within a single 
sample (e.g., I got 
more 5’s than 3’s). 

• Has low expectation 
of variability from 
an expected 
distribution based on 
some theoretical 
probability 
distribution. 

• Recognizes variability 
among individual results 
within a single sample 
and recognizes 
variability across 
different samples (e.g., 
last time I got more 5’s, 
this time I got more 1’s).  

• Has a better sense of 
expecting some 
variability from 
theoretical probability 
distributions, but may 
expect too much 
variability. 

• Recognizes 
variability within and 
across samples and 
relates variability to 
characteristics of the 
underlying 
probability 
distribution. 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1070



In
ve

st
ig

at
io

n 
(I

) 
• Does not 

propose a data 
collection 
process 

• Believes 
sampling does 
not tell you 
anything about 
the underlying 
population. 

• Proposes a data 
collection process, 
either appropriate or 
inappropriate (e.g., 
uses a small sample 
size), and does not 
describe how to 
assess the results. 

• Proposes an appropriate 
or inappropriate data 
collection process and 
describes how the results 
could be analyzed, 
although not using the 
most appropriate 
approach. 

• Proposes an 
appropriate data 
collection process 
(e.g., a large sample 
size) and describes 
how the results will 
be analyzed (e.g., 
from the distribution 
of the outcomes) 

Table 2. The Probabilistic Inference Framework  
Once a final coding framework was developed, each of the 13 tasks for each of the six 

students was coded by the first author. A sample of 2-3 tasks for each student was selected for 
the second author to code in order to provide reliability checks. At this point in the coding, it was 
rare for there to be disagreements between coders. When a few disagreements arose, the 
researchers discussed reasoning behind the codes until a final agreed-upon code was reached. 

For the purpose of this paper, we are focusing on students’ informal probabilistic inference 
within the generalization construct. Generalization builds upon the ability students have to move 
from looking at individual cases to look at the data as an aggregate and beyond. Generalization is 
making a claim about the aggregate that goes beyond the data (Makar & Rubin, 2009). Statistical 
generalizations are abstractions from particular cases (sample) that are applied to a broader set of 
cases (population). Generalizations should not be based on intuitions or previous experience; it 
has to have data as evidence. This evidence should provide information about the plausibility of 
students’ claims or predictions. Students could provide graphs, tables, or any other representation 
they believe would help them support the generalizations they are making. In making 
generalizations beyond the data students should take into account the size of the samples they are 
using to draw their conclusion. At higher levels, it is expected that they change their perceptions 
about the role sample size plays when making inferences as well as how to use the information 
obtained through the simulations to draw their conclusions and generalizations. 

Results 
The generalization construct was used to observe the way students were making 

generalizations beyond a data collected. Some students used their intuitions and ignored the fact 
that sampling could provide a good estimation about the underlying population distribution. 
Others reasoned and made generalizations based on small samples using the “total weigh 
approach” strategy (Lee, 2005). And others, although not reasoning appropriately about how to 
use the result to make generalizations about the underlying population, did propose a large 
sample size. Table 3 illustrates the assigned levels used to characterize each student’s responses. 
The levels are represented with the letters P (pre-structural), U (uni-structural), M (multi-
structural), and R (relational). All names are pseudonyms; Lara and Dannie composed the high-
scoring group, Manuel and Brandon the average-scoring group, and Greg and Jasyn the low-
scoring group.  

During all the pre tasks (Task1PreT through Task4PreI) Lara reasoned at a pre-structural 
level, she was not paying attention to sample size and was not using the distribution of the 
outcomes to make generalizations. For example on Task1PreT, when given data that a coin was 
tossed 1000 times resulting in 643 tails and 357 heads and asked if the coin was fair, she 
concluded a coin “can always be a fair coin unless it always lands on one side.” This represents a 
pre-structural level response because she ignores the large sample size and seems to base her 
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reasoning on an intuition that if  both sides of the coin occur it is a fair coin. During instruction 
(Task5Inst through Task7Inst) her reasoning increased to a multi-structural level, as she 
demonstrated attention to sample size and using the distribution of outcomes to make 
generalizations, although not in the most appropriate way. She continued on a constant level of 
reasoning toward the end of the unit. 

A similar pattern is observed in Dannie’s generalization reasoning. She started either making 
no generalizations or using small samples to infer characteristics from an underlying population, 
and during and after instruction she reasoned at a multi-structural level, using a larger sample to 
make a generalization and using the distribution of outcomes in some way to assess results. As 
an example, during Task1PreT she concluded a coin was unfair because the outcomes “should be 
closer to even.” This is evidence of her reasoning at a uni-structural level because although she 
used the distribution to make a generalization, she did not attend to sample size. During 
Taks8PostT, after a bottle cap was tossed 10 times she did not make a generalization stating that 
“it’s a small amount of times you flipped it,” but after 1000 tosses she said the bottle cap was 
unfair because the outcomes “should have been closer to be fair” reasoning at a multi-structural 
level because she is paying attention to the distribution. Dannie’s reasoning was observed to be 
in the highest level (relational) during Task12Ret where she used several aspects of the situation, 
making connections about the different samples. In general, Lara and Dannie seemed to be able 
to maintain at least a multi-structural level of reasoning through instruction and post instruction 
assessments. 

 Individual 
Pre-Test 

Individual 
Pre-

Interview 

Paired Work 
with Software 

During 
Instruction 

Individual 
Post-Test 

Individual 
Post-

Interview 

Individual 
Retention 

Test 

Task 

Ta
sk

1P
re

T 

Ta
sk

2P
re

T 
 

Ta
sk

3P
re

I  

Ta
sk

4P
re

I  

Ta
sk

5I
ns

t 

Ta
sk

6I
ns

t 

Ta
sk

7I
ns

t 

Ta
sk

8P
os

tT
 

Ta
sk

9P
os

tT
 

Ta
sk

10
Po

st
I 

Ta
sk

11
Po

st
I 

Ta
sk

12
R

et
T 

Ta
sk

13
R

et
T 

Lara P P P P U M M M M M M M M 
Dannie U P U P M M M M M M M R M 
Manuel U U P U M M R P U M U P M 
Brandon P P U P M M R P P M U R U 

Greg U P M U M M M U M R M M M 
Jasyn U P U P M M M U U R U U P 

Table 3. SOLO Levels for Generalization construct before, during and after instruction.  
 

Manuel and Brandon, the average-scoring pair, reasoned at either a pre-structural and uni-
structural level during the pre tasks and showed an increase in their level of reasoning moving to 
the multi-structural and relational levels during the instructional tasks. For example on 
Task1PreT, when given data that a coin was tossed 10, 100, and 1000 times, Manuel generalized 
the coin was unfair paying no attention to sample size. This is evidence he was reasoning at a 
uni-structural level. During Task12RetT, when asked how to determine if an odd-shaped button 
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was fair Manuel specified he would have “flipped [the button] 50 times and saw the outcomes.” 
Since he is considering sample size and using the outcomes he was coded as reasoning at a multi-
structural level. With Manuel and Brandon the mode of engagement in the task enhanced their 
reasoning, having a steady performance during the instructional tasks where they worked 
together as a pair and had access to the software. Their inconsistencies in levels of reasoning on 
the post tasks indicate that they were capable of reasoning at higher levels (M and R) on some 
tasks, but that perhaps they did not see the need to apply their understanding of generalization in 
all tasks.  

Jasyn’s level of reasoning was often coded as uni-structural, with only two pre-structural 
instances (Task2PreT and Task13RetT) and one relational instance (Task10PostI). The 
questioning by the interviewer within this particular task in the post-interview seemed to 
encourage him to reason at a higher level. His reasoning demonstrated to be stable and higher 
during the instructional tasks when he was working with Greg. Greg’s level of reasoning 
increased from the pre tasks to the instructional tasks. His level of reasoning was mostly uni-
structural during the pre tasks (with the exception of Task3PreI) and multi-structural during and 
after instruction (with the exception of Task8PostT and Task10PostI). 

Overall, students’ reasoning in the generalization construct increased through experience 
with instruction focused on informal inference.  The students were more aware about the 
importance of sample size and were able to use the distribution of outcomes to make 
generalizations. They seemed to be recognizing that sampling could be used to gather 
information that could help them make inferences about an underlying population. Within this 
construct students reasoned at a higher level during the instructional tasks and the interviews 
than on individual written assessments. 

Discussion 
Growth in the ability to make probabilistic inference means for the student to be able to make 

generalizations beyond the data using an empirical distribution to make predictions about a 
theoretical probability distribution, recognizing the importance of sample size and types of 
variability, and, when possible, their abilities to propose an investigation process. All tasks 
included in the analysis asked students to make generalizations beyond the data; from predicting 
the distribution of a bag of marbles (knowing the total of marbles as well as how many different 
colors were in a bag) to estimating the probability distribution of a die sold by a certain 
company. Some students used their intuitions and ignored the fact that sampling could provide a 
good estimation about the underlying population distribution (Rubin et al., 2006). Others 
reasoned and made generalizations based on small samples using the strategies mentioned by 
Lee (2005) such as the “total weight approach.” And others did propose a large sample size, 
although not always reasoning appropriately about how to use the results to make generalizations 
about the underlying population,. 

Recognizing the importance of sampling and sample size is one of the biggest problems with 
informal inference (Pfannkuch, 2005). For most of the time, these six students believed that 
either small or large samples were representative of the underlying population. Even during the 
instructional tasks, they often used several samples of small sizes to predict the distribution of 
the colors in the bag of marbles, and to estimate the proportions of Blue Bass fish in the Mystery 
Fish on a Lake task. Through the study, students used small samples (n=4) and very large 
samples (n=5000). During the pre tasks (Task1PreT through Task4PreI) most of the students 
were not aware of the importance of sample size in order to draw inferences about the underlying 
population. Only one was able to recognize it was not appropriate to use a sample of size 10 to 
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make inferences about the underlying population.  Five out of six students only used the “total 
weight approach” discussed by Lee (2005) during the pre tasks. 

The use of the Probabilistic Inference framework provided insights about how middle school 
students reason about informal probabilistic inference. The framework could also be used in 
future research and curriculum development in statistics education that intends to facilitate 
students’ reasoning about important aspects of probabilistic inference, such as, generalization 
beyond data, variability, and the investigation process. By attending to and coordinating different 
constructs within informal inference, researchers and teachers may be able to design better tasks, 
assessment items that facilitate informal probabilistic inference and lead to a better 
understanding of such reasoning may develop across ages or grade bands. 
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Introduction 

The essence of probability is uncertainty, which lies in stark contrast with the typical 
problems encountered in mathematics, which are deterministic. Probability can be defined as or 
framed along a continuum where some things will occur with certainty to the other end of the 
continuum where some things will never occur. The ability to confront and make decisions under 
uncertainty is a useful skill in our data rich world in addition to addressing uncertainty within our 
personal lives. The importance of probability and data analysis as a part of the K-12 curriculum 
is apparent by its inclusion in the National Council of Teachers of Mathematics (NCTM) 
Principles and Standards for School Mathematics (2000; also see NCTM,1989). Before the 
NCTM embraced data analysis and probability, early research on probabilistic learning in 
children, went for the most part, unnoticed by educators, but was embraced by psychologists 
(e.g., Piaget & Inhelder, 1975).   

Earlier research addressed heuristics as a strategy that people used to reduce a complex task 
into a simpler task in order to assess probabilities or predict values when making decisions under 
uncertainty (Tversky and Kahneman, 1982a). Later research noted the complexity of reasoning, 
when people make decisions under uncertainty that extended beyond the heuristics people use as 
identified by Tversky and Kahneman (Shaughnessy, 2003; Konold, 1988). More recent research 
addressing the curriculum and the teaching of probability examines the initiatives taking place in 
the U.S., Australia, and the United Kingdom (see Jones, Langrall, and Mooney, 2007).  
However, research addressing the probabilistic reasoning of preservice teachers, which 
curriculum and instructional initiatives depend, is minimal. This study explores the strategies, 
knowledge, and reasoning of one preservice teacher when engaged in situations of uncertainty.    

 
Theoretical Framework 

The dependence on heuristic principles are not limited to lay people, experienced people are 
also inclined to rely on heuristics when thinking intuitively (Tversky & Kahneman, 1982a). 
When people struggle to make a decision that consists of lists of possible outcomes, Tversky and 
Kahneman (1973) found most people try to reduce the complexity of the situation by embracing 
judgmental heuristics, “a strategy … that relies on a natural assessment to produce an estimation 
or a prediction” (p. 294), where people “categorize objects and events, which are related to 
mental models such as prototypes or schemata” (p. 295) that simplifies the situation. They 
identified and named three types of simplifying heuristics or strategies people use to solve 
problems, representativeness, availability, and adjustment and anchoring, which may lead people 
astray.  

The representativeness heuristic is used when a person assesses the probability of an event or 
situation based on how closely it resembles the population. This heuristic comes into play when 
people are confronted with the following types of questions: “what is the probability that object 
A belongs to class B? What is the probability that event A originates from process B? What is 
the probability that process B will generate event A,” (Tversky & Kahneman, 1982a, p. 6). 
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Fundamentally, people make judgments based on the degree that A is representative or similar to 
B. However, Kahneman and Tversky (1982a) indicate that to be “representative, it is not 
sufficient that an uncertain event be similar to its parent population. The event should also reflect 
the properties of the certain process by which it is generated, that is, it should appear random” (p. 
35). People view randomness as unpredictable but fair, which means they expect samples to 
maintain the same or close to the same proportions found in the population.  

In addition, Kahneman and Tversky (1982b) indicate that the representativeness heuristic is 
directional. That is, a person “evaluates the input [or]…predicts the outcome” (p. 57). An 
example of representativeness given by Tversky and Kahneman (1982b) is as follows; a person 
is described as a shy, meek, and timid, what occupation would they most likely hold when given 
the list librarian, doctor, sales person or farmer from which to choose. Most people from their 
research choose the librarian as the most probable, based on the stereotype of a librarian in our 
society. Another example, provided by Kahneman and Tversky (1972), involves a maternity 
ward with five newborn baby boys and two newborn baby girls.  The nurses believe the next 
baby to enter their ward will be a girl so that the number of baby boys and the number of baby 
girls will even out. The mental model prescribes the probability that a new born baby is a boy is 
one-half and the probability that a new born baby is a girl is also one-half, which is another way 
to stereotype. That is, the proportions in samples must be equal at all times or at least remain 
close to the proportions in the population so that the sample represents the population from 
which the sample is drawn. Tversky and Kahneman (1982a) warn us that this type of reasoning 
leads to serious errors because people ignore other factors that impact judgments on probability, 
such as sample size, prior probability outcomes, illusion of validity, misunderstandings of 
regression, and misunderstandings of chance.  

There are other categories of misconceptions that may arise from heuristics, which include 
availability, adjustment and anchoring (Tversky & Kahneman, 1982a) and the time axis effect 
(Fischbein & Schnarch, 1997) that are beyond the scope of this paper. In essence, the 
foundational issue revolves around the ability to choose an appropriate strategy when there are 
tensions that make the decision more difficult. That is, students may wrestle with probability 
activities due to “(1) fragmented understanding of proportional reasoning, (2) probability ideas 
[that are] counterintuitive and conflict with students experiences, and (3) … [a student at the 
collegiate level] experiences probability in an abstract and formal context” (Garfield and 
Ahlgren, 1988, p. 47). This paper focused on one secondary mathematics preservice teacher as 
she engaged in several problem solving tasks. This raised our awareness of the complexities 
associated with her strategies, her mathematical knowledge, and her conceptions about 
probability, where her reliance on the representativeness heuristic emerged.   

 
Methods 

This study used an extended clinical interview setting to explore one preservice teacher’s 
experiences with probability in order to better understand her reasoning when solving probability 
problems. The interviews consisted of two sessions occurring over a three week period.  The 
interviews involved both an interviewer and an observer. The first author filled the role of 
observer and took field notes during the interview. The two interview sessions were captured, in 
their entirety, with the video-audio recorder on the interviewer’s computer. The recordings were 
later transcribed by the observer and later analyzed with her field notes. The transcription from 
the video-audio was coded first according to the behaviors displayed by the participant when 
engaged in drawing diagrams, formula calculations, and calculations using diagrams. The next 
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iteration of the analysis involved coding of the data according to the participant’s mental 
processes, i.e., thinking and reasoning. We were interested in the thinking strategies associated 
with calculations or the ability to recall formulas as well as the reasoning associated with the 
participant’s explanations. The focus of the analysis was then narrowed to the sections of the 
data where misunderstandings emerged.  

 
Participants 

The study drew participants from one mathematics education class consisting of 18 senior 
mathematics preservice teachers, who intend to teach secondary mathematics. The mathematics 
preservice teachers attend a large university in one of the Mid-Atlantic States. The demographics 
of the target population, this class, is diverse in culture and gender, however, the one 
mathematics preservice teachers who was willing to participate in the extended interview 
sessions was white and female. 

 
Instruments 

There were three instruments used in the study. The first instrument was a pre-test instrument 
used to identify students who have misunderstandings with probability. The second and third 
instruments were probability activities. Each of these instruments is described next.  

The first instrument was a pre-test that was taken from Fischbein and Schnarch (1997) and it 
was administered to all 18 preservice teachers in the course. The pre-test instrument consisted of 
seven probability problems, where the last question had two parts and was entirely open 
response. All questions except one had three multiple choices answers from which to choose and 
the remaining item had two multiple choices options. Our instrument was modified from 
Fischbein and Schnarch (1997) by adding ample space below each question for the mathematics 
preservice teacher to explain the reason for their multiple choice selection. The questions were 
designed to identify common misconceptions that emerge when employing the 
representativeness, negative and positive regency effect, simple and compound events, 
conjunction fallacy, availability, and the time axis heuristics. The goal of the questionnaire was 
to evaluate the target population because there was a concern that the mathematics preservice 
teachers from this target population may not display any of the common misconceptions. Based 
on the pre-test assessment all but one student demonstrated at least one misconception related to 
probability. As a result, 17 mathematics preservice teachers were invited to participate in the 
study. Two mathematics preservice teachers volunteered and this paper examines one of these 
preservice teachers.  

The second and third instruments were tasks used by Shaughnessy (2005). It is the third 
instrument that is the focus for this study.  It is a probability experiment adapted from tasks used 
by Shaughnessy (2005) called Coin Flipping – Keep Your Head Up. The participant explored the 
probabilities for the various numbers of heads appearing when tossing six coins. The activity is 
divided into four parts. The first part of the activity has the participant estimating the probability, 
when flipping six coins that results in six heads, five heads, four heads, and three heads. 
Following these estimates, the participant performs the experiment recording the results on a 
tally chart. In the second part of the activity, the participant is asked to make a list of all possible 
outcomes for flipping six coins. This is followed by the development of a theoretical model for 
the outcomes of flipping six coins. The third section of the activity has the participant compare 
the results of the experimental probabilities with the theoretical probabilities, followed by 
drawing a graph of the experimental and theoretical probabilities.  
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Procedures 

The first interview session began with the preservice teacher sharing prior school experiences 
with mathematics, attitudes toward mathematics, and attitudes toward teaching mathematics.  
Following the conversation, the preservice teacher is presented with a probability activity 
adapted from tasks used by Shaughnessy (2005). As the mathematics preservice teacher solved 
the problems, she was encouraged to verbalize her thinking and reasoning in detail. The second 
interview session, which is the focus of this study, had the preservice teacher engaged in a 
probability experiment based on an activity from Shaughnessy (2005). The activity had three 
parts.  

Results 
This study explored the prior experiences with probability and the reasoning of one 

preservice teacher, Cassie, when engaged in a probability experiment. In the first interview 
session Cassie explains that she learned probability and statistics by memorizing formulas and 
definitions.  

In the second interview session Cassie was asked to perform an experiment called Coin 
Flipping – Keep Your Head Up. The activity has three sections that focused on the probabilities 
of getting various numbers of heads when flipping six coins. The first part of the activity 
involves estimating the probability, when flipping six coins, of observing six heads, five heads, 
four heads, and three heads. Cassie wrote down her probability estimates for each of these events 
and the interviewer noticed Cassie had written ½* ½ * ½ * ½ *½ * ½ = ½6 = 1/64 next to the six 
heads estimate and asked Cassie to explain the method she used to reach that result. Cassie 
responded:  

Because every time you flip it you have half of a chance of getting it [heads].  So, 
if you did the tree diagram, you would get heads or tails and then you’d get heads 
or tails... [and] …there would be 64 choices…and you would have one path with 
all heads.  

The interviewer noticed her response for getting 5 heads was 1/32 and she says to Cassie,  
For 5 heads you [did] the same thing, 1 over 2 to the 5th [or] 1 over 32 … you 
would say that is one over 32 and another way of thinking about it you’d think 
[of] all of the paths [so] it would be two over 64, is that what you mean? 

Cassie agrees and then explains.  “Yeah, because you could do all heads and one tail or all tails, 
(she stops herself) I’m sorry, or one tail and all heads afterwards”. She continues, “I think 
….maybe [it’s] wrong…hold on” she makes false starts and then begins to draw a tree diagram.  
The diagram is unclear and incomplete because most of the branches stop short with the fifth 
coin position. Cassie continues to work and then admits, “Actually I’m confused”. After further 
attempts by the interviewer to help her grapple with these estimates, the interviewer stops this 
line of questioning and starts Cassie with the coin tossing experiment. She performs the 
experiment flipping six coins 50 times and tallied the results on the chart. The experiment results 
are as follows: she tossed six heads once, five heads six times, four heads twelve times, three 
heads ten times, two heads eleven times, one head nine times, and zero heads once for all 50 
tosses. There were no strategies, reasoning’s, or calculations involved in this section of the 
activity, but the interviewer asked her, “What is the probability of getting at least one head”? 
Cassie replies, “49”, which the interviewer responds, “Why would you say that?”  She explains, 
“Because you add up all the probabilities of getting one or more…” The interviewer asks her 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1079



about the probability of getting at least two heads, which Cassie answers, “You add up 2, 3, 4, 5, 
and 6 so its 40 out of 50” and follows with the explanation, “because if you get one head it’s not 
at least two or zero you didn’t get two so you exclude those so you count up all the others that 
are two or higher”.    

The second part of the activity had Cassie generate a sample space of all possible outcomes 
followed by developing a mathematical model to find the theoretical probabilities for the 
outcomes of flipping six coins. This time, she neatly draws a tree diagram correctly with all 
possible outcomes represented. During the conversation, the interviewer randomly selects an end 
point on Cassie’s tree diagram that showed a branch with three heads and three tails, at which 
point the interviewer asks Cassie, how many other branches would show three heads and three 
tails”? Cassie responded, “so half of…so 32”.  When the interviewer asked Cassie to explain her 
answer she replied:  

Every level there’s one head or one tail so if you started with tails, you could (she 
is thinking and looks confused). Well, I am trying to figure out… if it’s for all 64 
possible outcomes … the first one could be either heads or tails, the second one 
could be heads or tails, so if you just pick …three of them to be tails and three of 
them to be heads it’s, just a moment let me explain this... or six choose two”? 

The interviewer asked her to explain her last comment, “What do six choose two represent”?  
Cassie is trying to recall the formula for combinations, choosing two out of six, as she 
incorrectly writes “6

2C6”. She says, “I haven’t done combinations in a while”. She begins 
drawing a second diagram showing six short horizontal line segments that represent each 
position of the six coins laid next to each other. This diagram she drew will be referred as her 
slot diagram in the remainder of the paper. On top of each line segment she writes the 
numeral two. Cassie continues:  

Ok, so you have six [pennies] and you have two choices, two choices, two choices 
two choices all the way across for all six of them [she says as she points to each 
slot].  Then there are…64 different ways you could do it.  I think its 32 ways you 
can have three tails and three heads but, I can’t explain why. 

This section of the activity we see her struggle with diagrams and with her partial recall of 
the combinations formula.  

Next, the activity in this section has Cassie develop a theoretical model of the probabilities 
for the outcomes of flipping six coins, which Cassie struggles at first to understand the task as 
she looks at her experimental results while considering a theoretical result. She returns to her slot 
diagram, which supports her and allows her to accurately find the theoretical probability for the 
event of tossing six heads. Prompted by the observer to next consider the case with zero heads, 
which is equivalent to observing six tails, she finds the probability of tossing six coins where no 
heads appears correctly. Prompted by the interviewer she continues this process of addressing the 
counterpart outcomes. That is, she next finds the probability of one head appearing and then 
finds the probability of five tails appearing, because it is the counterpart of five heads and one 
tail. Once she found all of the possible outcomes for flipping six coins, Cassie explains her 
system using her slot diagram. “If you get a tail in the first one, you have five other places where 
you can get the second tail”. She continues with three tails, “there are three other places, fourth 
there are two other places and in the fifth there is one other place. So it would be 15 ways of 
doing it [referring to four tails and two tails]”.  The prompt to consider the complement of zero 
heads, which is six tails, shifted the conversation to addressing tails, although she understood the 
same reasoning applied to heads. When asked to find the theoretical probability of getting three 
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heads, she correctly responded with, “I added up 1/64, 1/64, 6/64, 6/64, and 15/64 plus 15/64 and 
I got 44/64 so that means the rest of the ways for it to have to be 3 heads… and that is 20 over 
64”. She used the process of grouping probabilities and using the counterparts of probabilities to 
fill in all of the probabilities for the various numbers of heads that appear when tossing six coins.   

The third part of the activity has Cassie compare the experimental probabilities with the 
theoretical probabilities. The interviewer asks her to determine “how well do these probabilities 
agree?” Cassie says, as she is pointing to the theoretical calculations and the experimental 
results,  

The six heads and the zero heads are pretty close, one out of 50 and one out of 64 
for both of those. The same with five heads and one head that’s pretty close, too. 
Except here, in the theoretical model three heads should have occur[ed] more...but 
in the experimental, four heads and two heads both occurred more than three 
heads.  

Cassie sees that the experimental frequencies lack the strong symmetry found in the theoretical 
probabilities. The interviewer closes the session with a final question, “Were there any 
assumptions that you made when you were doing your experiment”? Cassie responds, “When I 
did my experimental probability [it] was based on the experiment so, I’m assuming this would 
always happen in every 50 coin tosses”.   
 

Discussion and Conclusions 
This study explores the mathematical reasoning, strategies, and calculations of one 

mathematics preservice teacher when participating in two probability activities. The activity 
highlighted her strategies, which include heuristics, diagrams, and incomplete formal knowledge 
about probability. Cassie’s prior experiences with probability align with other collegiate students 
who experience probability in a traditional abstract context (Garfield & Ahlgren, 1988). 

The second interview session, Cassie performed an experiment called: Coin Flipping – Keep 
Your Head Up. She was to find the probabilities of various numbers of heads appearing when 
tossing six coins, which was designed to address the representativeness heuristic. Her attempt to 
estimate the probabilities associated with six heads, five heads, four heads, and then three heads 
appearing was problematic for her. She found the probability of getting all six heads by 
multiplying ½ six times to get 1/64. Her reasoning for the probability of getting five heads with 
the six coins was 1/32. It appears she focused on the number of heads showing and multiplied ½ 
that many times (1/25). This seems to suggest she is finding the probability for five heads using 
the same process she used for six heads because she knew her model for six heads (1/26) was 
correct. This may imply she is using the representativeness heuristic because she used the model 
for tossing six heads as the model for the tossing five heads, unaware she was changing the 
problem.  

In the second part of the activity Cassie made a list of all possible outcomes for flipping six 
coins, where she neatly draws a completed tree diagram. The interviewer randomly chooses a 
branch on her tree diagram, which showed three heads and three tails, and asked her the 
probability of obtaining three heads and three tails. Cassie responded with 32 but admits she 
cannot explain why this is the case. It appears she is taking 64 and dividing it in half because out 
of the six coins, half of the coins would show heads and the other half of the coins would show 
tails. Another explanation may be that she chose to divide the total number of possible 64 
outcomes in half because of the probability of tossing one coin once is one-half.  In either case, it 
suggests she is relying on the representativeness heuristic. We see the tensions between her 
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partial recall of the combinations formula, “6
2C6”, the tree diagram, and the slot diagram, where 

all of these strategies fail to help her make appropriate estimates of the probability of getting 
three heads and three tails. Therefore, it appears she relies on the representativeness heuristic to 
make sense of this problem. 

The next activity in part two has Cassie finding the theoretical probabilities for tossing six 
coins. She struggles at first to understand the question as she looks at her experimental outcomes 
while considering a theoretical result. She returns to her slot diagram, which supports her and 
allows her to accurately find the theoretical probabilities for the event of tossing six heads and 
then, prompted by the observer, to explore zero heads, which is the same as six tails. Cassie 
explained her system using her slot diagram, where each position of a coin is placed next to each 
other forming a horizontal row of coins. She explained that a head in the first position allows a 
second head to appear in one of the remaining five positions, which shows there are 15 ways that 
two heads and four tails can appear. She continued with this line of reasoning for three heads, 
where there are three positions possible for the three heads and there are three positions possible 
for the three tails. The prompt to consider the complement of zero heads with six tails was 
provided as an aid to reveal the symmetry among the theoretical probabilities, which Cassie was 
able to grasp. This aid, along with using the complement property of probability, helps her to 
find the theoretical probability for all of the possible outcomes. When asked of the theoretical 
probability of getting three heads, she correctly responds with, 20/64.   

The third part of the activity has Cassie comparing her experimental and theoretical results, 
where she sees the experimental results lacked the strong symmetry found in the theoretical 
model and she notes that the occurrence of three heads is greater in the theoretical model than in 
the experimental model. The interviewer closes the session with a final question addressing 
Cassie’s assumptions that she may have held prior to performing the experiment. Cassie 
responds that anytime six coins are tossed 50 times the result would look exactly like hers. This 
reveals a misconception associated with variability in experiments, which is a common result 
when someone relies on the representativeness heuristic. That is, people tend to ignore the role 
that variability plays in sampling.  

This study explored one secondary mathematics preservice teacher as she engaged in a 
probability experiment. The research identified several misconceptions which appear to be 
associated with the representativeness heuristic. For example, the participant used the same 
method for finding the probability of tossing six heads, which is ½ multiplied six times, as to 
finding the probability of tossing five heads by multiplying ½ five times, which is an incorrect 
assumption. The representativeness heuristic seemed to emerge when she mapped the probability 
of tossing three heads and three tails to the theoretical probability of tossing one coin once. 
Additionally, it seems the heuristic emerged when she said that tossing six coins 50 times would 
result in the same numbers she found in her experiment. Her fragmented formal knowledge, 
when she tried to recall the combination formula and her struggles to find a useful strategy may 
have prompted her to rely on the representativeness heuristic. This study proposes that preservice 
teacher’s struggles with probabilities may be a concoction of fragmented formal knowledge, 
ineffective strategies, and intuitive heuristics, such as the representativeness heuristic. Therefore, 
future research should focus on the complexity of the problem solving process by teasing out the 
relationships between fragmented formal knowledge, strategies, and intuitions, which may 
promote a reliance on the representativeness heuristic, when solving probability problems.  
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The National Science Foundation MSP Pathways in Environmental Literacy Project is focused 
on creating learning progressions for environmental science across grade levels 6-12, which 
includes collecting and analyzing data on students’ development of conceptual understanding 
about the carbon cycle, water cycle, and biodiversity.  The Quantitative Reasoning(QR) Theme 
of the project is researching the impact of quantitative reasoning on students’ ability to make 
informed decisions about the environmental grand challenges facing their generation.  This 
paper will report on findings based on clinical interviews and written assessments of students’ 
QR ability in the context of environmental science. 
 

Pathways in Environmental Literacy is a National Science Foundation Mathematics and 
Science Partnership project which is establishing learning progressions for environmental 
science.  The learning progressions span 6th to 12th grade, studying the trajectory of learning that 
leads to the development of environmentally literate citizens capable of making informed 
decisions.  The strands (areas of enduring understanding) selected for study were the water cycle, 
carbon cycle, and biodiversity.  It was hypothesized that comprehension of these three concepts 
was essential to development of environmental literacy.  In addition, three themes were 
identified as being integral to developing informed environmental decision makers: quantitative 
reasoning, citizenship, and cultural relevance.  The project researchers believe that these three 
themes must be integrated across the three strands if students are to become informed decision 
makers.  This report will focus on the quantitative reasoning theme. 

The Pathways project is a collaboration of six universities, four Long Term Ecological 
Research Sites (26 LTER sites are funded by NSF to support ecological research on established 
field sites), and LTER partner school districts.  Research teams were established at partner 
universities to lead efforts on study of the three strands (carbon, water, and biodiversity) and 
three themes (quantitative reasoning, citizenship, and cultural relevance).  Research on 
quantitative reasoning for the Pathways project was assigned to the University of Wyoming, 
which had established a Quantitative Reasoning and Mathematical Modeling (QRaMM) research 
group.  QRaMM is one of three research strands initiated by the Wyoming Institute for the Study 
and Development of Mathematical Education (WISDOMe).  QRaMM brings together researchers 
from multiple universities across the country to share ideas and conduct research on quantitative 
reasoning and modeling within an interdisciplinary context.  As part of the work of QRaMM and 
in collaboration with the National Science Foundation MSP Pathways in Environmental Literacy 
Project, a national virtual seminar QRaMM in Science was initiated in Spring 2011.  The 
seminar engaged 15 speakers from across the country in the online video conference, including 
experts in quantitative reasoning and modeling from the fields of science, computational science, 
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mathematics, science education, and mathematics education.  The context for the discussion of 
quantitative reasoning and modeling was environmental literacy.  The issues in psychology of 
mathematics education for the seminar included students’ development of quantitative reasoning 
and mathematical modeling from 6th to 12th grade, creation of parallel QRaMM learning 
progressions for those being created by the MSP Pathways project for environmental literacy, 
and study of the impact and interplay of QR and modeling on students’ development of 
environmental literacy.  The national experts informed a QRaMM Science research team 
consisting of faculty and graduate students who developed Environmental Science QR interview 
protocols based on MSP Pathways learning progressions.  Data from these protocols lead to the 
creation of Environmental Science QR assessments and research-based professional 
development that supports learning environments that lead to environmentally literate citizens 
capable of making informed decisions about the grand challenges facing the next generation.  
 

Purpose of Study 
The primary research question for the Pathways project is: What are the characteristics of a 

6th to 12th grade learning progression aimed at developing environmentally literate citizens?   The 
purpose of the QR Theme is to determine the quantitative reasoning aspects of the learning 
progression leading to the primary QR research question: What are the essential quantitative 
reasoning abilities that are required for the development of environmental literacy?  Specific 
research questions include the following.  How does quantitative reasoning integrate and interact 
with environmental literacy?  What is the relationship between learning progressions for 
quantitative reasoning and environmental literacy – should they be integrated or is a separate 
learning progression for quantitative reasoning required?  What is the current state of 
quantitative reasoning supporting environmental literacy at the 6th grade level (defined as the 
lower anchor for the learning progression)?  What is the required level of quantitative reasoning 
for an environmentally literate citizen at the 12th grade level (defined as the upper anchor)?  How 
does the learning progression inform professional development supporting the development of 
environmental literacy?   
 

Theoretical Framework 
The Pathways project is based on the theoretical framework of learning progressions. The 

Consortium for Policy Research in Education defines learning progressions as follows: 
 

Learning progressions are hypothesized descriptions of the successively more sophisticated 
ways student thinking about an important domain of knowledge or practice develops as 
children learn about and investigate that domain over an appropriate span of time (Corcoran, 
Mosher, & Rogat, 2009, pg 37). 

 
The panel identified essential elements of learning progressions to be: 

• Upper Anchor: target performance or leaning goals which are the end points of learning 
progression and are defined by societal expectations, analysis of the discipline, and 
requirements for entry into the next level of education. 

• Progress Variables: dimensions of understanding, application, and practice that are being 
developed and tracked over time. 

• Levels of Achievement: intermediate steps in the developmental pathway(s) traced by a 
learning progression. 
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• Learning performances: tasks students at a particular level of achievement would be 
capable of performing. 

• Assessments: specific measures used to track student development along the 
hypothesized progression. 

The Pathways learning progressions for environmental literacy are based on research in science 
education and cognitive psychology, foundational and generative disciplinary knowledge and 
practices, and strive for internal conceptual coherence.  The QR in environmental literacy 
frameworks build on these characteristics, incorporating mathematical and statistical 
frameworks. 

The Pathways learning progressions have a lower anchor which is the typical accounts of 
environmental issues given by students at the upper elementary and middle school level 
(Anderson, 2009).  These accounts are empirically tested through a cyclic research process of 
clinical interviews informing the learning progression and leading to the development of written 
assessments given on a large scale.  The Pathways learning progressions upper anchor is based 
on experts views of what a scientifically literate citizen should know and be able to do by the 
12th grade.  The upper anchor is much like a NSTA or NCTM standard, but learning 
progressions differ from standards in that the lower anchor and intermediate achievement levels 
are research-based, reflecting the actual trajectory of student learning.  A limited number of 
achievement levels (4 or 5) are identified as plateaus in students’ development of more 
sophisticated ways of thinking about enduring understandings, concepts, and processes.   The 
progress variables for the Pathways project at the meta-level are the carbon cycle, water cycle, 
and biodiversity, which are considered areas in which students must develop conceptual 
understanding if they are to become environmentally literate citizens.  Within each of these areas 
progress variables are identified.  For example, in the carbon strand the progress variables are 
generation-photosynthesis, transformation-food chain/web/biosynthesis, oxidation-cellular 
respiration, and oxidation-combustion.  Learning performances are exemplars drawn from the 
clinical interviews and written assessments which demonstrate student responses at different 
achievement levels.  Learning progression matrices are created by cross tabulating achievement 
levels (rows in matrix) with progress variables (columns in matrix).  A number of learning 
progressions in science are currently under development including:  tracing carbon in ecological 
systems (Mohan, Chen, & Anderson, 2009), particle model of matter (Merrit, Krajcik, & Swartz, 
2008), modeling in science (Schwarz, Reiser, et. al., 2009), genetics (Duncan, Rogat, & Yarden, 
2009), chemical reactions (Roseman, et. al., 2006), data modeling and evolution (Lehrer & 
Schauble, 2002), explanations and ecology (Songer, Kelcey, & Gotwals, 2009), buoyancy 
(Kennedy & Wilson, 2006), atomic molecular theory (Smith, Wisner, Anderson, & Krajcik, 
2006), and evolution (Cately, Lehrer, & Reiser, 2005).  Examples of three of these learning 
progressions are provided in (Corcoran, Mosher, & Rogat, 2009). 

The QR Theme of the Pathways project is using the learning progressions theoretical 
framework to research the impact of QR on students’ development of environmental literacy.  
The overarching goal is to study the capacity of students to understand and participate in 
evidence-based discussions of socio-ecological systems.  Three overarching progress variables 
are hypothesized: quantitative literacy which consists of arithmetic understandings supporting 
science, quantitative interpretation which is the process of interpreting scientific models to 
determine trends and make predictions, and quantitative modeling which is the creation of 
models by the student.   Within each of these areas four progress variables are identified that are 
hypothesized to be critical QR for science (Table 1).   
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The development of learning progressions is an iterative process typical of design-based 
research.  The Pathways environmental literacy learning progressions began with hypothetical 
frameworks based on theories about reasoning about processes in socio-economic systems, 
including discourse, practices, and knowledge, as well as linking processes between lower and  

Progress 
Variables 

Quantitative 
Literacy 

Quantitative Interpretation Quantitative Modeling 

Compone
nts 

Numeracy 
• Number 

Sense 
• Small/large 

Numbers 
• Scientific 

Notation 
Measurement  

• Accuracy-
precision 

• Estimation 
• Dimension

al Analysis 
• Units 

Proportional 
Reasoning  

• Fraction 
• Ratio 
• Percents 
• Rates/Chan

ge 
• Proportions 

Basic Prob/Stats 
• Empirical 

Prob. 
• Counting 
• Central 

Tendency 
• Variation 

Multiple Representations  
(rule of 4)  

• Written/oral 
• Tables  
• Graphs/diagrams  
• Equations 

• Linear 
• Quadratic 
• Power 
• Exponential  

Science models  
Statistics  

• Normal Distribution 
Model 

• Linear Regression 
Model 

• Statistical plots  
• Correlation  
• Causality 
• Z-scores 
• Confidence 

Intervals 
Logarithmic Scales  

 

Logic  
Problem Solving  
Modeling  

• Normal Distribution 
Model 

• Regression Model  
• linear  
• polynomial  
• power  
• exponential 
• logarithmic  

• Logistic Growth  
• conceptual science 

models  
• table and graph 

models  
Inference  

• Inference 
• Hypothesis testing  

 

Table 1. QR Progress Variables 
 
upper anchors.  Challenges for the QR Theme researchers are to determine which of these 
theories carry over to QR aspects of environmental literacy and to discover potential theories that 
are more QR-centric.  For example, students achieving the upper anchor in the environmental 
literacy learning progression should function as informed decision makers within the socio-
economic system in Figure 1 at three levels: discourse, practices, and knowledge.  “Knowledge 
is embedded in practices, which in turn are embedded in discourses” (Anderson, 2009).  We all 
participate in multiple discourses that associate us with communities of practice (Gee & Green, 
1998) and as we gain understanding of a phenomena as our discourse around it matures.  The 
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lower anchor discourse for the environmental literacy progression is force dynamic, relying on 
students’ theory of the world with a focus on actors, enablers, actor’s purposes, conflicts between 
actors, and settings for the actions (Pinker, 2007; Talmy, 2003).  At the upper anchor scientific 
discourse is essential, with students moving away from actors in settings to laws that govern the 
work of systems.  Certainly there is a parallel development of mathematical and statistical 
discourse that is essential for quantitative reasoning.  There are four practices that are essential 
 

 
 

Figure 1: Socio-Economic System 
 

for environmentally responsible citizenship: inquiry (What is the problem and who do I trust?), 
accounts-explaining (What is happening in the system?), accounts-predicting (What are the 
consequences of my course of action?), and deciding (What will I do?).  At the lower anchor 
explaining and predicting practices are expressed in force dynamic discourse, while at the upper 
anchor they are expressed using the language and theory of scientific discourse. These practices 
reflect the public roles (voter, advocate, volunteer) and private (consumer, owner, worker, 
learner) roles in which decisions are made.  Informed explaining and predicting practices often 
require QR, which allows for connecting observations to patterns and models, as well as 
analyzing data from a scientific perspective.  Finally knowledge is embedded within discourses 
and practice.  At the lower anchor students focus on knowing facts, while at the upper anchor 
scientific knowledge is applied to create coherent systems of observations, patterns, and models 
which serve as the basis for scientific inquiry and accounts.  QR parallels this trajectory from 
knowing mathematical or statistical algorithms to an understanding of enduring concepts that 
allow one to analyze problems quantitatively. 

A framework for the Pathways learning progression consists of progress variables (matrix 
columns), levels of achievement (matrix rows), learning performances (content of matrix cells),  
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Figure 2: Carbon Linking Processes 
and linking processes which are common processes that are recognized by students at all levels 
of achievement (Anderson, 2009).  The carbon framework in Figure 2 provides an example of 
linking processes within the carbon strand.  What are the linking processes for QR?  How do 
they interact with the environmental literacy linking processes? Another aspect of the Pathways 
learning progressions which is highly quantitative in nature is scaling.  Students at the lower 
anchor often function at a macroscopic or “individual” scale in which they view the world from 
their sensory purview.  Hence, their accounts of environmental issues are based within their daily 
perceptions at this scale.  Moving students to the upper anchor requires that they scale up to a 
global view, as well as scale down to a microscopic view and even an atomic view.  Regardless 
of the scale, moving up or down the scale becomes intensively quantitative. 
 

Methods 
The validation of learning progressions requires conceptual coherence, compatibility with 

current research, and empirical validation (Anderson, 2009).  Conceptual coherence means the 
learning progression tells a comprehensible and reasonable story of how naïve students develop 
mastery.  Compatibility with current research requires learning progressions to adhere to 
research on science and mathematics content, pedagogy, and cognition.  All learning 
progressions for QR will be treated as hypotheses which are to be empirically tested.  There are 
five general approaches for hypothesizing progressions: (1) extrapolation from current and 
conventional teacher and curriculum practice (i.e. standards); (2) cross-sectional sampling of 
student performance using assessments, observations, or interviews; (3) longitudinal samples of 
student work over time; (4) closely observed classroom interventions; and (5) disciplinary 
understanding of the structure of the key concepts in the discipline (Corcoran, Mosher, & Rogat, 
2009).  The original hypothetical learning progression for QR arose from the first and last 
approaches, with approach two being the primary method for iterative testing and revision of the 
learning progression.   

Clinical interviews are the initial method of gathering data to validate and revise the 
hypothetical learning progression.  Clinical interviews allow for a deeper insight into student 
reasoning with faster turnaround for revising the progression.  Guiding principles for developing 
the clinical interviews (Anderson, 2009) are that they are based on the progression framework, 
built around practices, linking processes, and standard representations, with branching probes to 
explore discourses, principles, and themes.  The interviews are transcribed and coded using the 
Grounded Theory method.  Analysis of the interviews informs the revision of the framework.  
The revised framework is used to revise the assessment and develop a written summative 
assessment used to track progress in teaching and learning QR aspects of environmental literacy.  
Development of the written assessment requires administering them at multiple sites and grade 
levels across the Pathways project, developing databases of student responses, developing coding 
rubrics that tie responses to achievement levels and progress variables in the framework, and 
conducting validation and calibration analysis.  Teaching experiments and professional 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1089



development on QR aspects of environmental reasoning are then conducted, guided by the 
learning progressions and assessments.  The cycle is then repeated. 
 

Results 
The QR Theme Team is early in the research cycle.  In Fall 2009 through Summer 2010 the 

QR Theme Team developed QR assessment items to be included in the carbon cycle, water 
cycle, and biodiversity strands assessments.  In Spring 2010 a small sample of students were 
interviewed using QR items developed for the strands.  Based upon initial assessment data 
piloted in grades 6-12, we hypothesize students function on four different levels: 1) students 
avoid quantifying the problem even when having a basic understanding of science; 2) students 
fail to quantify the problem correctly; 3) students quantify the problem correctly but fail to relate 
it to the science concept; and 4) students quantify the problem correctly and relate it to the 
science concept. This has led to the development of questions that differentiate on which of these 
levels students are functioning.  

Another observation in the development of assessment items has been the implementation of 
QR into science concepts where it is not necessary. QR must be incorporated only when it is 
essential to understanding the science concept. Questions must also be written carefully to illicit 
informative responses to correctly assess student’s QR abilities in the context of science.  
Specifically, a key element of learning progression assessment items is that they must be open-
ended (i.e., must be based on a linking process) allowing for a response from any student.  
Development of open-ended QR items is particularly difficult, as the QR linking processes must 
be identified.  Simply asking for a numerical response would likely eliminate many student 
responses. 

The integration of QR into learning progressions for ecology has been a challenge. At this 
stage, we are unsure if the best approach is to integrate learning progressions for mathematical 
and statistical components of QR into the science learning progressions,  to have parallel 
learning progressions, or if the integration of a learning progression for QR is necessary for the 
science learning progression. An additional complication is that formal learning progressions for 
the QR components do not currently exist. Importantly, the data provides an attempt to determine 
whether the science concepts, the mathematics or statistic concepts or integration of both is the 
barrier that results in the inability to quantitatively reason about environmental issues.  
 

Discussion 
Currently the QR team is working on a number of barriers to the QR aspects of developing 

environmentally literate citizens.  The team believes that QR is not often expressed when 
students are functioning at the local or individual level, however, as students move across scales 
up to landscape or down to microscopic and atomic, the need for QR becomes paramount.  If 
students are to become environmentally literate citizens they must address the grand challenges 
facing their generation, which will require them to scale up to global and down to atomic levels.  
To address these barriers the QR team is currently working on development of interview 
protocols, assessments, and professional development rooted in QR in environmental science.    

The QR team will pilot global environmental challenges QR clinical interview items in 
spring 2011.  Analysis of data from these interviews will be used to revise the QR learning 
progressions and explore interrelationships between QR and environmental science learning 
progressions. Development of a written assessment based on this analysis will begin late in 
Spring 2011 with the goal of developing a pilot written assessment for use at Pathway LTER 
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sites in Summer 2011.  By the time of the PME-NA Conference in October 2011 the Pathways 
QR Theme Team will have significant data analysis to report. 
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Nearly a century of research has established a relationship between the complexity of children’s 
block play and mathematical thinking and reasoning in other contexts and in later years. 
However, most of this research has evaluated complexity by examining children’s completed 
structures. This video-ethnographic study looks at mathematical thinking and reasoning during 
block play as a way of contributing to learning trajectory research in early childhood 
mathematics that values diverse ways of thinking. The paper highlights opportunities for 
mathematical reasoning that emerged during the construction of “less” complex structures. 
 

The importance of children’s block play for developing spatial thinking and geometric 
reasoning has been established through multiple studies (e.g., Casey et al, 2008; Guanella, 1934) 
These studies, dating back almost a century, have looked at ways to increase the complexity of 
children’s block structures as well as ways that this complexity can support more complicated 
mathematical thinking, particularly in reference to spatial visualization skills, such as imagining 
flips and rotations (e.g., NRC, 2009). In addition, this body of work has documented 
relationships between block play and mathematical thinking more broadly (e.g., Caldera et at, 
1999; van Nes & van Eerde, 2010).  For example, recently Wolfgang, Stannard and Jones (2003) 
demonstrated a relationship between complex block play at age 4 and mathematics achievement 
in the 7th grade.  

One emerging line of research, developed in response to increased interest in young 
children’s mathematical learning trajectories (NRC, 2009), is the role that teachers can play in 
scaffolding children’s spatial and geometric learning through block play (Clements & Samara, 
2007; Kersh, Casey & Young, 2008; NRC, 2009).  Gregory, Kim and Whiren (2003) 
demonstrated that trained educators could support students in creating more complicated block 
structures by talking with children as they played with blocks. Their study, like most others, 
evaluated the complexity of the block building through the examination of the qualities of 
children’s completed structures.  

The purpose of the current study is to add to this emerging line of research on children’s 
learning trajectories in block play by evaluating children’s thinking and reasoning as they go 
about the process of building with blocks. In doing this work, we hope to contribute to diverse 
ways of evaluting and scaffolding children’s mathematical thinking during block play. Nearly all 
previous researchers have based their analysis of complexity on the completed block structures. 
For example, in 1934 Guanella described block structures as ranging in complexity from “pre-
organized,” where no structure is built, to piles and rows, to solid forms that include closed 
spaces, to three-dimensional structures (Guanella as cited in Casey et al, 2008).  In their recent 
study, Gregory, Kim and Whiren (2003) expanded on the categories for analysis developed by 
several previous blocks researchers to evaluate student structures based on three broad 
categories: the complexity of the building, the complexity of arches, and number of dimensions 
(use of points, lines and planes) in the finished structures.  
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We would like to consider the possibility that complex mathematical thinking might not be 
entirely represented by increased complexity of completed block structures. In other words, a 
child might set a task for herself in work with blocks on a single plane that is more 
mathematically complex than one involved in creating a structure on multiple planes. We believe 
that the documentation of children’s learning paths in their work with blocks ought to include an 
examination of the various cognitive demands and opportunities made throughout the building 
process as well as documentation of progression in creating more and more complex structures.  

Guiding our study were the following research questions: 
● What kinds of mathematical thinking and reasoning emerge during children’s play 

with various kinds of blocks in both formal and informal contexts? 
● How do interactions with others shape the mathematical thinking and reasoning 

that occurs?  
 

Theoretical Framework 
 This study draws on Vygtoskian (1978) traditions that see play as central to children’s 
development and see learning as an outcome of engagement in social activity. In his work, 
Vygotsky emphasized the tools that children draw on in their learning. These tools include the 
physical – such as Lego or wooden blocks – and also the social – such as ways of thinking or 
playing that are learned from other humans in social settings. Although Vygotsky’s work around 
scaffolding is most often taken up to analyze interactions between children and adults, in this 
study we would like to acknowledge the role that children can play as the knowledgeable others 
in their peers’ play.  Particularly, during free time where some children may spend far more time 
than others with certain materials and thus develop expertise, children themselves may be able to 
scaffold the block play of their peers toward more complexity. Vygotsky also described the role 
that a cultural tool like “self-talk” can play in scaffolding a difficult task. He describes a child 
standing on a chair to reach a cookie, vocalizing each step in the process as a way of managing 
the difficult task. In a similar way, many children talk to themselves as they play with blocks. 
Following Vygotsky, we believe it is important to capture and analyze this talk as a way of 
gaining further access to children’s mathematical thinking and reasoning. 

 

Methods 
This project is embedded in a larger ethnographic study of children in a rural community as 

they move from kindergarten to first grade, which seeks to explore their mathematical learning 
during this time span. As a small, rural school, Taylor County Public School is an ideal site for a 
longitudinal study because there is only one classroom for each grade. Nearly all of the students 
who attend the school are eligible for free lunch and about 90 percent are African American. 
These characteristics make this an important site for broadening the research base on learning 
trajectories around block-building because much of the reseach on blocks has occurred in 
settings where a majority of the children are European American and come from middle-income 
families. Data collection for the larger project includes weekly classroom observations supported 
by video- and audio-taping, individual video-taped assessment interviews with each child, audio-
recorded parent interviews and focus groups, and video- and audio-taped observations of Parent 
Math Nights. Data collection and analysis for this paper has been informed by the multi-year 
relationship the first author has with the school. 

As an ethnographic study, the research team seeks to understand children’s experiences 
through both observation and participation. For this aspect of the project, this means that rather 
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than comparing students’ play and their block structures to pre-existing criteria, we attempted to 
document the mathematical interactions students engaged in during the process of play. In the 
preschool classroom, we took fieldnotes, audio-recorded conversations, and documented 
interactions with video cameras during both formal mathematics lessons and  free-choice time, 
when children were allowed to choose among the many materials in the room, including Lego 
blocks, wooden blocks, and unfix cubes.  

Data analysis was supported by the qualtiative data analysis program NVivo9. Using this 
program, the research team was able to code excerpts of field notes as well as segments of video 
clips for analysis. For example, a 30-second video segment could be identified and coded 
separately from a longer video clip. The observer who recorded the video also used the Nvivo9 
program to describe the action going on in the video and transcribe some speech. Initially, data 
were coded based on the setting, the type of interaction, the materials used, and the mathematical 
concepts. The current codes are listed in the text box to the right; however, coding, particularly 
around describing the block play and mathematics, is being continually refined. At the time of 
writing this proposal, we still have another three months of scheduled observations in the 
prekindergarten. As a result, the analysis reported in the following section is tentative and still 
evolving. Over time, we hope to create a map of the opportunities for thinking and reasoning 
possible in the midst of block play.  

Results 
 In this section, we describe several representative episodes of block play captured by 
videotape or fieldnotes over the course of the study. These episodes were chosen to demonstrate 
the mathematical thinking and reasoning that occurred as children interacted with different kinds 
of blocks, in different settings, and with different people. While all are unique, the kinds of 
thinking and interactions that occurred in each episode can be found across our data record. 
 
Episode 1: Carter and Wooden Blocks 

One afternoon, Carter, who frequently played with all kinds of blocks during free choice 
time, chose to build with wooden blocks. The block set available in the classroom was relatively 
traditional, with a variety of rectangular and triangular prisms, cylinders, and arches. On this 
occasion, Carter decided to build a road out of blocks, announcing his intention to no one in 
particular. Carter began by laying down a 6-by-3-inch block. He then put together four 3-by-1.5-
inch blocks, choosing from dozens of blocks spilling from the tub around him.  For the next road 
segment, he chose two 6-by-1.5-inch blocks, putting them side by side.  He then used another 6-
by-1.5-inch block and then two 3-by-1.5-inch pieces. Finally, he chose two 3-by-3-inch blocks 
for the last segment in the road.    
 The wooden blocks, which were designed to make many equivalent shapes possible, allowed 
Carter to experiment and practice with composing and decomposing shapes. Carter seemed to 
embrace this activity as part of his play. After all, several of the large 6-by-3-inch blocks were 
available and Carter could have chosen to create a road out of identical blocks. Instead, he 
seemed to go out of his way to make as many equivalent combinations as possible in the building 
of his road. This ability to compose and decompose shapes has been highlighted as an important 
mathematical concept for young children because children “who can compose shapes develop 
better understanding of composing and decomposing numbers” (NCTM, 2010, p. 56) as well as a 
foundation for geometric concepts.  In addition, play like this afforded Carter the opportunity to 
practice visualization because he needed to orient blocks in the proper direction to make 
equivalent shapes and to choose the desired block from a pile in the tub. 
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 It is also important to note Carter’s intention to build a “road.” Traditional rubrics for scoring 
the complexity of block structures would categorize the road as less complex than other 
structures because of the lack of vertical building, arches and enclosures. However, this analysis 
does not take into account Carter’s intentional construction of an object that he likely visualized 
in his head before he created it as well as his efforts to create equivalent segments. In considering 
complexity, it is important to consider not just the finished product (in this case, a straight line), 
but also the particular tools used to construct the line (blocks of various sizes and shapes rather 
than all identical blocks and equivalent block units rather than varyingly-sized units). In this 
episode, Carter played by himself with little scaffolding from others; however, the available tools 
contributed to his mathematical thinking. This includes both the opportunities for visualization, 
identification, composing, and decomposing provided by the blocks, but also the story 
scaffolding provided by other toys. Casey and colleagues (2008) found that telling stories 
contributed to children building more complex block structures, and in many ways available toys 
served this purpose for children in the classroom. For example, in this case, it is unlikely that 
Carter would have chosen to build a road if cars and trucks had not been available to drive on it. 
 
Episode 2: Markus and Unifix Cubes 
 One morning toward the end of free-choice time, Markus came upon a bucket of unifix cubes 
scattered across the carpet. Initially, he bent and began to stack as many as he could into a tower 
nearly as tall as himself. After holding his tall tower against himself, he sat and began breaking 
the tower into smaller chunks. He then picked up one of these smaller towers and counted each 
cube, touching it as he said the number. After counting seven cubes, he reached out grabbed a 
loose cube and added it on. He then repeated the process, making four other towers of eight 
cubes each. He then laid these towers against each other on the floor. When he made his fifth 
tower, he laid it down by the others to check its length and then took off two blocks when he 
realized it was too tall. At this point, Dahlia and Trevor approached and began to stack the 
blocks into tall towers. Markus corrected them, saying “We need to make eight! For Bingo.” 
Trevor and Dahila accepted this and began to make towers of eight blocks, each of them 
counting the blocks in their finished towers one at a time, touching each block and laying their 
completed towers down next to the pile Markus had made. Other children started to approach, 
making various lengths with the cubes. Markus reiterated that the towers had to be eight long. At 
this time the teacher approached and asked Markus, “How many are in your tower?” He picked 
one up and counted for her, touching each block, “1,2,3,4,5,6,7,8.” She replied, “Very good.” 
 Unifix cubes are not often considered in block research; however, as we watched children 
play with them during the informal moments in the classroom, it seemed odd to exclude them. 
Because these cubes could only be used as isolated ones or as towers, the mathematical thinking 
they were most likely to elicit involved counting and comparison. Students compared towers to 
each other (as Markus did when he was making units of eight), compared them to themselves (as 
Markus did when he made his first tall tower), and compared them to objects in the room. 
Students also often counted these blocks, practicing one-to-one correspondence as they did so. 
Sometimes, this counting seemed to serve a particular purpose, as it did for Markus, who knew 
that the blocks were passed out in groups of eight for Bingo because the boards had eight spaces. 
However, more often students seemed to count simply because they had the blocks. This may 
have been because the teacher frequently used these blocks for counting in formal lessons and 
also tended to ask children to count the blocks whenever she saw them being used during free-
choice time. The unifix cubes seemed to offer fewer opportunities for spatial reasoning than 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1096



other blocks, although opporutnities to compare lengths did encourage students to talk about 
more, less, longer and shorter, and to make adjustments to their towers as a result of these 
analyses. Markus’s use of his already constructed towers of eight to measure his new towers 
demonstrated an ability to reason about length and quantity as he was able to recognize that 
towers of the same length would have the same amount of cubes without having to count again 
and was also able to adjust towers by taking off or adding on cubes to get the correct lengths. 
The task Markus set for himself and the way he set about it reveal aspects of his thinking and 
reasoning that would not be apparent in the completed pile of towers of eight blocks. 
 In this episode, the blocks themselves and the potential of a Bingo game later provided 
scaffolding for Markus to explore length and comparison and to practice counting. Markus, 
himself, provided this scaffolding for other students, by repeatedly naming the task at hand. 
Although the other students did not talk about the Bingo game, it is likely that this real-world 
purpose, served to persuade them to engage in the counting activity Markus set up.  On the other 
hand, the teacher’s intervention in this case did little to scaffold mathematical thinking. Markus 
had already counted the blocks in multiple towers by the time the teacher asked him to count. 
Indeed, he already knew there were eight blocks in the tower he was holding when she asked him 
to count the blocks. He performed the task anyway and her response did little to either 
acknowledge the thinking he had already done or to push him toward new mathematical 
engagements. 
 
Episode 3: Xavier, Carter and Legos 

At the beginning of free-choice time, Carter pulled out the Dulpo Lego blocks. He placed a 
large blue mat (25 by 25 nodes) on the floor and began to attach blocks along the perimeter of 
two sides. Nearby, Xavier began to build a tower of 2-by-4 blocks. Once the tower was 10 blocks 
tall, Xavier attached it to the mat on which Carter was working. Carter rejected this effort, saying 
“No, I’m making something right here.” He reached out and removed Xavier’s tower. Xavier 
accepted this correction and moved away from Carter, who followed him asking, “You want to 
help me?” Xavier tried one more time to make a tower and attach it, but Carter again removed it 
from the board. He gestured to the blocks he had placed along the perimeter and said: “I’m doing 
this.” Xavier began to join Carter in filling up the board with a single layer of blocks. This went 
smoothly until the entire board was nearly full. The boys then began to search for pieces that 
would exactly fit the few remaining holes. Carter dug through the box to find a 2-by-2 square, 
which he placed in a matching open space in the center of the board. Xavier turned a rectangular 
block to fit a remaining hole. The last space in board required a 2-by-8 block; however, one of 
the surrounding blocks had plastic googly eyes projecting from the side, which made it 
impossible to fit an appropriately sized block in the adjacent space. After both Carter and Xavier 
tried a number of correctly sized blocks with little success, they appealed to the researcher 
observing. She asked them to feel the side of the block with the raised eyes. Xavier did so and 
then took that block out, replaced it with an identically sized one, and then filled in the last hole 
before beaming up at the camera. In all, this process took Xavier and Carter 25 minutes.  

The Dulpo Legos, with their defined working spaces on mats, primarily rectangular shapes, 
and ease of fitting together, scaffolded different kinds of mathematical thinking than wooden 
blocks or unifix cubes. Children were able to build much taller structures with the Dulpo Legos 
than with the wooden blocks. In addition, the concepts of area, perimeter, and rotations were 
frequently explored during Lego block play. As Carter did in this example, students frequently 
created a perimeter first and then filled it in. This required choosing blocks that would be exactly 
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the same length as the mat and negotiating the tricky business of turning corners.  Carter, who 
spent a lot of time in the block area, performed these tasks with certainty, rarely needing to 
remove a block and replace it with one that had a different length or width, while other children 
frequently needed to make such adjustments.  

These differences in the ways children went about building similar structures reveal 
differences in development of visualization skills and understandings of length and width and 
would be unlikely to be captured in the evaluation of a final product. Similarly, in this case, 
many of the scoring systems for complexity would rank a structure as more complex if it had the 
tower that Xavier proposed adding; however, Carter’s sustained commitment to filling the board 
demonstrated perseverence with a task and also created an opportunity for both him and Xavier 
to think about how to fit geometric pieces together exactly, which required anlysis of shapes, 
lengths and widths and work with rotations. Typically, when children added towers to 
constructions the play became focused on creating cities or sometimes parking garages, rather 
than on a task like filling all of the available space on the mat. Thus, Carter scaffolded a more 
mathematically complex task for Xavier through his commitment to working only in one layer.  

 
Episode 4: Dahlia, Her Mother & Legos 
 At the Parent Math Night, one of the stations consisted of several boxes of Legos, including 
special pieces, such as wheels and trees, and written directions for making specific projects. 
Dahlia came to the event with her mother and her six-year-old sister, Tamara. Her mother took 
the written directions for a house, held them in front of Tamara, and quietly talked her through 
the process of building. Dahlia looked on for a moment and then began to build a tower with 2-
by-8 blocks. After watching Tamara for a moment, she searched through the box to find window 
and door pieces the same size as the blocks. She pulled on her mother’s sleeve and said “See my 
house.” Her mother looked over, saying, “That’s pretty, Dahlia. What you going to do next?” 
Dahlia pressed her tower onto a Lego board and began to add blocks to her board. After a 
moment her mother smiled told her to look at Tamara’s house, which had a roof, doors, and other 
accessories, as well as four walls creating the structure. Dahlia looked on for a moment and then 
began to add additional blocks to her construction. 
 In this episode, Dahlia, with her mother’s help, used her older sister’s construction as a 
model for her own work so that while Tamara constructed a house that mirrored the one pictured 
in the Lego directions, Dahlia turned her tower into a “house.” In someways, viewing the tower 
as a house was merely cosmetic, such as in Dahlia’s decision to add the clear bricks to stand in 
for windows. However, Dahlia’s building of a tower was her independent translation of 
Tamara’s four-walled enclosure. In her attempt to emulate her older sister, she needed to watch 
what Tamara was doing and decide how to replicate it with the blocks available to her, a process 
that encouraged the development of visualization skills and manipulation of geometric figures. 
Her mother encouraged her to add complexity to her structure by prompting her to think about 
what she should do next and presenting Tamara’s house as a model. Unlike the teacher and 
parapro, both in the classroom and at the Math Night, the parents we observed rarely asked their 
children to count or to name shapes. Rather, parents scaffolded their children’s work and 
thinking through engagement in the same or similar tasks. For example, the father and son at the 
table with Dahlia both made their own airplanes. This sort of scaffolding seemed to allow more 
opportunities for spatial thinking and reasoning to unfold than the teachers’ efforts, which 
continually redirected children back toward traditional preschool mathematics, such as counting.    

Discussion 
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Given the concerns expressed in many recent reports (e.g., NAEYC & NCTM, 2002; NRC, 
2009) about the quality of mathematics experiences many young children receive, particularly 
poor and minority children, we believe it is important to consider ways that opportunities for 
complex thinking and problem solving can be incorporated into preschool and kindergarten 
school days in both formal and informal spaces.  In the current climate of standardized testing, 
many early childhood teachers have become focused on basic skills, which has led to a reduction 
in free play. However new research has shown that these play opportunities are critical for 
complex mathematical thinking later (NRC, 2009). 

This ethnographic analysis of block play raises a number of issues for mathematics educators 
to attend to as they develop early childhood mathematics curricula, engage in professional 
development with early childhood teachers, and do further research on young children’s learning 
trajectories. First, it is important to recognize that the complexity of mathematical thinking 
young children engage in during block play may not be entirely captured in the finished 
structures. The research community would benefit from increased attention to creation processes, 
and children and teachers would benefit from increased opportunities to talk about their thinking 
during and after their work. Second, children’s play with blocks needs to be scaffolded to 
maximize opportunities for mathematical thinking; however, this scaffolding does not always 
need to come from a teacher in either a formal or informal setting. Well-chosen materials can 
scaffold particular kinds of thinking, and other children and parents can also support children in 
problem solving. More research needs to be done on how to build on the strengths parents and 
children bring to this process. In addition, teachers need to learn both how to watch children 
during block play to figure out the mathematics that may be present and to recognize the more 
complex process skills that young children need to develop along with counting and shape 
recognition. Finally, we would be remiss not to note that in our study, as in much previous work 
(e.g., Kersh, Casey & Young, 2008), gender mattered in block play. Nearly all of our classroom 
clips with Legos, wooden blocks, and unifix cubes show the work of boys. However, during 
Parent Night and in the assessment interviews, girls engaged enthusiastically with the blocks, as 
Dahlia did in the described episode. Creating spaces where girls were expected to build with 
blocks and where they did not have to struggle to maintain access to the materials seemed 
important in giving girls access to these learning opportunities. Guided play as part of formal 
lessons in classrooms could potentially provide another welcoming space for girls to engage in 
block play. 

Developing learning trajectories around blocks that include both images of what finished 
structures may look like and descriptions of processes that children go through as they engage 
with these materials is important to the study of children’s early learning broadly and, more 
particularly, to the study of the relationship between formal and informal learning. Teachers will 
be able to use these trajectories to learn about the deeper mathematics embedded in block play 
and to make connections between formal and informal lessons. It is important to both theory and 
practice to develop these trajectories by looking at the thinking that goes on during block 
building in a variety of social settings not simply at a progression of completed structures. This 
theoretical view is likely to be more inclusive of diverse mathematics and of diverse children. 
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CONCEPTUAL METAPHORS WITHIN MATHEMATICAL PROBLEM SOLVING 
 

Sean Yee 
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Current research in mathematical problem solving suggests that language, and specifically 
metaphors, are influential in a student’s ability to perceive, solve, and learn from a mathematics 
problem.  This paper summarizes the results of a pilot study in which high school students 
attempted to solve and justify three mathematics problems.  The student was video recorded and 
then allowed to watch himself/herself solving the problems.  The student commented on the 
process used while solving the problems.  Three analyses focused on the student’s use of 
conceptual metaphors, the word like (myopic like), and how such factors influenced the student’s 
performance.  

 
Metaphors are a means to relate experiences through language, thought, and action.  The 

relationship between the experiences of the teacher and the student are vital to mathematics 
education.  Specifically, teachers and students share an experiential set: solving mathematics 
problems.  However, the student’s and teacher’s perspective of what constitutes mathematical 
problems and/or solutions are complex in structure.  (Lakatos, 1976; Lesh & Zawojewski, 2007; 
Pólya, 1945; Schoenfeld, 1992).  Metaphors are culturally designed to make these implicit 
perspectives explicit.  Moreover, they have been found to encourage and incite cognition (Lakoff 
& Núñez, 2000; Sfard, 1997).    

This paper summarizes the results of a pilot study into how metaphors are used in 
mathematical problem solving, specifically: 

Q1. How do metaphors help in understanding a problem?   
Q2.  How do metaphors guide the process of solving a problem?   
Q3.  What metaphors are used to describe mathematical problem solving? 
Q4.  How do metaphors connect problem-solving and proof? 
Q5. How can knowledge of conceptual metaphors help teachers improve student learning? 

THEORETICAL FRAMEWORK 
The theoretical framework for this study has evolved from the firm belief that mathematics is 

embodied (Lakoff & Núñez, 2000).  Fundamentally, embodied mathematics states that 
mathematics is not mind-free and dependent upon human perception.   Concomitantly, this 
research perceives of mathematics education under the philosophical axiom of cognitive science; 
one can understand and interpret how people think, and more specifically, learn (Gardner, 1987).  
Within this realm, this study focuses on the influence of metaphors to one’s ability to learn from 
and solve mathematical problems. 

George Polya (1945) emphasized two types of problems in mathematics: problems to find, 
and problems to prove.  This distinction is significant, yet this study will show how these two 
concepts are not mutually exclusive via linguistics. Another significant area of focus of Polya 
(1954) was the use of analogies; how analogous problems can be identified and used to solve 
foreign mathematics problems.  This is the springboard from which this article begins because it 
was through this branch of thought that Polya began to see the influence of language in solving 
problems. 

Polya’s linguistic inspiration was paralleled in the 1970’s by cognitive scientists, whose 
emerging field was a culmination of artificial intelligence, cybernetics, anthropology, 
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psychology, philosophy, linguistics (Gardner, 1987), and now education.  This interdisciplinarity 
attracted mathematics educators such as Alan Schoenfeld (1985) to model students’ approaches 
to problem solving.  Schoenfeld’s attempts to interpret how students solve mathematical 
problems demonstrated a high level of complexity which suggested a categorization of problem-
solving characteristics rather than a sequential how-to model.  Schoenfeld’s initial categories 
included heuristics (as reinvented by Polya, 1945), resources, controls, and beliefs.  He found 
that student’s expression of their problem-solving process emphasized aspects of control, beliefs, 
and explicit knowledge of their own cognition.  He clarifies this as metacognition, a valuable 
skill students possess (Schoenfeld, 1992).  Combining Schoenfeld’s concept of metacognition 
with Polya’s concept of analogy suggests that the language through which students express their 
cognitive process may demonstrate how students discern between isomorphic (analogous) and 
non-isomorphic mathematics problems.   

The language that the students use to express their metacognition is insulated by experience.  
In this manner, mathematics is embodied (Lakoff & Núñez, 2000).  One’s knowledge of 
mathematics is dependent upon one’s perspective and experiential learning of that knowledge.  
For example, Lakoff and Nunez (2000) demonstrate how the understanding of limit is complex 
and embodied within one of two conceptual metaphors.  One can think of limits graphically; 
claiming that as x approaches (motion metaphor) a number, the function will also approach a 
number.  Weierstass viewed limits by saying; if x is within the proximity (proximity metaphor) 
of a number, then the function will also be within the proximity of a number.  Both metaphorical 
perspectives are valuable, and distinct in their techniques of proof.  However, the logic necessary 
to solve limit-based problems is analogous in both metaphors.  Thus an elusive bond exists 
between problem solving and proofs in which metaphors are squarely centered (Q4). 

Polya’s concept of analogy is distant in linguistics from metaphors, yet close in cognition.  
Analogies reference two concepts already firmly defined in the learners’ mind for purposes of 
mapping aspects of one concept onto the other (Sfard, 1997).  However, metaphors frequently 
model a new conceptual structure with a pre-existing structure.  The accommodation of known 
structures into new concepts can define the new concept, and is considered an aspect of 
conceptualization (Kövecses & Benczes, 2010; Sfard, 1997).  Justifiably, Sfard (1997) refers to 
such conceptual metaphors as implicit analogies.  Hence for mathematical problem solving, 
application of analogies follows the learner’s understanding of conceptual metaphors.   

Linguists classify these conceptual metaphors into three hierarchal categories: structural, 
ontological, and orientational (Kövecses & Benczes, 2010; Lakoff & Johnson, 1980).  In all three 
conceptual metaphors, there is a source domain and a target domain.  The source domain is the 
experientially-known domain and the related concept is the target domain.  Thus in the 
metaphorical linguistic expression “The solution escapes me”, the target domain is solutions 
while the source domain is prey.  Hence the conceptual metaphor is “SOLUTIONS ARE 
PREY”.  It is important to note that despite the use of the being verb “are”, the phrase is 
unidirectional (TargetSource).  Structural metaphors strive to describe a complex concept, 
such as time, in terms of a concrete experiential object, such as a limited resource, i.e. “Don’t 
waste my time”.  Ontological metaphors provide target domains with less structure and a new 
reality in which they may be defined.  Personification is regularly ontological; as is the phrase 
“the solution escapes me”.  Orientational metaphors are the most difficult to relate experientially 
according to linguists.  They are a broad concept with a specific direction inherent in our 
development as humans.  The metaphorical linguistic expressions “Things are looking up” and 
“He fell ill” are examples of the conceptual metaphor “HEALTHY IS UP”.  How these 
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metaphors directly influence a student solving of mathematics problems is the focal point of Q1, 
Q2, and Q3.  Applying this metaphorical influence pedagogically is the purpose of Q5.  

RESEARCH DESIGN 
This pilot study used a naturalistic paradigm (Donmoyer, 2001) to study how metaphors 

influenced student’s problem solving because the lack of current research within mathematics 
education (Sfard, 1997) mandates trustworthiness.  In tandem, phenomenological inquiry (Short, 
1991) was used to search for the essence of mathematical problem solving.  Thus, students were 
chosen according to a list of criteria that indicated the student had a propensity towards 
mathematics and expressing their thoughts.  The population of interest is high school students 
who are planning on going to college.  Characteristics of the sample varied but were limited to 
participants with a genuine interest in mathematics for learning and recreation beyond grades, 
participants who could clearly communicate their thoughts without fear of the researcher’s 
judgment, and participants who were willing to make mistakes and continue despite 
disappointment.  Participants were neither included nor excluded based on ethnicity, sex, age, 
health or association with a special class.  Twenty students were asked to participate in the study 
and nine students volunteered. 

Nine students at a suburban high school in Ohio participated: three freshman, two 
sophomores, and four juniors.  There were three females and six males.  Each student met with 
the researcher individually after school for an hour.  The students were given the three 
mathematical problems shown below: 

P1. Imagine you had a piece of string.  How would you bend this string to make a triangle 
bounded by the string with the greatest area?   

P2.  Humans have classified numbers on the number line into two categories, rational and 
irrational.  Rational numbers are those that can be written as fractions, irrational numbers 
cannot be written as a fraction.  Suppose I have an irrational number.  If I add one to that 
number will it be rational or irrational? 

P3. How could you cut a cylindrical birthday cake so that you have 8 slices using only 3 
straight cuts with a knife? 

The techniques and justification for each problem varied mathematically to identify differences 
or similarities in problem-solving techniques and metaphorical conceptualization. Moreover, the 
problems were specifically designed to be metaphorically sterile so as to evoke conceptual 
metaphors from the students without bias.  The problems could be done in any order and 
manipulatives were available to help the students, including cork board, dry erase markers/board, 
string, pencils, paper, calculators, thumb tacks, pipe cleaners, and straight edges.   

As Steffe (1983) poignantly noted in studies involving children solving problems, there are 
multiple interpretive mediums involved.  The experience of the student is expressed by the 
student, interpreted by the researcher, related via the researcher’s experience, and then expressed 
by the researcher.   To minimize the amount of interpretation of the researcher and to maximize 
the metacognitive expressions of the student, Reynolds’ (1993) design was applied where the 
student would attempt to solve the above problems (primary video) and then immediately watch 
themselves solving the problems with explicit instructions to explain their thought process 
(secondary video).  Thus students worked with the researcher on the above problems for 30 
minutes and then watched the video of their problem-solving process with the researcher for 30 
minutes. The names of the students were coded according to the first nine Greek letter of the 
alphabet. 
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RESULTS 
Using mixed methods, two analyses are complete, while two are still in progress.  The first 

analysis was qualitative and interpreted the student’s conceptual metaphors of problem solving.  
The second analysis was quantitative and ascertained two results; linguistic hierarchy of 
conceptual metaphors is viable within mathematical problem solving, and the student’s use of the 
word like has a negative correlation with their performance on Q1, Q2, and Q3.  The third 
analysis is a continuation of the first two analyses, currently ongoing, and discussed below.  

First Analysis: Qualitative 
The initial analysis involved multiple observations of all the videos using a 

phenomenological design and recording significant metaphors, problem-solving techniques, and 
all justifications.  The first analysis revealed that the students evoked metaphors rich in context 
and culture.  For example, when working with P2, Beta stated “Adding rational and irrational 
numbers is kind of like mixing oil and water”.  Initially, this analogy helped conceive of the 
question, but then raised complicated issues when deductive reasoning was needed.  A more 
surprising result of the first analysis was the abundant use of the word like.  Students used the 
word like frequently demonstrating examples or counterexamples to guide their intuition.  When 
trying to understand the problem, students used the word like for inductive reasoning rather than 
deductive reasoning.  The second qualitative analysis delves deeper into these results.  

There was significant evidence that a classification of metaphors (structural, ontological, 
orientational) was applicable to problem solving.  Students were consistently able to discuss their 
problem-solving techniques as if their brain was a separate entity.  In the secondary video, 
students evoked ontological metaphors personifying their mind as an entity from which they 
were analyzing.  For example, Epsilon changed from one question to another because she had to 
let her “subconscious work on it for a while”.  Zeta stated “my mind plays games on me.”  The 
following is a list of conceptual metaphors (mainly structural) that the students related to their 
problem-solving strategies through metaphorical linguistic expression in the first analysis: 

 
Table 1: Conceptual metaphors of problem solving. 

Target Domain  Source Domain 
PROBLEM SOLVING IS A JOURNEY, STRATEGIES, A HUNT, A BATTLE, A 

PRODUCT, A DESTINATION, A BUILDING, A 
GOAL, TRICKS, DISCOVERY 

THE PROBLEM-SOLVING 
PROCESS 

IS CONSTRUCTING,EXPERIMENTING,  
ILLUMINATING, TRAVELING, PLAYING, 
SEARCHING 

Notice how problem solving is never personified as a creature with its own intelligence.  Yet, the 
problem-solving process always involves an action-based orientation.  For example, no one 
suggested PROBLEM-SOLVING PROCESS IS THINKING.  These results demonstrate a 
metaphorical system (Kovecses, 2010) with certain coherent (Lakoff, 1980) traits.   

Second Analysis: Quantitative 
The second analysis (quantitative) had two parts.  The first attempted to verify Kovecses’s 

(2010) research in linguistics, that there is a hierarchy between structural, ontological, and 
orientational metaphors in mathematical problem solving.  The second attempted to verify that 
the frequency of the word like was related to the student’s performance.  It is important to note 
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this voluntary pilot study included only nine participants and thus nine degrees of freedom which 
limited the study (N<30).  

The first part of the quantitative analysis was calculated by counting the number of times 
each conceptual metaphor was used during the primary and secondary videos.  The descriptive 
statistics are shown below: 

 
Table 2: Descriptive statistics for conceptual metaphors. 

Descriptive Statistics Mean Std. Deviation N 
Structural 32.22 10.462 9 
Ontological 19.78 6.438 9 
Orientational 14.78 7.870 9 

MANOVA was performed on the data, and the Wilk’s Lambda showed a strong significant 
variability between the conceptual metaphors (F(3,9)=14.292, p=.003 with alpha=.05 ).  
Additionally, the structural metaphors were most frequent (µ =32.22) followed by ontological 
metaphors (µ =19.78) and then orientational metaphors (µ =14.78) as was expected according to 
cognitive linguists.   

The second part of the second analysis demonstrated that the total number of times a student 
used the word like was related to their overall score.  For each problem the student solved, but 
could not justify, the student was given a score of ½.  For each problem the student solved and 
could justify, the student was given a score of “1”.  Students could receive an overall score 
between 0 and 3.  There was a nearly-significant moderate negative correlation between the 
overall score and the number of times a student used the word like (r=-.634, p=.067).  There was 
a strong negative correlation to their score on P3 to the number of times a student used the word 
like in P3 (r=-.937, p<.001).  Both of these results demonstrate that the more the student used the 
word like, the worse their solution to the problem. 

Third Analysis:  Mixed Methods 
The third analysis is both quantitative and qualitative and currently still underway.  The third 

qualitative analysis has two parts.  First, the analysis develops a metaphorical system (Kovecses, 
2010) for problem solving of teachers and students and determines which perceptions of problem 
solving converge and what perceptions diverge.  Conclusions from this study are still being 
resolved.  The second aspect of the third qualitative analysis has yielded results to how the word 
like is used in mathematics by high school students.  My study has found that despite the word 
like taking nearly every form of speech, with respect to comparison theory of metaphors, all of 
the study’s participants used the word like in only four frameworks. 

These four distinct structures were true to mathematics education.  Yet, linguistic theories 
shed light on their interaction within mathematics.  Thus before designing a categorization, 
prototypical metaphors were examined to understand connotations:   

Beta: “Adding rational and irrational numbers is kind of like mixing oil and water”  
Gamma: “I will treat one side of the triangle like it was fixed”  
Delta: “This triangle problem is like extending the rectangle proof” 
Iota: “Consider a vector space like three dimensions” 

The word like was exclusively used within these four instances to clarify the significance of 
discovery.  Other uses of the word like did not belong in this classification.  Consider the phrase 
“I was like, ‘no way’!”  This comparison does not align with the above exemplars because it 
relates an expression in response to a situation without directly stating the situation.  This phrase 
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compares the emotional response which must be assumed by the context.  Another use of the 
word like that was never used was “equilateral triangles and the like”, making specific reference 
to a generalizable group of triangles comparable by the equilateral property.  Many other uses of 
the word like exist beyond these two, making the results of this study encouraging to 
mathematics education. 

Consider the four exemplars for categorical purposes.  Beta used like to compare multiple 
objects and similar operations between the objects.  The linguistic structure comparable to Beta’s 
use of the word like is an analogy; rational numbers are added to irrational numbers as oil is 
mixed with water.   Gamma’s conjunctive like can be replaced by as if which is a common use of 
like to refer to something happening in a literally comparable manner.  I will treat one side of the 
triangle as if it was fixed (as literally being fixed).   Delta compares the current problem to that 
of a different problem involving a different shape in hopes of searching for a common process.  
As these two shapes are unlike in structure, this is best referenced as a simile.  These three uses 
of like closely resemble comparisons designed by linguist and cognitive psychologist, George 
Miller (1993).  For purposes of interdisciplinary uniformity, Miller’s comparison terms will be 
used here.  Specifically, we will refer to the three comparison statements used by students within 
this study as analogies (Beta), literal comparisons (Gamma), and similes (Delta).   

 Notice, one can replace Iota’s like with the phrase for example.  This use is referenced in 
the Merriam-Webster Dictionary (2007) as a possible adjective definition, yet research in 
linguistics and mathematics education does not mention Iota’s use of like, despite its frequent 
use.  Iota’s use of like differs because Iota is emphasizing a specific example (three dimensions) 
in reference to the broad concept (vector space).  Thus Iota narrows, or focuses, to a specific 
example so as to concretely work with the mathematical problem within a familiar context.  
Iota’s like transfers from global to local understanding.  This use of the word like resembles 
nearsightedness.  This is not to attach a negative connotation to this use of the word like, but 
rather clarify that one focuses on closer (more tangible) objects rather than farther (less tangible) 
objects.  For this reason, I will use the metaphor of myopia to reference this use of the word like.  

 
Table 3: Comparison Statements of the word like in mathematics education. 

Like  Structure  Prototypical Example 

Analogy A is to B like C is to D. Beta: “Even and odd numbers are like rational and 
irrational numbers.” 

Literal 
Comparison 

A as if B,  
or A is literally like B. 

Eta: “I was hoping like something would come to my 
mind”.  

Simile A is like B despite A and B 
being distinctly different. 

Gamma: “Get the base of the triangle like the base 
being the chord of a circle” 

Myopia B is an example of A. Epsilon:  “A quantity can’t be irrational like a 
quantity in real life isn’t really irrational because it is 
a fraction of something.” 

The purpose of the myopic like was significant and consistent with all students.  If a student used 
the word like in solving any of the problems, the myopic like was in attendance.  The 
quantitative analysis of myopias is still under investigation and is not included in these results.  
Additionally, a larger study (N>9) would give a stronger quantitative argument for the 
significance of myopias. 
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The lack of research into the myopic model illuminates a crevice between theory and 
practice.  The myopic like has not been studied because mathematics educators perceive this use 
of the word like as misused.  The myopic like is improper in formal writing, and thus not studied 
in how students speak.  Yet, its existence mandates linguistic study if we are to rectify student 
misconceptions.  While improper on paper, it is cognitively significant because every participant 
who used the word like, generated a myopia.  Moreover, the negative correlation between score 
and frequency of the word like suggests an aid to the practical educator.  Students who overuse 
the word like could be focusing on examples and inductive reasoning rather than deductive 
reasoning.  Such a student continues to revolve around tangible examples rather than looking to 
aspects of those examples that are generalizable (Polya, 1945).  Thus educators should be aware 
that a student’s use of the word like may indeed cause myopic problem solving without the 
teacher’s help. 

SIGNIFICANCE TO MATHEMATICS EDUCATION 
This study’s primary purpose was to develop and improve upon the understanding of 

conceptual metaphors within mathematical problem solving.  Three conclusions can be drawn 
from the results of this study.  First, students are able to model and describe their problem-
solving process metaphorically.  Students used personifying ontological metaphors to describe 
their mind as an external object and structural metaphors to describe how their minds interpreted 
problem solving and the problem solving process (Table 1).  These conclusions offer insight into 
Q1, Q2, and Q3.   

Secondly, the quantitative analysis showed that the linguist’s cognitive hierarchy of 
conceptual metaphors is tenable within mathematical problem solving as the student’s 
metaphorical frequency was greatest with structural metaphors and least with orientational 
metaphors.  This analysis also demonstrated that the more students frequent the word like, the 
lower their performance on mathematics problems that require justification (problems to prove). 
This negative correlation between the use of the word like and the student’s performance 
suggests that if students are unable to move beyond inductive reasoning, they will be unable to 
deductively reason its logical truth or falsity (Q4).  Hence, if a teacher listens for the student’s 
over use of the word like, it may be an early indicator that the child is struggling with the concept 
at hand.  The understanding of the word like may improve student learning (Q5).   

The third mixed methods analysis is still underway, but the results show promise towards 
two features discovered in the first and second analysis.  The third analysis interprets the model 
of conceptual metaphors for problem solving via a cohesive system for the purposes of helping 
educators better interpret and teach high school students.  Additionally, the third analysis 
identified four (and only four) uses of the word like while solving mathematical problems: 
analogy, literal comparison, simile, and myopia.  The frequent use and discovery of the myopic 
like suggest more quantitative analysis is needed.  Both aspects of this mixed methods study 
encourage interdisciplinary research between mathematics education and linguistics with the 
philosophy shared by cognitive science that mathematics is embodied (Lakoff & Núñez, 2000).   

This theoretical framework of embodied mathematics demands that pedagogy is influential in 
mathematics.  The metaphors used by teachers and students influence how both parties think and 
more specifically, learn (Sfard, 1997).  This study can aid educators and researchers because it 
offers specific and tangible observations of cognitive theories, such as conceptual metaphors, the 
myopic like, and embodied mathematics.  The language chosen by students to express and 
construct mathematical thoughts is not arbitrary.  Their ability to use metaphors develops 
incrementally.  The metaphorical hierarchy of conceptual metaphors suggests one such 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1107



increment, while the myopic like supports another. This analysis has suggested ways in which 
conceptual metaphors and comparison theory can be used to improve teaching.  Hopefully, this 
pilot study will lead to future studies encouraging and confirming that metaphorical 
conceptualization can aid mathematics educators and students. 
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Through “fact family” instruction, students learn the commutative property of addition and 
inversion principle. However, problems like 3-9, challenge students’ understanding of these 
principles due to their novel arrangement. Sixty-one first graders were randomly assigned to one 
of three instructional groups. Pre- and post-test interviews indicate that students who practiced 
operating through zero had greater gains in principle understanding. 
 

Introduction 
One of the fundamental goals of elementary mathematics instruction is to help students 

develop number sense; for children in grades K-2, in particular, number sense involves 
understanding the composition and decomposition of numbers as well as the relationships among 
numbers in addition and subtraction problems (National Council of Teachers of Mathematics, 
2000). An important part of this process includes learning three principles: the commutative 
property of addition (e.g., 4+5 = 5+4), the inversion principle (e.g., 4+5=9, so 9-5=4), and the 
subtraction complement principle (e.g., 9-4=5 so 9-5=4). Knowledge of additive commutativity 
tends to appear before the other two principles, with inversion presenting more difficulty for 
young children (Canobi, 2005).  

Instead of only addressing these part-whole relationships individually, US textbooks 
frequently incorporate a series of lessons on “fact families” which aim to help students see these 
connections all at once (Lovin, 2006). In the California version of the first grade enVision 
mathematics curriculum, there is one lesson dedicated to the commutative property of addition 
and seven lessons on relating addition to subtraction and using “fact families” (Pearson 
Education, Inc., 2009). Although the use of “fact families” or “turn-around facts” as an 
instructional focus seems widespread, there is little research on their effectiveness. Because 
studies show students understand that 4+5=5+4 and teachers see students correctly filling in the 
“fact families”, we might believe that students do understand all of these principles; however, 
other studies show that students solve problems like 62–48 by subtracting the smaller number 
from the larger number in each column, regardless of their placement (Fuson, 2003). These 
results suggest that students may not have full understanding of these principles. This paper takes 
a small step at exploring how early instruction in negative numbers might facilitate first grade 
students’ judgment of when and how to use the commutative property and inversion principle. 

 
Theoretical Framework 

As children learn addition and subtraction and develop more efficient strategies for solving 
arithmetic problems, they move through three “conception of quantities” levels (and sometimes a 
transition level) (Fuson, 1992; Murata, 2004). At Level 1, students count all quantities; for 3+4 a 
child would count out three objects, count out four objects, and count the combined collection to 
find the total. Students at Level 2 shorten this process by counting on (or counting back or up for 
subtraction); for 3+4, this student would say “three”, knowing that it is not necessary to count 
out the three, and then count on “four, five, six, seven.”  Finally, at Level 3, students use 
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composition and decomposition methods, especially involving groups of ten, to solve problems. 
Learning and using these part-whole relationships, such as those emphasized with fact families, 
is one of the most important goals in elementary arithmetic (National Research Council, 2001).  

Aside from guiding students towards part-whole strategies, effective mathematics instruction 
also needs to help students develop mathematical proficiency: conceptual understanding, 
procedural fluency, strategic competence, adaptive reasoning, and productive disposition 
(National Research Council, 2001). According to the National Research Council, “Examining the 
relationships between addition and subtraction and seeing subtraction as involving a known and 
an unknown addend are examples of adaptive reasoning” (p. 191). Along with fostering adaptive 
reasoning, presenting all forms of a fact family together (e.g. 4+5=9, 5+4=9, 9-5=4, and 9-4=5) 
might also help students deepen their conceptual understanding of the commutative property, 
subtraction complement principle, and inverse principle as students make connections among 
these relationships. However, by spending limited to no time learning the principles separately, it 
is also possible that rather than understanding these complex relationships, students learn that 
order does not matter for addition and likewise assume that the numbers in subtraction problems 
can be moved around in multiple ways.  

A more procedural understanding of these principles could lead students to incorrectly think 
they can solve 2–7 as they would 7–2 by misapplying the commutative property or by thinking, 
“What plus 2 equals 7?” due to a misapplication of the inversion principle. Alternatively, 
students may use these misapplied methods because they do not know about negative numbers 
but feel the need to provide an answer anyway. Students who know about negative numbers and 
their relationship to positive numbers may be willing to think about obtaining answers other than 
positive numbers. Furthermore, learning that the commutative property does not hold for 
subtraction and having experiences correctly solving subtraction problems with smaller 
minuends might help these students better understand both the commutative property and the 
inversion principle.  
 

Research Questions 
The following questions guided this analysis:  

1) How do students reason about the commutative and inversion properties before and after 
instruction in negative numbers?  
2) How is instruction on the order and value of negatives and/or addition and subtraction with 
negatives related to students’ understanding of commutativity and inversion? 

 
Methods 

Subjects and Site 
This data comes from a study conducted at an elementary school in northern California, in 

which 47% of its students are English language learners (California Department of Education, 
2010). Out of a possible 79 first graders at the school, 61 first graders (30 male, 31 female) 
agreed to participate and complete the interviews in English. The study took place in the spring, 
so the first graders had already learned about addition and subtraction. 
Materials and Data Collection  

The study employed a pre-test, post-test design with an instructional intervention. Both pre- 
and post-tests were conducted as individual interviews and involved similar questions; some 
post-test problems were identical to those on the pre-test, while others just had different 
numbers. During the interviews, students were asked to explain how they solved the problems. 
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While the questions covered a wide-range of integer concepts, including addition and subtraction 
problems, this paper focuses on a small-subset of question categories: counting backward, 
integer value comparisons, commutative property, and subtraction problems. Table 1 lists the 
questions from both the pre- and post-tests. 

 
Table 2. Items students completed during the pre-test and post-test interviews. 
Question Category Pre-Test Post-Test 
Counting backward “Start at five and count 

backwards as far as you can. 
Is there anything before <last 
number child says>?” 

“Start at five and count 
backwards as far as you can. 
Is there anything before <last 
number child says>?” 

Integer value comparison 
“What are these two numbers? 
Circle the one that is greater.” 

8 vs. 6* 6 vs. 4* 
3 vs. -9 5 vs. -7 
-2 vs. -7 -3 vs. -1 
-5 vs. 3 -8 vs. 4 
-8 vs. -2 -6 vs. -2 

“Two children are playing a 
game and trying to get the 
highest score. Circle who’s 
winning.” 

4 vs. -7 5 vs. -9 

-7 vs. -3 -8 vs. -6 

Commutative property 
“Just look at these two 
problems. Do you think they 
will give you the same or 
different answers?” 

4 + 5 vs. 5 + 4 2 + 5 vs. 5 + 2 
3 – 1 vs. 1 – 3 4 – 1 vs. 1 – 4 
6 – 4 vs. 7 – 4 (distracter) 7 – 3 vs. 7 – 4 (distracter) 
5 – 8 vs. 8 – 5 2 – 9 vs. 9 – 2 
3 + 2 vs. 3 + 3 (distracter) 6 + 3 vs. 2 + 6 (distracter) 
9 – 6 vs. 6 – 9  0 – 8 vs. 8 – 0  

Subtraction 
“Solve this problem.” 

1 – 4 = 1 – 4 = 
3 – 9 = 3 – 9 = 
6 – 8 = 6 – 8 = 

*All students solved these problems correctly, so they were excluded from further analysis. 

After the pre-test, students (regardless of classroom) were randomly assigned to one of three 
instructional groups, so that each group had an even mix of students (in terms of initial 
understanding of negative numbers, teacher ratings of their math performance, and gender). Each 
group participated in 8, 45-minute lessons. During their group’s instructional time, students met 
in a separate room, and the author provided instruction. Group 1 (N=20) received instruction on 
the order and value of negative numbers along with how to add and subtract with them; this 
included learning that subtraction is not commutative. Group 2 (N=21) only received the “adding 
and subtracting” lessons from Group 1’s instruction, without learning about the order and value 
of negatives, while Group 3 (N=20) only received the “order and value” lessons from Group 1’s 
instruction. Both Group 2 and Group 3 had additional practice games similar to their original 
lessons so that they received the same amount of lesson time as Group 1. Table 2 provides an 
outline of the lessons for the three groups. 
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Table 3. Lesson topics for the three instructional groups. 
 Day 1 Day 2 Day 3 
Group 1 (N=20) 
Integer Value & 
Order, Add, Subtract 

Discuss and 
explore symbols 

Explore minus sign versus 
negative sign 

Vertical number line 
with integers; Game: 
Which is greater? 

Group 2 (N=21) 
Add, Subtract 

Explore lack of commutativity for subtraction compared to addition, no 
specific mention of negatives 

Group 3 (N=20) 
Integer Value & 
Order 

Discuss and 
explore symbols 

Explore minus sign versus 
negative sign 

Match negative numbers 
vs. positive numbers 

 Day 4 Day 5 Day 6 Day 7 Day 8 

Group 1 
(cont.) 

Explore commutative property and 
lack of commutativity for 
subtraction compared to addition 

More (move 
right) vs. Less 
(move left) 

More positive 
= larger, more 
negative = 
smaller 

Less positive 
= smaller, 
less negative 
= larger 

Group 2 
(cont.) 

More (go right on 
NL) versus Less 
(go left on NL) 

More positive= 
larger, more 
negative= 
smaller 

Less positive= 
smaller, less 
negative= 
larger 

More positive, less positive, 
more negative, less negative 

Group 3 
(cont.) 

Negatives on a vertical number line; 
Game: Which is greater? 

War: Which 
integer is 
Greater? 

Game: Get three or four 
consecutive integers in a row 

Analysis 
Students’ solutions were coded for number correct in each category, and their verbal reports 

were transcribed for each. When counting backward, students only had to count to “negative 
one” in order for their count to be considered correct. Using the terminology “minus one” or 
“penalty one” also counted. Regarding the commutative property questions, all distracter 
questions were removed from this analysis (only three students gave an incorrect answer for one 
or both of these). Students’ explanations were coded based on their reasoning for why they 
thought the answers would be the same or different (e.g., Commute = commenting on the 
numbers being switched around, Inverse = justifying a subtraction problem based on an addition 
problem). Finally, for the subtraction problems, answering “0” or a negative number was counted 
as correct since these answers meant students were not reversing the order of the numerals, 
which was all the study explored. The explanations of students’ solutions were coded as to 
whether they reversed the numbers or used inversion reasoning in solving the problems. 

 
Results 

Table 3 lists each group’s percentage correct scores on the pre- and post-tests for each 
question category, along with their overall percentage gains. On the counting backward and 
integer value comparison tasks, both groups who had instruction on integer order and values 
(Groups 1 and 3) made pre- to post-test gains that are almost double the gain of Group 2, who 
did not receive this instruction. Unsurprisingly, on the pre-test, all groups demonstrated 
understanding of the commutative property of addition, judging that 4+5 would give them the 
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same answer as 5+4; because of their high initial performance on this item, there were small to 
no gains on this item across groups.  

When asked if subtraction problems and their reversals would give them the same answer, 
Group 3—who learned about the order and value of negatives—made a large gain in 
understanding that the answers would be different. However, when they were asked to solve the 
problems, they made no gain in providing negative or zero answers. On the flip side, Group 1— 
who received instruction in all of the topics—made no gain in identifying that the subtraction 
problems with smaller minuends would have different answers but made a modest gain in 
actually providing negative or zero answers when they had to solve them. Group 2—who 
practiced adding and subtracting on both sides of zero—improved on both of these question 
types. 
 
Table 3. Percentages correct (and gains) for each group on pre- and post-tests by question type. 
Counts Backward into the Negatives PreTest (%) PostTest (%) % Gain 
Group 1 (N=20) 15% 60% 45% 
Group 2 (N=21) 14% 38% 24% 
Group 3 (N=20) 20% 65% 45% 
Correctly Compares Integer Values PreTest (%) PostTest (%) % Gain 
Group 1 (N=20) 18% 73% 55% 
Group 2 (N=21) 17% 32% 15% 
Group 3 (N=20) 20% 90% 70% 
Commutative Property of Addition PreTest (%) PostTest (%) % Gain 
Group 1 (N=20) 85% 95% 10% 
Group 2 (N=21) 90% 95% 5% 
Group 3 (N=20) 90% 90% 0% 
No Commutative Property of Subtraction PreTest (%) PostTest (%) % Gain 
Group 1 (N=20) 37% 32% -3% 
Group 2 (N=21) 11% 37% 25% 
Group 3 (N=20) 15% 48% 33% 
Solving S – L, where L>S, S, L > 0 PreTest (%) PostTest (%) % Gain 
Group 1 (N=20) 33% 45% 12% 
Group 2 (N=21) 38% 63% 25% 
Group 3 (N=20) 47% 45% -2% 
Students’ Responses 

While Group 2 was the only group to show growth for both the commutative questions and 
the subtraction problems, there were similar trends and student variation in each of the groups. 
Over all groups, students reversed numbers to solve 3-9, 6-8, and 1-4. An additional nine 
students specifically misapplied inversion reasoning to justify their positive answers; this is 
likely an underestimate since several students provided positive answers without justifying why 
they did so. Each group had at least one student who originally claimed problems such as 3-9 and 
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9-3 would have different answers but then on the post-test stated they would have the same 
answers. Furthermore, each group had students who demonstrated no gains from pre- to post-test 
(although some of these students changed their reasoning about their answers). Finally, all 
groups contained students who improved in realizing that the subtraction problems would give 
them different answers, and more specifically, that subtraction problems with smaller minuends 
would not have positive answers. See Table 4 for examples of how students in these subsets 
reasoned from pre- to post-test. The examples are from students in Group 1, but their reasoning 
is reflective of the other groups’ reasoning. 
 
Table 4. Examples of students from Group 1 whose performance decreased, stayed the same with 
different reasoning, and improved from pre- to post-test. 
ID Test Answer Explanation  Code 
209 Pre-Test 3 – 1 ≠ 1 – 3 Three and taking one is (writes 2). There’s 

one and you took away three and there’s no 

more, and it’s zero (writes 0). 

Zero / 

Positive 

 Post-Test 4 – 1 = 1 – 4 Four. Four. One. One. Same 

Numbers 

213 Pre-Test 3 – 1 ≠ 1 – 3  When you minus, it can’t equal the same 

number. 

Not Equal 

Post-Test 4 – 1 ≠ 1 – 4 This one [1 – 4] would equal a negative 

and this one [4 – 1] would equal a positive 

number. 

Negative/ 

Positive 

101 Pre-Test 3 – 9 = 6 Six plus three is nine. Inversion 

 Post-Test 3 – 9 = -6 (counted back on fingers) Two, one, zero, 

negative one, negative two, negative three, 

negative four, negative five, negative six. 

Count 

Through 

Zero 

Discussion and Conclusions 
While all of the groups improved in a couple areas, some of the findings are clearer than 

others. The differential instruction influenced students’ improvement on certain questions due to 
their emerging understanding. The two instructional groups who learned about the order and 
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value of negative numbers (Groups 1 and 3) had greater gains on the counting backward and 
integer comparison tasks. This is unsurprising since students in these groups practiced counting 
backward through zero and played games which focused on the value of integers. Group 3, on 
the other hand, only saw negatives written on a number line in one lesson, and the numbers were 
not named or pointed out to them.  

As found in previous studies, these first graders also showed consistent knowledge of the 
commutative property of addition. The patterns for the subtraction problems with smaller 
minuends are less clear. Group 2 showed gains in identifying that subtraction problems, when 
reversed, will result in different answers; they also made gains applying this knowledge in order 
to solve the subtraction problems. They transitioned from giving positive answers to answering 
mostly negative numbers or zero. During instruction, this group spent several lessons playing 
games where they moved back and forth across zero as they acted out addition and subtraction 
problems. These motions may have facilitated their developing conceptual understanding of why 
the answers would be different and helped them avoid the perceptual inclination to think that 
commuting in subtraction is okay because the problems contain the same numbers. 

Group 1, however, also received this movement instruction, but their gain was much smaller 
than Group 2’s. A possible reason for this is that Group 1 spent less time on the addition and 
subtraction activities because they also had lessons on integer values. It is reasonable that the 
length of time students practice moving beyond zero is related to their ability to reason about 
why subtraction problems with smaller minuends would have different answers than their 
reversals. The results of this study only hint at a possible connection, but further study is needed.  

Although Group 1 did slightly improve in concluding that the subtraction problems with 
smaller minuends would not be positive, they did not improve in judging that subtraction is not 
commutative. How can we account for these contradictory results? On the one hand, more 
students in this group started with knowledge that subtraction is not commutative compared to 
the other groups, so they had less room for growth. On the other hand, four of the students had 
lower performance on the post-test, so it is possible that the combination of both types of 
instruction was too much to keep straight in such a short period of time. Again, investigating 
instruction over a longer time period or with slightly older students who may be better able to 
integrate the many aspects of the lessons may provide insight into this issue. 

Finally, while Group 3 showed gains in identifying that subtraction is not commutative, they 
did not make any gains in applying this knowledge. Over half of the students could count into the 
negatives, yet they did not use this strategy to solve the subtraction problems. Furthermore, two 
students stated that subtracting a larger number from a smaller one would be a negative number, 
yet they still wrote positive answers to the subtraction problems. One possible explanation for 
this result is that students are used to inverting problems from working with fact families, and 
they continue to invert even in contexts where this application is incorrect—even if they know 
it!—since they did not have the experience (as Group 2 did) breaking out of this habit.  

A second possible explanation is that students may be able to operate at Level 3 of the 
conception of quantities either on a procedural/perceptual level or on a conceptual level. One 
hypothesis was that students in Group 3 should have been more willing to get negative answers 
because they had instruction in their existence. However, they also may have had a surface 
understanding of the commutative and inverse properties—believing that one can change the 
order of the numbers in any way. Since they did not have instruction in solving negative 
problems, students in this group may have felt it easier to use one of the properties they 
“knew”—such as “switching” the numbers—rather than attempting to solve the problems in a 
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new way. 
Clearly, the results of this study raise more questions than provide answers, and we need to 

investigate children’s learning of the commutative and inverse properties further. However, one 
noteworthy finding is that if children have knowledge of the commutative property of addition 
this does not mean that they understand its limits. A stronger argument could be made for the 
inversion principle. By using 2+3=5 to solve 3-5, children demonstrate that the numbers, rather 
than their order and relationship to each other are more salient features to them. These results 
suggest that students will develop deeper conceptual understanding as well as the flexibility to 
know when they can apply learned rules and reasoning by having experiences with those 
situations which require them to expand or challenge their original understanding. If we can help 
students develop deeper schemas for concepts and procedures earlier, they will have a stronger 
mathematical base on which to build future concepts. 
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This report shares early findings from research on teacher practice associated with fraction-
based algorithmic thinking. It describes key practices used by a “skillful” experienced sixth-
grade teacher while implementing a curricular unit that leads students to develop algorithms for 
fraction operations using a guided-reinvention approach. These practices emerge from the initial 
days in the unit where estimation and number sense are the focus of lessons that set up the work 
to come where students will be developing algorithms for operating with fractions. These 
practices highlight mathematical thinking patterns, representations and language development 
that this teacher emphasized. 
 

Purpose 
Many have discussed the work of teachers and how the practices a teacher draws upon 

directly influence what students learn. In their review of the collective literature on teaching and 
classroom practice, Franke, Kazemi and Battey (2007) offer that effective teaching involves 
more than having a rich task or eliciting students’ thinking. How one orchestrates mathematical 
discourse in a particular mathematical domain needs more attention. For example, what is it that 
a teacher should attend to when they elicit students’ thinking in a particular domain? What are 
the core activities that should occur regularly when teaching in a domain? The research findings 
reported here are from a larger study focused on examining teacher practices that support 
students to engage in algorithmic thinking (Gravemeijer & van Galen, 2003) associated with 
fraction operations. In this research report I draw from the work of one of four experienced 
“skillful” teachers whose practice is being studied.  The focus is on the initial days of an 
instructional unit where students will be developing algorithms for adding and subtracting 
fractions. This teacher’s local instructional theory (Gravemeijer, 2004) for using estimation in 
preparation for developing approaches for finding actual sums will be presented and examined in 
terms of mathematical thinking, representation and language development. 
 

Theoretical Framework 
 In their discussion of an emergent modeling-reinvention or guided-reinvention approach to 
algorithm development, Gravemeijer and van Galen (2003) emphasize that when instruction 
emphasizes algorithmic thinking based on student-generated approaches, that students engage in 
generating and developing their own mathematical knowledge. A guided-reinvention approach to 
algorithm development relies on teachers who have topic-specific instructional theories to 
organize the emergent ideas of their students around. 

A local instructional theory describes, with arguments, how enacting a series of 
instructional activities can support a specific long-term learning process. It would for 
example, describe how children first learn informal ways of addition and subtraction and 
how they may thereby develop more standard procedures for addition and subtraction. Or it 
would describe how children develop calculation procedures that may or may not be 
similar to the standard algorithms for multiplication or division. (Gravemeijer & van 
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Galen, 2003, p. 117) 
This research seeks to make explicit such theories and the supporting arguments that guide the 
instructional choices that teachers make when positioning students to developing meaning of and 
algorithms for each fraction operation.  
 Gravemeijer (2004) argues that “if justice is to be given to the input of the students and their 
ideas built upon, a well-founded plan is needed” (p. 126). He distinguishes between Simon’s 
(1995) hypothetical learning trajectories used to plan instructional activities and local 
instructional theories which provide a rationale for an “envisioned learning route as it relates to a 
set of instructional activities for a specific topic” (p. 107). Drawing from Simon’s (1995) travel 
metaphor Gravemeijer suggests that a local instructional theory offers a travel plan with a 
destination that is steered toward as teachers choose instructional activities and design 
hypothetical learning trajectories for their own students. An important point made by 
Gravemeijer is that local instructional theories can never free teachers from having to design 
hypothetical learning trajectories for each class of students they work with. In the work presented 
here, project teachers were using a particular curriculum unit, Connected Mathematics Project II 
(CMP II) Bits and Pieces II: Using Fraction Operations (Lappan, Fey, Fitzgerald, Friel & 
Phillips, 2006) which focuses on developing meaning for operations, allows algorithms to arise 
through student engagement with contextual situations, and explicitly asks students develop 
algorithms for each of the four fraction operation. The curriculum is viewed as an initial 
hypothetical learning trajectory or travel plan. It provides a place to start. However, the exact 
path of travel involves how the teacher uses the provided curriculum, including alterations that 
they make to the curriculum, and the students’ ideas that emerge. 
 Reasoning and proof is an important part of the guided-reinvention approach. Regarding 
reasoning and proof, Ball and Bass (2003) offer two foundational ideas related to practices of 
teaching mathematics: developing a base of public knowledge and the development of 
mathematical language. A practice that supports student to engage in reasoning and proof should 
take into account how ideas are developed visually, what ideas are made public, how ideas are 
identified and preserved, and how to use records of practice to support the development of new 
ideas. In the data presented, the use of representational records and how they are used to support 
the development of mathematical language is highlighted. 
 Kazemi and Stipek (2001) suggest that implementing reform-minded mathematics instruction 
is challenging. In their research (summarized in Figure 1) they found that teachers whose 
practice regularly incorporated sociomathematical norms, rather than the general social norms 
associated with mathematics reform, involved a higher press for conceptual thinking on the part 
of the students. They offer that teachers need to “understand what a sociomathematical norm is 
and construct pedagogical strategies for can be applied in a variety of contexts” (p. 79). Closely 
related to the work on sociomathematical norms is the ability of a teacher to sustain the level of 
cognitive demand (Stien, Smith, Henningsen & Silver, 2000) when implementing instructional 
tasks. 
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 Figure 1. Related Social Norms and Sociomathematical Norms 

Social Norms Sociomathematical Norms 
Students describe their thinking An explanation consists of a mathematical 

argument, not just procedural description 
Students find multiple ways to solve a 
problem and share their strategies with 
classmates and teacher 

Mathematical thinking involves 
understanding connections across multiple 
strategies 

Students can make mistakes—this is a 
normal part of the learning process 

Errors provide opportunities to 
reconceptualize a problem 

Students collaborate to find solutions to 
problems 

Collaborative work involves individual 
accountability and reaching consensus 
through mathematical argumentation 

The contributions of those like Ball and Bass (2003) or Kazemi and Stipek (2001) are 
acknowledged as important. However, building upon the call by Franke, Kazemi and Battey 
(2007) to identify key routines of practice associated with a particular mathematical domain, this 
work seeks to extend such contributions. Teachers need to develop local instructional theories 
about fraction algorithm development as part of determining what is involved when deciding 
what ideas to develop visually, what ideas to make public, how to address misconceptions that 
emerge, what records of practice would be useful, etc., as one navigates. One might envision a 
third column added to the chart in Figure 1 that fleshes out the intersection between socio-
mathematical norms and supporting students to engage in algorithmic thinking associated with 
fraction operations. 

 
Methodology 

 The findings reported here draw from the work of one of the four teachers during the initial 
lessons in a unit on fraction operations. This teacher is using the Connected Mathematics Project 
II (CMP II) curricular unit Bits and Pieces II: Using Fraction Operations (Lappan, Fey, 
Fitzgerald, Friel & Phillips, 2006) as the primary curriculum. Having taught mathematics using a 
reform-based approach for approximately 15 years, he adjusts or modifies the curriculum as 
needed for his students. He draws from his past experience with learners as well as what is 
happening with the current group of students he is teaching. He is true to the mathematical intent 
of the curriculum but as is the case with the lessons examined for the findings reported here, he 
has redesigned some of the lessons, or parts of lessons, for very specific reasons. This is an 
important characteristic of the four teachers who were studied—they each have a personal 
perspective on what experiences students need to participate in if they are to move toward 
articulating algorithms. For this teacher and the others, the adopted curriculum is a tool used in 
conjunction with what they know about how students make sense of and come to articulate 
fraction operations.  

This study uses a qualitative design. The primary data sources were video of daily lessons, 
audiotaped reflections by the teacher on the daily lesson, weekly debriefings with teacher and 
responses to structured interview questions. The analysis was guided by Erickson’s (1986) 
interpretive method and participant observational fieldwork, which addresses the need to 
understand the social actions that take place in a particular setting. The analysis of this teacher’s 
practice, along with the articulated reasoning that emerges from reflections and interviews is an 
important part of understanding his local instructional theory. Identifying and classifying the 
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teacher’s declarative statements and questions posed during lessons, served as the initial starting 
point for articulating themes. The findings reported here focus on the prevalent mathematical 
reasoning patterns, representational development (diagrams as well as written symbolic) and the 
mathematical language being supported in the initial 3½ days of a unit where estimation and 
number sense are the focus of lessons that set up work to come developing algorithms for adding 
and subtracting fractions. 

 
Findings 

A majority of the coded classroom dialogue involved the teacher asking questions of students 
as they worked on problems in small groups and when they presented their work in whole class 
discussion. When the teacher asked a question a response was expected. While the teacher did 
ask some generic questions that positioned students to work together (i.e., “Did someone try this 
a different way?” or “Does somebody in their group think they can help?”), most of his questions 
served specific mathematical purposes. His declarative statements were designed to draw out 
particular mathematical ideas and reasoning patterns. Statements often supported students to 
develop a written record or a representation that captured their thinking. Figure 2 summarizes the 
major themes found in the class transcript data. 

Figure 2. Major Themes and Number of Occurrences across 3½ Days of Instruction  
Questions that… Declarative Statements that… 
Explicitly or implicitly assessed or developed 
meaning for numerator and denominator (17) 

Purposefully drew out students’ thinking to 
make it evident for all (4) 

Assessed or pushed for development of how 
far a fractional quantity is from 0, ½, or 1 
whole (29) 

Prompted for or pointed out that reasoning 
needs to be provided—an answer without 
reasoning is not valid (12) 

Prompted students to articulate their 
understanding of how to estimate (15) 

Positioned students to engage in certain types 
of fraction-based reasoning (17) 

Focused on distinguishing between an 
estimated sum and/or an exact sum (9) 

Acknowledged how students found exact 
sums, but then redirected them to estimate (8) 

Focused on using estimation as a strategy for 
determining reasonableness of an exact sum 
that emerged from a proposed algorithm (6) 

Supported students to show their thinking 
using a written record or representation (10) 

 
Making a Reasonable Estimate 
 While reflecting on his teaching, the teacher shared that students will need to draw upon their 
benchmark strategies later in the unit when they are developing algorithms. “I want them to be 
able to refer back to their estimation strategies so they don’t get lost in the algorithms they start 
inventing”. The first task the teacher had the students work on involved determining where a 
fraction is placed on a number line, and determining how far it is from 0, from ½, and from 1 
whole. The second part of the task involved determining if the sum of a pair of numbers is 
closest to 0, 1, 2, or 3. For each part, students were asked to show work to support their answers. 
The teacher read the first problem to the class, “On this number line, where does 4/9 belong? 
Where to you think 4/9 would be if you were estimating? Where would you put it and then why 
are you doing that?” Student pairs begin to work as the teacher moves from group to group 
asking questions such as “How far is that from 0?”, “What would be half of 9?”, “Is that closer to 
0, ½, or 1 whole?”, “How can you show that?”,  “How far is 4/9 from 1 whole?” and “What is 
the 9 [in 4/9] telling you?” 
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During both small group and whole class discussion there is a strong emphasis on 
understanding what the numerator of a fraction represents, what the denominator indicates in 
terms of the numerator and the use of counting, or addition and subtraction, to determine how far 
a fraction is from 0, ½, or 1 whole. For example, when discussing if 4/9 is closer to 0, ½ or 1 
whole, a student came to the front to share where she thought 4/9 was on a number line pre-
marked with 0, ½ and 1. When this student placed her mark to the right of the half mark on the 
number line the teacher asked “Is everyone okay with that?”  
Teacher:  Is everyone okay with that? Caleb. 
Caleb:  It would have to be before the half because half of 4/9 would be about point five  

away from the half mark and so it would be a little way but on the other side [of 
half]. 

Teacher: Stephanie do you understand any of that? 
Stephanie: Yes. 
Teacher: What is half of 9? 
Stephanie: 4½. 
Teacher: So why don’t you help yourself and above the ½ write 4.5 over 9. This would be a  

good skill to use on all of these problems. So then, the 4/9, would it be before that  
or after that? 

Stephanie:  Before. 
When the next question in the set is posed (Is 4/9 closer to 0, ½ or 1?) a second student brings up 
his work. He tried to partition the number line into 9ths but struggled to integrate the marks for 
ninths with the one-half mark provided on the number line. With some suggestions the class and 
the student work together to adjust the markings and partition the number line into ninths. One-
half is marked as 4.5/9 and 4/9 is marked with a star. They return to the question of how far 4/9 
is from 0 and from 1. While some students can easily calculate the distance, counting is 
encouraged as away to determine how far.  
Teacher:  How far is 4/9s from 1? Abby? 
Abby:  6 
Teacher:  6 what? 
Abby:  6 ninths? 
Teacher: Okay, let’s see. Tanner can you start at the star and count over and see if is it 6  

ninths? 
Tanner counts and gets 5 ninths. This thinking pattern is then prompted for as students work on 
other problems like this. Some students can do this thinking mentally. Others need to partition a 
zero-to-one number line or use grid paper to make and mark fraction strips/bars that they can 
count on. Like Abby, students were prompted to name the unit being quantified—6-ninths rather 
than 6. Many of the questions and declarative statements posed by the teacher focused on 
assessing and developing reasoning patterns for determining “how far”.  

This focus on developing strategies for determining how far is critical if students are going to 
be able to use benchmark reasoning as a tool for later determining if their algorithms are leading 
to reasonable results. If students do not have a way to determine if a quantity is closer to 0, ½, or 
1 whole they will then struggle to determine if the sum of two fractional quantities is closer to 0, 
1, 2, or 3. The teacher used numerous problems like this to draw out this type of thinking. The 
teacher elicited three important estimation ideas: using the denominator to determine how many 
of a particular fractional unit makes one-half and one whole, representing the fractional names 
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visually on a number line (with full partitioning or renaming 0, ½ and 1 for a particular fractional 
unit), and counting fractional units to show how far away from 0, ½ or 1 whole a fraction is.  
 
Development of Written Record and Representation 

For students with well-developed number sense and computational ability, they were able to 
efficiently mentally calculate which fractions represented 0, ½ and 1 whole. For example, with 
16ths the benchmarks 0/16, 8/16 and 16/16 were easily identified and used. Others struggled. 
The teacher provided grid paper for students who needed to draw and visualize a fraction bar 
representing 16ths. Students could mark and count as needed to determine if 9/16 was closer to 
0, ½ or 1 whole. Throughout the 3½ days of instruction there were a few instances where 
students would randomly a guess how far a quantity was from 0, ½ or 1 whole. The teacher 
would support them to use one of the above strategies without taking over and doing the problem 
for them. For example, “I don’t want you to guess. I want you to [make] a whole fraction strip 
here. You can cut it up into 8ths.” Once the student made the strip, he then assisted him or her to 
label the representation. Some of his statements included: “Up at the top label it as one [whole]. 
Under here write how many 8ths that is. Now find where the halfway mark is and label it as ½ 
above with how many 8ths below.” (Etc…). With the fraction strip labeled, he then asked the 
student, “How far is 5/8 from 0? From ½? From 1 whole?” If the student would guess or struggle 
to use mental computation, he would then ask them to use the fraction strip representation and 
count. As larger denominators such as 100ths were introduced, the counting strategy shifted to 
using subtraction. For example, 26/100 is 24 hundredths (50 - 26 = 24) from ½ or 50/100. So, 26 
hundredths is closer to ½. In this teacher’s practice there is a clear emphasis on using 
representations as a tool to give meaning to the quantities that students were being asked to work 
with. When a student indicated that they thought a fraction was closer to 0, ½ or 1 whole, the 
teacher would follow by asking why. To support developing and using visual and symbolic 
representations as reasoning tools, he would say, “So, let’s use our strip and see where it does 
end up.” Or “Let’s write 50 - 26 = 24 hundredths to show why you think 26/100 is closer to ½”.  

Students needed similar support when trying to show the reasoning they used when 
finding an estimated sum for two fractions. On Day 2, after the teacher had observed students 
working on estimated sum problems, he gave the class a common problem (7/8 + 5/9) to find an 
estimate for. The students turned in anonymous work that was then displayed and rated. “You 
guys are going to look at this and rate it on a scale of 3, 2, or 1. Do we think that math is right 
and do we think that the reasoning they have shown supports their opinion?” The written 
notation may have been quite simple—“7/8 is about 1 and 5/9 is about ½ so the answer is about 
1½”. Some students rated this particular response as a 2 because it was important to say for 
example, that 7/8 is 1/8 from a whole making it is closer to 1 and that 5/9 is close to 4.5/9 or ½. 
This exercise provided students the opportunity to consider and discuss various expressions of 
benchmark reasoning. 
 
Benchmark Reasoning, Estimation and Algorithmic Thinking 

When students were working to determine if the sum of two fractional quantities was closer 
to 0, 1, 2 or 3 etc., they were asked to consider if an estimated sum was an overestimate or an 
underestimate. Using the context of decorating a dollhouse, students knew they had 5 ½ feet of 
molding to trim two rooms. Needing 3¼ feet for one room and 2 3/8 feet for the other, they were 
asked to use estimation to consider if 5½ feet of molding would be enough? Some students 
began to move away from benchmark reasoning toward exact reasoning. Using the determining 
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how far reasoning, a group of students offered the following, “You know that you have 5 5/8 
altogether.” When asked how they knew this they explained that “3 plus 2 is 5 and 2 eighths plus 
3 eighths is 5 eighths” and “4/8 would be exactly ½.”  
 While this is legitimate reasoning on their part, and will clearly support them when they 
begin to work on finding exact sums and differences, the focus of the lesson was on estimating. 
The teacher did not wanted to lose the focus on the thinking patterns for estimating and did not 
want to discouraging students who could argue using exact equivalent quantities. He used the 
opportunity to have students consider if their reasoning led to an estimated sum or the exact sum. 
Students finding exact sums did not always realize they were not estimating. After listening to 
the reasoning of the student above, the teacher asked,  
Teacher:  Were you estimating or did you get the exact answer? 
Student: We got the exact. 
Teacher: Yes, and what were we suppose to be doing in this problem? 
Student:  Estimating. 
Teacher:  Yes, we wanted to estimate but I understand that these numbers are pretty  

compatible…that is good math but we are still gonna keep working on finding an  
estimate. 

This distinction is an important one and will become important later when students are asked to 
find an estimate to show that their proposed algorithm is leading to a reasonable solution. The 
use of estimation as a strategy for determining the reasonableness of a sum, as well as what a 
reasonable sum would be close to, was noted in the discussions the teacher had with students.  

In the next problem, a potential exact-sum approach was put on the table for discussion. This 
problem asked students to use estimation to determine if the solution 12/20 is reasonable for 7/12 
plus 5/8. A student offered that 7/12 is 1/12 more than 6/12, or ½, and 5/8 is 1/8 more than ½, so 
the exact sum has to be more than ½ plus ½ or more than one whole. Here the how far reasoning 
is apparent. Another student, Abby offered that you cannot add the numerators and add the 
denominators. This is what is implied by the solution 12/20 presented in the problem. However, 
Abby is not able to say why you cannot do this. The teacher concluded by saying, “We are 
hoping that your estimate will show that. When you did your estimate, you should have seen that 
12/20 is not close to what they real answer should be.” Here the teacher positions students to 
engage in a certain type of reasoning. While Abby struggles to say why, the important point is 
that estimation can be used as a tool. In this case, the estimate shows that the algorithmic 
approach of adding numerators and adding denominators does not lead to a reasonable estimate. 
This reasoning will be important when students start to develop and assess their own algorithms. 

 
Conclusion 

 These findings build upon the research on teacher practice while developing a content-
specific view as suggested by Franke, Kazemi and Battey (2007). The findings highlight aspects 
of this teacher’s local instructional theory for engaging students in fraction operation algorithm 
development. His practice asks students to engage in reasoning and proof (Ball & Bass, 2003 
while developing specific reasoning tools for supporting algorithm development. Representations 
such as partitioned fraction strips and number lines are tools for determining how far. The 
determining how far reasoning is also a tool. Gravemeijer (2004) argues that in a guided-
reinvention approach the focus is not teach a set of strategies but to develop a framework of 
number relations that build a foundation for flexible mental computation. This teacher used 
questioning and dialogue to help students distinguish between an estimate and an exact answer. 
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When redirecting students to estimate they were pushed to consider how an estimate can be a 
tool for determining the credibility of a computational result. This will support them when they 
design algorithms and work to justify and prove they are mathematically reasonable.  
  In these results, generic practices such as designing a task or making ideas public (Ball & 
Bass, 2003) are evident. There is a clear focus on Kazemi and Stipek’s (2001) sociomathematical 
norm that an explanation consists of a mathematical argument, not just a procedural description. 
By considering these generic practices within the context of fraction algorithmic thinking, 
specific thinking patterns are made visible for inspection. In this teacher’s practice there are 
purposeful ways in which students were supported so they could make an argument for why they 
were choosing a particular benchmark. They were encouraged to use models and to develop 
mathematical symbolism so they could make their benchmark reasoning public and open for 
inspection. Through this process students were developing language and symbolism to further 
support their ability to engage in fraction-based algorithmic thinking. 
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The study examined preservice teachers’ (PTs) abilities to pose scenarios that match a division 
computation with a remainder. The results showed that PTs were able to pose various scenarios 
but most of them focused on partitive division interpretation. They preferred to leave the 
remainder as a left over and discarded rather than partitioned as a fraction/percent/decimal, 
forced to the next whole number, and rounded to an approximate result. More emphasis on 
providing rich scenario problems during teacher preparation is necessary so PTs will be able to 
understand the division concept in diverse contexts and deal with remainders accordingly.  
 

Over the past few decades problem posing has gained considerable attention within the 
mathematics education community gradually familiarizing educators with making aware the 
benefits of the strategy for improving the teaching and learning of mathematics (Silver, 1994). 
The National Council of Teachers of Mathematics [NCTM] outlined the importance of problem 
posing in the Professional Standards (1991) document, “students should be given opportunities 
to formulate problems from given situations and create new problems by modifying the 
conditions of a given problem” (p. 95). When students formulate problems, they become curious 
about mathematical ideas and develop deeper understandings of particular concepts (English, 
1997, 1998; Silver, 1994). The creation and reformulation of problems within new contexts 
engages students’ thinking and their inquisitiveness in learning mathematics (e.g., Crespo, 2003; 
Dickerson, 1999; Grundmeier, 2003; Knuth & Peterson, 2003; Leung & Silver; 1997).  

Problem posing refers to both the generation or formulation of new problems and the 
reformulation of given ones (Silver, 1994). Skinner (1991) defined a problem as a question 
engaging someone in searching for a solution.  Whereas, Krulik and Rudnick (1982) stated that a 
question required recall, an exercise provided routine drills and practices, and a problem required 
careful thought and synthesis of knowledge. These researchers argued that a problem at one time 
may be an exercise or even a question at some later stage of that individual’s mathematical 
development. 

The Principles and Standards of School Mathematics (NCTM, 2000) highlights the 
responsibility of a teacher in choosing and posing worthwhile mathematical tasks to develop and 
nurture students’ understanding of certain concepts. In reality, most mathematical problems 
come from textbooks as teachers assign them to students.  Crespo and Sinclair (2008) argued 
students of all ages, including those who subsequently become teachers, have limited experience 
posing their own mathematical problems.  Research studies document that many prospective and 
inservice teachers lack the skills and confidence to go beyond solving a problem (Gonzales, 
1994; Silver, Mamona-Downs, Leung, & Kenney, 1996).  As problem posing is part of 
mathematics education reform, teachers must develop skills in formulating mathematical tasks 
that include appropriate situations to engage students in the classroom (Gonzales, 1994, 1996). 
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Problem posing, especially with division can be a challenge (Silver & Burkett, 1994) as 
research has shown that many school teachers have difficulties dealing with division of whole 
numbers involving remainders (e.g., Simon, 1993; Sowder, Philipp, Armstrong, & Schappelle, 
1998). For instance, in a two-year long project of the Teaching and Learning Rational Numbers 
and Quantities Working Group, Sowder et al. noted the confusion of teacher participants when 
they were presented  .  The teacher participants believed that 7 remainder 2 and 7 

remainder  (i.e.,  were the same as  .  During the continued discussion, a facilitator in 

the project asked them to pose a story problem for which the answer was 7, 8, 2,  , 7.4, and 7 
remainder 2.  When the teachers debated their word problems, they gradually were able to 
distinguish clearly the contexts when a remainder would be appropriate to consider in each case. 
Through problem posing, the facilitator helped the teacher participants to realize that 7 remainder 
 was not the correct answer for . 

In this present study, we explored PTs’ capabilities to generate a scenario problem involving 
division with a remainder. Specifically, we focused on Silver’s (1994) formulation of problems 
emphasizing the creation of a scenario based on a given long division computation with a 
remainder.  

In this study, we explored PTs’ capabilities to formulate a scenario problem involving 
division with a remainder. Also, problem posing was used to assess PTs’ understanding of this 
concept based on the solution of the scenarios they posed. Specifically, we focused on Silver’s 
(1994) formulation of problems emphasizing the creation of a scenario based on a given long 
division computation with a remainder.  

 
METHOD 

The analysis reported in this paper was part of a larger research study examining the problem 
solving and problem posing skills of PTs. This present study replicated research done by Silver 
and Burkett (1994) on PTs’ conceptual knowledge and contextual connections to division with 
remainders. Nevertheless, with different perspectives, we attempted to determine the structure of 
scenario problems individual PTs posed to match a given division computation. The research 
questions guiding this study were: 
a) What kind of scenario problems associated with a division computation and a remainder did 

PTs pose?  
b) What strategies did PTs use to pose scenario problems associated with a division computation 

and a remainder? 
Initially, a pilot study was conducted in Fall 2010 using a group of elementary PTs who 

volunteered to be part of the project.  They completed an open-ended problem posing task as 
illustrated in Figure 1, adapted from Silver and Burkett (1994). The researchers evaluated 
response scripts based on a priori coding schemes that emerged from the literature. The results 
from the pilot study showed that these PTs posed scenario problems that did not match the 
division computation.  The researchers suspected the PTs were not able to understand the written 
instructions during the administration of the task.  Therefore, the instructions for the task were 
modified to make the task clearer to the participants.  

 
                   13 
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             140  
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Figure 1. The task adapted with permission from Silver and Burkett (1994). 

 
Subsequently, in Spring 2011, a convenience sampling technique was utilized for data 

collection. The problem posing task was administered to 33 PTs during the fourth meeting of a 
15-week problem solving course. Although the course emphasized Poyla’s four-step problem 
solving process, the professor regularly discussed the importance of problem posing with the PTs 
during class instructional periods. The participants were working towards their middle grade 
teaching certification at a southwestern public university in the United States. The majority of 
the PTs were female (96%), juniors ranging in age from 18 to 22 years old.  Each participant 
completed the problem posing task by writing his/her responses on the answer sheet. They were 
given 20 minutes to pose multiple scenarios that matched the long division computation and 
provide different answers to each of the problems posed.  

The responses were analyzed by using the classical content analysis that focused on the 
frequency of each category occurring (Leech & Onwuegbuzie, 2007). The coding was based on 
Van de Walle, Karp, and Bay-Williams’ (2010) description of division of whole numbers. The 
coding procedure was divided into two phases in order to make the data easier to analyze. In the 
first phase, a posed-scenario was identified as to whether it matched the long division 
computation and was categorized into partition or measurement. Sowder et al. (1998) argued that 
knowing these two interpretations of division was important when dealing with a context or 
situation. For example in partition, 540 cookies shared among 40 people, each person has 13 
cookies with 20 cookies left over. On the other hand, the situation would be different in 
measurement when giving 40 cookies from 540 cookies to each one and asked, “How many 
people can get 40 cookies each?” In this case, the units of measure would not be the same -it 
would be 13 people and 20 cookies left over. Sowder et al. believed that the referent units were 
the important idea when presenting division within a context. As the task required a context that 
matched the division computation, the study assessed whether the kind of scenarios PTs posed 
made sense or were meaningless to the solution they provided. Then, if any posed-scenarios did 
not satisfy the classification for partition or measurement, they were coded as other including all 
the responses that used different arithmetic operations such as addition, subtraction, 
multiplication or combination of operations.  

The second phase of the coding procedure dealt with implications of division remainders. 
According to Carpenter, Fennema, Franke, Levi, and Empson (1999), the context of a problem 
posed can influence the way the remainder is treated. These remainder effects were categorized 
as left over, partitioned as a fraction/percent/decimal, discarded, forced to next whole number, 
and rounded to approximate result (Van de Walle et al., 2010). Below are examples of responses 
that were categorized in each type of division remainders: 

Allison is counting out beads for an art project, in which she needs 540 beads. If she counts the 
beads by 40s, how many groups will she have? (Answer: 13 groups and 20 left over, a left 
over). 
Molly owns a car, which the maximum speed is 40 mph. How much time should she allow to 
drive 540 miles? (Answer: $13.50, partitioned as a fraction/decimal). 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1127



Jim has 540 ft. of chain. He needs to cut the chain into 40 ft. segments. How many segments of 
40 ft. can he make? (Answer: 13 segments, discarded). 
There are 540 people waiting to get on a boat. If each boat can carry 40 people, how many 
boats do you need to carry all of those people? (Answer: 14 boats, forced to next whole 
number). 
Mrs. Jones has 40 students in her class. This year for Christmas, they are making popcorn 
necklaces to decorate their class tree. If each student gets an equal number of popcorn pieces 
and Mrs. Jones has 540 to divide up, how many will each student get? (Answer: 13 pieces, 
rounded to approximate result). 

Two researchers coded ten scripts based on the coding procedure (i.e., Phase 1, Phase 2) and 
achieved 77.1% agreement.  Any disagreements were resolved before the first researcher coded 
the remaining scripts. Then, data were analyzed descriptively (e.g., frequency, proportion) using 
Statistical Package for Social Science (SPSS) version 16.0 (SPSS Inc., 2007) to answer the 
research questions and the results were presented using tables and charts.    

 
RESULTS 

The results were used to portray the structure of scenario problems posed that matched the 
division computation and to illustrate the strategies PTs used to deal with division remainders in 
the context they posed. In general, the descriptive statistics from the SPSS results showed PTs 
were able to generate 170 scenario problems and successfully showed the answers for each 
scenario they posed. Each of the PTs posed at least three scenarios and 15 PTs generated at most 
six problems. The analysis of the scenarios is presented in further detail to answer the research 
questions.  

Research Question 1: Kind of Scenario Problems Posed 
Most of the PTs (82%) posed a combination of division scenarios associated with 

measurement and partition. The proportion of the unexpected responses (1.8%) was small as 
compared to Silver and Burkett (1993). This might be because the PTs were given clear 
instructions during the administration of the task that they were expected to pose only scenarios 
associated with division and a remainder. As noted earlier, 170 scenarios were posed in total; 
however, two of them did not meet the requirements of the task in which the scenarios PTs posed 
were supposed to match the division computation. In addition, one problem had missing 
information making it meaningless even though the solution was stated. These are the examples 
of the unexpected responses: 

For every group of 54 oranges in a grocery store there are 40 apples. If this pattern is always 
consistent, how many oranges would there be if there are only 10 apples? (Proportion 
problem) 
If there are 50 students riding the bus to school and all of them receive a ride, how many buses 
are needed? (Missing information) 

Of the 167 posed problems, 42 were considered redundant because they had similar contexts and 
repeated the same solution.  Specifically, the study demonstrated ten PTs posed at least two 
similar scenarios without changing the structure of the problem, using the same interpretation of 
division and remainders. For example, initially one PT posed six scenario problems with correct 
proposed solutions, but after closely examining the structure of each division problem only two 
scenarios were considered valid for further analysis. Here are two similar scenarios posed by this 
participant:    
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A group of 40 students gathered all of their candy from Halloween. They totaled 540 pieces of 
candy. If they share equally, how many pieces of candy will each student get? (Answer: 13 
pieces of candy) 
At a 4th grade party, 540 pieces of pizza were delivered. If there are 40 students at the party, 
how many pieces will each student get? (Answer: 13 pieces of pizza) 

The above examples clearly demonstrate the way this participant interpreted the meaning of 
division using partition. Even though this PT posed six problems, she/he was not able to generate 
any scenario associated with division that related to measurement showing this PT had difficulty 
seeing division in this dimension. In fact, only 89 (47%) of the scenarios that PTs posed were 
focused on measurement as illustrated in the following: 

A convention center must prepare their showroom for the TMTA Piano Convention. To 
maximize the number of vendor booths, 40 tables can fit in one row across the room. If there 
are 540 tables, how many rows of 40 tables can you create and how many tables are left over?  
(Answer: 13 rows and 20 tables) 
Timmy has 540 chickens. He needs to determine how many chicken coops he should buy. Each 
chicken coop can hold 40 chickens. How many will he buy?  (Answer: 14 coops). 
On the other hand, the majority (53%) of the problems posed were based on partition 

interpretations in which the results were similar to Silver and Burkett (1994). In fact, five of 33 
PTs posed only scenarios associated with partitive and one participant focused solely on 
measurement. This study showed that PTs were able to pose reasonable scenarios and correct 
answers with an appropriate referent unit (e.g., 13 rows and 20 tables, 13 pieces of candy, 14 
coops) in each case. It seemed that most of PTs were able to understand the relationship among 
the dividend, divisor, quotient, and remainder. In addition, the study also found two PTs posed 
contexts by interchanging the divisor and quotient of the original computation. One participant 
consistently posed two scenarios that used 540/13 to illustrate the meaning of division using 
measurement and partition.   

The World Eating Championships are being held in Los Angles this year and is sponsored by 
McDonalds. McDonalds decides to give 540 Big Macs for the competition. If the average 
competitive eater can eat 13 Big Macs, how many people should they hosted to ensure they do 
not run out of Big Macs?  (Answer: 41) 
EA Sports is hosting an Online FIFA “Goalathon”.  A “Goalathon” is a rare for all FIFA 
players to reach 540 soccer goals in 13 weeks. How many goals must a player average a week 
to reach 540 goals in 13 weeks?Round number to two decimal points (Answer: 41.65). 

Based on the responses, this participant was aware that the proposed answers would be different 
as he/she interchanged the values that showed his/her understanding of division problems. Also, 
similar to Silver and Burkett’s study, the results showed that PTs posed a number of ‘Yes/No’ 
scenario problems (6.5%), for example as following:  

There are 40 people at a conference that need to be fed equally. The chef makes 540 cookies 
that can be eaten. Each of the 40 people must eat the same amount of cookies and cannot eat 
half of a cookie. Will there be any leftover? 

Even though this problem was associated with the partition interpretation, the researchers 
believed it was not challenging and did not engage students’ thinking as it could be answered 
simply by stating yes or no. It did not fit with the definition of a problem as defined by Krulik 
and Rudnick (1982). Also, most of the PTs were able to provide an appropriate solution for the 
scenario they posed and considered the effect of remainders on the answers. More detailed 
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discussion on remainders and answers for the posed problems that were provided by PTs are 
presented in the following section.   

Research Question 2: Strategies with Division Remainders 
Part of the requirement of the problem posing task was to provide different answers, so the 

researchers examined each of them in depth as they were related to how remainders were 
handled. The results provided a source of information about PTs’ understanding of division 
involving remainders that can be categorized as a left over, partitioned as a 
fraction/decimal/percent, discarded, forced to next whole number, and rounded to approximate 
result (Van de Walle et al., 2010).  Of the 167 responses, 42 were eliminated because they had 
similar contexts and repeated the same solution. In addition, six were dropped because of 
incorrect proposed solution. Therefore, the analysis of division remainders was based on 119 
valid responses.  As displayed in Figure 2, the researchers found PTs preferred to leave the 
division remainders in form of a left over in which 35% of the scenarios were in this category. 
The category of division remainders used least by the participants was the forced to next whole 
number in which only 14 (12%) scenarios were coded for this category.  

  
Figure 2. The analysis of division remainders 
 

In addition, 11% of the scenarios (13 of 119 responses) were noted as errors because they 
provided unreasonable answers that did not match the remaining context of the posed problems. 
For instance, ‘There are 540 children going to camp and 40 buses to get them there. How many 
children will be on each bus?’ The answer given was 13 children, which was not realistic that 
showing the remaining 20 children were ignored and making the problem meaningless and not 
practical. The scenario clearly stated ‘There are 540 children going to camp’, which meant all 
children were supposed to go to the camp. Based on this context, these 20 children should be 
together with other children on the buses so the appropriate answer would be about 14 children 
as it forced the figure to next the whole number. Two PTs made a ‘silly’ error by mistakenly 
writing 13.2 instead of 13.5 as a solution and three PTs gave incorrect answers to the posed 
scenarios.  

 
Discussion 

Number of scenarios posed 
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The study reveals that the selected PTs were able to show their understanding of division with 
remainders. In regard to the first research question, the researchers found from the structure of 
the scenarios posed that PTs were more comfortable with sharing scenarios (partition) compared 
to the equal size groups (measurement). The selected PTs were able to pose reasonable scenarios 
and to provide correct answers with an appropriate referent unit (e.g., 13 rows and 20 tables, 13 
pieces of candy, 14 coops) in each case. It seemed that most of PTs were able to understand the 
relationship among the dividend, divisor, quotient and remainder. 

In regard to the second research question, even though they were able to put the division 
computation in a context, they could not deal with the remainder accordingly. They were not 
able to think of the remainders as fractions or as rounding-up, rounding-down the results 
depending on the context they posed. Specifically, most of PTs preferred to deal with division 
remainders in form of a left over and discarded. When PTs discarded the remainders, most of the 
problems were thus meaningless and not practical.  

Teacher educators should place more emphasis on providing rich scenario problems during 
instruction so that PTs can see the different meanings of division clearly and be able to 
understand these concepts profoundly. In addition, teacher educators should encourage PTs to 
deal with a remainder instead of just leaving it as a left over or discarding the remainder. Much 
more remains to be understood about PTs’ abilities with problem posing and their understanding 
of division; therefore future investigation is necessary to explore the benefit of using of problem 
posing in discovering PTs knowledge and understanding of a particular mathematical concept.  
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This study describes how nine-year old David, in exploring the ordering of fractions on a 
number line, illustrates his understanding of fraction ideas by offering multiple representations 
of his solutions.  David begins his problem solving by building a physical model with Cuisenaire 
rods.  He then justifies his solution to the class using verbal explanations accompanied by 
gestures, drawings and symbols. 

Introduction 
Fractions are too often introduced in schools using standard symbols and notations that do 

not carry meaning for students.  For decades, researchers have documented the shortcomings of 
traditional instruction that focus on rules and algorithms for the learning of fractions and their 
operations (Erlwanger, 1973; Freudenthal, 1983; Maher, Davis and Alston, 1993; Steencken and 
Maher, 2002; Streefland, 1991).  Studies have shown that learning mathematics, when using and 
linking various forms of representations, can promote inquiry and higher levels of thinking (Ball 
and Bass, 2003; Even, 1998; Richardson, Berenson, Staley, 2009).  The process by which 
students build their own understanding is complex process and involves building personal, 
meaningful mental representations that can take on many forms (Davis, 1984; Goldin, 1998, 
2003; Goldin and Janvier 1998).  Students can then use their personal representations to express 
their understanding.  In this paper, we explore the variety of personal representations used by 
David to express his understanding of number concepts.  In particular, we investigate: “What 
representations does David use to express his understanding of fraction as number?” 

Theoretical Framework 
The view that learning should be meaningful is not new.  Decades ago, Dewey (1938) 

stressed the importance of learning by doing.  Today, mathematics educators emphasize the 
importance of building meaning in the learning of mathematics, citing the importance of student 
engagement in thoughtful problem solving s context for new learning (Maher, 2010; Maher, 
Powell, & Uptegrove, 2010).  According to Davis (1984) and Davis and Maher (1997), the 
process of making sense of a problematic situation calls for the restructuring of knowledge.  
Previous experiences that learners bring to a problem-solving exploration can serve as 
assimilation paradigms for new learning.  As learners examine and compare earlier experiences, 
they either solve the new problem or restructure their existing knowledge to accommodate the 
new conditions of the new problem.  Making use of personal representations is key in the 
process.  The variety of personal representations that a learner can bring to a problem-solving 
activity makes the understanding richer and, ultimately, more durable, in that the ideas can be 
related and restructured as needed.  Recent studies have documented the durability of learning 
when it is built in a meaningful way (Aboelnaga, 2011; Ahluwalia, 2011; Sran, 2010; Steffero, 
2010, Schmeelk, 2010).  These studies show that students build on and extend their knowledge 
when supported by conditions that support collaboration with appropriately designed tasks.  
Also, they demonstrate the durability of learning over time.  Representations are key in that 
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learning.  According to Goldin and Janvier (1998), representations can be interpreted in the 
context of external physical situations, linguistic embodiments, formal mathematical constructs 
and individual’s internal cognitive configuration.  The PME working group on representations 
has developed extensive discussions on various representation forms, and from these discussions, 
there has arisen an understanding that in analyzing the various representations, there is a need to 
understand mathematical notations, branches, recordings, individual productions, external 
situations, as well as individual mathematical learning and understanding (Goldin 1998).  
Translation between and among multiple representations is individual, varied and independent 
(Superfine, Canty and Marshall, 2009; Kaput, 1998).  As a result, individual, personal 
representations that student’s use to invent are more powerful than those that are imposed 
(Vergnaud, 1998).  It is our view that students need to develop their understanding of 
mathematical ideas using the schemes and representations that are personal.  Access to 
manipulatives, useful as tools to illustrate external representations, can assist the development of 
student internal representation schemas.  According to Gattegno (1961, 1963), using Cuisenaire 
rods can foster student understanding of fractions.   He suggests a multi-stage introduction to 
Cuisenaire rods, including (1) free play and (2) free play that is accompanied with directed 
activities with the rods, in which discussions and observations for the rod relationships are 
informally discussed.  Then, what might follow is more free play accompanied with directed 
activities with the rods, in which formal notation is introduced without directly assigning number 
values to rods.  Finally, free play accompanied with directed activities, in which the formal 
notation is extended with directly assigning number values to the rods, might follow.  
Components of the framework proposed by Gategno were integrated into this research in 
students’ investigation of fraction ideas with Cuisenaire rods available as a tool. 

Study Context 
This research took place in a fourth-grade rural/suburban classroom consisting of 25 

heterogeneously grouped nine and ten year old students.  In this school’s mathematics 
curriculum, fractions and operations were not introduced until the following year.  It was 
important for the researchers to study how the students made sense of the fraction/rational 
number ideas though their problem solving and sharing of ideas before fractions were formally 
introduced as part of their fifth-grade mathematics curriculum. 

Data and Methodology 
The data were collected from multiple sources.  All sessions were videotaped with multiple 
cameras during extended classroom sessions that lasted from fifty to seventy-five minutes.  The 
video data and their full transcripts, along with student work and researcher observation notes, 
were used to triangulate data.  Student work consisted of personal written inscriptions and 
collaborative overhead inscriptions.  The video data have been digitized and are stored, along 
with transcripts, in a repository as a component of the Video Mosaic Collaborative (see 
http://videomosaic.org). 

Background 
Twelve sessions transpired before the focus sessions that are described in this report.  During 

the earlier sessions, students explored fraction as number, fraction as operator, equivalence, 
ordering and fraction comparison ideas.  The student reasoning in the form of conjectures and 
argument strategies is described by Reynolds (2005).  Detailed reasoning forms used by the 
students, including upper and lower bounds, cases, contradiction and recursive were analyzed by 
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Yankelewitz (2009) and Yankelewitz, Muller and Maher (2010).  The first seven sessions were 
analyzed for students transitioning from an understanding of fraction as operator to fraction as 
number (Steencken, 2001; Steencken and Maher, 1998; 2003).  In these studies, the students’ 
verbal and inscription representations were examined in detail for how they built their 
understandings.  All of the studies reported that the students’ verbal expiations became 
increasingly more precise over time.    

Results 
For this report, we describe three episodes that provide as examples of the variety of 

representations that David used to express his growing understanding of rational number ideas.   
For more detail and full transcripts, see Schmeelk, 2010.  Video clips can be viewed on the 
Video Mosaic website: http://videomosaic.org/.  

Episode 1: 11-01-1993 
In this episode, David was working on the problem: “Which numbers are bigger and 

smaller—1/2, 1/3, 1/4, 1/5?”  After building rod moles with his partner, he offered a solution to 
the class and used gestures to represent an imaginary number line.  He demonstrated (see Figure 
1) four fractions—one half, one third, one fourth and one fifth—are larger.  The clip exemplifies 
his awareness of the partitioning of a unit interval into regions representing the fraction parts.  
 

Line Speaker Transcription 
78 Researcher [Writes one half, one third, one fourth and one fifth on over head]  

So, if I were to say things, like one half, one third, one fourth, one 
fifth, right?  If I were talking about these numbers then would you 
know which are bigger and which are smaller?  How many think 
you know which are bigger and which are smaller?  Who could 
explain why? 

79 Class [Many students raise their hands.] 
80 Researcher David, what do you think? 
81 David If you have one half cuts right there.  [motions ½ on an imaginary 

unit]  If you have one third it cuts right there [motions to where 
one third would cut on a unit]  You would have three pieces. 

 

   

Figure 1. David gestures as he orders fractions on a number line 
 
The researcher then asked David to use the overhead projector to explain his ideas. David, made 
drawings of rod models and, again, justified his ordering of fractions (see Figure 2).  At the 
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overhead projector, he drew rod pictures to show the magnitude of the five fractions with respect 
to a unit rod that he labeled whole.   
 

Line Speaker Transcription 
82 Researcher You want to come draw that for me?  You all hear what David is 

saying? 
83 David [Walks up to OHP in front of room.] 
84 Researcher Want to draw your one.  Call something one and zero? 
85 David Maybe the orange 
86 Researcher Just sketch it … 
87 David If this is the one here 
88 David … then one half would be there … 
89 Researcher Can you mark one half right where you put it, like put it right 

underneath so we can see it? 
90 David What do you mean? 
91 Researcher Just write the number one half where you want to show one half. 
92 David Then, one third 
93 David Then, one fourth 
94 Researcher  Then, one fifth.  Thank you very much. 

 

  

 

  

Figure 2.  Images of David ordering fractions on the overhead projector 
 

Episode 2: 11-03-1993 
In this episode, the researcher summarized an earlier discussion about how the numbers on 

the number line continue.  The researcher then asked the students to review their assignment, 
which was to think about the numbers between two whole numbers.  David responded with a 
metaphor of a microscope, suggesting how a microscope could show the space between 
numbers, indicating that an observer would see multiple numbers through magnification. 
 

Line Speaker Transcription 
208 David I think that you really can’t see it to well.  But, if you use a microscope, 

then you are seeing closer and it looks like you are seeing more; but, 
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you’re really not—you’re just looking closer than before. 
235 David I think that you can take the little smallest thing and, then, put it under a 

microscope; and, you will have a lot more space.  But, you really don’t.  
It looks like a lot more space; but, it really isn’t.  You are just 
magnifying it. 

 
Later in the episode, the class was asked to investigate on where the number one one-hundredth 
might be placed on a number line.  David used a ruler to place the number one one-hundredth on 
his number line model at his desk (see Figure 3). 
 
 

Line Speaker Transcription 
251 David On my paper, I had a ruler, that I was using, put up to [the 

number line].  It think it was a millimeter or something.  I 
had a ten inch number line, so I put [the number one one-
hundredth,  

252 Researcher So that is how you placed one one-hundredth 
253 David Yeah 
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Figure 3.  David’s sketches for the placement of one one-hundredth on a ruler 
 

Episode 3: 11-12-1993 
In this episode the researcher extended the bottom of the model to represent a number line 

and asked David to place the fractions.  David responded by correctly labeling the number zero, 
one fourth, one half, three fourths and one.  Under the number named one half, David also placed 
the number two fourths.  The clip (see Figure 4) showed that David used Cuisenaire rods as an 
assimilation paradigm to assimilate he transitions from fraction as operator using rod models to 
fraction as number in placing the numbers on the number line, noting the equivalence of one half 
and two fourths. 
 

Line Speaker Transcription 
111 David Four fourths equals one whole.  Two halves equals one whole.  And, 

two fourths equals one half because one half is half of one whole.  
So, two fourths is one half. 

169- 
173 

David I just drew it like that because that’s the one whole [gestures to top 
level].  These are the one fourths [gestured to the second level].  And, 
that’s the half [gestures to the bottom level].  This would be zero 
[gestures to the left most vertical line] and that would be one 
[gestures to the right most vertical line]. 

174 Researcher Let me ask you to something here that might help me.  I want theses 
to be here [draws in lines to turn the rods into a number line].  Can 
you place your numbers, here, now? 

175 David You mean like one half? 
176 Researcher Where’s zero? 
177 David [Draws in zero, one fourth, two fourths, one half, three fourths and 

one]. 
 

   

 

 

Figure 4.  David’s diagram showing the placement of two fourths 
 

Conclusions and Implications 
David’s rod model became a useful representation for transitioning to the placement of 

fractions on a number line.  In episode one, David used gestures in explaining his rod model and 
drew diagrams of rod models justify his fraction placements.  In the second episode, David used 
external microscope representations to convey his understanding of density.  Later, in the same 
episode, he accurately places the number one one-hundredth on a number line using a ruler.  In 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1138



the final episode, he accurately conjectures that one half is equivalent to two fourths, indicating 
some understanding of fraction equivalence, using model drawings to justify his conjecture.  
David was developing and expressing his awareness of the idea of the density of fractions, using 
a metaphor of a microscope to indicate that there is more space between two numbers on a line 
for the placement of other numbers.  David’s exploration of fraction ideas shows that he is able 
to coordinate the ideas of fraction as operator and fraction as number, an important foundation 
for growth in fraction knowledge.  Exploration and free play, accompanied by opportunities to be 
engaged in thoughtful problem solving are important components for building meaning of 
mathematical ideas.  David’s problem solving activity was thoughtful and productive and shows 
successful transitioning of a variety of representations. 

Endnotes 
1. The research was directed by Carolyn A. Maher. It was funded in part by grant MDR 9053597 
from the National Science Foundation and by grant 93-992022-8001 from the NJ Department of 
Higher Education, directed by Robert B. Davis and Carolyn A. Maher. Any opinions, findings, 
conclusions or recommendations expressed in this work are those of the authors and do not 
necessarily reflect the views of the National Science Foundation or the NJ Department of Higher 
Education. 
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This article describes the experience resulting from applying the Rational Number Project (RNP) 
sequence of activities with a group of 6th grade pupils which consists of working with concrete 
material at all times and making constant reference to the other representations. The reasoning 
expressed by the students gives a clear idea of the benefits they obtained with this approach, 
since they were able to transfer their knowledge to new situations. Additionally, it was shown 
that the use of concrete materials is not a waste of time, contrary to what many primary teachers 
argue, since there was enough time to cover the contents with encouraging results. 

Some studies (Cramer, K., Behr, M., Post, T., Lesh, R., 1997; Cramer, K., Henry, A., 2002; 
Huinker, 2002) suggest that in order to learn and understand fractions young children require: to 
experience handling a variety of concrete materials; to communicate their mathematical ideas 
through oral expressions, pictures and symbolic representations; to solve real life problems; to be 
given the opportunity to express and share their mathematical ideas with teachers and peers; as 
well as to be involved in a teaching environment that emphasizes the understanding of concepts 
before formal symbolic and algorithmic work is introduced. This article analyzes the experiences 
resulting from a Fractions Workshop, in which the lessons suggested by the Rational Number 
Project (Cramer, K., Behr, M., Post, T., Lesh, R., 1997) were applied. The general aim of the 
Workshop was to help the participants develop a deep understanding of the concept of a fraction. 

Some of the questions guiding the study were: How can we help students acquire correct 
ideas about fractions? How can we help pupils feel confident about their mathematical abilities? 
Which teaching sequences bring about a better understanding of the concept of fractions, of 
fraction equivalence, of the relationships between the different modes of representation, and their 
relevance in real life situations? 

 
Conceptual Framework 

There’s a general concern amongst mathematics teachers of different levels with respect to 
the way students learn fractions. Most educators agree that there has to be a change in the way 
fractions are taught, but there is no consensus as to how to carry out such change.  
Several authors have made interesting attempts at broaching this subject; for example, Behr 
(1992) suggests that in the initial stages of introducing fractions the teacher should present 
situations such that pupils are faced with the possibility of constructing their own qualitative 
concept of order, equivalence and size of fractions. Likewise, due to the complexity of the 
concept of fraction and the variety of situations to which fractions apply, it’s important to focus 
on the development of a quantitative understanding which can be achieved by using concrete 
models and emphasizing meaning instead of procedures (Bezuk, 1989). It is also necessary to 
present children with relevant situations which will allow them to make connections between 
their academic work and real life contexts, and between the different representations (Scaptura, 
2007). In this sense, Lesh (Cramer, K., Behr, M., Post, T., Lesh, R., 1997) suggests that children 
learn fractions when they have the opportunity to explore ideas and make connections between 
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the different modes of representation. Lesh put forward the translation model shown in Figure 1 
as a way to represent how fraction mathematical ideas are related. This diagram was used as a 
model for the development of the Rational Number Project (RNP) curriculum. 
 

 
Figure 1. Lesh Translation Model 

 
RNP Curriculum  

The RNP curriculum suggests a sequence, alternative to that which is traditionally presented 
in primary text books. It bases its philosophy on the principle that it is necessary for the child to 
use concrete materials in order to: be able to understand and feel confident with the different 
fraction modes of representation; perceive them as part of a whole, as part of a collection of 
objects, or as a division; acquire a solid understanding of fraction order and equivalence; all this 
as a foundation necessary for meaningful work with fraction operations. With respect to the 
teaching of fractions, the National Council of Teachers of Mathematics (NCTM) establishes as 
aims: the development of number sense, the use of a variety of concrete models for representing 
fractions, the application of the teaching of fractions in context and to develop the ability to 
make connections between the different modes of representation (NCTM, 2000). The RNP 
curriculum strives to achieve such aims (Behr, 1992). 

  

Figure 2. Working with concrete materials. 

 
Participants, Method of Investigation, Procedures 

The aim of this study is to carry out a qualitative analysis of the results obtained through 
working with some of the activities suggested by the RNP Level 1, during a workshop organized 
in a private school in the State of Michoacan, Mexico, with a group of 6th grade students (12 
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year-olds). In order to select the 15 pupils who would receive most benefit from such work, a 
diagnostic test was applied to a group of 60 students; those who appeared to have greater 
difficulties regarding the topic of fractions were invited to participate. Whilst the Workshop was 
offered as a voluntary activity, the pupils made a commitment to participate throughout the 
sessions. The Workshop consisted of thirty hourly sessions, which took place three times a week 
during the afternoon. The material used was that which the RNP suggests: coloured circles 
divided in sections of different sizes, paper strips for folding, and chips to be used as discrete 
material. The aim of the Workshop was to help students develop number sense of fractions by: 
understanding the concept of flexibility of the unit, understanding and using fraction 
equivalence, ordering and comparing fractions using different strategies, adding and subtracting 
fractions. 
 

Results 
Diagnostic Exam 

This exam consisted of twenty questions, designed to discover the performance level of the 
pupils with respect to: shading part of a whole -in discrete as well as continuous quantities-, 
locating fractions on a number line, reducing fractions, finding equivalences between common 
and decimal fractions, adding and subtracting fractions with the same and different denominator. 
Some aspects worthy of mentioning regarding the results of the diagnostic exam were that: most 
pupils were able to divide a figure in equal parts and shade a given part, but they found it 
difficult to shade a set of objects (see Figure 3). This could indicate that during their school years 
they have had more experiences using continuous rather than discrete quantities. In relation to 
the operations, most of the group managed addition and subtraction of fractions with like 
denominators, but were not able to do the operations with unlike denominators. This could lead 
us to think that the pupils had a poor number sense of fractions.  
 

 
 

 

Figure 3. Daniela’s work in the Diagnostic Exam. 
 
Experiences during the Workshop 

The whole teaching sequence was based on the RNP, making adjustments in time only: the 
material for 20 lessons was covered during 30 Workshop lessons. During the first session of the 
Workshop the pupils were given their circles for them to cut out, in order for them to become 
familiar with the colors. The pieces were stored in an envelope and were used throughout the 
sessions. The methodology used consisted of reviewing the topics of the previous session, 
covering new material and closing the session with reflections and comments from the pupils. 
Basically the sessions were teacher-guided, with brainstorming and individual participations and, 
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sporadically, pair work. The participants had a notebook where they registered their work as well 
as the ideas they came up with. Some worksheets, included in the RNP, were also used. 
The last two sessions of the Workshop were devoted to evaluation: a written, individual 
summative evaluation, to determine whether the aims had been reached; and an oral, group, 
formative evaluation designed to discover the pupils’ opinion regarding their perception of the 
Workshop as well as to give them the opportunity to suggest ideas of how to improve it.  
From the beginning, the students were very enthusiastic in participating; their informal 
comments reflected that the topic of fractions caused them anguish and were very interested in 
improving their understanding of the same. Whilst they cut out their circles they shared some of 
their discoveries: “the greater the denominator, the smaller is the piece”; also, when they put 
some pieces on top of other pieces they discovered that not all of them have equivalences (for 
example that eights and fifteenths only coincide in the unit). 
During the sessions devoted to working the concept of flexibility of unit, i.e. using different 
pieces as the unit, the pupils reached the conclusion that the whole doesn’t have to be a complete 
circle (see Figure 4); also that the number of pieces that fit in a larger piece constitute the 
denominator. In words of a participant:  
Miri:  So, if the red piece fits 5 times in the brown piece then you can say that red is 1/5 of the 
brown.  

 

Figure 4. Aitana’s work on the flexibility of the unit. 

 
Equivalences came to them naturally. In previous explorations with their material they had come 
to the conclusion that there are pieces that take up the same space as others. The work started 
with fractions representing ½ , and afterwards moved on to other equivalences. When they 
compared the use of concrete materials with the written symbols they quickly realized that if one 
multiplies numerator and denominator by two, one obtains a number which represents the same 
fraction but is divided into a different amount of parts. They soon made a generalization: given a 
fraction, if you multiply numerator and denominator by the same amount you obtain an 
equivalent fraction: 
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Ricky: It is by 4 above and below. That is, the one above and the one below will always be the 
same. [If you multiply above and below by the same amount you get an equivalent 
fraction.] 

Thus, the children were able to infer an idea that is generally used as a formula in traditional 
instruction: to obtain an equivalent fraction you have to multiply numerator and denominator by 
the same number.  

In the sessions that addressed fraction comparison, the pupils used different strategies. Some 
made drawings; others made use of the transitive property of numbers: 
Monse: ¾ > ½ because since  2/4 = ½ then  3/4 has to be larger. 
Others used the idea of the unit: 
S. Paz: you look at the number on top and check how much it needs to complete a unit. If 

there’s more than one half missing then the fraction is smaller than 1/2.   
These inferences show that they were starting to apply their knowledge of equivalent fractions 
(1/2 = 2/4), and that they had a clear idea that the denominator indicates the number of parts into 
which the unit is divided. 

Afterwards, the topic of fraction addition was broached, starting by making estimations and 
deciding whether the answer was smaller or larger than ½ or of the unit. Some pupils felt safer 
with the concrete material and gave the answers using their circles. Others showed very 
interesting strategies, for example:  
Sagar: I’m going to add 1/8 + 9/10, since 9/10 needs 1/10 to become a unit and 1/8 > 1/10 then 

the sum will be greater than 1. 
 Also:  
Aitana: If I want to add1/3 + 3/4, 3/4 needs 1/4 to become a unit, since 1/3 > 1/4 then the sum 

will be > 1. As for 1/3 + 2/6, I can see that they are equivalent, then the sum will be 4/6; 
since 1/2 = 3/6 then 4/6 > 1/2.  

Still other participants used the notion of equivalent fractions and gave exact answers, ignoring 
the instruction of trying to find a close estimate.  
This is the extent of the material covered during the Workshop because, even though the initial 
objective was to reinforce addition and subtraction of fractions, a time limit of 30 sessions had 
been established, as was mentioned afore. 

Once the Workshop concluded, three pupils were interviewed; these interviews were 
recorded and transcribed. It’s important to point out that the problems broached during the 
Workshop were different to the ones described herein. The following situations were among 
some of the most outstanding contributions. (I = Interviewer). 
 
I: [Solve the following problem]. Marco and Memo each have a packet of M&M’s, with 

each packet having the same amount of candies. Marco ate 2/3 of his packet and Memo 
ate 3/4 of his. Can you tell me whether they ate the same amount or one of them ate 
more candies than the other? Explain why.  

Aitana: Memo ate more because let’s say he divided his M&M’s into 4 groups and ate 3 of 
those groups then he was left with a small group, whereas Marco divided his into three 
groups and ate two of those and was left with a larger group, therefore he has more 
M&M’s left than Marco.  

 […] 
I:  OK, now we are going to use these cubes. Thomas made a tower of cubes. He used 6 

cubes to make 1/5 of the tower. Can you tell me how tall the tower was? 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1145



Aitana: How tall was the tower? 
I: That’s exactly what I want you to tell me. 
Aitana:  Right, so how tall was the tower? Let’s see, it must have been 30 cubes tall because if I 

divide 30 into 5 equal parts I get 6 and if I choose one of those [groups] then I chose 1/5 
of the tower. 

I:  OK, now how about this problem: Thomas made another tower using 8 cubes, which 
represent 2/3 of the whole tower. Can you tell me how tall the tower was? 

Aitana:  The tower measured 12 [cubes], because if you are telling me that 8 cubes represent 2/3 
[of the tower] then one third has to be 4 [cubes] because I understand there are 3 groups. 

It is evident that this pupil has a clear idea of the concept of a fraction since she was able to give 
logical explanations when solving situations that were unknown to her.  

During the last session, where the participants were asked to evaluate the Workshop, they 
commented that they considered too much time was wasted in forming their circles at the 
beginning of each session, thus diminishing the amount of time of significant work.  They also 
suggested that they would have liked more games related to real life situations. As a reply to this 
suggestion it could be interesting to add to the Workshop some baking sessions which would 
give the pupils some practice with using fractions in real life situations.     

After carrying out a general analysis of the sessions, it is deemed important to promote 
teamwork  (Hagelgans, 1995), as well as to encourage written communication of their 
mathematical ideas through the use of a mathematics journal (NCTM, 2000). 
 

Final Comments 
At the time of implementing the activities it became evident that the pupils found it difficult 

to move away from traditional learning, which privileges procedural learning of mathematics as 
opposed to trying to make sense of the conceptual ideas. Though the diagnostic exam made it 
clear that they had a poor comprehension of fractions, their procedural knowledge gave them a 
sense of false security. 

Throughout the 30 sessions of the Workshop most of the pupils showed progress in their 
comprehension of the meaning of fractions, equivalences between fractions, ordering strategies, 
and translations between the different modes of representation. It was interesting to notice that in 
different situations: the pupils used their own explanations, they “invented” their own method of 
solving the different activities instead of depending on the algorithms they had learned, they 
were capable of explaining their reasoning to their peers, and they had the ability to solve 
problems which were new to them. All in all, they trusted their reasoning instead of asking for 
explanations or solutions. Nevertheless, even though some pupils achieved good results and felt 
safe using their concrete models, not all of the participants were able to make the translation to 
the symbolic representation. The issue of whether increasing the number of sessions would help 
these pupils achieve this matter still remains an uncertainty. Another question that remains 
unresolved is if teachers were to implement these strategies from the moment the pupils first 
come in formal contact with fractions (in the third grade of primary school), would their pupils 
be able to understand them better.  

It is not easy to quantify the learning that took place in this group of pupils. Only time will 
evidence if the experience they lived was significant in their construction of the concept of 
fractions. An undeniable fact is that the experience started with a group of pupils with many 
doubts about their mathematical abilities, who felt uneasy about participating, and unable to 
answer most of the exercises of a fractions exam. The end result of the 30 sessions was to have a 
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group of more confident pupils who were happy to have participated in the experience, and 
possessing the knowledge that fractions are a topic far easier than they had imagined and with 
the certainty that if they don’t know how to solve a problem they can ask without feeling afraid 
of being judged.  These facts are well worth the time invested in the Workshop. 
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Can elementary teacher candidates “unlearn” harmful algorithms used with fractions as they 
are invited to develop fraction number sense?  This study examines the development of 
prospective elementary teachers’ fraction number sense during an intermediate (grades 5-8) 
mathematics methods course.  During this course, participants were involved in a variety of 
activities and tasks used for the development of fraction number sense.   

 
Number sense “represent[s] a certain way of thinking rather than a body of knowledge that 

can be transmitted to others” (Sowder, 1992, p.3). In order for teachers to create opportunities 
and experiences for students to develop meaningful understandings of fractions, teachers not 
only need to have a well developed and meaningful understanding of fractions themselves but 
also pedagogic practices that provide experiences for students to explore and construct ideas 
about fractions.  This research is based on the premise that prospective teachers bring with them 
to their methods courses a somewhat limited understanding of fractions and that a methods 
course taught from a constructivist orientation may change and extend that understanding. Thus, 
the purpose of this study was to explore changes in prospective elementary teachers’ fraction 
sense. The specific research question was:  Can carefully selected experiences in a mathematics 
method course designed for elementary education majors affect their fraction sense? 

 
Theoretical Framework 

According to Schneider & Thompson (2000), number sense includes a solid understanding of 
the meaning of numbers and numerical relationships; flexible thinking about numbers (e.g. can 
see ten in a variety of ways).  Based on these descriptions of number sense, researchers in this 
study define fraction sense as an intuitive feel for fractions and fraction relationships; flexible 
thinking about fractions (e.g. can use benchmark fractions to determine reasonableness of 
fraction operations). 

There have been many calls for change in fraction instruction to move from procedural 
instruction to helping students develop conceptual understanding (Lamon, 2005; National 
Council of Teachers of Mathematics, 1989, 2000; Van de Walle, 2007).  Deborah Ball posed the 
following question for mathematics educators in a paper presented at the eighth annual meeting 
of PMENA posed the following important questions for mathematics educators: 

• What is taught in different mathematics methods courses and what do prospective 
teachers learn? 

• What goes on in the mathematics courses that teachers take at the college level and how 
do these experiences fit with students prior experiences in mathematics? 

• How can teacher educators productively challenge, change, extend what teacher 
education students bring? 
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Methodology 
Participants were 42 female (2 non-traditional) prospective elementary teachers enrolled in 

an intermediate mathematics methods course.  This course is a part of their last year of 
coursework and focuses on teaching mathematics in grades 5-8.  All participants had completed 
twelve credit hours in mathematics including a course designed specifically for elementary 
education majors that addresses the foundations of numbers (set theory, numeration, and the real 
number system), number theory, algebraic systems, functions and applications, and probability.  
Additionally, all participants had successfully completed a three credit hour primary mathematics 
methods course prior to enrolling in this semester.   

As a part of this second mathematics methods course, participants were engaged in a variety 
of experiences that were designed to help them think about the mathematical content and 
pedagogy of teaching of fractions. Fraction instruction started informally at the end of a class 
session with the question: 

 Consider the following three fractions:      
100
99        

7
6         

16
15    

             Which fraction is the largest? ___________ 
        Explain the reasoning behind your choice. 

The next class session started with a discussion of their responses and followed with activities 
and discussions involving comparing and ordering fractions.  

Participants created the Marilyn Burns Fraction Kit and explored the cover-up and un-cover 
activities using the fraction kit (Burns, 2001) and additionally worked with a variety of tools (e.g. 
fraction bars and circles) used to aide students in fraction sense development.  Students used 
these tools to demonstrate and solve a variety of fraction problems including writing and 
modeling (in at least three ways) fraction addition, subtraction, multiplication, division 
contextual problems.  

One of the texts used for this course was Developing Mathematical Fluency (Wheatley & 
Abshire, 2002) which includes a variety of activities (e.g. fraction sequences, fraction two-ways, 
fraction balances) that aide in development of fraction sense and fluency with fraction 
operations.  Each of these activities had a 1-2 page reading that supplied instructions and the 
pedagogical rationale for the activity.  In addition, course readings included chapter sixteen from 
John A. Van de Walle‘s (2007) Elementary and Middle School Mathematics: Teaching 
Developmentally and a variety of articles from the NCTM journal Mathematics Teaching in the 
Middle School including Reys, Kim & Bay’s (1999) Establishing Fraction Benchmarks; 
Warrington’s (1998) Multiplication with Fractions: A Piagetian Constructivist Approach; and 
Nowlin’s (1996) Division with Fractions.  As a part of the course, all of the prospective teachers 
were required to tutor an elementary student in grades 3 through 7 one hour per week for 10 
weeks.  During this experience, most prospective teachers worked with their tutee on fraction 
concepts. 

A pre-test was administered during the class period prior to any instruction on fraction 
concepts and a post-test was administered at the end of the 15-week semester.  The pre/post test 
contained 12 questions dealing with basic fraction concepts.  Questions on the pre/post-test 
included 

• 2 questions dealing with using benchmarks to determine size of fractions; 
• 5 part-whole tasks (2 using an area model, 2 using a set model, and one 

contextual) (eg. If this rectangle is one whole, find one-fourth.); 
5
1
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• 1 fraction sequence (Complete the sequence ___, ___, 4, ___, ___, 5     , ___); 
• 1 pedagogy question that involved comparison of two fractions (each missing one 

piece); and 
• 3 ordering fractions (1 set of unit fractions, 1 set with a common numerator, and 1 

set with each fraction missing one piece). 
Prior to data analysis the researchers determined how data would be coded (see Table 1).  

Then each question of the pre/post tests was analyzed independently by each researcher.   
Explanations were further analyzed for emergent themes using a constant-comparative method 
(Strauss & Corbin, 1998).  The alpha level of significance of .05 was used for in inferential 
analyses. 

 
 
 
 
 
 
 
 

 
 

Table 1.  Scoring rubric for questions with an explanation required 
 

Results 
The first two questions on the pre-post test involved students consideration of a pair of 

fractions (A. 
3
1  or 

4
3  and B. 

8
5 or 

4
3 )  and determining which of the two  fractions were closer to 

½  and to explain the reasoning for their choice.  A paired t-test analysis revealed that students 
use of benchmark fractions to compare fractions revealed a significant increase in students 
understanding (t(41)=-2.866, p=.006) after fraction instruction. Further analysis (see Table 2) 
revealed that on their comparison of 

8
5  and 

4
3  an additional nine (21.4%) students scored had a 

correct answer with a complete explanation on the post-test while on their comparison of 
3
1  and 

4
3 an additional five (11.9%) students had a correct answer with a complete explanation on the 

post-test.  

Score Scoring Explanation 

0 Wrong Answer 

1 Correct Answer, Incorrect Explanation 
2 Correct Answer, Incomplete Explanation 

3 Correct Answer, Complete Explanation 
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Table 2.  Prospective teachers’ scores on benchmark questions 
 
Students’ incorrect or incomplete explanations tended to focus the missing portion of the 

whole or how close they perceived the pieces were to ½ or 1 (See Figure 1). 
 

 

                            

                   
Figure 1. Sample scored benchmark responses 

 
The next five questions on the pre-post test dealt with part-whole tasks – two area, two set, 

and one contextual.  Participants were scored based on whether they had a correct answer or not.  
For the area and set tasks one dealt with fractional parts less than one and the other dealt with 
fractional parts greater than one.  The contextual task required participants to draw a picture of a 
finished patio given a picture of ¾ of the patio.  Examining student responses on the pre-test 
revealed that on both the area and set part-whole tasks students tended to be able to solve these 
when given the whole and asked to find an amount less than one; however when the amount 
given was greater than a one and asked to show one-whole, students struggled (see Table 3).  
Pre-post test paired t-tests revealed no significant difference for the area and set tasks when the 
given the whole and asked to find an amount less than one, but a significant difference (t 41 = -
4.253, p = .000)  pre-test to post-test when the amount given was greater than a one and asked to 

Score 

 
3
1  or 

4
3   

8
5  and 

4
3    

 Pre-Test 
n(%) 

Post-Test 
n(%) 

 Pre-Test 
n(%) 

Post-Test 
n(%) 

0  10(23.8) 9(21.4)  16(38.1) 3(7.1) 
1  9(21.4) 7(16.7)  4(9.5) 7(16.7) 

2  12(28.6) 10(23.8)  9(21.4) 10(23.8) 
3  11(26.2) 16(38.1)  13(31.0) 22(52.4) 

SCORE = 1 SCORE = 0 

SCORE = 2 SCORE = 3 
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show one-whole. Additionally, there was a significant difference (t41 = -2.672, p = .011) pre-post 
on the contextual task.   
 

Table 3.  Prospective teachers’ scores on part-whole tasks 
 

Approximately 12% (n=5) of the students could solve the fraction sequence ___, ___, 4, ___, 
___, 5    , ___ prior to the methods course but after exploring the teaching of fraction concepts 
nearly 60% (n=25) of the participants could solve the sequence.  Statistical analysis showed this 
to be a significant increase (t(41) = -.6.105, p < .001).  It was disheartening to note that 40.5% 
(n=17) of the prospective teachers remained unsuccessful in solving the fraction sequence at the 
end of the course.  
Participants were given the pedagogical scenario “A fourth grader said that 3/4 and 5/6 are the 
same size because they both have one piece missing.  Do you agree? Explain.”  Students were 
scored on a scale of 0-3.  Analysis of pre- and post-tests showed that about 24% (n=10) more of 
the participants had a correct answer and explanation.  Further statistical analysis did not reveal a 
significant difference between participants the pre-test (M=190, SD=1.08) and their post-test 
(M=2.17, SD=1.21) scores.   

 
 
 
 
 
 
 
 
 

Table 4.  Prospective teachers’ scores on pedagogical scenario 
 

The final portion of the pre-post test required participants to order three sets of fractions (set 
of unit fractions, set with a common numerator, and a set with each fraction missing one piece).  
Table 5 shows the percent of participants that successfully ordered each of the sets of fractions.  
Paired t-tests revealed no significant difference when participants were asked to order a set of 
unit fractions.  Significant differences were found when asked to order a set of fractions with a 
common denominator (t41 = -2.364, p = .023) and when the set involved fractions with one 
missing piece to make it a whole (t41 = -2.693, p = .010). A paired t-test involving the sum of 
participants scores on all three of the ordering fraction problems also revealed a significant 
increase (t41 = -3.650, p = .001) in students ability to order fractions from the pre-test to the post-
test. 

 Area <1 Area >1 Set<1 Set>1 Contextual 

 Pre Post Pre Post Pre Post Pre Post Pre Post 

M 1.00 1.00 0.43 0.83 0.98 0.98 0.43 0.79 0.50 0.71 
SD 0.00 0.00 0.50 0.38 0.15 0.15 0.50 0.42 0.51 0.46 

Score Pre-Test 
n(%) 

Post-Test 
n(%) 

0 5(11.9) 7(16.7) 

1 11(26.2) 6(14.3) 
2 9(21.4) 2(4.8) 

3 17(40.5) 27(64.3) 

5
1

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1152



PME-NA 2011 Proceedings 
 

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics 
Education. Reno, NV: University of Nevada, Reno 
 

*p < .05 
Table 5.  Differences between prospective teachers ordering fractions pre- to post-test. 

 
Discussion 

This study revealed that this group of prospective elementary teachers brought with them a 
limited understanding of fractions to their mathematics methods courses and that despite a 
concentrated effort to improve those understandings, only minimal progress was accomplished.  
Although these prospective teachers had many years of school mathematics, including four 
college level mathematics courses and one primary level mathematics methods course, their 
reasoning about fraction concepts was often incorrect and largely based on limited 
understandings or misconceptions they had previously developed or, at best, understandings of 
fractions as part of a whole.  If the strength of these pre-service teachers understandings lies only 
in a part-whole understanding of fractions then as mathematics educators we should be 
concerned. Lamon (2005) suggests that a part-whole understanding of fractions is not sufficient 
suggesting that when students’ experiences have been limited to part-whole relationships they 
tend to have a limited understanding of fractions.  Lamon recommends that students should be 
provided with a variety of experience to help them develop the multiple meanings of fraction. 

Findings from this study demonstrated that many prospective elementary teachers are leaving 
their coursework with misconceptions such as seen in the ordering fraction problems and the 
pedagogical scenario a common misconceptions where students believe that when two fractions 
are missing one piece they are the same size fraction. As has been pointed out by NCTM (2000) 
“as students work with number, they gradually develop flexibility in thinking about numbers, 
which is a hallmark of number sense” (p. 80).  Extending this to number sense about fractions, or 
fraction sense, students need to develop flexibility in their thinking about fractions (Reeder & 
Utley, 2007).  The development of fraction sense is gradual and takes time to development, thus, 
it would too ambitious to imagine that the concentrated efforts during one semester to improve 
prospective elementary teachers fraction understand would result in significant progress.  While 
prospective elementary teachers did make progress in developing their fraction sense they still 
need more opportunities to revisit fraction and other rational number concepts using pedagogical 
tools and teaching practices that help prospective teachers deepen and extend their fraction sense. 

Ball (1990) points out that the types of experiences with learning and teaching mathematics 
that students have had when they reach their mathematics methods course(s) greatly impacts the 
influence that teacher educators can have in developing them into teachers of mathematics.  

Set Percent Correct Mean(SD) t(41) p 
Pre Post Pre Post 

Unit 
Fraction 91 98 .90(.31) .97(.16) -1.780 .083  

Common 
Denominator 86 98 .85(.37) .97(l16) -2.364 .023* 

Missing 
Piece 45 71 .46(.51) .72(.46) -2.693 .010* 

All 3 38 69 2.21(.77) 2.67(.53) -3.650 .001* 
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Additionally, related to Ball’s question suggesting that mathematics courses be examined, the 
results of this study further suggest that mathematics faculty responsible for the development and 
teaching of courses designed for prospective elementary teachers should be encouraged to 
collaborate with faculty teaching the mathematics methods courses to provide prospective 
teachers with more opportunities to develop their fraction sense.  This study has important 
implications for mathematics teacher educators with regard to the kinds of challenges we face in 
improving not only our prospective teachers’ content knowledge but their pedagogic knowledge 
as well.   
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This paper investigates a geometry teacher’s use of analogies about experiences in ordinary life 
when doing a proof by contradiction in an urban classroom.  The analysis applies Systemic 
Functional Linguistics for examining how the teacher established connections between the 
source and the target of the analogies.   The results show that the teacher created the analogies 
by using three different linguistic resources: lexical cohesion, conjunctions, and reported speech.  
The teacher’s use of these linguistic resources intended to teach students how to formulate a 
mathematical argument by creating a parallelism in the grammatical structure of the analogies. 

Introduction 
The Proof and Reasoning Standard (NCTM, 2000) emphasizes the importance of increasing 

students’ opportunities to engage in reasoning and proving.  At the same time, the Connection 
Standard promotes the importance of establishing connections between students’ experiences in 
mathematics classrooms and their experiences in ordinary life.  One of the main goals of the high 
school geometry course has been to teach students to reason logically so that they can apply the 
same reasoning to situations in ordinary life (Fawcett, 1938).  Current documents, such as the 
Common Core Standards, also stress the importance of teaching students to make mathematical 
arguments.  In this paper, I show an example of a geometry teacher’s use of analogies that drew 
upon experiences in ordinary life when doing a proof by contradiction in an urban classroom.  
The focus on proof by contradiction is relevant because research shows that students have 
difficulties with this type of proof (Lin, Lee & Wu Yu, 2003; Reid & Doubin, 1998).  I apply 
analytical tools from Systemic Functional Linguistics (SFL) to examine the linguistic resources 
that the teacher used to create the analogies.  An examination of teachers’ practices that are 
intended to enable students to establish connections between arguments in ordinary life and 
mathematical arguments can lead to identify ways for helping students to develop their reasoning 
skills. 

Theoretical Perspectives 
Prior work in mathematics education has examined the use of analogies in mathematics 

teaching and learning (Bayazit & Ubuz, 2008; English, 1997; Greer & Harel, 1998; Reed, Ernst, 
& Banerji, 1974; Richland, Holyoak, & Stigler, 2004).  Pimm (1981, p. 100) has offered a useful 
image of an analogy as a mathematical proportion (e.g., A:B::C:D) where one knows more 
information about one set of relationships (e.g., A:B) than about another one (e.g., C:D).  The 
literature on cognition describes analogies as mappings from a base, B, to a target, T (Gentner, 
1983).  The base includes specific prior knowledge that constitutes the foundation of the analogy 
and the target includes the new knowledge that the analogy is supposed to make explicit.   

In a study using data from 8th grade mathematics classrooms, Richland et al. (2004) showed 
that teachers, for the most part, assume the responsibility of selecting the analogies that they use 
in their explanations.  This finding is important in light of research which suggests that two main 
components of an analogy affect children’s ability to transfer what they know to the new concept 
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that is the target of the analogy: transparency and systematicity (Gentner & Toupin, 1986).  
Transparency describes the degree of similarity between the objects that constitute the analogy, 
and systematicity involves the causal chains that connect the components of the analogy.  For 
example, a teacher could say, “solving a linear equation is like taking off your shoes and your 
socks.”  This analogy has a low degree of transparency because a variable and a foot have little 
resemblance as physical objects.  However, the analogy has a high degree of systematicity 
because the processes involved in the two cases are analogous: inverse operations are performed 
in the opposite order.  The two aspects of the analogy that would need to be explicit for students 
are the mapping between the objects in the base and in the target and the causal links.  

In order to examine how teachers achieve transparency and systematicity in their talk, I focus 
on the linguistic resources that teachers use to achieve cohesion (Halliday & Hasan, 1976).  
Cohesion includes the resources for making connections regarding the meanings in a text.  I 
propose an operational definition of transparency and systematicity in relation to the linguistic 
resources used to achieve cohesion.  I use lexical cohesion as a marker for transparency.  Lexical 
cohesion involves making semantic connections in a text between chains of ideas that share 
similar meanings.  A lexical cohesion chain can signal the transparency in an analogy because 
the types of word choices used when making an analogy can make explicit the relations that are 
established within the base and the target.  In addition, I propose that speakers’ use of resources 
from the system of conjunction is a marker of systematicity.  In SFL, the system of conjunction 
includes words and terms that provide logical connections in a text such as “and” and “or,” but 
also other conjunctions such as “however,” “because,” and “but” (Martin & Rose, 2003).  I 
assume that the speakers’ choices of conjunctions can signal the causal links between 
components of the analogy, thus showing whether the analogy has systematicity or not. 

Research Questions 
The research questions of this paper are the following: 

1.  How does a teacher use lexical cohesion to achieve transparency when using analogies?   
2.  How does a teacher use conjunctions to achieve systematicity when using analogies? 
3.  What other linguistic resources does a teacher use to map the source and the target of an 
analogy? 

Mode of Inquiry  
Data Sources 

The main data sources for this paper are videos from a geometry lesson taught by Mr. 
Harrison in three different classes at Bondi High School, a large Midwestern urban school with 
an ethnically diverse population and with around 50% students from low SES background.  For 
this paper, I selected videos where Mr. Harrison was proving the Angle-Side-Angle (ASA) 
triangle congruence theorem by doing a proof by contradiction in three regular geometry classes.  
I segmented the videos according to changes in the activity structure in each lesson, such as 
teacher exposition or triadic dialogue (Lemke, 1990).  I selected the segments that included a 
discussion of a proof by contradiction to either motivate or install (Herbst, Nachlieli, & Chazan, 
2011) the ASA theorem (e.g., the statement asserting that if two angles and the included side of 
one triangle are congruent to two angles and the included side of another triangle, then the 
triangles are congruent).  These segments constituted the corpus of the paper. 

Analysis 
The selected segments were transcribed and parsed into clauses.  I performed a lexical 

cohesion analysis with the purpose of identifying semantic chains in each segment.  Then, I 
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performed a conjunction analysis to identify the purpose of the conjunctions used in relation to 
the analogy.  Finally, I analyzed the teacher’s use of reported speech, as a result of my 
observations that this was another linguistic resource that the teacher deployed.  Reported speech 
has the purpose of attributing to a source what someone would think or say, and it is a resource 
from the system of engagement in SFL (Martin & White, 2005). 

Description of the Class Discussion and the Analogies Used 
In the three lessons, Mr. Harrison’s discussion followed a similar structure.  First, he 

requested students to provide an example of a situation where they had been falsely accused of 
doing something, and he elaborated what would be a proof by contradiction of that false 
accusation.  Then, he provided the proof by contradiction to prove the ASA theorem.  Finally, he 
made the analogy explicit by stating how the proof for the ASA theorem was similar to the 
argument against the false accusation.  The following transcript from the 1st period class shows 
an example of how Mr. Harrison elicited students’ experiences: 

Mr. Harrison:  So, have you guys ever made an argument where somebody says something 
and you’re like [pause 3 seconds] how do I say this?  You say, well, if that was true, then, 
this, this, and this happens.  Like, somebody claims, I don’t know.  Can somebody give an 
example of that?  Like a real life example?  Maybe somebody accuses you of, I don’t know, 
cheating on somebody.  Or, somebody accuses you of doing something you didn’t do.  And 
your argument against that is like, “Well, if that were true, then…”.  You guys?  
In this excerpt, Mr. Harrison provided the case of “cheating on somebody” to model the type 

of accusations that students could have been subject to.  Mr. Harrison also started phrasing what 
an argument against that accusation would look like by saying, “Well, if that was true, then…”.  
This phrasing provided the basis for the argument in the proof by contradiction. 

Table 1 shows a list of the base knowledge in the analogies that the students shared.  In some 
classes, the students hesitated to provide an example from their own lived experiences and the 
teacher asked students to make up a story (1st and 4th period classes).   
 
Class 
period 

What is the base knowledge?  Evidence for the contradiction 

1 Being accused of fighting 
someone. 

The accused person does not have a black eye. 

4 
 

Being accused of initiating 
communications with a friend’s 
ex-boyfriend. 

The date of the text messages shows that the ex-
boyfriend initiated the communication and not 
the accused person. 

6 Being accused of shoplifting. The accused person’s bag is empty. 

Table 1.  Examples provided for the analogies 
 

In the three classes, the teacher provided the same proof by contradiction of the ASA 
theorem.  The proof started by assuming that a pair of triangles (∆ABC and ∆DEF in Figure 1) is 
not congruent, even though two pairs of angles and the pair of segments included between those 
angles are congruent.  Without loss of generality, 

€ 

AB must be longer than 

€ 

DE .  Then, one can 
assume that there is a point M on 

€ 

AB where 

€ 

AM ≅ DE .  Consequently, the triangles would be 
congruent by the Side-Angle-Side theorem, since 

€ 

AM ≅ DE,∠MAC ≅∠EDF, AC ≅ DF .  
However, there is a problem with this conclusion, because the angles BCA and EFD were 
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supposed to be congruent, and, as a result of the triangle congruency, the angles MCA and EFD 
would also be congruent.  This would mean that the angles BCA and MCA are congruent, but one 
angle is obviously bigger than the other one.  Therefore, the original assumption is false and the 
triangles are indeed congruent.  

 

 
D

E

F

B

A
C

M

  
Figure 1.  Diagram for the proof of the ASA theorem 

Results 
Using Lexical Cohesion to Achieve Transparency 

The analysis of lexical cohesion intended to look for chains of semantic terms that were used 
to create the analogy.  According to Halliday and Hasan (1976), there are two main types of 
lexical cohesion: reiteration and collocation.  Reiteration involves the repetition of a term, the 
use of synonyms, the use of a general word (e.g., “Angle-Side-Angle” and “rule”) or the use of a 
superordinate term to denote a broader category of another term (e.g., “proof” and “proof by 
contradiction”).  Collocation involves a relation that is not equivalence, but another type such as 
complementarity or hyponymy (e.g., class and part).  Table 2 shows the results for the analysis of 
lexical cohesion chains for repetition and synonymy.  The coding for general word and 
superordinate did not yield any cohesion across the two contexts and is not included here. 
 
Class 
period  

Type of 
reiteration 
cohesion 

Terms used  Frequency in the 
mathematical 
argument  

Frequency in the 
non-
mathematical 
argument 

1 repetition1 argument 1 7 
problem 5 0 
rule 6 0 
true 1 5 

1 synonym argue and 
prove 
 

argue 0 1 
prove 1 0 

claim and 
accuse 
 

claim 1 1 
accuse 0 1 

4 repetition accuse 5 7 
show 6 4 

4 synonym argue and 
show 

argue 2 2 
show 6 4 

                                                
1 For sake of brevity, I only show terms that were repeated more than 5 times. 
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Class 
period  

Type of 
reiteration 
cohesion 

Terms used  Frequency in the 
mathematical 
argument  

Frequency in the 
non-
mathematical 
argument 

contradiction 
and wrong 

contradiction 
 

3 0 

wrong 3 1 
proof, 
argument, and 
strategy 

proof 2 0 
argument 2 1 
strategy 2 0 

6 reiteration, 
repetition 

accuse 1 5 
assumption 3 3 
show 4 1 
true 0 7 

6 reiteration, 
synonym 

argue and 
show 

argue 0 2 
show 4 1 

assume and 
pretend 

assume 0 1 
pretend 1 1 

Table 2.  Analysis of reiteration cohesion 

The lexical cohesion analysis demonstrates that some terms throughout each lesson provided 
a common reference to talk about the examples that the students provided and also about the 
mathematical proof.  The use of the same terms for non-mathematical and mathematical 
arguments provided a cohesive effect.  For example, in the 4th period class, the teacher used the 
word “show” a total of 10 times with three main purposes:  (1) to announce the proof of the ASA 
theorem (e.g., “During this proof that I’m about to show you I don’t want you to write anything 
down), (2) to model how to provide the evidence of the contradiction (e.g., “And you show her 
your phone”), and (3) to state the contradiction in the proof (e.g., “That’s kind of like me 
showing, or you showing the text messages…”).  By using repetition Mr. Harrison provided a 
link between the mathematical and the non-mathematical argument when creating the analogy, 
thus achieving transparency. 

Collocational cohesion was useful for naming the different components of a proof by 
contradiction when talking about the non-mathematical context and, also, when talking about the 
theorem (see Table 3).  For example, in response to the student’s example about being accused of 
initiating a conversation with the ex-boyfriend of a friend, Mr. Harrison said, “So, how do you 
argue that you’ve been accused wrong?”  Here, Mr. Harrison framed the formulation of an 
argument as a strategy for refuting a false accusation.  Mr. Harrison used a similar collocation of 
terms when introducing the proof for the ASA theorem.  He said, “You guys wanna know why 
Angle-Side-Angle works?  I can show you and you’re gonna show the same kinda argument 
strategy.”  Then, later he said, “So, here’s the strategy…  Okay, somebody accuses me and 
says, ‘Hey, these triangles aren’t congruent.”  Collocational cohesion enabled the teacher to 
achieve transparency by labeling different components of the proof by contradiction such as the 
claim that would be contradicted (e.g., the accusation), the assumption, the contradiction (e.g., 
the problem), and the proof by contradiction (e.g., the argument strategy).  The transparency in 
the text involved the mapping between the use of one term in the context of the example 
provided by the student and the use of the same term used in the context of the proof of the ASA 
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theorem.  Therefore, Mr. Harrison’s explanation of the proof made the strategy explicit by using 
the same language of an accusation to bridge the two contexts. 
 
Class 
period 

Terms used 

1 accuse, argue, argument, claim, convince, logic, problem, prove, true, wrong 
4 accuse, argue, assume, proof by contradiction, show, strategy, true, wrong 
6 accuse, argue, assume, assumption, logic, pretend, problem, proof, show, train, 

true, wrong 

Table 3.  Analysis of collocational cohesion 

Using Conjunctions to Achieve Systematicity 
According to SFL theory, conjunctions can help establish four main types of logical 

relations: addition, comparison, time, and consequence (Martin & Rose, 2003, p. 127).  There are 
two main types of conjunctions according to their purpose.  External conjunctions help to 
establish logical relationships in terms of the meanings conveyed in a text.  Internal conjunctions 
have the function of organizing a text.  Table 4 shows the results of the coding according to the 
logical relations that the conjunctions established.  The teacher used more external conjunctions 
than internal conjunctions.  Therefore, the analysis focuses on the external conjunctions that the 
teacher used, because these were the ones mostly used to create the arguments in the analogies. 
 
Class 
period 

Addition Comparison Time Consequence 

 External Internal External Internal External Internal External Internal 
1 30 13 6 0 0 0 62 0 
4 19 13 8 0 0 0 33 0 
6 26 12 4 0 0 0 38 0 

Table 4.  Conjunction analysis 
 
Most of the external conjunctions that the teacher used showed a logical relation of 

consequence. The conjunctions for consequence (i.e., because, so, therefore, if, and then) were 
useful to connect the logical chain of steps in the proof by contradiction.  There are four types of 
conjunctions to denote consequence according to their purpose: cause, means, condition, and 
purpose.  Most of the conjunctions to denote consequence that Mr. Harrison used had the 
function of showing cause (23 in the 1st period, 16 in the 4th period, and 25 in the 6th period).  For 
example, when Mr. Harrison identified the contradiction in the proof of the ASA theorem in the 
1st period class, he said, “So, there’s a problem with that.  There’s a problem with the idea that 
the triangles are not equal.  So, when this is happening, you say, ‘Well, guess what, you were 
wrong when you said that the triangles are not equal.’” Mr. Harrison used “so” to denote the 
causal links between the problem (e.g., the contradiction) and the consequences of the problem, 
and, also, between the consequences of the problem and the conclusion of the proof (e.g., the 
assertion that the triangles are not equal is false).  The use of conjunctions to denote cause 
strengthened the causal links, thus enabling the teacher to achieve systematicity. 

The second most frequent type of conjunction used were conjunctions to denote addition.  
The predominance of conjunctions with a logical relation of addition is not surprising, since 
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“and” is included within this type of conjunction, which is one of the most common conjunctions 
in the English language (Martin & Rose, 2003, p. 113).  In the segments under investigation, 
“and” was the conjunction most used with the purpose of adding clauses (23 times in the 1st 
period, 17 times in the 4th period, and 24 times in the 6th period). 

The conjunctions to denote comparison were the third most frequent conjunctions.  These 
conjunctions had the function of establishing the analogy between the examples from 
experiences in ordinary life and the proof of the ASA theorem.  The only conjunction used for 
comparison was “like.” For example, the teacher said, “Okay, so somebody accuses me and says, 
‘Hey, these triangles aren’t congruent.’  It’s kinda like somebody accusing, you know, Lena, 
talking to this guy first or whatever.”  The use of “like” here, intended to establish the link 
between the two examples, thus making the analogy explicit.  The use of the conjunction “like” 
to connect the two proofs is an example of how the teacher used conjunctions to map the causal 
chains in the base and in the target of the analogy. 
 
Using Reported Speech 

Another linguistic resource that enabled the teacher to create the analogy was the use of 
reported speech.  The teacher assumed the voice of an accused person when discussing the 
example, and, also, when proving the theorem.  The transcript below shows how the teacher used 
reported speech in the 6th period class. 

Mr. Harrison: Let’s take your example, somebody accuses you of shoplifting.  One option 
could have been to say, “Hey, let’s go ahead and pretend that I did shoplift for just a second.  
If I shoplifted, then you would expect to see something in my bag, or somewhere on me.  
Well look in my bag; it’s empty.  So, guess what, I didn’t shoplift.” 

Mr. Harrison also enacted how to argue against the accusation that the triangles are not 
congruent by ASA theorem, as shown in the transcript below.  

Mr. Harrison: So, I’m like, “Alright, let’s pretend that they’re not equal, for just a second.  If 
they’re not equal, then maybe these two pieces would not be equal.  So maybe DE is 
shorter.”   

Table 5 shows the number of clauses stated by the teacher that include reported speech to make 
the arguments in each class.  The use of reported speech helped the teacher to engage students in 
a hypothetical dialogue that provided evidence against a false accusation using a proof by 
contradiction.  The teacher applied the same structure of a dialogue about an event in ordinary 
life to a hypothetical dialogue with mathematical content, thus making the analogy explicit. 
 
Class 
period 

Clauses that use reported speech in the 
mathematical argument 

Clauses that use reported speech in the 
non-mathematical argument 

1 12 7 
4 21 12 
6 8 17 

Table 5.  Clauses with reported speech 

Discussion 
The interplay of three linguistic resources, specifically, lexical cohesion, conjunctions, and 

reported speech, provided the structure to model a proof by contradiction.  These three resources 
allowed the teacher to create a sort of template that he could apply to build a proof by 
contradiction regardless of the content (e.g., mathematical or non-mathematical).  Figure 2 shows 
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a model for the structure of the argument.  This model takes into account the different linguistic 
resources that helped him to establish the analogy by establishing a parallelism in the 
grammatical structure (Martin & Rose, 2003, p. 237).  The parallelism was achieved by using 
repetitions and synonyms, by voicing the “accusations” in a similar way through reported 
speech, and by using conjunctions to connect causal links within each analogy. 

 

 
Figure 2.  Model for the structure of the analogies 

The goal of teaching geometry as a vehicle to teach students how to apply logical reasoning 
in situations of ordinary life continues to be a goal today.  By allowing students to draw upon 
their prior knowledge of ordinary situations through the use of analogies, teachers can broaden 
students’ opportunities to learn and instill in students an appreciation for mathematical thinking.  
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The purpose of this study was to determine ways high school students’ mathematical self-efficacy 
was affected by participation in an advanced course in proofs and problems in number theory 
and algebra. In the course, emphasis was placed on students engaging in higher order 
mathematical thinking and developing mathematical habits of mind. Because self-efficacy affects 
goal setting and perseverance in the face of challenging tasks, which ultimately affects 
achievement, we were interested in determining students’ course goal self-efficacy at the 
beginning of the course and whether self-efficacy changed as a result of course participation. 
 

Introduction 
 In this research report, we describe ways high school students’ mathematical self-efficacy 
was affected through participation in an advanced course titled Proofs and Problems in Number 
Theory and Algebra (PPNTA). In the larger study that supports this brief report, we will examine 
students’ understanding of and skill in constructing valid proofs within the backdrop of number 
theory and algebra. We are further interested in the ways PPNTA course participation increases 
students’ mathematical habits of mind. The study will ultimately result in three years of data, 
enabling the authors to track longitudinal trends and a number of different foci, both in pedagogy 
and content. 
 In this advanced course, students were expected to engage in higher order mathematical 
thinking and develop proof construction and problem solving ability, as well as an understanding 
of the notion of a mathematical habit of mind. Thus, the goals of the course were not content-
specific but instead focused on ideas such as elegance in proofs and solutions and 
metamathematics. In addition, students were expected to increase their skill in engaging in 
intellectual argument with others about mathematics and to work individually and in teams to 
solve complex problems in algebra or number theory.  
 Students in this course are academically gifted and have demonstrated high achievement and 
high mathematical self-efficacy in courses with content-specific objectives. However, it is 
unclear whether these efficacy beliefs would be similar in a course such as PPNTA where goals 
are focused on engaging in mathematical habits of mind (MHM) and the construction of proofs.  
While there is not an agreement on what the MHM phrase means, it would certainly include 1) to 
explore mathematical ideas, 2) to formulate questions, 3) to construct examples, 4) to identify 
problem solving approaches that are useful for large classes of problems, 5) to ask whether there 
is “something more” (a generalization) in the mathematics on which students are working, and 6) 
to reflect on answers to see whether an error has been made (Millman & Jacobbe, 2008, 2009).    
These six traits help define a term that is featured prominently in an important report on the 
mathematical education of future teachers (CBMS, 2001).   In addition, MHM is closely linked 
to the Polya Principles of Problem Solving.   
For all students of mathematics, there is a real difference between studying a topic (such as 
calculus), which includes both manipulation and conceptual understanding, and the ability to 
engage in the kind of abstract thinking that is required in writing proofs.  Because self-efficacy 
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plays a critical role in the ways individuals approach difficult tasks, set goals for themselves, and 
persevere when faced with a challenging problem (Bandura, 1994), we were interested in 
determining students’ course goal self-efficacy at the beginning of the course and whether self-
efficacy changed as a result of participating in the course. 
 

Theoretical Framework 
Self-efficacy refers to the beliefs individuals hold about their capability to achieve a certain 

level of performance on a given task or goal (Bandura, 1994). These self-referent beliefs 
influence actions, and, as Pajares and Schunk (2001) explain, self-efficacy is a better predictor of 
what individuals accomplish than are their actual capabilities. Self-efficacy determines what 
people choose to do, how much effort they put into a task, and whether they persist when 
challenged (Pajares & Schunk).  

A number of studies have shown a positive relationship between self-efficacy and academic 
achievement. Multon, Brown, and Lent’s (1991) meta-analysis of 68 self-efficacy studies 
conducted between 1977 and 1989 indicated a positive correlation between self-efficacy and 
academic achievement. Further, according to Zimmerman (1995), other research reveals a causal 
link between self-efficacy and academic achievement (see, for example, Barry, 1997 and 
Schunk, 1981, 1989).   

The causal link between self-efficacy and achievement is seen as a reciprocal relationship. As 
Pajares and Schunk (2001) explain, “According to Bandura’s social cognitive theory, behavioral 
and environmental information create the self-beliefs that, in turn, inform and alter subsequent 
behavior and environments” (p. 251). Thus, self-efficacy can be positively influenced by 
engaging in classroom activities that increase students’ competence (including modeling, 
providing feedback, and strategy training), and as self-efficacy is built through these types of 
activities, academic achievement can also increase. As described in Pajares and Schunk’s 
overview of self-beliefs and school success and Zimmerman’s (1995) review of self-efficacy and 
educational development, this reciprocal relationship has been demonstrated in numerous 
studies.  
 

Methods 
PPNTA Course 

The course was developed as a collaborative effort between the Georgia Institute of 
Technology and a local charter high school for mathematics, science, and technology. The course 
instructor was a Georgia Tech graduate student in mathematics and computer science who 
earned a bachelor’s degree in mathematics with highest honors. His previous teaching experience 
consisted of two years as a teaching assistant for undergraduate calculus courses.  
 

Georgia Tech’s Center for Education Integrating Science, Math, and Computing (CEISMC) 
financially supported the teaching of the course through a research assistantship funded through 
Georgia’s Race to the Top award, which was funded by the U.S. Department of Education. The 
director of CEISMC, who is co-author of this paper, had a major role in planning the PPNTA 
course. In addition to co-authoring the course textbook, he also made classroom observations 
over the course of the semester and delivered lectures in the areas of introduction to proofs, the 
use of groups in geometry, and the notion and use of equivalence classes. 

The PPNTA course was conceived as an introduction to mathematical proofs using the 
subjects of number theory and algebra as context. In the course, students were introduced to 
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mathematics as a living research discipline that can be used to discover new ideas about 
numbers, space, functions, and other objects as well as their inter-relationships. It was designed 
as an “explore, generalize, prove, think” environment in which students approached mathematics 
much differently than in a traditional math classroom. In some ways, this type of environment is 
similar to the culture of doing mathematical research.  The purpose was to help students 
understand that mathematics is not fundamentally about calculation nor is it based on rote 
memorization.   The philosophy of the course is aligned to the National Council of Teachers of 
Mathematics (NCTM) Principles and Standards. 
 Students attended class Monday through Friday for 18 weeks. Class periods were 48 minutes. 
Class activities included instructor lecture, reviewing problem sets, students working problems 
independently or in groups, and students making presentations to the class as a whole. 
 Goals for students were to: (1) identify what makes a mathematical proof correct, (2) identify 
flaws in fallacious proofs, (3) learn some commonly applied proof techniques, (4) become 
proficient at reading and writing mathematics in general and proofs in particular, and (5) practice 
applying problem solving methods to find solutions and demonstrate clearly their correctness.   
Topics covered during the course were:  

• Basic properties of the integers 
• Divisibility and prime numbers 
• The Fundamental Theorem of Arithmetic 
• Diophantine equations 
• The idea of equivalence relations and its applications 
• Basic properties of polynomials 
• Divisibility of polynomials, divisibility methods, and the roots of polynomials 
• Applications to combinatorics 

One example of how students were to explore mathematics and its ideas was a section (covered 
in the third week) in which the instructor first worked with students to show that the 2  is 
irrational using the usual proof by contradiction.  The students were then asked to fashion a proof 
of the fact that 3  is irrational using the logic of the 2  example. From this approach, they 
were asked to generalize the procedure so that it was valid for the square root of any prime 
number. In order to understand what is really going on in this proof structure, we asked the 
students to prove that the 4  was irrational.  Of course, they all knew it was false, but having 
the students figure out why the “proof” of 4  is irrational must be incorrect was important for 
truly understanding what a proof is and what it isn’t. 
Participants 

Participants were 15 students (14 seniors and 1 junior) enrolled in the PPNTA course at a 
local charter high school with a focused curriculum in math, science, and technology (18 total 
students were enrolled; 15 agreed to be in the study). Eleven students were male and four were 
female. Ten students were Asian and five were Caucasian. Students had completed every high 
school math course available to them except for AP statistics, and all but one had taken two 
semesters of calculus (Calculus II and III at Georgia Tech) beyond AP Calculus and differential 
equations prior to enrolling in this course.  All students were planning on majoring in a STEM or 
premedical field once enrolled full time in college. All participating students in this study earned 
an A as a final course grade in the PPNTA class. 
 
Setting 
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The school where the study took place is a public, charter high school for mathematics, 
science, and technology whose first courses were given in 2007. The new campus, opened in 
2010, includes high-tech classrooms and project-based work areas for student, university, and 
business collaboration. All eighth grade students in the county may apply for admission to the 
school, but due to a high number of applicants, a lottery is used to determine which students will 
be admitted. Enrolled students choose one of three areas in which to focus their studies: 
engineering, bioscience, or emerging technologies.  Advanced Placement (AP) courses are 
offered in calculus (AB and BC), statistics, physics (mechanics and E&M), biology, chemistry, 
and computer science, as well as in the humanities. Math courses are offered in accelerated 
integrated geometry and accelerated integrated pre-calculus (courses that are aligned to the state 
mathematics curriculum), in Calculus 2 (which includes linear algebra), and in Calculus 3 (both 
taught via video conferencing with Georgia Tech).  Courses in differential equations and PPNTA 
are also offered. In 2009, the school’s total enrollment was 327 students; 16% were economically 
disadvantaged and 2% had identified disabilities. Standardized test data indicate high 
percentages (> 90%) of students meet or exceed standards. 
 
Data Collection 

To answer the research question In what ways does participation in the Proofs and Problems 
in Number Theory and Algebra course affect students’ mathematical self-efficacy? we measured 
mathematical self-efficacy using a pre and post self-efficacy instrument. In designing the 
instrument, we relied on Bandura’s Guide for Constructing Self-Efficacy Scales and tied items to 
specific course goals. As Bandura suggested, we phrased items on the pre- and posttest in terms 
of what students can do in order to measure perceived capability. We extended this by asking 
students on the pretest to provide an additional measure of how capable they were to achieve 
each goal. Though Bandura cautions against asking individuals to judge potential capabilities, we 
chose to include the extended items on the pretest because students had not yet had opportunities 
to develop ability in most of the course goals, which was likely to result in low self-efficacy 
measures. Measuring both current and potential capability on the pretest allowed us to make 
additional comparisons that enhanced the meaningfulness of results.  
 On the pretest, students ranked their self-confidence on a scale of 0 to 100 (with 100 being 
most confident) on how confident they were that they could already complete the task (e.g., 
understand the importance of proofs in mathematics) and how confident they were that they 
could learn to do the task. For the posttest, students responded to the same prompts to rate how 
confident they were in their ability to complete each task. We chose the 0 to 100 scale based on 
Bandura’s suggestion to use a broad scale to increase measurement sensitivity and reliability. 
The pretest instrument is provided in Appendix 1.  
Students also completed a post-course survey about their experiences in the PPNTA course. The 
survey included self-efficacy items that provided students with the opportunity to describe the 
ways in which their confidence had changed, if at all, due to completing the course and the 
aspects of the course that affected their confidence. All students provided open-ended responses 
to the self-efficacy items. 
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Results and Discussion 
Overall means for (1) the pretest in which students rated confidence in their ability to already 

complete each course goal (prior to the class beginning), (2) the pretest on students’ confidence 
they could achieve the course goals, and (3) the posttest on students’ confidence in their ability 
to accomplish each course goal (at the end of the course) are provided in Table 1.  The difference 
between the pre measures was statistically significant (t14 = -9.26, p < .000) and indicated that 
although students began the course with low self-efficacy, their efficacy regarding their ability to 
learn content and accomplish the course goals was significantly higher. The standardized effect 
size for the difference was 1.37, indicating a large effect. There was no significant difference 
between students’ confidence they could accomplish the course goals and their confidence at the 
end of the course.  The 29.16-point difference between the pre- and posttest measures of self-
efficacy was significant (t14 = 5.59, p < .000), and the effect size (1.70) was large.   
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RESULTS AND DISCUSSION

Data collection will end in mid-May, and final analyses will be conducted then. Using 

pretest-posttest comparisons, we expect to show differences in self-efficacy at the conclusion of 

the course and explain those differences with the interview data. 

One of the results that has been analyzed is the pretest self-efficacy data.  As illustrated in 

Table 1, at the beginning of the course, students’ self-efficacy was highest in understanding the 

importance of proofs in mathematics (x=63.8)  and knowing how to work in teams to solve 

problems (x=63.4). Self-efficacy was lowest in knowing how to engage in intellectual arguments 

with others about mathematics (x= 29.8) and knowing how to create examples that provide 

insight into designing proofs (x=26.8). Students’ confidence in their ability to accomplish the 

course objectives was much higher, with means ranging from 70.7 (engaging in intellectual 

arguments) to 92.7 (understanding the importance of proofs in mathematics). Further, when 

comparing differences between students’ confidence they could already accomplish course goals 

and student’s confidence they could learn to achieve course goals, statistical significance (p < .

000) was found in each case. 

Table 1. Student Self-Efficacy Beliefs on Course Goals Pretest

Item N

Confident

in ability to

Confident 

can learn to

Diff Sigx SD x SD

understand importance of proofs in 

mathematics
18 63.8 25.6 91.2 9.0 27.3 .000

know how to work in teams to solve 

problems from number theory and 

algebra

18 63.4 27.7 92.7 10.1 29.3 .000

know how to use concepts learned about 

algebra in other courses in this course
18 49.9 29.9 81.8 20.2 31.8 .000

understand the concept of “elegance” in 

proofs
18 47.7 29.9 78.2 21.6 30.1 .000

know different methods to construct 

proofs
18 44.2 20.2 78.8 21.3 34.6 .000

know how to use computational math 

tools in problem-solving and  proof 

construction

18 43.9 30.6 81.8 16.1 37.8 .000

know how to explain ideas that motivate 

proofs
18 43.1 22.8 75.3 17.0 32.3 .000

know how to work individually to solve 

problems from number theory and 

algebra

18 42.8 29.1 81.3 17.9 38.5 .000

know how to develop a mathematical 
18 39.7 21.9 75.6 18.5 35.9 .000  

 
REFERENCES 

 
Bandura, A. (1994). Self-efficacy. In V. S. Ramachaudran (Ed.), Encyclopedia of human 

behavior (Vol. 4, pp. 71-81). New York: Academic Press.  
Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman. 

habit of mind

know how to define what a 

“mathematical habit of mind” means
18 38.6 26.2 74.7 21.1 36.2 .000

know how to identify the fallacious 

reasoning in incorrect proofs
17 37.9 24.3 75.9 18.9 38.0 .000

know how to construct valid proofs 18 35.2 17.8 84.2 14.5 49.0 .000

know how to engage in intellectual 

arguments with others about math
18 29.8 27.6 70.7 25.7 40.1 .000

know how to create examples that 

provide insight into designing proofs
18 26.8 20.8 73.4 18.3 46.6 .000

The authors would like to thank Mr. Daniel Connelly, a mathematics graduate student, for his 

contributions to the course and its quality teaching.
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Appendix 1.  Mathematics Self-Efficacy Pretest 
The table below lists goals for the course in the MIDDLE COLUMN. Read the goal and then, in 
the LEFT COLUMN, mark how confident you are that you can already do this or have already 
reached that goal. In the RIGHT COLUMN, mark how confident you are that you can reach the 
goal. In each column, rate your degree of confidence by recording number from 0 to 100 using 
the scale given below: 

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	   100	  

Cannot	  
do	  at	  
all	  

	   	   	   Moderately	  
can	  do	  

	   	   	   Highly	  
certain	  
can	  do	  

Here’s	  an	  example:	  
How	  confident	  are	  you	  that	  	  
you	  can	  already	  do	  this?	   Goal	   How	  confident	  are	  you	  that	  	  

you	  can	  learn	  to	  do	  this?	  
write	  in	  a	  number	  between	  0	  and	  100	   	   write	  in	  a	  number	  between	  0	  and	  100	  

        35 Arrange	  a	  place	  to	  study	  without	  distractions.	           80 

	  
	  
	  
	  
How	  confident	  are	  you	  that	  	  
you	  can	  already	  do	  this?	   Goal	   How	  confident	  are	  you	  that	  	  

you	  can	  learn	  to	  do	  this?	  
write	  in	  a	  number	  	  
between	  0	  and	  100	  

	   write	  in	  a	  number	  	  
between	  0	  and	  100	  

	   Understand	  the	  importance	  of	  proofs	  in	  
mathematics.	  

	  

	   Learn	  different	  methods	  to	  construct	  proofs.	   	  

	   Understand	  the	  concept	  of	  “elegance”	  in	  proofs.	   	  

	   Create	  examples	  that	  provide	  insight	  into	  designing	  
proofs.	  

	  

	   Construct	  valid	  proofs.	   	  

	   Identify	  the	  fallacious	  reasoning	  in	  incorrect	  proofs.	  	   	  

	   Engage	  in	  intellectual	  arguments	  with	  others	  about	  
mathematics.	  

	  

	   Explain	  ideas	  that	  motivate	  your	  proofs.	   	  

	   Use	  concepts	  learned	  about	  elementary	  number	  
theory	  and	  algebra	  in	  other	  courses	  to	  solve	  
problems	  in	  this	  course.	  

	  

	   Work	  individually	  to	  solve	  mathematical	  problems	  
from	  number	  theory	  and	  algebra.	  

	  

	   Work	  in	  teams	  to	  solve	  mathematical	  problems	  from	  
number	  theory	  and	  algebra.	  

	  

	   Define	  what	  “mathematical	  habit	  of	  mind”	  means	  to	  
you.	  

	  

	   Develop	  a	  mathematical	  habit	  of	  mind.	   	  

 

This	  means	  between	  moderately	  and	  
highly	  confident	  one	  can	  learn	  to	  arrange	  
a	  place	  to	  study	  without	  distractions.	  

This	  means	  less	  than	  moderately	  
confident	  one	  can	  already	  arrange	  a	  
place	  to	  study	  without	  distractions.	  
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This case study documents the development, durability and dissemination of an inductive 
argument built by a nine-year-old student, Milin, over a 13 month period spanning his fourth 
and fifth grade years.  He investigated counting problems whose solutions were represented with 
a variety of representations that he successfully linked together and used to convince his 
classmates and researchers of the validity of his arguments. This study provides a detailed 
analysis of Milin’s problem solving. It shows the durability of his understanding over time and 
the impact his reasoning had on his classmates as his ideas traveled within the class.  

Introduction 
There has been considerable work done over the last decade that has established the power of 

children’s reasoning (Maher, Powell, Uptegrove, 2010). Given certain conditions and tasks, 
children naturally engage in thoughtful problem solving and demonstrate their mathematical 
understandings using a variety of representations. By making use of their representations, 
learners are empowered to make convincing arguments for their solutions (Sran, 2010). This 
study adds to the literature by tracing, in detail, the building of an inductive argument by Milin, a 
nine-year old student. He worked in a variety of settings, first with a partner, then a small group. 
He shared his solutions with his classmates and during task-based interviews. We present eight 
episodes to trace how Milin developed, sustained and shared his justification for the solution of a 
counting problem using an inductive argument and how his ideas spread within the classroom.  
The research questions that guided this study are:  

1. How did Milin build his inductive argument?  
2. How did his argument travel to other students? 

Theoretical Framework 
In the last two decades, increasing attention has been given to how mathematical 

understanding is acquired (Davis, 1984; Davis, 1992; Maher & Davis, 1995). This has resulted in 
a shift of attention from rule-based learning to meaningful learning. Davis (1984) indicates that 
“understanding” involves building schemes and fitting new ideas into existing ones. Learning 
can take place while working on new problems and making use of personal representational 
systems such as spoken and written language, physical models, drawings and diagrams, and 
mathematical notations. According to Davis and Maher (1990), new ideas can emerge from 
previous knowledge already acquired. Hence, understanding can be achieved when a learner fits 
the new ideas into already existing schema. Davis (1984) uses a metaphor of a jigsaw puzzle to 
illustrate how this learning might occur. For problems requiring solutions for which the learner 
lacks fully developed schema, new experiences are needed.  According to Maher (1998), the 
building blocks for new schema come from an individual’s experiences, and so when students 
work with new problems, they have the opportunity to use more elaborate and sophisticated 
representations to build and expand their knowledge (Maher, Martino & Alston, 1993). 
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Yackel and Hanna (2003) have emphasized the social aspects of reasoning, pointing to the 
importance of communal activity where learners have the opportunity to interact with others. In 
the process of sharing and justifying solutions to problems during small group work, individual 
interviews, group interviews, or classroom discussions, the students’ ideas are made public. 
Maher and Martino (2000) identified several conditions that promote a culture of sense-making.  

Methods 
Data were collected from three main sources. The video recordings serve as the primary 

source of data for this study.  Cameras were used to capture the conversations and written work 
of the students. The second data source is students’ written work.  A third source consists of 
individual and small group interviews and observer field notes.  Multiple data sources allow for 
triangulation and help ensure the validity of data analysis. 

Milin and his classmates engaged in variations of the Tower Problems that (1) asked them 
find all possible towers of a given height when selecting from cubes of two colors and (2) come 
up with a convincing argument for the solution.  

Analysis for the present study uses components of a model described by Powell, Francisco, 
and Maher (2003). All video sessions were transcribed, coded and verified by an independent 
researcher. The video clips that accompany these episodes can be accessed at http://www.video-
mosaic.org/. 

Results 
In the course of Milin’s earlier explorations with towers, several strategies were identified.  

These included guess and check, opposite by color, opposite by inverting, staircases, elevators, 
and organizations by groups with similar attributes (Sran, 2010). For this report, we describe 
Milin’s problem solving in which he generated taller towers using smaller ones, and building a 
family tree. Using the strategies that took on a variety of representations including physical 
models, verbal explanations and diagrams, Milin formulated and applied an effective inductive 
argument to justify an earlier conjecture of a doubling rule.    

Episode 1: February 6, 1992 
Milin and his classmates completed their building of five-tall towers as a classroom activity. 

The researcher (R1) asked students to think about an assertion made by some children that there 
were exactly ten towers with two red cubes, displaying the student models in front of the class 
(see Figure 1).  She asked whether two red cubes could be separated by three yellow cubes 
another way. Milin immediately responded: “On ones there is only three.  On two’s there is only 
two. And on threes there is only one.” He then commented that no others could be built.  

 
Figure 2.  Collection of all five-tall towers with exactly two red cubes 

Episode 2: March 6, 1992  
A month later, after Milin had worked on five-tall towers, he shared with R2 his continued 

work on the problem. He shared his record of the number of towers of varying heights (see 
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Figure 2) and explained to R2 that there were two one-tall towers, four two-tall towers, eight 
three-tall towers, and so forth.  

 
Figure 3.  Milin’s written record of his towers of various heights 

When R2 asked about what the towers of one and two-tall would look like, Milin built all one 
and two-tall towers.  R2 asked Milin to elaborate further, and Milin showed how taller towers 
could be generated from smaller ones.  He placed his one-tall black tower in front of the two-tall 
towers with black bottoms (see Figure 4). R2 asked about three-tall towers and in response, 
Milin generated these towers by first placing a cube of one color on top of each one of the four 
two-tall towers and then made the remaining four three-tall towers by placing the cube of the 
second color to each two-tall tower.  As he placed these new towers next to the matching two-tall 
tower he responded: “See … That would go into this family.” Milin continued to use the term 
family throughout this interview as he arranged taller towers next to the corresponding shorter 
towers (see Figure 4).  He remarked that the same strategy would work for four-tall towers. 

MILIN: Yeah.  Two for this, two for this, two for this, two for this , two for this, two for 
this, two for this.  (Milin points to each of the towers of three) 

R2: Yeah 
MILIN: And once you get to 16 (Milin points to the column with 5 and 32 on his paper) 

you get all of them and you get 32. 
 

   
Figure 4.  Milin explains and builds his “family” strategy 

Episode 3: March 6, 1992  
At this point, Milin reported finding 50 six-tall towers using organizations by categories. 

More convinced of the doubling pattern, he reflects on his earlier work, suggests that he did 
something wrong, and conjectured that there should be 64 six-tall towers. 

MILIN: But, I think I did something wrong on umm from 32 to go to 6[six-tall 
towers]. I think I did something wrong. 

R2: Why? 
MILIN: Mmm, I don't think that pattern would break down like. 
R2: You really don't? You... 
R1: (off-camera) Ah-ha 
R2: If it didn't break how many should there be? 
MILIN: Uh, 64 

Episode 4: March 10, 1992  
Four days later, Milin introduced his doubling argument to justify his solution for towers of 

varying height to three of his classmates (Maher & Martino, 1996a). In response to the 
researcher’s question about the number of six-tall towers Milin said: 
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MILIN: Probably 64. 
R1: Why do you think 64? 
MILIN: Well, because there was a pattern. 
R1: What’s that? 
MILIN: You just times them by two 

When the researcher asked why the towers were doubling in each successive height, Milin 
offered the following explanation: “For each one of them you could add one no two more for on 
because there is a black I mean a blue and a red.” R1 then asked the group to justify the eight 
three-tall towers, when selecting from two colors. Milin again explained that each two-tall tower 
could be turned into two three-tall towers as shown in Figure 4.  

 
MILIN: Yeah.  You have to keep on putting two for this two for this two for this and 

two for this and it will work out. 
R2: Do you agree with that Jeff? 
JEFF: Yes. 
R2: Okay.  So- 
MILIN: Because you can’t.  There is only two colors you can’t put any more on them. 
R2: Now imagine we have our eight. Where do we go from eight? Because I heard 

Michelle say twelve. 
MILIN: Sixteen. 

 
Figure 5.  Milin shows how there are only two possible three-tall towers from each two-tall tower 

 
Milin now expressed certainty that this “doubling” pattern would continue, in contrast to his 

doubt expressed in the earlier session. He continued: 
MILIN: And for each one you keep on doing that.  And for six you get sixty four. 
R1: Does that make any sense? 
JEFF: Yeah 
MILIN: It follows the pattern to five why can’t it follow the pattern to six? 

Episode 5: October 25, 1992 
 Eight months later, Milin’s response to the written assessment bears a remarkable 

resemblance to his family strategy (see Figure 6).  
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Figure 6.  Milin’s written response for October 25, 1992 assessment 

 
Analysis of Milin’s work showed that he first placed a cube of one color on top of all towers 

from (n-1) stage and then placed the cube of the second color to get all four two-tall towers. He 
repeated the process to get all eight three-tall towers as shown in Figure 7 below. 

 
Figure 7.  Milin’s strategy for generating families of towers 

Episode 6: February 26, 1993 
Eleven months later, researchers posed a probability problem that required the building of 

towers of varying heights in order to determine the sample space for the experiment (Maher, 
Sran, & Yankelewitz, 2010b). This activity provided an opportunity for the research team to 
follow the durability of students’ tower problem-solving ideas and simultaneously to monitor 
how particular strategies were shared among students. Milin successfully recalled his earlier 
strategy for building towers n-tall and began by sharing with his partner, Michelle.   He 
explained by building tower models and placing the tops of the two three-tall towers (see Figure 
8), and he pointed out that the smaller towers looked just like the two-tall tower.  Milin then 
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added a red cube to one tower and a yellow cube to the other (see Figure 8) as he already had 
before this explanation.  

 
Figure 8.  Milin’s Explanation of how two-tall towers grow to two three-tall towers 

 
Michelle indicated her understanding of the doubling pattern as she explained:  

MICHELLE: You could add yellow on from there and you could also add red on.  See, I 
understand but like its everything times two 

R1: What? Tell me. 
MICHELLE: Like from here from the two if you times by two you got fours 
R1: Why is it that? But why is it four?  I can see it is four.   I can see you got 

eight.  But can you tell me why that works? 
MICHELLE: Because there is two different colors 
MILIN: Yeah.  

Episode 7: February 26, 1993 
During Milin’s explanation of his strategy for building towers of varying heights, Milin 

mentioned that Stephanie should also be aware of this strategy because they had shared this 
during the small group assessment held on March 10, 1992.  This prompted R1 to invite Matt 
and Stephanie to Milin and Michelle’s table. It was Michelle who now demonstrated her 
understanding of Milin’s inductive argument to Matt and Stephanie.  An excited Matt joined in 
the explanation and referred to the collection of towers as “family tree,” explaining:  
MATT: These are the parents-  
R2: Okay.  
MATT: -children, their children 

  Matt then shares this new understanding of the “doubling” pattern with two other students 
as Stephanie listens intently after she was unable to explain why the doubling pattern worked 
(see Figure 9). 

   
Figure 9.  Matt joins in the explanation with Michelle and then shares it with others 

Episode 8: February 26, 1993 
Michelle’s explanation of Milin’s reasoning confirmed Stephanie’s conjecture that there 

would be 16 four-tall towers. However, while Stephanie remembered that there was a doubling 
pattern, it was not until this session that she demonstrated her understanding of how towers grew.  
As Stephanie listen to her partner, Matt’s explanation, she seemed to make personal meaning as 
to how the doubling rule worked.  An enthusiastic Stephanie eagerly shared her knowledge with 
her classmates (see Figure 9) referring to a “family” and its members (Maher, Sran & 
Yankelewitz, 2010b).  She explained: 
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STEPHANIE: Alright, I have one red, okay? And I have a yellow, and from each of 
these, you can make two because all you you have to do is you add on a 
r..., you can add on a red to the red or a yellow to the red. And for the 
yellow, you can add on a red to the yellow and a yellow to the yellow, 
okay?  

MICHELLE: So you don't have to look for duplicates. 
STEPHANIE: Then each one of these has two. Like, okay if this is a family tree, thi... 

the mother, the parents 
STUDENTS: Laughter 
STEPHANIE: Have kids and then, six kids, okay, well actually, no eight kids. Then they 

have eight kids, and each one of them has two kids. And this one, you can 
add one red one yellow, one yellow one red 

 

 
Figure 10.  Stephanie presents her understanding of the “doubling” pattern to the entire group 

Discussion 
Local organizational strategies can be powerful in learning. In his early work, Milin made 

use of these to organize groups of towers. He began his problem solving by building random 
towers with the cubes by using “guess and check” methods, randomly making a new tower and 
then comparing it those that were already built in order to identify duplicates.  He then created 
pairs and groups of towers that had similar properties. These groupings included opposites by 
color, opposites by inverting and then, staircase/elevator patterns.  He discovered, however, that 
these strategies were no longer efficient for building taller towers. When these new organizations 
were inadequate to justify a complete solution, Milin developed a family strategy, based on his 
conjecture of a doubling pattern. This seemed to have triggered his finding a global 
organizational strategy that he referred to as a family (Maher, Sran & Yankelewitz, 2010a, 
2010b; Sran, 2010).  These organizations and strategies offered Milin important components for 
building a global organization that worked for towers of any height when choosing from two 
colors. Further, it eliminated the need of checking for duplicate towers.  The progression to the 
family solution was an iterative process in which Milin revisited earlier strategies and built on 
and extended them.   

The activity of problem solving with peers and the opportunity to share progress with 
researchers provided Milin with the time and resources that were needed to build his inductive 
argument and share it with classmates. The problem-solving investigations were integrated into 
regular classroom work. This suggests that there is a potential to engage students in thoughtful 
problem solving at an early age, providing an opportunity to build and share proof-like 
arguments.  
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Research in the field of mathematics indicates that many students struggle with justification and 
proof.  However, in non-mathematical contexts, students are relatively strong at inferential 
reasoning.  Our research presents two parallel lines of investigation—one focused on 
mathematical domains, the other focused on non-mathematical domains—in order to examine 
and compare the ways in which students reason in each.  We report on three interrelated 
studies:(i) a small-scale interview study in which students were asked to sort numbers, shapes, 
and birds according to their characteristics;(ii) a small-scale interview study in which students 
were asked to determine whether various properties were true or false; and (iii) a large-scale 
survey to further elaborate the results from the first studies.  

Justification and proof serve important roles in the field of mathematics, and consequently, 
there is increasing concern among mathematics educators regarding the difficulties students 
demonstrate in learning to reason mathematically (Healy & Hoyles, 2000; Kloosterman & 
Lester, 2004; Knuth et al., 2002).  In non-mathematical domains (e.g., biology), however, the 
research is strikingly different:  cognitive science research highlights considerable strength in 
students' causal reasoning (e.g., Gelman & Kalish, 2006; Gopnik et al., 2004).  These seemingly 
conflicting findings serve as the driving force behind our research: why is it that students 
struggle to reason mathematically and yet are simultaneously skilled at reasoning outside of 
mathematics?  In order to begin answering that question, we adopted a methodology often used 
in cognitive science (e.g. Kalish & Lawson, 2007) to examine students’ reasoning in the 
mathematical domains of number and geometry. The main objective was to examine different 
types of inductive strategies students use in mathematical domains.  Outside the mathematics 
classroom, children typically develop facts and ideas via empirical generalizations and causal 
theories (Chater & Oaksford, 2008), and students may therefore rely on and make connections to 
their non-mathematical ways of reasoning as they encounter ideas and problems in mathematics.  
This paper reports the results of the first phase of a multi-year study designed to explore the 
connections between students' reasoning in mathematical and non-mathematical domains. 
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Leveraging Inductive Reasoning 
Researchers in mathematics education acknowledge the difficulties students have with formal 

proof (Dreyfus, 1999; Healy & Hoyles, 2000; Knuth, Choppin, & Bieda, 2009), and generally 
consider the inductive reasoning skills that students typically employ to interfere with their 
development of deductive means of reasoning and justifying.  Researchers in cognitive science 
have found that students have difficulties in general with formal inference and deductive 
arguments, but they—unlike many mathematics educators—have continued to pursue a deeper 
examination of inductive inference.  We agree with the latter that inductive reasoning is a 
powerful and useful tool, and are consequently beginning to extend cognitive science research on 
strategies of inductive inference to the mathematical content domains of number and geometry. 

Cognitive science researchers have examined the inductive judgments people make and 
found that peoples' beliefs are frequently based upon category membership status, similarity, and 
typicality (see Feeney & Heit, 2007).  For example, after being told a novel property that a robin 
possesses, people are more likely to extend that property to other robins than to all other birds in 
general.  People are also more likely to extend that novel property to a blue jay than to a mouse, 
based upon perceptions of greater similarity between robins and blue jays than between robins 
and mice.  In addition, people believe a robin to be a more typical bird than a penguin, and are 
consequently more likely to generalize from robins to all birds than from penguins to all birds 
(Osherson et al., 1990).  In mathematics we lack a similar knowledge of students’ understanding 
of the categories, levels of similarity between objects, and typicality of objects that may inform 
students’ inferential reasoning. Therefore, the purpose of this course of study is to understand 
and map students' similarity and typicality judgments in the mathematical content domains of 
number and geometry.   

This paper follows a three-part study design in which the results of each study were used to 
design and implement the following study, chaining together in such a way that the third study 
relied upon as well as further elaborated the results of both the first and second studies.  Given 
this dependent relationship, as well as the quite distinct differences in methodologies and 
consequent analyses for each study, we outline each study and attendant results individually, 
focusing particularly on the ways that the studies build upon each other.  

Study 1 
In order to design a study that would elicit the typicality ratings and similarity relations for 

numbers and shapes (triangles and parallelograms), we needed to identify what features of each 
domain were considered relevant.  When looking at triangles, for example, what do middle 
school students, undergraduates, and mathematics and engineering (hereafter STEM) graduate 
students see as important characteristics?  Consequently, we designed a structured but open-
ended methodology that prompted interviewees to utilize and share their own feature 
classifications. 
Methods 

We adopted the sort-re-sort procedure used by Medin et al. (1997).  In one-on-one 
interviews, participants were presented with a set of cards that contained numbers or geometric 
shapes, the selections of which were based upon the varying of dimensions identified by 
previous research (Feldman, 2000; Miller & Gelman, 1983; see Figure 1).   
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Participants were asked to form groups with the cards, and then encouraged to further 
separate cards within those groups.  Once sorting appeared to be complete, the cards were 
reshuffled and the participants were asked to form different groups.  The sorting-re-sorting was 
continued until the participants had exhausted their different ways of grouping.  The participants 
included 14 middle-school students, 14 undergraduate students (from a wide variety of majors 
with calculus the highest level of college mathematics completed), and 14 STEM graduate 
students).  
Results 

The results were striking because the different populations (middle-school students, 
undergraduates, and STEM graduate students) were not particularly different in their sorting and 
their sorting rationale. The following tables (see Tables 1 and 2) contain a list of several features 
used in the sorting task, along with the percentage of use by each population. In presenting the 
results, only those features noticed by at least 50% or more of the middle school students are 
included as that population is the primary focus of our research. 

Table 4:  Number Features. 

Features Middle Schoolers Undergraduates STEM Grads 

Multiples 86% 93%  93%  

Parity 79%  93%  87%  

Prime 50%  71%  80%  

Value of Digit 50%  29%  47%  
In the domain of number, participants in all three groups were likely to remark upon features 

such as number parity, whether or not a number was prime, and the multiples of numbers.  
Comparing across populations (and not included in the table), the STEM graduate students were 
most likely to notice square numbers (53%), undergraduate students were most likely to remark 
upon shared digits between numbers (43%), and middle school students were most likely to 
mention factors of numbers (21%).  Interestingly, in general undergraduate students did not 
appear, as might be expected, to be very different in their sorting than the middle school 

Figure 11:  Number and shape cards. 
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students—perhaps an indication that the salience of particular features seems to have a complex 
relationship with mathematics expertise.    

The same trend appeared in the domain of geometry, such that there was not a clearly defined 
trajectory from middle school novices to STEM experts.  Table 2 contains a list of the geometric 
features used to sort by at least 50% of the middle-schoolers, along with what percentage of each 
population sorted by that feature. 

Table 5:  Shape Features.  

Features Middle Schoolers  Undergraduates STEM Grads 

# of Sides 100%  100%  100%  

Size 78%  85%  100%  

Shape  64%  78%  93%  

Angles 64% 85% 80% 

Similar 50% 43% 40% 
Once again, there were some particularly interesting similarities between the three groups, 

particularly that all of the participants remarked upon the number of sides. Middle school 
students, undergraduates, and STEM graduate students were all relatively likely to remark upon 
the size or shape of a geometric object.  In addition, these two features are the only two that 
showed a progression from middle school students to undergraduates to STEM graduates. Other 
features was more erratically patterned.  For example, 20% of the middle school students and 
about 50% of the STEM graduate students remarked upon the regularity of shapes, but none of 
the undergraduates sorted by regularity. In contrast, the similarity of shapes (i.e., the size and 
shape of geometric objects) was noted the more by middle school students than either 
undergraduates or STEM graduates, with the latter being least likely to use the feature to sort. 
(For more detail on Study 1, see Knuth et al., In press.) 

Study 2 
The results from Study 1 provided insight into the features of mathematical objects that are 

salient to middle school students, undergraduates, and STEM graduate students.  Study 1 reveals 
something of the structure of students’ representations of the domains of number and shape. 
Study 2 went on to explore whether this structure influences reasoning and proof strategies.  
Methods 

We designed a two-part semi-structured interview protocol in which we presented 
participants with both specific and general propositions and then asked them to determine 
whether the propositions were always true (see Figure 2).  

Figure 12:  Specific propositions. 
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If students used examples in attempting to determine the truth of a proposition, they were asked 
about their example choices, including their judgment of the similarity and typicality of each 
example. For the number proposition above, for example, one participant used the numbers 4, 6, 
8, and 5 to check the proposition’s validity.  When the participant had determined to her 
satisfaction that the proposition was true, she was then asked whether any of the numbers were 
unusual or typical.  The final series of questions for each proposition asked the participant to 
share their beliefs about the similarity of the numbers and shapes they tested: 

Interviewer:  “So are all these numbers similar to each other or different than each 
other?” 
Participant:  “Well, I guess I think of 4, 6, and 8 as similar.  Because they're all even.  
And I think of 5 as different because it's an odd number.” 

Next, the participants were presented with general propositions (see Figure 3, as an example) and 
asked to supply examples that varied in typicality and similarity.  In particular, participants were 

asked to generate three different examples to test:  a typical example, an example similar to that 
typical example, and an example different from that typical example. 
     The participants included 14 undergraduate students (not discussed in this paper) and 20 
middle-school students.  Further details about the methodology and results from the middle 
school students’ responses to specific propositions are presented in Cooper et al. (2011).  
Results and Discussion 

Results from Part 2 suggest that the vast majority of middle-school students can use example-
based reasoning as a method of proof, that more examples tended to be more convincing than 
few examples, and that the greater the variety of examples, the more convincing.  Variety, here, 
seems to validate the numbers and shapes we used in Study 1, as students talked about varying 
numbers and shapes along the very dimensions we tried to systematically represent in the sorting 
task.  Particularly, students frequently reported using typicality and similarity judgments to 
inform their selection of items as they tested examples.  Importantly, students who discovered 
deductive proofs were less likely to vary examples overall, but on the problems where they did 
vary examples, they reported using variations in typicality and similarity in an intentional 
manner.  While students who did not discover deductive proofs tested the greatest variety of 
examples, their variation was not intentional.      

Students frequently referenced their everyday experiences—both inside and outside the 
mathematics classroom—during the interviews.  For example, a respondent who talks about 

Figure 13:  General proposition. 
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squares being typical because all the corners have 90 degree angles is quite different from the 
respondent who declared a tall rectangle to be typical because it was a common skyscraper 
shape.  This result prompted us to reconsider the idea that typicality is a singular construct, and 
instead reframe typicality as context-relevant.  In addition, as was also found in Study 1 with the 
non-linear trajectories of participants attending to particular mathematical features, in Study 2 
middle school students’ typicality judgments for number and geometry categories did not always 
correspond to expert-based dimensions.  In particular, we became interested in how the student-
based notions of typicality contrast with expert-based knowledge relating to special 
mathematical properties. 

 For instance, in a mathematical contexts, for the purposes of justification, experts may 
consider mathematically-special numbers like 0 and 1 to be highly unusual or atypical – 
mathematical properties that hold for these numbers may not be generalizable, and these 
numbers may be useful to employ in the search for counterexamples. However, in terms of 
numbers seen in everyday life, these numbers are very typical or common.   The analysis of 
examples given by students and their associated typicality comments led us to tentatively map 
numbers and shapes by their everyday usual-ness (student typicality) and by their mathematical 

generic-ness (mathematical typicality, where non-generic indicates a high presence of 
mathematical properties, such as prime-ness in numbers or congruence in shapes).  Figure 4 
illustrates our placement of numbers according to these two dimensions.  

Study 3 
Given the intriguing results from Studies 1 and 2, our next step was to administer a survey to 

a large enough number of middle school students to validate our results.  Given the need to 
consider the importance of context, we determined that cuing the students to the context of “math 
class” versus “everyday life” was a necessary nuance.  That is, we wanted to find out if students 
consider the expert-based generic-ness dimension of number and shape typicality if sufficiently 
prompted to consider these objects in a mathematical context. 
Methods 

We designed a 7-point Likert-scale survey where students rated the typicality of items in 
three different mathematical domains (numbers, triangles, parallelograms) and three different 
contextual cues (neutral, mathematical, everyday) (see Table 3).  Through careful variance of 
features, items covered a wide gamut of types—in triangle, for example, we included isosceles, 
equilateral, and scalene, and varied both the size and the orientation of the shape (some shapes 

Usual 

Generic Non-
Generic 

Unusual 

102 

13 

0 

1 

100 

10 

101 

8 

12 

25 

2 

10000 

6 

14 

15 
21 

900 

26 

85 
38 

57 

84 

83 

39 

18 

11 

9 

Figure 14:  Everyday versus generic number placement. 
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had a side parallel to the bottom of the survey page, while others did not).  Additionally, we 
always placed the neutral cues first, but otherwise varied the order of the cues and domains. 
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Table 3: Stimuli prompts in the number domain. 

 Neutral Context Mathematical Context Everyday Context 
Section Prompt Now we want you to 

think about how typical 
different numbers are. 

Now we want you to think 
about mathematical 
properties – that is, the 
kinds of things you learn 
about in math class. 

Now we want you to 
think about numbers you 
see in everyday life 
outside of school, for 
example, around your 
house, in stores, or 
outside. 

Individual Item 
Wording 

Think of numbers.  How 
typical is this number? 
[item displayed] 

Imagine that we learned a 
new mathematical property 
that was true of this 
number.  How likely is it 
that the property will be 
true of most other 
numbers? [item displayed] 

How typical is this 
number of those you see 
in your everyday life? 
[item displayed] 

A total of 474 middle school students, drawn from a suburban middle school in a Midwestern 
state, completed the survey.  Students were distributed across grades 6 (144 students), 7 (160 
students), and 8 (163 students), and mathematics classes used reform texts. 
Results 

Using the findings of Study 1 and Study 2, we identified a number of mathematical and non-
mathematical properties that we hypothesized students may attend to in their typicality rankings 
(see Figure 5). We computed the mean typicality rating for items falling into each of these 
categories, depending on whether the item was presented in a mathematical or everyday context.  
The results suggest that while both mathematical (generic-ness) and non-mathematical 
(common-ness) properties can influence typicality ratings, the everyday notion of typicality is 
most salient to middle school students. The results also indicate that contextual cues do not 
significantly influence students’ typicality judgments, and that even cueing the context 
“mathematics classroom” did not increase the likelihood that students would attend to particular 
mathematical properties.   
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Figure 15:  Mean typicality ratings for number and shape items. 

Conclusion 
Study 1 resulted in an identification of various sorting features of mathematical objects 

noticed by middle school students, undergraduates, and STEM graduate students, and 
furthermore, suggested that patterns across the three participant groups are not simple.  In the 
domains of both number and geometry, an increase of mathematical expertise does not 
necessarily manifest itself in a higher likelihood of noticing particular features, and the three 
groups varied in the features to which they attended.  The results of Study 2 suggest that 
typicality and similarity judgments may play a role in inductive and deductive reasoning, and 
that participants believed that varying the typicality and similarity of examples is a good strategy 
for testing propositions in both number and shape.  In Study 3, the survey validated our initial 
smaller-scale interview studies, providing more confidence in our student typicality (usual-ness) 
identification of specific numbers and shapes.  In the next phase of our work, we are further 
investigating the relationship between similarity/typicality and the nature of the empirical 
arguments student generate.  

We believe that inferential reasoning can be leveraged to support the development of 
deductive reasoning, as it seems that applying strategies frequently used for the domain of living 
things—that is, thinking of examples, typicality, and similarity—can support the development of 
more sophisticated ways of reasoning in mathematics.  Our research highlights the need to more 
closely and systematically examine inferential reasoning in mathematics, and instead of viewing 
students’ use of examples as inappropriate or limiting, we view such use as a potential means of 
improving students’ abilities to reason deductively.  The importance of proof in mathematics, 
and the struggle of most students to justify and reason deductively, suggests that this 
examination is of paramount importance, and our research opens a new—and hopeful—line of 
study.    
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We present a new digital observation protocol that captures the moment-by-moment emphasis of 
a lesson along a set of customizable dimensions. The result is a time-series graph showing the 
lesson progression, including the total amount of time allocated to each dimension during 
instruction. We present the results of a small scale study to illustrate how the tool may be used to 
characterize instruction along dimensions relevant to the newly released Common Core State 
Standards for Mathematics. We conclude by outlining our plans for using this tool to study the 
relationship between procedural understanding instruction and student achievement levels.  

The call for mathematical understanding has been voiced by several prominent groups in the 
past 10 years (e.g., The National Council of Teachers of Mathematics, 2000; the National 
Mathematics Advisory Panel, 2008; and the National Research Council, 2001). More recently, 
the introduction of the Common Core State Standards (CCSS) for Mathematics makes the case 
for understanding succinctly while simultaneously raising important questions about 
implementation: 

These Standards define what students should understand and be able to do in their study of 
mathematics. Asking a student to understand something means asking a teacher to assess 
whether the student has understood it. But what does mathematical understanding look like? 
One hallmark of mathematical understanding is the ability to justify, in a way appropriate to 
the student’s mathematical maturity, why a particular mathematical statement is true or where 
a mathematical rule comes from. There is a world of difference between a student who can 
summon a mnemonic device to expand a product such as (a + b)(x + y) and a student who 
can explain where the mnemonic comes from. The student who can explain the rule 
understands the mathematics, and may have a better chance to succeed at a less familiar task 
such as expanding (a + b + c)(x + y). Mathematical understanding and procedural skill are 
equally important, and both are assessable using mathematical tasks of sufficient richness 
(CCSS, 2010, p. 4; emphasis added). 

 
Our work emerges from the belief that while the CCSS and other documents advocate an 

instructional focus on understanding, the construct of “teaching for understanding” is rarely 
defined in a concrete and useful way. What constitutes teaching for understanding, and how are 
teachers to achieve this goal in the classroom?  The research described in this paper is part of an 
ongoing effort to operationalize the process of teaching for understanding and assess its 
utilization in the classroom.  To address the latter objective, we have developed a time-sensitive 
digital observation tool, which we describe in detail in this paper.  We conclude with a brief 
review of the results obtained thus far and future efforts to confirm (or refute) the educational 
benefits of teaching for understanding.   
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Operationalizing Understanding  
Resources for refocusing instruction on teaching for understanding (e.g., Blythe, 1998; 

Wiggins & McTighe, 2001) provide general strategies for teachers but often lack the content 
specificity needed to significantly reform high school mathematics instruction. Reflecting on this 
need and on the qualitative differences between “A-students” and “C-students,” Burke (2001) 
developed a framework of mathematical “literacies” that characterize expert performance in 
algebra. This framework was eventually incorporated into NCTM’s Navigating through Algebra 
in 9-12 (Burke, Erickson, Lott, & Obert, 2001) and serves as the theoretical basis of our work. 
As Table 1 illustrates, Burke’s original framework was stated in terms of student competencies, 
which we have translated into student-centered (and teacher-centered) questions.  

 
Burke’s Procedural Literacies Student-Centered Framework Questions 

The student understands the overall goal of 
the procedure and knows how to predict or 
estimate the outcome. 

1a. What is the goal of the procedure? 
1b. What sort of answer should I expect? 

The student understands how to carry out the 
procedure and knows alternative methods and 
representations of the procedure. 

2a. How do I execute the procedure? 
2b. What are some other procedures I could use 
instead? 

The student understands and can 
communicate to others why the procedure is 
effective and leads to valid results. 

3.   Why is the procedure effective and valid? 

The student understands how to evaluate the 
results of the procedure by invoking 
connections with a context, alternative 
procedures, or other mathematical ideas. 

4.   What connections or contextual features 
could I use to verify my answer? 

The student understands and uses 
mathematical reasoning to assess the relative 
efficiency and accuracy of the procedure 
compared with alternative methods that might 
have been used. 

5.   What do I look for to decide if this the best 
procedure to use? 

The student understands why the procedure 
empowers her or him as a mathematical 
problem solver. 

6.   What can I use this procedure to do? 

Table 1. Burke’s Literacies and the FPU Questions 
 
These student-centered questions (heretofore, the Framework for Procedural Understanding 

or FPU) are based upon the premise that the dichotomy between procedural skill and conceptual 
understanding is a false one (Star, 2005; Wu, 1999). Indeed, recent models of mathematical 
knowledge have challenged the assertion that conceptual knowledge is deep, meaningful, and 
connected, whereas procedural knowledge is shallow and rote (Baroody, Feil, & Johnson, 2007; 
Star, 2007, 2005). According to these models, mathematical procedures and mathematical 
concepts can each be known in either a shallow or deep way; it is the number of connections that 
defines how deeply one knows, and hence how well one understands, a given procedure or 
concept (Star, 2005; Hiebert & Handa, 2004; Skemp, 1978). Figure 1 illustrates this 
conceptualization, depicting two independent dimensions of growth that are applicable to the 
learning process – depth and practice (Hasenbank, 2006). The illustration is meant to apply 
equally well for procedural and conceptual knowledge. 
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Figure 1. Levels of Conceptual and Procedural Knowledge 

 
The FPU provides a working definition for what the CCSS has termed “mathematical 

proficiency.” Collectively, the questions that constitute the FPU are meant to focus instruction, 
assessment, and reflective practice on important habits of mind (Driscoll, 1999) that lead to more 
robust mathematical understanding. In our prior work, we have often illustrated the alignment of 
the FPU with the recommendations of the “Adding It Up” report (National Research Council, 
2001), the Principles and Standards for School Mathematics (NCTM, 2000), and the National 
Mathematics Advisory Panel report (2008).  Given that the CCSS (2010) build upon and in many 
ways subsume the aforementioned documents, it is not surprising that FPU is also well-aligned 
with the CCSS. The CCSS Standards for Mathematical Practice, for instance, emphasize that 
students are to make sense of problems and persevere in solving them: 

Mathematically proficient students start by explaining to themselves the meaning of a 
problem and looking for entry points to its solution. They analyze givens, constraints, 
relationships, and goals. They make conjectures about the form and meaning of the solution 
and plan a solution pathway rather than simply jumping into a solution attempt. ... 
Mathematically proficient students check their answers to problems using a different method, 
and they continually ask themselves, “Does this make sense?” They can understand the 
approaches of others to solving complex problems and identify correspondences between 
different approaches. (CCSS, 2010; from the Introduction, emphasis added) 

 
Likewise, instruction that employs the FPU encourages students to identify the goal of the 

algebraic procedure (question 1a), identify or estimate the expected answer (question 1b), seek 
and compare the relative efficiency of alternative procedures or strategies to complete each task 
(questions 2b and 5), and verify one’s solution (question 4).  Given national efforts to implement 
the recommendations of the CCSS, therefore, a focus on FPU (or any effort to establish the 
impact of CCSS-recommended practices) is particularly timely.   

 Characterizing Instruction 
In a series of studies, we have trained teachers to utilize questioning techniques, classroom 

activities, and a wide range of assessments that incorporate the FPU, and we have evaluated its 
impact on student learning. In these studies, we observed statistically significant gains favoring 
students in the “treatment” condition. Here, we will provide just a brief overview of the results 
and refer the interested reader to the cited papers if more details are required. In our first study, 
we found that college algebra students scored significantly higher on a test of procedural 
understanding versus a matched comparison group (Hasenbank, 2006; Hasenbank and Hodgson, 
2007). In a second study, we focused on high school algebra classrooms in southwestern 
Wisconsin and observed significantly greater gains in procedural skill versus a matched 
comparison group over a one year period (Hasenbank & Kosiak, 2008; 2010).   
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One outgrowth of these efforts to assess the impact of FPU-related practices is the need to 
establish fidelity of implementation.  In our second research study, for instance, we observed that 
teachers implemented the FPU in different ways and to differing degrees. To quantify these 
differences, we employed a digital classroom observation tool (described in greater detail below) 
which provided concrete evidence of the variability we observed in teacher practice. The graphs 
in Figure 2, for instance, illustrate the contrast between two algebra lessons presented by two 
different teachers. The vertical scale records a timestamp, while the horizontal categories 
represent the instructional focus at that moment in time. The eight categories represent the eight 
dimensions of the Framework (note that the labels {1a, 1b, 2a, 2c, 3, 4, 5, 6} have been mapped 
to {1, 2, 3, ... 8}).  
 

     
Figure 2. Lesson Progression for Two Different Classroom Episodes 

 
It is clear that both teachers placed a significant emphasis (85% and 61% of class time, 

respectively) on category 3 (performing the procedure), but the teacher on the right also 
integrated other aspects of the FPU into the lesson. For instance, she spent nearly 6 minutes, or 
about 12% of the lesson, on discussions categorized as ‘category 5 - why the procedure works.’ 
We also categorized another 9% of her lesson on other FPU categories, with discussing the 
merits of various procedures and questioning the reasonableness of the results making up the 
next two largest components (4% and 3% of the lesson, respectively).  This variability in 
classroom practice among teachers who were explicitly trained to implement FPU-oriented 
instruction leads naturally to the questions driving our on-going research agenda.  Specifically, 
“To what extent do algebra teachers already focus on FPU-oriented principles in their daily 
lessons?” and “Is there a relationship between the instructional focus within an algebra 
classroom and student performance/achievement?”  

Digital Classroom Observation Protocol 
While there were a number of written observation protocols in existence that captured 

information similar to the digital tool we set out to create, none captured and summarized the 
moment-by-moment focus of instruction on understanding in real time in a format that permitted 
direct comparisons between observations. Many existing observation protocols (e.g., the Praxis 
III: Classroom Performance Assessments, ETS, 1993; the Reformed Teaching Observation 
Protocol, Arizona State University, 2000; or the Inside the Classroom Observation and Analytic 
Protocol, Horizon Research, 2000) take the form of a written observation protocol that provides 
space for noting the time, recording comments, and selecting a category or rating that reflects the 
nature of the entire classroom episode.  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1193



Our digital observation instrument improves on those protocols by recording a timestamp 
whenever the observer selects a different primary or secondary code or records a typed comment. 
For the purposes of our research, we use the eight dimensions of the FPU (plus “conceptual” and 
“other”) as our primary codes (see Figure 3). During an observation, the observer switches 
between the appropriate code categories and enters qualitative descriptions where desired. By 
recording a timestamp whenever a change is made, the instrument captures the researchers’ 
perception of the lesson progression over time. 
 

 
Figure 3. User Interface for the Digital Classroom Observation Form 

 
The observation instrument also generates two visual displays of the lesson progression (see 

Figure 4). On the left, we see a graph of the chronological progression of the lesson showing 
how the categories (horizontal axis) shift over time (vertical axis). On the right is a simple bar 
graph showing the relative frequency distribution for the primary categories. This digital 
observational protocol allows researchers to characterize the extent to which instruction focuses 
on procedural understanding and each component of the FPU.  
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Figure 4. Visual Displays of Lesson Progression 

Inter-rater Reliability 
Two independent observations may be merged to allow for both visual and numerical 

assessment of inter-rater reliability. The software discretizes the data by sampling at fixed time 
intervals (e.g., one sample every five seconds) and generates a table reflecting the pair-wise 
associations of the primary codes assigned by the two observers (Figure 5). If the observers were 
in agreement at each discretized moment, all entries would appear on the main diagonal of the 
table. Summing the entries along the main diagonal gives the percentage of discretized intervals 
on which the researchers’ codes agreed (72% in the example shown). Examining the off-diagonal 
elements allows us to identify the most common areas of disagreement (e.g., code 5 with code 3 
occurred 7% of the time in our example), which can be cross-referenced with the chronological 
progression plot and the observers’ comments for clarification. The code-pairs are used to 
compute Cohen’s kappa, which provides a statistical representation of the extent of the 
observers’ agreement beyond that expected by chance alone (Agresti, 1990).  
 

 
Figure 5. Code-Pairs 

Results on the Nature of Algebra Instruction  
Our observations of the teachers participating in our professional development program can 

be viewed as a snapshot into the nature of algebra instruction in Wisconsin. These teachers were 
trained to cultivate classroom norms that promote understanding using the FPU as a guide. In 
that study, five algebra teacher participants from rural and suburban Wisconsin were observed a 
total of 21 times using the digital observation instrument. The combined results are displayed in 
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table 2 below. We note teachers devoted an average of nearly 37 minutes per hour of instruction-
time on procedural skill (item 2a of the FPU), with a range from as little as 32 minutes up to 
about 48 minutes per hour of instructional time. By comparison, these same teachers spent an 
average of only 12 minutes on the non-routine aspects of the FPU, with times ranging from 6 to 
20 minutes per hour of instruction-time.  

We believe these results demonstrate the utility of our observation protocol; we are able to 
quantify the focus of instruction in a manner that allows for rigorous statistical analysis. It also 
affords us with a critical tool for answering the question: how much FPU-oriented focus is 
enough?  
 

  
Category Mean (Median) in 

Minutes Per Hour 
S.D. (Range) Min & Max 

Procedural Skill 36.9 (34.8) 6.28 (16.0) 31.8 to 47.8  
Procedural 

Understanding 
12.4 (13.1) 5.13 (13.5) 6.3 to 19.8 

Non-Framework 
categories 

10.7 (11.6) 4.78 (10.5) 5.7 to 16.1 

Table 2. Distribution of Time across FPU Categories 

Discussion and Future Directions 
In summary, our digital observation tool allows researchers to characterize the nature of 

instruction with a degree of precision not previously available. It should be noted that the 
categories used for observation are easily customized, so the tool is easily adapted to a wide 
variety of research areas where a predefined set of observable categories of behavior are 
available. Our own future plans include observational studies with high school, middle grades, 
and college algebra sites, through which we will attempt to correlate individual teachers’ 
emphasis on FPU with student achievement. With the introduction and widespread adoption of 
the CCSS, the importance of understanding the variables associated with procedural 
understanding has never been higher. If indeed malleable factors such as teachers’ emphasis on 
procedural understanding tasks are confirmed to be significant predictors of student achievement, 
we will have identified key focal points for professional development of teachers. We are 
hopeful that the data we gather will afford us a better understanding of how—and to what 
extent—teachers institute the mathematical practices outlined in the CCSS and as 
operationalized by our Framework for Procedural Understanding. 
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A research is reported in which we carry out an analysis of the students cognitive process, whom 
are asked to solve a contextualized event on systems of linear algebraic equations in the context 
of matter balance in situations of chemical mixtures. The cognitive analysis is founded on the 
theories of Conceptual Fields and Mathematics in the Sciences Context. The analysis is focused 
on the representations carried out by students regarding the invariants in the schemes that they 
build. During the students acting process emerge different types of representation which are 
appropriate to the context in which the research develops.  
 

Introduction 
The need for a comprehensive training on the student, has led the Red Internacional de Investigación 

en Matemática en el Contexto de las Ciencias (MaCoCiencias) to perform  research of cognitive type that 
revolves, among others, around the analysis of the cognitive processes of students for the 
knowledge construction of various sciences who are linked. Addressing science events such as a 
chemical or physical system or a natural phenomena, where mathematics should be applied for 
their solution, is a complex task; because it is necessary to integrate the knowledge and carrying 
out activities of analysis for knowledge which is  both explicit and implicit in the event to be 
addressed (Camarena, 2000: 27-32), playing an important role in the  representations which can 
be formulated about the events to be dealt with, in  order  to promote the construction of 
knowledge. Moreira (2002, p. 37) assumes that we do not apprehend the world directly, but we 
do it from the representations of the world that we build in our minds. 

Learning mathematics, among others, implies that the learner is able to use them to solve 
specific events in his area of professional and labor job (Camarena, 2000: p. 46) Thus in the 
knowledge construction of various related sciences, it is important to know from the cognitive 
point of view what happens to students when they work with contextualized mathematics.  

 
Research Problem 

There are many actions that favor the knowledge construction on students, among them 
stands the learning and teaching activities with contextualized mathematics. The research that is 
carried out regarding the cognitive process of students provides a guideline for the design and 
redesign of these didactic activities in students at university and technical programs. The 
research reported makes use of the conceptual fields by Vergnaud for the cognitive analysis.  

Thus, the research problem deals with the issues of how the cognitive processes of students is 
carry out when they are faced with contextualized events of Mathematics in Context, from the 
perspective conceptual fields by Vergnaud. The research objective seeks to analyze the cognitive 
process of a students group by means of analyzing the representations they make about the 
invariants in the schemes they build when they address the learning activities associated with 
contextualized events where systems of algebraic equations are linked to balance of matter; that 
is to say the events being addressed deal with mixing chemical solutions. 

 
 

Theoretical Frameworks 
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Mathematics in the Sciences Context 
The theory of Mathematics in the Sciences Context   (Camarena, 2009: 14-25, 2000: 1-70) 

has been developed since 1982 through the research at Instituto Politécnico Nacional of Mexico. 
The theory of Mathematics in the Sciences Context reflects upon the relationship that should 
exist between mathematics and the sciences that require it, between mathematics and everyday 
life situations as well as its relationship to future professional and labor activities. 

The educational philosophic assumption of this theory is that the student is trained to transfer 
mathematics knowledge to the areas which require it, so that they develop competences for their 
working and professional life, because it aims at contributing to the comprehensive training of 
the student and to build mathematics for life (Camarena, 2009: 14-25, 2000: 1-70). 

The theory of Mathematics in the Sciences Context deals with the problem of learning and 
teaching of mathematics at university level programs where mathematics is not a goal in itself 
but a tool to support sciences and a subject that develops the students thinking skills. To this end, 
the theory conceives the process of learning and teaching as a system with five phases: 
curricular, cognitive, didactic, epistemological and teachers training, moreover, social, 
economical, political and human relations aspects are included in the learning environment 
(Camarena, 2000: p. 12). All the phases are necessary to ensure the completion of the 
philosophical assumption posed, moreover, all stages are interrelated among them, and none of 
them is unrelated to the others. As a theory, in each of the phases a theoretical methodology is 
included, in accordance with the paradigms upon which it is based, which serve as a guide for 
the steps of curricular design, the didactics to be followed is described, the cognitive functioning 
of students is explained and epistemological elements are provided on mathematical knowledge 
relating to the activities of professionals, among others. 

The cognitive analysis addressed in this research directly affects the cognitive phase of the 
theory, where a contextualized mathematical concept acquires sense by means of the activities of 
the context itself, because the concepts are not isolated,  they are constituted as a network and 
they bear a relationships among them (Camarena, 2000: p. 54). Therefore, for the cognitive 
analysis it is important to set the contextualized events and define from them the learning 
activities that lead to the knowledge construction, both of the concepts of each science involved 
in the event and the linkages between them, stages 4 and 9 of the didactic strategy of 
Mathematics in Context, shown in the following paragraph, a situation that is consistent with the 
theory of Conceptual Fields by Vergnaud. Thus, the didactic phase is the means by which 
cognitive processes are achieved; the didactic phase possesses a teaching strategy that supports 
the development of competencies in students within the learning environment, which is called 
Mathematics in Context (Camarena, 2000: 1-70). 

With Mathematics in Context the student works with contextualized mathematics in the areas 
of knowledge of his future professional subject matter, with daily life activities and with labor 
and professional activities, all that through contextualized events, which can be problems or 
projects. In general speaking of Mathematics in Context is to develop the mathematical theory to 
the needs and rhythms that dictate the courses of engineering. Mathematics in Context includes 9 
stages, which are developed in the learning environment in teams of three students: academic 
leaders, emotional leader, work leader. 

Stages of Mathematics in Context: 1.- Identify contextualized events to develop the 
competencies being questioned. 2. Establish the event of the context. 3. Identify the variables and 
constants of the event. 4. Include the mathematical topics and concepts necessary for 
development of the mathematical model and its solution. 5. Determine the mathematical model. 
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6. Give the mathematical solution of the event. 7. Determine the solution required by the event in 
the context disciplines. 8. Interpret the solution in the event terms and the context disciplines. 9. 
Present the descontextualized mathematics in the classroom. 

Mathematics in Context acts as didactic strategy and allow following a methodical process to 
contextualize mathematics through stages 2, 3, 5, 6, 7 and 8, thereby linking mathematics with 
other sciences of professional majors and technical programs being treated. The type of 
contextualized event  to be chosen should have historical background, that is, it must have been 
previously worked upon by a teachers group in order to identify the type of components of the 
competencies  that come into play as well as the type-questions that the students made at the time 
to address the events, among others. The success of the contextualized event in order for it to 
develop skills in students has to do with the adequate selection and with the guidance of the 
teacher at the time the students are solving the event. 
 
Conceptual Field.  

The theory of conceptual Fields deals with the formation of mathematical concepts from a 
psychological and didactic approach, which leads us to consider the learning of a concept as the 
set of “problem situations”, which constitute the reference of their different properties and the set 
of schemes brought into action by the subjects involved in those problem situations (Vergnaud, 
1996: p.145). The sense of the mathematical concept is acquired through the schemes evocated 
by the individual subject to solve a problem situation. 

Vergnaud (1991: p.147) defines Conceptual Fields as “a set of problem situations, concepts, 
invariants, schemes and operations of thought that are related to each other for a specific area of 
knowledge”. The theory of Conceptual Fields allows the cognitive analysis in the problem 
situations proposed to the students through the analysis of the conceptual difficulties, the 
repertoire of available procedures and possible forms of representation.  

From the perspective of the theory of Conceptual Fields understanding of the student’s action 
relative to the concepts involved and the structure of systems of linear algebraic equations in the 
context of a phenomenon of balance of matter,  focuses on studying some aspects of the 
operations of thought which make the invariants in  the schemes constructed by students, which 
directly or indirectly impact on knowledge about this mathematical structure being immersed in 
a  problem situation  where the linking of two contexts take place: mathematics and chemistry. 

For representations which one of the thinking operations, Vergnaud mentions that the 
students transform an action on the mathematical object, establishing control by himself through 
the relationship and classifications in his reality, in such way that invariants arise in the 
knowledge development, in this way the representations for Vergnaud are tools, whichever 
notation or sign or set of symbols. 

To finish with this section it is important to mention that the “problem situations” referred to 
in the theoretical framework by Vergnaud correspond to the “contextualized events” and the 
“learning activities” proposed by the theory of Mathematics in the Sciences Context. 

 
Method 

The methodology to carry out the students cognitive process analysis form the conceptual 
content of systems of linear algebraic equations in the context of matter balance involves the 
following three blocks: Contextualization of systems of linear algebraic equations in the matter 
balance. Determination of the learning activities to be applied to the students group. Analysis of 
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the students cognitive process through the thinking operations they make upon the invariants in 
the schemes they construct. The last one is  the results and their discussion. 
The Sample 

Being a qualitative analysis, we worked with a group of two students in the first quarter of 
the Technician in Food Technology program, who are currently enrolled in a mathematics course 
that includes the topic of systems of linear algebraic equations as well as a chemistry course 
which addresses the topic of balance of matter by mixing chemical solutions, both courses are 
not related in a curricular way. The activities are carried out by students in the chemistry 
laboratory, in different sessions, covering twelve hours.   
Observation Instruments 
     The data collection from the cognitive process is made by obtaining written and film 
productions that help to refute or confirm the analysis conducted with the written information. 
The analysis is qualitative focusing on the thinking operations that they perform on the invariant 
patterns that build in their cognitive processes in the activities of contextualized event.   

 
Development of Research 

First block, contextualized event students are to face is contextualized, which is a 
phenomenon that recurrently appears in specific operations in the area of professional and labor 
training of the technician in food.  It says: We have 100 ml of sugar solution to 60% and 100 ml 
of sugar solution to 35%. From these solutions it is desired to obtain 100 ml of a sugar solution 
to 50%. 

The contextualization stages described in the theoretical framework, which are immersed in 
the didactic strategy of Mathematics in Context, is the methodological process that is used for the  
systems of linear algebraic equations contextualized in the matter balance, generally in 
contextualized events of mixing of solutions. 

In the didactic phase of Mathematics in the Sciences Context, contextualization is set by the 
teacher prior to implementing the didactic strategy of Mathematics in Context, because this 
contextualizing provides him with elements for the learning activities design for 4 and 9 strategy 
stages, similarly, to take time, see the necessities of the cognitive infrastructure and consider the 
possible paths of solution. Also, it allows determining the mathematical concepts and of the 
context (chemistry) that are present in the event, establishing the relationship between concepts 
that belong two different areas of knowledge and observing the close relationship between them. 
In terms of Vergnaud, the concepts and invariants to which the student must converge for the 
construction of knowledge are identified. In relation to mathematics: The concept is “systems of 
linear algebraic equations” and the invariants are mathematical concepts such as algebraic 
equation, linear algebraic equation, systems of equations and solution methods. In relation to the 
context: The concept is matter balance and the invariants are inherent concepts such as 
concentrations management, visualization of the phenomenon as a system with inputs and 
outputs, mixing substances to obtain a desired concentration and concentration measurements. 
The schemes and operations of the invariants mediate the action over reality, as well as the 
organization forms and structuring of the different concepts of interest and criteria for meanings 
acquisition. 

From the contextualization of the first methodological block derives the activities to be 
determined in the second block, which are shown in table 1.  

The learning activities objective is that the student analyzes the linear behavior by means of 
the obtaining of concentrations and volumes combinations, each one separately, to later on 
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confront him with the idea of managing the two variables simultaneously, and the pursuit of the 
mathematical model which represents the context event, see table 1.   
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CONTEXTUALIZED EVENT 

We have 100 ml of sugar solution to 60% and 100 ml of sugar solution to 35%. From these solutions it is 
desired to obtain 100 ml of a sugar solution to 50%. 

LEARNING ACTIVITIES PURPOSES 
Activity 1. To mix the two chemical solutions in order to obtain as a 
result 100 ml of solution, do not consider the concentration of the 
solution only the volume. 

To mix chemical solutions, 
from their volume. 

Activity 2. To mix the two chemical solutions in order to obtain as a 
result a solution with a sugar concentration to 50% (do not consider the 
volume of the solution only the concentration).  

To mix chemical solutions, 
from their concentration. 

Activity 3. With the given solutions, 100 ml to 35% and 100 ml to 60% 
carry out a mixture in order to obtain 100 ml of a new solution with a 
concentration to 50%.  

To mix solutions considering 
both volume and 
concentration. 

Table 1. Contextualized event and its learning activities 
 

As it has been mentioned, the conceptual field is constituted by problem situations 
(contextualized events and learning activities), concepts, invariants, schemes and thinking 
operations. Now it can be established conceptual field of systems of linear algebraic equations in 
the context of matter balance.   

 
Results and Discussion 

Third block, the behavior of students is analyzed through the operations of the invariants in 
the schemes they build. It must be pointed out that during activities from the contextualization of 
systems of linear algebraic equations with matter balance, it was detected in the students actions  
the recurrent use of different operations of thought, which were considered proper of the linking 
of two specific areas of knowledge, that is to say, they may or may not arise in other 
circumstances. These thought operations relate specifically to representations, for it was 
necessary to define a classification of the types of representations found, which is expressed 
below. 

Propositional type representation: it is considered as the description of the event the made by 
the student, in the first instance, in his own language (natural language), from the cognitive point 
of view it is of great use to the student to understand the activity to be performed. He can use 
some isolated concepts of mathematics, the chemical science or other sciences, without 
articulating them. The overall purpose is to communicate and try to understand the event to be 
solved. 

Non-operating figurative type representation: it is when the student perceives the information 
of the event but if asked to represent the situation in written form, he draws pictures, wanting to 
see the link between the two areas of knowledge; however, it does not allow him for a procedure 
of solution. When the students group understands the activities en their language they proceed to 
make some context area drawings (figures). However, do not shift from these figures to a written 
expression that enables the solution of the given event, that is to say, they still fail in linking the 
two areas of knowledge. 

Figurative operating type representation: the student continues to make drawings but he 
already takes into account the numerical information, the drawing can therefore, serve as a 
support for the solution of the event without algorithms. Again, the experiment presented in this 
document, the students recurrently makes schemes (figures) representing the matter balance of 
the proposed activities; which allow them on the one hand to understand the variables and 
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constants involved, and on the other hand they serve to give way to the symbolic representation 
that allows the event resolution. Then, at this point begins the comprehension of the link between 
the two knowledge areas. 

Analogous type representation: the student retains the relevant information to solve the event 
and simplifies the information by using symbols, points, crosses, use of images. He uses the 
experience of having solved previous events to solve the new one, at least partially, by a very 
primitive process and of very local scope, that is to say, the similar events processes are 
considered to verify if they are helpful in solving the new event. The analogous representation 
can be used after the propositional and even after the non-operating figurative one and it is when 
the student refers to processes that appear similar to the one he faces and that can be useful for 
event understanding and resolution. His search for similar events allows him to support the 
emerging understanding of the previous representation. 

Symbolic type representation: it has been considered that these representation constitutes a 
means to identify more clearly the mathematical objects for the conceptualization of them and 
the conceptualization of context. The student translates the sentence of an event to a 
mathematical representation, arithmetic, algebraic, analytic or graphic, this representation is 
considered as an expert and allows providing the required response. It is considered that 
knowledge is obtained that can be used in different contexts. The students group who have gone 
through the previous representation, makes use of a symbolic representation (it may be graphic, 
arithmetic or algebraic), it permits them to integrate both mathematical end context knowledge to 
provide an appropriate solution to the event posed. This representation, in the case of research, 
has been considered the one that allows the proficiency of the interest concepts. 

In general terms, it is observed that the representations different types of the invariants play 
an important role in the contextualized event resolution and the learning activities that have been 
posed to the students. The approach to learning activities was characterized by because they 
commuted by different types of representation to until reaching a symbolic representation and 
obtaining a satisfactory result. In the acting of the students it was detected that when the group 
addresses the learning activities and builds knowledge, the representation types, found during the 
research and considered as being proper to the linking of two sciences, are developed gradually 
at the same pace as the conceptualization of systems of linear algebraic equations in the context 
of mixing chemical substances. Additionally it enables the student to develop skills to solve new 
contextualized events that they may be posed. 

As it has been mentioned, the students group moves through the representations different 
types until reaching the symbolic one, which enables the students to construct their own 
knowledge about the study phenomenon that links mathematical concepts and sciences. That is 
why, the generation of symbolic representation was discussed in great depth, identifying three 
related processes, which other types of representation are present.  Interpretation and selection 
process, Structuring process and Operationalization process. 

 
 
 
 
 
 
 
 

Figurative operating representation (drawing).                                  Symbolic representation (arithmetic) 
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Figure 1.  Process of selection and interpretation. 
Interpretation and selection process, the context is considered as a fundamental part of the 

event, from the contextualized event the students group performs a selection of information that 
seems relevant, in it the available prior knowledge is considered and students translate the 
information into a representation type, such as algebraic (linear equations), arithmetic (simple 
rule of three), tabular (tables of data) or graphics, even in a figurative operating representation, 
see Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Structuring process. 
 
Structuring process, in this one intervene again the previous knowledge, we resort to 

analogies with events which have been previously solved and which appear to be similar to the 
pose done; it seems that the previously solved events are stored in the memory and constitute a 
part of the knowledge brought into play by the students group, similarly, the procedures and 
strategies which were followed undergo a restructuration and advance progressively as attempts 
to solve the event are made. See figure 2. 

Operationalization process, it takes place when representations are manipulated and the 
students group attains the solution of the posed contextualized event. It is identified that during 
this process the students group applies the operating knowledge that come from their experience 
and with that the group formulates procedures or strategies. In this process the previous 
knowledge of the students group plays an important role as they allow modeling the event and 
working with the mathematical model by symbolic modes of representation that are more 
operational than the propositional, see figure 3. 

 
 
 
 
 
 
 
 

 
Figure 3.  Operationalization process. 

 
Conclusions 
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It can be observed from the research that it has been sought to contribute to the understanding 
of the knowledge construction of the student in a conceptual content derived from the link 
between two different contexts, mathematics and technical area of the working field of a Senior 
Technical in Food Technology. The shown analysis has been addressed paying attention to the 
action of the student in the solution of contextualized events and teaching activities with systems 
of linear algebraic equations in the context of matter balance, which constitute a means of 
analysis upon which the knowledge construction is described. It is a cognitive type study which 
uses the Conceptual Fields by Vergnaud as a theoretical framework, initially developed to carry 
out research in elementary education and that has been retaken to explain a contextualized 
phenomenon at Senior Technical level.  

During the analysis of the activities by the students group it was necessary to define the types 
of representations of the invariants in the schemes, which emerged in a spontaneous way during 
the students performance. It is truth that the students, at the end of the sessions, have acquired 
appropriate schemes to face contextualized events that require systems of linear algebraic 
situations, but, it is necessary to further explore into it, above all in different contexts.  

Another important element to be mentioned is that if more diverse contexts are used and  
more contextualized events are addressed by the student, he could be constructing his knowledge 
in a more everlasting way and will be able to carry out the transference of mathematical 
knowledge to other sciences.  
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With a growing emphasis on task based learning, it is important to examine what constitutes 
worthwhile mathematics tasks. In this study we examined secondary mathematics teachers’ 
conceptions regarding what constitutes a worthwhile mathematics task. The 27 teachers in this 
study participated in both focus group and individual interviews. Teachers’ conceptions were 
compared and contrasted with conceptions about worthwhile tasks found in mathematics 
education literature. Many of the teachers’ conceptions aligned with definitions of tasks found in 
the literature, but we identified additional nuances and pragmatic conceptions. Teachers’ 
conceptions were analyzed and classified. These classifications characterize distinctions among 
the uses of mathematical tasks that may inform future research.   

In his 1994 essay titled What we Know About Mathematics Curricula, Schoenfeld explained 
the benefits of problem solving in mathematics classrooms over the traditional learning of facts 
and theorems stating, “Large amounts of mathematics can be learned as sensible answers to 
sensible questions—that is, as part of mathematical sense making, rather than by mastery of bits 
and pieces of knowledge” (p. 59). This idea of problem or task based learning continues to gain 
momentum in the United States. National Science Foundation (NSF) funded curricula such as 
Connected Mathematics and the Interactive Mathematics Program (IMP) are examples of 
curricula that build mathematical understanding through the use of mathematical tasks. The 
National Council of Teachers of Mathematics’ (NCTM) recent document Focus in High School 
Mathematics: Reasoning and Sense Making (2009) promotes curricula focused on student 
reasoning and problem solving, suggesting curricula centered on rich mathematics tasks can help 
to support this goal. Similarly, the Common Core State Standards’ Mathematical Practices’ 
(2010) foci on mathematical problem solving and reasoning seem to suggest that rich 
mathematical tasks should play a central role in today’s mathematics classrooms.  

Researchers classify tasks in a variety of ways. Tasks may be sorted by cognitive demand, 
purpose, or even whether or not they can be considered worthwhile. Though a review of the 
literature related to tasks revealed a great number of studies examining tasks, teachers’ 
perspectives on tasks were lacking. In this study we sought to examine teachers’ conceptions of 
tasks, more specifically, we sought to understand what teachers consider a worthwhile task.  

Prior to a discussion of worthwhile tasks, we must first define the word task as used in this 
study. We have chosen to use Stein and Smith’s (1998) definition of a task, “A segment of 
classroom activity that is devoted to the development of a particular mathematical idea” (p. 276). 
With this definition a task may be a single problem or could be a week long project. The 
following section discusses ways researchers have chosen to classify such tasks and the idea of 
what precisely constitutes a worthwhile task. 
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Tasks in the Literature 
The literature is rife with discussions of mathematical tasks (e.g. Hiebert et al., 1997; 

Henningsen & Stein, 1997; NCTM, 2007; Stein & Smith, 1998; Swan, 2008). These studies 
focus on a variety of aspects of tasks such as enacting tasks (e.g., Stein, Smith, Henningsen, & 
Silver, 2009) and using tasks for assessment. There have also been several efforts to classify 
tasks by various criteria. We discuss several of these classifications in the following paragraphs.  

Swan (2008) classified tasks according to the processes that they help the learner develop 
mathematical understandings. The five classifications of task types correspond to the processes 
of classifying mathematical objects, interpreting multiple representations, evaluating 
mathematical statements, creating problems, and analyzing reasoning and solutions. This focus 
on the task outcomes departs from the approach of classifying tasks by the cognitive demands of 
the task, an approach taken by several researchers. 

Stein and Smith (1998) classified tasks by cognitive demand. The classification system 
consists of four categories of tasks, two related to high cognitive demand and two related to low 
cognitive demand. Stein and Smith did not perceive of these categories as hierarchical in nature. 
The use of a variety of tasks from different levels of cognitive demand is supported by the 
following claim,  

(The authors do not) suggest that all tasks used by a teacher should engage students in 
cognitively demanding activity, since there may be some occasions on which a teacher might 
have other goals for a particular lesson, goals that would be better served by a different kind 
of task. (Stein, et al., 2009, p.5) 

This view allows for the flexibility of choosing tasks of varying cognitive demand depending on 
the desired learning goals; however, recent research has found that students in classrooms that 
enacted high cognitive demand tasks performed better on assessments that measured problem-
solving and mathematical reasoning (AERA, 2006).  

In addition to classifying tasks by the aforementioned attributes, there have been efforts to 
classify tasks by their worth. Hiebert et al. (1997) discussed appropriate tasks. The authors 
characterized appropriate tasks as those able to be understood by students but also problematize 
mathematics for the students, and engage students in thinking about important mathematical 
concepts. These three aspects are also evident in NCTM’s notion of worthwhile tasks. 

NCTM’s Principles for Teaching Mathematics (1991) discussed yet another classification of 
tasks, those considered worthwhile. We have used this concept of worthwhile tasks as our 
conceptual framework for examining teachers’ conceptions. NCTM characterized worthwhile 
tasks as those that facilitate student interest and intellect, develop students’ mathematical skills, 
create connections among mathematical ideas, promote problem solving and communication, 
and take into account students’ backgrounds and dispositions. More recently, NCTM (2007) 
summarized these attributes stating, “Worthwhile mathematical tasks are those that do not 
separate mathematical thinking from mathematical concepts or skills, that capture students’ 
curiosity, and that invite students to speculate and to pursue their hunches” (p.33). While NCTM 
advocated the use of such tasks, they also acknowledge that teaching with such tasks requires a 
great deal of planning and knowledge. 

Each of these descriptions of tasks in the literature help to build an understanding of tasks 
and their various uses in the classroom; however, teachers’ voices regarding tasks are noticeably 
absent from the literature. This study’s purpose is to illustrate the similarities and differences in 
teachers’ conceptions of mathematical tasks. We also sought to extend the comparison of the 
teachers’ conceptions with perspectives from the literature on mathematical tasks.  
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Methods 
This study is part of a larger study in which we examined teachers’ conceptions of an 

integrated mathematics curriculum. The participants were 27 secondary mathematics teachers in 
the first year of state standards implementation. The teachers were identified through referrals 
from colleagues and recruitment at local professional development workshops. The new 
standards departed from the traditional secondary mathematics course sequence (algebra, 
geometry, algebra 2, etc.). The new courses contained algebra, geometry, and data analysis units 
within a single course. This organization of the content led some people to refer to the courses as 
integrated. The new standards also led to changes in teaching practice. The state developed 
mathematical frameworks to reflect its goal of reform oriented teaching practice. These 
frameworks contain collections of mathematical tasks grouped by curricular units. These tasks 
were meant to bring together mathematical processes, especially mathematical connections. This 
new focus was a dramatic change from the prior, more traditional state standards. 

The research team conducted 6 focus groups consisting of 4-6 participants for a total of 27 
teachers from 9 school districts in northeast Georgia. The purpose of the focus groups was to 
examine participants’ experiences with the implementation of the new state standards. After 
partially transcribing the focus group data and coding for emerging themes, we purposefully 
selected 9 participants for in-depth interviews in order to obtain maximum variation (Patton, 
2002). These interviews allowed us to gather more information about topics that arose in the 
focus groups. The interviews were fully transcribed and analyzed using the constant comparative 
method decoupled from grounded theory (Glaser & Strauss, 1967). A minimum of two 
researchers participated in each of the rounds of coding to provide internal validity.  

 
Results 

To motivate results regarding teachers’ conceptions of worthwhile mathematical tasks, it 
becomes necessary to first consider how our participants described and defined mathematical 
tasks. During focus groups and in-depth interviews, members of our research team asked 
participants to draw from their experiences teaching the new standards and to describe a 
mathematics lesson they considered to be particularly successful with their students. These 
discussions typically included examples of mathematical tasks that teachers found to be 
worthwhile for their students. When the idea of task was introduced in the interview setting, 
often times, the researcher probed for the participant’s meaning. Interestingly, one teacher 
seemed to define a mathematical task by detailing what a task was not:  

If there was only one way to solve a problem, nothing open-ended about it, like word 
problems in Algebra I. They’re not Tasks …There’s nothing to engage in, there’s nothing to 
investigate. It doesn’t generate any good conversation, and there aren’t multiple paths to the 
same solution.  

The negation of this teacher’s description seems to imply her definition of a mathematical task. 
More commonly, teachers described tasks as mathematical problems with multiple paths to a 
particular solution, allowing students to engage in mathematical processes.  

Drawing from participants’ definitions, the authors analyzed specific portions of the 
transcripts when teachers’ discussions related to mathematical tasks. We inductively coded the 
transcripts and developed emergent themes within participants’ discussions of worthwhile tasks. 
In our final stage of analysis, we organized the themes into three broad categories: themes related 
to the mathematical content, mathematical processes, and practical considerations. 
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Themes Related to Content 
This first category of emergent themes is related to the mathematical content developed 

within the tasks. Often, teachers talked about the importance of embedding the mathematics 
within a context, and teachers appreciated tasks that promoted students’ construction of 
mathematics. Both of these themes refer to the ways in which the content should be incorporated 
into a worthwhile task as well as how the content is presented to students.  
 
Embeds the Mathematics in a Context 

During the in-depth interviews, teachers often provided concrete examples of tasks where the 
mathematical content was situated within an interesting context. For example, several teachers 
favorably referenced a mathematical task that develops the various points of concurrency. In this 
task, the mathematics develops within the context of finding an appropriate location for a cell 
phone tower. Students are asked to determine where to place the cell phone tower in order to 
provide maximum coverage for three cities (Georgia Department of Education, 2008).  

Teachers explained that incorporating a meaningful context was a particularly important 
characteristic of a worthwhile mathematical task for several reasons. These types of tasks 
provided their students with opportunities to connect their mathematical knowledge to what 
teachers called the “real world” and “real world thinking”. The context surrounding the 
mathematics motivated students to engage in and learn essential mathematical content in the 
task. As one of our teachers explained, “A good task has … good mathematics in it.  And…it’s a 
context that kids would be interested in.” Many teachers discussed the context as a tool to allow 
the mathematics to become more relevant for students. The context not only provided motivation 
for students but also encouraged a deep exploration and construction of mathematical ideas. 
 
Promotes Students’ Construction of Mathematics 

Within teachers’ descriptions of worthwhile tasks were commendations for mathematical 
tasks that allowed students to construct their own mathematical understandings. Some of the 
tasks within Georgia’s new mathematics framework allowed students to think independently 
about the mathematics, to struggle with the mathematics, and to construct their own 
mathematics. For example, one teacher explained, “I think the advantage is that [the task] 
certainly gives the kids an opportunity to discover things for themselves and lets them be more 
independent and be more independent learners.” A majority of the teachers in this study shared 
this notion of allowing students to discover mathematics through the tasks and make 
mathematics their own. 

The teachers contrasted worthwhile tasks with tasks that were inundated with leading 
questions. In general, teachers frowned upon leading questions, stating that the questions did not 
permit students to freely explore the mathematical ideas posed by the task. Teachers instead 
favored asking appropriate questions to help students “figure out what is going on.” One teacher 
stated, “They’re (students) discovering that you’re not telling them…  They’re actually figuring 
out what the theorem says without you just coming out and telling them the information.” These 
quotations emphasize the teachers’ expectations that worthwhile mathematical tasks should 
encourage students to explore and investigate the mathematical ideas presented by the task.   
 

Themes Related to Mathematical Processes 
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The second category of themes relates to the mathematical processes involved as students 
engage with the mathematical tasks. These processes align to several of NCTM’s (2000) Process 
Standards, namely problem solving, communication, and connections.  
 
Fosters Problem Solving 

Worthwhile mathematical tasks provide students with opportunities to engage in problem 
solving (NCTM, 2000). Therefore, it is not surprising that teachers commonly described 
worthwhile mathematical tasks as “multi-layered problems” through which students can engage 
in “real world thinking.” These kinds of tasks allow students to use a variety of approaches in 
order to solve the problem. One teacher said, “I like problems [tasks] in which you can, I guess, 
when you really have to slow down and think about all different angles.” Teachers explained 
how worthwhile tasks require students to think deeply about the mathematics, because “the 
biggest difference within those tasks is that all of the sudden they [students] are expected to think 
on their own and process.” One teacher described worthwhile tasks as prompting metacognitive 
strategies, “I think the task gets them to think about thinking more and to kind of rack their 
brain… how would I figure that out?” Many times, teachers’ conceptions of worthwhile 
mathematical tasks were located within the intersection of tasks that foster problem solving and 
tasks that allow students to communicate mathematically, because they claimed mathematical 
communication aided students in problem solving. 
 
Encourages Mathematical Communication 

The participating teachers believed that worthwhile mathematical tasks should be a vehicle to 
engage students in mathematical communication. In describing the characteristics of tasks that 
enable such communication, one teacher said, “The task part of the class can focus on the open-
ended questions and the open-ended discussion type of thinking that needs to go along with 
that.” Because teachers often considered worthwhile tasks to include multiple paths to the same 
solution, they expected students to discuss the various approaches used to develop the 
mathematical concepts within the task. Students were encouraged or expected to work on tasks 
in groups to develop this mathematical discourse and a depth of understanding. One teacher 
reported asking students, “Can you tell each other how you did it?” stating that this strategy 
fostered communication across students. She also commented that worthwhile tasks “just seemed 
to provide a lot of that conversation.” When describing the difference between the new standards 
and their old method of teaching, the richness of classroom communication was a frequently and 
positively discussed byproduct of the new standards. Teachers appreciated how students’ 
communication detailing the multiple solution paths within a worthwhile task also generated rich 
mathematical connections across these conversations.  

 
Provides Opportunities to Make Connections 

Teachers’ discussions of worthwhile mathematical tasks included the importance of affording 
students multiple opportunities to make rich mathematical connections. Teachers often equated 
mathematical learning to making connections. One teacher stated, “I mean to me that is 
mathematical learning, when I can look at four groups presenting four different paths to the same 
solution and I can see how your geometric representation is the same thing as what I did 
algebraically.” Making comparisons across the representations help students to develop and 
recognize mathematical relationships. These connections, facilitated by the tasks, enhanced their 
students’ conceptual understanding. 
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If they [students] did it algebraic(ally), geometric(ally), and then another way to look at it. 
Being able to have that task and summarizing it at the end.  You know now, okay, here’s 
little picture, little picture, now let’s look at a big picture.  

The connections made by students when working through a worthwhile task help students 
develop a unified picture of mathematics.   
 

Themes Related to Practical Considerations 
Teachers frequently focused their discussion on more practical considerations of worthwhile 

tasks. These practical considerations perhaps arose from the dramatic change in practice that was 
demanded from implementing task based curriculum. Although the impetus for the discussion of 
these issues may be a byproduct of the teachers being in the midst of this implementation, these 
practical considerations were addressed by each of the teachers. 

 
Achievable  

Teachers explained worthwhile tasks should be accessible to all students, and tasks need to 
be achievable in a variety of ways. First, a worthwhile task must take into account students’ 
mathematical backgrounds, allowing them to progress through the task successfully. More 
importantly, teachers shared the need for students to recognize that they had the ability to work 
though the task with success. One teacher said, “A good task would be achievable, meaning that 
the students really think that they can do it.” Second, many of the tasks provided by the new 
mathematics framework were rather lengthy. So long, in fact, these tasks seemed impossible to 
complete, leading teachers to proclaim that the length of the tasks needed to be achievable as 
well. Echoing this concern, a teacher shared, “Achievable. They can’t be 25 pages long and 
when the kid looks at it, say, ‘Oh, this is impossible.’” Finally, all of our participating teachers 
expressed a desire for all of their students to experience success in this new task based 
environment. In order to achieve success, several teachers emphasized that worthwhile tasks 
need to allow for differentiation among students. One teacher remarked, “A good task has to be 
accessible to all students at some level.  I believe that strongly.  What do they call it… like 
multiple entry and exit points for a task, everybody should be able to do something.” 
 
Standards Based 

The teachers wanted their students to be successful on the end of course exams administered 
by the state; thus, teachers characterized worthwhile mathematical tasks as tasks that focused on 
the content standards students were required to master. One teacher stated, “Good ones (tasks) 
are focused on the standards that we are trying to teach.” Another teacher addressed her concern 
for the state standards stating,  

I have certain standards that I’m supposed to teach, and then the tasks need to reflect those 
standards. You can’t just pick it [tasks] because it’s a fun problem to engage it.  I mean by 
law I have to teach certain standards, you know, so I do have to choose task that will…that I 
can use to pull out specific mathematical ideas.    

The majority of teachers echoed this concern, and this concern influenced their selection of tasks. 
The notion of standards based, achievable tasks encompassed the practical considerations 
important to our teachers’ conceptions of worthwhile tasks. 

 
Discussion 

After conducting our analysis, we returned to the literature on worthwhile tasks. Typically, 
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there exists a gap between literature in mathematics education and practice. As researchers, we 
wondered to what extent were teachers’ conceptions of worthwhile mathematical tasks reflected 
in the literature. The juxtaposition of the participating teachers’ conceptions with classifications 
provided by the literature in mathematics education regarding worthwhile mathematical tasks 
proved to be rather illuminating, providing implications for research and practice.  

We used NCTM’s (1991) classification of defining characteristics of worthwhile tasks to 
make our comparison. We created a Venn diagram and labeled one set as Classifications from 
Literature and the other as Conceptions from Practice (see Figure 1). As seen in the intersection 
of the two sets, many of the classifications and conceptions overlap. We believe several 
similarities exist between research and practice as well as some interesting differences for further 
discussion and analysis. For example, when reviewing the similarities across sets, we noticed 
that NCTM suggests worthwhile tasks facilitate student interest whereas our participating 
teachers appreciated embedding a task within a context to make the mathematics relevant to 
students. As is evident in Figure 1, several additional similarities exist; yet, two important 
differences emerge through this comparison. First, one of NCTM’s classifications identified 
worthwhile tasks as tasks that develop students’ mathematical skills. However, our participating 
teachers saw the development of skills as a completely separate activity from tasks in the 
classroom. Second, several participating teachers emphasized the necessity for tasks to focus on 
the content standards they are expected to teach from the state’s curriculum frameworks in order 
for the task to be worthwhile, whereas this characteristic is not located within NCTM’s 
classifications. This difference seems to capture the important and practical realities of teaching. 
As mathematics educators, we must consider possible implications these findings have for both 
preservice teacher education as well as professional development. 

 
Figure 1: Worthwhile tasks as classified in research and conceived of by teachers 
 
In the Teaching Principle, NCTM (2000) concludes their discussion of worthwhile tasks by 

stating, “Worthwhile tasks alone are not sufficient for effective teaching” (p. 19). Similarly, our 
research findings do not provide a conclusion regarding worthwhile tasks, but, rather, a 
beginning. Many of our participants discussed the difficulty of either finding or developing these 
worthwhile mathematical tasks. One participant shared,  

An appropriate task or word problem, which to the maximum extent included multiple 
disciplines and gave as many chances as possible to make the learning relevant … Those are 
really hard to write. If you find one, you hang on to it, forever. 
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It is important for both professional development and teacher education programs to support 
teachers in developing such worthwhile tasks. This study provides an important initial step 
toward the inclusion of teachers in discussions of worthwhile tasks. Further research is needed to 
understand how teachers develop and modify tasks to make them worthwhile. As research in 
mathematics education continues to study worthwhile mathematics tasks, research is needed to 
inform practice. This statement assumes that research is relevant to practice. Therefore, as 
researchers, in order for us to make research more relevant to practice, we believe carefully 
listening to teachers describe their practice is an excellent place to start.  
 

Endnotes 
The research reported in this article was supported by the National Science Foundation 

under grant 0227586. The opinions expressed are those of the authors and do not necessarily 
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TEXTBOOK IMPLEMENTATION IN RURAL SECONDARY INTEGRATED 
MATHEMATICS CLASSROOMS 
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Although professional development can help teachers become familiar with new curricular 
materials, implementing the materials can be difficult for teachers. This paper presents results 
from a study of teachers’ implementation of an integrated mathematics curriculum in rural 
secondary schools following their participation in a professional development. Results show 
teachers are primarily using the textbook for their instruction, but that they implement less of the 
textbook content in higher level mathematics and struggle to find a balance implementing the 
content across content strands. These results have important implications for researchers 
conducting curricular evaluations and for the creation of effective professional development.  
 

Introduction 
It is important that claims made about curricular effectiveness include measures to judge the 

adequacy of implementation (National Research Council (NRC), 2004; Senk & Thompson, 
2003). The NRC further noted the importance of documenting the faithfulness of implementation 
and recommended researchers document the extent of coverage or “implementation fidelity” of 
the curricular materials. Implementation fidelity measures the extent to which textbook materials 
are used for instruction and are not indicative of the quality of teaching (McNaught, Tarr, & 
Grouws, 2008; NRC, 2004).  

Reform efforts in mathematics have lead to the creation of curricular materials that focus on 
strengthening the mathematical knowledge of all students and are guided by instructional 
practices that promoted problem solving, communication, reasoning, and creating mathematical 
connections (Senk & Thompson, 2003). However, implementing reform mathematics curricula 
represents a challenging transition for many teachers (Ziebarth, 2003). Teachers’ beliefs and 
backgrounds greatly influence how they implement curricula, potentially causing the 
implemented curricula to be significantly different from the developers’ intended curricula (Ball 
& Cohen, 1996; Remillard, 2000) and from a teacher’s own intentions (Stein, Remillard, & 
Smith, 2007; Stein & Smith, 2010). Therefore, it cannot be assumed that access to teachers’ 
guides and curriculum materials will ensure proper implementation (Scott, 1994), nor that 
teachers within the same school will implement curricula materials in the same way (Bowzer, 
2008; Chávez, 2003; Stein, et al., 2007).  

The purpose of this paper is to report findings on teachers’ implementation of a reform 
mathematics textbook in rural high schools following their participation in a professional 
development. This research is an important step towards determining the extent to which the 
textbook impacted student achievement and the extent to which the textbook is used for 
instruction.  
 

Theoretical Perspective 
The Comparing Options in Secondary Mathematics: Investigating Curriculum (COSMIC) 

research team was designed to evaluate high school students’ mathematics learning from 
different curricular programs (COSMIC, 2005). They have provided methodological approaches 
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and instruments to document and measure implementation fidelity. The COSMIC team has made 
great strides in the field of curricular evaluation and, in particular, in creating innovative ways to 
measure implementation fidelity. They have created indices for opportunity to learn (OTL), 
extent of textbook implementation (ETI), and textbook content taught (TCT).  
OTL, ETI, TCT Implementation Indices 

The COSMIC team measured the OTL, ETI, and TCT through Table of Contents Records 
(TOC-logs), which were self reported by the teachers and customized for the textbook they were 
using (McNaught, et al., 2008). For each lesson of the textbook, teachers indicated if they taught 
the content (a) primarily from the textbook, (b) primarily from the textbook with some 
supplementation, (c) primarily from an alternative source, or (d) not at all (McNaught, et al., 
2008). The OTL index measured the percentage of textbook content that was taught, either solely 
from the textbook or through supplemental materials. The ETI index weighted the options in the 
TOC-logs, giving the content taught primarily from the textbook the most weight (a weight of 
one), content with some supplementation a weight of two-thirds, content mostly from alternative 
sources a weight one-third, and content not taught a weight of zero. The weights were then 
summed and divided by the total number of lessons contained in the textbook (for additional 
information: McNaught, Tarr, & Sears, 2010; McNaught, et al., 2008). This measured the degree 
to which the textbook was used directly to teach the content. Similarly, the TCT index used the 
same weighted sum but divided by the total number of lessons taught through any means. This is 
a measure of how the textbook was used to teach content in the textbook and ignores the topics 
students were not taught. Each of these three indices was measured at the course level. 

McNaught et al. (2010) analyzed data from 174 TOC-logs collected from teachers using both 
an integrated and subject specific curriculum. Across the teachers using integrated materials, 
they found the mean OTL index was 60.81 with a standard deviation of 19.91, the mean ETI was 
50.73, with a standard deviation of 20.20, and the mean TCT was 81.96 with standard deviation 
14.50. While teachers using an integrated curriculum are covering just over 60% of the textbook 
content, they rarely use alternative sources for their instruction.  
 

Context 
The North Carolina Integrated Mathematics Project 

The North Carolina Integrated Mathematics Project (NCIM) was developed to create and 
support a community of teachers using the Core-Plus Mathematics (CPMP) (Coxford, et al., 
2001) integrated curriculum materials, particularly in high needs schools. Spread throughout 
rural parts of the state, the seven partner schools in the NCIM project were identified as low-
performing based on North Carolina accountability measures. At the time of this study, the 
average student population for the project schools ranged between 110 to 163 students and the 
ethnic make-up consisted of: 1% American Indian or Asian, 6% Hispanic, 16% White, and 77% 
Black. Approximately 72.8% of students at each school qualified for free and reduced lunch.  

To prepare teachers to implement CPMP, in order to strengthen STEM education at these 
schools, the project directors and evaluation team designed four components for the NCIM 
professional development. The four main elements of the professional development model were 
(1) a summer workshop providing in-depth education on use of curricular materials (one or two 
weeks), (2) a web-based environment supporting information exchange, (3) two face-to-face 
follow-up conferences, and (4) instructional coaches who visited each site monthly.  

 
Methods 
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Participants 
The NCIM project has grown since its inception in the spring of 2008 to include new 

teachers and has lost two due to teacher turnover. At the time of this study, 12 teachers in the 
NCIM professional development received instructional coach visits each month and took part in 
the other components of the project. Each of these 12 teachers began teaching CPMP for the first 
time based on their schools’ participation in the NCIM project.    
Data Collection 

To measure the implementation fidelity of teachers using the CPMP materials, NCIM project 
teachers completed TOC-logs (McNaught, et al., 2008) for each course they taught. These logs 
were replicas of the table of contents in the CPMP textbooks so that teachers readily recalled the 
material they taught. These were provided to teachers at the beginning of the semester, and 
teachers returned portions of the logs throughout the school year. 
Analysis 
 This analysis was based on the 15 TOC-logs that were completed during the 2008-2009 
and 2009-2010 school years. OTL, TCT, and ETI indices were computed using the COSMIC 
approach (McNaught, et al., 2008). It is important to note that teachers completed one TOC-log 
for each unique course they taught. For example if they taught two sections of Course 2 and one 
section of Course 3, then they would have one measure of OTL, TCT, and ETI for Course 2, 
with both sections having the same measures, and one measure of each for Course 3.  

Due to the sample size, to determine quantitative differences in teachers’ implementation 
across courses and content strands in the textbook, the Kruskal-Wallis distribution free test 
(Hollander & Wolf, 1999) was used. The Jonckeere post-hoc test (Hollander & Wolfe, 1999) 
was used to test for ordered alternatives to see if there was a decrease in the indices across the 
course sequence or content strands. Finally, Dunn’s Test (Elliott & Hynan, 2010), a 
nonparametric multiple comparisons test based on pair-wise rankings, was used to determine 
differences among specific groups.  
 

Results 
Opportunity to Learn 

 The mean OTL index for NCIM teachers was 52.18 with a standard deviation of 16.15 
(Figure 1). These data indicate on average just over half of the content in the CPMP textbooks 
was covered, though there was considerable variation among teachers’ OTL indices.  

 
Figure 1. Summary of mean OTL indices for NCIM project teachers. 
Note. The heavy shading indicates content taught primarily from textbook, with some 
supplements, or primarily from an alternative source. White space indicates content not taught. 
 
Extent of Textbook Implementation 
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Recall the ETI index is a weighted measure describing the degree that the textbook, rather 
than other materials, was used to teach the content. The NCIM teachers had a mean ETI index of 
49.30, with standard deviation 16.41. It is also helpful to look at the ETI index disaggregated by 
the weighted options: content taught primarily from the textbook, with some supplementation, 
primarily from alternative sources, or not at all (Figure 2). From reviewing the figure, it appears 
the NCIM project teachers rarely supplement the textbook material.  

 
Figure 2. Summary of ETI indices for NCIM project teachers. 
 
Textbook Content Taught 

Recall that the TCT index restricts the focus to only the CPMP content that was taught. The 
mean TCT index for NCIM teachers was 91.64 with standard deviation 7.52. The differences in 
the TCT indices became more prevalent when considering the TCT indices for content taught 
primarily from the textbook, with supplementation, and from alternative sources (Figure 3). This 
suggests that NCIM teachers primarily used the textbook for their instruction and very rarely 
used alternative sources.  

 
Figure 3. Summary of TCT index for NCIM project teachers  
 
Across Courses 
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The schools involved in the NCIM project began as ninth grade academies and added an 
additional grade level each year until they had their first senior class. There was only one 
mathematics teacher at each school until the second or third year the school was open. As a result 
it is interesting to track teachers implementation of the curriculum as they progress through the 
course sequence as instructors. The mean for each implementation index across the first three 
integrated courses is given in Table 1. There was a significant decrease for the OTL 

€ 

(p = 0.008)  
and ETI 

€ 

(p = 0.03) indices with each subsequent course that was taught. Thus, as students 
continued through the integrated sequence, they had less opportunity to learn the material in the 
text. The TCT is still high, above 85% for each course. From this we can conclude that when 
NCIM teachers taught content in the textbook, they were primarily using the textbook and not 
supplemental materials. These findings also suggest that teachers of Courses 2 and 3 need 
continuous support throughout their implementation of CPMP.  
 
Table 1. Average Implementation Fidelity Ratings Across Courses Taught by NCIM Teachers 

  OTL ETI TCT 

Course 1 63.21 60.12 94.92 

Course 2 55.03 52.68 87.89 

Course 3 43.38 39.22 91.89 

 
Similar findings can be seen in the implementation indices of individual teachers, Nicole, 

Maria, and Felicity, as they transitioned to teaching higher sequenced courses (Table 2). It is 
interesting to point out that Nicole’s OTL and ETI indices dropped more than 20 points each 
from Spring 2009 to Fall 2009 though she was teaching the same course. She completed the 
Course 2 workshop during the summer of 2008 and the Course 3 workshop during the summer of 
2009. Perhaps her indices were higher the semester following her participation in the Course 2 
workshop. Another plausible explanation is that the first Course 2 class was a yearlong course 
(two semesters), while the course she taught in the fall of 2009 was a 90-minute block course 
(one semester). Having the material spread throughout an entire school year provided her with 
more time to get through the material.  
 
Table 2. Individual NCIM Teacher’s Implementation Ratings Over Time 

Teacher Year Course OTL ETI TCT 

Nicole Fall 08 Course 1 74.29 68.57 92.31 

Nicole 2008-2009* Course 2 66.15 64.10 96.90 

Nicole Fall 09 Course 2 44.62 41.03 91.95 

        

Maria Fall 08 Course 2 65.00 75.38 75.38 

Maria Fall 09 Course 3 36.76 33.82 92.00 
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Maria Spring 2010 Course 4 26.09 26.09 100.00 

        

Felicity Fall 09 Course 1 48.57 43.33 89.22 

Felicity Spring 2010 Course 2 38.46 31.79 82.67 

* This was a yearlong course. 
 
It is evident from these results that NCIM teachers struggled to teach the content in the textbook 
as they progress through the sequence of courses.  
 
Content Strands  

In her dissertation, McNaught (2009) identified which units in CPMP corresponded to four 
different content strands, to determine the differences in implementation across major topics. The 
four strands were: Algebra and Function, Probability and Statistics, Geometry and Trigonometry, 
and Discrete Mathematics. Recall the fourth component of our professional development model 
included visits from an instructional coach. Instructional coaches completed reports following 
each classroom visits, and these reports highlighted that our project teachers were skipping units 
of the textbook. To determine if there were differences in the topics taught by NCIM teachers, an 
approach similar to McNaught’s was utilized.  Using the table of contents in the second edition 
of the textbook, each unit of each course was aligned to one (sometimes two) of the content 
strands.  The OTL, ETI, and TCT indices were recalculated for each teacher for each of the four 
content strands (Table 3).  
 
Table 3. Average Implementation Indices Across Content Strands 
Content Strand OTL ETI TCT 

Algebra 84.17 76.83 91.20 

Statistics 38.98 37.84 82.49 

Geometry 37.50 36.94 77.43 

Discrete Math 16.37 15.77 26.19 

 
The nonparametric Kruskal-Wallis distribution free test (Hollander & Wolf, 1999) was used 

to determine if there were differences in the implementation indices across the four content 
strands. There were significant differences in textbook use across teachers and content strands 
for each of the indices, OTL 

€ 

(p < .0001) , ETI 

€ 

(p < .0001) , and TCT 

€ 

(p < .01) .  
The Jonckeere post-hoc test (Hollander & Wolfe, 1999) was used to test for ordered 

alternatives to see if there was a decrease in the indices across the ordered strands: Algebra and 
Function, Probability and Statistics, Geometry and Trigonometry, and Discrete Mathematics. 
Results show evidence that all three indices decrease along the four content strands, OTL 

€ 

(p < 0.05) , ETI 

€ 

(p < 0.0001), and TCT 

€ 

(p < 0.05) . This would imply that the average OTL for 
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the Algebra and Function content strand is greater than the other three, yet the OTL for the 
Probability and Statistics strand is greater than the Geometry and Discrete Mathematics OTL.  
 Dunn’s Test, a nonparametric multiple comparisons test based on pair-wise rankings, was 
used to determine which content strands differ in location, when 

€ 

α = 0.05 . The OTL for Algebra 

€ 

(x = 84.17)was significantly different than each of the other content strands; Statistics 

€ 

(x = 39.98), Geometry 

€ 

(x = 37.50), and Discrete 

€ 

(x =16.38) .  
Using the ETI index, there were significant differences between the Algebra 

€ 

(x = 44.18) 
strand and all other strands; Statistics 

€ 

(x = 27.21) , Geometry 

€ 

(x = 26.86) , and Discrete 

€ 

(x =15.75) . These results were favorable to Algebra, suggesting students were exposed to more 
Algebra content than the other strands. The results from the TCT index showed differences 
between Discrete Math 

€ 

(x =16.5)  and both Statistics 

€ 

(x = 34.79) and Geometry 

€ 

(x = 33.54) . 
The TCT for Algebra 

€ 

(x = 29.19)  was not significantly different than any other content strand. 
These findings suggest students had more of an opportunity to learn Algebra than the other 
content areas. The Algebra topics are currently covered on state assessments and seem to be the 
main focus of teachers’ instruction. It is evident from workshop evaluations that many of the 
statistics and discrete math topics are unfamiliar to these teachers.  

Taken together these findings point to the wide variance in implementation across the four 
main content strands in the textbook. This also provides empirical evidence to suggest teachers 
were skipping major units in the textbook. These data need to be further triangulated with 
interviews from the teachers and the instructional coach reports to determine why or how they 
chose to skip sections of the textbook.  
  

Discussion/Conclusions 
Teachers in the NCIM project used the content from the textbook and primarily taught the 

content from the textbook, however this does not imply their instruction was consistent with the 
written text. Next steps in this research will be to conduct classroom observations to understand 
how the content is being taught, to conduct interviews to determine how teachers make decisions 
about what content to teach, and using these indices in measures of student achievement. Only 
after fully understanding how teachers implement curriculum can we begin to measure the 
impact on student achievement. The research conducted in the paper provides evidence that just 
over half of the content in the textbook is being taught, with the major focus on the Algebra 
units. There is also indication that teachers need on-going support in their first three years of 
implementation and as they move to teaching higher courses in the CPMP sequence.  
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Achievement and motivational data was collected from 465 students enrolled in a Summer 
Mathematics Academy designed to provide enrichment and accelerated courses for secondary 
students.  Academy courses were designed taking into account motivational variables associated 
with the development of intrinsic motivation, a mastery goal orientation, and personal choice 
and challenging tasks.  Results show that Academy participants scored at an extremely high level 
on the Terranova and PSAT assessments.  Motivation was assessed using Personal Constructs 
Theory.  Results are consistent with earlier work that emphasizes Interest and Challenge/Control 
tradeoffs in determining intrinsic motivation in students. 

Summer Mathematics Programs and Student Motivation 
This paper examines the academic achievement and motivation of secondary-age students 

enrolled in a summer credit advancement program in mathematics.  In contrast to compulsory 
academic-year coursework, there is practically no research conducted about specialized summer 
programs in mathematics.  In particular, these programs’ effects on academic achievement and 
motivation have not been extensively studied even though many schools are now implementing 
summer programs to in hopes of boosting academic success.  This paper will focus on credit-
advancement programs and not necessarily remedial or enrichment-only programs.  Being that 
there has been little research done on these credit advancement programs, other academic 
programs that have been researched have been used to help make some of the theoretical and 
empirical arguments in this paper. 

Many studies have found that summer vacation influences a direct decline in academic 
achievement (Cooper & Nye et. al., 1996, Entwistle & Alexander, 1992).  In fact, summer 
vacation accounts for about a month’s loss of academic learning or about a tenth of a standard 
deviation on students’ academic achievement (Cooper & Nye et. al., 1996).  Not surprisingly, the 
effects of summer are more damaging on mathematics scores than other subject areas tested.  
Moreover, the summer months may have a particularly negative effect on gifted students who 
become bored and then underachieve the subsequent school year (Li et. al, 2009). 

A small but growing number of studies show that bridging students’ academic year 
experiences through appropriate acceleration and/or enrichment programs in the summer can 
increase students’ mathematical understanding and their skills (Tichenor & Plavchan, 2010).  
These studies show that an important part of a camp’s design should be to provide a learning-
enriched atmosphere, allow for risk-taking, and a demonstrated passion for mathematics.  With 
this type of design for the summer camps, the students have shown to appreciate, enjoy, and 
learn math thereby increasing their own confidence in math. 

Some would argue that because of the pacing required of these summer programs, lasting 
retention would not be evident, and thus no real overall increase in academic achievement would 
persist.  In fact, the impact of summer programs tend to be long lasting (Barnett, 1993), 
involving increased knowledge and achievement in mathematics subject matter (Knapp, 2007), 
and in an increase in the probability of taking advanced mathematics courses in the future. (Li et. 
al, 2009).  
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Motivation Related Variables 

Part of the puzzle when designing summer programs is to build in appropriate motivational 
appeal. Particularly for acceleration and other non-compulsory programs, students and their 
parents have choice in enrolling and persisting. The challenge of the program, its utility and the 
kinds of interests it fosters can be critical for its continued success.  So it becomes important to 
examine the reasons students have for enrolling in off-calendar offerings, and the degree to 
which the offerings fit their goals and values.  Students who are intrinsically motivated, for 
example, will show resiliency towards the given task even though the activity may be difficult 
(Gottfried, 1983; Schunk, 1990) without the need of any type of reward to begin or finish the 
task (Beck, 1978; Deci 1975; Woolfolk, 1990). Additionally, intrinsically motivated students 
will be more likely to retain the concepts learned and gain confidence about engaging in 
unfamiliar learning activities (Poonam, 1997).  Of course, a student who is assigned a task in 
which they have little interest value is less likely to exhibit excitement and persistence than a 
task that strikes curiosity and interest. 

Overall, research shows that a higher level of intrinsic motivation should lead to retention of 
concepts, higher confidence, and thereby, higher academic achievement. Significant and positive 
correlations have been found between intrinsic motivation and achievement as measured by 
standardized achievement tests in specific subjects, such as mathematics and reading for early-
elementary, late-elementary, and junior high school students (Adelman, 1978; Gottfried, 1985, 
1990).  It would seem likely then that academic intrinsic motivation would also be positively 
related to achievement in these specialized summer mathematics programs at the high school 
level. 

The remainder of this manuscript will describe the design of a summer acceleration program 
for middle- and high-school students in the greater Phoenix Arizona area, and analyze the 
achievement and motivational profiles of students enrolled in the program. 

 
Method 

Summer Math Academy 
The Summer Math Academy was offered at a large, urban high school by its mathematics 

faculty. At the time of the research, the summer program was in its tenth year running with three 
years of previous achievement data collected. We focus only on these three years from 2007 to 
2010.  Prior to 2006, the Academy only offered Algebra courses. In 2007 that the Academy 
began to offer Pre Algebra and a limited number of Geometry courses to advance students 
through these basic courses in high school.  The few Geometry students in 2007 were organized 
in a more guided, but self-taught environment.  These students were in the same room as one of 
the Algebra classes.  In 2008, the Math Academy decided to offer 6th grade and 7th grade 
mathematics as well as more Geometry courses.   Starting in 2008, the Geometry courses were 
not organized as independent studies but had their own classroom with a geometry-specific 
teacher. 

Many of the students who sign up for the Summer Math Academy report preparing 
themselves for tough courses and academic goals.  A good portion of the students are preparing 
to take Advanced Placement Calculus and Advanced Placement Statistics which are required for 
many college majors.  By 2010 it became possible through the academy, for students to take AP 
Calculus I, AP Calculus II, AP Vector Calculus, AP Differential Equations, and in the near 
future, possibly Linear Algebra.  In addition, many students were preparing to exceed the 
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Arizona Instrument to Measure Standards mathematics tests to qualify for college scholarships, 
be competitive in the future job market, and complete the state’s four year high school 
mathematics requirement.  

For middle schoolers, the curriculum in the algebra and honors geometry courses sufficed to 
receive high school math credit.  Overall, there was a wide variety of students as the youngest 
enrolled were about to enter into the fourth grade while the oldest were going into the tenth 
grade. 

There are a total of 28 days of instruction in the Summer Math Academy each year.  The first 
day begins four days following the end of the regular school year.  In the three years this study 
focused on, the Academy ran from Monday through Thursday with every Friday off for a total of 
seven weeks. The mathematics program would start at 7:30 a.m. and finish at 11:30 a.m. each 
day.  The students had a five-minute break every hour. 
Participants 

In total, there were 465 students that had attended the Academy from the first three years 
while a total of 444 students were present the summer of 2010. The breakdown of the 
number of students enrolled in each course by year can be found in Table 1.  Note that some 
students enrolled in the summer Academy for more than one year and thus the table does not 
reflect unique students.  However, the 465 total is the number of unique students that completed 
the Academy.  Just about every year in the camp’s history, students were denied enrollment 
because there were a fixed number of teachers.  This was to ensure that no classroom had too 
many students in it. 
 

 
6th Grade 

Math 
7th Grade 

Math Pre Algebra Algebra Geometry Total 
2007 - - 62 59 7 128 
2008 22 17 35 71 12 157 
2009 27 43 45 110 64 289 
Total 49 60 142 240 83 465 

Table 1. The number of participants by year in each course at the math camp 
 
Design of Camp Experiences 

Since intrinsic motivation generally increases student engagement and achievement the 
Summer Math Academy attempted to provide students choices of topics to choose from (Patall 
et. al, 2008).  We attempted to provide contextualization, personalization, and problem choice to 
the extent possible in each course (e.g., Cordova & Lepper, 1996).  Moreover, students in most 
classes could choose their own pace when working individually (Patall et. al, 2008). 

Students are also more likely to perceive successful outcomes when they are in environments 
that promote mastery motivation (Gottfried, 1983; Weiner, 1979).  We felt that helping students 
create mastery goals and fulfilling them through applied effort would intrinsically motivate 
students (Gottfried, 1983; Harter, 1974, 1977).  Because intrinsically motivating tasks are 
challenging, the academy encouraged students to choose advanced mathematics courses, in order 
to push them to the extent of their abilities. But, there needed to be a safe environment that 
encouraged students to fail positively.  We build this in, for example, by allowing students to 
attempt the tasks multiple times to approach mastery. The flexibility of the Academy’s camp 
environment also allowed students to monitor themselves, go beyond the presented content and 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1226



discover deeper connections between concepts,.  All of those aspects have been shown to 
influence motivation positively. 

 
Achievement Measures 

The students took a pre-test and a post-test to help determine the effect of the Academy camp 
on their academic achievement.  The Arizona Instrument to Measure Standards Grade 8 test 
scores were collected as students took this test prior to entering the Math Academy.  As a post-
test, scores on the Terra Nova and PSAT were collected as most students took these after 
entering the Academy.  Any student who took the PSAT and/or Terra Nova before entering the 
math academy had their scores excluded from the data. 

 
Measures of Motivation: Repertory Grid Techniques 

This study used Repertory Grid techniques to determine the content and structure of students’ 
motivations (e.g., Middleton, 1995). Motivational constructs for the algebra and geometry 
courses were elicited separately as these were distinct classes that students took—there was no 
overlap in students taking the courses—and because the content of those courses was 
hypothesized to motivate students differently.   

 
Construct elicitation 

A Motivational Repertory Grid was developed for the Algebra course and Geometry course.  
For each course, ten different major algebraic or geometric topics emphasized in the course were 
chosen.  Students were presented with 45 (10C2/2) pairs of these topics in random order. They 
were asked to report what made one topic more preferable than the other topic.  Students reasons 
for choosing one topic over the other are considered their personal constructs related to 
motivation. Students’ personal constructs were tabulated and rank ordered.  The top ten 
identified constructs were placed onto rows on a Repertory Grid, and the 10 topics used to elicit 
constructs were arranged on the columns of the Grid.  Students were then asked to rate, on a 
scale of 1 to 10, the degree to which each construct described each topic.  The final grid for each 
student then, was a 10 by 10 grid of ratings with each construct being assessed across each 
topic—for a total of 100 ratings. 

Students’ ratings were summed and the mean score in each cell computed.  These mean 
scores were then used to create a Group Repertory Grid, representing an average motivational set 
for the group of students in each course.  Table 2 lists the key topics used to elicit constructs, and 
the motivational constructs obtained, from algebra and geometry courses respectively.  
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Geometry Topics Algebra Topics Motivation Factors 

Perpendicular Bisector and 
Theorems Ratios and Proportions 

It is more Fun to 
Learn 

Converse/Inverse/Contrapositive Finding the Equation of a Line 
It is more 
Interesting 

Parrallel Lines with Transversal 
make Angles Congruent or 
Supplemental Order of Operations (PEMDAS) 

It is Easier to 
Learn 

Addition/Subtraction/Multiplication/ 
Division Properties Multiplying Polynomials (FOIL) 

It is more 
Challenging 

Writing Two-Column Proofs Graphing Linear Equations 
I can Visualize the 
Solutions 

Perpendicular Line to a Plane Factoring Polynomials 

I get to Decide 
How to do 
Problem 

Similar Triangles Finding Slope 
I can Apply it to 
Real Life 

Congruent Triangles Inequalities (> <) 
I can Memorize 
How to do It 

Properties of Polygons Word Problems 
It Makes Sense to 
Me 

Angles of Triangles and other 
Polygons (Exterior angle, Interior 
Angles) 

Solving Systems of Linear 
Equations 
(Substitution/Elimination) 

It Helps Me 
Understand more 
Concepts in Math 

Table 2. The course topics and motivation factors found in the Motivation Repertory Grid 
 

Results 
Analysis of Achievement Scores 

To analyze the effect of mathematics academic achievement, scores from the AIMS,  
Terranova and PSAT standardized tests were collected and analyzed.  SThe Terra Nova is taken 
in the spring of the ninth grade and the PSAT is typically taken the fall of their junior year. 

The rank of the students who attended math camp on the standardized tests are compared.  It 
would seem reasonable that within this small group, the ranking of the students should stay 
consistent from year to year i.e. the top/low ranked students should stay in the top/low ranking.  
Then the percentiles on the tests of these students are compared to the remainder of the 
population to see if there is an overall jump for the math Academy students as a group in the 
mathematics achievement scores. 
 
Table 3. Students who went to camp multiple times and their scores on PSAT and TerraNova 

	  
Number	  of	  TN	  

students	  
Average	  TN	  
Percentile	  

Number	  of	  PSAT	  
students	  

Average	  PSAT	  
Percentile	  

All	  
Student's	  
Average	   179	   81.62	   97	   78.20	  
Camp	  
Twice	   13	   81.08	   9	   79	  
Camp	   166	   81.70	   88	   78.20	  
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Once	  

Table 3. Scores of students attending multiple times on PSAT and TerraNova 
It is unclear from our analyses, whether or not the Summer Academy greatly enhanced students’ 
achievement. The extremely high average performance across the board on the Terranova, and 
the PSAT constitute a kind of ceiling effect. Moreover, because only a handful of students had 
taken the Summer Academy more than once, any group differences are not detectable 
statistically. 
 
Cluster Analysis of Repertory Grids 

Group Repertory Grids were subjected to hierarchical cluster analysis (Wards Method), using 
a squared-Euclidean distance metric. This analysis arranges the constructs in the grid in a 10-
dimensional space, using a linear combination of the topics to determine their relative positions 
in the space and their relative distances from each other.  PSAW (SPSS) version 18 was the 
software package used for the analysis.  

Results are displayed using a dendrogram, which illustrates the degree to which constructs 
are similar to each other.  Constructs most similar (most close in squared Euclidean distance) are 
arranged most proximal on the dendrogram, and constructs least similar are arranged farther 
apart (See Figures 1 and 2). 

From the dendrogram, three clearly defined clusters of constructs emerged from the analysis.  
The first and most tightly organized cluster deals with the interest level of the topics.  Similar to 
Middleton (1995) findings with gifted elementary students, our analysis shows that Interest is a 
major factor in determining students’ beliefs about the motivational value of their programs.  
Also consistent with their work, we found that the tradeoffs between challenge and control are a 
critical factor.  Sense making, not surprisingly, rounded out the three clusters.  Because the 
summer Academy emphasized personal choice and control, sense making, multiple attempts and 
other motivation-related design choices, we have some confidence that the Algebra program was, 
by and large, appealing and effective for participants. 

Figure 1 shows the structure of students’ motivational constructs for the Algebra courses.  
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Figure 1.  Organization of students’ motivational constructs re: Algebra Course 

 
Results for the Geometry course are similar (See Figure 2). Again, there were three defined 

clusters of constructs, organized around Interests, Sense Making, and Challenge/Control 
tradeoffs.  For Geometry, however, the division between Interest and Sense Making was less 
pronounced than that for the Algebra Courses.   

When the actual content of the courses was analyzed, one interesting result was manifest:  
For Algebra, Word Problems was rated as an entirely different topic, motivationally, than any of 
the others in the course. Solving word problems, in essence is seen as something separate from 
the regular features of Algebra courses, and was rated accordingly.  Similarly for Geometry, 
Proof was somewhat separate, only related to properties of polygons.  Neither of these findings is 
surprising, as we can merely peruse the tasks assigned students in the courses to find that the vast 
majority of Algebra problems were symbolically-presented, while in Geometry, proofs were 
primarily associated with properties of triangles and their applications and not with the other, 
more construction-oriented, or visually-presented exercises. 

Interest 

Challenge/
Control 

Sense 
Making 
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Figure 2.  Organization of students’ motivational constructs re: Geometry Course 

 
Discussion 

Results show that the Summer Math Academy provided an environment where students 
could achieve at a very high level, accelerating through Algebra and Geometry courses.  Their 
motivation for the courses was focused on Interest, Sense-Making, and appropriate trade offs 
between Challenge and Control conditions.  Overall, the Summer Math Academy is growing in 
numbers and in impact.  More research needs to be conducted on how achievement is impacted, 
as the small numbers of students who have taken the Academy over multiple years has limited 
this study’s ability to make longitudinal claims of impact.  Nevertheless, the present study 
demonstrates that high challenge, motivationally relevant programs in the summer can fill an 
important niche in the lives of a relatively large number of students, providing enrichment and 
acceleration opportunities in a time that is normally educationally dormant. 
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We build on our previous research indicating that preservice secondary teachers’ encounter 
difficulties when attempting to model fraction problems in situational contexts where algebraic 
manipulations are often the expected solution method. We extend our prior research on 
preservice teachers by providing data gathered through investigations into the nature of in-
service secondary teachers’ difficulties related to similar fraction situations. Specifically, our 
study challenges the field to focus on the mathematical knowledge needed for teaching 
elementary mathematics concepts from a conceptual perspective to struggling secondary 
students, particularly when solution methods involving algebraic manipulations do not initially 
prove mathematically fruitful.  

The degree to which elementary teachers struggle with conceptual understandings of   
fraction concepts and computation is well documented (e.g., Ma, 1999). Recently researchers 
have been investigating the misconceptions associated with secondary mathematics teachers and 
the models they create to facilitate conceptual fraction development with their students without 
relying on computation strategies associated with manipulating and solving algebraic expressions 
(e.g., Olson & Olson, 2010, 2011; Sjostrom, Olson, & Olson, 2010). This recent research offers 
compelling insight that preservice secondary mathematics teachers do not provide robust models 
for ratio and proportion situations involving fractions, nor do they accurately arrive at solutions 
without resorting to algebraic manipulations.  

Based on our previous work and the implications thereof, the research presented in this paper 
represents an intentional focus on the “next steps” we previously identified to meaningfully 
extend our work to the examination of the ways in which both preservice and in-service 
secondary teachers conceive of fraction models in contextual situations. As such, the primary 
research question addressed in this paper is: What are secondary teachers’ abilities, and 
perceptions of their abilities, to provide meaningful models to represent the mathematics in 
situated and contextualized fraction problems without explicitly relying on algebraic symbolism 
and manipulation?  

In this paper we investigate the degree to which secondary teachers can provide a meaningful 
model for students lacking a robust understanding of algebraic manipulations (particularly with 
respect to such problems involving fractions). For our purposes, we refer to preservice and in-
service teachers of Grades 7-12 as “secondary teachers.” We argue that to work with students 
who struggle with algebra and fractions, secondary teachers must be able to provide meaningful 
models and representations for situations involving fractions without strictly relying on symbol 
manipulation and algorithmic computational strategies. 

Moreover, it is our argument that the ability to present students with, and facilitate students’ 
development of, solution methods that involve models for situations involving fractions is 
critical for all teachers. Such ability is specifically important for secondary mathematics teachers 
to effectively work with students, many of whom lack deep conceptual or computation 
understanding of fractions themselves. Furthermore, our study is of particular relevance to the 
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call described in the Common Core State Standards for Mathematics ([CCSSM], 2010) 
Standards for Mathematical Practice for students to have the “ability to contextualize.”  
Specifically, the second CCSSM Standard for Mathematical Practice is to, reason abstractly and 
quantitatively. In this standard, CCSSM authors state:  

 
Mathematically proficient students make sense of quantities and their relationships in 
problem situations. They bring two complementary abilities to bear on problems 
involving quantitative relationships…the ability to contextualize, to pause as needed 
during the manipulation process in order to probe into the referents for the symbols 
involved. Quantitative reasoning entails habits of creating a coherent representation of 
the problem at hand; considering the units involved; attending to the meaning of the 
quantities, not just how to compute then; and knowing and flexibly using different 
properties of operations and objects. (p. 6) 
 
This paper extends recent research on secondary teachers fraction understandings in problem 

situations that allow for solutions to be both modeled (e.g., area models, pictures, number lines, 
and so forth) and arrived at through algebraic symbolism and manipulation. This research is 
significant because while researchers have examined how students and teachers understand 
fractional concepts (Charalambous & Pitta-Pantazi, 2007; Izak, 2008; and Sharp & Adams, 
2002), Lee and Orrill (2009) indicate that most studies have not looked at teachers’ knowledge 
any closer than simply saying that teachers’ reasoning is insufficient. 

Theoretical Perspectives 
Lamon (2007) is widely considered the most up to date resource related to research on 

rational number concepts and proportional reasoning. Regarding children’s understandings of 
fractions, Lamon states, “One of the most compelling tasks for researchers has been to discover 
how instruction can facilitate the joint development of rational number understanding and 
proportional reasoning” (p. 8). We address Lamon’s idea by examining how teachers’ 
understanding of fraction concepts in word problems involving multiplication and division 
situations compares to teachers’ perceptions about the adequacy of their explanations of those 
problems. In other words, our research is positioned to understand teachers’ abilities to, and 
perceptions of abilities to, facilitate instructional situations that foster the development of 
rational number understandings and proportional reasoning.  

Borko, Eisenhar, Brown, Underhill, Jones, & Agard (1992) highlight certain issues 
underlying our research in their identification of a prospective elementary teacher with a major in 
mathematics who could apply and make sense of the division of fractions rule but who could not 
conceptually explain the situation to sixth-grade students. What we found in our previous work is 
consistent with NCTM (2000); the invert and multiply strategy is perhaps the most mechanical 
and least understood procedure in the elementary school curriculum. When looking at middle 
school and high school curricular topics, similar concerns should be raised about ratios and 
cross-multiplication.  Smith (2002) reports that most students rarely use cross-multiplication. 
While efficient and universally applicable, students find it difficult to learn, and resist using 
cross-multiplication as it does not seem to match their mental operational view of ratio. 
Furthermore, when confronted with alternative strategies, Tirosh (2000) indicated students might 
consider such strategies as a type of error.  

Campbell, Rowan, & Suarez (1998) argue that because algorithms are important, teachers 
should know and be able to use various strategies for finding a solution, and assist students in 
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making sense of processes and procedures to determine if their work is reasonable. Related to the 
need for connections among algorithms and conceptual understandings related to algorithms, Ma 
(1999) identified Chinese elementary teachers as having a more robust understanding of the 
methods and techniques for comprehending and explaining concepts with fractions, especially 
division of fractions. Chinese teachers had a repertoire of four ways to explain division of 
fractions while teachers in the United States usually had only one way.  

Although Ma examined elementary teachers, it is also imperative to examine secondary 
teachers, including ways in which their students conceive of mathematical concepts. In their 
work, Cramer, Wyberg, and Leavitt (2007) offer support for experiences such as those examined 
in our study, “Many middle school students are able to apply the algorithm for multiplying 
fractions, but most are unable to describe the reasons why the algorithms work. Fewer are able to 
make sense of the division algorithm” (p. 533). Cramer et al. further note that while middle 
school students are able to make connections between models, images, and symbols for addition 
and subtraction problems, “Developing mental images related to multiplication and division of 
fractions proved to be much more complex” (p. 535). 

Furthermore, Kieran (2007) provides a way to conceptualize the difficulties that students 
have with the development of fraction concepts and computational strategies, and the 
connections to generating models and equations from word problems involving fractions. In 
particular, Kieran reports that, “Generating equations to represent the relationships found in 
typical word problems is well known to be an area of difficulty for algebra students” (p 271). 
However, there is little work done in examining how secondary students make use of modeling 
to solve these problems if they cannot represent the ideas with algebraic notation, including the 
use of ratio and proportion relationships to solve these problems. 

Although the focus of Lamon’s (2001) discussion is related to elementary students, we argue 
that many of the concerns directly relate to students of all levels, and particularly secondary 
students. Specifically, Lamon suggests that, “Current instruction in fractions grossly 
underestimates what children can do without out help. They have a tremendous capacity to create 
ingenious solutions when they are challenged.” (p. 153) She further indicates that, “Like many 
constructs in mathematics, the rational numbers can be understood only in a whole system of 
contexts, meanings, operations, and representations.” (p. 150)  

Our work responds to the connections we identify that need to be made in this previous 
research to better understand algebra students’ (or in general, secondary students’) 
understandings of word problems involving fraction concepts and algebraic manipulations. 
However, more than that connection, our work responds to Son and Crespo’s (2009) suggestions 
that it is important for the mathematics education research community to, “…continue to 
investigate prospective and also in-service teachers’ reasoning and responses to students’ 
thinking.” (p. 259). Our work takes this line of reasoning one step farther. We ask teachers to 
provide an explanation to a problem, and then have them reflect on and rate the adequacy of their 
response to provide an explanation. 

Furthermore, our research builds upon prior work examining both children’s and teachers’ 
understandings of the same fraction problem as that presented in this paper (Olson, Slovin, & 
Zenigami, 2009; Olson, Zenigami, & Slovin, 2008; Olson, & Olson, 2010; Olson, & Olson, 
2011; Sjostrom, Olson, & Olson, 2010; Slovin, Olson, & Zenigami, 2007). In general, the 
investigations examined fraction word problems that have been solved by fifth-grade students 
with limited prior experiences related to multiplication and division of fractions, let alone the use 
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of ratio and proportion as a solution method. Yet, these children build upon their conceptions and 
words in the problems to provide insightful solutions, often using linear models or number lines.  

In framing strategies for solving problems, Ni (2000) discusses the use of number lines, 
which includes the difficulties student have in conceptually understanding the meaning and 
representation of a rational number. Specifically, Ni states that, “the graph representation of a 
given algebraic problem is not necessarily less abstract than the equation for the problem” (p. 
140). However, what we have previously found is that not only do children in grades 6 - 8, find it 
difficult to model the solutions for these same questions, but so do secondary preservice teachers. 
Gilbert and Coomes (2010), in discussing a problem similar to the ones discussed in this article, 
offer the following argument: 

 
Any reasonably numerate adult should come up with an answer to this task. Teachers, 
however, not only must be able to answer this question correctly; the tasks of teaching 
require that they must also understand and interpret multiple approaches to the same 
answer. (p. 421) 

Methodology 
The same four problems used in previous studies (Olson & Olson, 2010; 2011; Sjostrom, 

Olson, & Olson, 2010) were used in this study, as were the same overall prompt and 
effectiveness rating prompts (Olson & Olson, 2010; 2011). However, only data from Problem 1 
is used in this paper. The data from Problem 1 are reported for two reasons. First of all, the fifth 
grade children were successful in solving this problem with a process that can best be described 
as “an application of 1-1 correspondence.” Second, for some reason, this problem often appears 
mysterious to teachers, especially when asked to provide an explanation. As stated, Problem 1 
read: It takes 3/4 liter of paint to cover 3/5 m2. How much paint is needed to paint 1 m2? Explain 
your reasoning and support your answer. 

Written instructions were provided as well as verbally given to emphasize the importance of 
the written work used to explain the solution process. These instructions were: For each question, 
show how you would explain how to solve this problem to a student who does not understand, or 
is having difficulty understanding, how to solve it algebraically. That is, you are to provide your 
solution to the problem ‘according to how it is written’ by using models and sense making rather 
than direct computations and algebraic symbolism.  

As with prior work with these problems, Explanations were coded using the five-point 
explanation rubric from the State of Illinois extended response format (Illinois State Board of 
Education, n.d.). The complete rubric is explained in other papers (e.g., Olson & Olson, 2011), 
but the description of work to receive the highest rating (4) is, “Gives a complete written 
explanation of the solution process; clearly explains what was done and why it was done. May 
include a diagram with a complete explanation of all its elements.” Decreasing levels of 
explanation (e.g., 3, 2, 1, or 0) essentially lack one or more of these components. While the 
explanation is consider a higher priority than only a correct answer, the answer was also rated as 
correct (2), incorrect (1), or no response (0). Comparing correctness of response with quality of 
explanation allowed us the ability to examine how well teachers could explain the problem, as 
well as if they could solve it. 

After the secondary teachers had provided a solution to the problem, they were asked to rate 
the effectiveness of their explanation according to a five-point Likert-like scale. These data were 
gathered to obtain how well they felt they responded so that the explanation would be beneficial 
for someone who struggles with algebraic representation and symbolism. The scale for the 
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effectiveness rating was: Highly Ineffective (1), Ineffective (2), Neither Ineffective or Effective 
(3), Effective (4), and Highly Effective (5). 

Findings 
Data were gathered from thirty-four teachers from four groups at two institutions of higher 

education during the 2010 – 2011 academic year. Two groups were preservice teachers and two 
groups were in-service teachers. For our purposes, data from the four groups were combined and 
are reported in Table 1.   
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Answer Explanation Rating 
0 1 - 
2 1 4 
2 2 4 
0 1 - 
1 2 5 
2 4 4 
0 1 1 
2 2 2 
2 2 1 
2 2 4 
2 2 3 
2 2 4 
2 4 4 
2 2 3 
2 1 1 
2 4 4 
0 2 4 
0 2 4 
2 4 2 
2 2 3 
1 3 4 
2 2 3 
2 4 4 
1 2 4 
2 4 4 
2 3 2 
0 1 2 
0 1 - 
2 4 4 
2 4 3 
2 4 4 
1 1 3.5 
2 2 2 
2 1 4 

 

Table 1. Individual ratings of answer, explanation and effectiveness rating 
As indicated in Table 1, there were more correct answers than highest ratings for the 

explanations. In particular, 68% of the teachers answered correctly, but 21% did not provide an 
answer. Regarding the ratings for the explanations, only 32% of the teachers received a rating of 
3 or 4. However, about 55% rated the effectiveness of their explanation as either a 4 or 5. 
Consequently, there appears to be a clear disconnect between a high quality explanation (as 
determined by our coding scheme), and what the teachers view as an effective explanation. In 
particular, two teachers’ explanations were scored as a 1, but they rated their effectiveness as a 4 
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(i.e., “effective”); six teachers’ explanations were scored as a 2, but they also rated their 
effectiveness at 4 (“effective”); and one teachers’ explanation scored a 2, but this teacher rated 
his effectiveness at 5 (i.e., “highly effective”).  

We argue that these disparities are reflective of people who were able to algebraically solve 
the problem using an equation (or equivalence of two ratios) but they provided very little 
explanation beyond the equations. Certainly, the argument can be made that these teachers did 
not “contextualize” the fraction concepts and computations, as specifically suggested in the 
CCSSM. On the other hand, there were a few examples of teachers who either did not know their 
explanations were well presented, or otherwise displayed a lack of confidence in their 
explanations. Specifically, one teachers’ explanation was rated 4. However, she rated her 
effectiveness as 2. Similarly, another teacher with an explanation rated 3, rated her effectiveness 
as 2. We maintain, that although these teacher’s explanations were well presented, the disparity 
among the ratings is still indicative of a mismatch between knowing how to solve a problem and 
knowing if the process used will be effective in developing students’ understandings. 

Discussion 
The results shown in this paper have many implications for teacher education. The CCSSM 

(2010) expects students to have computational competency, conceptual competency, and to 
employ standards of mathematical practices. In particular, a Grade 6 expectation for ratio and 
proportion is that students should be able to, “Use ratio reasoning to convert measurement units; 
manipulate and transform units appropriately when multiplying or dividing quantities” (p. 42). 
Moreover, in the notes on courses and transitions the document reads, “This body of material 
includes powerfully useful proficiencies such as applying ratio reasoning in real-world and 
mathematical problems.” (p. 84.) The data from our study indicate teacher education must focus 
on developing teachers who can address students’ understandings, particularly related to the 
ideas outlined in the CCSSM, namely that, “One hallmark of mathematical understanding is the 
ability to justify, in a way appropriate to the student’s mathematical maturity, why a particular 
mathematical statement is true or where a mathematical rule comes from.” (p. 4) 

An underlying concern we identified in discussing the results of this study is the question of 
when do teachers gain the knowledge they need to effectively teach? More specifically, if 
teachers are to be prepared to model solutions to this problem for a student who does not already 
know, where should that teacher be expected to learn such knowledge? With an ability to make 
sense of the question and sketch a model, a solution can be obtained that does not depend on 
either complexities of division or of computations involving ratios. 

Lamon (2001) states that what is needed is, “better understanding of the role that presenting 
and representing fractions in instruction plays in enabling or disabling the development of 
rational-number understanding” (p. 164). While a teacher can enable or disable the development 
of rational-number understanding, our study shows that our teachers’ own understandings 
arguably were not enabled during the course of their own learning of rational number concepts. 
Consequently, these teachers will arguably not enable, nor provide the opportunity for enabling 
their students’ development of rational-number conceptual and computational understandings. 

In light of the evidence presented of secondary teachers’ difficulties in modeling and 
explaining solutions to word problems involving fractions, as teacher educators we must ask 
important and timely questions of ourselves. How do we help secondary teachers learn to 
provide better mathematically and conceptually grounded explanations of their reasoning?  How 
do we help secondary teachers understand if their explanations of “elementary” concepts will 
potentially be effective? We argue that the lack of facility to choose an effective model to 
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represent a fraction problem involving ratios and unknown quantities will set a secondary teacher 
up for failure when they are faced with students who cannot reason abstractly about such 
problems. It is essential that secondary teachers develop multiple methods for assisting students 
to solve problems including the use of mathematically and conceptually rich models and multiple 
representations that match the context of the problems.   

While these ideas can be an emphasis in teacher education coursework, we argue, like Wu 
(2011), that they need to be addressed in mathematics content courses for preservice secondary 
mathematics teachers, as well as professional development opportunities. Previously, we have 
stated: 

 
We strongly argue that the role of instruction in undergraduate mathematics classes must 
be adjusted to value, encourage, and emphasize deep mathematical thinking, connections, 
and reasoning that, along with methods courses, allow for PSSTs [Preservice Secondary 
Teachers] to develop more robust mathematical understandings related to facilitating the 
development of students’ mathematical knowledge at a higher level than solely 
algorithmic. (Olson & Olson, 2011, p. 175) 
 

We suggest at each phase of their professional growth, secondary teachers should be nurtured to 
learn the content of mathematics more deeply, and also be provided with experiences that enable 
them to develop a rich repertoire of ways to explain mathematics to students. 
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Reducing Abstraction in Teaching (RAT) is one of the theoretical frameworks that provide a 
window for looking at how teachers deal with abstraction in teaching. By analysing mathematics 
classroom practices captured in the public release video lessons of TIMSS 1999 through the lens 
of RAT, I illustrate various tendencies of teachers dealing with mathematical abstraction. I, then 
exemplify some instances where ‘reducing abstraction’ seems to be an  effective teaching 
strategy while in other cases it may go unsupportive for the development of student’s 
mathematical understanding.  

Introduction 
Abstraction is often seen as the fundamental characteristic of mathematics; it has been a 

central topic of discussion since the days of Aristotle and Plato. More recently, “abstraction has 
been recognized as one of the most important features of mathematics from a cognitive 
viewpoint as well as one of the main reasons for failure in mathematics learning” (Ferrari, 2003, 
p. 1225). As such, in the recent years, abstraction has received a growing interest in the research 
community among psychologists and mathematics educators. In fact, when teachers plan, one of 
their most important challenges is to figure out ways of translating abstract concepts into 
understandable ideas. If teachers understand more clearly what mental process their students go 
through while coping with mathematical abstraction they are attempting to teach, teachers may 
be able to teach more effectively and students may learn better.  

Reducing Abstraction (Hazzan, 1999) is one of the theoretical frameworks that examine 
mental process of learners while coping with abstraction of new mathematical concepts. It has 
been used to examine the mental process of learners in different areas of mathematics and 
computer science (Raychaudhuri, 2001; Hazzan, 2002; Hazzan & Zazkis, 2005). I am however, 
not aware of any study that specifically looked at how teachers deal with mathematical 
abstraction in teaching. Hence, a question worth exploring is ‘how do teachers handle the 
mathematical abstraction in their teaching practices? Do teachers reduce abstraction level in the 
first place? If yes, what is the nature of reducing abstraction?  

In this paper, I first briefly visit the notion of reducing abstraction as propounded by Hazzan 
(1999). Second, I look at the notion of reducing abstraction from teachers’ perspective rather 
than learners’ perspective. In so doing, a new theoretical framework, which I call Reducing 
Abstraction in Teaching (RAT), has been developed. Third, using the RAT framework I analyse 
the mathematics classroom practices captured in the public release video lessons of TIMSS 1999. 
I, then exemplify some instances where reducing abstraction in teaching seems to be an effective 
teaching strategy, while in other cases; it may go unsupportive for the development of students’ 
mathematical understanding. Finally, some comments and concluding remarks will follow.  

Theoretical Framework 
Reducing abstraction framework was first introduced by Hazzan (1999) in order to examine 

the mental processes of undergraduate students while learning abstract algebra. Her finding is 
that learners usually do not have the mental constructs or resources ‘to hang on to’ to cope with 
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the same abstraction level of the new (unfamiliar) concept and hence, they tend to reduce the 
level of abstraction in order to make the concept mentally accessible. This usually happens 
unconsciously (cf. Hazzan, 1999 for detailed discussion).  

In this paper I, however, attempt to look at the notion of reducing abstraction in teaching. 
This is a shift in perspectives because a learner’s goal is to learn mathematics for themselves 
whereas teachers are the mediators and their goals are to help their students to learn mathematics. 
This shift in perspective demands some modification of the original framework. For example, the 
choice of the words and phrases such as ‘unconscious’, ‘lacks of the mental construct ‘to hang 
on to’ are problematic in most cases. The assumption here is that teachers are the experts of the 
subject and they have sufficient mental resources to deal with the abstraction of the mathematics 
they are attempting to teach. This follows then, that the act of reducing abstraction in teaching, in 
most cases, are intentional and of pedagogical value. Hence, the notion of reducing abstraction in 
teaching is fundamentally different in its characters, goals and process from that of reducing 
abstraction by the learners. Hence, a modified version of the framework is required if one wants 
to look at the notion of reducing abstraction in teaching.  

The framework of Reducing Abstraction in Teaching (RAT) is the result of this necessity 
which, I believe has “the potential to provide insight into one of the central aspects of learning 
mathematics and inform instructional practice” (Dreyfus & Gray, 2002, p. 113).  Because of the 
space limitation, detailed discussion of the framework is not possible here. I, however, provide a 
brief overview of the RAT framework.  

Reducing Abstraction in Teaching (RAT)  
According to Hazzan & Zazkis (2005), Reducing Abstraction refers to the tendency of the 

students to make sense of the unfamiliar mathematical concept by relating it to their previous 
knowledge and experience. This usually results in students’ working in a lower level of 
abstraction of the concept. They maintain that all modes of students’ learning can be interpreted 
as some way of reducing abstraction level.  

This follows, then that while introducing new mathematical concepts, it is necessary for the 
teachers to maximally use the learners previously acquired knowledge, experience and level of 
thinking as well as their familiar contexts. In fact, as Cornu (1991) states, “for most 
mathematical concepts, teaching does not begin on virgin territory” (p.154), all students come 
with certain ideas, intuition, and knowledge already formed in their mind.  

This idea is in line with many other psychologists and educators (see Piaget, 1970; 
Hershkowitz et al., 2001). For example, Piaget’s idea of developmental psychology and genetic 
epistemology says that children develop abstract thinking slowly, starting as concrete thinkers 
with little ability to create or understand abstractions. Safuanov (2004) suggests:  

“Strict and abstract reasoning should be preceded by intuitive or heuristic considerations; 
construction of theories and concepts of a high level of abstraction can be properly carried 
out only after accumulation of sufficient supply of examples and facts at a lower level of 
abstraction” (p.154).   

From this perspective, effective teaching should involve the process of introducing new 
abstractions, concretizing or semi-concretizing them, then repeating at a slightly more advanced 
level. That is, the concepts are concretized and presented to the students in a lower level of 
abstraction in order to go to the higher level of abstraction using the lower level as a stepping 
stone. Hence, the notion of reducing abstraction in teaching comes into play.   

Building on the work of Hazzan (1999), Wilensky (1991) and Sfard (1991), three 
interpretations for abstraction level have been identified, all of which interpret teacher’s action as 
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some way of reducing abstraction of the concept. These three categories have been further 
divided into subcategories in order to incorporate different nature of the teachers’ act of reducing 
abstraction:  

Category 1: Abstraction Level as the Quality of the Relationships Between the Mathematical 
Concept and the Learner 

On the basis of this perspective, the level of abstraction is measured by the relationship 
between the learners and the concept (mathematical object). It is based on Wilensky’s (1991) 
interpretation that whether something is abstract or concrete is not an inherent property of the 
thing, “but rather a property of a person’s relationship to an object. Concepts that were 
hopelessly abstract at one time can become concrete for us if we get into the ‘right relationship’ 
with them…” (p. 198). From this perspective, reducing abstraction refers to the situation where 
an attempt has been made to establish a right relationship (in the sense of Wilensky) between the 
students and the abstract concepts. Reducing abstraction in this category has been further divided 
in to three subcategories in order to incorporate different ways a teacher attempts to make 
unfamiliar concept more familiar to the students.  

1.1) Reducing Abstraction by Connecting Mathematical Concept to Real-life Situations 
Reducing abstraction in this kind refers to the situation where a teacher develops 

mathematical concept by connecting unfamiliar (therefore abstract) mathematical concept to the 
real-life situation (familiar therefore concrete). It is based on the idea that real life problems 
“connect better with students’ intuitions about mathematics, show relevance of mathematics and 
provide a sense of familiarity to the students” (Hiebert et al., 2003, p. 84).  

1.2) Reducing Abstraction by Using Familiar but Informal Language Rather than Formal 
Mathematical Language 

 Language plays a key role in mathematics classroom. But with regard to the use of informal 
language in mathematics classroom, some argue that it may give a different meaning by placing 
it into a different context and hence may be detrimental to formal education. Others argue that 
appropriate use of everyday language in mathematics teaching may be pedagogically helpful. To 
what extent the use of everyday language is a help or a hindrance for the learning of mathematics 
is debatable and is not the focus of this paper.  I however, agree with Munro (1989) when he 
says, “Children construct new ideas and communicate these in language ... with which they are 
familiar,… and learn later the conventional language formats for expressing these ideas (p. 121). 
As such, teachers use informal everyday language in mathematics classroom before or alongside 
formal mathematical language with a view that use of everyday language in teaching would 
make the abstract concept mentally more accessible to the students thereby reducing the level of 
abstraction of the concept. 

1.3) Reducing Abstraction by the Use of Pedagogical Tools  
Reducing abstraction in this kind refers to the act of teachers in which new mathematical 

concept (often unfamiliar and therefore abstract) is presented to the students in fairly basic level 
by the use of pedagogical tools and artifacts (often familiar and therefore concrete) such as 
models, manipulative, metaphors, gestures, etc.  These tools act as a vehicle to lead students 
mentally from the abstract mathematical ideas to the familiar (source) domain and then back to 
the realm of abstract concepts (target domain) they are attempting to teach. 
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Category 2: Abstraction Level as Reflection of the Process-Object Duality 
Skemp (1976) introduced the idea of relational understanding and instrumental understanding 

in mathematics education. According to him, relational understanding involves “knowing both 
what to do and why” (p. 2), and “building up a conceptual structure” (p. 14). Instrumental 
understanding, on the other hand, shifts the focus to algorithm and end-product (answer) without 
any understanding. In Skemp’s words, instrumental understanding involves “rules without 
reasons” (p. 2) and usually can be carried out in lower level of thinking.  

Along the same line, Sfard (1991) talks about the theory of process- object duality where she 
maintains that “abstract notation such as a number, function etc. can be conceived in two 
fundamentally different ways: structurally- as objects and operationally- as processes” (p 1). 
According to this theory, the process conception is less abstract than an object conception. In 
other words, the focus on procedures or the end product (answer) rather than meaningful 
understanding are considered to be in lower cognitive level and less abstract. The following 
tendencies of teacher reducing abstraction fall under this category.   

2.1) Teacher Reducing Abstraction by Shifting the Focus on Procedure 
Reducing abstraction in this level refers to the situation where the teacher shifts the focus on 

canonical procedures (how to do it) in a way that leads them away from conceptual 
understanding even though the original mathematical problem includes a focus on concepts, 
meaning, or understanding.  

2.2)  Reducing Abstraction by Shifting the Focus on End-product (Answer).  
Reducing abstraction in this level involves the situation where the teacher shifts the focus on 

end-product (answer) and its accuracy even though the original mathematical problem or 
discussion implies a focus on concepts, meaning, or understanding.  

Category 3: Degree of Complexity of Mathematical Concepts 
In this category, abstraction level is determined by the degree of complexity.  The working 

assumption here is that “the more compound an entity is, the more abstract it is (Hazzan, 1999, p. 
82)”. Reducing abstraction of this kind is further divided into the following subcategories in 
order to incorporate the different ways of teachers act in classroom practice.  

3.1) Reducing Abstraction by Shifting Focus on Particular Rather than General   
Reducing abstraction in this kind refers to the situation when the presented materials and 

discussions limit in their meaning and scope by focusing on particular case rather than general 
one thus making the problem less complex for their students. Such act of teachers however 
provides a partial picture of the concept rather than the complete one.  

3.2)  Reducing Abstraction by Routinizing the Problems 
Reducing abstraction in this level involves the situation where teacher takes over the 

challenging aspects of the problems by telling student how to solve or by solving the problem for 
students. In doing so, the complexity of the concepts may be reduced, but takes away the 
opportunities for students to discover on their own.  
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3.3)  Reducing Abstraction by Stating the Concepts Rather than Developing It 
When the concepts are involved in the lesson, they can either be developed or be stated. 

Reducing abstraction in this level refers to the situation when complexity of the concept or 
problem is reduced by stating the concept rather than developing it.   

3.4) Reducing Abstraction by Giving Away the Answer in the Question (Topaze Effect)  
Reducing abstraction of this kind refers to the situation when the teacher gives away the answer 
in the question (or provides more hint than necessary) resulting in a situation of ‘Topaze effect’. 
The name of the ‘Topaze effect’ comes from a play by Marcel Pagnol written in 1928 in Paris.  
In the play, Topaze is a school teacher. He wants his student to succeed; be able to find an 
answer of the problem by the student himself.  When the student cannot find the answer easily, 
the teacher gives away the answer within the question itself in a slightly indirect way thereby 
lowering the intellectual demandingness of the tasks (cf. Brousseau, 1997). Later the student 
produces the correct answer but without having learned anything. This is what Brousseau (1997) 
calls ‘Topaze effect’.   

I want the reader to note that these three categories of abstraction should not be thought 
of as hierarchical or disjointed, they are rather intersecting, or one may even emerge from the 
other.  For example, a teacher  trying to deal with a concept in a less complex manner (category 
3) or a shift of focus to procedures (category 2) can be interpreted as an attempt of the teacher to 
make the concept more familiar (category 1) for their students.  So, based on the perspectives one 
takes, one category of reducing abstraction can be thought of as reducing abstraction in the other 
category. I, therefore, assign the teacher’s act of reducing abstraction to the categories that I deem 
they fit best. 

Methodology 
The research questions that guided this work are: 1) how do teachers deal with abstraction in 

mathematics teaching?  2) Can the Reducing Abstraction in Teaching (RAT) framework suggest 
a plausible explanation for the action of teachers and sources of teaching activities?  3) What are 
the impacts on student’s understandings or misunderstanding of the concept due to the act of 
reducing abstraction in teaching? In this paper, I however, focus on the first two questions, 
leaving the third one for the future project. For the purpose of this paper, I used TIMSS 1999 
public release video lessons to gather the data.  

TIMMS 1999 video study was conducted by LessonLab, Inc. under contract to the U.S. 
Department of Education (Hiebert et al., 2003). The study involved 638 eighth-grade 
mathematics lessons that were selected randomly to be the representative of teaching in the seven 
participating countries- USA, Australia, the Czech Republic, Hong Kong, Japan, the 
Netherlands, and Switzerland. The videos were analysed by TIMMS videos study team itself and 
others using different theoretical frameworks (Hiebert et al., 2003) with a focus on various 
aspects of teaching and learning. I am however, not aware of any study with its focus on 
teachers’ dealing with abstraction in teaching. Hence, my present study took place.    

My analysis was based on transcripts of the public release video lessons that have been 
translated into English by TIMMS 1999 video study team. Public release video lessons consist of 
four lessons from each of the seven participating countries. I read the transcripts repeatedly with 
an eye towards identifying key teachers’ actions and searching and developing the meaning for 
each of their action. For lesson from English speaking countries, I also watched videos 
repeatedly. Because of the dynamic nature of video, they were very helpful in my attempt to 
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understand what is going on in the classroom that might otherwise be impossible to see (from the 
transcript only).  

Results and Discussion 
Because of the space limitation, I provide examples and discussion on some of the categories 

and subcategories only. 

Category 1: Abstraction Level as the Quality of the Relationships Between the Mathematical 
Concept and the Learner 

Example 1 
Consider the following example:  

00:04:33  T  We know that the edges of a triangle- or any figure- are called "sides". 
00:04:38  T  In a right-angled triangle, this side is attached to a right angle. So  what 

should we call this side? A right-angled side. 
00:04:47  T  Yes? Because this side is attached to a right angle so you call that a  right- 

angled side. 
00:05:00  T  Do we have any other right-angled side in there? 
00:05:02  SN  Yes. 
00:05:03  T  Yes, all the way on the other side. That one is attached to the right  angle 

as well, therefore you call that a right-angled side as well. 
00:05:19  T  Then I still have one side left. It isn't so obvious because it is lying flat. 

But if you see this triangle, what can we call that side? 
00:05:28  SN  The long side. 
00:05:29  T  The long side. That is correct. Or in a different way? 
00:05:33  SN  The right side? 
00:05:34  T  It is actually at an angle. If you see it in such an- like a diagonal-  so you 

call this the sloped side or the hypotenuse, is what you call this one. 
00:05:45 T  These are just names, you know, you may also keep calling this  "the long 

side", no problem.   ( NTL-PRL 02) 
Here, the teacher uses words from everyday language such as ‘the side lying flat” ‘the long 

side’, side ‘like a diagonal’ and ‘sloped side’ to represent hypotenuse. The use of such informal, 
kid- friendly language to introduce the concept is an attempt on the teacher’s part to make the 
unfamiliar (abstract) concept more familiar to the students thereby reducing the level of 
abstraction of the concept (Category 1.2).   
Example 2 

Teacher assign the task of solving equation 4x = 4x -1.   
00:38:57 T what do we have that's tricky? We have four X is equal to four X... minus 

one. So how are we going to see that? 
00:39:04 SS It's not possible! 
00:39:09 T It's impossible. Valentine?  
00:39:11 SN Because it need a place, for example four X is equal to three X  

minus one. Otherwise we can't take away the X's. We can't take away one. 
00:39:21 T  Let's try to take it away, let's try to be as methodical as we can, then let's 

see what happens. Let's see, what do we find, so- 
 Dialogue continues… 
 00:39:35 T Therefore zero is equal to minus one. Is that possible? 
 00:39:42 SS No! 
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 00:39:43 T No. Therefore when you get to a case like this... 
At this stage, some of the students seem to be struggling to make sense of what it means 

when they get 0 = -1 while solving the equation. At this time, the teacher refers to the graphical 
method in which case students saw clearly that the lines are parallel and so there is no point of 
intersection. That is, there is no solution. The dialogue continues:  

00:41:33 S It is parallel. 
00:41:33 T It is, well, parallel. Therefore when do they meet each other, lines? 
00:41:37 SS Never. 
00:41:37 T Never. Therefore the- what we're looking for as a solution, it's the points 

that meet each other. Therefore there's none.  
Teachers act of mapping the unfamiliar (solution of equations as a null set) target domain to 

the students familiar source domain (visual representation of the parallel lines) in order to make 
the concept mentally accessible can be interpreted as an act of reducing abstraction in by the use 
of pedagogical tools ( Category 1.3).  

Category 2: Abstraction Level as Reflection of the Process-Object Duality 
Example 3 

Following dialogue from an Australian lesson illustrates the behavior of reducing abstraction 
in this category.  

00:00:34 T All right, this one is A B C, and this one is D E and F. All right, they are 
congruent. So I'm going to ask you- ask you 10 quick questions on that. 

00:00:49  T All right, number one, which angle is equal to angle A? 
00:01:04 T Which angle is equal to angle D? 
00:01:15 T Number three, if angle A is 30... and angle D is 60... uh, what size is angle 

E? 
00:01:35  T And number four, what size is angle D? 
00:01:49  T Which line is equal to B C? 

Teacher continues asking all 10 product questions that do not require any explanation.  
00:04:25  SN And 10 is A B. 
00:04:26 SN Why? 
00:04:28 T  Ten is A B. Just to show the congruence show relationship between 

them… 
00:04:33 T Who got them all right? That's pretty good. Who got nine right? 
00:04:40 SN Yeah I did. 
00:04:42  T Yeah, right. Number 10 was A B…   
00:04:46 T All right, okay, I've got a worksheet for you to do... (AU-PRL2)  

The original problem could lead to the discussion about congruent triangles that might push them 
to learning with understanding, but the teacher opted to focus on the answer rather than 
clarifications and justifications from the students. This act can be interpreted as reducing 
abstraction by shifting the focus on end-product or answer (Category 2.2) 

Category 3: Abstraction Level as Degree of Complexity of Mathematical Problem/Concept 
Example 4 

Consider the following dialogue that focuses on the concept polygon and its interior angles.   
00:06:40 T Okay, what are the differences between convex and concave polygon? 
00:06:45 T  We look at the concave polygon. At least- at least one or more of the 

interior angles is greater than 180 degrees. 
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00:06:56 T  We call this concave polygon. Understand? 
00:06:59 T But in this chapter, we don't discuss the concave polygon; we just only 

discuss the convex polygon. Okay? …  [Dailogue continues.] 
00:07:15 T Sorry. It is uh, uh, you have learned it in Form One. It is the... equilateral 

polygon and also... equiangular polygon. 
00:07:32 T What is meant by equiangular polygon? And equilateral polygon? 
00:07:58 T Equilateral polygon? Do you still remember it? 
00:08:02 S? Yes. 
00:08:03 T what does it mean? I'll give you some hints. All the sides..? 
00:08:10 SN Are equal. 
00:08:10 T All the sides are equal. Okay? All the sides of the polygons are equal. 
00:08:16 T How about equiangular polygon? 
00:08:17 SS (inaudible) 
00:08:18 T All the sizes of the angle…? 
00:08:21 SN Are equal. 
00:08:21 T Equal. Get it?  (HK – PRL3) 

At 6:40, and at 7:32, teacher seems to open up the dialogue on the concept of concave and 
convex polygon, and equilateral and equiangular polygon respectively. He however, took over 
the challenging aspects and complexity of the problem by telling them the meaning of concave 
polygon at 6:45. This act of teacher can be interpreted as reducing abstraction by routinizing.  
(Category 3.2).  

Further, at 8:03 the teacher asks the question about equilateral polygon and at 8:18 about 
equiangular polygon. However, teacher choice of questions such as equilateral polygon means, 
“all the sides are ?”… and equiangular polygon means,  “all the angles are?”, actually contain the 
answers within the questions in a slightly disguise form. This type of question in teaching may 
reduce the complexity of the problem for the students and that students may be able to produce 
correct answer, it however does not lead students to learning with understanding. (Topaze effect- 
category 3.4).  

Conclusion 
In this paper, my aim was to explore how teachers deal with mathematical abstraction in 

teaching. Do teachers reduce abstraction level in the first place? If yes, what is the nature of 
reducing abstraction in teaching? In order to answer these questions, a new theoretical 
framework, which I call Reducing Abstraction in Teaching (RAT), has been developed. Using 
the RAT framework, I analysed some of the classroom practices captured in the TIMMS 1999 
public release video lessons.  I found it helpful to use RAT framework to explore the actions of 
teachers and sources of teaching activities in regard to dealing with mathematical abstraction in 
teaching. I identified various tendencies of teacher reducing abstraction in teaching, which I 
summarized under three main categories and subcategories.  

As has been exemplified, reducing abstraction in teaching, in some cases, proved to be an 
effective teaching strategy (mostly in category 1). However, in other cases, it does not seem to be 
supportive of the development of mathematical knowledge for the students (mostly in category 2 
and 3). One important question then, is: what are the reasons behind reducing abstraction in 
teaching that do not promote learning with understanding (as in category 2 and 3)? Because this 
study was based on the TIMMS video lessons, and interview with the teachers was not possible, 
it is hard to infer why the teachers reduce abstraction in the categories that do not appear to 
promote learning with understanding. Further research will address this issue. Finally, the results 
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emphasize the importance of paying attention to the nature of students’ understandings that may 
arise as a consequence of reducing abstraction of the concepts they are attempting to teaching. 
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This study reports the views of teachers of gifted and talented students on perceived 
characteristics of mathematical giftedness as well as well as what current instructional 
strategies are being used with mathematically gifted and talented students in the general 
education classrooms. Interviews were conducted with five teachers who teach mathematics to 
gifted students. Some of the findings include distinction between gifts and talents, student 
subgroups, and instructional needs of mathematically gifted students. 
 

Introduction 
Mathematically gifted students learn differently from their peers. They require special 

attention and differentiated curriculum to meet their specific needs (Greenes, 1981; Jolley, 
2005). When these students do not receive the learning experiences that are appropriate for 
their unique abilities, they can become bored and frustrated and eventually become 
underachievers (Croft, 2003; Hoeflinger, 1998). Requiring mathematically gifted students to 
participate while concepts are repeated for the rest of the class is not a good approach for the 
gifted student. Studies have shown that curricula in general education classrooms are 
frequently inappropriate for gifted students. For example, a national study by Heacox (2002) 
found that an average of 35 to 50 percent of the regular curriculum at the elementary level 
could be eliminated for gifted students. Krutetskii (1995) also cites research showing that 
mathematically gifted students can complete a year of grade-level mathematics in three to six 
months. Mathematically gifted students are more likely to retain mathematics content 
accurately when taught two to three times faster than the average student (Krutetskii, 1995). 
Thus, schools need to make curricular changes to account for the learning needs of 
mathematically gifted students. This study was therefore designed to examine teachers’ 
perceptions of mathematically gifted students and how to meet the instructional needs of such 
students. 

 
Theoretical Framework 

Tomlinson’s (1999) work on differentiation informs this study because differentiation is 
frequently recommended as a strategy to meet the needs of gifted and talented students in the 
general education classroom. Modifications can be made to differentiate instruction for the 
gifted learner in the general education classroom according to the interests of the child, 
the pace of the curriculum, or the depth of the curriculum. Tomlinson (1999) offered four 
characteristics of the effective differentiated classroom. The first characteristic is that 
instruction is concept-focused and principle-driven. The next characteristic is that ongoing 
assessment of student readiness and growth is built into the curriculum. A third characteristic of 
the effective differentiated classroom is that flexible grouping is consistently used. Tomlinson 
(2003) defined flexible grouping as “students consistently working in a variety of groups based 
on readiness, interest, and learning profile, and both homogeneous and heterogeneous in regard 
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to those three elements” (p. 84). A final characteristic of the effective differentiated classroom 
is that students are active explorers with teachers guiding the exploration. 

According to Tomlinson (2003), differentiation is “responsive teaching, [that] stems from a 
teacher’s solid (and growing) understanding of how teaching and learning occur, and responds 
to varied learners’ needs for more practice or greater challenge, a more active or less active 
approach to learning, and so on”  (p.2). Tomlinson explains differentiation of instruction as a 
teacher’s response to students’ needs, guided by general principles of differentiation. The 
principles of differentiation include the following: focusing on essentials; attending to student 
difference; aligning assessment and instruction; modifying content, process, and products; 
working and learning together; respectful tasks; flexible grouping; and ongoing assessment and 
adjustment. Tomlinson recommends that teachers differentiate content, process, or products 
based on student readiness, interests, or learning profile. Readiness refers to a student’s 
knowledge, understanding, and skill that designate their entry point within a particular 
sequence of learning. It can be influenced by factors such as prior experience, attitudes, and 
habits of mind. Interest refers to topics that are of interest and are a passion for the learner. The 
learning profile refers to how students learn best and includes learning style, intelligence 
preference, culture, and even gender. Tomlinson adds that differentiation can occur through 
various instructional and management strategies. Some of the more critical strategies she 
suggests for differentiation include literature circles, tiered lessons, learning contracts, 
independent study, varied questioning strategies, compacting, and varied homework. 
 

Method 
Design and Theoretical Framework 

The aim of this study was to examine teachers’ views on teaching mathematics to 
gifted/talented students. More specifically, the study addressed the following questions: a) 
What student characteristics make a student gifted/talented in mathematics? b) What 
instructional approaches are important for teaching mathematics to gifted/talented students? 
The methodological orientation of the study was phenomenological. This means that teachers’ 
accounts of their experiences may be understood as descriptions of the essential features of 
pedagogical interaction, allowing us to comprehend the phenomenon in a new way (Van 
Manen, 1990). 
Participant 

Five research participants, Julia, Janet, Jane, Joel and James (pseudonyms), were selected on 
a voluntary basis. The group of participants was fairly heterogeneous in terms of their 
discipline, age, and experience as a teacher. Three of the participants were female; two were 
over fifty years of age, two were between thirty and fifty, and one less than thirty years. All five 
participants were Caucasian. In order to protect the participant’s identity, more specific 
demographic information cannot be provided. 

Face-to-face, semi-structured interviews were conducted with each participant. The 
interviews lasted from thirty to forty-five minutes. The questions were open ended to allow 
participants to tell their stories freely. A typical question, for example, went as follows: “What 
teaching techniques do you believe are especially important for teaching mathematics to gifted 
and talented students?” The interviews took place at a mutually agreeable, private place and 
time. Interviews were audio taped and transcribed. 
Limitations 
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The limitation of the current study is the representativeness of the participants. Thus, the 
findings and conclusions from this study might not necessarily reflect the views of all teachers of 
mathematically gifted and talented students. 
Data analysis 

After the data were transcribed, the transcripts were read while listening to the tapes, and 
initial codes were developed. The participant’s story was the real guide to coding the data, and 
codes were developed as necessary to reflect the themes that appeared in the interview 
transcript. Once the coding scheme reached a point where it seemed to capture the relevant 
parts of the participant’s story, the interview were re-coded. 

 
Results 

The main themes that were constructed in the data were characteristics of gifted 
students, distinction between gifts and talents, struggles/challenges for gifted students, 
instructional needs, and student subgroups. 
 
Characteristics of Mathematically Gifted Students 

The characteristics of mathematically gifted students mentioned by participants were 
understanding of numbers and patterns, communication difficulties, and lack of organization. 
Sample comments are as follows: 

• Some of the characteristics include their understanding of numbers and patterns; their 
ability to think about mathematics in a variety of ways, so that mathematics comes 
naturally to them. They don’t struggle at all. They just seem to understand the 
patterns. Now, sometimes, that doesn’t translate, they are not able to show how they 
understand it. They just understand it, but then they struggle with showing how they 
got their answer and explaining their thoughts (Janet). 

• I think that when we hear the word ‘gifted’, it means they are exceptional. They have a 
depth of understanding of the mathematical concepts, rather than the mathematical 
tasks. So you can give them application problems and they jump on it right away. Or 
they see a clever way or a much more convenient way of proving something, or just 
analyzing something. So they are operating at those really high levels of understanding 
and they always do very well on the application problems, extra-credit 
problems, things like that (James). 

• I find that mathematically gifted students tend to do very well on math tests and 
quizzes. They tend to be lousy and disorganized. Some of them have find it difficult 
paying attention in class, especially if the lesson is not challenging enough (Julia). 
 

Distinction Between Gifts and Talents 
On whether mathematical giftedness and mathematical talent were the same or different, 

participants’ responses were again inconsistent: 
• I always assumed mathematical giftedness and mathematical talent were 

interchangeable. 
I would say gift is what you have naturally and talent is what you do with that gift 
(Julia) 

• Gift is when you visualize math without having to be trained; talent is when you can 
learn and be efficient at it. (Janet) 

• Talent is innate; talented students communicate well, write out their solutions. Gifted 
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students on the other hand are bad at process and communication though functioning 
at high level in relation to concept understanding (Joel). 
 

Struggles/Challenges for Gifted Students 
All three participants noted that mathematically gifted children do in fact have areas 

of struggle that tend to hinder them from reaching their full potential. These difficulties include 
difficulty in showing/explaining solution processes, answers, and concepts; tendency to become 
bored more quickly and thus be unmotivated; reduced confidence with general education 
students due to being with intellectual peers, and fear of failure. Here are sample participants’ 
responses: 

• Showing their understanding and going through the little steps to get the solutions 
seems to be a huge problems for most mathematically gifted students. They are used 
to getting the right answers with less effort, and so they struggle with: How did you 
get that answer? And when they get the answer wrong, they get easily frustrated 
because they never did the ‘baby’ steps to get it (Jane). 

• One of the biggest challenges facing mathematically gifted students is speaking the 
language of mathematics. They have been so good at math that they are kind of able 
to bully their way through a math class. They understand the concepts, especially at 
the lower levels. Once you start getting into the higher-level concepts and higher level 
thinking, they ran into trouble because they can’t communicate in mathematics. And 
that has to do with symbols, for instance being able to tell the difference between an 
equal sign and an implied sign. You have to teach them how to express their ideas on 
a piece of paper. Otherwise, they are just ideas inside their heads. The other challenge 
is being organized. In my classes, I force them to keep a three-ring binder, where they 
keep their assignments, homework, exams, syllabi, schedules, calculators, pencils, and 
so forth. (Joel) 

• They are often are unmotivated and need to be pushed a bit. It is difficult to keep them 
motivated in a linear fashion. You have to always keep them motivated and interested 
else, they lose focus entirely. Also, they tend to be perfectionists and fear to attempt a 
problem that presents a risk of failure (Janet) 
 

Instructional needs 
Participants noted that mathematically gifted students should be taught in separate classes 

from general education students. They further contended that the gifted students must be taught 
at an appropriate level of challenge - neither too low nor too high. This would require pre-
assessing to see what they need to learn and compacting accordingly. Participants also 
mentioned that teachers should teach mathematics in varied ways to keep students creative; use 
real-world applications; and learn to think in a different way that values process and problem 
solving. Sample participants’ comments follow: 

• The teacher of the mathematically gifted needs to be organized. You need to have a 
clear path. You need to have assessment ahead of time. Pretest students to know 
where they are, what they understand and what they don’t understand. I also think it is 
important to use questioning strategies to build student understanding (Julia) 

• Generally, I think it is best to teach them in their own classroom. The teacher needs to 
keep them at the appropriate level of challenge (neither too much nor too little; don’t 
want to bore or frustrate them) (Janet) 
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• The teacher needs to compact materials to suit their needs after pre-assessing to only 
address what they don’t know. This would help eliminate unnecessary repetitions 
(James). 
 

Student Subgroups 
Participants noted that actual ability differences were not noted by gender or 

race/ethnicity. They said performance differences could occur based on background factors 
such as linguistic background (for English Language Learners) or what students have been 
exposed to and encouraged in. Here are some typical responses from participants: 

• There is this general notion that somehow boys are better than girls at mathematics. 
But I think once you get all of them together, you realize that it is not necessarily true. 
One of my most gifted and talented students that I have ever taught was a Black 
female, so that breaks the stereotype right away. So I think with the gifted kids, you 
start seeing those stereotypes fall apart (Joel). 

• I think race/ethnicity does not necessarily have an direct impact on the mathematically 
gifted student. It depends on the student. And I think that if their first language is not 
English, that could hold them back a little bit. With African-Americans, I don’t think 
there is anything holding them back. I have several gifted and talented students that I 
taught who were African-Americans, and several who were Latinos. I noticed with the 
Latino students that if their first language is not English and they are still acquiring 
the language, they might be hesitant because they are afraid of coming our perfect in 
the way they say their answer (Julia). 

 
Discussion and Implications 

The teachers in this study mentioned many of the characteristics that are associated with 
mathematical giftedness. Many of these characteristics are described in the literature by 
Diezmann and Watters (2000), Hoeflinger, 1998, and Sriranam (2003). Straker (1983) also 
describes many of the same characteristics and suggests that one should look for indicators such 
as “a liking fnumbers including use of them in stories and rhymes; an ability to argue, question 
and reason using logical connectives: if, then, so, because, either, or…, and patter making” (p. 
17) 

Many scholars have noted that the way giftedness is defined and perceived affects 
how parents, teachers, or school administrators handle the gifted child (Assouline, 2003; 
Callahan, Cooper & Glasscock, 2003; Roedell, 1984; Rotigel, 2004; Sternberg, 2003; Van 
Tassel-Baska & Johnsen, 2007; ). The teachers in this study did not have a comprehensive, 
articulated concept of mathematical giftedness. Their knowledge about some of the 
characteristics was based primarily on teaching experience and observation of their students’ 
behavior. Potentially, it means that many students could be overlooked in the identification 
process if teachers do not have knowledge about these types of mathematical giftedness. 

Participants from this study mentioned that mathematically gifted students should be 
presented with materials that are rich in content and that can arouse their natural curiosity. 
Teaching them material that is below their level causes them to feel bored and disengaged in 
class. This is consistent with the assertion of  Leder (1991) that teachers who teach 
mathematically gifted children should ensure that their content is problem based, and rich in 
content. 
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The findings from this study provide intriguing initial insights into teachers’ views on 
teaching mathematics to gifted/talented students. These findings also point to the fact that 
stakeholders still have an unfinished business of shedding more light on what constitutes 
giftedness and how to identify a gifted child 
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PRE-SERVICE TEACHER CONCEPTIONS OF REAL NUMBER 

 
This study examines pre-service teacher conceptions of real numbers within three contexts: 
distance, a point on the real line, and set membership. The study involved 25 pre-service 
mathematics teachers, in various stages of education, at a large university in the southeastern 
United States. Participants were administered a survey to assess their understanding and notions 
of real numbers. Analysis of participant responses from six survey items (two per context) 
revealed ten distinct conceptions of real number. Implications of these findings as they relate to 
nonstandard infinitesimals are also discussed. 

 
Research has shown that many students struggle with the notions of real numbers (Tall & 

Schwarzenberger, 1978; Fischbein, Jehiam, & Cohen, 1995; Peled & Hershkovitz, 1999; Sirotic 
& Zazkis 2007). According to Olive (2001) a child’s number sequence is a dynamic structure 
progressing as the child develops. Although Olive is addressing only part of the real numbers 
(i.e., the counting numbers), it is not farfetched to imagine that the same is true for the reals. But 
how do learners think about and work with real numbers? What types of concepts do they use 
and within what contexts do they use them? The purpose of this study is to investigate and 
document pre-service teacher conceptions of real number within three contexts: distance, a point 
on the real line, and set membership. For the purpose of this study conceptions of real numbers 
are not limited to the classical standard construction of the reals, but also include non-standard 
constructions involving infinitesimals. 

  
The Real Numbers 

Standard Analysis  
To describe the real numbers in great detail would involve one or more textbooks. For the 

purpose of this study, the standard real numbers are defined in the classical sense, axiomatically, 
as a Cauchy Archimedean ordered field (Rudin, 1976). Casually, the reals refer to the set of 
rational numbers (i.e. numbers that are the ratio of two integers excluding zero from the 
denominator) and the set of irrational numbers (i.e., Archimedean numbers that cannot be 
represented as a ratio of integers). Informally, the Archimedean property of the real numbers 
implies that there can be no largest number and no smallest number. 

It is noteworthy to mention that standard analysis as we know it today began to take shape in 
the early 1800's with the introduction of Weierstrass' epsilon-delta proofs of limit and continuity. 
These notions found favor among the formalists and their quest for formal mathematical 
foundations (Nunez & Lakoff, 1998; Tall, 1980; Keisler, 1976). Original notions of the calculus, 
up to that time, involved infinitesimals (i.e., a small unmeasureable cloud around a number, 
smaller than any real number) which were done away with because mathematicians had not yet 
developed a proper treatment for infinitesimals (Keisler, 1976). 
 
Non-standard Analysis 

In the early 1960's Abraham Robinson showed that infinitesimals were valid mathematical 
objects using methods from model theory developed in the 1950's. Robinson referred to his 
infinitesimal analysis as a non-standard analysis due to its use of non-standard methods (Keisler, 
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1976). In doing so, Robinson established a rigorous foundation for the infinitesimal notions that 
had proved useful to Newton, Leibniz, Euler, Hilbert and others (Robinson, 1966; Goldblatt, 
1998; Nunez & Lakoff, 1998; Tall, 1980; Keisler, 1976). 
 
The Hyperreals 

Succinctly stated, Robinson, operating from the notions of Leibniz, formally defined 
infinitesimal numbers and extended the set of real numbers to include them, thus forming the 
hyperreal system. According to Keisler (1976), “one can form the hyperreal number system by 
adding infinitesimals to the real number system and obtain a powerful new tool in analysis” ( p. 
iii). Goldblatt (1998) defines an infinitesimal number as follows: “a nonzero number ε is defined 
to be infinitely small, or infinitesimal, if, 

    
Conversely, 1/ |ε| is considered to be infinitely large or infinite. In this way the hyperreals form 
an ordered field *R  containing R  as a subfield” (p. 3). 

 
Real Number Conceptions 

Real number conceptions in this study are not limited to the classical standard construction of 
the reals, but take into consideration the notions of non-standard analysis as well. From this 
expanded perspective, the context of distance (a variation of the measure context; Fischbein, 
Jehiam, & Cohen, 1995), the context of set membership, (Peled & Hershkovitz, 1999), and the 
context of a point on the real line (Peled & Hershkovitz, 1999; Sirotic & Zazkis, 2007) were 
examined. Below we review the literature related to different conceptions of real number.  

Fischbein, Jehiam, and Cohen (1995) conducted a study involving 30 ninth-grade students, 32 
tenth grade students and 29 pre-service teachers. The researchers administered a questionnaire 
that examined formal knowledge of mathematics, real number hierarchy, and intuitive 
knowledge regarding continuity, infinity, and measure. According to the study, several pre-
service teachers struggled with rational and irrationals in terms of set membership and some 
equated the term irrational with non-whole numbers. Results also indicated that participants in 
general did not have a problem with intuitive notions involving incommensurable segments 
(segments that cannot be divided evenly by a common unit), an infinity of rational numbers over 
a segment, or an infinity of irrational points over a segment. This study did not overtly 
investigate or involve intuitive notions related to infinitesimals.  

Peled and Hershkovitz (1999) conducted a study involving a group of 55 students in their 2nd 
and 3rd years of college working toward mathematics teaching certification. Their study 
investigated student’s knowledge of irrational numbers, including location of irrational numbers 
on the real line and set membership. According to Peled and Hershkovitz, of the 55 students 

surveyed, 22 students were not able to locate on the real number line. Several students 

believed that a measurement involving    could not be made because of the never ending 

decimal. It was hypothesized that students held a belief that numbers such as cannot be 
reached because of the non-periodical never ending decimal expansion. Peled and Hershkovitz’s 
study (1999) was geared toward the exploration of pre-service teacher knowledge of irrational 
numbers within the system of standard analysis. 
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Building on the work of Peled and Hershkovitz (1999), Sirotic and Zazkis (2007) 
administered a questionnaire to 46 pre-service teachers as part of a course designed for 
professional development in the area of secondary mathematics. The study included an analysis 

of follow-up interviews with 16 of the 46 participants. With regard to the location of on the 
real line, Sirotic and Zazkis (2007) found that the participant’s answers fell into five categories. 
In the first category were those who made use of the Pythagorean Theorem to identify the exact 
location of the point. The second category consisted of those who used at least some precision in 
a decimal approximation. The third category included those using somewhat rougher decimal 
approximations to identify the point (e.g. somewhere between 2 and 3). The fourth category 
included those who used the graph of a function or a similar graphical aid to locate the number 
on the real line. Finally those who claimed that the task was not possible comprised the fifth 
category. Much of their analysis was qualitative and based on participant interviews. These five 
pre-service teacher conceptions emerged within the context of locating a point on the real line. 
Like Peled and Hershkovitz (1999), these researchers found that participants conceptualized a 
number as not being able to be reached or as having an approximate location on the real line. 
This study did not take into consideration infinitesimals or a non-standard approach.   

Tall and Schwarzenberger (1978) describes learner conflicts involving the idea that 1 = 

0.99 . According to Tall and Schwarzenberger, learner conflicts may result from a lack of 
understanding of the concept of limit, and the “intrusion of infinitesimals” (p. 6). They suggest 
that learners often feel that there “should be a one-one correspondence between infinite decimals 
and real numbers. They are confused when they see that two different decimals can correspond 
to the same real number” (p. 6). Confusion between decimal representation and other types of 
number representation has been noted by several researchers since this study (Oehrtman, 2009; 
Sirotic & Zazkis, 2007; Peled & Hershkovitz, 1999; Richman, 1999).  

Oehrtman (2009) conducted a study involving 120 students from an introductory calculus 
class. Sixty-four of the students had taken calculus in high school. Oehrtman found that 
mathematical metaphors significantly influenced the way in which students justified certain 
claims. In terms of inconsistent responses regarding the standard definition of real numbers, 
Oehrtman points out that several students used what he refers to as an “approximation 

metaphor.” For example, when talking about the equality 1 = 0.99  several students described 
an “arbitrarily small,” “infinitely small,” “infinitesimal” difference or that 0.9 was the “next 
number” or that it “would touch one” (p. 417). These findings suggest a relationship between 
human intuitions of infinitesimals. For instance the number next to the number 1 makes sense in 
non-standard analysis whereas in standard analysis it cannot exist due to the Archimedean 
property.  

Considering participant conceptions from both standard and non-standard analysis, Ely 
(2010) conducted a case study involving one college student selected from a larger group of 233 
college-level calculus students. The larger study involved a questionnaire regarding conceptions 
of calculus, limits, functions, continuity, and the real number line. From the original sample of 
233, six students were chosen for follow-up interviews. From these six, one female student was 
selected for the case study due to the interesting nature of her responses given during a follow-up 
interview. Based on this study Ely suggests that some misconceptions about real numbers and 
infinity may not be a misconception, but instead may be thought of as intuitive conceptions that 
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are consistent with the non-standard system. Ely found that 31% of the participants in the larger 
study held non-standard views.  

 Richman (1999) suggests that two different conceptions of infinity form the basis for two 

distinct interpretations of the statement 1 = 0.99 . The two notions of infinity are related to what 
Aristotle described as potential infinity and actual infinity. According to Richman potential 

infinity conveys a sense of a process, as if the number 0.99 were somehow on its way to the 
number 1 or in the process of getting there. Actual infinity suggests a completed process, that is, 

1 is the same as  0.99 . Richman makes the point that if two numbers are considered the same in 
terms of limits, a distinction should be made between equality of numbers and convergence at a 
limit point. In this way, learners might learn why and under what conditions their intuitions are 
supported. 

From the literature it is clear that people struggle with various concepts of the real number 
system. Much of the research has been conducted from the point of view of standard analysis. 
Recent research has suggested that some intuitions leading to misconceptions in standard 
analysis may be valid conceptions when considering nonstandard analysis. The Sirotic and 
Zaskis (2007) study revealed five conceptions of the standard real numbers within the context of 
locating a number as a point on the real line. The Peled and Hershkovitz, (1999) study revealed 
similar findings. Several of the studies revealed issues related to irrational numbers and their 
non-periodic never ending decimal representations. Nowhere in the literature is there a study 
investigating knowledge of real numbers from both the standard and non-standard perspectives 
over several contexts. This paper reports on both standard and non-standard conceptions within 
three contexts: distance, a point on the real line, and set membership. 

 
Methods 

Participants 
This study involved 25 pre-service mathematics teachers in various stages of their education. 

All were juniors or seniors or graduate students at a large university in the southeastern part of 
the United States.  

 
Procedures 

The participants were given a survey including 25 items related to the real numbers. From 
this survey six items were selected for further analysis: two items related to distance, two related 
to location of a number as a point on the real line, and two related to set membership (see Table 
1). D1 and D2 are related to distance and were presented in a True/False format requesting an 
explanation for the given answer. The two location items L1 and L2 and one of the set 
membership items, S1, were also presented in this format with L2 requiring a yes/no answer with 
explanation. For set membership item S2, participants were asked to circle all the irrational 
numbers in the given set and asked to explain the reason for their selection. 

The first phase of the analysis involved the coding of participants’ answers and explanations 
within the context of real number conceptions. We were not interested in the idea of participant 
misconceptions and focused solely on participant conceptions, in particular, we recognized that 
conceptions of real number may appear in both standard and non-standard ways. Although we 
did not intentionally marginalize concepts that did not fit either one of these constructions, our 
focus was centered on conceptions that were consistent with one or the other. As a result there 
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may have been other conceptions that were not categorized within this analysis. Since two of the 
items in this study were closely related to the question posed by Sirotic and Zaskis (2007), we 
expected to find similar conceptions within the context of locating a number as a point on the 
real line. We were also interested in learning whether or not any of the five conceptions cited in 
their study would emerge from within the other two contexts. For these reasons, the five 
conceptions revealed in Sirotic and Zaskis (2007) were considered as a “start list” as discussed in 
(Miles & Huberman, 1994, p. 58). 
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Context Label Item 

Distance D1 The distance between two points is necessarily rational. 

Distance D2 To express a distance in terms of an irrational number makes 
no sense. 

Location of a point L1 
The  has a precise location on the real number line. 

Location of a point L2 
Can the exact location of  be found on the real number 
line? 

Set membership S1 
The number is a rational number.  

Set membership S2 Circle all irrational numbers in the given set of numbers: 

 
Explain briefly why you believe these numbers are irrational. 

Table 1. Items by context 

Results and Discussion 
Within the context of locating a number as a point on the real line, this study confirmed two of 

the Sirotic and Zaskis (2007) conception categories: a) use of the Pyhtagorean Theorem and b) 
Impossible situation. However, during the early stages of analysis it became necessary to expand 
the conception categories to accommodate the three different contexts as well as non-standard 
conceptions. Modifying the categories was also necessary due to the difference in focus between 
this study and the Sirotic and Zaskis (2007) study. For example, we did not ask participants to 

show “how” they would locate the  on the real line and therefore graphing or use of a function 
was not a conception documented in this study. Our items were focused more on pre-service 
teacher beliefs about its location and “why” they believed what they believed. As a result, 
several of the conceptions that we found, although related to the Sirotic et al. categories, were 
differentiated from 4 of their 5 categories. From our perspective, the Sirotic et al. categories 
represented conflations of conceptions. One example of this idea can be observed in the pre-
service teacher response to L2: “yes, but not its decimal approximation.” In this example, the 

pre-service teacher conceived of the  as having a precise location but believed its decimal 
approximation did not. Ultimately, in our study, five conceptions  emerged from the location of a 
point on the real line context,  a) precise location, b) approximate location, c) dynamic location, 
d) non-standard conception, and e) formal conception. The analysis of all six items, spanning the 
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three contexts, revealed additional conceptions for a total of ten conceptions. These conceptions 
are listed in Table 2. In the following sections we present some of the participants’ explanations 
of their answers and a discussion of the nature of the conceptions that seem to be represented by 
their responses. 

 
 

Precise location 
Dynamic location 
Approximate location 
Use of irrationals other than 
Pythagorean irrationals  
Decimal representations 
Ratio of integers 
Use of the Pythagorean theorem 
Impossible situation 
Non standard conception 
Formal conception  

Table 2. Participant conceptions 
 
Location of a Number as a Point on the Real Line 

The following are examples of students’ explanations associated with items L1 and L2 with 
associated category in parentheses:  

Every real number has a precise location on the real line. (precise location) 

Yes. Between 2 and 3 closer to 3. (approximate location) 
Not exact but close. (not able to locate) 

Yes, through properties of triangles. (Pythagorean Theorem) 
It is the limit point of a sequence of rationals. (formal conception) 

In addition to these conceptions, some participants were found to use dynamic conceptions 
and non-standard conceptions of real number. The following two responses to item L1 are 
examples of these conceptions: 

No it only theoretically exists. Because it is irrational it is impossible to pin down. 

We can never actually get there. We get infinitely close.  
We considered “impossible to pin down” to mean that the participant saw the point as moving. 
For this reason this response and others like it were categorized as a dynamic conception. The 
phrase “never actually get there” is a notion referred to in the Richman (1999) study dealing with 
potential infinity. Following this phrase was the phrase “we get infinitely close.” Any 
explanation that used the term “infinitesimal” or “infinitely close” was considered a non-standard 
conception.  
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Distance 
 In response to items D1 and D2, several participants used the Pythagorean Theorem, 
drawing graphs and constructing right triangles in an effort to demonstrate an irrational distance. 

In addition to the use of Pythagorean irrationals (e.g., ), several students used irrationals other 
than Pythagorean irrationals. This conception was employed by participants who chose to use an 
irrational number such as π or a description not explicitly based upon the Pythagorean Theorem. 
For instance two participants described irrational distance this way: 

Two numbers can be π distance apart. 

The distance between 4 and π is irrational. 
Within the context of distance the most common conception of real numbers involved the use of 
the Pythagorean Theorem; however, the use of irrationals other than Pythagorean irrationals was 
also common. 
 
Set Membership 

One participant’s response to S1 suggested a perturbation involving the equality of 1/3 and 

 . She clearly had doubts about whether or not 1/3 =  and as a result she answered 
that she was not sure. Her response was as follows: 

We had this crazy long debate in [math] class. I'm not sure who won...1/3 =  

Based on a discussion with the instructor (A. Norton, personal communication, January 17, 
2010), the debate was between those who took the position of standard analysis, (i.e. that the two 
numbers are equal) and those who took the position of non-standard analysis, (i.e. the use of 
infinitesimals) suggesting that the numbers were not equal. This participant did not specify set 

membership related to the number  possibly because she was unsure about what the 
number represented. Her response was nevertheless considered as a non-standard conception 

since she was on the fence as to whether or not 1/3 = . Her response was the only non-
standard response to item S1. The majority of participants simply confirmed that the number was 
rational.  

When asked to “Circle all irrational numbers in the given set of numbers” (see S2, Table 1), 

of those participants who correctly identified as an irrational number, many used a “ratio of 

integers” conception. What this means is that in the process of explaining why they thought  

was irrational, several participants stated that  was irrational because it could not be written as 
a ratio of integers. For instance three responses were as follows: 

cannot be expressed as a ratio of integers. 

Cannot be written in rational form. 
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Because you cannot express it as p/q a fraction. 
 Participants also employed a “decimal representation” conception to explain their 

reasoning for their choice of the . The following three responses are typical of this type of 
conception: 

You cannot represent this number as a terminating decimal. 

Never ending decimal. 
The number is a non-repeating decimal. 

Within the context of set membership we documented participants’ use of three conceptions: 
non-standard, ratio of integers, and decimal representation. 

 
Conclusion 

Recent research has suggested that many learners, even at the college level, struggle with 
different aspects of number, particularly with concepts related to the real numbers. The purpose 
of this study was to document pre-service teacher conceptions of real numbers within three 
contexts: distance, point on the real line, and set membership. The findings of this study 
established ten conceptions of real number within these three contexts. From location of a point 
on the real line this study confirmed two of the five conceptions found in Sirotic and Zaskis 
(2007) and found similarities relating to two other categories from their study. This study also 
found that participants described real numbers using irrationals other than Pythagorean 
irrationals, dynamic conceptions, and non-standard conceptions. From the set membership 
context, participants employed decimal representation, ratio of integers, and nonstandard 
conceptions. With respect to the context of distance participants employed the use of the 
Pythagorean Theorem and the use of irrationals other than Pythagorean irrationals.  

Although this study illuminated ten conceptions of real numbers, many questions remain for 
further study. How and when do real number concepts begin to develop? How are the real 
numbers presented to learners in textbooks? What is the relationship between intuitive 
conceptions and the hyperreal system and does the nonstandard system enhance classical 
mathematics?  
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How do mathematics teachers see themselves? For years, educational researchers have been 
correlating mathematics teaching with what a teacher knows or believes. But the construct of 
identity–how teachers see and position themselves–is equally important. This study investigates 
mathematics teachers’ identity through the Photo-Elicitation Interview (PEI). Mathematics 
teachers choose photographs of the various parts of their lives, and then discuss them during an 
interview to elicit stories of who they are and how they see themselves. This paper details the use 
of this method to explore the mathematics teacher identity of two Algebra I teachers. 

Once upon a time, Karla was the young teacher filled with potential. Karla routinely worked 70-
hour weeks, cheered her students on at almost every single sporting event, facilitated an after-
school mathematics tutoring club, and built relationships with local media outlets so that her 
students’ class projects would be featured on the nightly news. She was even promoted to 
assistant principal in her second year of teaching. 
At the time, Karla thought good mathematics teaching meant showing her students how much 
she cared. She positioned herself as an advocate for students who could not help themselves, 
chose to teach the low-track students in a low socioeconomic, Latino/a-dominant, urban school. 
On her lunch periods, students filled her classroom, not just because they wanted help on their 
math homework, but also because they liked talking to her about their lives. 
Fourteen years later, Karla still teaches the low-track Algebra I course at a low socioeconomic, 
Latino/a-dominant, urban school. However, she has since changed schools twice and 
relinquished all administrative responsibilities. She leaves the campus shortly after students are 
dismissed, has not been to a single student sporting event, distances herself from extra-curricular 
activities, and has no plans to bring any news reporters into her classroom.  
She sees her primary responsibility as a mathematics teacher to get as many of her students to 
pass the high-stakes standardized mathematics exam as possible. In order to be on pace with all 
the other teachers in the mathematics department, her teaching has become more predictable and 
structured. Her decisions for what content to teach hinges on whether she thinks it will appear on 
the high-stakes exams. She knows little about her students’ lives, and readily admits that she 
purposely hides herself, her personality, and her background from her students. She even says 
she would be surprised if any of her students knew about her ethnicity; they all just assume that 
she is “Mexican too” even though she self-identifies as Indian-American. 

Objective of the Research Study 
While Karla does not represent every mathematics teacher, the struggle she has in merging her 
changing professional identity with her personal identity is an issue that affects all teachers (de 
Freitas, 2008; Enyedy, Goldberg, & Welsh, 2006; Gee, 2000; Van Zoest & Bohl, 2005; 
Walkington, 2005). While Karla’s mathematics teaching practice looks very different today than 
it did fourteen years ago, she could be construed by some measures as being a better teacher 
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since she is following a common scope and sequence and her students’ scores on the high-stakes 
exams are consistently high. However, the part that makes her unique–her personal identity–is 
buried deeper and deeper beneath her professional identity. 
In this study, I address the problem of the wavering relationship between personal and 
professional identities of mathematics teachers through the following research questions: 
1. What makes an algebra teacher unique? Outside of defining themselves as mathematics 
teachers, what is it about where they come from, how they situate themselves, and how they see 
themselves that makes them special? And, how does this personal identity interact with their 
professional identity as a mathematics teacher? 
2. How do algebra teachers’ personal identities reveal how they see themselves in terms of 
power? In other words, within their own identity narratives, what role(s) do they see themselves 
playing? How do these role(s) unveil the amount of control they have in forging their own 
identities? 

Theoretical Framework 
Mathematics educational research generally splits influences to mathematics teachers into the 
constructs of knowledge (Ball, 2003; Hill, Rowan, & Ball, 2005; Hill, Sleep, Lewis, & Ball, 
2007), beliefs (Leatham, 2006; Pajares, 1992; Philipp, 2007), or both (Simon & Tzur, 1999; 
Simon, Tzur, Heinz, Kinzel, & Smith, 2000). But beyond just what a teacher knows or believes, 
the construct of identity–how teachers see themselves–is an equally important component into 
understanding how people teach mathematics (Drake, 2006; Van Zoest & Bohl, 2005). Most of 
the existing work exploring the identity of mathematics teachers has been largely theoretical as it 
is has been a difficult construct to research until recent advancements in technology that allows 
cheap and easy ways to capture photo, video, and audio data (Clark-Ibanez, 2004; Enyedy, et al., 
2006; Harper, 2002).  

Teacher Identity  
Teacher identity is defined in a number of ways within the educational research literature. Van 
Zoest and Bohl (2005) present a framework for Mathematics Teaching Identity as a way of 
understanding the various social spaces mathematics teachers encounter during their career, 
specifically in regards to supporting the development of ‘reform-oriented’ mathematics teachers. 
These social spaces emanate from Wenger’s (1998) idea of communities of practice, in which 
identity is forged through multiple membership within these communities. Gee (2000) sees 
teacher identities as defined through power, and his four categories of natural, institutional, 
discourse, and affinity-based teacher identities intersect to unveil how much power teachers 
have in relation to the institutions they work within. 
Other researchers see teacher identity as entrenched within the construct of narrative. Holland, 
Lachicotte, Skinner, and Cain’s (1998) definition of identity involves self-authoring; identity is 
what teachers tell others about who they are, and the self-understanding that comes from acting 
to be this person. Sfard and Prusak (2005) use the idea of the narrative to frame identity as a 
collection of reifying, significant, and endorsable stories about a person. And de Freitas (2008) 
shows mathematics teacher identity as revealed in the spontaneous moments in which a 
mathematics teacher uses personal anecdotes during procedural moments in classroom 
instruction.  
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Listening to Mathematics Teachers’ Narratives 
Common to these narrative-based definitions of teacher identity is the idea that teachers only 
reveal their identities if someone is actually listening to what they have to say (de Freitas, 2008; 
Holland, et al., 1998; Sfard & Prusak, 2005). Within the work of Cognitively Guided Instruction, 
the simple act of listening to students is shown as a revolutionary teaching practice (Carpenter, 
Fennema, Franke, Levi, & Empson, 1999; Carpenter, Fennema, Peterson, Chiang, & Loef, 
1989). Duckworth (2001) also argued that deep learning happens in the classroom when teachers 
stop viewing themselves as authorities of knowledge and instead position themselves as 
questioners and redirectors to listen to students.  
This listening works with mathematics teachers as well. Drake (2006) found that listening to pre-
service mathematics teachers write about their experiences as mathematics students led to deep 
reflections of how they taught mathematics.  And de Freitas (2008) found that when teachers 
revealed their vulnerable ‘I’–their personal identity–it forced her as a researcher to truly listen 
and form a relationship with the teacher. While most existing research listens to teachers through 
an analytic construal that emphasizes what a teacher knows or believes, a deeper listening comes 
through a narrative construal that emphasizes self-authorship and storytelling (Bruner, 1996; 
Gee, 2000; Hiebert, Gallimore, & Stigler, 2002).  

The Photo-Elicitation Interview (PEI) 
When researching such a broadly defined idea such as identity, specific anchoring structures are 
needed in order to unpack a teacher’s notion of their own identity. Vygotsky (1978) wrote about 
the need for physical anchors, images or artifacts that helped situate the exploration of a child’s 
development from an inner speech to a social speech. Using only observations and interviews 
with no anchoring structures, Van Zoest and Bohl (2002) were only able to use their construct of 
Mathematics Teacher Identity to analyze a single teacher because of the complexity of framing 
the teacher’s multiple communities. The use of a structured math story/autobiography helped 
Drake (2006) unpack the identity of the pre-service teachers she worked with. And in their 
exploration of science teacher identity, Enyedy, Goldberg, and Welsh (2006) found that identity 
was best studied when analyzing teaching dilemmas–conflicts that come up in the classroom 
with no easy resolution. Therefore, any good study of mathematics teacher identity requires a 
formal anchoring structure. 
The Photo-Elicitation Interview (PEI) is a structured research method that can anchor this 
exploration into identity through listening to teachers’ narratives. The PEI is a qualitative 
research method in which researchers introduce photographs, either selected by the participant or 
the researcher, into the interview context (Clark-Ibanez, 2004; Gauntlett & Holzwarth, 2006; 
Harper, 2002). The PEI successfully elicits identity for a number of reasons. First, visual and 
creative methods like the PEI are especially useful for studying identities (Brown, Wiggins, & 
Secord, 2009; Clark-Ibanez, 2004; Gauntlett & Holzwarth, 2006). Second, visual and creative 
research methods open up authentic and socially imaginative spaces in a non-invasive way that 
honors teachers’ busy schedules and responsibilities (Clark-Ibanez, 2004; Gauntlett & 
Holzwarth, 2006; Harper, 2002). Third, the PEI holds a strong history of studying identity within 
other social sciences, such as nursing and anthropology research (Hansen-Ketchum & Myrick, 
2008), and is only recently being used within education research (Clark-Ibanez, 2004). Finally, 
the PEI excels in generating a narrative authored by the research participants themselves (Brown, 
et al., 2009; Clark-Ibanez, 2004; Gauntlett & Holzwarth, 2006). 
This moment in time is perfect for utilizing the PEI as current technology has finally caught up 
to the theory–almost all teachers own mobile phones with attached digital cameras and have little 
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issue in using them throughout their everyday teaching routine. In my own experience, I have 
found that PEI opens up narrative in ways that are respectful of teachers’ time and 
responsibilities (Chao, 2010, 2011). 

Methods and Procedures 
To investigate mathematics’ teacher identity, I gave two Algebra I teachers digital cameras and a 
loose prompt to “capture your world as a mathematics teacher” in at least 20 photographs. I then 
set a date three weeks later to sit for a formal Photo-Elicitation Interview. One teacher had taught 
for fourteen years and identified as female and Indian-American. The other teacher had taught 
for three years and identified as female and white. During the three weeks, I visited and observed 
each teacher’s classroom to get a feel for her classroom teaching practice and to answer any 
questions they might have regarding the research protocol. The day before each interview, each 
teacher chose her ten most important photographs. I then sat with each teacher individually for a 
Photo-Elicitation Interview in which they shared their photographs one at a time while I asked 
non-judgmental and non-evaluative questions (Johnston, 2004).  
Each interview was videotaped and transcribed for deeper analysis using a grounded theory 
coding structure to elicit emerging themes of mathematics teacher identity (Corbin & Strauss, 
2007; Merriam, 2009). The main data source was this transcribed interview of each teacher, 
which I analyzed in Transana using a qualitative coding scheme built upon the emerging themes 
of narrative construction, self-authoring, power, positioning, and hegemony (Bruner, 1996; 
Corbin & Strauss, 2007; de Freitas, 2008; Gee, 2000; Hiebert, et al., 2002; Merriam, 2009). 
While the actual photographs that teachers captured as well as the notes I took during classroom 
observations helped to fill in my knowledge of each teacher, I did not use either of these data 
points as a source for direct analysis. 
Both teachers were selected from a larger Academic Youth Development research project (Bush-
Richards, et al., 2011). I had previously worked with both teachers through professional 
development workshops and classroom observations I helped facilitate, and selected them 
because they were interested in exploring and talking about their identities and mathematics 
teaching. Basically, I chose teachers who wanted to tell their story. 

Results 
Because of space limits, I will only show a snippet from the interview with Karla, the teacher 
from the introduction, and generalize the overall results from both teachers. The third photograph 
Karla presented was a school hallway display that showcased academic success, called the Hall 
of Honor (Figure 1). After pulling this photograph up, the dialogue over the next four minutes 
shifted quickly from a teacher talking about her pride in showcasing good academic work to her 
feelings of sadness that her career as a mathematics teacher had robbed her of an opportunity to 
start a family. During the following exchanges, I only asked non-judgmental and non-evaluative 
questions (Johnston, 2004), such as, “Tell me more about that,” or, “How does this relate to your 
math teaching?” 
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Figure 1. Photograph 3 in Karla’s Interview. This photograph of a ‘Hall of Honor’ 

window display elicits a deep narrative that reveals feelings that the educational institution 
forced Karla to sacrifice personal happiness for her career, even threatening her ability to 

start a family. All identifying features of students or the school have been blurred out. 

 
In just four minutes, the discussion gets very personal and reflective of the way Karla is 
positioned within the various institutions she interacts within. She moves quickly from 
discussing the hard work and sacrifice it takes to be a “good” teacher, her feelings of society’s 
expectation of mathematics teachers, to how her professional identity has negatively affected her 
ability to get married and become a mother. 

[00:17:57] Karla: And bringing the news camera in my room and stuff. But I 
don't want to work 18 hours a day anymore, and I just didn't feel 
like I wanted to change the system myself. So, like that's a systemic 
issues. That's a cultural issue. That’s . . . 

. . . 
[00:19:40] Karla: I need a life. Otherwise, I'm going to regret like . . . I would 

spend a decent amount of hours here and do a pretty darn good 
job. 

[00:19:56] Me: Uh-huh <agree>. 
[00:19:56] Karla: I would say I'm an above average teacher with the amount of 

hours I put in. But not an excellent teacher. And I could be an 
excellent teacher, but then my personal life suffers so much. That's 
why I started working at the gym. 

[00:20:13] Me: Uh-huh <agree>. 
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[00:20:13] Karla: That's why I started doing other stuff. Because I wasn't 
meeting men. I wasn't like . . . I was working, working, working. It 
got ridiculous. 

. . . 
[00:20:32] Karla: That's not fair for society to ask us to do that. You hear all 

the stories about "hero teachers" <finger quotes>, about this and 
that. You know what? I don't want to be the hero, because it's just 
sacrificing yourself. <laughs> I just want to be good. And that's it. 
So . . .  

. . . 
[00:20:57] Karla: I wanted to get married. I wanted to, you know. I feel like 

that's why I got married so late in life. Like, because <laughs> 
. . . 
[00:21:29] Karla: Yeah. But, there's a big difference in trying to have kid when 

you're 35 and when you're 30. 
 
This snippet showcases something that happened in both interviews, the elicitation of a deep 
identity narrative in a relatively short amount of time. First, the PEI opened up emotional wells 
quickly; both teachers cried during the interview and repeatedly stated that this was the most 
reflective and personal professional development they had ever encountered. Second, both 
teachers realized specific practices they would change immediately as a result of the interview. 
Third, the interview helped the teachers situate the frustrations they felt into a formal structure of 
power. They saw how they were positioned as mathematics teachers in society and started to 
explore the relationship between their personal and professional identities. Finally, the PEI drew 
me into each teacher’s narrative through the opening up each teacher’s vulnerable ‘I’ personal 
identity (de Freitas, 2008). I moved from the role of researcher into privileged observer of each 
teacher’s life, listening and responding with authenticity and compassion as the teachers 
articulated their true feelings of powerlessness. The more room I gave teachers to talk about 
themselves and how they saw themselves, the more the teachers wanted to, and needed to, talk 
about who they were. I had to cut each interview off after two hours even though both teachers 
wished they could keep going.  
In answering the first research question, this study showed how the PEI was able to quickly 
reveal each algebra teacher’s uniqueness in her own personal identity. However, both teachers 
revealed that they felt that what made them special was rarely brought into their professional 
identity. Both teachers expressed how they felt locked into playing up their role of “mathematics 
teacher”, leaving little room for their real selves to emerge. This outwardly defined role 
encouraged them to build an “anonymous” professional identity built not upon how they saw 
themselves, but false stereotypes of what it meant to be a mathematics teacher (de Freitas, 2008; 
Van Zoest & Bohl, 2005).  
In answering the second research question, the PEI helped each teacher self-author their narrative 
and recognize their own access to power. In their narratives, they positioned themselves as 
having relatively little power through their profession. Even worse, both teachers revealed that 
the less they tried to incorporate unique attributes into their teaching, the easier it was for them to 
teach. Conformity is not only encouraged, but also rewarded with less stress and a more stable 
career. This reveals tremendous information about the amount of power these algebra teachers 
felt they held: none. 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1274



Discussion and Conclusion 
This investigation help me realize that the idea of mathematics teacher identities, while highly 
theorized in the literature, is something that only fieldwork and a narrative-based, creative 
methodology can answer. I found that understanding teachers’ identities came from allowing 
teachers to author their own narrative using their own words, ideas, and visual images. 
Additionally, it was important for me as a researcher to meet teachers within their space and to 
approach them as owners and authorities of this space, rather than asking them to come into my 
world and play by my rules. I cannot fully understand exactly what a teacher means when they 
tell me something. But when they create a visual glimpse into their world, something they can 
both define and describe, the interactions between teacher and researcher become real–we end up 
looking through the same window together. They are the tour-guide and I am the tourist. 
However, the fact that I worked with both teachers prior to this study complicates things. I 
selected each teacher personally, and my relationship with each teacher affected their openness 
and trust with me. During analysis, I could not help but use this prior knowledge to filter and add 
depth to their narrative. 
I hope this study adds to the existing research on understanding mathematics teachers through 
the lens of identity. I have experimented with a tool that might help us better explore 
mathematics teacher identity in a minimally invasive and easily implementable way. I hope this 
paper spurs further exploration of the PEI method to help us better understand the conflicting 
personal versus professional identities of our mathematics teachers.  
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How do teachers determine what a mathematics problem is about? Groups of teachers, 
mathematicians, and mathematics educators were separately tasked with categorizing a set of 
twelve algebra problems. Teachers appealed to student activity, real or hypothetical, as a means 
of making sense of and justifying claims about the problems. Both the scale and nature of the 
role of students in teachers’ discussions contrasted with the discourse of the other professional 
groups. This has potential implications for cross-disciplinary interactions including teacher 
training and communication through curricular materials.  

Introduction 
A teacher’s interactions with mathematics curricular materials are shaped by varied and 

complex factors such as her/his knowledge and beliefs as well as by often subtle features of the 
curricular materials. This paper reports on research which addresses questions about how 
teachers make sense of curricular materials. In particular, it examines the means by which 
algebra content was analyzed at two workshops in which algebra teachers, mathematicians, and 
mathematics educators were separately tasked with discussing and categorizing middle/high 
school algebra problems. The teachers, as compared to the other professional groups, made more 
frequent reference to students, real or hypothetical, as they negotiated the categorization. 
Furthermore, student actions served as justification for the teachers’ claims about the nature and 
focus of specific algebra problems; this was not observed within the other two professional 
groups. 

The sites for the present study were two 3-day workshops comprised of mathematicians, 
mathematics educators, and teachers from geographically diverse locations. The teachers were 
middle and high school teachers of algebra; the mathematicians and mathematics educators were 
university professors (See Table 1). The workshops were organized around a set of 12 algebra 
problems spanning content from pre-Algebra to Algebra II which were compiled by the 
workshop organizer Chris Norris, a mathematician, and administered in the participating 
teachers’ classrooms. Norris was the only person who participated in both workshops. The data 
presented here is primarily drawn from a particular task in which the workshop participants, 
separated by professional group, analyzed and categorized the 12 algebra problems. This 
categorization task required each professional group to negotiate and justify categories for the set 
of 12 problems; the instructions for the task were summed up by Norris as, “So what do you 
think is the sort of mathematical content of the problems and do they fall naturally into different 
groups?” 
 

Workshop # of Teachers # of Mathematicians # of Math Educators Total 
1 4 6 4 14 
2 8 5 0 13 

Table 6.  Number Workshop Participants and their Professional Groups. 
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Perspective 
The categorization task can be thought of as mathematicians, mathematics educators, and 

mathematics teachers interacting with the workshop algebra problems. As such, there are three 
overlapping categories of research which comprise the theoretical framework of the study: (1) 
research on interactions with curricula, (2) research on the learning and teaching of school 
algebra, and (3) research on the beliefs, knowledge, and dispositions of the three professional 
groups. Herein, I use Remillard’s (2005) definition of curricular materials as “printed, often 
published resources designed for use by teachers and students during instruction” (p. 213) and 
the present study is, in part, framed by Remillard's description of curriculum use as a 
participatory relationship between teacher and curriculum. This relationship is influenced by 
characteristics of the individual (beliefs, pedagogical content knowledge, etc.) and by features of 
the curriculum (voice, representation of concepts, etc.). Her framework acknowledges that 
teachers construct their understanding of curricular materials yet are also influenced by these 
materials.  

The inclusion of research on school algebra is motivated by the acknowledgement that some 
view of school algebra influenced the workshop participants' interactions with these problems. 
Kieran (2007) described the content of school algebra as ranging between reform-oriented and 
traditional. Reform-minded algebra often is characterized by an emphasis on functions, real-
world problems, and a value on multiplicity of techniques (such as the use of technology). 
Included in this the view of algebra are the multiple ways of representing functions including 
graphical, tabular, and symbolic representations. A traditional view conceptualizes algebra as 
generalized arithmetic and often focuses on symbolic manipulations, recognition of forms, 
simplification of expressions, solving equations, and factoring polynomials. The traditional view 
puts an emphasis on letter-symbolic and structural aspects of algebra whereas reformed algebra 
emphasizes a combination of mathematical representations.  

Many factors influenced the workshop participants’ interactions with the problem set. These 
factors include the features of the problems as well as less tangible characteristics of the 
workshop participants. Thus, the theoretical perspective which frames this study also includes 
research on these disciplinary groups' beliefs about and dispositions toward mathematics in 
general and algebra in particular. The few studies about mathematicians’ and mathematics 
educators’ beliefs about mathematics indicate a diversity of views (Mura,1993, 1995; Burton, 
1999). Some mathematicians (e.g., Bass, 2006; Cuoco, 2001), however, have endorsed a more 
structure-oriented approach to algebra. Similarly, there is not much conclusive to say about 
teachers’ beliefs about algebra. Doerr (2004) noted that “there has been little research about 
teachers’ knowledge and practice and its development with respect to the teaching and learning 
of algebra” (p. 285). Doerr’s survey of such research on teachers’ algebraic knowledge revealed 
“no research evidence in the USA that would suggest that teachers see the concept of function as 
an integrating theme for algebra instruction across the curriculum despite this being envisioned 
in the curriculum standards of the National Council of Teachers of Mathematics” (p. 278).  

The discussion which follows also draws upon the Mathematical Knowledge for Teaching 
(MKT) framework of Hill, Ball, and Schilling (2008). By distinguishing subject matter 
knowledge from pedagogical content knowledge (PCK) and then further unpacking each of these 
into smaller components, it provides a finer-tuned means for describing the knowledge which 
workshop participants drew from as they discussed the algebra problems. Of particular relevance 
is the notion of knowledge of content and students (KCS), a component of PCK, as “content 
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knowledge intertwined with knowledge of how students think about, know, or learn this 
particular content” (p. 375). 

Methods 
Data included audio and video recordings from both workshops, audio recordings of 

interviews with all but one participant from the second workshop, and observational data/field 
notes from the second workshop. The open-ended interviews investigated participants’ reactions 
to the workshop and their beliefs about algebra. Transcripts of the categorization task and the 
interviews were coding in three distinct phases as codes were refined. Codes were based both on 
the theoretical framework and on themes which emerged in the data. In general, I collected 
multiple data sources and subjected them to methodical, iterative analyses while simultaneously 
documenting my reflections and decisions. Member checks were conducted with three of the 
participants (one from each professional group). 

Results 
Analysis of the categorization task revealed that all three groups drew from diverse types of 

knowledge in order to justify claims or observations about the 12 algebra problems. However, in 
both workshops, teachers, more than members of the other two professional groups, used ideas 
about real students or their views of typical students to frame their discussion of the algebra 
problems and to justify their claims about the problems. During both workshops, the teachers 
referenced students during their discussions of every problem except for problem number one 
during the first workshop (they spoke about this problem for less than 30 seconds total). The 
teachers at times referred to their own students in their discussions of the algebra problems; for 
example, Nadya King, in discussing number four (See Figure 16), said, “So my kids didn't know 
what it meant ‘for increasing values of a”. Teachers also drew upon knowledge of content and 
students (KCS) to talk about students in general or about their own conceptions of typical 
students. Tom Luft, for example, said “I also think that kids don't understand that multiplying by 
one fifth is dividing by 5 very well” when discussing problem number five, a problem which the 
teachers subsequently categorized as being about “rational number operations” in the first 
workshop. 
 

 
Figure 16. Problem Number 4. 

 
The mathematicians and mathematics educators also engaged in discourse related to students 

and student work. They, of course, were less familiar with the work which students did in the 
participating teachers' classrooms and they referenced these students or classroom experiences 

In the expressions below, a and x are positive numbers. For each expression explain the effect 
of increasing a: does the value of the expression increase, decrease, or remain unchanged? 

	   Increases Decreases Remains unchanged 
ax+1 	   	   	  
x+a 	   	   	  
x-a 	   	   	  

a+x-(2+a) 	   	   	  
For each expression, explain why you made the choice you did. 
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less frequently. Indeed, the data and coding revealed that teachers had a greater focus on 
students; this was particularly notable in pronoun usage across groups. The teachers would talk 
about what “they”, the students, would or should or did do for a particular problem. Table 7 
shows the frequency with which members of each professional group used certain words which 
reference the students. A caveat of this word-count pertains to the use of the words “they” and 
“them”; the word count was not sufficiently sophisticated to detect the noun which each instance 
of these words referenced, however sampling indicated that the overwhelming majority of the 
usages of these words referred to “the students”. Likewise, there were instances where students 
were referred to but none of the four words included in the word-count were used; for instance, 
phrases like “mine did” or “a couple did” were not detected. The word count presented below is 
an imperfect metric but the scale of the difference in rates of usage of words referencing students 
is quite telling. Teachers used these words more than 500 times per hour. In contrast, 
mathematics educators used these words 205 times per hour and mathematicians used them 159 
times per hour. 
 

 they them student(s) kid(s) total 
Teachers WS1  474 130 26 129 759 
Teachers WS2  308 75 50 72 505 
usage per hour  312.8 82 30.4 80.4 505.6 
Math Educators WS1 119 79 73 37 308 
usage per hour  79.3 52.7 48.7 24.7 205.3 
Mathematicians WS1 103 51 58 10 222 
Mathematicians WS2 79 46 51 0 176 
usage per hour  72.8 38.8 43.6 4 159.2 

Table 7. Word counts from the categorization tasks, 90 minutes in the 1st workshop (WS1), 60 
minutes in the 2nd (WS2). “Usage per hour” is calculated for each professional group using totals 
from both workshops. 
 

The difference in how professional groups referenced students was not limited to a difference 
in quantity. In contrast to the two other professional groups, there were instances amongst the 
teachers in which students were used as a means to justify claims about particular problems. An 
illustrative example is the teachers' discussion of problem number two (Figure 17 below) during 
the first workshop; Ursa Harper justifies her interpretation of the question by referring to the 
mistakes her students made. She is a bit dismissive of Sheila Eastman's claim that the problem is 
about the distributive law because that is not what Ursa perceived her students to have struggled 
with. It is worth noting that Sheila was the only person in the teachers' group who did not 
administer the problems to her own class. 
 

Sheila Eastman You know, with what [the question writers] did here truly it's just the 
distributive property because they wanted them to just come up with 
one [possible first step]. 

Ursa Harper But what the kids made mistakes with were order of operations.  
They also made mistakes on like terms was the big one for my kids. 

Sheila Eastman Okay, order of operations, like terms, distributive property. 
Ursa Harper Bigger than distributive property was order of op, was the like terms. 
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Sheila Eastman Oh, okay. 
Ursa Harper I was shocked when I looked at it [the student work].  I was like 

“excuse me”. 
This discussion lead directly to the categorization of number two as a problem about “properties 
of real numbers” which, for this group of teachers, included concepts such as order of operations 
and like terms.  
 

 
Figure 17. Problem Number 2. 

 
A similar discussion took place about problem number four (Figure 16 Error! Reference 

source not found.). Ursa cites student errors with the distributive law and number sense as the 
justification that the problem is about these properties. Tom Luft and Tammy Vonce contributed 
to the discussion by suggesting other ways in which students could approach the problem, 
namely ideas about graphing, functions, and signed numbers. 

Tom Luft I would, um, extend that to, um, the idea of a function because I think 
the way my kids approach it is more of an input-output style… 

Tammy Vonce Put in different inputs, look at the outputs. 
Tom Luft Input-output, they looked at in slope-intercept form.  You know, they 

saw ax+1 and they said, well, this slope's positive, it's going up, this 
slope's negative it's going down, that kind of thing.  So I mean I think 
that's an underlying principle.  Whether or not all kids would see it 
that way, depending on their experience and stuff, I would think that 
most kids would just plug in and just see what happens. 

Tammy Vonce Well, you know, my kids, now that you're saying that it reminds me, 
they looked at it as signed numbers. 

This problem was ultimately categorized as being about “signed numbers”. The categorization of 
this problem was negotiated largely through an examination of what students did with the 
problem.  

Generally, the teachers discussed multiple ways in which students could and did solve each 
of the problems. This was, in part, what lead the teachers, in both workshops, to place individual 
problems in multiple categories (something which the other professional groups did not do). 
Their interactions with the workshop problem set were framed to a large extent by their 
experiences with the problems in their classrooms. This was not the sole influential factor but it 
was prominent in their discussions as they engaged in the categorization task.  

Mathematicians and mathematics educators also referenced (real or imagined) students as 
they interacted with the problem set. However, this happened less frequently as indicated by 

You are simplifying 7-2(3-8x).  Which of the expressions are possible results after the first 
step? 
	    Possible   Not Possible  

5(3-8x) 	   	  	  
7-2(-5x) 	   	  	  
7-6-16x 	   	  	  
7-6+16x 	   	  	  

For each expression, explain why you made the choice you did. 
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Table 7 and was rarely a sustained focus of their discourse. Perhaps it would have been a larger 
focus if they had administered the problem set in classrooms of students but this is unclear from 
the present data. The teachers based their analysis of the problems, in a large part, on what their 
students did. 

Discussion 
The present study is largely framed by Remillard's (2005) idea that teachers interact with 

curricular materials. This idea has been extended in the present analysis in order to view the 
workshop categorization task as mathematicians, mathematics educators, and teachers interacting 
with algebra problems. By framing these activities as interactions, my intention has been to 
highlight that the nature of the problems was determined by the participatory relationship (as 
Remillard calls it) between the workshop participants and the problem set. Her framework for 
teacher-curriculum relationship is intended as a framework for studies on curriculum use. It 
should be noted that the workshops were not exactly about curriculum use. Although the 
participating teachers had implemented the problem set in their classrooms, the decisions they 
made regarding implementation were neither the focus of the workshops nor of the research and 
analysis described herein. Furthermore, the problems were presented absent of the organizational 
structure (e.g., section or chapter headings) typical of classroom materials (though perhaps 
typical of standardized tests). However, the results described above are relevant to curriculum 
use; though the categorization task was removed from the typical environment and context in 
which teachers interact with curricular materials, the workshops provided insight into the ways in 
which teachers interact with curricular materials. For example, teachers made sense of the 
problem set through frequent reference to and guidance by their perceptions of students.  

This contrast between the professional groups in how they made sense of the algebra 
problems may have also manifested itself in the groups’ differing emphases on graphs. As he 
revealed in his interview, Chris Norris, the compiler/author of the problem set, did not consider 
graphing to be a prominent theme in the 12 problems or an important piece of algebra in general, 
though he did acknowledge that graphs can be useful tools for doing algebra. However, both 
groups of teachers spoke about graphing in relation to five of the problems. For Chris, a major 
theme within the workshop problem set was the structure of expressions and equations. This 
theme was discussed amongst the mathematicians and mathematics educators but was generally 
not discussed amongst the teachers. It is perhaps necessary to clarify here that I do not present 
the opinions of Chris Norris in contrast to those of the teachers in order to make a statement 
about the correctness of the teachers' interpretations of and interactions with the problem set. On 
the contrary, I wish to highlight the inevitability that interactions with curricular materials are 
interpretative acts; an individual encounters curricular materials through her or his own 
subjective filter. In light of this, questions about fidelity or correctness of interpretation are not 
relevant to my analysis and are potentially inconsistent with my perspective that workshop 
participants interacted with the 12 problems. 

The teachers' discussions of the 12 problems differed from Chris' intentions (and from the 
discussions by mathematicians and mathematics educators) as they pertained to graphing and to 
structure. Is it possible that this is connected to the prominence of the roles of students in their 
analyses of the problems? For instance, structure was a focus for both the mathematicians and 
the mathematics educators in the first workshop as they discussed and categorized problems 10 
and 11. Teachers from both workshops discussed graphing in relation to these problems which 
they perceived as difficult for the students. The teachers often spoke about graphing in terms of 
its pedagogical efficacy and as a strategy for students to approach a problem. Tom Luft discussed 
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how students “have to have a visual connection”. Ursa Harper described number 11 as “straight-
forward” for students who have experience with graphing calculators. Thus, it is possible that the 
prominence of teachers' perceptions of students in their interactions with the workshop problems 
was, in part, responsible for these differences in focus with the mathematicians and mathematics 
educators. That is, their greater emphasis on graphing and their lesser emphasis on structure may 
have been related to their focus on how students would or did approach the problems. 

In the interviews of the second group of teachers (none were conducted with the first group), 
six out of seven described algebra in a traditional way (e.g., generalized arithmetic) as did Chris 
Norris and all of the interviewed mathematicians. However, graphs are generally associated with 
reformed approaches to algebra. By emphasizing graphs, were the teachers infusing the 
workshop problems with a view of algebra different from that intended by the problems' author? 
The answer to this is unclear especially since the interviews did not reveal particularly reformed 
views of algebra. There is little evidence that the teachers' emphasis on graphing was a sign of a 
reformed, function-oriented view of algebra; rather, it may have been motivated by a concern for 
how students did or should approach the problems. This is certainly consistent with Doerr's 
(2004) report that there is “no research evidence in the USA that would suggest that teachers see 
the concept of function as an integrating theme for algebra instruction across the curriculum” (p. 
278). In categorizing these algebra problems, the teachers’ perceptions of students, and their 
knowledge of content and students (KCS), may have played a larger role than their stated beliefs 
about algebra. 

Chris' intentions to focus on structure and to deemphasize graphs were not acknowledged 
within the teachers' categorization tasks at both workshops. This, once again, highlights the 
interpretive nature of interactions with curricular materials. Furthermore, there are associated 
implications for developers of curricular materials. Chris' development of the problem set was 
guided by his opinions about the nature of algebra. The problems were distributed to the 
participating teachers with no explanation of his intentions or viewpoints and with no 
instructions for implementation. For the most part, his intended foci for the problem set were not 
implicitly communicated to the teachers through his presentation of the problems. In order to 
have successfully communicated his intentions through these curricular materials to the teachers 
it would have been advisable to have considered the role that student activity plays in teachers' 
appraisals of algebra problems. At least within the context of the workshop, a domain-centric 
lens was insufficient for consistently communicating ideas to teachers through curricular 
materials. 

Of the three professional groups at the workshops, the teachers were the only group to have 
administered the problem set to students and were the most familiar with the student work. This 
surely was a factor in their greater emphasis on student activity during the categorization task. 
Perhaps the results of this study would have been different had the teachers not implemented the 
problem set. However, this potential caveat is not particularly relevant to the discussion herein; 
by the nature of their craft, teachers have access to information about student activity and are 
concerned with implementation of curricular materials. It is important for developers of 
curricular materials and for instructors of pre-service and in-service teachers to acknowledge that 
teachers’ interactions with algebra content may be largely framed by their relationships with and 
perceptions of students; that is, they may draw heavily from their knowledge of content and 
students (KCS). It would be of use to study this idea further within the context of classroom 
curriculum use. 
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During the categorization tasks, perceptions of students played a larger role for teachers than 
for the other two professional groups. I hypothesized that this was at play in teachers' greater 
emphasis on graphing; this focus may have resulted from a perceived appreciation for the 
pedagogical efficacy of graphs more than from views of algebra which embrace functions and 
graphs as central themes. Furthermore, I have presented a view across professional groups which 
may inform collaborations and communication across professional groups. It may move us closer 
to the interdisciplinary cooperation which Bass called for in 1997: 

As  mathematical  scientists,  as mathematics  education  researchers,  and  as 
teachers  in  universities,  colleges,  community colleges and schools, we must 
begin to see our concerns for graduate, undergraduate, and K–12 education as 
parts of an integrated educational enterprise  in  which  we  have  to  learn  to  
communicate and collaborate across cultural, disciplinary, and institutional 
borders, just as we are called upon to do in mathematical sciences research. (p. 
21) 

Endnotes 
1. This work was supported in part by NSF Grant no. 0525009. 
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This study reports on how the presenters at a conference sponsored by a state affiliate of the 
National Council of Teachers of Mathematics aligned with literature on reform mathematics. 
Nonparametric methods were used to compare conceptions on three domains: nature of 
mathematics, learning mathematics, and teaching mathematics. Significant differences in 
conceptions were found within groups factored by gender, institutional position, and number of 
years presenting at a state conference. The findings suggest that teacher educators align more 
with reform literature on conceptions of learning and the nature of mathematics, while female 
and male presenters differed in their conceptions of teaching.  

The modern standards movement began with the National Council of Teachers of 
Mathematics’ (NCTM, 1989) publication of the first curricular standards: Curriculum and 
Evaluation Standards for School Mathematics. Smith (2001) claimed the intent of the document 
was to develop students who could engage in complex mathematical problems, alone and with 
peers, and who could communicate convincing arguments and justifications for their work. To 
support the vision outlined in the standards, NCTM published the Professional Standards for 
Teaching Mathematics in 1991 and the Assessment Standards for School Mathematics in 1995 
(NCTM, 2000). These standards documents have had a substantial impact on teacher preparation 
programs but have not impacted classroom teaching to the same degree (Price & Ball, 1997). 
Changing classroom practice to be more aligned with the reform movement in mathematics 
education remains problematic for teacher education faculty, professional developers, and school 
district personnel. To continue the conversation about reform-based teaching and standards, to 
respond to criticisms to the 1989 standards, and to address relevant research on teaching and 
learning since the original publication of the standards, NCTM published revisions of the 
documents: Principles and Standards for School Mathematics and Mathematics Teaching Today 
(Martin, 2007). 

In order to move toward the vision of mathematics teaching outlined in the NCTM standards 
documents, teacher preparation and professional development opportunities must address not 
only the mathematics content to be taught, but also elements of effective teaching. But how do 
practicing teachers come to experience such professional development?  One important source of 
professional development for mathematics teachers is conferences, especially the state and 
regional mathematics conferences sponsored by NCTM affiliates. 

Other disciplines also hold state conferences affiliated with their national organizations. 
Koballa, Dias, and Atkinson (2009) questioned how the messages teachers receive at a 
conference sponsored by the state affiliate of the National Science Teachers’ Association 
[NSTA] were aligned with national reform efforts. The researchers found that, even though the 
session leaders were members of the NSTA state affiliate and were likely considered leaders in 
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their schools, most of their conceptualizations of inquiry did not align with the meaning of 
inquiry promoted by the NSTA. 

After reading these results, we began to question how session leaders at a state mathematics 
conference, sponsored by the state affiliate of NCTM, conceptualize reform in mathematics 
education. The present study sought to investigate conference presenters’ background knowledge 
about reform and how they relay their knowledge to session participants. A question of interest 
in considering such knowledge is how the presenters’ beliefs align with those promoted by 
NCTM. 

To this end, four research questions were developed for the study, two of which are 
addressed in this report: 

1. What conceptions of reform-oriented mathematics teaching do presenters hold? 
2. How are the presenters’ conceptions of reform, modes of presentation, and intended 

impacts related to each other with respect to the mathematics education reform 
literature? 

 We will address some of the qualitative results in our presentation. 

Conceptual Framework 
Philosophers (e.g., Ernest, 1991; Lerman, 1998) discuss two major theories about the nature 

of mathematics: absolutist and fallibilist. Whereas absolutists attempt to provide an authoritative 
account of how mathematics should be understood, fallibilists attempt to describe the field and 
provide a means of growing the body of mathematical knowledge. Reflecting on the nature of 
mathematics advocated NCTM documents, Sfard (2003) explained that the documents promoted 
keeping both the student and the mathematics at the forefront, ensuring that “the needs of the 
learning child never disappear from the reformers’ eyes” (p.353). Reformers promote a view of 
mathematics as relative, fallible, and expanding rather than a mathematics that is static and 
absolute. As such, mathematics is a human endeavor that children should actively construct 
during their school mathematics experiences. 

Learning theories of mathematics are rooted in specific perspectives of the nature of 
mathematics. In mathematics education reform literature, learning mathematics is an active 
process in which students build knowledge through social interaction, discourse, conjecturing, 
problem-solving, and validating. NCTM (2000) identifies problem solving, reasoning and proof, 
communication, connections, and representation as processes for promoting the development of 
mathematical understanding. In their support of the NCTM Standards, Ball and Bass (2003) 
argue that mathematical reasoning is a basic skill necessary for learning mathematics with 
understanding. All students can learn mathematics when they are invited to investigate its nature 
in their own way, when it is situated in culture, and when it is scaffolded by individuals who 
understand the tacit and concrete dimension of mathematical knowledge (Lampert & Cobb, 
2003; Martin, 2007; NCTM). 

Because learning mathematics should be an active process wherein students build their own 
understanding, the teacher’s role in helping students develop that understanding cannot be 
underemphasized. The teacher’s role in reform-oriented teaching is active, reflective, and 
cognitive and must shift from the dispenser of pre-determined knowledge to a facilitator of 
creative and generative processes. The teacher must be active in managing the discourse in the 
classroom, which requires “planning that involves capitalizing on what students do and directing 
their activity toward important mathematical issues” (Lampert & Cobb, 2003, p. 244). Teaching 
should result in students learning mathematics with conceptual understanding and should be 
“centrally guided by students’ ideas” (Ball & Bass, 2003, p. 30). Furthermore, student 
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differences should be respected and valued; reform teachers modify their instruction based on the 
needs of the learners in their classrooms. They use worthwhile tasks that reflect a high level of 
cognitive demand on the part of students (Stein, Smith, Henningsen, & Silver, 2009) and should 
require students to engage in authentic problem solving. Reform teachers view teaching as 
problematic and reflect on their practice, often in systematic ways in communities of practice 
(Martin, 2007). 

The NCTM’s impact on standards-based reform in learning and teaching mathematics is 
profound and ongoing. Professional communities that provide discourse and professional 
development for mathematics educators also contribute to the changing landscape of reform-
oriented mathematical content and instructional practices. Specifically, educational leaders who 
present reform-oriented practices to other practitioners help to form, model, and foster accepted 
truths of mathematical knowledge within such professional communities (Ernest, 1999). This 
study hopes to explore how such presenters at the state conference conceptualize and 
demonstrate reform-oriented mathematics during workshop presentations.  

Methodology 
To help us determine how presenters’ beliefs align with reform literature, qualitative methods 

and a survey were used to collect data. 
The study was conducted during fall of 2010 at a state mathematics conference which 

annually hosts approximately 1900 attendees. There were 188 sessions spanning grades P-16, 
held over three days. The conference program was used to identify lead presenters. Session 
descriptions were used to categorize presentations that addressed various aspects of the nature of 
mathematics, learning mathematics, or teaching mathematics. One hundred forty sessions met 
the categorization criteria, and the lead presenters of those sessions comprised the survey 
sampling frame. Sixty presenters completed the survey for the study. We verified that the sample 
proportionally represented the presenter demographic position (7 resource personnel = exhibitor 
or publisher; 12 support personnel = instructional leader, coach, or administrator; 13 teacher 
educators = professional developer or pre-service program faculty; and 28 active classroom 
teachers). 

A 15-item survey was designed to measure conceptions about reform mathematics, based on 
findings from Raymond’s (1997) study on teacher beliefs. Items contained phrases contrasting 
more traditional (choice a) statements, the negative pole of the scale, to more reform (choice b) 
statements, the positive pole, regarding dispositions on the nature of mathematics, and 
mathematics learning and teaching. Presenters responded to a five-point Likert-type scale (1 = 
Agreement with (a), 2 = Towards (a), 3 = Equal agreement with (a) and (b), 4 = Towards (b), 5 = 
Agreement with (b)). The survey was pilot tested with mathematics educators and teachers to 
determine the appropriateness and clarity of the items. It was then administered online, opening 
approximately one month prior to the conference. Consent for participation in the study was 
gained and assured by electronic signature using email addresses. To address non-response, 
follow up requests to participate were sent electronically, along with personal reminders to 
complete the survey during the conference. 

We disaggregated the data by presenter’s gender, institutional position, highest degree 
earned, and conference presentation experience because prior research revealed that the type of 
provider was not an adequate predictor of session quality; rather, “the skills, background, and 
preparation of professional development providers” (Banilower, Boyd, Pasley, & Weiss, 2006, p. 
35) were greater determinants of effective professional development. Graphical displays, within 
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each domain, were first examined holistically and then disaggregated by the above factors, to 
examine the overall alignment of survey takers with reform literature.  

Results 
Reliability for the conceptions of reform mathematics scale was measured by computing 

Cronbach’s Alpha (0.602). Utilizing “Cronbach’s Alpha if Item Excluded” analysis, Cronbach’s 
Alpha (0.720) increased with the elimination of four items from the instrument. The adjusted 
coefficient demonstrated sufficient reliability for the scale. Questions (Q1-Q3) were related to 
the nature of mathematics, (Q6-Q8, Q10) comprised the domain on learning mathematics, and 
the teaching of mathematics was assessed using questions (Q10-Q13, Q15). The item means are 
presented in Table 1. Higher means for an item indicate a conception towards reform 
mathematics. For comparative analysis, nonparametric tests were used because these methods 
are better suited for ordinal data, they are appropriate for unequal or small groups, and they do 
not require the assumption of normality for the population distribution from which the sample 
was drawn. An alpha level of 0.05 was used for all Kruskal-Wallis Rank Sum Analysis of 
Variance test. Significant results are presented below. 
 

Domain Nature of Math Learning Math Teaching Math 
Question Q1 Q2 Q3 Q6 Q7 Q8 Q10 Q11 Q12 Q13 Q15 
Response 

Mean 3.68 2.97 2.95 4.05 3.23 4.19 4.24 4.66 3.64 3.14 3.78 

No. of 
Responses 60 60 60 60 60 59 58 58 59 58 60 

Table 1. Item Response Averages 

 
Conceptions of the Nature of Mathematics 

Rank orders pertaining to the nature of mathematics were found to be significantly different 
among groups when factored by number of years presenting at the state conference (see Table 2). 
For all groups, ranking tended towards mathematics as changing, fallible and relative, as opposed 
to fixed, absolute and predictable. A consistent trend across all items within the domain was a 
higher score mean for the group 2-3 years (MQ1 = 33.12, MQ2= 34.08, MQ3 = 38.31) than that of 
the group First year (MQ1 = 30.4, MQ2 = 26.55, MQ3 = 23.40). One possible rationale for this 
finding relates to exposure to the conference settings and to others who discuss effective teaching 
and learning. Some presenters may have presented as a class requirement or as a way to get more 
involved in their state organization. After that first experience, presenters may express 
perturbations in their conceptions based on feedback from participants in their sessions or they 
may consider their practice in greater depth before they present at the conference in the future.  

 
Level Count Score Sum Score Mean ChiSquare DF Prob>ChiSq 
First 20 468.000 23.4000 8.0680 3 0.0446* 
2 – 3  13 505.500 38.8846    
4 – 6 9 230.500 25.6111    
>6 17 566.000 33.2941    

Table 2.  Kruskal-Wallis Test: Nature of Math by Years Presenting at Conference 
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The respondents struggled with the dichotomies provided that sought to tease out the 
conceptions of the nature of mathematics: “I struggled with the relative/absolute statement and 
the doubtful/certain statement. My faith has certainly swayed my opinions, but because I 
understand math, I tend to be in the middle about some of my answers.” Additionally, the 
responses were influenced by their classroom practices: “I think that mathematics had a definite 
body of knowledge...however, the way we teach and learn mathematics varies. Exploring 
mathematics can lead to new discoveries and understandings about how and why mathematics 
works the way it does.”  

Conceptions about Learning Mathematics 
The four items assessing conceptions of learning mathematics showed closer alignment with 

the reform literature. For the learning domain, a significant difference in score means by position 
(see Table 3) prompted an inspection of item means. On item Q6, which contrasts learning 
through skill and drill with learning through investigation, a significant difference was detected 
(χ2 = 10.48, p = 0.015), where the greatest differences was between teacher educators (M = 
41.31) and teachers (M = 24.13). Although no other significant differences were found, on two 
of the remaining items, teacher educator score means (MQ7 = 33.15, MQ8 = 35.38) were greater 
than teacher (MQ7 = 28.68, MQ8 = 24.72). For teacher educators, conceptions of learning 
mathematics tended towards choice b, where learning by investigation, group work, with a good 
teacher, and by doing challenging tasks were ranked higher than learning by skill and drill, 
independent work, being a strong student, and memorizing. Teachers tended to rank items in this 
domain as being equally important for learning mathematics. 

Table 3. Kruskal-Wallis Test: Learning by Position 
 

The following quotes highlight some of the differences in these two groups’ conceptions:  
Teacher Educator: “I firmly believe that learning and understanding mathematics requires 
students to be actively engaged in mathematics. They need the opportunity to develop their 
conceptual understanding of mathematics. Drill, lecture, and practice don't work.” 
Teacher: “Mathematics is a combination of memorization/ skill & drill to learn the basics and 
exploration once the basics are concrete.”  

This finding seems contrary to those by Banilower et al. (2006) that type of presenter was not an 
indicator of quality; however, we did not analyze the backgrounds of each teacher educator, 
which is what Banilower et al.’s research claims is the greater determinant. 

Conceptions about Teaching Mathematics 
The results for conceptions about teaching mathematics were in the middle of the traditional-

reform scale (see Table 1). The exception was the question that generated the most consistent 
results, Q11: “Good mathematics teaching is (a) guided primarily by a textbook and its 
supplemental materials or (b) by a variety of instructional materials from various sources.” 
Strong agreement with choice (b), (MQ11= 4.66) may be explained by the present curriculum and 
materials being used in the state in which the conference was being held. The state is rolling out 
an integrated curriculum based on the process standards for which quality texts were not readily 

Level Count Score Sum Score Mean ChiSquare DF Prob>ChiSq 
Resource 6 182.500 30.4167 9.1998 3 0.0267* 
Support 10 273.000 27.3000    
Teacher 22 425.500 19.3409    
TEducator 13 445.000 34.2308    
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available. Teachers saw this as a challenge to implementing the new curriculum: “one challenge 
was pulling together the materials; no textbooks exactly aligned to the standards and materials 
were everywhere on the internet; careful planning for the tasks is required” (Edenfield, 2010, p. 
174).  

The overall scale analysis showed a significant difference in score means by gender (see 
Table 4). Females ranked items as “towards b”, while males tended to rank items as “equally 
both a and b”. The greatest point of departure for the two groups was on the teaching domain. 
Although the score means in the domain were not significantly different, the most noticeable 
variations were on items Q11 (Mfemale = 30.52, Mmale = 26.81) and Q15, which contrasts the 
importance of using multiple examples with using problem solving tasks in teaching, (Mfemale = 
32.76, Mmale = 24.28). The following quotes by gender illuminate some of the thoughts 
participants had about teaching: 

Male1: “Although the student has to choose to participate in the learning process, the 
teacher must also meet them halfway by doing their best to provoke them.” 
Male 2: “Since students have different learning styles and readiness levels, there must be 
a balance of what they see and what they do. This usually changes with each content, so 
teachers must constantly assess their students to find the balance.” 
Female 1: “When teaching mathematics the instruction should not be driven by any 
particular resource. It should be driven by the teacher. The teacher can plan for flexibility 
within the lesson and should make explicit any information that does not come up in the 
student work or classroom discussions.” 
Female 2: “Problem solving tasks are most beneficial in the learning, practicing, 
retention, and mastering of math. I equate math problem solving to be quite parallel to 
life. It is in doing, making mistakes, and analyzing those mistakes that we truly learn.”   
 

  Level Count Score Sum Score Mean ChiSquare DF Prob>ChiSq 
Female 40 1234.00 30.8500 4.6818 1 0.0305* 
Male 15 306.000 20.4000    

Table 4. Kruskal-Wallis Test: Overall by Gender 

Discussion and Implications 
Across all subgroups in the study, the means for the questions related to the nature of 

mathematics were centered around three on the five-point scale. The participants, therefore, 
viewed mathematics as balanced between absolute and fallible. Watson (2008) contrasted the 
discipline of mathematics with school mathematics: 

Mathematics as a discipline, by contrast to school mathematics, is concerned with 
thought, structure, alternatives, abstract ideas, deductive reasoning and an internal sense 
of validity and authority…. The concerns of school mathematics pull learners in 
directions that differ from these. The core activity in school mathematics is to learn to use 
mathematical tools and ways of working so that these can be used to learn more tools and 
ways of working later on. (p. 6) 

These differences in mathematics as a discipline and mathematics in schools may partly explain 
our results. We posit that it is possible for a person to view school mathematics as absolute, 
while viewing the discipline of mathematics as fallible. Our questions did not address this 
difference, but it is an area for future research. While the mathematics education literature 
promotes a view of mathematics as fallible, none of the subgroups in the study showed a 
tendency toward viewing mathematics in this way. Raymond (1997) found that teachers’ 
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conceptions of the nature of mathematics are more influenced by their early learning 
experiences; as most mathematics teaching in the US is not considered standards-based (Stigler 
& Hiebert, 1999), it is not surprising that the presenters’ conceptions of reform fail to align with 
the reform literature. 

The findings on gender parallel similar findings in the field of workplace psychology 
(deMarrais & LeCompte, 1999). Men and women conceptualize the purpose and function of 
their jobs differently, and teaching is no exception. Boaler (1997, 2008) also identified gender 
differences in the students at Amber Hill and Phoenix Park that paralleled findings on brain 
research on gender differences: Male students valued separate knowledge involving logic and 
abstraction whereas females preferred making connections involving creativity, intuition and 
experience. Additionally, women preferred more cooperative environments that encourage sense 
making, while men preferred more competitive work or learning environments. Given that 
teachers’ beliefs about teaching and their practice are highly influenced by their own learning 
experiences, their preferred methods of learning might influence their ideas of effective 
mathematics teaching. Because our sample size was small, we refrain from generalizing our 
results. Our purpose was not to privilege a particular conception of teaching but rather to 
describe presenters’ conceptions of effective mathematics teaching. We will continue mining 
literature on gender differences, paying particular attention to studies conducted in STEM fields, 
to contribute to our understanding of this finding. 

 For the sample, those conference presenters who were teacher educators were more aligned 
with reform literature concerning the learning of mathematics than were the presenters who were 
classroom teachers. Battista (1999) explained that most educators (including teachers, professors 
of education, and administrators) hold faulty views of constructivism, not the research-based 
constructivist theory. Some  

conceive of constructivism as a pedagogical stance that entails a type of nonrigorous, 
intellectual anarchy that lets students pursue whatever interests them and invent and use any 
mathematical methods they wish, whether these methods are correct or not. Others take 
constructivism to be synonymous with "discovery learning" … others even see it as a way of 
teaching that focuses on using manipulatives or cooperative learning. (p. 429) 

In mathematics education reform literature, learning mathematics is an active process in which 
students build knowledge through social interaction, discourse, conjecturing, problem-solving, 
and validating. One possible explanation for the differences between teachers and teacher 
educators is that the teachers were not as aware of research on how children learn mathematics or 
held misconceptions about those theories, as Battista described; whereas the teacher educators 
may have read more research literature as a function of their graduate work or their jobs as 
teacher educators. The teacher educators at the conference were probably mathematics teacher 
educators, and not generalists who teach foundations of education courses, and were hence likely 
to know more about learning theories specific to mathematics. Another possibility is that many 
teachers go through teacher preparation programs wherein they discuss student thinking as 
theoretical. They may not have the opportunities to engage in discussions about research on 
learning and actual student thinking and learning in the context of their practice. We see this 
finding as particularly relevant for professional development, including initial teacher 
development. If, through further research, we see a general trend that teachers’ conceptions of 
reform are more aligned with research literature with respect to teaching than to learning, then 
professional development is needed.  
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We know that the conceptions revealed by presenters via the survey may not align with their 
actual practice or the messages they portray in their presentations. We are in the process of 
analyzing a subset of presentations and interviews with those presenters. We will search for 
confirming or disconfirming evidence about the conceptions communicated in the survey but we 
also expect to get a better understanding of the messages conference attendees receive. We hope 
to report on these extended findings at the conference. From our observations of sessions at the 
conference (not having yet completed the analysis), we noticed a lack of focus on worthwhile 
mathematics in the actual presentations, with the focus being more on using engaging activities 
with students. Most session presenters were not clear about what they wanted students to learn, 
and how they wanted that learning to occur when the activities presented in their sessions were 
used with students. As the findings unfold, we will be able to offer other implications for 
professional development. For example, in all professional development materials – including 
workshops and presentations – not only does the goal of the session need to be emphasized but 
also the mathematical goals for students. 
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The “Developing Investigations of Mathematical Experience” (DIME) research program is 
focused on building a research-based understanding of the interiorized experiential world of 
idiosyncratic mathematics. We seek to identify and relate expressed indicators of intended and 
actual mathematical experiences, as they appear to occur in the complex relationships of 
participants involved in mathematics teaching and learning. The goals of this case study are to 
characterize individual experiences in ways that acknowledge a person’s active and reflective 
thinking efforts within problematic contexts linked to emotive dimensions of their lived and living 
mathematical experiences, in order to inform improved mathematics teaching practices. To 
probe these largely unexplored complex domains, we are using both phenomenological and 
constructivist theories and methods to build our investigations. 

Today, there is surely an implicit and implied emphasis upon high quality mathematical 
experiences within the goals and expectations for a sound mathematical education. Yet, within 
our literature and advocacies for curriculum, for teaching, for learning and development, and for 
research knowledge there seems to be very little explicit attention to the phenomenal data of an 
individual’s “lived/living mathematical experiences.” This frames an important goal of our 
research efforts. 

What is the nature of lived and living mathematical experiences? What are the particular 
qualities (essences) of human experience that make it a “mathematical experience?” Are these 
experiential qualities that are unique to mathematics, or are they also found more broadly in 
other human experiences? In what ways do “lived/living mathematical experiences” vary or 
differ among humans, and why? What factors related to the individual or the experiential 
context might frame or affect or impact upon the actual phenomenon of a high quality “lived 
mathematical experience?” In what ways do the experiences of individuals vary within 
mathematical contexts, such as classroom situations that are intended to engender the “same” 
kinds of experiences for all participants? How do “lived mathematical experiences” accumulate 
within differing individuals, and with what more general intellective and emotive 
consequences? In what ways do thinking and feeling aspects of “mathematical experience” 
interact within a lived experiential context, and with what kinds of impacts or outcomes? In 
what ways might a mathematics educator use what can be learned about “lived/living 
mathematical experiences” of students, parents, teacher educators, mathematicians, or others in 
society to improve educational practices? 

These are some of the questions that serve as “starting points” for our research program. In 
addition, we are confronting many research methodological questions that are framing much of 
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our initial struggles to conceptualize what we see as a largely undeveloped research domain for 
the field of mathematics education. 

Purpose of the Study 
This study is being conducted with four selected volunteer students enrolled (Spring semester 

2011) in a third undergraduate mathematics course (Geometry and Measurement) in a sequence 
specifically designed to prepare future elementary teachers. These students are also participating 
with all of the enrolled students in a companion investigation of the impacts of differentiated 
course instructional approaches on students’ mathematical understandings. 

The primary research question for this study is: What is the nature and quality of self-
reported and analyzed mathematical experiences of students in differentiated classroom 
situations and in individually presented supplementary geometry and measurement situations? 

This individual case-study research will allow us to develop a deeper understanding of the 
ways that selected students perceive important elements of their course experiences, including 
their activities in learning mathematical concepts and processes, how the differentiation has 
impacted their experiences in learning and achieving the course objectives, and what ideas from 
the course will be useful in their future teaching of mathematics to children. In addition, a variety 
of geometric and measurement problematic situations will be posed for them to solve, with the 
purpose of investigating the nature and quality of their living mathematical experiences and their 
mathematical thinking and feeling within extensions to the content they are learning in the 
course. 

Prior Research on Mathematical Experience 
Brown (1996) described the mathematics classroom from the perspective of social 

phenomenology where it is seen as an environment of signs, comprising things and people, 
which impinge on the reality of the child. His framework sees mathematical ideas as contained 
and shaped by the child’s personal phenomenology, which evolves through time. He introduces 
the notion of “personal space” as a model for describing how children proceed through a 
classroom environment of phenomenal experiences toward their idiosyncratic “sense making.” 
The report provides interesting data from children solving symmetry tasks, and demonstrates 
how Brown uses his framework to interpret the child’s functioning in experiential terms. 

Roth (2001) critically questioned some of these views and approaches in his review of 
Brown’s (1997) book, an extensive attempt to relate many important aspects of mathematics 
learning and teacher education to phenomenology, hermeneutics, post-structuralism, and 
semiotics. In particular, Roth’s central concern is whether all mathematical activity and 
experience can be reduced to text, based upon Brown’s unequivocal assertion that “There is no 
experience outside the text” (p. 226). 

Among the few investigations we’ve found, Francisco (2005) involved the elicited reflections 
of five high school students in their 12th year of a longitudinal study in which their school 
mathematics from grade one had been developed in ways claimed to be consistent with a 
constructivist approach (called “Rutgers Math”).  Maher (1987) had described these learning 
conditions to include: collaborating in work, exploring patterns, conjecturing, testing their own 
hypotheses, reflecting on extensions and applications of the concepts, and explaining and 
justifying their reasoning. Steffero’s (2010) study of one female student’s beliefs and 
mathematical activities that occurred over a seventeen-year period constitutes an enormous 
record of her mathematical experiences from grade four through graduate school. Handa (2006) 
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examined ways of knowing and doing mathematics using phenomenological reflections to 
construct views of experiential relationships with the subject matter of mathematics. 

Perhaps there are good reasons why so little explicit focal attention is given to “mathematical 
experience.” Thompson (1991) observes that while the paper authors (in an ICME conference on 
epistemological foundations of mathematical experience) are concerned with mathematical 
experience, they offer no information about “what is a mathematical experience.” Indeed, in 
DIME we fully acknowledge a serious lack of clarity of constructs in this domain of 
“mathematical experience,” but through systematic efforts to study “lived mathematical 
experience,” we will seek to build new, grounded clarities of meanings. Here again, we may 
easily fail. 

It is the goal of this research program to begin to study intentionally the phenomena of “lived 
mathematical experiences.” Why bother? Are not the traditional views emphasized in intended 
curriculum, instruction, learning, assessment, evaluation, and research on learning and teaching 
adequate? Indeed, it is exactly because the goals and strategies of a sound mathematical 
education today embody a major emphasis upon stimulating, nurturing, and demonstrating high 
quality thinking arising from particular kinds of intended experiences that we must now seek to 
understand more clearly the nature of what students and teachers are actually experiencing in 
their “math lives” (Csikszentmihalyi, 1990). 

If we want educational outcomes that mirror the empowerment that a deep knowledge and 
proficiency of mathematics can afford, we must now seek to move beyond our current 
perspectives and approaches that still seem to produce (for too many of our students) much less 
than we seek. If we are to understand deeply why so many of our students still achieve very poor 
understandings of the mathematical ideas and processes that our reformed curricula and our 
improved teaching methods, materials, and tools seek, we must begin to penetrate beyond more 
superficial indicators, such as test scores or written work, or even observed classroom behaviors 
into the interior world of the student’s actual “lived mathematical experiences” where we may be 
able to identify deeper explanatory aspects of the individual’s progressive growth (or deficits) 
toward greater mathematical knowledge and proficiency. 

There is one other rationale that seems increasingly important. Too many of our citizens bear 
negative feelings toward their own past mathematical education (Hersch & John-Steiner, 2011), 
but for us educators to help our current students avoid such debilitating beliefs, feelings and 
attitudes we must begin to understand the nature of their experienced emotions that occur and 
develop within the mathematical contexts we offer. That is, not only must we understand the 
intellective dimensions of a person’s constructions and reconstructions of their mathematical 
knowledge and proficiency, but we must also understand the emotional dimensions of their 
experiences, and how the interplay of thinking and reasoning actually functions within their live 
experiential feelings, emotions and affective schemas. It is time to seek to understand the whole 
“mathematical life” of our clients. 

The goal of such new understandings is the assumed promise or potential that from such 
knowledge we mathematics educators will all be helped to engage in improved forms of 
mathematical education in which enhanced qualities of “lived mathematical experiences” occur 
for all persons. We seek a pedagogy that understands and honors the experiences of the other 
(surely a primary intention of a constructivist epistemology). 

Theoretical Perspectives: Lenses upon “Mathematical Experiences” 
We each know the centrality of the “lived experiences” we have throughout our lives. Even 

modest personal reflection can lead an individual to a sense of realization that it is specific 
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experiences that shape “who they are, what we know, how we think” in powerful and 
fundamental ways. This includes what is experienced “outside,” in the so-called “real world” that 
involves interactions within our environment (our physical experiences) and within our 
interactions and relationships with other minds (our social experiences). But, this also includes 
interior experiences that occur in our mind within our “inside” constructed world, where our 
thinking and our feeling “being” (person) is shaped and functions. 

In Project DIME, we acknowledge the significance of the typical “mathematical” 
environment that includes students, teachers, parents, discourse, textbooks, technology tools, 
classrooms in schools, tasks and tests, the structured contexts of lessons, local, state and national 
curriculum frameworks, professional preparation and development, mathematicians, societies 
and cultures, governance, politics---all of the usual cultural and social elements in and around a 
person’s mathematical education today. In doing so, we also accept that the meaning structure 
for any or all of these elements is a totally idiosyncratic construction for any of the multitudes of 
persons attending to matters of mathematical education. Now, we seek to “look into” the interior 
phenomenal world of “lived experiences” where each individual dynamically encounters and 
processes their idiosyncratic “mathematical experiences” that lead to “who they are and 
become,” mathematically. 

Phenomenology begins in the lived world, and seeks to bring to reflective awareness the 
nature of the events of “lived experience” (Hegel, 1977; Husserl, 1970, 1982). The principle of 
intentionality acknowledges an inseparable connection to the world (in our focus, the world of 
mathematical education) wherein “…we question the world’s very secrets and intimacies which 
are constitutive of the world, and which bring the world as world into being for us and in us” 
(van Manen, 1990, p. 5). We are choosing to study thematic meanings, adopting themes and 
conducting thematic analyses within our particular orientation to the phenomenon of 
“mathematical experience” as “people of mathematics:” all being teachers, teacher educators, 
students of learning and teaching, mathematically educated, and interested is pedagogic theories. 
In DIME, we are trying to be explicit about our individual and shared intentions and orientations 
as a preparatory anchoring step in our research process. 

As such, phenomenology accepts the curriculum of being and becoming (paideia), pursuing 
understanding of the personal, the individual, set against the background of an understanding of 
the other, the whole, the communal, or the social. It seeks to explicate phenomena as they present 
themselves to consciousness---the only access humans have to the world. But, consciousness 
cannot be described directly (the fallacy of idealism); the world cannot be described directly 
either (the fallacy of realism); real things in the world are only meaningfully constituted by 
conscious human beings, and these constructed meanings can only be revealed by the 
constructing human as inferences. 

In our formative research approaches we presume the nature of “lived experience” to be 
fundamentally an internal construction/re-construction that emphasizes a consciousness of 
“sense-making,” attempted within the unique idiosyncratic mental operations, schemas and 
constructive mechanisms as they exist and function in the mind of the individual within that 
“lived experience.” To emphasize Piaget’s (Piaget & Inhelder, 1969) theoretical inclusions that 
both intellective and affective aspects are involved within experience leading to development, so 
we seek to study both as a seamless whole, even as we reject many other dichotomies as false 
(such as “thinking versus feeling”) typical of a strictly modernist structuralism. 

Among the constructivist focal constructs we want to consider in our study of “lived 
mathematical experience” are representation and re-presentation, reflection and reflective 
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analysis and abstraction, intuition and intuitive reasoning, and perturbation and equilibration, and 
particularly to search for where and how they may be found to function in, impact upon, and in 
turn be affected by particular experiential contexts. For example, in today’s curricular 
frameworks one sees a major attention given to “representations” and representational activities; 
students are expected to learn to understand, use, and make various canonical mathematical 
representations. Yet, what from a study of “lived mathematical experiences” can we find about a 
student’s actual conceptions and views of representations, and especially how they experientially 
use such images in problem contexts to re-present the conceptual ideas they are presumed to 
represent? Moreover, von Glasersfeld’s (1991) view of cognitive functioning sees representation, 
re-presentation, and reflective abstraction as inseparable aspects; can we find this exhibited in 
“lived mathematical experience?” 

Methods 
On the first day of class, both research projects were explained to all nineteen students; most 

agreed to participate fully in the course-based investigation. Additionally, nine students 
expressed interest in participating as one of four selected paid volunteers. Over the next several 
days, the Principal Investigator (Hatfield) met each prospect individually for about 45 minutes, 
to explain further details related to the conduct of the ten 90-minute weekly (extra out-of-class) 
interview sessions, and to engage in a sample geometric problematic situation that illustrated 
what might be expected in each interview. By the time these preliminary sessions were 
completed, two students had withdrawn from the course (due to personal circumstances); all 
others confirmed their interest to participate if selected. Four of the remaining volunteer 
prospects were then selected based upon PI perceptions of these factors: expressed interest in the 
research, personal goals for learning from the individual sessions, openness, qualities of 
“thinking aloud” during sample problem solving, qualities of reflective analysis about their past 
mathematical experiences, and survey profiles of views of mathematics, mathematics learning, 
mathematics teaching, and school mathematics. Two women and two men were chosen; one 
female and one male are both older (“non-traditional”) students and both expressed greater 
insecurity (less confidence) in relation to their mathematical knowledge and prior experiences. 

The constructivist/phenomenological research methodologies used in this study require 
dynamic spontaneous interactions with each subject, functioning within a specific task-oriented 
framework. Data used in analyses include interactions and observational field notes of the 
researcher-interviewer (Hatfield) and a researcher-observer (Belbase), written or computer-based 
productions of the student, and video-recorded behaviors and verbal responses constructed by the 
subject, prompted by a “thinking aloud” expectation and questioning and probing protocol. 
Additionally, both the researcher-interviewer and the researcher-observer constructed post-
session written descriptions of their intended and lived session experiences, these to be used as 
further data for analyzing and interpreting the co-contextualized (collaborative intellective and 
social dynamic) experiences of the student participants. 

In general, all 90-minute interviews are structured into the following sequence of events 
(with approximate time allocations to be completely flexible and determined by the real-time 
decisions of the researcher-interviewer to proceed forward in the sequence, or to dwell longer to 
pursue productive interactions on behalf of the research question). 

Part 1. (~20 minutes) Experiences in the course activities---Reflective interactions first focus 
on the student’s conceptions and perceptions of what they have been experiencing in the class 
sessions, and how those experiences (from their point-of- view) are shaping their mathematical 
knowledge, their views of “doing” mathematics, and their ideas related to their future teaching of 
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geometry and measurement to elementary students. These are prompted by questions such as the 
following: “Talk to me about what you’ve been experiencing during class sessions. Which of 
these experiences have seemed especially significant to you? Why? How have you benefited 
from those experiences, and why do you think you did? Tell me what you thought about ______ 
(a particular activity or event). Have there been any course events that were not particularly 
helpful or useful to you? Do you see ways that your course activities might impact your future 
teaching? Why? How might that happen?” 

Part 2. (~50 minutes) “Living/lived mathematical experiences”---A non-routine geometric 
problematic situation is posed to the student, with the request to try to solve it as they share what 
they are experiencing via a “thinking aloud” approach. These geometric situations are 
challenging applications beyond the course content, solvable by good precollege problem 
solvers, including upper elementary students. An example: “Three towns, A, B, and C, are all on 
the same road. Town A is 12 kilometers from town B, and town B is 6 kilometers from town C. 
There is an additional town X on the same road that is also twice as far from town A and from 
town C. How far is town X from town B?” 

There is not an a priori interview protocol, but efforts of the student constructively develop 
within an approach that promotes solving efforts (in which the researcher-interviewer will 
encourage student questions, and may include carefully placed problem-related questions or 
suggestions he poses) while frequently asking that the student describe her current thinking. At 
appropriate points he may ask her to pause (“take time out”) in her solving efforts to reflect upon 
and describe qualities of her ongoing “living/lived mathematical experiences” in the unfolding 
situation. The fundamental goal is to reveal and study mathematical experience in terms of a 
dynamic interplay among cognitive and emotive thinking and feeling represented in the 
interiorized events of another person. 

Part 3. (~20 minutes) “Looking back” and “Looking ahead”---Near the end of the interview, 
the subject is asked to reflect upon the session and to ponder anticipations beyond the session. 
This “looking back” phase of discussion reflectively focuses on her reported experiences of the 
session, emphasizing the problem-solving episode. In this, attention is given to potential 
connections to the nature and quality of experiences occurring in the class sessions. The “looking 
ahead” aspects then requests the student to anticipate potential connections of what she has 
experienced in the interview to how she views her future teaching of elementary mathematics, 
and in particular geometry and measurement, with children. In this discussion one focus is upon 
how elements of her personal philosophy and epistemology for mathematics are possibly being 
transformed by the course and interview experiences. 

In the final interview session, the student will be asked to collaborate to construct a reflective 
analysis of their lived mathematical experiences across all course sessions and interview 
problem-solving episodes. Their written productions will be used for stimulated recall and 
analysis; selected segments of video may also be used to stimulate and support their recall and 
analysis. They will be guided to discuss what they perceive as the essences of the mathematical 
experiences they have had across the sessions, and how these relate to the qualities of their other 
lived mathematical experiences. 

Results 
Data are currently being collected and formatively analyzed, and this will continue to the end 

of the scheduled individual interviews (late April 2011). Formative data analysis has been 
initiated, in part to reflect a “constructivist teaching experiment” in which ongoing analyses and 
interpretations yield idiosyncratic inputs to influence potentialities within the subsequent 
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interview dynamics. Identified elements of expressed and observed “lived” and “living” 
experiences are used to inform the intentional questions and interactions of the researcher-
interviewer with a particular student during a subsequent interview session, all framed within the 
contexts of the three-part dialogue. 

Using discourse analysis supported by video reviews (Hurlburt & Akhter, 2006; Petitmengin, 
2006; Wolcott, 1994), thick descriptions for each session for each student are being constructed 
independently by the researcher-interviewer and the researcher-observer; these will then be 
jointly analyzed and contrasted, leading to consensual descriptions. After the course ends (by 
research protocol agreement) the observational and analytical voices of the other two project 
researchers [Chamberln (course supervisor and collaborative investigator) and Schnorenberg 
(course instructor and collaborative investigator)] will be added to the detailed analysis of all 
data from the forty sessions. In particular, all consensual descriptions will be collaboratively 
reviewed and analyzed, leading to a written interpretation for each student to portray the 
composite essences and overall qualities and to characterize a phenomenological model of 
mathematical experience for each of the four students. Particular attention will be given to 
identifying ways their mathematical experiences may have changed or developed across the class 
sessions and interview episodes in terms of their understanding and reasoning for “sense 
making” in geometry and measurement, their emotions and feelings for learning and solving 
problems, and their conceptions and anticipations for their future teaching children mathematics. 

Some very preliminary results from our mid-study analyses include: 
• There are differences among the students in their lived mathematical experiences that 

deeply affect their beliefs and self-efficacy about mathematics. 
• There are strong connections between, and mediations by, qualities of prior lived 

mathematical experiences and the ways they seem to be able to engage in, and benefit 
from, new living mathematical experiences. 

• The qualities of their current mathematical experiences are strongly shaping their views 
about how they will engage elementary students in their future teaching. 

• A developing idiosyncratic “theory” of a student’s experiential relationship to doing 
mathematics provides an important meditational template for teaching interactions. 

Final interviews (in the Fall) with each student will be conducted in which the written 
interpretation (characterizing model) of the student will be shared and discussed. In this context 
we will encourage the student to agree or disagree on particular elements of interpretation, to 
explain and elaborate differences, to offer alternative views and ideas, and express the degree of 
agreement they feel they have for the characterization of their lived mathematical experiences 
during the Spring studies. These interview discussions may lead to revisions in the written 
interpretation, and will be data also summarized and reported. 

Discussion 
Little theoretical or empirical research with explicit attention to “lived or living mathematical 

experience” has been reported to date. Yet, there is a pervasive and deep focus on implied or 
intended mathematical experience across the history of mathematics education. The DIME 
(Developing Investigations of Mathematical Experience) research team seeks to establish a 
research program that will begin to build toward a deeper understanding of what a variety of 
participants in mathematical education can reveal about their interiorized worlds of “lived and 
living mathematical experience.” 
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The students (prospective elementary teachers) who participated in this study have been 
invited (and all have given preliminary commitments) to participate in follow-up investigations 
of mathematical experiences during their enrollments in two “methods of teaching elementary 
mathematics” courses, in “student teaching,” and then into their first year of classroom teaching 
of mathematics. Through this sequence of studies with the same students, we will build accounts 
of the accumulated impacts and consequences of their idiosyncratic lived mathematical 
experiences upon their development and modifications of personal theories and practices for 
teaching children mathematics. 
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(RE)SHAPING ELEMENTARY PRESERVICE TEACHERS’ ATTITUDES TOWARD 
MATHEMATICS 

    Cindy Jong                                             Thomas E. Hodges 
                  University of Kentucky                            Western Carolina University 
                    cindy.jong@uky.edu                                      tehodges@wcu.edu 
 
The purpose of this study was to investigate how preservice elementary teachers’ past schooling 
experiences and their participation in a mathematics methods course influenced their attitudes 
about the teaching and learning of mathematics. Pre- and post-surveys were administered to 
preservice teachers (n = 75) enrolled in mathematics methods courses at a university in the 
northeastern United States. Findings indicated that while prior schooling experiences influenced 
preservice teachers’ initial attitudes about mathematics, the methods courses were conducive to 
shaping attitudes in a positive way, suggesting that experiences that build on preservice 
teachers’ prior experience can, in fact, shift attitudes.  

Introduction 
Learning to teach mathematics is a multifaceted process beginning as K-12 students, 

continuing into teacher preparation programs, and extending into teachers’ own classrooms 
(Wideen, Mayer-Smith, & Moon, 1998). Similar to K-12 students who enter the classroom, 
preservice teachers (PTs) enter teacher education programs with certain conceptions regarding 
the roles of teachers and students in mathematics classrooms.  These conceptions are based upon 
particular forms of knowledge, resources, experiences, and conceptions of what it means to be a 
competent mathematics student and teacher (Ball, 1989; Ball, Lubienski, &Mewborn, 2001).  
Lortie (1975) suggested that the process of becoming a teacher involves an “apprenticeship of 
observation.” From this perspective, teachers' socialization into teaching starts not when they 
enter teacher education programs, but as participants in K-12 school settings. Lortie claimed that 
the thousands of hours spent as a pupil in school create a “latent culture” that surfaces when one 
becomes a teacher. Additional research has shown that this apprenticeship of observation is 
influential in shaping preservice teachers’ ideas about teaching and learning (Ball & Cohen, 
1999; Feiman-Nemser, 1983; Wideen, et al., 1998).  Once participating in teacher education 
programs, courses and field experiences typically expose PTs to multiple views that can help 
reshape their conceptions of teaching (Ball & Cohen, 1999; Ebby, 2000). However, the lenses 
through which preservice teachers make sense of these course and field experiences are 
developed by prior knowledge and experiences (Ball, 1989).In this paper we argue that just as 
teachers are encouraged to access students’ prior knowledge and use their experiences as 
resources, teacher educators should take the same asset-based approach with preservice teachers. 

Purpose of Study  
Although several studies make the case that past schooling experiences are influential, few 

have specified how to build upon the existing attitudes and experiences preservice teachers bring 
with them to teacher education programs. A first step in building upon PTs’ prior experiences is 
to understand the attitudes with which PTs enter mathematics education coursework, how those 
attitudes are a reflection of prior school experience, and how attitudes change through 
participation in a mathematics education course. Correspondingly, we asked, How do preservice 
elementary teachers’ past schooling and their mathematics methods course influence their 
attitudes about the teaching and learning of mathematics? Regardless of the nature of teachers’ 
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prior experiences in mathematics, those experiences can provide an effective backdrop for 
developing attitudes towards mathematics teaching and learning aligned with reform 
recommendations in mathematics education (National Council of Teachers of Mathematics, 
2000).  

Perspectives 
It has long been argued that teachers’ affect is an important part of the way teachers 

understand mathematics (Ball, 1990). In Phillip’s (2007) review of the literature on mathematics 
teachers’ beliefs and affect, he argues that “for many students studying mathematics in school, 
the beliefs or feelings that they carry away about the subject are at least as important as the 
knowledge they learn of the subject” (p. 257). He defines “affect” as “[a] disposition or tendency 
or an emotion or feeling attached to an idea or object” ( p. 259). He then goes on to explain that 
while “[a]ffect is comprised of emotions, attitudes, and beliefs….[a]ttitudes are more cognitive 
than emotion but less cognitive than beliefs” (p. 259). Much of the research on elementary 
teachers’ affect has focused on the anxiety they have about mathematics; however not much, if 
any, has focused on teachers’ affect and the relationship to their expected practice (Phillip, 
2007).  

Our study follows a well established line of research that has attempted to examine PTs’ 
attitudes towards the teaching and learning of mathematics whether they adopt a more reformed 
view of teaching mathematics (Ebby, 2000; Eisenhart, Borko, Underhill, Brown, Jones, &Agard, 
1993; McGinnis,and MacNab& Payne, 2003). Methods courses that expose teachers to reform 
practices tend to positively influence PTs’ attitudes towards mathematics teaching and learning. 
However, Eisenhart et al (1993) found that while their participant had a desire to teach for in a 
reformed way, observations indicated that she rarely taught mathematics using approached 
aligned with reform documents in mathematics education. McNab and Payne (2003) had a 
similar finding with PTs in Scotland, where once they were out in the classrooms were 
“relatively unadventurous in their teaching” (p. 66). While field based experiences can contribute 
to PTs’ attitudes towards mathematics, we chose not to include this factor in our analyses here. 
This was due to the varied field based experiences of participants included in this study; thus, we 
focus on the mathematics methods course. 

Modes of Inquiry 
Research was conducted at a private university in the northeastern United States. The teacher 

education program offered both a traditional four-year undergraduate degree and a graduate 
degree that could be completed in a twelve-month period. As part of the teacher education 
program, preservice teachers were required to take one mathematics methods course. This course 
was typically taken during the fall semester before student teaching.  
 All participants were undergraduate or graduate level preservice elementary school teachers 
enrolled in one of four sections of the mathematics methods course. Three professors taught the 
four sections of the elementary mathematics methods course. The mathematics methods courses 
at this university emphasized a reformed view of teaching mathematics. At least half of the class 
sessions used manipulative materials where the instructor emphasized links between concrete 
models and abstract mathematics concepts. Reflecting upon those experiences was an important 
part of connecting past experiences and prior knowledge to new ideas. The course was organized 
around the NCTM Standards (2000) where the instructors purposefully used process standards as 
a means for teaching content standards. Participating PTs completed both a pre-survey, which 
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was administered the first week of the mathematics methods course, and a post-survey, which 
was administered during the last week of the course during the same semester.  
 
Instrumentation 

The pre-survey sought to capture participants’ entering attitudes about mathematics and 
inquired about their experiences as K-12 students. The purpose of the post-survey was to 
examine preservice teachers’ attitudes the teaching and learning of mathematics, field 
experience, and mathematics methods course experience. The population size was 102 and the 
total sample size for those who took both the pre- and post-survey was 75, a 73.5% response rate. 
The surveys, which were based on existing instruments, were first created and piloted in the first 
author’s dissertation. Overall factor analyses indicated that approximately 67% of the variance 
was accounted for within seven scales. The sub-scales of each of the surveys had moderate to 
high reliability, with Cronbach’s alpha levels from .612 to .921.  

The pre-survey included the following four sections about mathematics: attitude and past 
experiences, teaching and learning, methods course expectations, and diverse learners. The post-
survey included the following four sections about mathematics: attitudes and practicum 
experiences, teaching and learning, diverse learners, and future teaching. Most of the 48 items 
(per survey) were on a four-point Likert scale ranging from “strongly agree” to “strongly 
disagree.” However, the section about the practicum experience included the fifth option, “not 
applicable.”In addition to the pre- and post-surveys, which were administered during the first and 
last weeks of the course, observations of the mathematics methods courses were conducted and 
course artifacts (i.e. syllabi, assignments, and assessments) were collected to provide contextual 
information related to survey and interview data related to the mathematics methods courses. 
However, this paper solely focuses on the survey data.  

 
Data Analysis 

Multistage survey data analyses were carried out using SPSS. First, descriptive statistics were 
applied to analyze overall item response percentages and note any possible trends in responses. 
Second, we used correlations to examine the relationships among past experiences, the methods 
course, attitudes about mathematics education, and confidence to teach. Lastly, a multiple 
regression model was created to examine how past schooling and the mathematics methods 
course accounted for preservice teachers’ attitudes towards mathematics and perceived level of 
preparation to teach mathematics. 
 

Results 
Considering the influence past experiences have on PTs conceptions of teaching and the 

desire of teacher education programs to help shape these conceptions (Ball, 1989; Lortie, 1975; 
and Scott, 2005), we became interested in responses on three unique items on the post-survey 
that directly asked preservice teachers about the perceived impact of their past K-8 schooling, 
practicum, and mathematics methods course on their future teaching practices (see Figure 1). 
The percentages were based on the total n of 75 to avoid an inflated percent due to missing data. 
The stem for the three items stated, “The following will have a major impact on the way I teach 
math in the future.” The PTs were then asked to respond to this statement specifically about their 
past K-8, practicum, and methods course experiences. 85% percent either strongly agreed or 
agreed that past experiences would have a major impact on their future teaching practices. 81% 
percent strongly agreed or agreed that they believed their practicum experiences would be 
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influential, and 96% thought that the mathematics methods course would have a major effect on 
their future teaching. Further analyses examined the relationships and influences of past 
experiences and the methods course. 

 
Figure 1. Elements influencing preservice teachers’ anticipated practices by percentages 
 
Results displayed in Table 1 indicate a positive relationship between PTs’ attitude towards 

mathematics and positive prior schooling experiences in mathematics at the K-8 grade level (r= 
.599, p< .01). Participants’ positive math attitude had an especially strong positive relationship to 
their perceived proficiency and positive high school experiences with mathematics (r= .719, p< 
.01). Undoubtedly, these constructs are all interrelated. If preservice teachers perceived 
themselves as highly proficient in mathematics, they were likely to be more confident (r= .585, 
p< .01), look forward to teaching mathematics (r= .563, p< .01), and have a higher positive 
attitude towards mathematics (r= .713, p< .01). Similarly, preservice teachers’ attitudes and self-
perceptions were related to their own experiences as students learning mathematics.  

 
Table 1.Relationships among Attitudes and Prior Schooling Experiences in Mathematics 

Pre-Survey Items 2 3 4 5 6 
1. Positive math attitude .599** .719** .713** .661** .553** 
2. Positive K-8 math  .539** .526** .455** .368** 
3. Positive 9-12 math   .599** .508** .440** 
4. Perceived Proficiency in math    .563** .585** 
5. Looking forward to teaching math     .504** 
6. Confidence in ability      
** Correlation is significant at the 0.01 level (2-tailed) 

 
To examine the relationships among preservice teachers’ experiences in mathematics 

methods course, attitudes about mathematics, anticipated approaches to teaching mathematics, 
and perceived preparation, bivariate two-tailed Pearson’s correlations were run at the .05 alpha 
level (see Table 2) among items pertaining to these topics on the post-survey. Results indicated a 
moderate positive relationship between participants who had a more positive attitude towards 
math and whether they learned a variety of strategies in the mathematics methods course (r= 
.273, p < .05), planned to teach mathematics in a conceptual manner (r= .326, p< .01), were 
going to require their students to memorize facts (r= .274, p < .05), and agreed that the 
mathematics methods course would have a major impact on their future teaching (r= .268, p < 
.05). Preservice teachers who indicated that they learned a variety of strategies in the methods 
course showed an increased desire to teach mathematics (r= .371, p< .01), confidence (r= .277, p 
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< .05), and believed that the course would have an impact on their teaching practice (r= .440, p< 
.01). An increased agreement that the mathematics methods course would have an impact on 
teaching practices was also significantly related to an increase in looking forward to teaching 
mathematics (r= .360, p< .01) and confidence (r= .291, p < .05). Participants’ level of confidence 
was also associated with whether they would encourage students to use multiple strategies (r= 
.279, p< .05), a characteristic of teaching with a conceptual focus. 
Table 2.Relationships Among Attitudes and the Mathematics Methods Course Experiences  

Post-Survey Items 2 3 4 5 6 
 

7 8 9 10 

1. Positive math   
    attitude 

.273* .306** .794** .566** .326** .168 .066 .274* .268* 

2. Learned a variety of   
    strategies 

 .192 .371** 
 

.277* .149 .043 .142 -.013 
 

.440** 

3. Prepared to teach   
    math 

 
 

 .397** 
 

.438** 
 

.139 
 

-.149 
 

.227* 
 

.047 
 

.210 
 

4. Looking forward to  
    teaching math 

   .711** 
 

.311** 
 

.011 
 

.140 
 

.061 
 

.360** 
 

5. Confident in ability  
 

   .412** 
 

0.031 
 

.279* 
 

.137 
 

.291* 
 

6. Teach conceptual  
   math 

     
 

.275* 
 

.382** 
 

.155 
 

.014 
 

7. Teach procedural  
   math 

 
 

     .051 
 

.601** 
 

-.083 
 

8. Encourage multiple  
    strategies 

       .016 
 

.119 
 

9. Require students to  
    memorize facts 

        -.109 
 

10. Methods course,   
     major impact 

         

* Correlation is significant at the 0.05 level (2-tailed) 
** Correlation is significant at the 0.01 level (2-tailed) 
 

Following a confirmatory approach, we hypothesized that the variation found in preservice 
teachers’ feelings of preparation and anticipation to teach mathematics after being in the 
mathematics methods course for one semester could be explained in terms of the variables listed 

above. In statistical terms, the hypotheses can be expressed as: 
0

0

8

80

≠=

==

mathpositiveKa

mathpositiveK

H
H

β

β
and  

0
00

≠=

==

stratsmathcoursea

stratsmathcourse

H
H

β

β
. The significance level was set at the 0.05 two-tailed level. 

The overall regression of preplookfwd on positive K-8 math and math course strategies was 
statistically significant [R2 = .208, F (2, 75) = 9.441, p< .001]. Overall, the variance explained by 
the two predictors differed significantly from zero; thus, we rejected the null. Table 3 shows the 
overall model summary and significance levels. This model had a higher F-value and was 
statistically significant. The positiveK-8 mathvariable accounted for approximately 12.5% of the 
variance in preplookfwd, while math course strategies accounted for an additional 8.3% of the 
variance. Taken together, the predictor variables could explain approximately 20.8% of the 
variance of preplookfwd. Although the model was significant, nearly 80% of the variance was 
unaccounted for in preplookfwd, which supports the argument that a multitude of variables 
influence preservice teachers’ attitudes and preparation to teach mathematics. The 
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unstandardized coefficients of the model were .192 for positive K-8 math and .330 for math 
course strategies. The regression solution for this model was: 

stratsmathcoursemathpositiveKdpreplookfw XXY 330.0192.0942.0 8 ++=
∧

.To evaluate the effect size of the 
regression model, we computed a post-hoc power analysis. The model with two predictors (see 
Table 5) had a very high level of power (1 - β = 0.97) with a medium effect size (f2 =  
0.26) at the alpha level of .05.  

 
 

Table 5.Model Summary and Significance of Two Predictors 
Predictors R 2 Δ R 2 F p DW 

 
1. Positive K-8 Math .125 .125 10.447 .002  
2. Positive K-8 Math 
    Math Course Strategies 

.208 .083 9.441 .000 2.164 

Note. Dependent Variable (constant): PrepLookfwd to teach Math 
 

Discussion 
Descriptive statistics from the post-survey clearly showed that more than 80% of participants 

perceived their prior schooling and the mathematics methods course experiences as having a 
major impact on their anticipated teaching practices. The multiple regression model confirmed 
that the two variables accounted for a significant proportion of preservice teachers’ perceived 
level of preparation and their attitude towards teaching mathematics. Nevertheless, the two 
factors combined accounted for only 20.8% of the desired outcome variable including preservice 
teachers’ looking forward to teach mathematics and viewing themselves as prepared.  Thus, 
other factors beyond those in our model account for almost 80% of PTs’ preparation to teach 
mathematics and attitudes about teaching mathematics. In this section we present an interpretive 
summary of the two main themes from our data. 
 
Evolution of Attitudes 

Findings indicated a strong relationship between PTs’ attitudes about mathematics and their 
prior schooling experiences. A positive increase in participants’ attitudes towards mathematics 
was related to positive experiences in K-8 prior schooling (r= .599, p< .01) and to high school 
(r= .719, p< .01). Similarly, an increased response to perceived proficiency in mathematics had a 
strong positive relationship with attitude towards mathematics (r= .713, p< .01). In addition, 
participants’ perceived proficiency was related to both their prior K-8 (r= .526, p< .01) and high 
school (r= .599, p< .01) experiences in mathematics. Thus, correlation results indicated that 
those with more positive prior schooling experiences had more positive attitudes towards 
mathematics and considered themselves as more proficient. These findings support a qualitative 
study conducted by Ellsworth and Buss (2000), who examined preservice teachers’ attitudes 
towards mathematics by analyzing their autobiographies. They found that past teaching models 
was the most salient theme because preservice teachers’ commonly reported that their interest in 
or attitude towards mathematics was positively or negatively affected by past teachers. By 
bringing past experiences to the surface, preservice teachers may be more cognizant of how their 
own attitudes about mathematics are shaped.  
 
Influential Factors 
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It is particularly important to acknowledge that preservice teachers enter teacher education 
programs with a wealth of knowledge from their prior schooling. Although in some cases, the 
goal of a course is to reshape or challenge entering assumptions about the role of teaching, PTs 
can also have positive perspectives about teaching which complementary ideas can be built upon. 
The mathematics methods course could build upon PTs’attitudes, which are often more positive 
and fertile than expected. While the mathematics methods courses observed in this study did not 
appear to have an overt agenda or strategy to build upon PTs’ past experiences, questions were 
raised about their view of the teaching and learning of mathematics. As the instructors taught 
methods for different mathematics topics such as multi-digit subtraction, PTs would use the 
standard algorithms in many cases and connect their prior knowledge about the procedure with 
the concrete materials. It would have been interesting for PTs’ to explicitly compare different 
strategies and discuss the benefits of alternative algorithms.  

While the two experiences we focused on, prior schooling and the mathematics methods 
course, can be of great importance in preparing elementary teachers to teach mathematics, our 
study found that the two only accounted for 20% of the variance of PTs’ attitudes towards 
teaching mathematics. This suggests that the past experiences that we often try to work with may 
not account for as much as we thought it did. While important, past experiences might play a 
smaller part than we expect. We suggest that explicit efforts still be made in the mathematics 
methods courses to connect to PTs’ prior knowledge.  Many scholars who support a social justice 
approach to teaching have made a strong case for the importance of adopting an asset model by 
using students’ prior experiences as resources (Cochran-Smith, 2004; and Ladson-Billings, 
1995). In a similar way, we believe that teacher educators need to use preservice teachers’ 
entering characteristics as resources and adopt an anti-deficit model. However, there are many 
additional factors that need to be explored over time, such as field experiences, student teaching, 
mentors, family members who are educators, and mathematics content courses, which could 
potentially influence changes in participants’ attitudes and confidence. In addition, continued 
professional development opportunities can continue to build upon preservice teacher education 
experiences to increase teachers’ confidence and knowledge. In the final section we make 
recommendations for teacher education and future research. 

 
Recommendations 

Although several scholars have argued that beginning teachers’ socialization into teaching 
takes place when they are students, empirical work has not explored the extent to which past 
experiences influence preservice teachers (Scott, 2005). This study explored that issue as it 
pertains to mathematics teacher education and showed that past experiences only accounted for 
12.5% of the explained variance in PTs’ attitudes and confidence to teach mathematics. We 
believe that this could actually be a very encouraging finding. While past schooling experiences 
are a significant factor and need to be taking into consideration, there are many additional factors 
that account for and influence teachers’ attitudes that need to be explored.  

Teacher educators should engage PTs in worthwhile and authentic activities that help them to 
bridge their own personal factors with contextual factors to adopt and practice that can support 
student learning (Goos, 2005). It is particularly important to acknowledge that preservice 
teachers enter teacher education programs with a wealth of knowledge from their prior 
schooling. Harkness et al. (2006) suggested that mathematics methods courses should provide 
opportunities for PTs to engage in meaningful problem solving tasks to make sense of the 
mathematics and make connections to improve upon their future practices. Ebby (2000) argued 
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that methods courses should shift from mastering practical skills to developing “habits of mind” 
such as “making sense of children’s understanding and learning to take a reflective stance 
towards one’s own teaching” (p. 93).  

Future research should follow PTs longitudinally across teacher education programs and into 
their entry into the profession.   In this study, the pre- and post-surveys were confined to one 
semester long mathematics methods course. Based on the factor analysis, the instrument also had 
room for improvement, as surveys do not fully capture the variables of interest due to self-
reporting and restricted Likert scales. The sample was also restricted to the mathematics methods 
courses at one university during one semester. Multiple data sites over time and across 
institutions would allow for stronger comparisons. In addition to survey results, qualitative 
interviews that elaborate on these experiences would help us further investigate how PTs’ 
attitudes are reshaped.  
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Introduction  

This study examines the effects of a professional development (PD) experience on second 
and third grade teachers at a Title I school in southeastern United States as they worked together 
to develop a shared understanding of teaching mathematics. This case study analysis (Yin, 2003) 
investigates participants as they collaborated with a university-based mathematics teacher 
education group within a semester long PD experience. This paper discusses the process of 
change for this group of teachers as they worked to break down barriers and question beliefs 
about instruction and student ability in mathematics. 

 
Theoretical Framework 

The literature relating to mathematics PD is extensive. Most empirical studies document the 
implementation and evaluation of PD models that are transformative in nature, meaning that they are dedicated 
to improving teacher quality in mathematics (Smith, 2001). These models differ from PD that is additive in 
nature, meaning that the purpose of the experience is to add new ideas or material to existing instructional 
practice (Smith, 2001). Recommended PD models described in the research literature contain what can be 
considered the four essential elements of mathematics PD: 
1. PD should be ongoing and grounded in practice: Teachers require extensive experiences geared towards 
developing both mathematical content knowledge and pedagogical content knowledge (Hill, Rowan, & Ball, 
2005). These experiences must connect to everyday teaching practices (Garcia, Sanchez, & Escudero, 2006).  
2. PD should focus on mathematical content: Research indicates that teachers are inadequately prepared to deal 
with the discussions that can occur in a reform-minded mathematical classroom (Hill, Rowan, & Ball, 2005) 
and many elementary school teachers lack sufficient content knowledge to teach their students.  
3. PD should have student learning as the ultimate goal: Guskey (2000) emphasized the need to determine the 
effectiveness of PD by the impact it has on student learning. Many studies conducted on models of PD measure 
effectiveness by teacher reaction or through district approval.  
4. PD should create communities of teachers: Cobb, Stephan, McClain, and Gravemeijer (2001) describe the 
need for PD to enable teachers to collaborate with each other. Teaching is typically an isolated profession where 
teachers have little opportunity to collaborate to meet the needs of all students. Sustainable PD requires that 
teachers take ownership of their development through these communities of practice (Gellert, 2008). 

The model developed for teachers in this study was grounded in the four essential components of 
mathematics PD outlined above. Prior to working with these teachers, the PD team spent two years observing 
classroom settings in four elementary schools as part of a state funded grant to gain a better understanding of 
their needs in terms of mathematics instruction. This information was used to create a PD model that was 
unique to the needs of these teachers. The PD team developed a model that had two main objectives: (1) To 
develop the pedagogical content knowledge necessary to implement an inquiry curriculum in the manner in 
which it was designed and (2) To develop a shared sense of purpose by analyzing a common instructional issue 
amongst participants. Although a focus on mathematical content was an absolute priority, it was also necessary 
to problematize participants’ current instructional methods through the introduction of an action research 
agenda that would enable them to analyze student work as a team and, as a result, evaluate pedagogy to improve 
student achievement.  

 
Methods 

Research Question 
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The central research question guiding this study was: How does an ongoing mathematics PD model focused 
on developing an action research agenda impact the instructional practice of elementary school teachers? This 
question was examined through a case study design where multiple forms of data were collected during the 
experience and then analyzed and compared to determine overall results (Yin, 2003).  

 
Sampling 

Teachers were selected to participate in the PD model and concurrent research study through snowball and 
criterion sampling methods. When contacted by the PD team, all participants volunteered to participate in both 
the PD and the research study. The team of 11 participants (five second grade teachers and six third grade 
teachers) met two times monthly after school with one member of the PD team (who acted as both facilitator 
and researcher for this study) for a total of ten hours of formal, content-focused PD. In addition to these 
experiences, teachers read and critiqued articles relating to mathematics instruction, developed a research 
question and design, and collected and analyzed data from their individual settings.  

 
Building a Community of Researchers 

In order to scaffold participants as they conceptualized a research agenda, the facilitator/researcher first 
divided the group into grade-level teams so they were better able to consider issues relating to their students. 
The facilitator/researcher then asked participants to work together in each team to identify the specific needs of 
their students in mathematics. Once each team created a list of needs, the facilitator/researcher then asked each 
team member to write about their beliefs regarding how students learn mathematics and what it means to be an 
effective teacher of mathematics. The facilitator/researcher then extended this examination of beliefs by asking 
participants to compare their beliefs and their current teaching practices. Although this was an examination of 
teacher perceptions, the facilitator/researcher was able to scaffold participants towards the goal of investigating 
both student understanding in mathematics and instructional practice in mathematics. The culminating research 
question developed for both grade-level teams as a result of this examination was: What are the best ways to 
teach basic facts effectively?  

 
Building Mathematical Understanding 

The facilitator/researcher asked the 11 participants to complete a mathematics assessment 
prior to attending the first PD session to determine their needs in terms of building pedagogical 
content knowledge. This assessment was comprised of a selection of nine released items relating 
to number concepts from the National Assessment of Educational Progress (NAEP). The 
assessment was limited to items related to number concepts because second and third grade 
student achievement on a standardized assessment given quarterly showed weaknesses in this 
area. The PD team altered the nine items by including a reflection component where each 
participant was asked to explain the strategy used for solving each problem in writing. It was this 
reflection component that provided the most information for the facilitator/researcher to develop 
each PD session.   

 
Data Collection and Analysis 

Consistent with case study research, four forms of qualitative data were gathered throughout 
this study to determine changes in teacher beliefs and instructional practice related to 
mathematics pedagogy. Participants were asked to complete a reflection paper describing the 
results of their grade-level team research and their overall reactions to the PD experience. The 
facilitator/researcher provided a list of writing prompts to assist participants and to ensure 
information was provided relating to teacher beliefs about teaching mathematics. In addition, 
data was gathered through participant selected student work and classroom observations 
examined during PD sessions, anecdotal notes written by the researcher during PD sessions, and 
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the reflection component of the NAEP assessments administered prior to and following the 
overall PD experience. Data analysis began with repetitive readings of each form of data to 
ascertain an overall impression and to identify overarching patterns or themes. From there, 
constant comparative methods (Strauss and Corbin, 1998) were used in a secondary analysis to 
examine themes across data.  
 

Results 
In the beginning of the PD process, participants expressed their concern that they would be 

forced to implement the inquiry-based curriculum the rest of the school had already been using. 
The facilitator/researcher worked to build a positive relationship and establish a sense of trust by 
seeking permission from administration to allow participants to teach mathematics in whatever 
method they felt was most effective. As a result, participants were more open to questioning their 
own practices. While they did not implement the curriculum fully, they did begin to ask open 
ended questions in their classrooms and provided students with tasks that were developed as a 
result of analyzing student work during PD sessions. Participants also began planning together 
and developing hypotheses regarding the most effective ways for students to understand basic 
facts. They quickly realized that summative assessments of student learning would be 
insufficient in determining student understanding. 

Participants reported the value of listening to their students and increasing student 
discussions as part of mathematics lessons. They also recognized the need to “talk less” when 
teaching to allow students time for engaging in meaningful discussions. “I have learned that I 
need to let go of some of the control in my room and let my students come up with their own 
thoughts and conclusions about the problems. They might have a better way of looking at 
something or even be able to teach each other better than I could” (Participant 3). Their view of 
student abilities in mathematics was also challenged throughout the research process, “Many 
times I would give them a problem and we would work it out exactly the way I had in MY mind. 
I realized during these sessions that my students are capable of using different strategies to solve 
the exact same problem…I need to allow my students time to explore and try different 
mathematical strategies to figure out the answer” (Participant 6).  

Even with these positive changes, participants still viewed themselves as transmitters of 
knowledge rather than facilitators during lessons. Often participants described how they needed 
to present information to students in order for them to build conceptual understanding through 
tasks. “I gained some insight into how my own team explains their mathematical processes to 
their students (Participant 1)”. They began to change their instructional practices to allow for 
open-ended questioning, conceptual tasks, increased communication, and student autonomy, 
however many continued to view the beginning of the lesson as the time when they “taught” 
students and the second part of the lesson as the time when these reformed practices would be 
implemented. Although perceptions of practice were beginning to change by the end of the PD 
sessions, as is evident in the examples reported above, participants in this sample did not 
completely transform their beliefs about the teacher’s role in mathematics instruction.   
  

Discussion 
Research has shown that while building teacher content knowledge in mathematics is a 

priority, without problematizing instructional practices and building a sense of community 
among colleagues, little change will occur in the classroom (Cobb & McClain, 2001). 
Professional learning and teaching communities have long been recommended for improving 
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teacher quality in mathematics. The use of action research in the mathematics classroom holds 
potential as a means of solidifying and sustaining these communities. By developing a shared 
sense of purpose that holds practical implications for instruction, teachers will be more motivated 
to collaborate in PD opportunities. This study presents a model of PD that works to 
simultaneously build teacher pedagogical content knowledge and build a shared sense of 
community among colleagues engaging in action research. Teachers in this setting showed the 
ability to question their own mathematical understandings and their students’ mathematical 
understandings. As a result, they were able to design a research agenda built around analyzing 
student work as a means to develop instructional practice.  
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In this paper we study how teachers construct problems of the mathematics teaching practice.  
Identifying problem design as an important and understudied aspect of problem resolution, we 
consider conceptual metaphors as particular resources employed by teachers as they construct 
and frame problems of practice.  We focus on a specific conceptual metaphor, the metaphor of 
education as a journey, and illustrate how teachers use variations of this metaphor in their 
constructions of a specific problem of practice.  We examine how the framing of a constructed 
problem affects first the potential for resolving the problem and ultimately, the opportunities for 
succeeding at teaching and learning mathematics. 

Researchers have worked to positively impact the teaching and learning of mathematics by 
studying problems of teaching. These studies have carefully catalogued the problems of teaching 
practice (as perceived by researchers and by teachers) and considered remedies for those 
problems (e.g. Ball & Bass, 2000; Junk, 2005; Lampert, 2001; and Little, 2003). While this is 
important and useful work, it fails to examine an important aspect of problem resolution: the 
construction of the problem. The design of a problem directly impacts the steps to (and even 
possibility of) a solution (Getzels, 1979, 1975).  For example, the problem of a student’s failure 
to learn could be framed by a teacher as either a student’s innate cognitive deficit or as a lack of 
appropriate experiences. If the problem of learning is seen as a biological deficiency in the 
student, there is little a teacher can do to encourage learning. On the other hand, if the problem of 
learning is seen as a need for additional experiences, there is much for the teacher to try. Thus, 
the ways in which the teacher constructs the problem of teaching has immense consequences for 
his or her work and for the potential resolution (or at least mitigation) of the problem.  

While we know some about what problems of practice teachers notice, we know very little 
about the tools and resources that teachers draw upon to frame problems and how those tools and 
resources might result in crafting problems that are more or less resolvable.  In this paper, we 
will consider how teachers use conceptual metaphors to construct and frame problems of 
practice.  

Our current work focuses on a specific conceptual metaphor, the metaphor of education as a 
journey, and illustrates how teachers use variations of this metaphor to construct and frame a 
particular problem of practice.  We examine how the framing of a constructed problem affects 
first the potential for resolving the problem and ultimately, the opportunities for succeeding at 
teaching and learning mathematics. 

Conceptual Metaphors as Resources for Constructing Problems of Practice 
Problems, which we operationally define as perceived misalignments between what exists 

and what is desired, arise as people consider what is wrong, what counts as part of the problem, 
and what might be done to fix the situation.  Thus problems are not immutable, universal Truths, 
but rather human creations which depend largely on the lens we use to frame a given reality.  
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Conceptual metaphors are one type of resource we often draw upon as we interpret realities and 
hence frame particular situations. 

Conceptual metaphors are more than figures of speech. Instead, they are the use of one idea 
to frame or make sense of another (Johnson, 1987; Lakoff & Johnson, 1980/2003). Conceptual 
metaphors allow us to describe abstract domains, processes, and experiences by relating them to 
physical or tangible domains, processes and experiences.  For example, we may describe life by 
relating it to a physical journey or frame teaching as conducting an orchestra or planting a 
garden.  According to Lakoff and Johnson (1980/2003, 1999), Yero (2002) and others, the 
metaphors we use create, guide, and reflect our perceived realities and experiences.  In a similar 
sense, the metaphors teachers use in connection to the teaching and learning of mathematics at 
once affect and reflect their classroom experiences and perceived realities.  In particular, teachers 
sometimes use conceptual metaphors as resources for constructing or framing the problems of 
their practice.  In this paper, we focus on one particular conceptual metaphor of education, the 
Educational Journey (EJ) metaphor, and illustrate how teachers use this conceptual metaphor as 
they frame and construct a specific problem of practice. 

Researchers have documented the use of Educational Journey in teachers’ talk (Munby, 
1986) and have explored implications of this metaphor in a variety of teaching contexts (e.g. 
Milne & Taylor, 1995; Sumsion, 2002; and Thornbury, 1991).  The Educational Journey  
metaphor conceptualizes education as a journey in which teachers are guides and learners are 
travelers (Clark & Cunningham, 2006).  Such a journey may be further characterized in a various 
different ways: The learner-travelers, for example, may autonomously venture forth in a journey 
of discovery, making paths as they explore the mathematical landscape.  Alternatively, the 
learner-travelers may all follow a pre-determined path in a journey planned and led by the 
teacher-guide, attempting to travel at a specific common pace, towards the same specific places.  
Such possible characterizations of the EJ metaphor give rise to different versions or strands of 
this metaphor.   

Clark and Cunningham (2006) described one such version of the EJ metaphor, which they 
identified as the predominant metaphor in the No Child Left Behind (NCLB) Act of 2001: 

All students are following the same path towards the same destinations defined by 
shared standards.  […] Standards can serve as ideal prototypes relative to which 
all individuals can be compared. (p. 278) 

We will refer to this particular strand of the EJ metaphor as the EJ-NCLB metaphor.  We note 
that an implicit entailment of Clark and Cunningham’s characterization of EJ-NCLB is that the 
journey along the common path must happen at a certain pace, and hence progress is measured 
by timely student achievement on standardized tests (Clark & Cunningham, 2006, p. 279). 

Another possible strand of the EJ metaphor is one we have termed the Educational Journey 
Landscape metaphor (EJ-L). This strand of EJ conceptualizes learning as exploration and 
discovery of a mathematical landscape: Students are autonomous traveler-explorers who journey 
along a variety of paths towards a variety of destinations. Students self-monitor their progress 
and re-direct their journey by learning from mistakes and looking for landmarks.  Teachers are 
expert travelers who journey along with their students helping them notice primarily the features 
and landmarks of the paths they choose to travel, not just the destination.   

For example, when teachers use the EJ-L metaphor, they say statements like the following: 
 “Students’ mistakes are learning opportunities that redirect their thinking” 
 “We are looking at the powers of 10 but if we never explore the powers of ten 

children don’t know how big those numbers are” 
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 “That approach is going to be more efficient, but first kids have to mess with the 
messiness of numbers to understand why the efficient formula works.  When I can see 
that in fifth graders, there’s no stopping them if they are given the appropriate 
experiences.” 

The first statement conceptualizes students’ mistakes as opportunities for learning, and implicitly 
positions students as individuals who may themselves re-direct their journey by noticing their 
mistakes.  The second sentence suggests that progress in one’s education journey is tied to 
exploration, while the third sentence highlights students as self-propelled, persistent traveler-
explorers. 

Other authors have also used landscape metaphors to suggest learning happens as we traverse 
the landscape of ideas.  For example, Yero (2002) conceptualized knowledge as a landscape, 
while Davis and Hersh (1982) conceptualized mathematics as a landscape. 

These two strands of the EJ metaphor (EJ-NCLB and EJ-L) frame our analysis of how 
teachers use this metaphor when constructing problems of their practice.  We explore which of 
the two versions of this metaphor is foregrounded in the way teachers construct problems.  We 
also propose how the specific strand of the EJ metaphor foregrounded in the framing of a 
problem may contribute toward resolving, mitigating, or re-constructing the problem in 
productive ways. 
 

Data Sources and Analysis Methodology  
The data set used for this work consists of over 80 hours of video data documenting regular 

meetings of a teacher study group. The study group was supported by the Center for the 
Mathematics Education of Latino/as (CEMELA), a National Science Foundation Center for 
Learning and Teaching.  The purpose of the group was to support elementary and middle school 
teachers in schools with large Latino/a student populations in thinking about how to teach 
mathematics in ways that could best support the learning of their Latino/a students.  Ten teachers 
participated in the teacher study group: two middle school teachers (from the same school) and 8 
elementary school teachers (from two different schools). All schools were located on the 
outskirts of a mid-size city in the southwest. The three schools serviced student populations that 
were predominantly Latino/a and had many students who received free or reduced lunch and/or 
were classified as English language learners. The study group met 25 times over two years for a 
total of 66 hours. Each meeting was videotaped (both whole group and small group activities), 
resulting in the 80 hours of video data. 

In this paper, we limit our analysis to data from one meeting of the group. While we have 
extensive transcriptions and analysis of data from other days, we are choosing to focus on this 
particular data not only because it is rich in teacher talk about students and teaching, but also 
because it contains all instances documenting the voice of Patricia, a nationally known 
mathematics educator who visited the CEMELA teacher study group on the day we are 
analyzing.   

We began our analysis by transcribing the video data from this meeting. This transcript 
documented Patricia’s talk about the work of teaching and student learning which served as the 
basis for our characterization of the EJ-L. In our initial pass through the data, we noted that 
Patricia’s talk embodied a distinct conceptualization of teaching and learning. In order to capture 
this conceptualization, we systematically explored Patricia’s talk for evidence of conceptual 
metaphors. We first coded all instances of the EJ metaphor used in her talk. This coding 
proceeded by noting all instances of path schema identifiers: words and phrases indicative of 
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physical movement such as that which may happen in a physical journey.  Path schema 
identifiers include phrases such as go forth, come back, go over, beyond, along, to, and from 
(e.g. Clark & Cunningham, 2006, p. 272).  This first layer of coding enabled us to capture all 
instances of Patricia’s talk where the EJ metaphor could arise, since path schema identifiers flag 
this metaphor.  We further coded the passages containing path schema identifiers to eliminate all 
instances in which the use of such identifiers was either literal (e.g., a teacher talks about a 
student moving a physical shape: “brought it over here”) or otherwise not tied to a conceptual 
metaphor about teaching and learning (e.g., a teacher references a personal experience unrelated 
to teaching).  The educational metaphors contained in all remaining passages marked all 
occurrences of the EJ metaphor.  These where then collected, sorted by themes, and summarized 
(Miles and Huberman, 1994).  The final summary constitutes our characterization of a new, 
specific EJ strand which we have termed EJ-L given its overall conceptualization of education as 
exploration of a landscape. 

This same method (first coding for path schema identifiers, then refining the coding to arrive 
to all instances of the EJ metaphor) was used to identify all instances of EJ metaphor in teacher 
talk within this data source transcript. When possible, we then sorted the occurrences of EJ 
metaphor into one of the two strands: EJ-NCLB or EJ-L. 

Finally, we identified, within all coded instances of EJ, those in which the metaphor appeared 
in conjunction with the construction of a problem of practice.  In other words, we identified 
instances in which teachers perceived what existed as different from what was desired.  This 
resulted in several illustrations of how teachers use the EJ metaphor as they construct specific 
problems of practice. 

Teachers Construction of Problems of Practice and the EJ Metaphor 
 In this paper, we focus on a particular problem of practice: Students don’t remember/retain 
mathematical knowledge/information.  This problem was constructed and framed independently 
by three different teachers in the teacher study group, at three different points in time during the 
transcribed meeting. 

The first teacher, Matilde, framed this problem by proposing that students don’t retain 
information because the teacher needs to move quickly through the topics in the curriculum and 
this prevents students from having enough practice with the concepts. The teachers were 
discussing students who seemed to understand the concept of area, but were unable to accurately 
determine the area of a polygon.  

Matilde: Probably what happened... Because [the students] got that concept [area] 
and, for example, (incomprehensible), they got the concept and then we need to 
pass, the teacher needs to pass to another thing, so they just got the concept, but 
they don't have enough mechanical practice, so next year, they already touched 
the same thing and they kinda remember the same concept but they still don't 
have enough practice and this goes year by year.   

In this instance, the problem is that students are unable to accurately determine area even though 
they appear (to the teachers) to understand the concept of area. In her problem construction 
statement, Matilde’s use of the metaphor (we need to pass, the teacher needs to pass to another 
thing) conceptualizes the need for teachers to move relatively quickly from one topic in the 
curriculum to the next.  Matilde also indicates that this kind of teacher journey is recurrent: it 
goes on year after year.  
 Matilde is predominantly framing the problem of students’ knowledge retention through the 
EJ-NCLB strand of the educational journey metaphor.  Her words foreground the need for all 
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students to travel at the same, relatively quick pace, moving from one topic to the next in a 
teacher-led mathematical journey.  Above all, Matilde’s framing of this problem seems to 
identify the need for the teacher to move, and to move fast, through the curriculum as the reason 
for the perceived misalignment between what is and what is desired of the students. 

A second teacher, Olivia, constructed this problem by stating that students don’t commit 
certain facts to memory because they don’t get lots of practice: teachers do enough and then 
move on, a pattern that repeats at each grade level: 

Olivia: But now, I mean, we've had classes where we, where it's OK for them to 
not to know by memory because there's different methods and different tools for 
them to learn it or to figure it out, but you're right: certain things are just kinda 
dedicated to memory... and that happens with lots and lots of practice, and 
without the content we don't do that.  We do enough and then we move on and the 
next grade level, they have to start all over again and then we move on and then 
it's just kinda... 'Cause that's a complaint in every grade level with every teacher.  

In Olivia’s problem construction statement the EJ metaphor appears twice, as we have 
indicated through italics.  Olivia’s use of the metaphor also highlights the movement of 
the teacher away from one topic or objective towards the next, in an implicitly timed, 
teacher-led journey.  This emphasis in teacher movement suggests again that Olivia’s use 
of the EJ metaphor is aligned with the EJ-NCLB strand of the metaphor.  Hence Olivia is 
also framing the problem of student retention of knowledge through the EJ-NCLB 
metaphor, and the teacher’s movement is again related to the perceived misalignment 
between what is desired of the students and what actually happens.  It is interesting to 
note, however, that in her construction of this problem Olivia remarks that a teacher 
moves when she has done “enough” rather than when the “need” to pass arises, as 
remarked by Matilde. 

Liliana, a third teacher, constructed this problem by proposing that students don’t 
retain information because students don’t spend enough time explaining how they go 
there, how they go about solving problems: 

Liliana: […] Because just by coincidence we did the same, similar type of 
activity, and she says, hers is in sixth grade and mine is in fourth grade and it's 
two years and they're having the same difficulties.  What's going on with these 
kids…that they're not retaining that information? And I think in my class, one of 
the things that contributes to that, is the fact that they don't spend enough time 
really explaining how they go there.  So I've been trying to really give them that 
extra time.  

In her problem construction statement, Liliana use the EJ metaphor only once, as 
indicated through the italicized path schema identifier.  Liliana’s use of the EJ metaphor 
foregrounds student movement, omitting any reference to teacher movement.  Liliana’s 
words “how they go there” seem to recognize that there is more than one way to “go 
there” and that students could retain information better by being able to each describe 
their own journey towards a particular mathematical destination.  This suggests Liliana’s 
use of the EJ metaphor is best aligned with the EJ-L strand of the Educational Journey 
metaphor.  In particular, Liliana seems to be framing the problem of student retention of 
knowledge through the EJ-L strand of EJ.  She foregrounds a lack of opportunity for 
students to explain how they go about solving problems, as the primary reason for the 
misalignment between what is and what is desired. 
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Working Towards Solutions: Alternate Framings of Problems of Practice  
As argued and illustrated in our introduction, the design of a problem directly impacts the 

steps towards, and even possibility, of a solution (Getzels 1979, 1975).  In this section we discuss 
how the previous illustrations of problem construction and their respective proposed framings 
through EJ-NCLB and EJ-L impact the possibility of resolving this problem and suggest 
mechanisms for more productive problem construction. 
 
Framing through Educational Journey-NCLB 

In our previous illustrations of how teachers constructed the problem of students’ lack of 
retention of knowledge, the most notable characteristic of the framings through EJ-NCLB 
(Matilde’s and Olivia’s) was the foregrounding of the teacher movement, without explicit 
references to student movement.  This prominent focus on the relatively fast-paced teacher 
movement has been identified as a feature of the Educational Journey Metaphor of NCLB as 
used teacher talk.  More specifically, teachers using this version of the Educational Journey 
metaphor often emphasize their movement as teachers or their responsibility to continue moving 
students through content (Wood and Lozano, 2010). 

Also, the framings through EJ-NCLB, in particular the identification of fast teacher 
movement as a reason for the perceived misalignment between what is and what is desired, led to 
problematizations of the actual problem, rather than to the consideration of possible solution.  
Matilde’s problematization, for example, explicates the original problem of students’ lack of 
knowledge retention by linking it to the new problem of the teacher’s fast-paced movement.  In 
this problematization Matilde seems to exchange the original problem for a less solvable one, 
one whose perceived solution hinges upon altering national educational policies over which she 
has little control.  In this way, Matilde’s problematization seems to position her further away 
from, rather than closer to, the possibility of considering attainable problem solutions. 

Olivia’s reference to a teacher who moves once she has done “enough” could suggest that 
Olivia perceives lack of student ability as an additional barrier to considering attainable problem 
solutions.  From this perspective, Olivia’s problematization seems to constrain the possibility of 
solving the problem perhaps more than Matilde’s: Olivia may perceive she has little control over 
educational policies, and even less control over students’ natural abilities or dispositions. 

Both of these illustrations depict how the construction of a problem and its framing through 
EJ-NCLB, may be unproductive if it leads to a problematization of the original problem that 
further removes a teacher from the possibility of considering attainable problem solutions. Such 
framings can constrain (rather than enable) possibilities for solving the problem and, ultimately, 
a teacher’s opportunities to be successful at teaching and learning. 

 
Framing through Educational Journey-Landscape 
In Liliana’s construction of the problem of students’ lack of retention of knowledge, the most 
notable characteristic of her framing through EJ-L was the immediate foregrounding of the 
students’ lack of movement and their need to move, without explicit references to teacher 
movement.  This central focus on students and their autonomous, individualized movement along 
various possible paths in the mathematical landscape, lies at the core of our characterization of 
EJ-L and was the basis of Patricia’s distinct conceptualization of mathematics teaching and 
learning. 

Liliana’s framing through EJ-L, in particular her focus on the students and her identification 
of the need for individual students to explain their own way of “going there” seemed to present a 
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tangible option for addressing and possibly resolving the problem.  Liliana’s construction of the 
problem through the framing EJ-L seem productive, as it renders the problem accessible and 
enables (rather than constrains) opportunities to be successful a the work of teaching and 
learning. 

We caution, however, that purposefully framing the construction of problems of practice 
through EJ-L, may not always lead to clearly productive or readily solvable problems.  Other 
factors, besides the use of various conceptual metaphors, may also contribute to rendering a 
constructed problem productive or unproductive, useful or not useful.   For example, a teacher 
who constructs the problem of students’ lack of retention of information through EJ-L, like 
Liliana, but concludes that his students’ deficient natural abilities will prevent them from 
explaining “how the go there,” has in fact constructed an unproductive problem.  More research 
is needed on these types of problem constructions.  

Conclusion 
In this work, we have illustrated different ways of constructing a particular problem of 

practice, shown how conceptual metaphors may serve as key resources for undertaking the 
construction of such problems.  Different variants of the conceptual metaphor of Education as a 
Journey served as tools to parse out different framings of constructed problems and, at the same 
time, suggested specific (more or less productive) perspectives to frame a given problem.  
Through Liliana’s talk, for example, we saw how the EJ-L metaphor strand proved useful in 
allowing her to focus on changing student experiences, rather than immutable students abilities, 
or educational policies. 

Our analysis also showed that new problematizations of a given problem can constrain 
opportunities for teaching and learning, especially if they exchange the original problem for a 
less solvable one, further removed from a teacher’s sphere of influence or control.  We saw, for 
example, how Matilde’s problematization of student knowledge retention shifted her focus away 
from considering a change in students’ classroom practices, and led her to focus on the less 
tractable realm of national educational policies, characterized by the same problematic metaphor 
foregrounded in her framing.    

We believe, however, that certain problematizations of perceived problems can be productive 
for problem resolution and may render certain problems of practice more, rather than less, 
accessible. 

These findings begin to suggest (to teachers, teacher educators, professional developers, and 
policymakers) how different resources might lead to more (or less) productive problems and 
eventually to better learning outcomes. Furthermore, this work suggests that policymakers play a 
central role in teacher problem construction: The metaphors they use as foundations for policy 
become resources for teachers as they consider how to frame the work of teaching.   As a 
consequence, policy makers might consider how to craft policy with care so that it provides 
teachers with framings and resources that lead toward useful and productive problem 
construction. 
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In this study I studied the nature of prospective secondary mathematics teachers’ thought 
processes coming to understand how a high demand task differs from other tasks with respect to 
the mathematical activity it focuses on. In a teaching mathematics method course twenty- eight 
prospective secondary mathematics teachers were asked to reason on a case study for two three- 
hours- long class period. Data have shown that not only these students’ recognition of the 
differences between the empirical activity and logico mathematical activity have developed but 
also their understanding of what a mathematical concept is and how it is learned have 
progressed comparatively through their focused analysis. 
 

Background 
Current reform in mathematics education has emphasized the importance of prospective 

mathematics teachers’ awareness of teaching mathematics effectively (NCTM, 2000). Some 
researchers have provided useful frameworks for teacher educators for supporting prospective 
mathematics teachers with ways to learn to teach mathematics for understanding (Hiebert, 
Morris, & Glass, 2003; Simon, 1994,1995,2006; Simon & Tzur, 2004). These researchers agreed 
that teacher educators might take prospective teachers’ attention to the tools by which they are to 
learn to teach rather than providing them with the end products of teaching mathematics. This 
paper is a preliminary report of how the integration of these frameworks (Hiebert et.al., 2003; 
Simon, 1994, 1995, 2006)  can be useful for pre-service secondary mathematics teacher 
education. Particularly, this paper relates to the part of effective teaching on selecting and/or 
creating tasks effectively to teach mathematics for understanding (NCTM, 2000) at the 
secondary grade level. In this paper, I provide data showing how prospective secondary 
mathematics teachers’ thought processes regarding what a mathematical concept is has 
developed through their recognition of the differences between logico mathematical activity and 
empirical activity. Their focused analysis of a case study allowed these teacher candidates to 
reflect on the mathematical activity on part of the students. In the following paragraphs, I discuss 
the following: Theoretical framework (Simon, 1994,1995,2006) this study is mainly based on, 
what logico mathematical and empirical activity is and how the results of this study might have 
potentially important findings regarding mathematics teacher education. 

Simon (1995) proposed Hypothetical Learning Trajectory (HLT) as a framework for teachers and 
teacher educators to use in their classrooms. He stated that HLT has three main components: “the 
learning goal that defines the direction, the learning activities, and the hypothetical learning 
process-a prediction of how the students' thinking and understanding will evolve in the context 
of the learning activities (p. 136). Simon asserted that the teacher’s hypotheses of students’ 
thinking and conceptual development is dependent on the generation of learning activities and 
the nature of the learning activities depend on the teachers’ hypotheses of the students’ learning 
process (Simon, 1995). HLT presupposes that the teacher has some knowledge about her 
students from earlier experience such as teaching other students in similar situations, through 
pre-assessment, through knowledge of the curriculum students have gone through before taking 
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the course etc. HLT assumes that the teacher/researcher will revise and re-plan her teaching 
accordingly based on the ongoing assessment of students’ understanding. That is, the 
teacher/researcher creates hypotheses about where her students’ current knowledge is depending 
on the assessment, verbal or written. This helps her to create more questions/tasks on which 
students can think further. This then allows her to have more data on what students know from 
which the next lesson period is constructed.  In general, then, the teacher/researcher has a 
learning goal for her students to have. However, for each teaching session, she creates 
(sub)learning goals for her students depending on what they know. Thus, HLT is a recursive 
process from which each lesson is constructed on its own but toward the general goal of 
conceptualizing mathematics. In that sense, each lesson is an experiment. 

As important as it is for teachers and teacher educators to have a learning goal for their 
students, in another study, Simon also stated that having a particular learning goal is not 
sufficient; teachers also need to be able to create or select tasks/ activities to bring about the 
desired thought processes on the students’ part (Simon &Tzur, 2004). Similarly, research has 
emphasized that teachers’ knowledge of curriculum (Shulman, 1986; Ball, Thames, & Phelps, 2008) 
is pivotal because their awareness of cognitively demanding tasks and their use of those tasks 
effectively in their classes has the greatest impact on both students’ learning and their perceptions of 
mathematics (e.g. Ball, 2000; Lappan, 1993; Lappan & Briars, 1995).  
 Simon &Tzur (2004) as an elaboration on HLT emphasized that teachers’ learning goal(s) for 
their students should not be confused with the students’ goals. That is, as important as it if for 
teachers to have a learning goal for their students, the students’ goal-directed activity is the main 
issue from which the conceptual learning develops. Teachers might have a learning goal for their 
students to understand a concept, however it is the students’ goal-directed activity that brings about 
the desired change in their conceptions. Simon (2006) further emphasized that teachers’ awareness of 
the students’ goal-directed activities might provide them with useful ways to create or select among 
tasks. Simon (2006) introduced empirical activity and logico mathematical activity. He defined 
empirical activity as the process by which students collect a set of results and identify a pattern 
in those results without any insight into why that pattern is produced (the logical necessity). In 
contrast, the logico mathematical activity refers to the learned anticipation of the logical 
necessity of a particular pattern or relationship. Simon stated that the distinction he made is 
fundamental to what is meant by a mathematical concept and the process by which concepts in 
mathematics are learned (through logico mathematical activity). He further argued that the 
distinction he is making has important pedagogical implications in the sense that effective 
mathematics teaching might be established by selecting or creating tasks triggering the logico 
mathematical activity on the students part.  
 Simon (2006)’s emphasis on logico mathematical activity and Thompson (2008)’s emphasis 
on conceptual analysis has correspondence. Thompson (2008) proposed a way to identify and 
articulate the key mathematical ideas inherent to the high school mathematics. He hypothesized that 
once one answers the question of “ what mental operations must be carried out to see the presented 
situation in the particular way one is seeing it?”(Glasersfeld, 1995,p.78 cited in Thompson, 2008), 
s/he might describe the mathematical idea that is foundational to the subsequent ones.  He called this 
conceptual analysis and stated “ …when conceptual analysis is employed by a teacher who is skilled 
at it, we obtain important examples of how mathematically substantive, conceptually-grounded 
conversations can be held with students” (Bowers & Nickerson, (in press) cited in Thompson, 
2008,p. 46). In that sense, once prospective teachers have identified the logico-mathematical activity 
on the students’ part, they might be able to create/choose lesson designs that can bring about 
students’ learning.  
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The goal of this study is to investigate how prospective secondary mathematics teachers’ analysis  
of a case study might help develop their awareness of logico mathematical activity and its distinction 
from empirical activity. This might contribute to their interpretation of tasks focusing on important 
mathematics. As Thompson (2008) mentioned, even curricula claiming that their focus is on 
conceptual understanding are full of tasks/problems with little reference to significant mathematical 
ideas. This means that, it is imperative for teacher education programs to help their student teachers 
construct useful ways to identify tasks focusing on significant—core—mathematical ideas that 
constitute basis for other important ideas. Findings might have the potential to strengthen existing 
mathematic teacher education programs (Thompson, 2008). 
 Since I was the teacher/researcher, when I am referring to the teacher, I will be using the 
phrase “she”, in the following sections.  
 

Methodology 
In this study, I embrace the idea that knowledge is constructed via one’s own experiences.  

We have no access to the objective reality independent of our own knowledge (Von Glasersfeld, 
1988). Though, we have the capacity to adopt to the changes around us as long as those changes 
are made persuasive or preferable.  Although knowledge construction is an individual act, 
teachers can design situations in which students can engage in informed explorations and 
reflective inquiry (Cobb, 1999). This way, the social interaction will stimulate questioning, 
conjecturing and justifying.  

While planning each session throughout the whole semester, involving eight- 
three hours long class periods, I used the hypothetical learning trajectory (HLT) (Simon, 1995).   
First, I assessed the students’ understanding of the specific mathematics idea that I would use in 
the case discussions. Secondly, I collected data on their thoughts on learning and teaching 
mathematics through written responses at the beginning of the method course. In all the classes I 
taught, I revised and re-planned my teaching based on each lesson in which an ongoing 
assessment was held and pre-assessing and post assessing for each lesson was conducted through 
written responses. Students were asked to write reflections based on the questions I provided 
them after each class. In particular, depending on the small group and whole group discussions, I 
had hypotheses about where my students’ current knowledge is. This helped me create questions 
on which they can think further. This provided me with more data on what they know from 
which I planned my next lesson period.  For the general course, I had the overarching learning 
goal for my students to conceptualize the mechanism of teaching, components of which were 
discussed previously (Confrey, 1992; Hiebert, et.al, 2003; NCTM, 2000; Simon, 1994,1995, 
2004,2006). However, for each teaching session, I revised the (sub)learning goals for my 
students depending on what they know. This allowed me to create each lesson on its own but 
toward the general goal of conceptualizing the teaching mathematics for understanding. In that 
sense, I treated each my lessons as experiments such that I designed the kinds of tasks, 
hypothesized and described why certain activities might trigger the change in my students’ 
thinking and hypothesized how they will be thinking given the certain instructional tasks. 
(Hiebert, et.al., 2003).  

 The case study that I used for this paper was on multiplication of fractions (Stein et.al, 
1998). I used this case study on purpose because 1) it was one of the basic concepts I knew from 
pre-assessment that they did not know the reasoning behind the procedure “ multiply the 
numerators and denominators in each fraction”, 2) it would be a relatively basic concept about 
which they would be able to talk about the key developmental understandings as opposed to 
other concepts such as functions (Simon, 2006), 3) it would provide the most opportunity for my 
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students to be able to think about the parts of effective teaching mentioned above and 4) the most 
importantly, it would provide a rich context based on which the empirical activity and the logico 
mathematical activity could be discussed for the following reasons. By analyzing such a case 
study might have create an opportunity to enable my students to compare and contrast the 
reasoning of students on the specific concept from which they could think about the distinctions 
between the evidence of empirical activity and logico mathematical activity.  

I analyzed my each of my students’ thinking one-by-one and in juxtaposition to each other 
before and after this lesson using the artifacts from their written responses to the questions I 
posed them. I also analyzed their reasoning during the lesson using the transcript from the 
videotapes of the teaching episodes. In addition, I analyzed the relationship between the specific 
steps of the lesson and students’ responses to them such that the cause-effect relationship 
between the proposed lesson and the hypotheses I held would be evidenced. To make sure that 
hypotheses and conclusions drawn from the data were plausible, other researchers were 
consulted to challenge the conjectures and /or to affirm their reasonableness.  

The following sections present excerpts from transcripts of the videotaped lessons and 
the students’ reflections on the kind of questions I posed them before and after the lessons on 
discussing the case. 
 

Results 
At the beginning of the course, I assessed my students’ thinking on what learning and 

teaching means. In general their thoughts were clustered around the idea that learning means “ 
taking the information in from an authority” and teaching is “transferring the knowledge from 
the teacher to the student”. This is not surprising news given the fact that these students were 
taught mainly with a focus on procedures rather than with a focus on conceptions before coming 
to the course.  

After the first session, I wanted my students to write on: “what does conceptual 
understanding mean to you?” and “what does connections in mathematics mean to you?” Their 
written work clustered around the two interpretations of the meaning of connections at the 
beginning of the course. First one was that connections meant only to think about the general 
relationship among objects (such as function, derivative etc.). Second one was that real life 
phenomena can be explained using mathematics. However, what were not clear from the data 
was how the students were thinking about the nature of the connections (if they were thinking 
about the connections deeper within a topic among different core mathematical ideas or not) and 
how the connections are established. Thompson (2008) also mentioned the issue of “the 
connections among topics” in his plenary speech at PME, 28. He regretfully stated that the 
emphasis on the connections among topics has the potential danger of taking the attention from 
the importance of foundationally core mathematical ideas of high school mathematics. Then, 
during the next session, I asked my students to talk about what they think about the meaning of 
connections in mathematics without “re-stating the word connection”. The following discussion 
has occurred:   

S2: When we make sense of the new knowledge using our previous knowledge then this 
means we make connections.  

 R: How are you making sense of the new knowledge using your previous knowledge? 
S2: You learn the first topic and then you learn the second topic. Then, you connect them 
by realizing that they are related to each other. 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1328



S3: Yes, for instance, when we learn about how to solve pool- filling problems, the 
teacher explains how we are using the formula for finding the solutions then it make 
sense to us.  
S4: But I think making sense of real life issues such as problems in physics etc. using 
mathematics is important too. When we learn for instance about quadratic functions, if 
we can apply that knowledge to the physics topics then it means we have made the 
connection.  

And other students agreed with all what is said. Then, I decided that for students to realize the 
nature of connections as making relationships among key mathematical understandings (key 
mathematical ideas) centering around quantities from which new quantities arise (Thompson, 
1994), I needed to provide them with a concept basic enough from which they can deduce the 
meaning of connections in mathematics at the finest level. My hypothesis was that realizing how 
the connections are made and between what mathematical constructs those connections are made 
would allow them to realize the logico mathematical activity so that they would be able to set 
their learning goals for their students at the finest level.  
 At the beginning of the lesson focusing on the case study, I asked my students to work on an 
re-designed form of the task on multiplications of fractions individually and then I asked them to 
categorize the level of the task. All of them said “ a high level task”. Then, I re-grouped them, 
three in each group, and provided each group with one of the text in which two middle school 
teachers’, namely Kevin and Fran, preparation period, implementation and their reflections were 
discussed. Then I asked them to think about the teachers and students’ actions in terms of their 
goals. They mentioned that teachers are trying to teach multiplication of fractions conceptually 
and the students are learning fraction multiplication with understanding. Then, I asked my 
students to focus on the “reason behind the teachers’ goals in asking the particular what and why 
questions and students’ focus in answering those questions. They first found the questions started 
with “what and why” terms and then we started talking about them one by one. 

R: Why do you think Kevin is asking the question why and Fran is asking the question 
why? Is there a difference between them asking the question? what are their goals? 
S3: He [referring to Kevin] is kind of taking their [referring to the students] attention to 
the connections in their solutions. Like, what connections did you make while finding 
your solution.  
S4: He [referring to Kevin] is making the students realize their solutions. Like, I think, he 
is making them realize their way of solution rather than the result itself. Like, how they 
were reasoning while there are solving the problems.  
S5: For instance, in Kevin’s class, when one of the students did not take one hexagon as 
the whole, then Kevin wanted his student to realize his mistake. But he did not tell him 
that. He asked the “what” question on page 169, to take his student’s attention to the two 
hexagons as a whole rather than one hexagon. However, in Fran’s case it is different. She 
asks “what “ question to just get an answer.  
R: Do you agree with what S5is asking guys? [no hands yet] 
Who agrees with her? [ some hands up] 
Who does not aree with her? [no hands up] 
 Who is not sure about it? [ no hand up] 
R: all right what about those not raising their hands? [laughs in the class] 
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S1: I think in Kevin’s case students are feeling as if they have to answer the teacher.  
Students are feeling as if they have to get over with the result as soon as possible. I mean 
Kevin is not allowing for his students’ understanding.  
R: okay. You seem to be disagreeing with S5? You are saying Kevin is not after students’ 
understanding of the concept? [looking at S1]. 
S1: Nods his head. 
S4: But anyway, Kevin is asking the question “what” to get at how his student is thinking. 
Like, he did not get whether his student was solving the problem procedurally or 
conceptually so he asked the question to understand whether his student is thinking 
procedurally or conceptually. I mean, he asked the question to get how his student was 
reasoning while solving the problem, how he thought about it. 
S6:  I think in both cases [referring to Kevin and Fran’s classes] those students know that 
½ of 1/3 is 1/6. But the issue is that Fran is giving away the whole in her class but Kevin 
is not doing that. Both of them had the goal that their students would understand the 
“concept of whole ” but Fran is directly giving away the answer to her students.   

The excerpt above is important because of the following:  when S3 mentions the “connections 
while finding the solution” S4takes it from there and elaborates on in such a way that the focus of 
students were on their reasoning rather than the result itself. However, this is not even well 
articulated that S5 elaborates on the “reasoning and the connections” in a deeper way and brings 
the discussion on the key understanding “ the concept of whole”. Though she does not explicitly 
say that, she only mentions that the “what” question in Kevin’s class was on the meaning of the 
whole. Then, S6 kind of finalizes the issue as “whole as the interest of concept such that when 
students find the ½ of 1/3 they can go back to the whole and think about the result in terms of the 
whole” in that discussion between the teachers and the students. This shows that, these 
prospective teachers’ attention was on the logico mathematical activity that the students have 
been engaging in. The empirical activity, although these prospective teachers do nor mention 
explicitly is that in Fran’s class, although the task is the same as the one used in Kevin’s class 
and the questions are kind of centered around “why” and “what” questions in both classes, the 
ways these teachers are engaging their students differs in terms of their attention to their 
students’ focus on the logico mathematical activity versus empirical activity. That is, the 
deduction made in Fran’s class is independent of the quantities of interest, though in Kevin’s 
class students’ deduction of ½ of 1/3 is through the quantities of interest.  The claim that I am 
making in this discussion was even more evident in the following discussion happened during 
the next class.  
S4: Fran is not doing, is not asking questions to take students’ attention to their reasoning, 
remember like we said before, we mentioned something like called specific math idea, she is not 
asking further questions that would allow her students to focus on specific math idea, she is not 
doing that. But in Kevin’s case, when he is not satisfied with the student’s answer he is asking 
more questions to take their attention to the conceptual thinking… 
R: hihim 
S7 : I would like to mention the same kinds of things, in Fran’s question, students do not need to 
think about what they did during the task,  like she is directly focusing their attention to the 
question itself ,  like instead of thinking “ what did I do during the task” , they are for instance in 
the question “what is 1/6 of 2 hexagons” the student the thing in that task was to make them 
think about the two hexagons as a whole, but the student does not need to think about it,  like he 
is focusing on the question itself and he is finding 1/6 of two hexagons only. But in Kevin’s 
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question, he is focusing on whether his student understood the two hexagon as a whole or not, he 
is examining that and he is making his students go back to their reasoning while engaging in the 
task. But in Fran’s case, Fran is focusing only on the question and the student do not need to 
think about how they engaged in the task.  
R: okay, what are the students’ goal when the teacher asks the questions? 
S7: In Kevin’s case students are focusing on their way of thinking.  Like what I did here, what 
was my thinking here they are focusing on that with Kevin’s questions. But in Fran’s case it will 
be the same thing I said before but they are focusing only to the question, they are not focusing 
on what they thought.  
The excerpts above show that these student teachers are not only able to think about the key 
mathematical ideas but also they are able to think about students’ focus of attention, namely the 
quantities.  
 A few weeks later, I asked my students the question, “When you think about the Kevin and 
Fran’s teaching and the task they have used in their classes, how would you compare and 
contrast their teaching in terms of empirical and logico mathematical activity?”. The following 
excerpt is especially important because it shows how S1 thinks about the question. As depicted 
elsewhere, at the beginning S1 had thought that Kevin was not after understanding. However, the 
following data shows that his thinking on it has changed after the discussions during the classes.  

S1: We have discussed Kevin’s and Fran’s tasks in terms of questioning and students 
understanding. We agree on that Kevin was trying to emphasize conceptual 
understanding better than Fran since he was asking high level questions that are not about 
numeric values but the connections and relations between concepts…In the Fran’s case 
the teacher’s focus is on one student and other students are expected to model that, 
students to go on procedures... Fran’s “what” questions focus on numbers or results in 
each step and he helps his students to come up with the right numbers but Kevin’s 
“what”, “of what” questions requires students to focus on the relationships between the 
steps and he wants from them to internalize the concept. So Kevin’s task is more prone to 
be considered as a logico mathematical task. The students in Kevin’s class think of 
logical necessity among the steps but Fran’s students try to model a student and focus on 
the results in each step.  
 

Conclusion and Discussion 
Data show that at the beginning of the course the line of reasoning these student teachers  

hold corresponds with what Thompson(2008) mentioned in his speech: that connections in 
mathematics involve the connections between topics. Also, they agree on the idea that the 
connections are made with the teacher’s statement after the two topics are learned.  This shows 
that they are not aware of the meaning of logico mathematical activity through which 
conceptions are learned. However, with the analysis of the case study, data show that these 
student teachers’ understanding of logico mathematical activity has evolved. Particularly, with 
the teacher-researcher’s attempts at taking these student teachers’ attention to the focus of 
teachers questioning and students’ answering in the case study, these student teachers’ 
understanding of the meaning of key mathematical ideas and how those ideas are developed has 
progressed. In particular, taking these student teachers’ attention to focus of the teachers’ 
questions “what and why” asked during the classes in the case study, and taking their attention to 
the students’ focus while answering those questions helped these prospective secondary 
mathematics teachers to become conscious about the nature of the logico mathematical activity. 
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Results have important implications for teacher education. As Simon (2006) proposed and the 
results of this study showed, prospective secondary mathematics teachers’ awareness of what we 
mean by mathematical concepts and as Thompson (2008) emphasized, their awareness of the 
idea that connections should be made among core mathematical ideas has evolved.   
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The main goal of the Iterative Model Building (IMB) approach is to improve professional 
development programs for future elementary mathematics teachers, and thus improve student 
learning in mathematics. The innovations of the IMB approach occur during mathematics field 
experience for pre-service teachers (PSTs) and include a central focus on children’s reasoning 
through teaching experiments (Steffe & Thompson, 2000) and purposeful reflection on practice 
through Lesson Study (Lewis, 2002). Indicators of teacher quality were examined through 
analysis of lesson plans and lesson enactment comparing student teachers who had participated 
in the IMB approach with student teachers who had participated in traditional forms of field 
experience. Initial findings suggest that teaching aspects fostered by the IMB approach during 
the field experience had a positive residual effect during student teaching. Findings from the 
study will advance knowledge of how to prepare more effective elementary teachers.  

 
Background 

The Iterative Model Building (IMB) approach focuses on children’s thinking and reflective 
teacher practice through an intensive field experience approach to improve and measure the 
quality of teachers. In the experimental field experience placement, pre-service teachers (PSTs) 
begin each class session by interviewing children through Formative Assessment Interviews with 
a focus on children’s thinking (Steffe & Thompson, 2000). The PSTs then take the information 
learned from the interviews and create models of student thinking that explain student reasoning. 
Following Model Building, the PSTs consider their knowledge about student thinking and plan a 
mathematics lesson for the following week. The PSTs present their lessons in a host teacher’s 
classroom and then engage in Lesson Study groups formed by 6 PSTs, the host teacher, and one 
field experience instructor, to reflect on the previous lesson and plan for the next lesson (Lewis, 
2000). Each week, all PSTs in the field experience are involved with the cyclical process of 
interviewing students, building and discussing models of students’ thinking, teaching or 
observing lessons, and participating in lesson study. Together, these components complete Phase 
One of the IMB cycle. 

One year later, students that completed the mathematics field experience begin student 
teaching in elementary classrooms. All experimental components of the IMB approach are 
complete at the onset of student teaching, so from this point, teacher quality can be measured to 
compare student teachers that were in the IMB approach for field experience with students that 
participated in traditional forms of field experience. During student teaching, teams of university 
observers visit the host classrooms of the student teachers to observe mathematics lessons and 
interview the student teachers about teaching mathematics. These measures of teacher quality 
form Phase Two of the IMB project.  

 
Theoretical Perspectives 

Effective teaching requires knowledge of how individual students in the classroom think 
about specific content (Akerson & Hanuscin, 2007; Carpenter & Fennema, 1992; Carpenter et 
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al., 1988; Carpenter, Fennema, & Franke, 1996; Fennema et al, 1996). In addition to considering 
the mathematical reasoning of students, effective teachers are reflective about their practice and 
often work collectively with others to improve their practice (Cochran-Smith & Lytle, 1999; 
Lewis, 2000). Teachers that embody these characteristics are able to engage their students in 
learning mathematics through the implementation of investigative tasks with specified cognitive 
complexity that is appropriate for the students that are being taught (Stein, Smith, Henningsen, & 
Silver, 2009). These two innovations, noticing student thinking and reflecting on teaching, are 
key tenets for effective mathematics teaching. The following describes these innovations in 
greater detail.  
Teaching Experiments: Model Building 

Effective teachers develop pedagogical content knowledge by noticing and attending to 
students’ thinking and reasoning (Hill, Ball, Schilling, 2008; Jacobs, Lamb, & Phillips, 2010). 
Teachers who reflect on student knowledge and consider students’ understandings when teaching 
provide children with a better mathematics education (Carpenter & Fennema, 1992; Fennema et 
al., 1996; Jacobs et al., 2010). Components of pedagogical content knowledge, such as 
Knowledge of Content and Students (KCS) can be developed through engaging in teaching 
experiments with children that orient teachers to student reasoning (Hill et al., 2008; Steffe & 
Thompson, 2000; Steffe, 2002).  

Teaching experiments require a specific methodological approach in which the teacher must 
continually attempt to make sense of student explanations and actions (Steffe & Thompson, 
2000). As the teacher works to continually interpret student behavior, he or she begins to develop 
hypotheses about student cognition and becomes familiar with the student’s ways of operating. 
As the teacher engages in this process, he or she begins to create viable models of student 
thinking by making predictions based on observed student actions. When teachers understand 
how children are thinking about a specific mathematical topic, they are better prepared for 
teaching because they are able to formulate predictive models about student thinking as they 
enact mathematics lessons. Teachers that are able to anticipate student responses are able to 
formulate lesson plans and deliver lessons that consider models of student thinking. 

 
Reflective Practice: Lesson Study 

In addition to focusing on student thinking and reasoning, effective teachers develop 
pedagogical content knowledge by learning in professional communities (Lewis, 2000, 2002; 
Wenger, 1998). Lesson study is one format that can be used for professional growth in a 
community of practice. In lesson study, teachers develop, teach, and analyze whole classroom 
lessons to build an understanding of students’ knowledge. When teachers reflect on their 
teaching and engage in discourse with others about their practices, the teaching community 
fosters an ongoing venue for teacher learning (Akerson & Hanuscin, 2007; Grossman, Wineburg, 
& Woolworth, 2001).  

 
Lesson Planning 

Teachers that have increased their pedagogical content knowledge by considering student 
thinking and reasoning, and reflecting on teaching practices, are able to formulate lesson plans 
that include components of effective teaching (Jacobs et al., 2010; John, 2006; Lewis, 2000). 
During the lesson planning process, effective teachers decide what will happen when teaching 
mathematics content and they formulate instructional decisions for the plan based on student 
understanding (Bumen, 2007; Gilbert & Musu, 2008; John, 2006; Panasuk & Todd, 2005). These 
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teachers often consider how they will launch the lesson, provide an investigative task, and 
summarize student learning in the lesson to develop student reasoning (Van de Walle, Karp, & 
Bay-Williams, 2010). Effective mathematics teachers structure lessons that consider students’ 
prior knowledge and reasoning to promote students “doing mathematics” (Stein et al., 2009, p. 
6). Doing mathematics ensures that the cognitive level of the planned tasks are sustained when 
teaching. This process of lesson planning is one component of the Lesson Study cycle (Lewis, 
2000). 

 
Lesson Enactment 

Once the plan has been created, teachers must sustain the cognitive level of the task to ensure 
students are thinking complexly, exploring mathematical concepts, and analyzing tasks as 
planned (Stein et al., 2009).  The quality of this sustainability for maintaining the cognitive task 
of the lesson is dependent on the pedagogical content knowledge the teacher has previously 
developed from noticing student thinking and reflecting on practice in a teaching community. As 
the lesson is enacted, the attention to student reasoning becomes a considered component in the 
decision making process. Likewise, the reflective learning that took place from the community of 
practice should also be considered to deliver lessons that are effective.  

 
Application to Practice  

For this project, PSTs in the experimental group engaged in the IMB field experience 
approach that directly focused on student thinking and reasoning with teaching experiments and 
included a lesson study component for reflective practice. The majority of the research on these 
innovations in the past has focused on in-service teachers, with little attention being focused on 
the role of these innovations with PSTs. It would be beneficial to know how the innovations used 
in the IMB field experience affected teacher quality one year after the innovative approach when 
the PSTs were student teaching. As a result, this study seeks to compare student teachers that 
participated in the IMB field experience with student teachers that did not participate in the IMB 
field experience. The research will answer the following research questions: 

1. What effect does the IMB approach during field experience have on PSTs lesson 
planning and lesson enactment one year later during student teaching? 

2. How do lesson plans and lesson enactment during student teaching differ between PSTs 
who participated in the IMB approach for field experience and PSTs who participated in 
a traditional field experience? 

3. How do the teaching characteristics of student teachers who participated in the IMB 
approach for field experience compare with the teaching characteristics of student 
teachers who participated in traditional field experience? 

4.  
Method 

Data were analyzed using both qualitative and quantitative methods. Data sources include 
written mathematics lesson plans, the Mathematics Lesson Observation and Analytic Protocol, 
and the Classroom Teacher and University Supervisor Observation Form. An equal number of 
participants from both the experimental and control groups were invited to participate in the 
study. The number of willing participants from the experimental IMB group was significantly 
higher than the number of willing participants from the traditional control group. Participants 
consisted of seven student teachers that had participated in the IMB approach during field 
experience and three student teachers that participated in control sections of the field experience. 
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Each of these student teachers was formally observed teaching mathematics two times by 
university personnel and at least once by either his or her University Supervisor or Host 
Classroom Teacher.  

Written lesson plans were collected from each teacher for each of the two observations. The 
written lesson plans were blinded and scored independently by two researchers according to a 
Mathematics Lesson Plan Rubric (see Table 1), based on the Launch, Investigate, Summarize 
lesson structure for effective mathematics teaching (Van de Walle et al., 2010). The two raters 
reconciled score differences to arrive at a consensus. After a consensus had been reached for 
each category on the rubric for each lesson plan, the mean of the scores from the IMB approach 
were compared with the mean of the scores from the traditional approach.  

The Mathematics Lesson Observation and Analytic Protocol was used during classroom 
observations by trained university personnel and completed after each lesson observation. The 
protocol format was adapted from Inside the Classroom: Observation and Analytic Protocol from 
Horizon Research, Inc. This instrument focuses on reformed mathematics teaching and 
documents the Design, Implementation, Mathematics Content and Classroom Culture of the 
lesson; the protocol concludes with an overall capsule rating of the lesson. For each of these 
categories, Key Indicators and a Synthesis Rating were recorded numerically and Supporting 
Evidence for Synthesis Rating was recorded in written format. Each observer initially scored the 
lessons independently using the protocol and then the two observers met to reconcile differences 
in scores. Means were calculated to compare the IMB group to the traditional control group. All 
written comments were typed and analyzed qualitatively.  

The second instrument, the Classroom Teacher and University Supervisor Observation Form, 
was completed by University Supervisors and Host Classroom Teachers. This instrument is 
comprised of six sections: Content Organization, Content Knowledge and Relevance, 
Implementation, Teaching Learning Interaction and Assessment, Active Learning, and Overall 
Assessment. A six-point scale was used to describe the extent to which effective teaching 
practices were evident during teaching. This protocol elicits numerical and written responses 
from the University Supervisors and Host Classroom Teachers. The numerical data from the 
protocols were analyzed to find the mean scores for the IMB group and control group for each 
indicating section. The written data were analyzed to discover evidence of effective mathematics 
teaching.  

 
Data Analysis and Findings 

The first source of data used to examine the effect of the IMB approach on lesson planning 
and enacting of the lesson was the written lesson plans. The rubric used to score the written 
lesson plans included four categories to rate different aspects of the lesson, namely: Objectives 
and Adaptations (2 points), Launch (3 points), Investigate (2 points), and Summarize (3 points). 
Scores obtained in each of these categories were totaled up for a possible rating of 10 points. 
Table 1 shows a portion of the rubric that includes the description of the highest level of 
performance for each category. 
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Category Description of Highest Level of Performance 
Objectives and 
Adaptations 
2 points 

Lesson includes specific prerequisites. 
Lesson includes specific measurable objectives.  
Lesson includes State Standards addressed. 
Plans for Gearing Up are appropriate. 
Plans for Gearing Down are appropriate. 

Launch 
3 points 

Launch provides some context for the topic and to motivate students to work 
on the investigation. Includes ways to make sure that the problematic task is 
understood and that goals and expectations are clear.  

Investigate 
2 points 

Investigation includes a problematic task at the cognitive level of “doing 
mathematics.” Considers students’ prior knowledge and leaves residue of 
mathematical value. Equity and accessibility are addressed. Includes possible 
hints the instructor will provide when needed, and things to pay attention to 
in order to observe students thinking and to assess students understanding. 

Summarize 
3 points 

Summarize includes a description of how to organize the sharing to make 
sure the class is engaged in a productive discussion and reflection in which 
students learn ideas and strategies from each other. Includes possible 
questions to ask to encourage generalizations and to make sure students 
justify their answers.  

Table 1. Section of the rubric used to rate written lesson plans. 

After two researchers independently rated the blind lesson plans and reconciled scores, 
ratings for the two groups were analyzed. Given that the samples are small, statistical analysis 
cannot be used to determine if the differences found are significant. We decided to calculate the 
difference in ratings for each category as a percentage of the total possible points for each 
category. Given that the rubric can differentiate between 4 levels of performance in each 
category, we thought that differences greater than 20% of the possible points would be 
considered significant. Table 2 shows the scores for the written lesson plans. Written lesson 
plans for the IMB group consistently scored higher than those of the control group for most 
categories. On average, written lesson plans for the control group had a total rating of 1, whereas 
lesson plans for the IMB group had a total rating of 3 and thus the difference was 20% of the 
maximum possible score. We then examined the differences in rating by category. Three 
categories showed a difference in rating greater than 20 % for at least one of the lesson plans. 
These categories were objectives and adaptation, launch, and investigate. Thus written lesson 
plans of participants in the IMB group tended to do a better job of addressing the expectations 
for most aspects of the lesson plan. We are aware that average total scores for lesson plans for 
both groups were relatively small. We attribute this to the fact that the participants were not 
submitting these lesson plans for a grade in a class, but rather they included the level of detail 
they felt necessary for them to be able to teach their lessons. Which is not uncommon of 
inservice teachers too, they no longer write the elaborate lesson plans they were required to do 
when in methods classes. 
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 First Lesson Plan Second Lesson Plan  
 O&A L I S Tot O&A L I S Tot 2 L 
IMB 1 .67 .92 .42 3 .88 .88 .75 .5 3 3 
Control  .5 .33 .5 .5 1.83 .5 0 .5 0 .17 1 
Difference .5 .3 .4 -.1 1.2 .4 .9 .3 .5 2.8 2 
% Diff 25 11.1 20.8 -2.8 11.7 18.8 29.2 12.5 16.7 28.3 20 
Key: O&A–Objectives and Adaptations, L–Launch, I–Investigate, S–Summarize, Tot–Total, 
2L–Average rating of two lesson plans, % Diff–Difference in ratings as a percentage of the 
possible points for that category. 

Table 2. Average ratings in written lesson plans for IMB and Control groups. 

One source of data to rate the quality of the lesson enactment was the Mathematics Lesson 
Observation and Analytic Protocol. Table 3 shows the average ratings for each category, out of 5 
possible points, of the lessons observed that were taught by participants in the IMB and control 
groups. Note that for the overall capsule rating observers were asked to give their overall 
assessment of the quality and likely impact of the lesson, rather that just an average of all 
previous ratings. The five levels in the overall capsule rating were: 1) ineffective instruction; 2) 
elements of ineffective instruction; 3) beginning stages of effective instruction; 4) accomplished, 
effective instruction; and 5) exemplary instruction. The average overall capsule ratings for 
lessons taught by IMB participants were 2.71 for the first lesson and 2.52 for the second lesson. 
These ratings are close to a solid 3 or a low 3, which corresponds to beginning strategies of 
effective instruction. In contrast, the average overall capsule ratings for lessons taught by 
participants in the control group were 1.83 for the first lesson and 1.92 for the second lesson, 
which are close to a solid 2, which represents elements of ineffective instruction. Like with the 
written lesson plans, IMB participants were rated higher for most aspects of the lesson 
enactment.  
 First Lesson Plan Second Lesson Plan  
 LD IM MC CC OR LD IM MC CC OR 2 L 
IMB 2.93 3.21 3.57 2.86 2.71 2.5 3 3.5 2.67 2.33 2.52 
Control  2.33 3 3.83 1.83 1.83 1.67 2.67 3.5 1.67 2.0 1.92 
Difference .6 .2 -.3 1 0.9 .8 .3 0 1 2.8 0.6 
% Diff 11.9 4.3 -5.2 20.5 17.6 16.7 6.7 0 20 6.7 12.1 
Key: LD–Lesson Design, IM–Implementation, MC–Mathematics Content, CC–Classroom 
Culture, OR–Overall Capsule Rating, 2L–Average rating of two lesson plans, % Diff–Difference 
in ratings as a percentage of the possible points for that category. 

Table 3. Average ratings in Mathematics Lesson Observation and Analytic Protocol for 
IMB and Control groups. 

When examining the differences in ratings in the enactment of the lesson by category, one 
category, classroom culture, showed a difference or 20% or more in favor of IMB participants. 
Another category, lesson design, showed a difference of 11% or more, also in favor of the IMB 
participants. Indicators that the observers attended to when rating lesson design included aspects 
such as whether the lesson incorporated tasks, roles, and interactions consistent with 
investigative mathematics; and whether adequate time and structure were provided for “sense-
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making.” Indicators in the category of classroom culture included aspects such as whether active 
participation of all was encouraged and valued; and whether the climate of the lesson encouraged 
students to generate ideas, questions, conjectures, and/or propositions. 

A third source of data we examined was ratings by University Supervisors and Host 
Classroom Teachers using the Classroom Teacher and University Supervisor Observation Form. 
A six-point scale was used to rate performance in each of the five categories, as well as for the 
overall rating. The mean overall rating reported for IMB participants was 4.91, compared to a 
mean overall rating of 5.33 for control group participants. The difference represents less that 7% 
of the possible points and we did not consider it to be significant. So, in the eyes of the host 
teachers and supervisors, the teaching of all participants was of about the same quality, for the 
teaching aspects they pay attention to. We are not surprised about this finding as the rubrics and 
observation forms developed by the project measure the teaching aspects we hope to foster, 
which may not necessarily be the same that others are looking for. 

A final source of information on the lesson planning and enacting of the lessons was the 
written comments included by observers as evidence to justify their ratings in the lesson 
observation forms. While written comments included suggestions for all participants to improve 
their teaching, there was a pattern in the comments about the type of lessons taught by control 
group participants. The written comments characterized these lessons as traditional, with 
comments such as: 

• Lesson was very scripted with a focus on following a procedure without making a 
connection to concepts.  

• The lesson was again a traditional format. Students reviewed long division. The students 
did not collaborate with each other. The dialogue was mainly between student teacher 
and students.  

• The instructor began discussing multiplication and reviewed subtraction though a 
competition at the end of the lesson. This extension was fact practice. Students never 
talked with other students; little, if any collaboration. No connection to life/applicable 
context. 

Conclusion 
The findings described above while modest, show promise of the IMB approach. They 

suggest that teaching aspects fostered by this approach in the field experience had a positive 
residual effect that was present during student teaching. Regarding the first research question, we 
found evidence that lesson planning and lesson enactment by IMB participants exhibited 
teaching aspects that were fostered during the field experience. In particular, aspects of the 
written lesson plan that showed strength among IMB participants were the objectives and 
adaptations sections, the launch part, and the investigate section. As far as the enactment of the 
lessons, IMB participants did show strength in the aspects of lesson design and classroom 
culture. 

 Regarding the second research question, we found evidence that IMB participants were rated 
higher than control participants in both written lesson plans and lesson observation forms. IMB 
participants were rated 20% higher in several aspects of their teaching indicating that they strived 
for student-centered teaching, making connections, and fostering collaboration among students. 
As far as the third research question, we found evidence to suggest that the teaching by control 
group participants tended to be more traditional, teacher-centered, with no connections to real 
life situations. 
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One limitation of this study is the small number of participants. While the findings reported 
here are valid for these participants, we will continue following up participants in upcoming 
cohorts to gather additional evidence about the benefits of the IMB approach. However, we 
should note that since the participants were volunteers, and they agreed to be observed by 
strangers, and to provide us with their lesson plans; one may assume that they probably were 
among the stronger students from each approach.  

The Iterative Model Building (IMB) approach to elementary mathematics field experiences 
focuses on children’s thinking and reflective teacher practice. We are encouraged by the initial 
results that participants are exhibiting during student teaching. For phase three of this study we 
will follow participants into their first year as teachers in our efforts to develop a research based 
approach to teacher preparation.  
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Preservice teachers often come to college mathematics content courses with beliefs about 
mathematics that reflect a view of the subject as dichotomous, reserved for certain individuals, 
and disconnected from a world outside of the classroom.  In this study, we examined what 
happened to a group of preservice teachers’ perceptions of their beliefs about mathematics and 
social issues when they were taught in conjunction with one another.  We found that connecting 
mathematics to social issues transformed these participants’ ideas about the nature of learning 
both subjects.  

 
Although integrating subjects in the classroom has been a concern for educators for over a 

century (e.g., Dewey, 1902), connecting mathematics to social issues has begun to rise as a major 
goal for many mathematics educators (i.e., Gutstein & Peterson, 2006).  These educators often 
contend that the purpose of education should be social well-being and all instructors should 
explicitly address this objective in their classrooms regardless of discipline.  However, in order 
to persuade mathematics teachers to do so, prospective teachers must transform many of their 
traditional beliefs about mathematics as dualistic, reserved for certain individuals, and 
disconnected from an outside world (Young, 2002).  Therefore, in this study, we examined what 
happened to a group of preservice teachers’ beliefs about mathematics and social issues when the 
two were integrated in a mathematics content course for elementary teachers.   

 
Theoretical Lenses 

 Two theoretical lenses are used to explain the findings of the study.  The first addresses 
beliefs that stem from associationist learning theory.  This theory of teaching and learning 
emerges from the philosophy that reality is separated into categorical subjects and that learning 
about this reality is transmitting a set of facts from a more knowing authority to a less knowing 
being (Houser, 2006).  However, often times this form of traditional pedagogy, which is still the 
predominate one in western schooling (Houser, 2006), positions the student as passive and 
inferior in the classroom, waiting to receive knowledge, rather than active, dynamic, and 
constantly interacting with and reacting to a reality around her.  In theory, students who emerge 
from this kind of educational system can form beliefs about subjects that traditionally mean that 
knowledge is simplistic (e.g., there is one right way to do mathematics (Young, 2002)) and an 
authority holds this knowledge.   

The second theoretical lens explores the idea of the formation of beliefs that are based on 
transactional learning theory.  Unlike its counterpart, this theory insists that humans are engaged 
in a transactional give and take relationship with the world around them, and that reality is 
relational (Houser, 2006).  From this perspective, teaching and learning takes on a different 
meaning.  There is no longer an assumption that a prescribed set of facts exists as truth and can 
be transmitted as such. Subjects such as mathematics and social issues interact with and react to 
one another, continuously expanding and changing.  When mathematics and social issues are 
taught from this perspective, it becomes the role of all participants in the classroom to negotiate 
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meaning and decide whether or not ideas are valid, just as is done in society.  When teaching and 
learning in this type of classroom, beliefs about the attainment of knowledge begin to transform.  
The role of the instructor becomes that of someone who develops opportunities for intellectual 
growth.  These opportunities link students to a history and a world outside of the classroom 
(Dewey, 1938).  In theory, mathematics and social issues become more complicated yet more 
accessible, and students can begin to author their own learning, transforming their beliefs about 
the nature of subjects.     
 

Methodology 
The study took place in a community college classroom in the Southwestern regions of the 

United States and spanned the duration of a full semester.  Nineteen preservice teachers, all the 
students enrolled in the content course, participated in the study.  Seven of the students were 
nonnative English speakers, and ages ranged from nineteen to forty two.  Several students were 
nontraditional, having returned to school after several years of being away.  The instructor of the 
course was also a participant in the study and a doctoral student at a nearby university. 

The course had two major components, a mathematical one and a social one.  At the 
beginning of the semester, the instructor of the course was given a set of topics to “cover.”  
These included but were not limited to developing an understanding of the real number system 
and operations within this system (e.g., addition, subtraction, multiplication, and division of 
integers, rational numbers and irrational numbers).  The instructor’s underlying objective was to 
provide opportunities to develop an understanding of critical social issues such as healthcare 
reform, poverty, distribution of wealth, and consumerism.  Tasks and activities for the course 
were deliberately selected and created with these objectives in mind; many of these were inspired 
by and adapted from readings in Rethinking Mathematics:  Teaching Social Justice by the 
Numbers (Gutstein & Peterson, 2006) and utilized problem-solving approaches to teaching and 
learning mathematics (Wheatley & Abshire, 2002; Van de Wall, 2004). 

The study was qualitative in nature and employed both case study (Stake, 1995) and 
practitioner-research (Anderson, Herr, & Nihlen, 1994) designs.  Multiple forms of data were 
collected.  They included a reflective journal kept by the instructor, student work, reflective 
student journal entries, and audio/video tapes of select class periods and informal interviews 
(referred to as mid-term conferences).  Data were analyzed using a data analysis spiral 
(Cresswell, 2007), in which data were informally analyzed throughout the semester and later 
formally analyzed through several spirals through the data.  Themes were identified during the 
formal phase of analysis, and examples were extracted through one final spiral through.   
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Findings 
Initial Beliefs 

 Data revealed that students came to this course with many beliefs about mathematics and 
social issues that resulted from traditional schooling experiences. Most of the students initially 
saw the subjects as dichotomous--containing only right and wrong answers--and as only truly 
accessible to a more knowing other (Young, 2002).   

 
Dichotomous Beliefs 

Early in the semester, as students began reflecting on their previous experiences with 
mathematics, they began expressing the dichotomous view of mathematics that they held.  In her 
reflective journal, one student wrote that mathematics in school is “teaching kids to always have 
the right answer or just teaching them to pass tests.”  Others wrote, “[t]here is a wrong way and a 
right way to do a math problem,” and “math was the way the teacher taught it.”  Many students 
described mathematics as being a subject that has “one right answer” or is done “one way.”  In 
their descriptions of their previous mathematical experiences, almost every student, including 
those who enjoyed mathematics, referred to the idea that there is only one way to do 
mathematics.  Doing mathematics one way sparked resentment towards the subject for many of 
the students.  In a classroom discussion, the instructor noted one student describing being 
punished for not doing mathematics in a particular way.  She said, “I used to have a teacher that 
would count off if we didn’t do problems exactly like she wanted.”  Many students echoed this 
statement, saying they had similar experiences.  Several students explained they were not 
encouraged to understand the reasoning behind the mathematics they studied.  One student said 
her teachers always told her “that’s the rule,” so she began to refrain from asking.   

Similarly, students in this course tended to view social issues as existing within two 
perspectives, a correct one and an incorrect one, often times based on their faith in others.  
Students used the words “right” and “wrong” when they discussed social issues.  For example, 
when they began a discussion about healthcare reform, before studying the issue through 
mathematics, many students simply stated that healthcare reform is wrong, and after being 
placed in the political party that she opposed for a healthcare debate they had in class, one 
student said, “I could do this project if I was on the right side.”  In another instance, as students 
discussed the idea of socialism, several expressed that they believed socialism is “bad,” without 
considering that we have socialism in the United States (i.e., public schools, fire departments, 
police officers, etc.).  For many of the students, there seemed to be no room for common view 
points from the two sides or an alternative perspective to the two.  There was just the right way 
and the wrong way. 

   
More Knowing Other 

 Several students initially viewed mathematics as reserved for certain “other” people.  In her 
reflective journal, on several occasions, the instructor noted one student saying, “I’m just not a 
math person.”  Another student wrote in her journal, “I think my brain does not automatically 
think mathematically it is something I have to work at,” indicating that thinking mathematically 
is a special ability that she does not naturally possess.   

Further, students viewed mathematics as a subject that is transmitted as whole and complete 
from an all knowing teacher to a less knowing student.  One student wrote that in her 
mathematics classes “there was always someone showing the how to’s, the right way per say of 
doing a problem.”  Although most of the students viewed themselves as not able to know without 
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a teacher, the instructor of this course expected them to discuss and resolve issues on their own.  
She expected them to justify their thoughts and decide whether or not they agreed with one 
another.  She was instigating the social construction of knowledge rather than using a more 
typical “show and tell” method (von Glasersfeld, 1995).   

Students were initially frustrated with this process.  During the first couple of weeks of class, 
as the instructor rotated from one group to another, various forms of one question kept emerging:  
“Is this right?”  The teacher kept giving the same answers:  “I don’t know.  What do you think?  
Why?”  Students were not always pleased with these inquiries as answers.  They seemed 
frustrated when she refused to answer their questions, as they seemed to exud little faith in 
themselves as capable of obtaining an answer without the instructor’s validation.  Various 
questions and comments such as, “Why can’t you just tell us?” or “I don’t know.  It just seems 
right” radiated at each table.  The instructor continuously asked students to convince other group 
members, and she probed their thinking by asking questions such as, “What made you think to 
go about the problem that way?  Is there a difference between what you did and what she did?  
Where?”  After the first week, one student wrote in her journal, “I am now nervous because this 
class seems like it is going to be a lot.”  Many students used the word “different” when 
describing the way the class was being conducted.  For the first several weeks, the instructor 
wrote about the frustrations students depicted in the classroom as they were forced to determine 
solutions and validate ideas without her aid. 

Similarly, students’ beliefs about social issues seemed to be based on the verification of an 
“other.”  In her reflective journal, the instructor wrote about one student saying she had received 
her information from the news, while another student explained that her family had discussed 
these issues. Many students’ perceived right and wrong perspectives seemed to come from their 
affiliations with certain political parties or their connections to significant others in their lives.  
Many students categorized themselves as Democrats or Republicans.  One student explained that 
although she does not always understand issues well, “I do know that when it comes down to it I 
am a republican.”  On several occasions, the instructor noted students discussed their spouses, 
parents, churches, and coworkers’ when they described their own ideologies.   

The loyalty they felt towards their political parties and significant others was difficult for 
some students to overcome as they began to view issues from other perspectives.  They seemed 
to feel it was a betrayal if they opposed one of the stances those others perceived as correct.  One 
student explained how difficult it was to rethink some of the issues we studied because of her 
husband’s viewpoint.  In class, she explained trying to discuss issues with her husband but 
encountering resistance when she did so.  She said, “He’s a staunch Republican and he just 
doesn’t wanna’ hear it.”  Another student, after a discussion about distribution of wealth and a 
change in opinion said, “I feel like I’m betraying my party if I agree with you,” as if she was 
doing something wrong by considering an alternate perspective.   

For several weeks, students seemed uneasy about the notion of constructing ideas 
individually and verifying them socially.  Ironically, in the world outside of the classroom, 
knowledge emerges from the questions that are asked, answered, and verified through individual 
curiosity and social interactions, not from an authoritative figure who just knows.  In this class, 
however, students initially had this expectation for the attainment of knowledge. 
 

Transformed Beliefs 
As the semester progressed, students began to express their change in beliefs about 

mathematics and social issues.  Although many initially viewed mathematics and social issues as 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1345



dichotomous and only accessible to certain individuals, by the middle of the semester many 
students began viewing mathematics differently.  Students began rethinking their beliefs about 
both the duality and accessibility of mathematics and social issues.   

 
Pluralistic Beliefs 

As students were exposed to multiple methods and solutions to problems, they began to 
reconsider their ideas about how mathematics should be done.  Many students commented on the 
effect this course had on their recognition of the varieties of ways of understanding the subject.  
Students wrote: 

• I have learned that math is a subject that causes you to think…I have realized that not 
everybody thinks the same way.  There is always more than one right way… 

• There are more than one way to get an answer and it’s ok if it’s not the way the teacher 
taught it… 

• I really enjoyed this math class. It expanded my horizons and allowe[d] me to understand 
math a little bit better. I began to realize that there is not just one way to find an answer… 

   Moreover, after engaging in mathematics lessons that incorporate social issues and 
concepts, students began to change many of their beliefs about the nature of social issues.  They 
began to reconsider their quick conclusions about which side is “right.”  One student explained 
in class that she initially believed she had to “choose a side” when she encountered arguments 
for or against certain solutions to social issues, but after the healthcare debate, she expressed that 
she was “torn” and did not know which side was right.  Other students seemed similarly 
confused by their inability to quickly choose a side when considering social issues and concepts.  
They began to view issues as not so black and white, and they began to revert to mathematics as 
the connection to their beliefs rather than emotion or an external authority.   

Although most of the students in the course continued to view social issues as stemming 
from two perspectives, they began to have difficulty categorizing each side as right or wrong.  
Students no longer seemed to be able to quickly label others’ points of view as simply correct or 
incorrect.  Many began viewing positives and negatives from both sides.  Students wrote in their 
journals: 

• After researching I found that on this topic both sides have great points and I am torn… 
• I learned to keep my mind open.  There are many good points on each side of the 

healthcare debate… 
Working in groups and realizing that people view mathematics in different ways seemed to 

contribute greatly to students beginning to see mathematics differently.  In their final reflections, 
almost every student commented on the effect of seeing more than one way to perceive or solve 
problems.  They wrote: 

• It was very insightful for our peers to help us with our problems. It allowed for different 
techniques to be shown… 

• It was also a pleasant surprise to be able to see that there are many ways to achieve the 
right answer and that it was alright for everyone to have different opinions and 
approaches to logic…the overall acceptance and understanding of viewpoints was 
comforting… 

Further, the transformation of students’ beliefs about the nature of social issues seemed to 
stem in large part from considering other perspectives through mathematical research and 
working with students’ whose perspectives were different than their own.  Many students, during 
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mid-term conferences, explained having never thought about diverse outlooks of issues. In their 
reflections, several students wrote about being affected by other viewpoints.  Students wrote: 

• The political debate was really interesting, especially since I was on a side that I had 
never investigated before. Each of the social issue lessons pushed me to think about 
issues I was choosing to not think about… 

• I also found this project to be eye opening to others views…   
One student explained that she was open to new ideas because of her interactions with group 
members.  For her, the fact that we were all female and interested in education made a 
difference.  In her journal, she wrote, “I also realized how grateful I was to be debating the 
subject with just women and teachers…We didn’t have any irrational outburst because we were 
all understanding.”  In my reflective journal, I noted that the single gender of all the classroom 
participants might have been a factor in the development of an open, comfortable community in 
this class.  I wrote about a student commenting that one of the reasons she was open to listening 
and discussing in this class was this factor.  During that class period, several students agreed with 
her.  However, I did not systematically assess this factor; therefore, further research is needed to 
conclude more definitively whether or not the results of the course were affected by the fact that 
the class was comprised entirely of women.  
  
More Knowing Self 

Along with reconsidering their ideas about mathematics and social issues as either right or 
wrong, students began to change their views of mathematical and social issue knowledge as 
reserved for certain individuals.  During one class session, the instructor wrote about overhearing 
a student who had previously said that her “brain did not think mathematically,” say, “I can do 
this kind of mathematics.”  One student who wrote about her bad experiences with mathematics 
early on in the semester, in a later classroom discussion said: 
 Letting us do math this way is also good for students who come from different countries 

because in their countries, the teacher tells them to do problems one way and when they 
come here the teacher says do it another way.  Like this, they can do it how it makes 
sense for them. 

Other students wrote in their journals, “I’m learning that there are certain parts of math that do 
click with me,” and  “I think I would have done much better in math if my teachers let me do it 
like this.”  They began to express learning about themselves and their capabilities as 
mathematics learners and teachers after engaging in this course.   

• I learned a lot about myself in this class. This class gave me a boost of confidence 
mathematically and as a future teacher.  I felt so bad about math when I began this class 
and now I know that I can learn math and I can teach it too!... 

• I learned how to teach math and that it's okay to go against the way I was taught as a 
child… 

• So far, I’ve learned the importance of having a flexible mind when working with math.  I 
need it to be reminded that there are many, many ways to solving math problems…   

Students began to question their reliance on significant others in their lives for understanding 
social issues.  They began to trust their own abilities to investigate and understand problems in 
society.  Students wrote: 

• I learned how important it is to investigate issues for yourself and not just believe what 
your friends tell you or what you hear on the news… 
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• We should not take our leaders information to heart, always question, always do your 
research…  

• It was interesting to investigate both sides and then make my own choice… 
Participating in this class opened up space for students to discover verification and construction 
of ideas from within themselves.  Students began to author their own learning and understanding, 
validating and verifying their ideas without the reliance on others’ authority.  At the end of the 
semester, almost every student commented on the effect of realizing that mathematics can shape 
their beliefs about social issues.   

• As a student of the math class, I realized that we are using “MATH” a lot in our real life, 
not only calculating for our receipt in a store but also reading what happens in our 
community.  Statistic and many kinds of graph can convey a whole story… 

• I loved the lessons that covered social issues. These lessons made me think outside of my 
personal box. Additionally, the lessons showed me just how important math is in our 
daily lives. 

• I liked the lessons dealing with social issues. It brought another dimension to the class 
and it helped me see how math is used in other ways. 
By the end of the semester, students seemed to no longer believe that they needed to rely 

on a more knowing other to understand mathematics or social issues.  They began to view 
themselves as capable of thinking mathematically and they began to use mathematical 
information to explain why they accepted or questioned one social viewpoint over another.  
Connecting mathematics to social issues allowed students to become more autonomous learners 
and decision makers.  They began to expand their beliefs about both mathematics and social 
issues and were able to extend their thinking about social issues beyond an emotional level, 
linking it to mathematics and using those connection to actively engage in democratic decision-
making. 

 
Implications  

Data from this study indicate that most of the preservice teachers that engaged in this course 
were able to transform their beliefs about both mathematics and social issues.  The study implies 
that combining the two subjects in the way they were in this course can affect beliefs about the 
nature of understanding mathematics and social issues; however, it is not without its limitations. 
A few students did not seem able to hurdle their initial beliefs.  They were not discussed in this 
paper.  Their resistance may be the result of many years of traditional classroom interactions, or 
the fact that the lessons in this class created too much dissonance for them, or any number of 
other factors. Further research is needed to determine what exactly maintained these beliefs and 
understandings in some students in this course.  However, we mention this because it does imply 
that the interactions of a classroom cannot be completely encompassed within the confines of a 
paper such as this.  Therefore, it is important to note that although meaningful change in beliefs 
can occur when mathematics and social issues are taught in conjunction with one another, it is 
not inevitable. 

Although not without its limitations, this study seemed to be consistent with other scholars’ 
ideas about the effects of certain learning theories.  In accordance with ideas about associationist 
learning theories (Houser, 2006), most of the students in this course entered with traditional 
mathematics classroom experiences that yielded certain beliefs about the nature of learning 
mathematics.  They came to the class with assumptions about what knowledge was and who had 
access to it.  After exposure to pedagogical approaches that stemmed from a transactional theory 
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of teaching and learning, those assumptions began to transform.  As others have suggested 
(Houser; Dewey, 1938), teaching mathematics in a way that develops autonomy and connects to 
a history and a world outside of the classroom shifts ideologies about what it means to learn 
mathematics and social issues.  Beliefs about what is right and who holds that knowledge shift 
from an outside reality and another individual to an interactive reality, in which subject 
interaction is complicated, and an autonomous self can know.  Therefore, we would advocate 
creating space in the mathematics classroom where preservice teachers can transform their 
beliefs about mathematics and social issues when they are intertwined with one another in 
meaningful ways.  Further, we believe that in doing so the importance of linking mathematics to 
social issues can become more explicit for preservice teachers.  Although the preservice teachers 
in this course seemed compelled by teaching mathematics in this way, this is only one step 
towards teaching mathematics for social change.  Additional research is needed to assess whether 
or not connecting mathematics and social issues in the way they were here can in fact translate to 
these teachers future classrooms.             
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PRE-SERVICE TEACHER CONNECTIONS: CONNECTING COLLEGE 
MATHEMATICS TO SCHOOL MATHEMATICS 
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kberkope@purdue.edu 
 
This report summarizes findings from the study of 4 prospective secondary school teacher’s 
connections between university geometry curriculum and secondary geometry.  Connections are 
defined as knowledge and beliefs that link one’s construct of university curriculum to his or her 
construct of secondary school geometry curriculum.  Transcripts of individual interviews 
conducted with participants and participant generated maps of secondary geometry curriculum 
constituted the data for the study.  Findings include connections categorized as positive or 
negative in reference to the promotion of future growth in knowledge and beliefs needed for 
familiarization of secondary curriculum and effective implementation of standards based 
mathematics teaching.   
 In 1985 Cooney called for a discussion of the relationship between teacher content 
knowledge and teacher beliefs about mathematics, recognizing that a teacher’s conception of 
mathematics has a direct impact on the way in which mathematics is approached in the 
classroom.  Five years later Ball (1990) expanded on the complexity of teacher knowledge 
stating that teachers needed to understand the nature of knowledge in the discipline, where that 
knowledge comes from, how it varies with time, how truth is established, and philosophically 
what it means to know and do mathematics in order to be effective teachers.  Studies suggest 
(Borko et al., 1992; S. Brown, Cooney, & Jones, 1990) that teacher beliefs are influenced by 
teachers’ experiences with mathematics and schooling long before their entry into the 
mathematics education workforce.  These same studies state that without significant 
interventions, these beliefs are very difficult to change (Cooney, Shealy, & Arvold, 1998). 
Innovative methods courses can address some of the difficulties, but studies show that these 
methods courses are not enough (Borko, et al., 1992; Ensor, 2001) to overcome the issue that 
“teacher’s conceptions are dependent upon their experiences as learners of mathematics”(Ernest, 
1989, p. 13).  Prospective teachers gain experience with mathematics in their own preK-12 
experience, but also in university mathematics content courses.  This site offers another 
opportunity where the knowledge and beliefs of these prospective teachers about mathematics 
can be influenced.  Therefore the development of prospective teacher’s knowledge and beliefs 
about teaching and learning mathematics in these courses should be a goal of their programs of 
study. 

Knowledge, Beliefs, Connections 
Knowledge and Beliefs 
Both mathematical knowledge and beliefs have been identified as influencing the practices of 
mathematics teachers.  Mathematical knowledge for teaching has been defined and  Ball, 1990; 
Ball, Hill, & Bass, 2005; Ball, Thames, & Phelps, 2008; Hill, Rowan, & Ball, 2005) described as 
including more than common content knowledge and involves a complexity specifically of 
containing “knowledge of content and students, knowledge of content and teaching, and 
knowledge of content and curriculum”(Bray, 2011, p. 5).  Knowledge is held onto much 
differently that what is described as beliefs, though it would be a mistake to state that knowledge 
is unchangeable and static.  Beliefs are understandings about the world, situated within the 
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individual, that are understood to be true.  “What is knowledge for one person, may be beliefs for 
another, depending upon whether one holds the conception as beyond question” (Philipp, 2007, 
p. 259). Here we find that varying degrees of conviction result in the categorization of an 
understanding and existence within a context.  Teachers’ systems of beliefs, in particular, their 
conceptions of the nature and meaning of mathematics, may account for variations in practices 
(Thompson, 1992). However differentiating between knowledge and beliefs may be difficult.   
Philipp noted that  (2007) “distinguishing between knowledge and belief is unimportant for 
research” (p. 259).  Instead, importance is placed on the recognition that preservice teacher 
knowledge and beliefs will have effects on their future practice.  These “complementary subsets 
of the sets of things we believe” must have origins specific to the individual (Leatham, 2006, p. 
92). Adopting the view that knowledge and beliefs (K&B) are inseparable and university course 
work may contribute to the development of both, this research seeks to explore the development 
of connections between K&B about mathematics and K&B about teaching mathematics.  In 
particular, I explore the relationship between K&B generated in a university content course, and 
how those are projected onto K&B of school curricula. To do so, I define the potential 
relationship between K&B about mathematics and K&B about teaching as connections. 
Connections 
Preservice teachers’ own preK-12 experience and preservice teachers’ exposure to mathematical 
learning during their undergraduate programs (C. A. Brown & Borko, 1992; S. Brown, et al., 
1990; Lortie, 1975; Mewborn & Tyminski, 2006) have been identified as two possible origins of 
K&B.  Relationships between K&B about mathematics and K&B about teaching are fostered 
when the development of K&B are in an environment that allow prospective teachers to 
articulate the relationships they see.  These links are connections between one’s construct of 
university curriculum (mathematics) to his or her construct of secondary school geometry 
curriculum (teaching).  Positive connections are defined as connections that inform future growth 
in K&B needed to learn from the secondary curriculum and effectively implement the 
curriculum.  Negative connections are defined as having the potential to impede future growth in 
K&B needed to learn from secondary curriculum and effectively implement the curriculum. 
Investigating connections between university curriculum and school curriculum is vital to 
understanding the success or failure of preservice teacher programs of study in influencing the 
development of K&B prerequisite for effective mathematics teaching.  This study is designed to 
investigate types of connections linking university geometry course curriculum to the secondary 
school geometry curriculum as represented in the NCTM documents. Specifically: 

What types of connections are made between the experience in a university level geometry 
course and participants’ understandings of school geometry? 

Methods 
Participants and Context 
During fall 2010, undergraduate mathematics education majors, identified by their advisors, were 
sent a survey, designed to solicit participation in the study. Those students who had taken 
Euclidean Geometry, a university starting with high school topics and moving quickly to more 
developed material, were identified as potential participants. The course is taught by a professor 
with a professed interest in mathematics education.  Anecdotally, the course is known to be 
helpful and pertinent to preservice secondary mathematics teachers.  Potential participants were 
divided into two subgroups based on their answer to the following question: 
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Do you see a connection between college mathematics courses and the curriculum you 
will be teaching in secondary schools? 

Of the 15 potential participants, the two who responded affirmatively and two who responded in 
the negative were selected for and agreed to participate in the study. 

Table 1 

Participant Demographics 

Pseudonym Sex Connection Categorization 

Paul Male No Connection 

Sophie Female Connections 

Rachael Female No Connection 

Janet Female Connections 

Instruments 
 Two instruments were used to gather evidence of K&B as well as connections: an 
interview protocol and a mapping activity. 
Interview protocol.  Participants were interviewed for 30 minutes, after which the audio 
recordings were transcribed. An interview guide was developed that focused on eliciting 
evidence of the K&B about university geometry and K&B about school geometry. The exact 
sequence and wording of questions were decided during the course of the interview by the 
researcher. 
To elicit evidence of connections, participants were asked questions such as: 
 

As you are taking a post-secondary mathematics course, are you constantly trying to 
make connections to your vision of your future geometry classroom and what you will be 
teaching?  If so, how do you go about pursuing these connections?   
 

All participants affirming connections were then prompted with a sequence of questions in order 
to stimulate further elaboration.  Such as: 

Are these connections the result of instructor actions?  Are connections to school 
 geometry emphasized in a university geometry course?   

Participants not affirming connections were exposed to a similar line of questioning in order to 
stimulate more information about the lack of connections made.  
Mapping of geometry curriculum.  During the interview participants were asked to develop an 
image of the secondary geometry curriculum. Specifically, the following prompt was used 
 Any way you would like, please draw me your idea of what the curriculum for a typical 
 secondary geometry course would entail.   
Participants were asked to explain the facets of their drawings and share insights about lines 
drawn between words they identified.  
Data Analysis 
Drawings. The drawings were coded by the number and content of primary subsections and 
secondary branches.  For example in figure 1, the drawing contains 2 primary subsections, 
specifically “proofs” and “constructions.”  Secondary branches of these subsections were 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1352



categorized and noted.  In figure 1 from the primary subsection “constructions,” “perpendicular 
lines” and “angle bisectors.”   

               
Figure 1. Paul’s drawing of school geometry curriculum 

Additionally, the content of the maps were compared to the NCTM standards for school 
geometry.  Similarities and differences in content were noted. For example Paul mentions proofs 
as primary subsection of school geometry curriculum and the NCTM standards incorporate 
proof, though much more intricately, as a primary subsection of the idealized school geometry. 
 
Interview protocol.  The interview data was coded using categories of positive and negative 
connections, regardless of claims regarding connections on original survey data used to identify 
participants.  For example the following quote exemplifies a positive connection between the 
university geometry course and school geometry in explaining that the course curriculum 
informs and reviews what is entailed in the school curriculum: 
 

And um, I guess to kinda review geometry concepts in general and to go more in depth 
 and learn more about, you know Euclid and axioms and stuff. (Sophie) 

All participants were able to describe positive connections between university geometry and 
school geometry and shared additional ideas about connections between university mathematics 
courses and school curriculum.  The introduction of comments in reference to other mathematics 
courses necessitated further coding to investigate connections more broadly.  The following 
excerpt is an example of a connection between university mathematics and school mathematics 
that was coded as negative. 

None of that [mathematics content] is really ever going to come into play in high school 
math, as far as like helping me understand why something in algebra works. (Paul) 

The interview data was compared with participant’s drawings data to build models of 
participants’ K&B of university geometry and its connection to their K&B of school geometry.  
For example, Sophie included a main subsection in the drawing exercise “axioms and common 
notions”.  The participant specifically identified “axioms and common ideas” from the book of 
Euclid as some of the information drawn from the university geometry course.  Thus an 
inference that there was a positive connection between K&B of university geometry and K&B of 
school geometry was made. 

Results 
The discussion will use examples from Paul and Sophie due to limited space, however results 
apply to all participants.   
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 Across participants, drawings had noticeable difference in the number of primary 
subsections and secondary branches. Participants originally selected because they viewed 
university geometry and school geometry as connected had a more elaborate maps as measured 
by the number of primary subsections and secondary branches.  Despite this difference, all four 
drawings contained very few subsections and branches. In comparison to the  NCTM standards, 
which if drawn in a primary subsection and branching format would reveal four primary 
subsections corresponding to the overarching standards for grades preK-12: analysis of shapes 
and shape properties, location and spatial relationships using the Cartesian plane, apply and 
understand transformations, and use the above facets in problem solving situations.  Many 
subsections branching from each of these primary standards are shared and elaborated in the 
standards documents (NCTM, 2000, 2009).  The comparison between the drawings and NCTM 
standards revealed very little overlap, suggesting that K&B of school geometry were not 
informed by curricular content knowledge. For example in Figure 1 “proofs” was identified as a 
primary subsection, while the standards view of curriculum identifies “establish the validity of 
geometric conjectures using deduction, prove theorems, and critique arguments made by others” 
as a branch of “analyze characteristics and properties.”(NCTM, 2000). 
 Participants had difficulty identifying the origins of K&B of school geometry shared in 
their drawings, but clearly identified their own experiences in high school geometry or 
mathematics and the university geometry course. Memories of high school geometry were vague 
as suggested by Paul’s comments. 

I have vague remembrances of what I learned, but who’s to say I learned the Pythagorean 
Theorem in geometry?  I probably learned it sooner, so I don’t know exactly what, if you 
asked me right now, cause those [pointing] proofs and constructions are different 
operations you do in geometry.  But as far as content goes,  specifically like midpoints, 
angle bisectors, stuff like that I wouldn’t be able to tell you  the complete list of what you 
are supposed to teach in geometry.  (Paul) 

When asked to elaborate, participants expressed concern about their knowledge of school 
geometry curriculum.  For example: 

Um, I guess they [subsections] came from [the university class] or the things that we did 
in [the university class]… but I would have no idea, I would have no idea what the 
curriculum [school geometry] is. (Sophie)   

 Participants reported that thinking about connections while participating in the university 
geometry course was not a priority to them or in relation to the demands of the course.  

Um, when I was in [university] geometry I definitely wasn’t thinking about that at all.  It 
really wasn’t even crossing my mind. (Sophie) 

Here a contradiction arises in that connections were not fostered in the classroom nor at the 
forefront of thought, yet linking content in university mathematics courses to the school 
mathematics curriculum is reported by all participants in being important to their future careers. 
To investigate this a bit more participants were asked how they might know what to teach in a 
school geometry class.  They identified the school textbook and their own experiences in school 
geometry as the primary resources for their K&B of the school geometry curriculum: 

I guess I would look at any materials that they [the school] have, like the book or 
whatever, and I would think back about what, you know, what I struggled the most with 
geometry. (Sophie)   

Connections between K&B of Mathematics and K&B about School Mathematics.  
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Questioning about the geometry course encouraged participants to elaborate about other 
university mathematics courses and connections between these courses and their K&B about 
school mathematics. 

Yeah, I think it is important for them [university mathematics professors] to make a 
connection between what you are going to teach because, like for example, like abstract 
algebra I took last semester… I don’t see how that connects at all to what I’m teaching. 
So like I don’t understand why I spent my time on it.  I don’t feel like I’ll need it, so I 
would have rather spent my time learning more about how to teach certain concepts, or 
maybe like taking a lower level algebra class where you really think about, you know you 
are not only a student, but a teacher and a student perspective in it. (Paul) 

Paul expresses the view that abstract algebra has no value as a tool in his/her development as a 
teacher. All participants failed to see any connections between the mathematics content they 
were learning in their university courses and school mathematics.  In addition, participants 
shared evidence of disassociating university mathematics and school mathematics as they 
identified emotional responses to university mathematics.     

Right now I’m in abstract algebra and… I’m wondering, why am I even in this class?  
When it doesn’t even relate to anything.  So, uh, I’m in this math and I did really bad on 
my first test and it’s just making me really frustrated. (Paul) 

 
Beyond the university geometry course, participants expressed no positive connections between 
university mathematics courses and school mathematics. 
 

Conclusions 
This research study set out to investigate connections between K&B about geometry and K&B 
about school geometry.  Positive connections were inferred from drawings and interview data, 
however the connections were weak as evidenced by the lack of specific links between ideas 
identified as drawn from the university geometry course and tied to the school geometry 
curriculum. In elaborating on connections between university mathematics, evidence of negative 
connections was found.  Participants identified emotional responses to university mathematics 
courses and specifically identified the lack of relevance of the courses as a challenge in preparing 
for the careers as teachers. Participants viewed their future role as teachers as including the 
delivery of curriculum and yet they expressed concern regarding their knowledge of that 
curriculum. In such a vacuum, sources of knowledge were identified as personal experience and 
the district adopted texts.   
Connections to future practice were not emphasized in the participants’ content courses, nor were 
there pedagogical strategies employed that helped inform their K&B of the secondary 
curriculum.  Despite this environment, seemingly devoid of emphasizing connections to future 
practice, preservice teachers are still building knowledge and belief structures about the 
mathematics that they will eventually be teaching as evidenced by their responses to 
mathematics course work they were currently taking. 
As posited by Ball (2005) curricular knowledge is a vital component of the overall knowledge 
necessary to be an effective mathematics teacher.  Yet participants were unsure of how to build 
such knowledge in an environment that focused on common content knowledge.  They expressed 
concern about their limited knowledge of curriculum and the lack of attention to this topic in 
their university mathematics courses.  This lack of attention to the demands of their future 
profession, led the participants to identify textbooks as resources for what and how they should 
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teach school geometry.  This finding suggests that K&B about school geometry will continue to 
grow in alignment to existing school geometry curriculum as these preservice teachers begin to 
navigate their teaching career. 
Finally, there was a trend of disassociation of the participants that directly affected their 
knowledge and belief structures in regards to mathematics.  Negative connections stem from 
experiences in theoretical mathematics courses, such as abstract algebra, where students 
struggled to perform in ways professors valued.  Lack of attention in such courses to projection 
of future practice led participants to focus on performance in the classes rather than building 
professional K&B for teaching.   
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Research continues to show that teacher efficacy is hard to change once it has been established 
and that it can be positively influenced even before teachers enter the classroom. This article 
presents the results of a study examining the potential impact of mathematics content courses on 
teaching self-efficacy perceptions using the Mathematics Teaching Efficacy Belief Instrument. 
Analysis of the data revealed a statistically significant increase in personal mathematics 
teaching efficacy of elementary preservice teachers that complete content courses specifically 
designed for them. Implications for teacher education and directions for future studies are also 
discussed. 

The mathematics preparation of future elementary teachers has picked up momentum in the 
past two decades. In particular, efforts have been greatly influenced by studies such as Ma 
(1999); Hill, Shilling, and Ball (2004); and Ball, Thames, and Phelps (2008). These studies have 
built from the notion of pedagogical content knowledge introduced by Shulman (1986) and have 
illuminated the importance of developing mathematics knowledge for teaching (MKT). This 
knowledge for teaching encompasses both content knowledge and a specialized understanding of 
that content that allows teachers to effectively use their content knowledge to help students learn 
the subject (Ball, Thames & Phelps, 2008). 

As mathematics teacher educators we seek to improve the preparation of our students by 
developing course experiences that would best prepare them for their teaching careers. We are 
now particularly interested in providing opportunities for elementary preservice teachers (PSTs) 
to develop MKT. Ball et al. said, “How well teachers know mathematics is central to their 
capacity to use instructional materials wisely, to assess students’ progress, and to make sound 
judgments about presentation, emphasis, and sequencing” (Ball, Hill & Bass, 2005, p. 14). At 
our institution, the department of mathematics offers two mathematics content courses that have 
been specifically designed for elementary PSTs. These courses emphasize both content and 
pedagogy. The first of these courses will be referred to in this article as MATH1.  

As teacher education researchers we seek to examine evidence of teacher learning and 
teacher education that help us find strategies to prepare future teachers more effectively. In 
particular, identity development has been described as a crucial feature within preservice 
programs: ‘‘the identities teachers develop shape their dispositions, where they place their effort, 
whether and how they seek out professional development opportunities, and what obligations 
they see as intrinsic to their role’’ (Hammerness et al., 2005, p. 384). In this study, we sought to 
examine influences of mathematics content courses in elementary PSTs teaching self-efficacy as 
these beliefs relate to the process of identity development. 

Theoretical Framework 
In recent decades we have seen increased emphasis on students’ beliefs in teaching 

mathematics (Hart, 2002; Leder, Pehkonen & Tőerner, 2002; Spielman & Lloyd, 2004; Watson 
& De Geest, 2005). One important area of research on students’ beliefs is that of teacher self-
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efficacy (Bandura 1977, 1986, 1997). Bandura (1986) defined self-efficacy as “people’s 
judgments of their capabilities to arrange and execute courses of action required to attain 
designated types of performances” (p. xii). It impacts the things we do, our efforts toward them, 
and how long we persist in working out solutions to problems. In fact, research about teacher 
efficacy in mathematics and science education has shown that levels of teacher efficacy are 
related to teacher content knowledge, teacher pedagogical content knowledge, and teacher 
beliefs and attitudes regarding the content (Gresham, 2008; Huinker & Madison, 1997; Swars, 
2005). Thus, self-efficacy and MKT are strongly related. Students’ ability to learn content and 
pedagogy and their successful application in the classroom depends on their willingness and 
confidence to do so. Furthermore, research suggests that teacher efficacy is hard to change once 
it has been established (Hoy, 2000) and that it can be positively influenced even before teachers 
enter the classroom (Hoy, 2004; Smith, 1996) by providing experiences that promote teaching 
efficacy.  

Researchers have examined the influences that methods courses and student teaching have in 
self-efficacy levels of preservice teachers (Hart, 2002; McDonnough & Matkins, 2010; Plourde, 
2002; Swars, Smith, Smith, & Hart 2009). However, based on our literature review, fewer 
studies have been conducted to study the effects of content courses on teaching self-efficacy of 
undergraduate students. Typically, elementary PSTs fulfill their mathematics requirements early 
in their preparation. Thus, if we can identify and describe the mathematics content coursework 
that positively affect their sense of teaching self-efficacy, then these levels can be further 
strengthened in other learning experiences later in their studies.  

In this context, Bandura’s (1986) construct of self-efficacy theory framed this study because 
it is based on the concept that people’s belief or perceived confidence for coordinating and 
carrying out a specific action influences how well they develop the basic cognitive, self-
management, and interpersonal skills that contribute to career development and success. Levels 
of efficacy affect the amount of effort, persistence and resilience students are willing to 
undertake when faced with obstacles and failures (Bandura, 2001).  

Enochs and Riggs (1990) developed the Science Teaching Efficacy Belief Instrument 
(STEBI-B) based on Bandura’s (1977) social cognitive theory to measure preservice teachers' 
sense of science teaching efficacy. Enochs, Smith, and Huinker (2000) have adapted the 
instrument to assess efficacy in teaching mathematics. The revised instrument is called the 
Mathematics Teaching Efficacy Belief Instrument (MTEBI) and consists of 21 Likert scale items 
ranging from “strongly agree” to “strongly disagree”. The MTEBI contains two dimensions: 
Personal Mathematics Teaching Efficacy (PMTE) and Mathematics Teaching Outcome 
Expectancy (MTOE). The PMTE contains 13 items and refers to the individual’s personal belief 
of his/her ability to be an effective mathematics teacher. On the other hand, MTOE contains 8 
items and refers to the individual’s belief that effective teaching can enhance mathematics 
achievement of students regardless of external factors. An example of a PMTE item is, “I will 
continually find better ways to teach mathematics.” By comparison, an example of a MTOE item 
is, “Students’ achievement in mathematics is directly related to their teacher’s effectiveness in 
mathematics teaching.”  

Several researchers have employed these instruments to explore issues of mathematics and 
science self-efficacy in PSTs. An early study by Huinker and Madison (1997) using both STEBI-
B and MTEBI showed that content methods courses improved the elementary PSTs efficacy 
beliefs about teaching mathematics and science. More recently, Bleicher (2002) and Bleicher and 
Lindgren (2005) used the STEBI-B to help examine changes in science content knowledge and 
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science teaching self-efficacy. They found that the PSTs increased significantly in both areas as 
they progressed in a methods course. Moseley and Utley (2006) obtained similar results when 
examining the effects of an integrated mathematics and science course on teaching self-efficacy. 
MTEBI was also used by Swars, et al. (2009) among other instruments in a longitudinal study 
examining the effects of a developmental teacher preparation program on multiple constructs. In 
particular, Swars et al. found that teaching self-efficacy beliefs varied over time as students 
progressed through two methods courses and student teaching.   

In order to better understand how to prepare elementary PSTs for teaching mathematics well, 
it is important to build from existing research and to investigate not only methods courses, but 
also, the potential impact of math content courses on PMTE and MTOE. In this article we report 
the results of a study designed to examine changes in the perceptions of mathematics teaching 
self-efficacy of elementary teacher candidates after participating in the mathematics content 
course that has been specifically designed for elementary PSTs. 

This mathematics content course, MATH1, offered by the department of mathematics, is a 
semester-long (14 weeks) course that meets twice a week for 75 minutes each time. The material 
covered in MATH1 is that typically found in textbooks such as Long, DeTemple, and Millman 
(2011); that is, numeration systems and their characteristics; in-depth look at algorithms for basic 
operations on whole, integer, and rational numbers, decimals and real numbers; and algebraic 
and proportional reasoning. Additionally, the department offers a second course subsequent to 
this one but with a focus on geometry. In contrast to the traditional blackboard-lecture 
mathematics classes, in these courses knowledge is built via explorations and students’ 
discussions; the instructor’s role is that of a facilitator providing guidance to lead students toward 
developing an advanced perspective on and profound understanding of the mathematical 
concepts. Students work, individually or in groups, on activities developed to understand the 
reasons behind familiar mathematical procedures, to explore and discover new concepts, and to 
analyze children nonstandard approaches. Additionally, students frequently present their ideas 
and solutions to the entire class. The focus of these tasks is on helping them construct their own 
knowledge and develop mathematical communication skills while building solid learning skills 
that will help them approach new mathematics topics in the future. 

As part of a larger study investigating influences of math content courses geared toward 
elementary PSTs (Truxaw, Cardetti & Bushey, 2010), this study focuses on the experiences of 
the students enrolled in the focus math content course, MATH1. The research questions that 
guided this study are: 

1. Are there significant changes in Personal Mathematics Teaching Efficacy in elementary 
teacher candidates before and after participation in the mathematics content course?  

2. Are there significant changes in Mathematics Teaching Outcome Expectancy in 
elementary teacher candidates before and after participation in the mathematics content 
course? 

Methods 
Design and Participants 

For this quantitative study we used a pretest-posttest design. The sample consisted of 24 
elementary teacher candidates who were just beginning their teacher preparation coursework at a 
large public research university in the northeastern United States. These students were 
predominantly female (21), white (23), and typical ages ranged from 20 to 25 years old. All 
participants were enrolled in MATH1, the mathematics content course that involves a 
combination of both pedagogical and content instruction described on the previous section. 
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These students had completed at least two quantitative courses outside the School of Education 
to fulfill the school’s quantitative requirements. In particular, the majority of the participants (15) 
had taken the course Mathematics for Business and Economics (calculus-one level). Participants 
had also taken either the Problem Solving course or the Elementary Discrete Mathematics course 
(real-world applications of non-routine mathematics).  

Procedures 
A survey (MTEBI) was administered at the beginning of the semester during the first week 

of classes to measure the entering level of mathematics teaching efficacy of the participants. The 
survey was administered again at the end of the semester during the last week of classes to 
determine whether there were changes in their beliefs before and after completion of the content 
course. 

Instrument 
The participants were asked to assess their mathematics teaching self-efficacy using the 

Mathematics Teaching Efficacy Beliefs Instrument (MTEBI) developed by Enochs, Smith, and 
Huinker (2000). As mentioned earlier, the MTEBI includes two dimensions: Personal 
Mathematics Teaching Efficacy (PMTE) and Mathematics Teaching Outcome Expectancy 
(MTOE) with 13 and 8 items, respectively. The instrument uses a Likert scale with five response 
categories (5=strongly agree, 4=agree, 3=undecided, 2=disagree, and 1=strongly disagree). That 
is, high survey scores reflected higher levels of self-efficacy.  

The PMTE addresses the preservice teacher’s belief regarding his or her own ability to teach 
mathematics effectively. Scores on Personal Efficacy range from 13 to 65. The MTOE addresses 
the preservice teacher’s belief in his or her ability to directly affect students learning outcomes. 
The scores on Expected Outcome range from 8 to 40. Enochs et al. (2000) found the PMTE and 
MTOE represented independent constructs based on confirmatory analysis and had Cronbach’s 
alpha coefficients of 0.88 and 0.77, respectively, demonstrating the factors to be internally 
consistent (i.e., reliable). 

Results 
All the 24 participants in this study completed both pre- and post- MTEBI surveys; however, 

we were unable to match pre- and post-survey data for 6 of the participants because of missing 
identifiers. We analyzed the data in the two ways, described below, using statistical tests to 
determine whether there were statistically significant changes before (pre-survey) and after 
(post-survey) the mathematics content course. The statistical significance was established at the 
0.05 level. 

First, to account for the unmatched data points, the complete data set (N=24) was analyzed 
using independent-samples t-tests, on each dimension separately. The mean of the scores for the 
PMTE dimension increased from M=47.01 (SD=6.71) before taking the course to M=51 
(SD=6.62) after taking the course and the results from the independent-samples t-test indicated 
that this increase was statistically significant; t(46)=2.07, p=.04. On the other hand, the mean of 
the scores for the MTOE dimension increased from M=27.67 (SD=2.96) before taking the course 
to M=28.70 (SD=4.30) after taking the course. This increase was not statistically significant 
according to the independent-samples t-test; t(46)=0.98, ns. 

Additionally, the data from matched pairs (N=18) was analyzed using paired samples t-tests, 
on each dimension separately. Table 1 presents the descriptive statistics for the pre- and post-
surveys along with the results of the t-tests on both PMTE and MTOE. As can be seen from the 
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table, the means on both dimensions, PMTE and MTOE, increased from pre- to post-survey for 
the matched pairs as well. 
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Table 1. MTEBI Paired Samples t-tests Results Before and After the Content Course 

MTEBI 
Dimension 

Pre-survey Post-survey  
t 
 

 
df 

 
Sig. (2-tailed) 

N=18 Mean SD Mean SD   
Personal 
Efficacy 
(PMTE) 

47.58 7.59 52.06 6.37 3.56 16 0.003* 

Expected 
Outcome 
(MTOE) 

27.41 3.14 28.18 3.81 0.92 16 0.37 

* Significant at the 0.05 level 
The results from the paired samples t-test revealed that the difference in the mean scores on 

the PMTE dimension was statistically significant. The mean scores at the start of the semester 
was 47.58 (SD=7.59) with an increase to 52.06 (SD=6.37) by the end of the semester; t(16)=-
3.56 (pre-post, thus a negative t-value indicates and increase), p<0.05. These results suggest that 
the content course, MATH1, had a positive effect on participants’ Personal Self-efficacy levels.  

While the mean scores on Outcome Expectancy also showed an increase going from 27.41 
(SD=3.14) at the start of the semester to 28.18 (SD=3.81) at the end of the semester, the increase 
was not statistically significant; t(16)=0.92, ns. That is, there was not enough evidence to suggest 
that MATH1 influences the MTOE dimension.  

Discussion 
These findings contribute to the body of research on perceptions of mathematics teaching 

held by elementary teacher candidates. In particular, the findings provide insights into teaching 
self-efficacy beliefs of elementary PSTs that have implications for teacher education programs. 

The findings show that the personal teaching self-efficacy of elementary PSTs, as measured 
by the MTEBI survey, increased significantly after the mathematics content course, MATH1. It 
is worth noting that these students had completed at least two traditional mathematics courses, 
some of which were at the calculus-one level, prior to taking MATH1; yet their sense of personal 
teaching self-efficacy increased significantly after MATH1. This may be explained by the in-
depth treatment of school mathematics concepts in MATH1, and the multiple opportunities given 
to the students to discuss and explain their mathematical ideas with their classmates and for their 
classmates.  

Despite the significant increase in PMTE, there was no significant increase in MTOE, even 
though the mean values increased (pre, M=27.41; post, M=28.18). This is not surprising since 
MTOE measures the belief in one’s ability to affect learning outcomes regardless of other 
factors, and these students had not yet experienced teaching; thus, it may be more difficult for 
them to judge this dimension. These results are consistent with those of others (e.g., Bleicher 
2007, Hoy & Woolfolk, 1990; Plourde, 2002) that have found that certain learning experiences 
can increase PSTs’ sense of personal efficacy, but that outcome expectancy beliefs are harder to 
change at this level.  

These results extend those of previous research studies focused on methods courses 
(Bleicher, 2002; Bleicher & Lindgren, 2005; Huinker & Madison, 1997; Moseley & Utley, 2006; 
Swars, et al., 2009) by identifying opportunities to positively impact personal teaching self-
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efficacy at an earlier stage. This positive sense can be further nurtured on future coursework that 
is more tightly related to their teaching paths (methods courses, field experiences: classroom 
observations, student teaching, etc.). The results presented here corroborate and complement 
earlier reported results of the larger study (Truxaw, Cardetti & Bushey, 2010). Those results 
suggested that students who participate in mathematics content courses, such as MATH1, seem 
better able to concentrate on the material in the required methods courses and their confidence in 
teaching mathematics is significantly higher at the end of the methods course than their 
counterparts. The current study helps us understand further contributions of these mathematics 
content courses on elementary PSTs preparation. Based on these results, we recommend that 
teacher preparation programs consider requiring courses, such as the one described here, for all 
their preservice elementary teachers. Courses such as these, which focus on mathematical 
content with an eye toward the PSTs’ professional goals, may support the development of 
identities that could shape their current and future professional dispositions (Hammerness et al., 
2005).  

Further research is needed to support these recommendations. Our findings are subject to at 
least two limitations. First, these data apply only to one cohort of students in MATH1 that was 
taught by one particular instructor; and a second limitation is that these data may be particular to 
the teacher preparation program at our institution. Therefore, we encourage others to build from 
this research to address these limitations and to continue the important work of understanding the 
kinds of mathematics coursework that best support elementary preservice teachers. 

Endnotes 
1. The author gratefully acknowledges the support of the Teachers for a New Era Project at 

the university in this endeavor and the careful reading and valuable comments of Mary P. 
Truxaw on earlier drafts of this article. 
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In this theoretical research paper we describe a collaborative effort between researchers and 
university faculty to improve teacher preparation in middle school mathematics. Two powerful 
instructional frameworks, UDL and TPACK are dovetailed within in a web-based dynamic 
textbook, “Proportional Dynabook” that focuses on proportional reasoning. Theoretical 
tensions between special and general education teacher preparation programs influence the 
ongoing design of Proportional Dynabook. Teacher candidates used Proportional Dynabook in 
a graduate methods class to design instruction for a student struggling with ratio. Teachers 
developed deeper understanding of ratio and related pedagogical strategies that make ratio 
concepts accessible to diverse learners.  

 
Classrooms are more diverse than ever due to recent legislation such as No Child Left 

Behind and the Individuals with Disabilities Education Improvement Act that require all students 
to have access to the general education curriculum and to be included in the same assessments 
(Van Garderen, Scheuermann, Jackson, & Hampton, 2009). To meet the increasingly diverse 
needs of students with learning differences who are being educated in the general education 
classroom, special education services are being brought to the general education classroom. The 
lines between general and special education are blurred and teachers are being asked to 
collaborate to meet the educational needs of an extremely diverse group of learners. These 
collaborative efforts are based on the idea that each teacher has specific knowledge and expertise 
that address the instructional needs of the class (Van Garderen et al., 2009). However, 
collaboration in theory does not address the friction that exists in practice. Philosophical 
differences in pedagogy and learning theory create tension in the design of instruction. While 
this tension can be an obstacle to the design of effective instruction, it can also be the vehicle that 
brings together special and general education researchers to conceive and design innovative 
instructional tools and practices to meet the needs of all students.  

Students with high achievement, with learning disabilities and English Language learners are 
all receiving mathematics instruction from teachers who have been trained as math teachers or 
special education teachers but not usually both. Special education teachers tend to focus on 
pedagogy and interventions while general education teachers focus more on the content and 
structure of mathematics (Van Garderen et al., 2009). Now both teachers are given the 
formidable task of “raising the floor by expanding achievement for all, and lifting the ceiling of 
achievement to better prepare future leaders in mathematics…(Friesen, 2008, p. 51). The 
prevailing special education service delivery model has the special education teacher providing 
instructional supports within the general education classroom. Hence, the special education 
teacher remains focused on pedagogy and intervention and the general education teacher remains 
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focused on the math content. Often the special education teacher is attending only to the needs of 
students with Individual Education Plans (IEPs) and who have formally qualified for special 
education services thereby underutilizing the additional teaching resource in the classroom. This 
model may prevail because the special education teacher shies away from the more challenging 
math content and there is little time in the day for both teachers to do collaborative planning. 
However, in light of diminishing resources and budget cuts, full utilization of teaching resources 
must become the norm if we are indeed to raise the floor and ceiling of mathematics academic 
achievement. 

We can begin to make changes in the way we prepare both general and special education 
teachers to teach mathematics. In teacher preparation and professional development programs, 
researchers and teacher educators from the fields of general and special education must model 
collaborative practices and create dynamic learning communities. Silverman and Clay (2010) 
suggest that teacher candidates need social experiences where they can engage with mathematics 
in a way that that encourages the development of “deep, connected, unpacked mathematical 
understandings.” Further, the authors suggest that the collaborative use of technology serves to 
establish the social environment necessary to promote higher levels of thinking and the 
development of deeper broader understandings of mathematics and pedagogy. Likewise, 
Shreyar, Zolkower, & Perez (2010) suggest that the ‘text’ created through dialogue, written 
response, and diagram, in a social environment such as the classroom, can transcend the actual 
text in use.  In this way, the original text serves a vehicle for collectively making meaning of 
complex mathematical concepts, problems, and related pedagogy. The instructor in these models 
works to orchestrate the individual students in the class in such a way that, despite a beginning 
heterogeneous perception of mathematical concepts and pedagogy, the class ends up with a 
collective understanding of problems and approaches to solve them. 

In this theoretical research paper we describe our innovative approach to engaging pre-
service teacher candidates in mathematical and pedagogical thinking. First, we describe our 
collaborative development of Proportionality Dynabook, a web-based dynamic textbook aimed 
at supporting both special and general education pre-service teachers in their efforts to teach 
middle school mathematics. Second, we describe the frameworks of Universal Design for 
Learning (UDL) and Technological, Pedagogical and Content Knowledge (TPACK), which 
serve as the structural environment of our dynamic text. Third, we explain the curricular activity 
system designed to create a learning environment where pre-service teachers utilize this 
Dynabook in a way that encourages social and cognitive engagement in issues surrounding 
middle school mathematics instruction for diverse learners. 

 
Dynabook 

We draw inspiration from Alan Kay’s 1972 concept for a tablet-shaped personal computer 
(see, e.g. Kay & Goldberg, 1977), which he called a Dynabook. Although futuristic visions for 
the impact of computing stretch back much farther than Kay and have been updated many times 
since, we see Kay’s concept as a distinctive turning point – and the essence of Kay’s Dynabook 
is at the heart of the possibilities now emerging for digital texts in mathematics. Kay’s vision, 
however, requires more than mobile devices and the Web 2.0 capabilities that enable social 
networking, because Kay also wanted people to more easily and frequently engage with powerful 
ideas. Like Seymour Papert (1993), Kay saw the dynamic, interactive capabilities of 
computational media as opening up new ways to playfully engage with powerful ideas – through 
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activities like programming, interacting with visualizations, exploring mathematical models, and 
playing with simulations. 

The present project is a collaboration between SRI International, San Diego State University, 
San Francisco State University, CAST, Inc., and Inverness. SRI International is a research firm 
with expertise in math education and innovative uses of technology. San Diego State University 
and San Francisco State University prepare teachers to serve California students in general and 
special education, respectively.  CAST, Inc. is a leader in educational technology and Universal 
Design for Learning (UDL).  Inverness is a leading research and evaluation firm.  Collectively, 
we have a unique combination of expertise in mathematics, math education, special education, 
teacher training, technology supported math instruction, UDL pedagogy, and evaluation, which 
has been productive in designing and building the first iteration of the Proportionality Dynabook. 

As a team of researchers and educators, we are exploring and developing Kay’s ideas 
through a mathematics dynabook intended for use by prospective middle school mathematics 
pre-service teachers and centered on a key middle school concept of proportionality. Just as the 
strategies of summarization and prediction (e.g., in comprehending reading literature), and 
questioning and modeling (e.g., in learning from a science text), are essential in comprehension, 
we believe that there are similar strategies essential in mathematics. These include exploring the 
same mathematics through multiple equivalent entry points and making connections among 
different representations. Through our collaborative research with mathematics teacher educators 
and special education experts, we determined that the goals for this book should be to (a) support 
and reward the candidates when engaging more deeply in mathematical thinking, (b) encourage 
candidates to draw connections among related concepts of proportionality, and (c) develop 
teacher candidates’ awareness of potential student misconceptions and instructional options they 
could choose to support student development of more robust ideas about proportionality. 

To support these ends, and cue these strategies, the fundamental structure of the “book” is 
not a linear narrative but rather a 3x3 matrix that can be navigated through different pathways. 
The columns of the matrix are concepts in three related strands of middle school mathematics 
that develop students’ proportional thinking: ratio (in the number strand), similarity (in the 
geometry strand), and linear function (in the algebra strand). Although many middle school 
mathematics teachers do not recognize this, these three concepts are deeply connected. For 
example, “slope” is the ratio of two sides (the height and the width) of a slope triangle, and the 
application of triangles to the slope relies on the concept of similarity. By presenting these three 
concepts side by side, the Proportionality Dynabook aims to encourage teachers to explore these 
sorts of connections. 

The rows of the Proportionality Dynabook are organized by three different “entry points” for 
engaging teachers in the mathematics. Teachers can become familiar with the mathematics first 
by exploring “challenging problems” – mathematics problems that are designed to be 
challenging to candidates and help them develop their own mathematical thinking. Candidates 
can further explore the mathematics by watching “video cases” of student thinking as students 
solve problems with ratio, similarity and linear functions. Finally, candidates can also explore 
lessons that are specially designed to take advantage of the dynamic medium of the 
Proportionality Dynabook by presenting mathematical ideas in a visual and interactive format. 
For example, in the linearity section, candidates develop the idea of linear function as they 
explore the relationship between timing of thunder and lightning reaching a campsite. This rich 
matrix of related concepts and related ways to encounter the concepts takes unique advantage of 
the ability to construct a “book” that does not need to have a strictly linear ordering of pages. In 
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addition, a concept of an expert “tour” is planned, which can overlay a step-by-step trajectory on 
the book when it is desirable to guide candidates through the book in a linear order. 

With our Proportionality Dynabook we seek to further develop the concept of the “book” as a 
social medium that enhances interaction between an instructor and his or her pre-service teacher 
candidates. For example, instructors can create “assignments” in the Proportionality Dynabook 
for their pre-service teachers, support activities of both reading and writing, and allow pre-
service teachers to engage deeply with powerful ideas, and extend these benefits to a diversity of 
learners. By dovetailing the UDL and TPACK framework in the design of the Proportionality 
Dynabook, we seek to immerse pre-service teachers in use of this resource as an exemplary 
instance of technology-rich mathematics in three ways: to deepen their own content knowledge, 
to develop key pedagogical skills, and to support beneficial use of technology in teaching. 
 
 Universal Design for Learning (UDL) 

Universal Design for Learning supports the needs of diverse learners by providing multiple 
means of representation, expression, and engagement (Rose & Meyer, 2006; Rose, Meyer, & 
Hitchcock, 2005). The core idea of UDL is to embed supports in the medium, which learners can 
optionally activate when they need support to continue their progress. The benefit of UDL as a 
framework is that it provides a research-based taxonomy of the kinds of supports that learners 
may need and that technology can provide. Learners need supports for (a) connecting multiple 
representation of important ideas, (b) interacting with ideas and expressing ideas in new ways, 
and (c) maintaining a high-level of engagement. 

With regard to these three kinds of supports, UDL concisely summarizes a vast literature on 
the brain, learning, and the role of technology. For example, UDL suggests that providing for 
multiple representations of a concept not only enables deeper engagement with that concept but 
also enables access for a broader range of learners (McGuire, Scott, &Shaw, 2006). In the 
Proportionality Dynabook, UDL is introduced through videos, text, and diagrams as a framework 
to interpret the digital text. These features are embedded to give teachers ideas about how to 
support student access to and engagement with challenging mathematics. For example, a 
glossary is available which defines unfamiliar words and definitions by using a mixture of 
pictures and words. Multiple means of expression are available to users who can highlight words 
or sections in the Proportionality Dynabook and take notes in the margins. Further, when 
answering a question, they can write, draw a picture, explain verbally (into a microphone), or 
upload a file.  To enhance engagement, “Stop and Think” prompts are strategically embedded in 
the text to encourage candidates to process the text more deeply. These features of UDL are 
combined with digital resources to increase TPACK in pre-service teachers. 

Technological, Pedagogical, and Content Knowledge (TPACK) 
Emerging technological advances combined with Schulman’s (1987) work on pedagogical 

content knowledge have lead to the technological pedagogical and content knowledge (TPACK) 
framework (Mishra & Koehler, 2006). To increase TPACK in teacher candidates, technology 
needs to be strategically introduced and utilized by the instructor. It is not sufficient for students 
to access the Proportionality Dynabook without guidance and thoughtful pedagogy. In addition 
to careful instruction, content must be rich and challenging for candidates to increase 
understanding of the complexities of TPACK. Dynabook contains many access points to the 
three components of the instructional environment: technology, pedagogy and content.  It 
incorporates features of UDL through digital technology and multiple means of expression. 
 Videos of student thinking are assigned to candidates so they have a framework for pedagogy. 
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The various videos will guide the candidate’s developing pedagogy when designing instruction 
to address student misconceptions. The content aspect of TPACK is distributed through many 
parts of the Dynabook, especially through the challenging problems for candidates. These are 
guided problems that include prompts to help them access the underlying mathematics through 
“How Do I Say It?” and “Get Me Started” features when working through the problems. There 
are also several dynamic representations involved in showing the solution of the problems when 
students check their work. The next section focuses on how the Dynabook was presented to 
teacher candidates who are working towards a special education teacher credential. 

 
Dynabook in a Teacher Education Classroom 

The first year of this project was dedicated to planning the design and development of a 
dynamic web-based text that could improve how pre-service teachers learn middle school 
mathematics content and related pedagogy. The diverse research backgrounds of team members 
contributed to lively discussions and ongoing iterations of our evolving Proportional Dynabook. 
In its current form, we have a completed section on ratio. In an effort to examine how teacher 
candidates can learn mathematics content, specifically ratio, and related pedagogy with the use 
of Proportional Dynabook, we introduced our tool in an advanced level methods class for special 
education teachers at an urban university in Northern California. In California, special education 
teachers are awarded a credential to teach at the K-12 grade level after successfully completing a 
series of graduate level courses. Special education interns work as the teachers of record while 
they attend the university in the evening to complete credential coursework. Most courses center 
around assessment, pedagogy, legalities and literacy with only one course devoted to 
mathematics. Since teacher educators in classes such as advanced methods often teach specific 
strategies, they choose content areas that tend to be more accessible to new teachers, leaving 
mathematics methods to the mathematics professors in the general education department where 
special education teachers take their one math class. Mathematics is an area that is frequently 
overlooked because it is considered difficult and less interesting than other topic areas. It is our 
hope that the Proportional Dynabook will provide a fun and interesting way for teacher 
educators, who are not experts in proportionality, to engage their pre-service teachers more fully 
in the concepts and pedagogy related to teaching proportional reasoning to diverse learners. 

Thirteen pre-service and intern special education teacher candidates participated in two 
classes dedicated to interacting with the ratio section of Proportional Dynabook. Participants had 
varying levels of mathematics proficiency and teaching experience. During the first session, we 
introduced Dynabook with a scavenger hunt activity through various sections of Ratio (i.e., 
Introduction, UDL, Challenging Problems, and Video Cases). In addition, our teacher candidates 
watched two instructional videos related to the shifts in proportional reasoning outlined by 
Lobato, Ellis, Charles and Zbiek (2010). 

During the first observation of the Dynabook training and proportionality development 
session, all the researcher observers agreed that the teachers seemed a bit overwhelmed by all the 
new material and technology. In addition to learning a new technological tool, and a new 
mathematics framework (Lobato et al., 2010), they were also ask to think about middle school 
ratio problems that they found difficult to solve.  Many might call these problems simple, but the 
students still had difficulty thinking through these problems and coming up with answers and 
novel ways to approach the problems. During a researcher debriefing after the first session, we 
realized that the teacher candidates were uncertain about their role in relation to the Dynabook. 
Questions like, “Who is this for?,” and “Would I use this with my students?” made us realize that 
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we did not provide enough background information about the development and purpose of 
Dynabook. In addition, we had not provided a rational for these teachers to truly engage with 
Dynabook in the way that we had hoped they would. It is our contention that if a special 
education teacher candidate does not have a reason to engage with challenging mathematics 
content, he or she will not and instead attend to the many other responsibilities required by a job 
or classwork. For the second session, we designed a specific curricular activity that would 
provide purpose and rationale for our teacher candidates to engage with Proportional Dynabook. 

In the beginning of the second three-hour class session, the teacher candidates finished trying 
to solve the ratio problems from last session and post answers to the communal whiteboard in 
Dynabook. While one of the researchers used the large screen computer in the lab, each teacher 
candidate followed along in their own Dynabook on individual screens. The anonymous postings 
on the whiteboard initiated a lively discussion of ratio concepts and common misconceptions 
shared by several of the teacher candidates in the class. We described the rationale and purpose 
of this session by setting up a scenario where they were going to have to teach ratio to middle 
school students starting tomorrow. Specifically, they were going to prepare to address the 
learning needs of a student struggling with the concept of ratio as depicted in one of the videos in 
Dynabook. Each pair viewed the video of Kayla, and began to discuss her misunderstandings 
along with their own confusions and partial understanding of ratio. As we observed, pairs moved 
in and out of the different sections of Dynabook utilizing various features to improve their own 
understanding so that they could develop a script to address Kayla’s level of understanding. Each 
pair remained engaged in discussion until the end of class.  

In the video, Kayla, a middle school student, attempts to solve a ratio problem by incorrectly 
utilizing a procedural algorithm. Despite her answer not making sense, Kayla defends her use of 
the algorithm, representing a fairly typical procedural approach to proportionality in the absence 
of understanding. After carefully watching the video, the teacher candidates worked in pairs to 
create a lesson that addresses Kayla’s conceptual misunderstandings. Each pair created a script 
for the lesson and used that script to create a movie of the lesson using Xtranormal, a free, web-
based software for creating animated movies. We explained that by creating a script and movie, 
each pair must think about what words and language they will use to explain ratio. Then, by 
watching the movies, we have a way to share and discuss changes in the candidates’ thinking 
about ratio and the pedagogy they used. As the groups were working on the movie, we told them 
they were free to take a break, but most groups did not stop. By the end of class, we observed 
that not only were the teacher candidates able to talk more precisely about ratio, they were also 
able to talk about how to assess student understanding of ratio. They discussed how to define 
what level of thinking the student is operating at according to the Lobato et al. framework and 
ways to get them to the next level. This is the type of engagement we had hoped to initiate with 
the introduction of Dynabook. 

One of the researcher observers commented “that we have a way to really engage pre-service 
students in UDL and TPCK -- it was completely evident to me that the candidates were really in 
that space with their thinking throughout the evening. We need to remember to describe both the 
tool --- the Dynabook -- and the curricular activity system in which it exists. Both are necessary 
to achieve the reasoning we saw ….  It is not our story that the Dynabook causes great pre-
service classroom experiences’ -- instead that the Dynabook is an enabler for a curricular activity 
system that increases candidate's social and cognitive engagement in these important issues. The 
Curricular Activity System language may be unfamiliar. We should capture both the tool's 
contribution and the activity design contribution -- that's the heart of it.”  
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As we continue to develop and test the Proportional Dynabook, we hope to share our ideas 
and collect feedback from those interested in improving how we prepare teachers to think about 
and teach mathematics. Our next steps include formal testing and data collection to more 
thoroughly examine how the Proportional Dynabook can expand meaningful engagement and 
develop teachers’ and students’ sense of connections across the middle school mathematics 
curriculum.  

References 
Friesen, S. (2008). Raising the floor and lifting the ceiling: Math for all. Education Canada, 

48(5), 50-54. 
Kay, A. & Goldberg, A. (1977). Personal dynamic media. Computer, 10(3), 31-41. 
Mishra, P. & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A 

framework for teacher knowledge. Teachers College Record, 108, 1017-1054. 
Lobato, J., Ellis, A. B., Charles, R. and Zbiek, R. (2010). Developing essential understanding of 

ratios, proportions and proportional reasoning, Grades 6-8. Reston, VA: National Council 
of Teachers of Mathematics, Inc. 

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas. NY: Basic Books. 
Rose, D. H., & Meyer, A. (2006). A practical reader in universal design for learning. 

Cambridge, MA: Harvard Education Press. 
Rose, D., Meyer, A., & Hitchcock, C. (Eds.) (2005). The universally designed classroom: 

Accessible curriculum and digital technologies. Cambridge, MA: Harvard Education Press. 
Schulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard 

Educational Review, 57(1), 1-22. 
Shreyar, S., Zolkower, B., & Perez, S. (2010). Thinking aloud together: A teacher’s semiotic 

mediation of a whole-class conversation about percents. Educational Studies in Mathematics, 
73, 21–53. doi:10.1007/s10649-009-9203-3 

Silverman, J. & Clay, E. (2010). Online asynchronous collaboration in mathematics teacher 
education and the development of mathematical knowledge for teaching. The Teacher 
Educator, 45, 54-73. 

Van Garderen, D., Scheuermann, A., Jackson, C., &Hampton, D. (2009). Supporting the 
collaboration of special educators and general educators to teach students who struggle with 
mathematics: An overview of the research. Psychology in the Schools, 46(1), 56-77. doi: 
10.1002/pits.20354 

 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1373
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t.g.edwards@wayne.edu     aokoca@wayne.edu 

The literature shows that beliefs and views of teachers have an important influence on their 
instructional decisions. Many pre-service teachers seem to hold negative views about the 
potential of graphing calculators as tools for concept development. In this research, we studied a 
section of mathematics teacher education students as they encountered activities we designed for 
use with TI-Nspire. This paper reports the extent to which portions of three 2 hour, 45minute 
class sessions were effective in pointing pre-service teachers toward more positive and 
cognitively richer views of calculators in mathematics instruction. 

The use of graphing calculators in school mathematics classrooms is now in its third decade.  
Despite this fact, mathematics teacher educators continue to encounter numbers of pre- and in-
service teachers who either eschew the use of calculators during instruction or voice support for 
their use, but “… only after students master things by hand.”  Among many pre-service teachers, 
there does not seem to be much awareness of the potential of graphing calculators as tools for 
concept development. Therefore, the goal of this study was to learn whether exposure to 
graphing calculator-based activities could foster pre-service teachers’ awareness of and 
beliefs/views about the potential of graphing calculators as tools for concept development. 

Conceptual Frameworks 
We employed two conceptual frameworks to guide our study.  The first is based on a broad 

model of the process of teacher change.  The second deals with the roles that teachers ascribe to 
calculators. 

A Model of Teacher Change  
In order to better understand the process of teacher change, we used the model developed by 

Edwards (1996).  This model was based on a constructivist perspective on learning.  If one views 
the active construction of knowledge as a cycle involving interaction with something new, some 
sort of perturbation resulting from the interaction, reflection, and change (von Glasersfeld, 1983; 
Cobb, 1988, 1989, 1994; Confrey, 1991), it is a natural step to view the process of teacher 
change as an instance of such active, constructive learning. However, as shown in Figure 1,  

 
Figure 1: Edwards’s Cyclic Model of Teacher Change 
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Edwards’s cyclic model is a three-cycle, rather than a four-cycle, as others have proposed (see 
for example Underhill, 1991).  As a three-cycle, interaction, perturbation, and change are the 
three points of the cycle, and reflection forms the connections between those points. 

The Roles of Calculators 
The second conceptual framework of this study centers on the classification of Doerr and 

Zangor (2000) for the roles of graphing calculators in the construction of mathematical meaning. 
Following 21 weeks of classroom-based observations, they were able to classify the patterns and 
modes of using graphing calculators in two pre-calculus classrooms. The modes of using 
graphing calculators were as a:  

 computational tool to evaluate numerical and perhaps even algebraic expressions,  
 transformational tool “whereby tedious computational tasks were transformed into 

interpretative tasks” (pp. 152-153),  
 data collection and analysis tool when using Calculator Based Laboratory devices 

such as motion detectors or temperature probes,  
 visualizing tool “to develop visual parameter matching strategies to find equations 

that fit data sets, to find appropriate views of the graph and determine the nature of 
the underlying structure of the function, to link the visual representation to the 
physical phenomena, and to solve equations” (pp. 154-155), and  

 checking tool “to check conjectures made by students as they engaged with the 
problem investigations” (p. 156).   

Since Doerr and Zangor explained that their checking mode emerged when students check 
their conjectures, we renamed this role as exploratory tool. Doerr and Zangor also concluded that 
the “nature of the mathematical tasks and the role, knowledge and beliefs of the teacher 
influenced the emergence of such rich usage of the graphing calculator” (p. 143). As Doerr and 
Zangor highlighted that teachers’ beliefs are as important as their knowledge, the activity 
sequence in this study was aimed to bring presevice teachers face to face with their own beliefs 
through reflective activities.  

Method 
Twenty-four elementary education students who were seeking a mathematics endorsement 

for grades 7 and 8 took part in the study.  All of the participants were students in an algebra 
course for middle school teachers. They were a mix of undergraduate and graduate students. 
Most were pre-service teachers, but a few were in-service teachers. The class met weekly for 2 
hours, 45 minutes. The study took place over three consecutive weeks. 

In the first two weeks, we engaged the participants in two TI-Nspire based lessons, one 
dealing with linear regression (Özgün-Koca & Edwards, 2010), and the other dealing with 
quadratic functions (Edwards & Özgün-Koca, 2009; Özgün-Koca & Edwards, 2008).   In the 
third week, participants viewed video of 7th and 8th grade students completing the same TI-
Nspire activities. 

Our sources of data were four reflective writings that asked participants to respond to open-
ended questions about the use of calculators to support mathematics teaching and learning.  
Reflection 1 was a pre-survey in which they discussed their views of the use of calculators in 
teaching and learning mathematics. The first reflective writing was completed one week prior to 
the first TI-Nspire lesson.  Reflections 2 and 3 were completed immediately following each of 
the TI-Nspire lessons.  They consisted of writing prompts aligned with the Technological 
Pedagogical and Content Knowledge (TPACK) model (Niess et al., 2009).  Reflection 4 was a 
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post-survey aimed at eliciting their beliefs about the use of calculators in mathematics teaching 
after their experiences in these three weeks. It was completed immediately after the participants 
viewed the classroom videos.  

The raw data were transcribed as Word files and analyzed using Weft QDA software.  This 
facilitated keyword searches and allowed us to analyze participants’ reflective writings at the 
level of individual phrases or sentences. Data and investigator triangulation were used to ensure 
the trustworthiness of this study. 

Results 
Intentions to Use Calculators 

In both the first and fourth reflective writings, we asked participants directly to discuss their 
intention to use calculators in their future teaching, or not.  Fifteen of the 17 participants in the 
first reflective writing and all twenty of those who participated in the fourth reflective writing 
said yes to using calculators.  Because there was not much difference in the proportion of 
participants who said yes to using calculators in these two reflective writings, we decided to look 
at the ways of using calculators that they mentioned in those writings.   

We deemed using the calculator solely to check answers computed by hand or solely as a fast 
and accurate computational tool to be trivial uses of calculators.  Two examples of participants’ 
earlier writing about how they would use calculators in their future teaching that we considered 
trivial uses follow: 

I would use calculators to engage students in learning to check their answers. 
I would … show them things such as square roots and other operations that can’t be 
computed by hand. 
We then looked at the proportion of participants who mentioned any non-trivial use of the 

calculator in the first and fourth reflective writings.  Only 7 of the 15 participants (47%) who 
said yes to using calculators in the first reflective writing mentioned a non-trivial use.  However, 
in the fourth reflective writing, 17 of the 20 (85%) participants who said yes to using calculators 
mentioned a non-trivial use. Two examples of what we considered to be non-trivial uses of 
calculators mentioned in the fourth reflective writings can be seen in the following quotes: 

Having a calculator to generate graphs that are easy to manipulate gives students the 
opportunity to recognize patterns both quickly (in terms of generating graphs) and 
independently. 
I think the Ti-NSpire helps the kids visualize what they are doing, and this helps them 
understand better what is going on. 

A Chi-square test revealed this difference to be statistically significant (p<0.015). 

Roles of Calculators 
Throughout the four reflective writings, participants mentioned various roles that they saw 

for calculators in the mathematics classroom.  We decided to compare the roles mentioned in the 
first two reflective writings with those mentioned in the last two, because at the time of the first 
two reflective writings they had minimal exposure to TI-Nspire, while at the time of the last two 
they had experienced both TI-Nspire lessons. These comparisons were across two different 
reflective writings.  Therefore, sometimes the number of times a role was mentioned is greater 
than 24, because one or more of the participants mentioned the role in both writings. We will 
focus on four of the calculator roles that emerged from their reflective writings, because these 
four exhibited a dramatic shift in focus. 

In the first two reflective writings, participants mentioned calculators as a checking tool 10 
times and as a computational tool 11 times.  In the last two writings, there were only 2 mentions 
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of the calculator as a checking tool and 3 as a computational tool.  In contrast, during the first 
two reflective writings, the calculator as an exploratory tool was mentioned only twice, and the 
calculator as a visualization tool was mentioned 9 times.  However by the time of the last two 
writings, the number of mentions of the calculator as an exploratory tool had risen to 18, and 
those of the calculator as a visualization tool had increased to 27.  We believe this conceptual 
shift away from the more trivial roles of the calculator as a checking or computational tool 
toward more substantial roles as an exploratory or visualization tool is of practical significance, 
particularly in light of the relatively short duration of the participants’ TI-Nspire experiences 
during the study. 

How and When to Use Calculators 
When we look at the things that participants wrote about how or when to use calculators, a 

sense of their Technological Pedagogical Knowledge development emerges.  We again 
compared four types of responses, after mastering skills, not for basic facts or abuse, not for 
developing concepts, and to develop concepts, across the first two and last two reflective 
writings.  In each case, there was very little difference in the number of responses when the first 
two writings were compared to the last two.  In a number of instances, there was also not much 
difference in the things that they wrote.  For example, on the first reflective writing, a participant 
wrote: 

I think calculators are a great teaching tool as long as students understand the concept 
(know how to solve the problems first). 

Similarly, on the fourth reflective writing, a participant wrote that (s)he would: 
not offer the students the opportunity to work with the calculators until I am confident that 
they understand the concept we are working with. 
We think these results show, not surprisingly, that dislodging beliefs about how and when to 

use calculators, or even if they ought to be used, will take more than the brief interaction that we 
provided our participants. 

Issues Related to Student’s Learning 
Three issues related to student learning appeared across the four reflective writings.  Some 

participants mentioned their belief that calculators are helpful for learning or understanding and 
are fun or motivating for students.  However, some in their writing also revealed a fear of 
students becoming calculator dependent. 

In the first two reflective writings, participants said that calculators are helpful for learning or 
understanding 11 times.  By the last two writings, that number had grown to 22.  Similarly, in the 
first two reflective writings, the fun or motivational aspects of using calculators were mentioned 
3 times, but by the last two writings that number had increased to 9.  While the numbers are 
small in both cases, there was also an increase in the number of times that a fear of calculator 
dependence was mentioned from 3 in the first two writings to 5 in the last two. 

We interpret the first two increases as indicators of some developmental changes in 
participant’s TPACK levels.  As to the third increase, fear of calculator dependence may well be 
yet another pernicious belief that can only be altered via more time and experience with 
appropriate classroom uses of calculators. 

Technological Knowledge and Confidence 
Sixty-nine percent of the participants in this study stated that they were confident using 

technology in the mathematics classroom. The technology was not limited to TI-Nspire. Some 
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participants stated that they would use TI-89, computers, or Smartboards.  
I feel confident with technology in the classroom. I love computer & calculators. I found the 
TI-Nspire a little more difficult than calculators or computers. 

Even though some mentioned that TI-Nspire was confusing, as this pre-service teacher did, this 
could be overcome by time and experience. Another participant mentioned that  

I am not too confident at using technology in the classroom, but I intend to use it despite this. 
Once I gain experience and practice, especially with teacher specific technology, I’m sure 
my confidence will improve. 

Here we see the importance of the combination of technological knowledge with disposition. 
When technological knowledge or confidence are non-existent, believing in the value of using 
technology or believing in or knowing the positive influence on the teaching and learning 
environment acts as the driving force to increase ones technological knowledge and confidence. 
In this case, technological pedagogical knowledge initiates the desire for an increased 
technological knowledge.  

These pre-service teachers are still transitioning from being a student in a mathematics class 
to being a teacher. When they were talking about technological knowledge, some parts of their 
reflections focused on their technological knowledge as students. Perhaps that is why nine 
reflections mentioned the rationale for using technology was to serve a technology-driven 
student population.  

With younger, technology driven students involving accurate use of calculators, and 
graphing calculators in older grades, will become more & more essential to solid 
understanding of mathematical concepts. 

However, 16 reflections stated that their future students would need to know how to use 
technology for their own good and for their future mathematics classes.  

I think it will be good for younger students to get some hands-on experience with the 
technology they will be using later in school as they get older. 

Technological Capabilities of TI-Nspire 
When we coded participants’ reflective writings that followed their exposure to activities 

with the TI-Nspire, two codes emerged which referenced two capabilities of the TI-Nspire—
linked representations and dynamic features. Twenty-three reflections in the third and fourth 
writings mentioned the importance of linked representations. They discussed that TI-Nspires 
became a better visualization and exploratory tool with the help of the linked representations. 

Seeing is believing, being able to see the change in the graph as it correlates with points 
indicated. 
We mainly used the calculator to plug in equations & move them around to create answers to 
equations about the technology and how it can be used to explore answers about graphing. It 
was a great visual to see how things happen on the axis when a parabola was moved. 

The participants liked the dynamic feature of the TI-Nspire and commented on its effects on the 
teaching and learning environment. 

Having a calculator to generate graphs and that are easy to manipulate gives students the 
opportunity to recognize patterns both quickly (in terms of generating graphs) and 
independently.  
They can easily manipulate graphs and have a quicker time to understand how graphs can 
change with little work involved. 

When empowered with linked representations, many participants opined that the dynamic feature 
created a teaching and learning environment for understanding. 
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I really like how the calculator can show how graphs shift. Also, how it changes the equation 
as you shift the graph. This lets kids see how it changes the equation. When the graph moves, 
I feel that this will help kids understand graphs and how they shift much better. It will no 
longer require kids to memorize all this info. With activities like this, they will learn it 
without even knowing it. 
The fact that participants were not able to mention these features in the first two reflective 

writings is not surprising.  They had little or no experience with linked representations or 
dynamic features on a graphing calculator at that point. However, statements such as the one 
above seize our attention, because they clearly highlight the importance of technological 
knowledge for mathematics education in the 21st Century.  

 
Discussion 

Reflections on the Teacher Change Model 
We believe that the teacher change model presented earlier is a good fit for some of the 

phenomena we observed in this study. We designed the study so as to provide participants with a 
number of interactions.  They interacted with TI-Nspire activities, they interacted with the 
reflective writing prompts, they interacted with the instructor, and they interacted with each 
other.   

It was our hope that, through reflecting on these interactions, participants would encounter 
something to perturb their thinking, and such perturbation was evident in some of their reflective 
writings.  Moreover, we provided participants with reflective writing prompts that we hoped 
would resonate with what was perturbing them. Then, we hoped to see evidence of a conceptual 
shift in their consideration of the potential of graphing calculators as tools for concept 
development. Again, we saw evidence of such change in participants’ reflective writings. For 
example, one participant directly described just such a cycle when (s)he wrote: 

I am very for using calculators when teaching math, because it will generate more 
constructivist based conceptual learning.  Initially, I had thought calculators would be 
misused, because students would stop thinking when using calculators. After being able to 
use TI-Nspire myself with student activities, I realized how wrong I was. … Calculators are 
ultimately changing math learning for the better, following the trend of more conceptually, 
constructivist, activity-based teaching as opposed to lecture style, direct teaching. 

We think this example suggests the power of the approach we used.  If we were able to provoke 
such a shift in one participant’s thinking based only upon such a short exposure to TI-Nspire and 
a few reflective writings, the potential of a broader-based longer-term exposure to the 
appropriate, effective use of graphing calculators, as well as other technological tools, seems 
clear. 
Reflections on the Roles of Calculators Framework 

Seeing the departure from the trivial uses of calculators towards the nontrivial uses of 
graphing calculators was encouraging. This could be related to the participants’ experiences as 
students learning or doing mathematics with calculators. If their prior experiences were limited 
to what we called trivial uses, it would be expected that they only mention such uses when asked 
to think about the use of technology in the mathematics classroom. This result highlights the 
significance of the combination of technological knowledge with technological pedagogical 
knowledge. If a teacher knows the ins and outs of technology; that is, (s)he has well-rounded 
technological knowledge, this would not be enough to plan or implement an effective 
mathematics lesson using technology. The teacher needs to have the complete technological, 
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pedagogical, and content knowledge in order to deliver a lesson that makes effective and 
appropriate use of technology. In teacher education programs, we can help our pre-service and 
also in-service teachers first face their beliefs, views, and knowledge, and then we can guide 
them to extend their knowledge toward a more complete TPACK.  

When we reflect back to the roles of graphing calculators conceptual framework by Doerr 
and Zangor (2000), we see that the framework was very efficient in the analysis of our data. 
Other than the role as a data collection and analysis tool, we saw all the roles described by Doerr 
and Zangor emerge in the reflective writings of our participant teachers. This result again 
highlights the importance of the past experiences with graphing calculators (or lack of, in this 
case) of the participants. Moreover, when coding our data, we saw graphing calculators as a 
transformational tool also come up when participants described uses of the graphing calculator as 
a visualization or computational tool. Therefore, we decided to restrict our coding to clear-cut 
functional roles of the calculators in this study. Furthermore, some of the writings of the 
participants indicated that they were assigning different roles to the calculators that we could not 
categorize with our existing codes. For instance, one pre-service teacher wrote that  

I am currently teaching and use calculators to show relationships between different problems 
and in multistep problems where I am trying to see if my student knows what steps need to be 
taken in order to solve a problem instead of focusing on their computational skills. 

Clearly, this could be coded as a transformational tool, but then we would lose the problem 
solving aspect. Another participant stated that “I think it is a good way to scaffold students to 
learn what used to be concepts that were out of their reach cognitively.” Other keywords that 
they used that we could not code within our existing framework were graphing calculators to 
reinforce skills or concepts, as a supplement, as an aid, and as a resource.  

At this point we believe that an extension of our conceptual framework is necessary. In 
addition to the clear-cut functional roles of graphing calculators as computational tools, checking 
tools, exploratory tools, and visualization tools, we can add another layer of pedagogical roles, as 

 
Figure 2. Revised Framework for the Roles of Calculators 

in the NCTM (2000) process standards. One of the process standards suggests “reasoning tool” 
as a role, but we see some overlap between the exploratory tool role and a reasoning tool role.  
Therefore, we will add using graphing calculators as reasoning/exploratory tools, 
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transformational tools, problem solving tools, scaffolding tools, and communication tools to the 
framework, as depicted in Figure 2. Still we expect that some of boundaries among these roles 
will be ambiguous at first.  

In time, we, as teacher educators, and hopefully also the pre-service and in-service teachers 
we work with, will focus not only on what graphing calculators can do with their technological 
capabilities, thus highlighting the functional roles, but also how they can affect and enrich the 
teaching and learning environment, thus highlighting the pedagogical roles.  Then all of our pre-
service and in-service teachers might realize, as one of our participants did, that “engaging the 
students with technology will also be essential to effective teaching in the future.” 
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This is a case study on the development of Mathematical Knowledge for Teaching (MKT) (Ball, 
Thames, & Phelps, 2008) among three pre-service teachers who are English language learners 
(ELLs).  We investigate the potential of thinking and learning reflection logs (TLR) to promote 
the development of MKT.  Participants were enrolled in a required course for teachers seeking 
middle grades certification.  Data were gathered from informal interviews and participant-
observation in addition to logs.  Analysis focused on demonstrated use of MKT.  Findings 
suggest that writing TLRs is beneficial for ELLs’s development of MKT, among other reasons, 
because it necessitates the use of multisemiosis and it allows time to communicate 
understanding. 

The assessment of mathematical knowledge among English Language Learners (ELLs) has 
become an important priority for mathematics educators concerned with equitable access for all 
students.  The research literature has pointed out how language may impact equitable access.  
For instance, Abedi & Lord (1998) show that students’ language background impacts 
performance on word problems in standardized tests.  “English language learners scored 
significantly lower than proficient speakers of English” (p.  231). 

However, alternative assessment, such as student logs in which students write out their 
thinking and propose solutions to mathematics problems, may pose challenges for ELLs as well.  
A study by Brown (2005) indicates that alternative assessments such as student logs demand 
high literacy skills, which might especially impact ELLs of beginning proficiency. 

We argue that writing TLR logs potentially promotes pre-service ELL teachers development 
of MKT discourse.  In this study, we focus on the challenges and opportunities that writing logs 
posed for pre-service ELL teachers at a university near the US/ Mexico border.  Many pre-
service ELL teachers at this particular institution have developed much linguistic and 
mathematical knowledge in Spanish (Lesser & Winsor, 2009) but are being trained in courses in 
English.  We present the experiences of three pre-service teachers who are seeking to become 
certified to teach in the middle grades.  Enrolled in a course on conceptual algebra, participants 
were required to write Thinking and Learning (TLR) logs.   

Current approaches to teacher education outline Mathematical Knowledge for Teaching 
(MKT) that mathematics educators should have (Ball et al., 2008).  Researchers are beginning to 
ask how this knowledge base can be built in teacher education programs (McLeman & Cavell, 
2009).  In this paper, we aim to understand how pre-service teachers’ writing TLR logs 
contributes to their development of MKT. 

Theoretical Framework 
The discourse of mathematics is challenging—even for fluent English users.  Mathematics 

discourse practices are characterized by argumentative modes including precision, brevity, and 
logical coherence as well as cognitive and linguistic abilities such as “abstracting, generalizing, 
searching for certainty, and being precise, explicit, brief, and logical” (Moschkovich, 2007, p. 
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10).  According to linguist Kay O’Halloran (2005), mathematics discourse is characterized by 
the use of multiple semiotic resources for constructing mathematical meanings.  Mathematical 
meanings are constructed three semiotic resources: symbolic representation, visual 
representation, and language.   

In this work, we draw on the framework on Domains of Mathematical Knowledge for 
Teaching (Ball et al., 2008) to describe the mathematical knowledge that pre-service teachers 
must master.  The following is compilation of definitions for categories discussed by Ball.  
Subject Matter Knowledge includes (1) Common Content Knowledge (CCK), which is non-
specific knowledge of mathematics (and skills) that is common for many different areas where 
mathematics applications are successfully used; (2) Horizon Content Knowledge (HCK), which 
is knowledge of the "big picture" and awareness of interconnectedness of all mathematical 
topics; and, (3) Specialized Content Knowledge (SCK), which is mathematical knowledge 
unique to teaching.  Pedagogical Content Knowledge (PCK) includes (1) Knowledge of Content 
and Students (KCS), which is mathematical knowledge connected to the knowledge of students' 
thinking (conceptions and misconceptions, motivation); (2) Knowledge of Content and Teaching 
(KCT), which is mathematical knowledge connected to teaching, including knowledge of design 
and instruction, creating sequence of relevant and adequate, challenging tasks, making decisions 
about selection of manipulatives and resources for the task; (3) Knowledge of Content and 
Curriculum. 
 In our approach, we used the MKT framework as an analytical tool to understand the 
development of mathematical knowledge for teaching.  A mathematician compresses and 
"packs" the knowledge and data (e.g., one short formula may represent huge amount of data that 
is literally "packed" in this formula) (Ball et al., 2008; Ball & Bass, 2000).  SCK knowledge 
indicates specific "unpacking" of mathematical content knowledge in such a way that it is 
specifically suitable for teaching mathematics.  Writing in TLR logs is an opportunity to develop 
mathematical discourse for teaching.  With proper guidance and appropriate prompts, pre-service 
teachers could "unpack" mathematical content knowledge specifically for teaching mathematics.  
We present the experiences of pre-service ELL teachers writing TLR logs, and their development 
of MKT as evidenced in the logs. 

Methodology 
For the present study, we drew on data gathered from a larger qualitative study on pre-service 

ELL teachers’ development of mathematical discourse1.  The larger qualitative study draws on 
qualitative research data collection strategies, including participant-observation, informal 
interviews and analysis of student writing.  Participant-observation was carried out over the span 
of one semester in a section of a course on conceptual algebra; the first author attended 70% of 
class meetings.  According to course materials, the course is an inquiry-based course covering 
mathematics concepts including fractions, ratio, proportion, functions, algebra and geometry 
with an emphasis on reasoning and mathematical thinking.  Some of the habits which the course 
aims to develop in students are a) attention to the meaning of symbols and numbers, b) analysis 
of problem situations, and c) hypothesizing and justifying mathematics solutions.  The course 
was organized so that students would become socialized to the discourse of mathematics.  One of 
the main goals of the course is for students to develop mathematics concepts to such an extent 
that it is possible for them to converse about it.  Problem-based activities that require 
mathematical solutions were the core of discussions.  Students' mathematical reasoning and 
mathematical communication are promoted through problems requiring small group discussion, 
whole class discussion, and writing in TLR logs.   
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Participants 
 Three students were invited to participate in the research based on the observed use of 
Spanish in the classroom.  All three received formal education in Mexico, and for all three 
writing TLR logs was a completely new endeavor.  All three reported having taken ESL courses 
in high school or college.  The pseudonyms used to identify them are Betty, (a Mathematics and 
Science major), Yolanda (a Special Education major) and Laura (a Bilingual Education major).  
 
Data Collection  

For the present study we used data from TLR logs to assess MKT.  Students were assigned 
semiweekly TLR logs.  The TLR logs were designed to allow pre-service teachers to extend their 
thinking beyond what was covered in class and for students to offer new insights about 
mathematical concepts.  TLR assignment required students to use multiple meaning-making 
resources (symbolic representation, visual representation and language), which is an opportunity 
to write mathematical discourse.   
 The unit of analysis is the TLR logs, a weekly writing assignment in which students had the 
opportunity to use the discourse of mathematics for teaching.  Each weekly log is analyzed for 
the demonstrated use of MKT (Ball et al, 2008).   
Data Selection 
 Data were selected based on topic and comparability across student writers.  Data were 
selected from the first six weeks of the course in which the topic of fractions, a key concept for 
these pre-service teachers, was covered.  Moreover, data were selected from assignments that 
could be compared.  Not all students completed every log assigned.   We selected logs for week 
2 (log 1), week 4 (logs 1 and 2), week 5 (log 2) and week 6 (log 1). 
 
Data Analysis 
 Data analysis took place in two phases.  In the first phase, four raters independently rated 
each selected log.  Raters are all Spanish/ English bilingual doctoral students with an expertise in 
mathematics education.  For each log, raters examined each of the following MKT domains 
CCK, SCK, and PCK.  Each domain was rated based on the demonstrated knowledge of the 
three domains.  Raters, who were instructed to not discuss their ratings among each other, used 
the rating scale in the figure below.  Individual ratings were averaged and standard deviations 
were calculated.  
 
Rate on a scale of 1 to 5 
1= little or no evidence that student has/ is using this knowledge 
2= some evidence that student has/ is using this knowledge 
3= evidence that student has/ is using this knowledge, with room for improvement 
4= significant evidence that the student has/ is using this knowledge 
5= abundant evidence that student has/ is using this knowledge 
 A second phase was designed, after standard deviation was consulted.  In this phase, which is 
ongoing, raters selected one log to discuss the features of the log that each rater was observing to 
determine writer’s demonstrated knowledge of CCK, SCK and PCK.  In this phase, raters reach a 
consensus on the aspects that demonstrate knowledge of each domain2. 
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Findings 
Regarding different Domains of Mathematical Knowledge for Teaching Fractions we 

specifically focus on how these pre-service teachers understood different representations of 
fractions, and how different models were used to represent a multifaceted concept of fraction.  

Overall, Betty (the Mathematics and Science major) performs differently on log writing 
compared to Laura and Yolanda (the Bilingual Education and Special Education majors, 
respectively) do.  Betty’s efforts in writing TLR logs are usually low, while Laura and Yolanda 
are consistently high.  Ratings for each student’s performance in five focus logs; ratings are 
reported for each domain evaluated.  The table in Appendix A compiles all the ratings, including 
average ratings.  Next, we use average ratings to report each participants’ demonstrated 
knowledge in each domain. 
 We assumed that Betty (Math and Science major) would receive the highest average in CCK 
and Laura (who reported a lack of confidence in both mathematics and English) to get the lowest 
CCK average.  However, the results surprised us.  Betty appeared with the lowest average in 
every log but one, while Yolanda showed the highest average in every log but one, as we can see 
in Chart 1.  
 

 
Chart 1. CCK average 

 Betty was very low in the first two logs but improved substantially in the following three.  
Moreover, Laura was the one who performed consistently, having almost the same rating in each 
activity log.  Week 4 activity log number two “W4 (L2)” and week 6 activity log number 1 “W6 
(L1)” showed the highest average overall by the three participants.  Qualitatively, Betty copied 
brief definitions from the textbook that week, placing an emphasis on correctness.  However, she 
did not use diagrams to further explain her meanings.  This performance was generally 
characteristic of Betty’s work in TLR logs.  In an informal interview, she noted that she did not 
see the point of writing TLR logs.  She fell behind in submitting her weekly TLR logs, but did 
manage to turn in a semester-end portfolio.   She struggled to write logs in which she "unpacked" 
the mathematical knowledge.  It seems that she found it hard to explain it in such a way that it 
would help children to understand. 
 Next, an analysis of SCK averages shows that Betty demonstrated the lowest evidence level 
on each week.  Betty performed very poorly in the SCK domain. Meanwhile, Yolanda had an 
increasing performance every single week. Laura has almost the same grades in each week but 
week 4 activity log 1 “W4 (L1)”.  Yolanda had the highest average overall. However, the grades 
obtained by every participant were lower than the grades obtained by them in the CCK domain 
and hence, the SCK average was lower than the CCK average.  
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Chart 2. SCK average 

  
 Thirdly, the PCK domain gave the lowest grades overall as we can see in chart 3.  Laura was 
the only one who decreased her performance every week but the second. On the other hand, 
Yolanda was the only one who increased her performance every week except the second one. 
Furthermore, Betty was the one with the lowest grades overall.  Betty had the lowest averages in 
the first two activity logs and then she improved substantially.  
 Yolanda had the highest PCK average overall.  To illustrate the point, taking an example 
from one of Yolanda’s logs, she used her own words to explain two different meanings of 
fractions.  When talking about division, she seemed to be confused about dividend and divisor, 
e.g., “3/6 in part-whole indicates three one-sixths and only need one whole.  When we refer to 
division meaning, we are talking about how many 3s are in 6.  That means that three wholes will 
be divided into six equal parts.”  She also provided pictorial representations using the area 
model.  The representations seemed to help her understand the correct meaning of fraction as a 
division.  She also discussed difference between continuous and discrete models.  After that, she 
discussed whole numbers and fractions as part of a whole.  Qualitatively, Yolanda’s attitude 
about writing TLR logs was the most positive of the group.  She regarded as a learning 
experience for both mathematics and English.  She was conscious of the positive impact that 
writing logs had on her learning.  She wrote about the logs that they help “to clear my 
understanding and while I was trying to explain at the same time I discover new concepts and 
ways to explain that will help as a future teacher.”  Furthermore, Yolanda demonstrated progress 
in the development of CCK when she says that she learned a significant amount of mathematical 
content by attempting to explain concepts instead of “rushing into a procedure.”  Revealingly, 
when she was asked if she would ask her future students write logs, she was enthusiastic about 
the benefits of writing them. 
 

 
Chart 3. PCK average 
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  In comparison to Yolanda, Laura said in an interview that her general mathematics 
knowledge was inadequate.  She also noted that her English proficiency was still developing, and 
that she struggled to write the TLR logs.  Laura was notably quiet in class;  she never 
volunteered to present her solutions in front of the rest of the class—the only participant to not 
do so.  Although Laura struggled, she was a very persistent student.  In her semester-ending 
reflection, she wrote that, compared to other courses, in which she “was just memorizing 
formulas and procedures in order to pass the class” the class allowed her to learn the “meaningful 
part of math.” Laura also stressed that she learned to understand many mathematical topics 
during the course.  Laura is an example of a student for whom writing TLR logs may have been 
very fruitful.  Writing them actually helped her to understand mathematics better.  
 Finally, in order to measure the reliability of the ratings, we calculated standard deviation.  
The four raters had the activity logs separately without discussing it among each other.  Chart 4 
shows the standard deviations resulting from the rating of each domain (CCK, SCK and PCK) in 
every weekly log by the four evaluators.  The lowest standard deviation (0.66) obtained by the 
researchers corresponded to the week 2 activity log number 1 “W2 (L1)” in the SCK domain.  
Unfortunately, only three standard deviations showed in the chart were below 1.00.  
Additionally, CCK appears as the domain with the lowest standard deviation in every single 
activity log but the first one.  PCK had the highest standard deviation average overall.  
Moreover, the average of the standard deviations of the three domains in all activity logs was 
1.2. 
 

 
Chart 4. Standard deviations 

 
Discussion 

 From the standard deviation data, we can conclude that it was necessary for raters to discuss 
and arrive at a consensus about what constitutes CCK, SCK and PCK.  The process will make it 
possible to rate the rest of the log data.  We have begun a second phase of research in which 
raters discuss their individual ratings with other raters.  Raters pay attention to clarity and 
precision in symbolic representation, the use of examples, the use of visuals and a step by step 
presentation of a solution.  
 Still, we are able to comment on what our analysis so far can mean for training pre-service 
ELL teachers.  Often this group may place an emphasis on teaching rules (procedural 
understanding) vs. teaching concepts.  This aspect became relevant in the writing log where pre-
service teachers discussed algorithms for operations on fractions.  Still, we found that 
participants do develop MKT, but their learning trajectory is different. 
 On the one hand, writing TLR logs throughout the semester may allow students like Yolanda 
the experience and courage to develop mathematics discourse for teaching, particularly SCK and 
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PCK, which is very important for future teachers (Ball et al., 2008).  Laura and Yolanda 
demonstrated consistently submissions medium to high levels of SCK and PCK.  Their effort and 
level of detail were notable.  However, sometimes their levels of CCK lead to some mistakes 
(e.g., omitted parentheses) that in turn lead to incorrect explanations.  Writing TLR logs was 
especially beneficial for Yolanda.  By the end of the semester, she was confident enough to go to 
the front of the class to propose a solution to a mathematics problem in English.  While Laura’s 
confidence never reached that point, in her reflection she notes that she learned from writing 
TLR logs. 
 On the other hand, the case of Betty is an interesting example because as a Mathematics and 
Science major she was expected to have high levels of CCK.  Also, she was proficient enough in 
the second language to make verbal explanations in English in front of the class.  However, her 
attitude about writing TLR logs was mostly negative.  She regarded it as an unnecessary task in 
mathematics class.  In her logs, she shows a preference for very concise, short descriptions.  She 
prefers definitions from the book because they correctly represent the answers to the questions 
and, in her understanding are clearly explaining the meaning of the concepts.  As she indicated in 
oral discussion, she doesn’t understand the need for additional explanations or drawings.  Thus, 
she submitted short logs, textbook definitions or paraphrased writing.  She usually uses only 
traditional algorithms.  She seemed to believe that no detailed explanations are necessary for 
these elementary concepts, and that everything is self-explanatory.   When faced with some 
inconsistent example, she merely demonstrated that the result obtained was incorrect.  Betty, as 
compared to Laura and Yolanda, may seem to receive no significant benefits from writing TRL 
logs.  Moreover, it is evident that her SCK and PCK development is delayed because it is 
consistently evaluated at a low level.  For students like Betty, it is important to make explicit the 
importance of unpacking mathematics for the purpose of teaching for her to develop SCK and 
PCK. 
 All mathematics students must become socialized in these mathematical discourse practices 
(Moschkovich, 2002; Gee, 1996; New London Group, 1996).  We suggest that, to promote 
ELLs’ equitable access to the discourse of mathematics for teaching, mathematics educators 
implement assessment strategies such as TLR logs. Writing logs has the potential to allow ELLs, 
such as the participants in this study, to develop MKT through writing.  Writing mathematics 
discourse in TLR logs allows them time to plan and suit the message to the purpose of 
“unpacking” mathematics for teaching.  Short & Fitzsimmons (2007) note that additional time 
for learning has been shown to benefit ELL students.  Writing logs can be an opportunity to learn 
mathematics discourse, and, with proper guidance, mathematics student can learn to learn 
mathematics discourse.  ELLs may require additional guidance that focuses on language choices 
(Schleppegrell, 2007).   For instance, teachers can offer guidance focusing on 1) presenting a 
mathematical problem to be solved, 2) arranging mathematical symbols in patterned ways so that 
they encode a limited range of meanings, 3) accompanying the symbols with language to clarify 
the symbols using language to explain the problem-solving sequence, and 4) discussing the 
implications of the proposed solution.  Finally, ELL writers can learn how to include visual 
images such as statistical graphs, geometric diagrams and other kinds of drawn or computer-
generated visual displays, which illustrate the relationship in a space-time format (O’Halloran, 
2005).  Bringing attention to the discourse practices of mathematics can help support ELLs’ 
development of mathematics. 
 

Endnotes 
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1. Because pre-service ELL teachers were students in a college teacher preparation course, we 
use the term pre-service ELL teachers and ‘students’ to refer to the same group. 
2. In this article we report on the first phase. 
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Appendix A 
 

Betty  CCK SCK PCK Average  Average Average 
A B C D A B C D A B C D A B C D CCK SCK PCK 

W2 (L1) 3 2 3 5 2 3 3 4 1 2 2 1 2.00 2.33 2.67 3.33 3.25 3.00 1.50 2.58 

W4 (L1) 1 2 2 3 1 2 2 1 1 1 2 1 1.00 1.67 2.00 1.67 2.00 1.50 1.25 1.58 

W4 (L2) 3 3 5 5 1 3 4 4 2 2 5 3 2.00 2.67 4.67 4.00 4.00 3.00 3.00 3.33 

W5 (L2) 3 3 4 5 2 3 3 3 2 4 2 2 2.33 3.33 3.00 3.33 3.75 2.75 2.50 3.00 

W6 (L1) 5 3 3 5 3 4 3 1 2 3 3 1 3.33 3.33 3.00 2.33 4.00 2.75 2.25 3.00 

Average 3.00 2.60 3.40 4.60 1.80 3.00 3.00 2.60 1.60 2.40 2.80 1.60 2.13 2.67 3.07 2.93 3.40 2.60 2.10 2.70 

3.40 2.60 2.10 2.70 2.70 2.70 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 

Laura CCK SCK PCK Average  Average Average 
A B C D A B C D A B C D A B C D CCK SCK PCK 

W2 (L1) 5 5 4 5 4 4 4 4 4 4 4 4 4.33 4.33 4.00 4.33 4.75 4.00 4.00 4.25 

W4 (L1) 5 4 5 5 5 5 5 5 5 4 4 5 5.00 4.33 4.67 5.00 4.75 5.00 4.50 4.75 

W4 (L2) 5 5 3 5 4 4 3 5 4 5 2 4 4.33 4.67 2.67 4.67 4.50 4.00 3.75 4.08 

W5 (L2) 5 4 3 5 5 4 2 5 5 3 3 5 5.00 3.67 2.67 5.00 4.25 4.00 4.00 4.08 

W6 (L1) 5 4 4 5 5 4 4 4 4 3 4 3 4.67 3.67 4.00 4.00 4.50 4.25 3.50 4.08 

Average 5.00 4.40 3.80 5.00 4.60 4.20 3.60 4.60 4.40 3.80 3.40 4.20 4.67 4.13 3.60 4.60 4.55 4.25 3.95 4.25 

4.55 4.25 3.95 4.25 4.25 4.25 

                     

Yolanda  CCK SCK PCK Average  Average Average 
A B C D A B C D A B C D A B C D CCK SCK PCK 

W2 (L1) 5 5 5 5 3 4 4 4 3 5 4 4 3.67 4.67 4.33 4.33 5.00 3.75 4.00 4.25 

W4 (L1) 5 4 5 5 5 4 5 3 4 3 5 3 4.67 3.67 5.00 3.67 4.75 4.25 3.75 4.25 

W4 (L2) 5 4 3 4 5 5 3 4 4 5 3 3 4.67 4.67 3.00 3.67 4.00 4.25 3.75 4.00 

W5 (L2) 5 5 5 5 5 4 4 5 3 5 5 4 4.33 4.67 4.67 4.67 5.00 4.50 4.25 4.58 

W6 (L1) 5 4 5 5 5 4 5 5 5 5 4 5 5.00 4.33 4.67 5.00 4.75 4.75 4.75 4.75 

Average 
5.00 4.40 4.60 4.80 4.60 4.20 4.20 4.20 3.80 4.60 4.20 3.80 4.47 4.40 4.33 4.27 4.70 4.30 4.10 4.37 

4.70 4.30 4.10 4.37 4.37 4.37 
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In this manuscript, we describe an unusual outcome of school-university collaboration use of 
standards-based grading (SBG) to transform the curriculum and assessment in an elementary 
mathematics methods course. This discussion includes a high school teacher’s view of the value 
of SBG, a university professor’s course changes, and students’ response to the changes.  

School-university collaboration has been a frequent area of study in teacher education 
research (e.g., Burton & Greher, 2007; Jeffrey & Polleck, 2010; McLaughlin & Black-Hawkins, 
2007). However, few studies discuss the effect that this type of collaboration can have on the 
work of university faculty. In this paper, we discuss a collaboration of high school and college 
faculty focused on mathematics education that resulted in fundamental changes in an elementary 
preservice teacher (PST) mathematics methods course. The nature of the changes stemmed from 
the use of an assessment approach referred to as standards-based grading (SBG). In addition to 
bringing about change in assessment, the use of SBG had a transformative effect on course 
objectives and curriculum. The purpose of this paper is to demonstrate how the collaboration 
impacted the instructor’s thinking about the course as well as to suggest the value of SBG in 
college-level courses. 

Throughout the time that Janet taught her methods course, she was also a planner and 
facilitator of a professional development project that combined high school and college 
mathematics faculty (Frost, Coomes, & Lindeblad, 2009). During the project, a local large urban 
high school had decided to institute SBG as part of its district’s consideration of future SBG 
adoption. Some of the teachers in the project and their colleagues were early initiators of this 
approach. Janet’s conversations with a project participant and his colleague, Charlie, both early 
users, exposed her to the concept and rationale behind it. We begin this paper with Charlie’s 
perspective on SBG as a theoretical framework before going on to Janet’s discussion of the 
research method and transformation of her elementary mathematics methods course.  

Theoretical Framework 
After teaching high school for more than 25 years, I concluded that traditional grading had so 

little correlation with student understanding that I had to change.  The old system of points, tests, 
quizzes, homework, and penalties created a game that some students learned to play even though 
their knowledge of math was limited.  I’m fairly certain that my students who earned perfect 
scores knew some math, and those who earned zeros knew little math, but everyone in between 
remained a mystery.  Searching for a more meaningful grading system led me to SBG. 

Finding a consistent definition for SBG is a difficult task.  The U.S. Department of 
Education, many individual states, and several prominent authors each have definitions of their 
own (e.g., Marzano, 2000; O’Connor, 2002; Popham, 2008; Tomlinson & McTighe, 2006; U.S. 
Department of Education, n.d.). In this section, I outline the parts of definitions consistent with 
my belief about what grades should mean, citing the sources that helped me to develop these 
beliefs. 
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Two main principles appear in the literature concerning effective grading practices (Marzano, 
2000; O’Connor, 2002; Popham, 2008; Tomlinson & McTighe, 2006).  The first principle is that 
achievement must be the only determining factor in assigning grades.  The second is that grading 
practices should facilitate learning. From these two principles many characteristics emerge which 
help identify what I mean by SBG.  

In order for grades to reflect achievement, most parts of traditional grading must be 
eliminated.  Assignments, penalties for late work, extra credit, and punishment for inappropriate 
behavior have no place in effective grading practices (O’Connor, 2002). Summative assessments 
must be clear indicators of achievement towards pre-established standards (Marzano, 2000; 
O’Connor, 2002; Tomlinson & McTighe, 2006). Because grades must be an indicator of 
academic achievement, clear standards need to be established to determine how achievement will 
be measured.  Changing to a SBG system requires teachers to develop the standards and the 
means to assess those standards. 

This leads directly to the second principle.  Having standards and the means to measure 
progress towards them allows teachers to assess throughout the unit.  These formative 
assessments inform both the teacher and the learner on how to proceed.  In other words, a teacher 
looking at the results of the formative assessments can gauge both the class and individuals’ 
progress towards the standard.  This powerful source of information helps guide differentiated 
instruction (Black, Harrison, Lee, Marshall, & Wiliam, 2003; Tomlinson & McTighe, 2006). 
Students can learn to use these formative assessments to plan for their own success as well.   

With traditional grading, early quizzes often discourage students because these points always 
remain a part of their grades.  Early failure leads to disillusionment and belief that the student is 
incapable of learning.  When grades are used as a guide to instruction, no penalties arise from 
early misunderstandings.  Instead, only the most recent assessments are used to determine a 
student’s final grade. 

Context and Methods 
Context 

The context for this qualitative study was formed by three components: the nature of the 
cross-sector collaboration, discussed above, that occurred while Janet was reconsidering her 
methods course design, the nature of the program in which the methods course occurred, and 
some specific aspects of the previous course design and grading approach that prompted a desire 
for change. Janet explains the latter two components below.  

PST program. My methods course was part of a Masters in Teaching [MIT] program 
designed for PSTs who had earned a non-education baccalaureate degree and wanted to complete 
a short and intense program that would result in a teaching credential and a master’s degree. In 
this program, PSTs did not take a mathematics content course. During the time they took the 
mathematics methods course, they were also taking methods courses in science, social studies, 
and literacy. The group of courses was taught in an 8-week session, with students attending each 
course two times per week.  

Dissatisfaction with course design and grading approaches. I had several concerns about the 
PST course design. Many of the PSTs came to the course with low content understanding and 
mathematical confidence.  This fact seemed to hinder them from understanding the methods 
being taught – they focused on the content, but complained that they were not learning enough 
about methods. As I tried to bolster PSTs’ mathematics content understanding alongside the 
methods study I felt that I was trying to cover too much material in a short time, thereby only 
offering shallow coverage of the ideas.  
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In the course, I used traditional grading policies that allotted certain percentages to each topic 
and to student participation. However, I was concerned that students were ill prepared to master 
all of the ideas covered, due to the short course length and their heavy course load. For this 
reason, my grading was often lenient, resulting in PSTs receiving inflated grades that indicated 
higher levels of understanding than they had actually demonstrated. Yet, as Charlie discussed, 
the reverse could also be true. If a PST was late in submitting several assignment of high quality, 
the policy of taking points off for late submissions could result in grades that were lower than the 
level of mastery shown.  
Method and Mode of Inquiry 

This study was conducted as a combination of case study and action research. I regarded the 
PSTs and myself as participants. Data collected included documentations of the changes initiated 
over time, as indicated in course materials such as syllabi, assignments, and rubrics, and PSTs’ 
response to these changes, as shown through course work and evaluations conducted twice 
during each course. My reflections were used as an additional data source on the process of 
making the changes.  

Results 
In this section, I explain several aspects of the changes made in my methods course, relating 

these changes to the cross-sector collaboration and the use of SBG. Course content changes and 
student comments in 2008 and 2009 are described in the first section, followed by the changes in 
grading practices during the same time period. These sections are accompanied by descriptions 
of the cross-sector collaboration that influenced my perspective. The last section addresses the 
course content and grading changes made in 2010.   
2008-2009 Course Content and Schedule Changes 

Course content. In order to address about PSTs’ lack of mathematics content understanding, I 
increased time for content study and assessment. I attempted to cover the following mathematical 
content both years: 

 Whole numbers, including number sense, place value, operations, facts, computation, 
and estimation 

 Fractions/decimals/percents/proportional reasoning, including number sense, 
operations and computation, estimation, and conversions 

 Geometry 
 Algebra and algebraic thinking 
 Data analysis/statistics, probability 
 Integers, exponents, real numbers and other number types 

It was not unusual for at least one of the topics to be dropped due to additional time needed for 
topics that students found difficult, such as fractions and geometry. 

Methods topics focused on the NCTM (2000) and state process standards, including problem 
solving, reasoning and proof, communication, connections, and multiple representations, with 
brief attention given to technology and assessment. Students were asked to complete two lesson 
plans, teach “minilessons” in class, analyze a textbook unit in comparison to the process 
standards, and take tests on mathematics content.  

Schedule changes. In 2008 and 2009, I increased the length of the course in order to cover 
the mathematics content and methods. On course evaluations, both positive comments and 
recommendations for improvement seemed to indicate that PSTs believed the mathematics 
content (assessed with tests), rather than the methods (assessed with lesson plans and curriculum 
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analysis), was the most important aspect of the class. Some comments seem to indicate that the 
PSTs believed the tests were the only important assessment.  
Sample positive comments:  

 This course is great for deepening my understanding of basic mathematical concepts.  
I feel challenged in areas where I thought I was confident and the way I think about 
math has completely expanded. 

 Open note tests were useful – took the pressure off and made me study more than I 
would have otherwise. 

Sample recommendations for improvement 
 More time for tests, focus only on what we are being assessed on because we don’t 

have time to spend on other things… we have spent time on other things that were not 
related to what we will be tested on. 

 I would suggest maybe allowing for more time on fractions and number concepts if 
possible.  

Some of the recommendations also indicated that the PSTs felt the coverage of material was too 
fast. 

 I feel like we rushed through a lot of the material to fit it all in and disregard whether 
we actually have a good understanding of it before we see it on the test.  I think we 
need to take more time on some things and get rid of some things (like videos) that 
don’t necessarily help us become better teachers. 

 We go so fast, I do not feel I can fully master what we are learning. 
I studied these comments, recognizing that the increased time was still insufficient to do a 
complete study of the mathematics content that PSTs would need to know. In conversations with 
my colleagues, I also learned that the additional course time could not continue, since the 
program could not include extended time for all the subject areas. Furthermore, more than half of 
the students earned lower scores on lesson plans and other opportunities to demonstrate 
understanding of the methods than they earned on math content assessments. This outcome 
showed the need for more focus on methods.  
2009 Standards-Based Grading (SBG) Initiation 

As described above, I had been concerned about grade inflation in my course but was unable 
to find ways to maintain a supportive atmosphere that also included high expectations and 
assessments that would indicate students’ mastery levels. In 2008, student difficulties brought the 
issue of fair assessment and grading to the fore. As described above, a student’s failure to submit 
work on time, due to family and work responsibilities, would have resulted in a grade far lower 
than his actual level of understanding. I regarded the situation as a dilemma – how could 
assessment be devised that would reflect the student’s true level of mastery while still holding 
him accountable for prompt submission of assignments? 

Conversations with high school teachers had led me to awareness of SBG. When the 
dilemma presented itself, I initiated conversations about the issues in my course and the use of 
SBG with one of the high school teachers in the professional development project and Charlie, a 
colleague of that teacher. I made the decision to implement SBG, focused solely on achievement 
of the learning targets for the course. Student disposition issues would be addressed through 
individual meetings with students to discuss issues that arose and strategies for addressing these 
issues.  

The first use of SBG in the methods course occurred in 2009. The syllabus description of 
grading practices is shown below. 
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2009 Grading 

Description Score 
Student demonstrates full and independent mastery of the objective. 4 
Student demonstrates full mastery but has minor errors or requires some support or 
assistance to do so. 

3 

Student has significant gaps in mastery of the standard but shows mastery of most 
main ideas. 

2 

Student has significant gaps in mastery of the standard, including mastery of the main 
ideas.  

1 

Student did not submit work.  0 
Your final grade will correspond with your final average across all of the competency areas: 
4 = A, 3 = B, 2 = C, 1 = D. Please note assignment descriptions regarding fluidity of scores – 
in most cases, you will have more than one opportunity to demonstrate mastery. Your final 
score in each area is the score that will be used to determine your grade.  

Table 2. 2009 grading description 
As described above, students were given multiple opportunities to demonstrate mastery of each 
learning target. If their assessed level of understanding increased, the older score was dropped in 
favor of the new score. If the new score was lower than a prior score on that learning target, it 
was averaged with the higher score. These scores were converted to grades only at the end of the 
course, so students could work to improve their scores without penalty until that time.  
 The use of SBG also required changes in rubrics used to score students. Samples 
of 2008 and 2009 rubrics are shown to illustrate the changes made in the first year of SBG.  
 
2008 Lesson Plan Rubric 

Lesson Plan #1 Points: Components and organization (6 points); detail and clarity of 
explanation (6 points); lesson plan represents activity accurately or summarizes created activity 
(6 points); presentation (2 points) 
Lesson Plan #2 Points: Appropriate lesson type: consistent with NCTM principles and standards, 
current learning theory, appropriate mathematics methods as discussed in text and presentations, 
appropriate for identified grade level and good fit with unit plan (9 points); all lesson plan 
components included and organized appropriately (9 points); explanation of components is 
detailed and clear, all aspects of each component addressed (9 points); presentation (3 points) 
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2009 Lesson Plan Rubric 
Lesson	  Plan	  
Rubric	  

Surpasses Expectations	   Meets Expectations	   Below Expectations	  

Learning 
Targets 
(5 points)	  

All learning targets addressed in detail and 
with clear alignment. Learning targets are 
closely connected to previous learning 
experiences. 	  

Instructional plan purpose, state 
learning targets, and content 
objectives are aligned (4 pts); 
previous experience explained (1 pt).	  

Aspects of learning targets not 
identified, unclear, or not 
aligned with each other	  

Assessment 
Strategies 
(5 points)	  

Multiple formative and/or summative 
assessment strategies and procedures for 
gathering evidence explained in detail and 
aligned with learning targets and experiences. 
Multiple learning modalities addressed in 
assessment plans. Ways of reducing bias 
explained.	  

Formative and/or summative 
assessment strategies are aligned 
with learning targets and experiences 
(2.5 pts). Procedure for gathering 
evidence for each student or for 
representative sample included (2.5 
pts). 	  

Assessment strategies 
incomplete or unclear OR lack 
of alignment between 
assessment strategy and 
learning targets OR 
inappropriate or no procedure 
for gathering evidence	  

Learning 
Experiences 
and Student 
Grouping 
(30 points)	  

Learning experiences match and complement 
the learning targets, include detailed plans for 
differentiation, remediation, and extension 
OR complex instruction with group-worthy 
tasks. Learning activities include detailed 
before, during, and after components that 
incorporate all 5 process standards. Includes 
culturally responsive, multicultural, 
interdisciplinary, and/or technology aspects.  	  

Learning experiences aligned with 
learning targets (5 pts). Learning 
experiences include appropriate 
before, during, after components (10 
points). Learning experiences utilize 
3-4 process standards (problem 
solving, connections, 
communication, representation, and 
reasoning/proof) (15 points).	  

Lack of alignment between 
learning experiences and targets 
OR only 1-2 of before, during, 
and after components OR 
learning experiences utilize 2 or 
fewer process standards. 	  

Student Voice 
(5 points)	  

Lesson plan provides multiple opportunities 
for student voice and student self-evaluation 
as well as opportunities to incorporate 
student voice into existing lesson plan.	  

Lesson plan includes at least one of 
student voice component.	  

Lesson plan includes no use of 
student voice techniques or 
Assessment For Learning 
strategies.	  

Organization 
and 
Conventions 
of Writing 
(5 points)	  

Proper structure and organization utilized.  
Writing conventions are appropriately 
addressed and all descriptions are clear. 
Fewer than 3 errors in writing mechanics.	  

Follows instructional plan format or 
very similar format (1 pt). 
Explanations clear (2 pts). Fewer 
than 8 errors in writing mechanics (2 
pts).	  

Errors in following instructional 
plan format or missing 
important details from 
checklist. More than 8 errors in 
writing mechanics. 	  

Table 3. 2009 lesson plan rubric 
As I used the 2009 rubric, it was clear that additional changes needed to be made so that 

students could be assessed on each learning target individually, rather than on groups of targets.  
In response to the use of SBG, some students offered positive comments in their evaluations, 

such as “Emphasized growth, not grades.” Others felt that the flexible scores and lack of 
concrete grades left them wondering where they stood. “I’m not a fan of the scoring of the 
course, because it makes me feel confused about where I stand.” This latter type of comment 
seemed to indicate that students were having difficulty making a cultural shift from a focus on 
getting an A to the new focus on demonstrating mastery of the learning targets.  
 
2010 Changes  
 In this section, I describe the effect of introducing SBG and my subsequent reflection on the 
course content. This effect is demonstrated in the course content change and the 2010 lesson plan 
rubric. Student comments follow the description of the changes.  

Course content and assessment changes. The changes enacted in the 2009 course and the 
ongoing detailed discussions with Charlie about his use of SBG prompted further improvements 
in 2010. As I recognized the need to delineate the individual learning targets and considered 
students’ scores and the impossibility of covering all of the mathematics content in the time 
available, it became clear that the focus of the course needed to shift. The curriculum needed to 
be much more narrow and focused with clearly defined learning targets solely related to learning 
methods, and the rubrics used to score the assignments needed to be more detailed and 
delineated.  
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The course content was changed to focus on the NCTM (2000) and state process standards, 
with additional discussion of levels of questioning and cognitive demand (Stein, Smith, 
Henningsen, & Silver, 2000), analysis of lessons that did or did not address the standards, 
revision of the lessons that did not, development and teaching of minilessons, and analysis of 
textbook units. PSTs were asked to identify the presence or absence of the process standards in 
commercial videos, their peers’ minilessons, and the lesson plans they analyzed. Mathematics 
content was reduced to whole and rational number sense and operations, with a brief 
consideration of algebraic reasoning and geometry. This mathematics content was used as a 
context for considering the use of the process standards, rather than as an end in itself.  

In the 2010 course, the 2009 grading description of the 0-4 scores was used. However, the 
lesson plan rubric was changed to separate out each component discussed in class.  

 
2010 Lesson Plan Rubric 
1. Process Standards Applications 
In lesson plan, student demonstrates at least three of the five process standards:   
a. Mathematical problem solving  
b. Reasoning and proof 
c. Mathematical communication  
d. Mathematical connections 
e. Mathematical representation 
2. Standards and Learning Targets 
a.  Learning targets, state standards, and learning activities are grade-appropriate. 
b. State standards, learning targets, objectives, and learning activities are all aligned.  
c. Class is informed about objectives/learning targets, including state standards. 
3. Meaningful Learning 
a. Lesson is likely to be engaging for students. 
b. Learning activities are accessible to multiple skill levels  
c. Learning activities build meaningful in-depth conceptual mathematical knowledge and 
critical thinking ability, with appropriate cognitive demand.  
d. Learning activities address needs of all students, including those who struggle with the 
lesson or who are ready for more challenge.   
e. Lesson includes appropriate before, during, and after activities. 

Table 4. 2010 lesson plan rubric  
The change in the course content and rubrics had two types of positive effects. First, students 
could be assessed on delineated learning targets. By having specific information about their areas 
of strength and weakness, they could focus on making changes or asking for help in order to 
strengthen their demonstration of learning on the elusive targets. Second, I could immediately 
identify the areas of difficulty and adjust my plans to meet those needs.  

 
2010 Student Comments 

Student comments on the 2010 course indicated that the changes had many of the desired 
effects as well as pointing the way for further changes. Positive comments were more focused on 
the process standard of teaching through problem solving, which was a new idea for most 
students. They also recognized that the daily plans were often adjusted to meet the needs 
demonstrated in the assessments.  
Sample positive comments:  
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 I liked the process grading.  I think it gave us great opportunity to LEARN from our 
mistakes…. Janet was extremely helpful and understanding with our student needs. 

 Going into depth about concepts really was useful.  Observing and experiencing math 
lessons everyday gave concrete experiences and understanding of how to present 
lessons. 

Recommendations for improvement also indicated PSTs’ focus on methods and the desire to 
have more resources for and practice of lessons that utilized the methods taught.  

 I would like more concrete examples of effective teaching. Janet was great at 
modeling practices but I would appreciate more reference materials. 

 More in-class lessons without assessment so we can practice. 
As a result of the student suggestions and my ongoing reflection, I plan to develop more 

opportunities for students to work collaboratively and individually designing and teaching 
lessons that reflect the process standards and high cognitive demand, as well as more in-depth 
study of teacher videos that model different ways of incorporating these ideas. Two additional 
areas of focus emerged from the assessment of PSTs’ understanding. The first addition will be 
increased discussion of ways to engage students, since the PSTs did not express the same level of 
understanding of that idea as they did of the process standards and cognitive demand. The second 
addition will be analysis of student work, since PSTs have had little experience studying 
students’ thinking and designing instruction to fit it.  

Discussion 
In an address to mathematics teacher educators, Jim Hiebert (2010, January) claimed that U. 

S. teacher education programs were failing to have significant effects on classroom teaching and 
learning. He suggested that varied and short teacher education programs cannot provide the 
critical mass of learning required to overcome PSTs’ culturally developed beliefs about teaching. 
Therefore, teacher education programs should focus on helping PSTs become learners within the 
teaching context, rather than assuming the program can fully develop their teaching skills before 
they enter the classroom. 

In this paper, we provide an example of how cross-sector collaboration and SBG led to new 
ideas about addressing issues in an elementary mathematics methods course, and ultimately the 
transformation of that course in a way that may address Hiebert’s suggestion.  The collaboration 
provided new perspectives: although often used in K-12, SBG was not used or discussed at the 
university level prior to Janet’s work with two high school teachers and subsequent introduction 
of SBG in her course. This new perspective provided a possible solution to issues she had 
identified: use of SBG helped her to narrow and deepen her course content and it allowed more 
support for the process of learning, which PSTs noticed and appreciated.  Thus, the changes 
made in this course indicate one aspect of course design – the use of SBG – that benefited Janet 
and her students. Janet gained insight and innovative ideas and the students gained a more 
effective curriculum and assessment system. When traditional grading practices are used, 
students – in this case PSTs – may not be treated as learners but as “knowers” by receiving 
summative grades that are factored into their final grade, rather than flexible scores that change 
as they demonstrate increasing mastery. SBG offered this kind of formative kind of assessment 
as well as providing input of how course content could be changed in response to PSTs work. At 
the same time, the principles and data from SBG informed Janet’s instruction throughout the 
course, so she remained a learner as well. In this way, SBG had and will continue to transform 
the thinking and learning of Janet and her students, just as it did for Charlie in his high school 
teaching.  
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This empirical study investigated the effects of an instructional sequence on pre-service 
secondary teachers' understanding of trigonometric functions. Guided by the APOS framework, 
we designed activities to promote a directed length interpretation of the six trigonometric 
functions using a dynamic geometry environment. Results of a paired t-test (two-tailed) showed a 
statistically significant difference in performance. Qualitative analysis of student work revealed 
a shift from ratio based strategies to directed length based strategies. Findings reveal the 
potential this method holds for transforming the teaching and learning of trigonometry. 

Trigonometry is a subject that is highly valued. It has a long history as a component of the 
mathematics curriculum with methods reaching far back before the 20th century. Trigonometry 
has appeared in both the Curriculum and Evaluation Standards (NCTM, 1989) and Principles and 
Standards for School Mathematics (NCTM, 2000). At the same time, it is also a subject that has 
been regarded as an important in domains outside of mathematics particularly those in science, 
technology, and engineering. Careers in physics, astronomy, computer graphics, optics, and 
many branches of engineering require an understanding of trigonometric functions and their 
application. Moreover, principles of trigonometry have a practical application in the work of 
carpenters, surveyors, architects, and navigators (Hoachlander, 1997). Despite its relevance,  
trigonometry continues to be a subject with which many students struggle (Blackett & Tall, 
1991; Kendal & Stacey, 1998; Weber, 2005).  

The modern approach to the subject, which considers both triangles and circles, is taught 
over a period of years as students progress from middle school to high school. Historically 
triangle trigonometry and circle trigonometry emerged from separate traditions and were 
developed for different purposes (Bressoud, 2010; Van Brummelen, 2009). Triangle 
trigonometry, which focuses on ratios between side lengths in a right triangle, has its origins in 
the surveying and measurement techniques used by the Babylonians and Egyptians. Circle 
trigonometry, which focuses on chords and their associated arcs, was developed by the Greeks in 
their study of the heavens. Anyone familiar with modern secondary mathematics will 
immediately recognize that these two approaches are visible in the predominant teaching 
methods, the ratio method and the unit circle method. There has been disagreement and debate 
over the use of these two methods since the “New Math” movement (Kendal & Stacey, 1998). 
Rather than choosing a side, we posit that both methods play an important role, laying the 
groundwork essential for building an understanding of trigonometric functions.  

 
Framing the Problem 

The study of trigonometry typically begins with a focus on the ratios formed by the sides of 
right triangles. This ratio method is effective for the purpose of solving right triangles and thus 
should hold its place in the curriculum (Kendal & Stacey, 1998). However, this method relies 
heavily on memorization (e.g., the mnemonic SOH-CAH-TOA) and computation. Using this 
method requires students to create nontrivial connections that pose many obstacles as they 
attempt to connect diagrams to numerical relationships and manipulate different ratios to 
determine side lengths (Blackett & Tall, 1991). In our opinion, the ratio method fosters a static 
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interpretation of the trigonometric functions in which the value of a function for a given angle is 
related to a single right triangle rather than a family of triangles. Further, this method is limited 
to angles measuring less than 90° with particular attention on “special” right triangles (30°-60°-
90° and 45°-45°-90°). Although this focus on specific angles is helpful in establishing 
benchmarks for comparison, it does not easily connect to an understanding of function. 

The unit circle method, which defines sine and cosine as the coordinates of a point on the 
unit circle or as directed lengths, resolves a number of the issues with the ratio method. The 
domain in the unit circle method expands to include all real numbers. In addition, the method 
provides students with a straightforward way to compare the values of different angles by 
focusing on changes in directed lengths. This type of reasoning can also be used to identify the 
sign of the sine and cosine functions in each of the four quadrants without relying purely on 
memory. Unfortunately, this directed length interpretation is typically not extended beyond sine 
or cosine. Instead, there is often a focus on special angles (i.e., multiples of 30° or 45°) and 
reference triangles in order to help students see the connection between the quadrants. For many 
students and teachers, the remaining four trigonometric functions are interpreted as algebraic 
manipulations of sine and cosine. Thus, working with these four functions requires either 
reasoning about how they are related to the sine and cosine or recalling facts from memory.  

Our research aims to help students build a robust and connected understanding of 
trigonometric functions and explores the role that dynamic geometry environments (DGEs) can 
play in its development. DGEs are one of the most widely used technologies in mathematics 
education. Many mathematics teachers and mathematics education researchers have focused 
their attention on the use of DGEs within the classroom. Designers of DGEs have stressed the 
central role that the software can play in linking geometry to other topics (Hohenwarter & 
Lavicza, 2007) by offering users a way to manipulate algebraic objects dynamically. We believe 
that DGEs may be one way to introduce a directed length interpretation and emphasize its 
connection to trigonometric functions. 

 
Purpose 

The purpose of this study was to develop an instructional sequence of trigonometric activities 
using a dynamic geometry environment and to analyze its influence on pre-service secondary 
teachers' understanding of trigonometric functions. These activities were designed to promote a 
directed length interpretation of the six trigonometric functions as functions that map one 
measurable quantity, angle, to another measurable quantity, directed length.   

 
Research Questions 

1) How can a dynamic geometry environment be used to develop pre-service secondary 
teachers' understanding of trigonometric functions? 

2) How does an instructional sequence focused on a directed length interpretation of 
trigonometric functions influence the strategies used by pre-service teachers' when 
solving trigonometry problems? 

 
Theoretical Lens 

We used the APOS (action, process, object, schema) framework as a theoretical lens (Asiala 
et al., 1996). This theoretical perspective was built upon Piagetian ideas and designed for 
studying mathematical learning at the undergraduate level. According to this perspective, 
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An individual's mathematical knowledge is her or his tendency to respond to perceived 
mathematical problem situations by reflecting on problems and their solutions in a social 
context and by constructing or reconstructing mathematical actions, processes and objects 
and organizing these in schemas to use in dealing with the situations. (p. 5) 

Below we briefly discuss the four components – action, process, object, schema – and describe 
how we envision student responses on a single trigonometry comparison task from our 
assessment (Figure 1). 

 
Figure 1. Comparison of sin θ and sec θ task 

 
A student with an action conception of trigonometric functions would require external cues 

to solve this problem. These cues could include things such as using sine = opposite/hypotenuse 
and secant = 1/cosine. A student with this conception might also use an estimation strategy based 
on a benchmark (e.g., theta appears close to 60°) or a construction (e.g., drawing in the segments 
that correspond to sine and cosine). In any case, the student would need to write this information 
down and reason through the problem externally. 

Following the APOS framework, the shift from action to process conception occurs when a 
student internalizes what were previously external cues. Thus, we anticipate that a student with a 
process conception of trigonometric functions would have a solution strategy similar to that of a 
student with an action conception. However, the student with a process conception would be able 
to work through the problem internally without needing external cues. 

We believe that a student with an object conception of these two trigonometric functions 
would be able to approach this question from multiple perspectives. They would be able to 
reason about the secant without needing to compute a value or imagine the process of division. A 
student with an object conception might interpret the sine and the secant as directed lengths and 
conclude that secant is greater than the sine based on a mental image or use their knowledge of 
the range of the trigonometric functions to determine secant is larger (e.g., sec θ > sin θ because  
sin θ < 1 and  sec θ > 1). It is important to note that distinguishing between a process conception 
and an object conception is difficult without asking the student to explain his or her reasoning. 

A schema is formed by the organization of actions, processes, objects, or a combination of 
these ideas. Based on this definition, schemas can be built by individuals holding any of the 
different conceptions. For example, a student might construct a schema using their action 
conception of sine and secant. They could then use this schema to estimate the values of sine and 
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secant for the task in Figure 1. A student who had constructed a schema using an object 
conception would be able to respond quickly and efficiently to the sample task. They would have 
several methods for working through the problem and be able to identify the connections 
between them. For example, they might view the sine and secant as directed lengths while 
imagining the graphs of the functions. We see our current work as helping students move from 
action conceptions of trigonometric functions to process conceptions and aiding them in the 
development of rich and connected schema. 

 
Methodology 

The participants for this study (n=23) were enrolled at a medium sized Midwestern university 
in the United States. All participants were enrolled in a course that focused on the use of 
technology tools for the secondary school level. One student was a practicing teacher while the 
rest were pre-service secondary mathematics teachers. The course met once a week for three 
hours and was co-taught by the researchers. Three lessons dealt specifically with trigonometry; 
however, the course dealt with a variety of different mathematical topics. All students received 
the same experimental instruction.  

 
Design of the Assessment Instrument 

Following the APOS framework, we first analyzed what it meant to understand the concept 
of a trigonometric function. This was based primarily on our own understanding of trigonometric 
functions as well as relevant research. We then designed a paper-pencil instrument to assess 
students' knowledge of a directed length interpretation. The instrument included: a) one 
trigonometric identity question; b) three questions that compared the value of different 
trigonometric functions for a given angle (e.g., Figure 1); c) one question analyzing how 
increasing an angle changed the value of a trigonometric function; and, d) two questions that 
compared the magnitude of two trigonometric functions in the first quadrant. The overall aim of 
the assessment instrument was to determine if there were any changes in student reasoning about 
trigonometric functions as a result of engagement in the experimental instruction. 

 
Design of Experimental Instruction 

Our analysis of the concept of a trigonometric function also guided the design of our 
experimental instruction. We designed a sequence of instruction consisting of several different 
explorations within a DGE. The sessions were sequenced to first introduce the directed length 
interpretation and then connect this interpretation to the graphs of the trigonometric functions. 
Our goal was to engage students in activities that explored interpretations of the six 
trigonometric functions as functions that mapped angle measures to directed lengths in the 
coordinate plane. We briefly discuss the first session below.  

The first session began with an activity exploring the “chord function.” This activity served 
two purposes. First, to connect to the historical origins of the word sine as the mistranslation of 
the word “chord” (Bressoud, 2010). Second, to demonstrate how the concept of function could 
be used to explore the relationship between angle measure and directed length. We first 
constructed a unit circle with central angle BAC (with point B fixed) and chord CD as shown in 
Figure 2. Students then considered how changing the size of angle BAC affected the directed 
length of segment CD. We then had the students reason about what it would look like if they 
were to map the angle measure to a point, D', on the x-axis and construct a copy of CD on D' 
with point D mapped to D'. Connecting the copies resulted in a rough sketch of the function y = 
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2 sin x (Figure 2). This lead to a discussion of the historic connections between the words 
“chord” and “sine.” Focus then shifted to the standard unit circle representation of sine where 
half of the directed length of the chord CD is the value of the sine of angle BAC.  

 

 
Figure 2. The chord function 

 
Subsequent sessions explored similar constructions and mappings with the other trigonometric 
functions. Sessions began in the classroom and then transitioned to the computer lab where each 
student constructed his or her own sketch of the problem(s) using dynamic geometry software. 
Group work and collaboration were encouraged.  
 
Procedure  

Students completed the pre-test prior to the first session on trigonometry. The instructional 
sequence then took place over three consecutive class periods. Two weeks after the third session, 
the post-test was administered.  Neither test was announced in advance. Students were given 25 
minutes to complete each test and were not allowed a calculator. All questions were assigned a 
value of one point and the number of correct answers was totaled to obtain a score for each 
student. The highest possible score was seven. A two-tailed dependent t-test was used to test for 
significant change. 

Written work was analyzed using a constant comparative method (Merriam, 1998) to identify 
and categorize solution strategies. One question was omitted from this analysis because it was 
multiple choice and did not include space for written work. Responses were analyzed and 
clustered into progressively more inclusive categories. If a response included parts of a strategy 
(either incorrect or correct) it was coded as having shown that strategy. Consequently, some 
responses received multiple codes because they exhibited more than one strategy (this occurred 
only on the post-test questions). This coding process resulted in the identification of three 
different solution strategies - ratio, directed length, graph - and a collection of answers that had 
no identifiable strategy. 

Ratio based strategies (Figure 3) involved the use of ratios and mnemonic devices (SOH-
CAH-TOA). These responses typically had specific ratios in their solution or cited facts (e.g., 
sine is positive in first quadrant). Also common were case based arguments in which a specific 
example was used to justify a more generalized statement. 
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Figure 3. Sample ratio strategy 

 
Figure 4 displays an example of a directed length strategy. These responses typically 

included the construction and labeling of segments corresponding to the value of a trigonometric 
function for a given angle. In some cases, discussion of the length of the segments followed. 

 
Figure 4. Sample directed length strategy 

 
Graph based strategies included a graph of a trigonometric function in the response. 

Responses were coded as having no identifiable strategy when one could not be determined from 
the written work or no work was presented other than the solution.  
 

Results 
The mean of the pre-test scores was 2.26 with a standard deviation of 1.74. The mean of the 

post-test scores was 4.17 with a standard deviation of 1.92. Results of the two-tailed dependent t-
test indicated that there was a statistically significant change in scores from pre-test to post-test 
t(22) = 7.19, p < .0001. The calculated effect size was d = 1.04. Results of the qualitative 
analysis of solution strategies are summarized in Table 1. 
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Strategy Number of Instances (Number of Times Correct) Total  % Correct 
Pre-Test Q1 Q2 Q3 Q4 Q5 Q6   
 Ratio 11(7) 21(8) 21(10) 16(4) 15(4) 15(3) 99 36.36% 
 Directed Length 0 1(1) 1(0) 1(1) 0 0 3 66.67% 
 Graph 0 0 0 0 0 0 0  
 No Strategy 12(5) 1(0) 1(0) 6(0) 8(0) 8(0) 36 13.89% 
Post-Test         
 Ratio 11(9) 6(3) 5(1) 6(4) 6(2) 6(2) 40 52.5% 
 Directed Length 9(9) 19(17) 18(11) 18(12) 6(5) 7(7) 77 79.22% 
 Graph 0 0 0 1(1) 2(1) 2(0) 5 40% 
 No Strategy 3(2) 0 2(0) 2(0) 8(2) 8(1) 23 21.74% 

Table 1. Summary of pre-test and post-test strategies  
 

Discussion 
We attribute the statistically significant growth from pre-test to post-test to both the directed 

length interpretation as well as the use of a dynamic geometry environment. The DGE provides 
unique access to the directed length interpretation by allowing students to construct figures, 
identify specific attributes, quantify these attributes, and analyze the relationship between these 
quantities by graphing them in a coordinate plane. Thus, the connection between directed length 
and the graph of a trigonometric function can be easily made within a DGE. We believe this 
approach is useful in addressing many of the difficulties students have with trigonometry 
concepts (Blackett & Tall, 1991; Kendal & Stacey, 1998; Weber, 2005) by providing them with 
a flexible model for reasoning about trigonometric functions. Hence, this study demonstrates 
how DGEs can be used to foster student learning and shift the focus of trigonometric instruction. 

Our qualitative analysis, presented in Table 1, resulted in two findings: 1) substantial changes 
in student strategy use and 2) increases in effectiveness across the three identified strategies. The 
ratio strategy represented 99 out of 138 (72%) of all coded responses on the pre-test and 40 out 
of 145 (28%) on the post-test. The direct length strategy, in comparison, represented 3 out of 138 
(2%) of all coded solutions on the pre-test and 77 out of 145 (53%) on the post-test. These results 
show that many students who used ratio strategies on the pre-test transitioned to more flexible 
strategies using ratios and directed lengths on the post-test. In addition, the percentage of correct 
responses across all three strategies (ratio, directed length, graph) increased from pre-test to post-
test. These numbers indicate that students improved in their ability to use strategies effectively. 
Together these results show that students not only understood the directed length concept, but 
also integrated it into their trigonometric schema.  

Based on our analysis of the written work we are confident that the majority of the students 
have, at least, an action conception of trigonometric functions. Anything beyond this is 
speculation due to the nature of our assessment. What is clear, however, is that the instructional 
sequence aided students in developing ways to reason about these trigonometric functions on the 
post-test that were different from the ways they reasoned about them on the pre-test. This, in 
turn, lead to a significant improvement in performance.  
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Our goal is to assist pre-service teachers in developing rich and connected schema that 
contain multiple representations and interpretations of trigonometric functions. We believe that 
the action conception exhibited by the majority of pre-service teachers can develop into a process 
or object conception given further time and interaction with the directed length interpretation. In 
our opinion, this interpretation lends itself to a process (and later object) conception of 
trigonometric functions by providing students with tools to reason about the functions as things 
themselves instead of the result of memorized facts or algebraic manipulations. Future research 
should examine the benefits and drawbacks of this interpretation, determine its utility in the 
teaching and learning of trigonometry to different students at different levels, and explore the 
role that DGEs can play in this process. This will require the development of assessment tools to 
probe student thinking to establish if either a process or object conception is present. We believe 
the directed length interpretation has the potential to profoundly impact both the learning and 
teaching of trigonometry – embodying the idea of transformative mathematics. 
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The current study is part of an ongoing, longitudinal study of prospective teachers’ identity 
development as a mathematics teacher. Drawing on case study of five teacher candidates, this 
paper investigated how their professional identity has developed over time and what the 
contributing factors of such changes. Findings indicated that most of student teachers entered 
the program with traditional perception of math teachers and it evolved endorsing more of a 
reform model. Prospective teachers’ prior experiences didn’t seem to be a great factor that 
contributed to change. The university instructor appeared to be the greatest influence and their 
mentor’s teaching practices has a greater potential for modifying and re-constructing student 
teachers’ professional identity and their teaching practices.  

 
Preservice teachers enter teacher education programs with early experiences in mathematics 

and they have perceptions of themselves as mathematics learners and teachers (Drake, 2006). 
While participating in their university methods program, under the mathematics reform 
movement, prospective teachers tend to be exposed to reform-oriented teaching models. 
Prospective teachers need to understand what it is like to participate in the figured world of 
reform pedagogy, learn models of identities of reform pedagogy, and negotiate new 
constructions of mathematics (Horn, Nolen, Ward, & Campbell, 2008). They are constantly 
transitioning between their current model of what a teacher is, and practicing what their identity 
as a teacher may be through student teaching, as well as learning how teaching is done through 
modeling by a mentor. When they eventually transition into their own career, teachers are 
constantly constructing and reconstructing their identities as math teachers through the 
negotiating within the community of practice.   

A recent study (Pressini et al, 2009) found student teachers’ norms and expectations about 
mathematics teaching practices were fundamentally different depending up on whether they saw 
themselves as teachers or students. Other studies emphasize that having a clear self-image as a 
teacher is critical to translate what they’ve learned from their teacher education program into real 
classroom practice (Bullough, 1992; Kagan 1992; Mewborn,1999). These studies document that 
prospective teachers struggle with their teaching practices when they don’t have a secure self-
image of themselves as teachers. Whether they see themselves as a traditional mathematics 
teacher (image from early experiences) or if they endorse a modern model of teaching (provided 
by teacher education programs) their teaching practice will look fundamentally different.  

Despite the importance of a teacher candidate’s identity, we know little from the literatures 
about how teacher candidates construct their professional identity within complex contexts. 
Specifically, little emphasis was placed how mentoring potential teachers contributes to their 
construction of their teaching identity. In addition, there are few longitudinal studies that 
examine the effects of preparation of teachers over time.  Although a teacher’s transition is a 
continuous trajectory of learning and growing, the research is rather fragmented and isolated.   
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In summary, my study explores how novice teachers construct their professional identity of 
themselves as mathematics teachers as they move from their earlier perceptions of themselves as 
teachers to newer models of teachers within a longitudinal framework. Specifically, their   
struggle to develop their self-image as a mathematics teacher between two competing models is 
explored.  

Theoretical perspective 
I adopted a situative perspective because this perspective allows me to focus on a 

contextualized individual interacting in particular settings that have been shaped by social 
variables. Relying on Eynedy (2006) and Wenger (1998), I interpreted the identity as identity is 
an on-going process and a persons’ identity is shaped and negotiated through everyday activities 
including their personal history. It means novice teacher’s prior beliefs, knowledge, and 
experiences are important factors of identity construction. In specific, this study focused on two 
constructs that are particularly relevant to teachers’ instructional practice: professional identity 
and the identity developing process. The construction of professional identity here means 
conception of how one defines oneself as a mathematics teacher in a negotiation with other 
participants in the same community. How relationships in this community develop is important 
because student teachers experience various relationships as they move along their path of 
learning how to teach.  

In order to understand identity construction, novice teachers’ personal history involving their 
prior experiences, relationship with cooperating teachers, and mentor’s teaching practice were 
explored. All of these factors have been considered to contribute to a teacher’s identity 
development. The following questions will be addressed, 
1. What are the changes experienced by a prospective teacher during his or her identity 
 development while transitioning from a university method program to their student teaching?   
2. What are the critical experiences, knowledge and skills that contribute to the change?   
3. How does the context of a teacher education program impact the identities and teaching 
 practices?    

 
Methods 

The current study is part of an ongoing, longitudinal study of prospective teachers’ identity 
development as a mathematics teacher. Drawing on the strengths of qualitative research 
(Merriam, 1998; Stake, 1995; Yin, 1984) case study method is utilized. The case study method 
will highlight the complex social context that attributes to development of teacher identity in a 
real-world setting.  

Participants include five students enrolled in an undergraduate mathematics course that was 
offered by a state university. One of the participants was male and the remaining four were 
female. The investigator has followed beginning elementary school teachers from their last year 
of their mathematics method courses into their student teaching period, and will continue to 
follow them into their first year of full-time teaching. The method course designed to have 
students experience principles and ideas from NCTM standards. Within that framework, 
instructor specifically focused on students’ thinking on learning and teaching mathematics.  

Data collection for this case study consisted of interviews with student-teachers and their 
mentors, as well as their journals and direct classroom observations. During the method course, I 
observed all the classes for 16 weeks between August and December 2009, and wrote an 
observation field note each time to record how teacher candidates participated in the classroom.  
During the student teaching period between January and May 2010, I observed five participants’ 
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mathematics classrooms once a week. I interviewed all five participants regarding their prior 
math related experiences and experiences about their current teacher education program.  All the 
interviews were audio-recorded and transcribed for analysis.  

 
Analysis 

Pattern coding from Miles and Huberman (1994) was utilized. Pattern matching of the 
collected evidence from field note observations and interview transcripts was conducted. 
Common themes were categorized, such as, prior school experiences, experiences of method 
courses, mentor relationships, impact of field experiences, their teaching philosophy and their 
current understanding of teaching practices (see table 1).  

 
Table 1 : Analysis theme of interview and observation  

Collected data   How does this relate to identity construction   

 
<Interview>  
 
►Prior experience  
-mathematical background  
-teacher education program  

 
• Story telling is a part of identity (Drake, 2006),  
• personal history is important on identity construction 

(Wenger,1998 )    
• How this program influence participant’s prior belief of 

teaching mathematics  
 

 
►Current social context  
- relationship with mentor 
and mentor’s teaching 
practice   

 
• How their identity is practiced by the master teacher 

(Wenger, 1985)  
• How they interpret/evaluate master’s teaching practice? How 

is this model of teaching close to their image of mathematics 
teacher they want to be?  (Brown et al, 1999) 

• degree of autonomy and participation is important  (Wenger, 
1985) 

• what they learn during this experiences  
 

<Classroom Observation> 
 
►Teaching Practice 
 

 
 

• How does student teachers’ teaching mathematics look 
compared to their mentor’s teaching?    

• What is the basis of the major resources that student teachers 
use to teach mathematics?   

• How is their teaching practice close to their image of 
mathematics teacher they want to be?  
 

 
The Survey of Professional Identity as Mathematics Teacher Survey  

In order to grasp the overall view of five pre-service teachers’ professional identity as 
mathematics teachers, participants were asked to do a quick survey of how they see themselves 
between two different teaching images: 1) traditional and 2) reform on a scale from 1to 10 where 
1indicates endorsing more of a traditional model and 10 indicates endorsing more of a reform 
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model. Before asking this self-reported survey interviewer discussed what the participants think 
about traditional and reform based image of teaching practice. This scale informed how these 
teacher candidates interpreted two different teaching images of modeled teachers (the same 
university instructor and different mentors) and how they viewed themselves between these 
models. The scale is reviewed in the following section. 
 
   

 
         
         

 

1 2 3 4 5 6 7 8 9 10 
        Traditional                  Reform 
 
 
Mentor Relationship  

Under the mentor relationship, two areas were focused; student teacher’s autonomy level and 
opportunity to teach mathematics. I considered autonomy level is important because even though 
they wanted to adopt newly learned method from teacher education program they are may not 
allowed using them and instead, they are supposed to follow mentor’s teaching practice whether  
they like it or not. Student teachers’ autonomy level was categorized as high, medium and low 
based on how much responsibility they had to prepare their lesson. The definition of each 
category is the following.  
 
• High autonomy: As long as it covers standards mentor teacher let student teacher have full 
responsibility of preparing and teaching materials. Mentor’s feedback is supplementary. Student 
teachers take over the math class from the beginning of student teaching and more than 90 % of 
observation time, student teachers teach the whole math class. 
  
• Medium autonomy: Mentor and student teacher plan lesson together and teaching practices are 
integrated. Mentor teacher lead the math lesson and student teachers’ participation is gradually 
increased.  
 
• Low autonomy: Mentor teachers have full responsibility of planning and curriculum and 
students teachers adopt them. Student teachers take over the math class at the end of semester 
and their role in teaching math is supplementary.  Less than 20 % of observation times, student 
teachers teach the whole math lesson.  
 
Classroom Observation (Student Teacher’s Teaching Practice)    

During the classroom observation period, the major focus was placed on mentor’s teaching 
practice and student teaching practice. Observation teaching practice is critical in this study 
because it provides what type of teaching practice mentor modeled to their student teachers and 
how student teachers adopt such model of teaching. In addition, it illustrates understanding of 
how their identity as a math teacher is practiced in a real classroom situation, student teacher’s 
decision making, what resources they utilize for their teaching, their teaching pedagogy between 
two models (reform and traditional) compared to their beliefs about teaching mathematics. 

  
Result 

Teachers from own experiences in 
general  
Method course instructor  
Yourself (at the end of field experience)  
Current mentor teacher 
Ideal goal (when full-time teaching) 
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Table 2 shows the survey result of overall view of five pre-service teachers’ professional 
identity as mathematics teachers.   
 
Table 2 Results From a Survey of Teacher Image   

Survey questions  *Participant ratings 

Prior math experiences 
1) Successful in math?  
2) Confident teaching math  

 Meg Mike Vicky  Kerry Jackie 
  

1) Yes 
1) Yes 

 
1) Yes 
2) Yes 

 
1) No 
2) No 

 
1) Yes 
2)  Yes 

 
1) No 
2) No 

How do you see math teachers from your 
own school experiences in general   5 3 2 6 3 

How do you see the instructor of university 
method course?    10 8 9 6 10 

How do you position your mentor as a 
mathematics teacher?  3 7 5 9 8 

How do you position yourself as a 
mathematics teacher?   7 4 4 8 5 

What is your ideal goal to reach when you 
move into your own career?    9 6 6 9 10 
Note: All of the participant names are pseudonym and they are using the rating scale from above.  
 

In essence, the results of this survey indicate that most of the participants challenged their 
initial beliefs about being mathematics teacher throughout their teacher education program, and 
their teacher identity evolved. However, one participant didn’t endorse the reform pedagogy 
model as much as the other participants did. 

Similar to a study conducted by Ball (1990), the majority of the participants in this study 
reported traditional experiences concerning their own school’s mathematics teacher (M=3.8). All 
of participants agreed in the interview that the university instructor’s teaching practice 
challenged their earlier image of mathematics teacher. When they moved to field experiences, 3 
student teachers reported that their mentor’s teaching was closer to reform pedagogy and the 
remaining two considered their mentor’s teaching practices as more traditional. Compared to 
their mentor’s teaching practices, all but Meg, considered themselves as being less reform 
pedagogy type teachers than their mentors. Meg said during the interview that she considered her 
mentor’s teaching as more traditional than herself. When asked their ideal goal of what their self-
image as a teacher might look like, most of the teacher candidates (80%) but Meg wanted to 
endorse more of a reform pedagogy style than what their mentors do in the classroom.  

To better understand teacher candidates’ identity as a mathematics teacher it is necessary to 
investigate relationship with mentor’s teaching, how they teach mathematics and student 
teachers’ autonomy level. The following table is the brief summary of participant’s overall 
experiences of student teaching.  
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Table 3: Overall summary of student teacher’s experiences during student teaching   

 Meg Mike Vicky Kerry Jackie 

Confidence in math Yes Yes No Yes No 
 

Success in math 
 

Yes 
 

Yes 
 

No 
 

Yes 
 

No 
 

Mentor type 
 

traditional 
 

traditional 
 

reform 
 

reform 
 

reform 
 

Self image of 
themselves  

 
reform  

 
traditional 

 
traditional 

 
reform 

 
between 

 
Grade level 

 
2nd 

 
5th 

 
5th 

 
5th 

 
5th 

 
Autonomy level 

 
High 

 
High 

 
Low 

 
Medium 

 
Low 

 
Opportunity of 

Teaching 
mathematics 

 
Take over 
math class 
from the 

beginning 

 
Take over 
math class 
from the 

beginning 

 
Take over at 

the end, 
relatively 

less chance 
compared to 

other 
participants 

 
Gradually 
take over 

 
Take over at 

the end, 
relatively 

less chance 
compared to 

other 
participants 

 
In sum, here is a summary of each student’s professional identity development.   
 
Meg: she was confident in mathematics and she wanted to become a very reform based teacher 

(scale 9). Her mentor teacher was holding a traditional teaching pedagogy. But, as her 
autonomy level was high she was able to practice her identity as a mathematics teacher as 
she wanted to be. It is very often observed that the student teacher utilized materials from 
university program, which she evaluated as very reform, and focused on group work, 
discussions, games and sharing.  

Mike:  He, similar to Katie, was confident in mathematics and he evaluated that his mentor 
teacher hold a traditional view of teaching mathematics. However, from his own 
experiences, he adopted more traditional way of teaching than reform pedagogy. Thus, 
rather than taking reform pedagogy his goal of teaching practice was in the middle of 
traditional and reform. During the observation time, his teaching mathematics seems to 
closer to the traditional way such as working on worksheets all the time, time task, 
procedure oriented, and teacher directed.  

Vicky:  Unlike Meg or Mike, Vicky was not confident and successful in math during her own 
school experiences. During student teaching experiences, she was practiced by master 
whose teaching was evaluated as in between. Compared to other participants, she had little 
experience of teaching mathematics to her students. In the interview, Vicky said she loved 
what she learned from methods class and what her mentor is teaching in the class. 
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However, it seems that her lack of confidence made her uncomfortable of trying 
something not familiar with her.     

Kerry:  Her prior experience with mathematics was positive and her teaching pedagogy was not 
either traditional or reform. Her mentor was experienced and reform based teachers who 
took a considerable amount of Cognitive Guided Instruction (CGI) training from the 
district.  Kerry and her mentor planned the lesson together and Kerry started teaching a 
part of math at the beginning and expanded her role to the whole lesson. Kerry told during 
the interview that she absolutely valued her mentor’s teaching practice so she adopted 
most of her mentor’s teaching practice.  

Jackie:  Similar to Vicky, she was not confident and successful in math during her own school 
experiences and she was practiced by master whose teaching was evaluated as reform.. 
Vicky said she loved what she learned from methods class and what her mentor is 
teaching in the class. She was the one who expressed the highest desire to become a 
reform based teacher. However, Jackie also had little experience of teaching mathematics 
as Vicky did. In the interview, Jackie said math would be the last subject to take over 
because she was not confident teaching it. Her lack of confidence of teaching mathematics 
appears to be an obstacle of practicing her identity as a reform teacher.  

 
Contributing Factors 

Prior Experiences 
In this study, pre-service teachers’ prior experiences didn’t seem to be a great factor that 

contributed to construction of identity. Four participants reported their initial perceptions of 
mathematics teacher (more traditional) were changed into more reform, except one participant, 
Mike. For this participant, mathematics was his favorite subject and his best math teacher was 
the one who taught math in a traditional way. Drawing on his positive perspective to seeing a 
traditional teaching practice from his high school, he stated in his interview that he wanted to 
adopt a more traditional teaching practice. Specifically, he stated: 

My best math teacher was in high school, Russian man. He always tells us you shouldn’t 
care why you do, just do it what I say and you would pass the test. That is what I did… 
This is how I see it and how I succeeded it and what I am trying to pass on.  
 

Teacher Education Program  
Among various variables that relate to identity construction, the university instructor 

appeared to be the greatest influence on their identity change. All of the participants replied in 
the interview that their university instructor brought different and innovative perspectives to the 
teaching experiences in mathematics. As shown in the table, students considered her as a very 
reform mathematics teacher, indicated by rating of the scale above (M=9). However, Mike, who 
adopted the least from teacher education program, stated during the interview that even though 
he liked the teaching methods provided by the instructor, he thought it was not grade appropriate 
for him. He considered using manipulatives are more suitable for primary grade such as K-3. 
When teaching 5th grade he thought that such methods wouldn’t be appropriate for his students.  

 
Relationships with Mentor  

Drawing on apprenticeship metaphors from Lave and Wenger (1991), I particularly focused 
on student teacher’s authority level, their negotiation process, and how mentor’s modeled 
teaching influenced to novices’ teaching practices. Regardless of level of autonomy, all of the 
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student teachers stated that they had a certain level of autonomy, but they wanted to respect their 
mentor’s teaching style. Also they wanted to rely on mentor’s current teaching materials as well 
as adopted their teaching strategies. This result indicated that mentor’s teaching practices has a 
greater potential for modifying and re-constructing student teachers 'professional identity and 
teaching practices.  

Conclusion and Discussion 
This analysis has shown that prospective teachers developed identities of what it means to be 

a what so called  ‘traditional’ or ‘reform’ mathematics teacher through the teacher education 
program. Rather than prospective teacher’s prior beliefs, the reform pedagogy of university 
instructor has influenced the most on their professional identity. When novices entered field 
experiences leaving from reform world, their masters’ teaching model was various. The result 
indicated that no matter of masters’ teaching model, all of my participant teachers stated that 
they considered mentors’ teaching practices as major recourses. In addition, student teachers who 
had high autonomy level of teaching seem to have more opportunity to practice what they 
believed and what they wanted to try. It implies that how mentors support their student teachers 
is also a factor that influences novice teacher’s initial teaching practices.  It brings an attention 
that we need to pay more attention on mentoring program and also consider placement of 
mentors as a critical potentials in order for them to construct professional identity in ways 
consistent with the standards reform movement.  
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TRANSFORMATIVE TASKS IN ALGEBRA TEACHER PREPARATION 

Barbara M. Kinach 
Arizona State University 
barbara.kinach@asu.edu 

 
This paper reports on a study using algebra-tile tasks in the mathematics methods course to 
develop prospective secondary mathematics teachers’ algebra knowledge for teaching.  

Introduction 
What is the nature and role of tasks in mathematics teacher education? The tenth-anniversary 

volume of the Journal of Mathematics Teacher Education (JMTE, December, 2007) targeted this 
under-represented area of research asking: What impact do the tasks of mathematics teacher 
education have on prospective teachers’ mathematical and pedagogical understanding? Guest 
editors of the volume, Zaslavsky, Watson, and Mason, proposed a lexicon of tasks to frame this 
emerging area of research. Among the general task types highlighted were mathematical 
explorations, cognitive conflict, classification and analogical reasoning, examples and counter-
examples, alternative and idiosyncratic algorithms, symbols and multiple representations, 
alternative problem-solving strategies, mathematical connections, use of technological tools, and 
inductive and deductive reasoning. Algebra researchers in this volume further examined the 
efficacy of concept-map (Schoenfeld et al, 2007) and big-ideas (Hsu et al, 2007) tasks to 
measure change in prospective teachers’ understanding of algebra. Results of the research on 
big-ideas tasks unearthed the difficulties prospective teachers often experience when called upon 
to organize the ideas of a subject (in this case, algebra) into a network of interconnected notions 
so that, having taught one big idea (e.g., distributive law), other ideas (e.g., combining like 
terms) can be logically deduced from the initial “big idea.” The concept-map studies show these 
tasks to be effective on two counts: first, as pre-and-post assessments of prospective teachers’ 
mathematical understanding, and second, as cognitive tools for pre-service teachers to organize 
their thinking about a topic when planning a lesson. Interestingly, then, the research on concept-
map tasks resolves, at least in part, the learning-to-teach dilemma that research on “big ideas” 
tasks unearths in a single volume of JMTE. 

As these examples suggest, tasks research is an important source of insight into pre-service 
teacher understanding of the mathematics they are preparing to teach. The goal, therefore, in 
advancing this line of inquiry is to lay the framework for the creation of instructional materials 
and strategies that can help pre-service teachers improve their understanding and teaching of 
mathematics. In this paper, I focus specifically on task research in algebra teacher preparation by 
investigating the impact of one manipulative-modeling task, The Imbalance Task, on prospective 
secondary teachers’ understanding of school algebra.  Aiming to contribute both empirically and 
theoretically to algebra teacher preparation, this work is guided by the following two research 
questions: (1) What tasks promote algebra concept development in a secondary mathematics 
methods class?  (2) How can we measure their development? In what follows, I explain the 
analytic framework that will be used to measure the quality of pre-service teachers’ algebra 
knowledge; describe the study participants, data collection, and coding methods; illustrate The 
Imbalance Task which is the focus of the study; and analyze the enhanced algebraic insight that 
prospective teachers report from doing the imbalance task. The paper concludes with reflections 
on algebra teacher preparation tasks. 

Theoretical Framework 
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Measures of Algebra Understanding 
Guided by the framework of Perkins and Simmons (1988), I characterize deep knowledge (or 

understanding) of any algebra topic in this study as consisting of five interlocked types of 
knowledge (content, concept, problem solving, epistemic, and inquiry). The content-level of 
understanding refers to the vocabulary, skills, and isolated bits of information typically 
connected with a discipline or school subject. Characteristic performances that indicate this type 
of understanding are rote memorization and recall of previously learned material. The content-
level is a superficial kind of understanding akin to Skemp’s instrumental understanding (i.e., 
knowing the rules and procedures of mathematics without understanding the reasons for them). 

The remaining three, non-content levels of understanding are akin to what Skemp called 
relational understanding, but differentiated by the focus of knowledge (concepts, problem 
solving, epistemic, or inquiry). In particular, the concept-level of understanding refers to a 
contextual understanding of what is typically called vocabulary.  Concepts, according to Schwab 
(1967), are the key orienting ideas of a discipline (e.g., variable, function, equality, or rate of 
change in mathematics). The problem-solving level of understanding refers to (1) the heuristic 
ability to monitor and reflect on one’s own thinking and (2) the procedural ability to execute on 
demand specific problem-solving strategies such as find-a-pattern, make-a-table, or induction.  
Epistemic-level understanding relates to the evidence and warrants for claims in a discipline.  
Algebra students exhibit understanding at the epistemic-level when they construct arguments and 
provide mathematical reasons to support their thinking. Inquiry-level understanding refers to 
independent exploration beyond the problem-solving level.  At the inquiry level, students pose 
problems and implement strategies to resolve them with little assistance from a teacher or guide.  
What is resolved at the inquiry level is more complex than puzzles resolved at the problem-
solving level. 
 Using this framework, I will analyze the changes in algebraic understanding that prospective 
teachers report as resulting from the imbalance task (Kinach, 2002). 

Participants, Data, and Methodology 
Data for this report were collected from a five-year longitudinal study of prospective teacher 

learning in the author’s secondary mathematics methods course.  Taught annually by the author, 
the course typically enrolled three to five students. Prospective teachers’ written coursework, 
video of methods course discussions, and pre-service teachers’ post-course responses to the 
following prompt constitute the database for the current study. 

Throughout the course, we explored ways to make mathematics meaningful for middle-
grades and high-school students. Teaching with manipulatives (e.g., algebra tiles, attribute 
blocks, geoboards, etc.) was one of the teaching strategies we investigated.  In the course of 
learning to teach with these materials, many of you commented that your own mathematical 
understanding was deepened.  Describe (if possible) five instances in the course when your 
own mathematical insight grew as a result of your modeling work with manipulatives. 

Using a qualitative design, data were first coded by manipulative type and task, and then sub-
coded using the levels-of-understanding framework. Before describing and analyzing results for 
“The Imbalance Task” specifically, I summarize results from the larger study of manipulative 
modeling tasks and their impact on the mathematical understanding of methods students.   
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Results 

Impact of Manipulative Modeling Tasks in the Larger Study 
Twenty prospective mathematics teachers (PMT) responded to the above prompt resulting in 

100 instances of self-reported growth in mathematical understanding from participating in ten 
manipulative-modeling method course tasks (Table 1). Collectively, the tasks employ seven 
manipulatives (algebra tiles, geoboard, clay/geosphere/taxi-geometry grid, counters, attribute 
blocks, graphing calculators, and dynamic geometry software called The Geometer’s Sketchpad).   

Table 1 

 
Algebra-tile modeling tasks scored the most instances of reported gains in mathematical 
understanding (Table 2). Of twenty prospective teachers, 100% report enhanced understanding at 
the concept level of the multiple meanings of the symbols “-” and “+”. Next in rank was the 
imbalance task. 90% of the pre-service teachers reported knowledge gains at the concept level 
related to the equal sign, equation, variable, and at the epistemic level related to justification for 
the processes of equation solving, transposition, and algebraic factoring.  
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Table 2: End-of-Course Reported Gains in Algebra Understanding from Methods Course 
Manipulative-Modeling Activities 
1) Algebra Tile Manipulative Modeling Tasks 
a. The Imbalance Task      Form of Knowledge  Freq 
 Percent Enhanced understanding of . . .      (n=20) 
equal sign     concept   18  90 
equation     concept   18  90 
variable     concept   18  90 
equation solving    epistemic   18  90 
justification for transposition   epistemic   18  90 
b. Two-Color Chip Task    
Enhanced understanding of . . .       
Operation vs. signed number  concept   20  100 
subtraction vs. addition  concept   20  100 
addition vs. positive   concept   20  100 
subtract, negative, opposite  concept   20  100 
c. Area Model of Factoring/Multiplication    
Enhanced understanding of . . .       
Algebraic factoring    concept/problem solving 11  55 
Area     concept   11  55 
Area formulas    epistemic   11  55 
 

The area model of multiplication tasks with algebra tiles produced new insights at the 
concept level into the connection between numerical and algebraic factoring (55%). 
Mathematical reasoning tasks with the ESS attribute blocks generated both concept and 
epistemic level gains in understanding about logic, Venn diagrams, and critical thinking in the 
mathematics classroom (55%).  For the geoboard tasks, pre-service teachers reported concept-
level insight into area and epistemic-level insight into the origin of area formulas and the 
Pythagorean Theorem (55%).  Less frequently mentioned were epistemic-level insights into the 
relationship between the shape of space and definitions of different geometric objects (4%) from 
modeling tasks with the geosphere, clay, and taxi geometry grid. 

Perhaps the most surprising result was the gain in concept- and epistemic-level understanding 
that these pre-service secondary mathematics teachers reported from using counters to represent 
whole-number division. Prospective teachers reported surprising new insights into the meaning 
of division (concept level) and justifications for division by zero (epistemic level). Fifteen 
prospective teachers (75%) commented that they had never encountered the mathematical 
rationale for division by zero during their mathematical education. The biggest revelation for 
prospective teachers was the epistemic insight that different mathematical reasons (or principles) 
justify why 5/0 and 0/0 are undefined.  
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Description of The Imbalance Task 
         Figure 1: The Imbalance Task 

 
The Imbalance Task presents the classic “balance beam” analogy to solving equations in a new 
light as an inequality.  The aim of the task is to stimulate prospective teacher thinking about 
solving equations in order to better understand the cognitive puzzles and challenges of young 
algebra students.  The task relates a new idea of how the concept of solving equations 
algebraically can be solved geometrically in terms of an inequality and physically constructed 
visual of an unbalanced scale.   

The Imbalance Task (Figure 1) asks prospective teachers to determine the number of small 
squares that the strip would have to equal for the scale to balance. Methods students construct the 
diagram in Figure 1 using the small squares (dimensions 1 by 1) and rectangular strips 
(dimensions 1 by x) from the student-set of algebra tiles (www.etacuisenaire.com). Note that the 
dimensions of the small square and strip are manufactured deliberately so that the strip does not 
equal an integral number of squares (i.e., x ∉ integers). The intention is for the strip to represent 
a variable capable of taking on different values despite the fact that the plastic model has a fixed 
length and width.  Students using the tiles are, thus, to imagine the strip (x) as capable of varying 
in value. The value of the small square is 1. 

By engaging familiar material in new ways, prospective teachers report deeper concept- and 
epistemic-level understanding of basic algebraic concepts and processes such as equation, 
equation solving, variable, and the equal sign. Next I analyze the changes in understanding that 
90% of the prospective teachers reported from doing the imbalance task.  

 

Analysis of Knowledge-Change Reports for the Imbalance Task 
Insight 1: Meaning of the equal sign.  About the equal sign, one methods student’s comment 

is representative:  
In working with the balances and algebra tiles, I had new insights into what the equal sign means 
– that both sides have the same weight or have equal quantities.  I previously conceived it (the 
equal sign) as a do something symbol, even if it meant the “do-something” was to manipulate it 
to solve for a variable. Also this gave new ideas on what it was to solve an equation (choice of 
balance or imbalance). 
Prospective teacher reflections like these suggest that despite advanced undergraduate 
mathematics study, foundational misconceptions persist at the concept level about the equal sign. 
Building upon Kieran’s (1981) findings about how students misconstrue the equal sign in 
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arithmetic, this result suggests further investigation of algebra students’ concept-level 
understanding of the equality symbol and its meaning in equations. Is it common for advanced 
mathematics students at the college level to conceptualize the equal symbol in equations as a 
signal to solve for the variable? This bears further investigation as 90% of study participants held 
this view. 

Insight 2: Equation and equation solving.  The idiosyncratic representation of an equation as a 
scale out of balance generated many rich reflections about linear equations and the process of 
solving equations. Several representative reports illustrate the ways in which prospective 
teachers symbolic understanding of equations and equation solving were deepened through the 
idiosyncratic approach to thinking about these basic algebraic concepts and processes. One 
methods student wrote:  
The balance model for equations introduced another concept that I had never thought twice 
about. I had always assumed that an equal sign meant equal, always equal.  This model could 
treat equations in this way or it could present an equation as unbalanced or unequal, and it 
needed help to get balanced.  I thought of an equation as a statement not a problem.  This made 
me think of how many other ideas/concepts in math could have double meanings for my 
students. I realized that I needed to always try to understand and communicate better with them. 
Another teacher candidate wrote:  
A fourth insight occurred with the discussion of the meaning of an equation in terms of the 
balance model.  I had always assumed that an equation was “balanced” to begin with, unless 
proved otherwise.  It was a new insight for me to see how it could be interpreted as being 
unbalanced, with the process of solving equivalent to balancing the scale. This brought out the 
point that in mathematics, there is not necessarily one right way of looking at something. 
Sometimes insights are made just by approaching a problem from a different point of view. As a 
teacher, I want to encourage divergent thinking. I don’t want my students to believe that there is 
only one way to reach an answer.  This is not true to the actual “doing” of mathematics. 

When prospective teachers operate on the scale by adding or subtracting equal quantities 
from both sides of the pan balance, they treat the equation as an entity or object in itself and 
exhibit a structural conception of equation (Sfard, 1991). The alternative procedural conception 
of equation would be present if students solved the equation by substitution. By inserting 
different numerical values of the variable into each side of the equation, numerical equality is 
eventually achieved (or not). This approach to solving linear equations treats each side of the 
equation as an algebraic expression whose numerical value can be determined by calculating the 
numerical value of the algebraic expression for different values of the variable. While all 
prospective teachers in this study exhibited concept-level understanding of equation solving of 
the structural kind, not all possessed epistemic-level understanding their equation-solving 
procedures. As the following example dramatically illustrates, justification of equation solving 
procedures was problematic: 
When I learned equations, I learned that you want to get all similar things on one side.  To do 
this, I was told that the equal sign is the moon and that to go from one side to the other side of 
the equal sign, you jump over the moon, changing the sign of the number or variable as you 
jump.  I know now that what I learned was a trick.  The balance idea for solving equations 
helped me see that the trick I learned was actually a substitute for showing me that what I should 
do is subtract, add, multiply, or divide equal amounts.  I learned that if you treat the equal sign as 
a balance and solve the problem keeping the balance equal, then at the end you know what a strip 
will represent in terms of squares because they will be in balance. 
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Clearly, this student had learned to manipulate linear equations to find the solution without 
knowing the mathematical (epistemic-level) principles behind the symbolic manipulations. What 
she describes is the process historically called al-jabbr, or transposition. This is an equation-
solving method that utilizes the notion of inverse operations to solve equations. Another methods 
student describes the epistemic-level understanding she gained to explain why transposition 
procedures work: 
The balance model of an equation showed me a great way to understand why we “take” a 
number’s opposite to the other side. Really, we are either adding or subtracting the same thing 
from both sides. 

Insight 3: Different conceptions of the variable.  By tilting the scale, this model of a linear 
equation emphasizes the point that the two functions under consideration are equal only for 
certain values of the variable.  Prior to this activity, prospective teachers report that they missed 
the (obvious) concept-level idea that a variable varies in value.  On this point, one teacher wrote:  
What does the strip have to represent to balance the scale? This question showed me a deeper 
insight into the meaning of variables.  Before I thought them to merely be representations of 
specific values.  This exercise drove home the point that variables can take on many values, each 
having an effect on the balance. 

Implications for Algebra Teacher Preparation 
In this study, The Imbalance Task was transformative. It expanded prospective teachers’ 

content-level understanding of basic school algebra concepts and processes (equal sign, equation, 
variable, equation solving) to include epistemic and concept level understanding of these ideas. 
Although the data set is small, the strong results warrant further research on this task and its 
effectiveness for enhancing pre-service teachers’ algebra concept development in the methods 
course. The analytic framework used in this study emphasized the focus of knowledge (i.e., 
concepts, problem solving strategies, justificatory rationales) and not the form of knowledge 
(e.g., strategies or beliefs). This emphasis was useful for identifying the gaps in understanding 
that these advanced mathematics students brought to the process of learning to teach in the 
methods course. Aspects of this task design that deserve the attention of future researchers 
include the juxtaposition of symbolic (algebraic) and spatial (geometric) representations of 
mathematical concepts, processes, or rationales. Also worthy of more attention by designers of 
tasks for algebra teacher preparation are the task’s employment of cognitive dissonance, 
analogical reasoning, and idiosyncratic approaches to familiar mathematical material.  

Prior to the imbalance task, prospective teachers universally conceptualized an equation is a 
statement of equality (which it is). The unbalanced scale, however, suggested an alternative 
interpretation of an equation (e.g., 5x + 3 = 4x + 8) as a question about two expressions (5x + 3 
and 4x + 8) or about two functions (y= 5x + 3 and y = 4x+ 8) and the conditions under which 
they will be equivalent. The idiosyncratic approach generated unexpected insights into basic 
algebraic notions. Future research on the affordances of such tasks especially in situations where 
years of proficient procedural practice hides from prospective teachers the underlying conceptual 
meaning and epistemic rationale for algebraic concepts and procedures learned long ago.   
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The “research-to-practice” relationship in mathematics education and in education more 
generally has been examined from a variety of perspectives. This research examined the 
research-to-practice relationship of mathematics teacher educators. Using the Mathematics 
Teacher Educator Instrument, developed for this project that addresses 11 dominant areas of 
research in the field, course syllabi were examined from Australia, Canada, England, Ireland, 
Italy, Malaysia, New Zealand, and the US. Our results suggest that major bodies of research are 
only moderately represented on course syllabi. Recognizably, the research areas identified on 
the instrument may nevertheless be enacted in mathematics teacher education classroom. 
Potential implications for mathematics teacher educators are discussed. 
 

Introduction 
Of great interest over the last decade have been the relationship, and often the gap, between 

research and practice in education (NCTM Research Committee, 2007). Numerous and robust 
research has emerged within the field of mathematics teacher education and mathematics 
education. Dominant research themes include: reflective practice, mathematical tasks, lesson 
study, assessment and evaluation, theory and practice connections, policy and politics of 
mathematics education, technology, beliefs and attitudes, content knowledge, pedagogical 
knowledge, and equity and diversity.  

Our interest in this research is to examine the extent to which research is informing the 
practices of mathematics teacher educators, and thus the way in which pre-service teachers learn 
to teach mathematics. To examine research-to-practice in mathematics teacher education we 
analyzed pre-service mathematics teacher education course syllabi, provided to us from 
mathematics teacher educators from around the world. The question framing this research is: 
How is research reflected in mathematics teacher educators’ practices, as evidenced in course 
syllabi? The aim of this paper is to take a purposive sample from the syllabi collected in order to 
evaluate the instrument developed for this research.  
 

Theoretical Framework 
According to the Merriam-Webster’s dictionary, syllabus is defined as a summary, a course 

of study, or an outline. Matejka and Kurke (1994) proposed that there are four key functions of a 
syllabus: a legal agreement between the instructor and the student, the student and the university, 
and the instructor and the university; a communication device regarding the learning outcomes 
and goals of a program of study; a plan or description of the events to occur within the course; a 
cognitive map, outlining the way in which knowledge will be shaped by the content of the 
course.  

Baker (2001) suggested that “the syllabus may have begun as a modern administrative 
overlay, but it has become a powerful teaching tool, … used to communicate important aspects 
of the course to students” (p. 391). We recognized that what is presented on the syllabi may be 
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vastly different from what is enacted in the classroom. In many regions, the course syllabus, is as 
Matejka and Kurke (1994) suggested – a legal contract, a plan, a communication tool, and a 
cognitive map. As such, the details presented in a syllabus are at the very least a good starting 
point for examining the extent to which research is informing the practice of mathematics teacher 
educators – but may not present the full picture.  

Very few studies exist that examine mathematics teacher education syllabi from a global or 
regional perspective. The studies that do exist largely focused on common elements (Taylor & 
Ronau, 2006), programmatic goals reflected in syllabi (Harrington & Enochs, 2009), and also 
tended to be regionally situated. We found no studies that explored the relationship between 
research and practice from the mathematics teacher educator’s perspective. This research aims to 
fill this gap. 

Relevant Literature 
Reflection 

Prospective teachers need opportunities to learn how and to engage in thinking about their 
teaching. Artzt and Armour-Thomas (2002) contended that for teachers to develop in their practice, 
they must engage in reflection before, during, and after implementing a lesson. In the same way, 
prospective teachers must participate in the various forms of reflection throughout their teacher 
preparation program (Chapman, 2008). Three different types of reflection have been proposed: a 
priori reflection, where a pre-service teacher thinks in advance about a topic; initeri, where a pre-
service teacher engaging in reflection in the moment of a task or teaching; and a posteri, where 
reflection upon an action, lesson, or task occurs after the fact (Clark, Kotsopoulos, & Morselli, 
2009). 
Mathematical Tasks 

As Watson and Sullivan (2008) noted, we may distinguish between “classroom tasks”, that 
are “questions, situations and instructions teachers might use when teaching students”, and “tasks 
for teachers”, that are “the mathematical prompts, many of which are classroom tasks, that are 
used as part of teacher learning” (p. 109). The authors observed that tasks for teachers also serve 
different purposes. Consequently, the understanding promoted by mathematical tasks in teacher 
education is a blend of the pedagogical and mathematical, with an emphasis on one dimension or 
the other, depending on the way the teacher educator implements the tasks.  
Lesson Study 

Adopted from practices of Japanese teachers, lesson study in pre-service teacher education has 
been has been widely embraced internationally (Fernandez, 2005). Lesson study is a process aimed 
at improving teaching practices by involving groups of teachers collaborating and reflecting upon 
lesson plans developed jointly, and then taught by one or more teachers while the other teachers 
observe. Studies have shown that lesson study enhances the pedagogical practices of teachers, the 
development of pedagogical practices amongst pre-service teachers, and also improves student 
learning outcomes (Post & Varoz, 2008).   
Assessment 

 Generally accepted in mathematics education is the need for pre-service teachers to engage 
in assessment practices through the act of analyzing pupil level mathematization. Studies in the 
area of assessment practices for pre-service teachers address various issues including the 
preconceived notions that affect pre-service teachers’ evaluative skills (Morris, 2007) and the 
affects of pre-service teachers’ traditional conceptions of mathematics assessment opposed to 
newer assessment reform ideas. The act of analyzing pupil level mathematization gives pre-
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service teachers the opportunity to experience authentic assessment practices that encourage and 
support further learning. 
Theory and Practice 

 Numerous scholars have identified the extreme challenges and great necessity in connecting 
theory and practice for pre-service teachers and practicing teachers (Jaworski, 2006). The need for 
connecting theory or research to practice stems from the concern that practices of teachers are not 
stimulated or perhaps supported by research, and are increasingly required to engage in evidenced-
based discourses in their practice. Research in this area considers the ways in which pre-service 
teachers make connections between research and practice when learning to teach (McDonnough & 
Matkins, 2010),  the consumption of research in the pedagogical approaches of practicing teachers 
(Mathern & Hansen, 2007), and theoretical perspectives (i.e., challenges with making connections; 
ways to occasion connections) (English, 2003; Heid et al., 2006). 
Policy and Politics 

 Policy documents pervade mathematics education, particularly in the form of curriculum and 
teaching standards and guidelines for teacher preparation programs (NCTM, 2000; NCATE, 2003). 
Although these documents are US-specific, parallel documents drive what is taught and by whom 
throughout the world. In this light, mathematics education is considered a highly political act, to the 
point that the dominant population holds the power and “policy and most research about diversity, 
cultural pluralism and a Eurocentric curriculum evolve around this conception of power” 
(Popkewitz, 2004, p. 254).  
Equity and Diversity 

 Widely documented in mathematics education is the underachievement and marginalization of 
ethnically, racially, linguistically, academically, or sexually diverse students (Lee, 2002; Richardson, 
2009). There have been numerous factors identified as contributing to the underachievement and 
marginalization of certain populations of students that include:  pedagogical factors (Esmonde, 
2009), teacher biases and teacher preparation (Sleeter, 2001). Such research points to the fact that 
there may be serious deficiencies in the ways in which some students are permitted to learn. 
Consequently, the way in which teachers are prepared during pre-service teacher education is a 
central concern. 
Affect 

 Beginning with studies on problem solving and meta-cognition, research on affect has 
developed further in mathematics education, as evidenced by the growing amount of literature 
(Leder, Pehkonen, & Törner, 2002; Maasz & Schlöglmann, 2009). Traditionally, three key 
components of affect are studied: emotions, beliefs, and attitudes (McLeod, 1992). Goldin (2002) 
also introduced the concept of meta-affect. For our aim, a specific sub-theme is worthy of 
consideration: teachers’ affect, with a particular reference to teachers’ beliefs about mathematics 
and its teaching and learning, seen as a driving force influencing teachers’ instructional practice 
(Philipp, 2007). 
Content Knowledge 

 In the current decade, many scholars have attempted to describe the aspects of a teacher’s 
content knowledge that contributes to their teaching effectiveness. A US report called for 
mathematics teachers to possess deep understanding of mathematical content at least three years 
beyond the level they teach and delineates topics within specific content strands (e.g., number and 
operations; algebra and functions; geometry and measurement) that prospective teachers must know 
well (CBMS, 2001). Other scholars describe content knowledge for teaching mathematics in less 
content-driven ways. Ball, Thames, and Phelps (2008) categorized four domains of “mathematical 
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knowledge for teaching” (p. 399), including common content knowledge, specialized content 
knowledge, knowledge of content and students, and knowledge of content and teaching.  
Pedagogical Content Knowledge 

 Shulman (1986) described the different components of teachers’ knowledge. Among them, there 
is pedagogical content knowledge, a special blend of mathematical and pedagogical and knowledge, 
described as “an understanding of what makes the learning of specific topics easy or difficult; the 
conceptions and preconceptions that students of different ages and background bring with them to 
the learning of those most frequently taught topics and lessons” (p. 9). As Ball (1990) observed, it is 
important to help prospective teachers to “learn to do something different from – and better than – 
what they experienced in mathematics classes” (p. 11). More recently, Even and Tirosh (2008) 
explored the issue of teacher knowledge and understanding of students’ mathematical learning and 
thinking, as a significant part of pedagogical content knowledge. 
Technology 

 Some of the issues and implications addressed through technology research include: 
professor demonstrated or modeled use of mathematics technology (Sturdivant, Dunham, & R., 
2009), opportunities for pre-service teachers to engage in investigation of mathematics 
technology (da Ponte, Oliveira, & Varandas, 2002), and authentic implementation of 
mathematics technology by pre-service teachers (Lin, 2008). Studies have shown that when these 
three teaching strategies are enacted in pre-service classrooms, the result is a pre-service teacher 
with maximized and current knowledge and understanding of technology integration in a 
mathematics classroom (Blubaugh, 2009; Niess, 2001)  
  

Methods 
Using email, we solicited the submission of syllabi from colleagues around the world using 

primarily the listserv mailing lists from the Psychology of Mathematics Education.  In total, 146 
syllabi were collected which ranged from K-12 to graduate level. We were unable to obtain 
representation from every continent.  This pilot research focuses on a sample of 10 syllabi (one 
or two each) in total from: Australia, Canada (2 analyzed), England, Ireland, Italy, Malaysia, 
New Zealand, and the US (two analyzed). 

The Mathematics Teacher Education (MTEd) Instrument was developed and used to examine 
the syllabi (see Appendix A). The MTEd Instrument is a rubric that explores the level in which 
the research areas mentioned in the introduction are evidenced within a syllabus (see Appendix 
A for a brief version of the instrument). The level four criteria was an outgrowth of the existing 
research on optimal recommended learning opportunities for pre-service teachers learning how 
to teach mathematics (Arbaugh & Taylor, 2008). Low, moderate, and high tags were assigned to 
a syllabus based upon the cumulative level obtained from the syllabus, determined by adding up 
the assigned levels from each of the individual research areas identified. Descriptive statistics 
were computed to summarize overall levels across the 11 research areas analyzed.  

 
Results and Discussion 

 Mathematical tasks, assessment, belief and attitudes, lesson study, and equity and diversity 
were the lowest represented on the syllabi (see Table 1). Additionally, assessment had the 
greatest amount of variability. All but one syllabus achieved an overall level of “moderate” in 
terms of representation of the research areas on the instrument (see Appendix A for a description 
of the overall level ranges). One syllabus achieved a “high” level in terms of representation of 
the research areas. None of the samples analyzed for the pilot achieved a low level in terms of 
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research areas. The mean overall level assigned to the syllabi was 27.7 and the standard 
deviation was 3.53. The overall level assigned to the syllabi ranged from 22.0 to 34.0.  

There is preliminary evidence to suggest that some areas may be particularly overlooked. We 
note again, that while our pilot analysis of course syllabi showed moderate evidence of research-
to-practice connections for mathematics teacher educators, connections may nevertheless exist in 
classroom practices. However, the absence of evidence has led us to question the importance of 
course content transparency to students. Numerous scholars have argued that this sort of 
transparency is essential and indeed may be why some institutions have policy statements 
regarding course syllabi (Adler, 1999; Baker, 2001; Matejka & Kurke, 1994). It is also important 
to note that items may be stated on a syllabus and not enacted in the classroom.  
 
Table 1. Mean levels (n = 8) 
      Mean   Min Max  STD Dev 
Reflection 
Mathematical tasks 
Lesson study  
Assessment 
Theory and practice 
Policy and politics 
Equity and diversity 
Beliefs and attitudes 
Content knowledge 
Pedagogical knowledge 
Technology 

3.50 
1.90 
2.20 
2.00 
2.50 
2.60 
2.10 
2.00 
2.80 
3.00 
2.80 

 2.00 
1.00 
1.00 
1.00 
1.00 
2.00 
1.00 
1.00 
1.00 
1.00 
1.00 

4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 

0.71 
0.99 
1.32 
1.25 
1.08 
0.84 
1.20 
1.05 
1.22 
0.94 
1.14 

 
Conclusions 

In the pilot sample, research-to-practice was only moderately evident in the syllabi analyzed 
for our pilot study. The MTEd Instrument appears to be a useful tool for this analysis. Our goal is 
to now engage in the analysis of the full data set. There are several limitations to this study 
which include: language barriers existed for some colleagues who may have wanted to 
participate but could not translate their documents or understand which document we were 
interested in analyzing, the syllabi provided to us likely does not represent what is actually 
enacted in the classroom, this research only considered the research-to-practice take-up by 
mathematics teacher educators. It would be of great interest to explore the way in which the pre-
service teachers incorporate (or not) research in their subsequent practice, distinguishing between 
pre-service teachers who participated in courses that exhibited low, medium, and high research-
to-practice evidence within the syllabi. Finally, the MTEd Instrument may need elaboration or 
revision. We may have missed other major bodies of research that contribute to the field of 
mathematics teacher education and mathematics education. We also recognize that a wide range 
of culturally-relevant pedagogies exist and may be unique to a particular mathematics teacher 
education program. The MTEd Instrument is intentionally not designed to address culturally-
relevant pedagogies but could benefit from such elaborations in certain settings.  
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Appendix A: MTEd Instrument (brief version) 
Low evidence of research   
(less than 22) 

Moderate evidence of research 
 (total assigned levels from 22 -32 )  

High evidence of research 
(total assigned levels from 33 -44 ) 

Categories Level 1 Level 2 Level 3 Level 4 
Reflection 
 

NO or limited opportunities 
to engage in a priori, initeri, 
a posteri reflection. 

Opportunities to engage in only 
one type of reflection. 

 Opportunities to 
engage in only 
two types of 
reflection. 

Opportunities to engage in a priori, 
initeri, a posteri reflection. 
 

Mathematical 
Tasks 
 

No direct engagement with 
mathematical tasks. 

Opportunity to engage only in 
either pupil or pre-service level 
tasks. 

Some 
opportunity to 
engage in both 
types of tasks. 

Extensive opportunity to engage in both 
types of tasks. 

Lesson Study 
 

No lesson planning. Developing individual or 
collaborative lesson plans that 
are not enacted. 
 

Developing 
lesson plans 
individually or 
collaboratively 
that is presented 
to the class. 

Developing lesson plans collaboratively; 
presented to the class; and reflected 
upon collaboratively or individually. 

Assessment 
 

No opportunities to engage 
in assessment. 

Limited opportunities to analyze 
pupil level mathematization.  

Some 
opportunities to 
analyze pupil 
level 
mathematization.  

Extensive opportunities to analyze pupil 
level mathematization.  

Theory and 
Practice 
Connections 
 

No opportunities to engage 
with research. 
 

Limited opportunities to engage 
with research through course 
readings and discussions because 
of language barriers. 
 

Some 
opportunities to 
engage with 
research through 
course readings 
and discussions 
(course is 
somewhat 
grounded in 
research and 
research is 
evident in the 
course content). 

Extensive and authentic opportunities to 
engage in and with research (course is 
grounded in research and research is 
evident in the course content). 

Policy and Politics 
of Mathematics 
Teaching 
 

No evidence of any 
exploration of the political 
aspects of mathematics 
education. 

Limited evidence of exploration 
of the political aspects of 
mathematics education. 
 

Some evidence 
of exploration of 
the political 
aspects of 
mathematics 
education. 

Extensive evidence of exploration of the 
political aspects of mathematics 
education. 

Equity and 
Diversity 
 
 
 
 

No evidence of any 
exploration of the equity 
and diversity considerations 
in mathematics education. 

Limited evidence of such 
exploration. 

Some evidence 
of such 
exploration. 

Extensive evidence of exploration of the 
equity and diversity considerations in 
mathematics education. 

Affect No evidence of addressing 
the implications of affect on 
the teaching of 
mathematics. 

Evidence of addressing affect in 
the teaching of mathematics. 

Evidence of 
addressing and 
challenging 
affect. 

Evidence of addressing, challenging, 
and potentially changing affect. 

Content 
Knowledge 

No evidence of exploration 
of content knowledge at 
any level. 

Engaging in a selective 
component of content 
knowledge at the instructional 
level of the students. 

Engaging in 
content 
knowledge at the 
level of 
instruction of the 
students. 

Engaging in broader ranges of content 
knowledge beyond the level of 
instruction of the students. 

Pedagogical 
Content 
Knowledge 
 

Didactic methods of 
introducing pedagogical 
knowledge (little 
opportunity for critical 
analysis). 

Interrogating pedagogical 
strategies (limited opportunity 
for critical analysis). 

Interrogating and 
developing, 
pedagogical 
strategies (some 
opportunity for 
critical analysis). 

Interrogating, developing, enacting, and 
analyzing pedagogical strategies 
(extensive opportunity for critical 
analysis). 

Technology No evidence of technology 
integration. 

Didactic methods of exploring 
technology integration. 

Evidence of pre-
service teacher 
investigation and 
implementation. 

Extensive evidence and demonstration of 
technology integration, modeling, and 
pre-service teacher implementation. 
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Video cases have frequently been developed for use in the education of preservice teachers in 
mathematics and science. While attending to the viewers’ predilections, specific content 
preservice teachers desire in mathematics and science should influence how these cases are 
created and integrated. This article investigates the content elementary teachers prefer in a 
video case specific to mathematics and science. Using Personal Construct Theory, constructs 
were identified and then analyzed using hierarchical cluster analysis. Three primary clusters 
were discovered with a very small fourth cluster. These results can be used to guide the future 
creation and integration of mathematics and science video cases. 

Introduction 
According to Walen and Williams (2000, p. 4) case methodology “refers to a pedagogical 

method in which learners [such as teachers] examine situations that deal with the practice of that 
profession.” Oftentimes, cases are used in teacher education (Cannings & Talley, 2002) 
Participants evaluate cases in a whole class university setting to try to anticipate and address 
issues that may occur and develop a repertoire to address these potential situations (Manouchehri 
& Enderson, 2003). Case study methodology has been shown to be a powerful component to 
improving teacher education in mathematics. Cases have helped teachers evaluate and address 
their classroom concerns, increase knowledge about practice, increase motivation about what 
encompasses effective teaching strategies and raise awareness of student learning (Manouchehri 
& Enderson, 2003; Walen & Williams, 2000; Wang & Hartley, 2008). Video cases are a 
common form of case, and they often designed to help prepare preservice for potential classroom 
situations while also providing a context for the university theory being addressed (Brophy, 
2004).  
 Video cases have been shown to be advantageous in helping preservice teachers develop into 
more fruitful observers. In a study by Alsawaie and Alghazo (2010), video cases were shown to 
improve preservice teachers’ ability to analyze mathematics teaching. In their study, an 
experimental group analyzed 10 video cases in mathematics throughout the semester; the control 
group did not. It was found that the preservice teachers who analyzed the videos were able to 
improve their ability to analyze mathematical lesson on two levels. The preservice teachers were 
able to focus on students’ learning more than the control group. Additionally, they were able to 
identify and comment on noteworthy events within the video case. There was a large gap 
between the control group and the experimental group in these two areas. In addition, video 
cases have been shown to improve students’ achievement on knowledge based tests (Kim, Sharp 
& Thompson, 1998; Sariscany & Pettigrew, 1997). And in a study by Stockero (2008), 
preservice teachers showed more depth to their learning when instructed using video cases. 
Those who had been instructed using video cases showed more complex thinking patterns in 
relation to reflective analysis. More specifically, the preservice teachers using video cases began 
to focus more intently on student thinking and evidence used to justify reasoning. 

It is important to have a purpose when integrating video cases. “Although video can provide 
a concrete and vivid resource for professional study, unfocused viewing is like reading a text 
without a purpose.” (Ball & Even, 2009, p. 256). In order to utilize video cases in the classroom, 
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a purpose must be defined and used to guide its integration. The article addresses this concern by 
evaluating what preservice teachers want in a video case designed to support mathematics and 
science instruction at the elementary level. Mathematics and science are examined as these are 
two areas that preservice teachers have often have problems. Bischoff, Hatch, and Watford 
(1999) found that preservice teachers were unable to write lesson plans appropriately aligned to 
national guidelines in mathematics and science; only 1 out of 10 preservice teachers were able to 
do so. Stevens and Wenner (1996) found that most preservice teachers had very weak 
understandings of how to teach mathematics and science. The preservice teachers need more 
content and methodological guidance.  
 The predilections of elementary preservice teachers in the area of video case use and 
development in mathematics and science were evaluated. Specifically, if training preservice 
teachers using video cases while focusing on mathematics and science instruction, what content 
do they voice as pertinent and relevant to their training? What do they want to see and what 
supportive information do they want from these cases? Using Personal Construct Theory (Kelly, 
1955) themes for the use of video cases were identified. These themes can be used to guide the 
future creation and integration of video cases in mathematics and science. 

Theoretical Framework 
Personal Construct Theory (Kelly, 1955) was used to guide the data collection and analysis. 

Within this theory, each person is viewed as a scientist and he/she makes active distinctions 
among objects. Elements and constructs are used for analysis. Elements are the items of analysis 
and constructs are a way of defining similarities and differences among the elements. Constructs 
are systems of thoughts and they are linked and interrelated to one another. Distinctions are 
shown mathematically as a multidimensional space where the distances demonstrate how closely 
related or unrelated constructs are to one another (Walker & Winter, 2007). In this study one 
element was used, video cases. Through questioning and comparing, preservice teachers 
identified the constructs. After the constructs were created, they were analyzed in terms of 
mathematics and science. Because this research is focusing on the use of video cases in 
mathematics and science, all of the constructs that were statistically significant at the 0.01 level 
were evaluated using hierarchal clusters to identify requisite themes. 

Methodology 
Participants 
 Ninety-three (93) preservice elementary school teachers were the participants of this study. 
They were from a culturally diverse university in the western United States. Sixty percent of the 
participants were students attaining a teaching credential in a fifth-year program after completing 
their Bachelor’s degrees. The remaining forty percent were working on the fifth year program 
while also taking courses for their Bachelor’s degree. Eighty-three percent were women and 
while this is a high percentage of women it parallels the demographics of preservice elementary 
teachers (Zumwalt & Craig, 2005). 

Procedures and Materials 
To gather the constructs for analysis, the stages as outlined by Beail (1985) were used to 

conduct and analyze the repertory grids in this study. In stage one, the elicitation of elements 
occurred; video cases were the only defined element. In stage two, the elicitation of constructs 
took place. The preservice teachers answered five different questions that focused on the use of 
video cases to: prepare for teaching, extend learning beyond what can be done traditionally, 
contrast traditional teaching, include topics you would like to see and to support preservice 
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teachers’ weak areas of preparation. Each of these questions provided feedback for the creation 
of the repertory grid constructs. Constructs can be supplied by the researcher(s) when using 
Personal Construct Theory. However for this study, participant-supplied constructs would be 
more appropriate as they would address the individual predilections of the novice teachers with 
less researcher bias. As well, elicited constructs provide better data for analysis (Fransella, Bell 
& Bannister, 2004). 

Stage three involved the creation and administration of the repertory grid. This procedure 
requires the participants to classify and evaluate the given element on a numerical scale based on 
personal beliefs (Borell, Espwall, Pryce, & Brenner, 2003). Evaluating the preservice teachers’ 
responses in stage two, the constructs were discovered and listed across one dimension of the 
repertory grid (Walker &Winter, 2007). Then the preservice teachers were asked to rank each 
construct on a five-point scale (cases demonstrating the given topic would not be helpful (1) to 
would be extremely helpful (5)). Any preservice teachers who left one or more of the constructs 
blank were not included in the analysis. 

Stage four involved the analysis of the repertory grid, with a specific emphasis on 
mathematics and science instruction. All constructs were analyzed while emphasizing a 
statistically significant correlation to both mathematics and science education. Constructs 
correlating with mathematics or science that were other specific content areas (such as social 
science or language arts) were not included. The statistically significant construct “the 
integration of various subjects into a lesson (integrated curriculum)” represented these content 
areas. The significant constructs were analyzed using hierarchical cluster analysis. The fifth stage 
was the interpretation of clusters, to be discussed in the next section. 

Results and Discussion 
Design and Data Analysis 
 The first analysis looked for correlations between mathematics and science and the other 105 
constructs identified. The relationships were determined using Phi correlation coefficients. 
Overall, there were 32 significant Phi correlations at the 0.01 level or below in reference to 
mathematics education and science education. These 32 constructs were then categorized into 
clusters to illustrate themes. 
 Ward’s method was used to analyze the repertory grids with significant correlations of the 
preservice teachers using hierarchical cluster analysis (Ward, 1963). A Euclidean metric for 
determining cluster methods is one of the components of Ward’s method. It differs from other 
methods that use a divisive algorithm to find clusters (Fraboni & Cooper, 1989; Fraley & 
Raftery, 1998). In utilizing Ward’s method, “clusters are progressively formed on the principle 
of minimization of variance” (Morey, Blashfield & Skinner, 1983, p. 314). It is more appropriate 
for this study as it identifies similar ways of thinking and showing construct connections. 
Additionally, Ward’s method is one of the better methods to use for clustering techniques as it 
shows dimension that is sensitive to profile elevation (Morey, Blashfield & Skinner, 1983). 
Inverse scree tests were used to find the number of significant clusters (Lathrop & Williams, 
1989; 1990). 

There were four distinct clusters discovered. Three of the clusters were complete clusters 
while the fourth cluster only contained one construct. Table 1 displays the constructs in their 
entirety along with the cluster membership. The mean average for each construct and an overall 
mean of each cluster is also presented. The means provide a guide to the degree in which video 
cases of this type are perceived to address preservice teachers’ trepidations in mathematics and 
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science. Constructs considered similar and in the same cluster were then described as a theme 
(Kelly, 1955).  

 
Table 1 
Video case descriptive statistics for each construct  
 Video cases demonstrating… Cluster 

Membership 
Mean SD 

Well-run classrooms 1 4.55 .77 
Real teachers working with real students 1 4.48 .97 
Classroom management 1 4.43 .85 
Lessons to improve my weaknesses 1 4.42 .96 
A variety of teaching techniques 1 4.42 .84 
How to interact with struggling students 1 4.40 .84 
What works in the classroom 1 4.30 .99 
How the teacher adapts the lesson based on 
student understanding 

1 4.28 .85 

The integration of various subjects into a 
lesson (integrated curriculum) 

1 4.10 .94 

Cluster 1 mean  4.38  
Lessons with older students (grades 4-6)  2 3.98 1.18 
Step-by-step procedures 2 3.90 1.24 
The use of manipulatives 2 3.88 1.11 
Student motivation issues 2 3.80 1.07 
Lessons to guide my strengths 2 3.79 1.21 
Attention getters 2 3.78 1.31 
How to use visuals in the classroom 2 3.76 1.20 
The use of educational tools with students 2 3.74 1.03 
Classroom routines 2 3.70 1.25 
Complex topics 2 3.65 1.21 
Classroom organization 2 3.57 1.13 
Projects with students 2 3.53 1.13 
Group work 2 3.39 1.04 

Cluster 2 mean  3.73  
Time management 3 3.76 1.24 
Mainstreamed students 3 3.74 1.11 
Trouble-spotting analysis 3 3.57 1.22 
How to prep activities  3 3.48 1.24 
Diverse student populations 3 3.47 1.20 
Expert analysis of the presented lesson 3 3.47 1.32 
Reciprocal teaching 3 3.42 1.28 
Feedback given by the teacher 3 3.39 1.24 
Time fillers 3 3.15 1.36 

Cluster 3 mean  3.49  
How to collect and pass out materials 4 2.37 1.26 
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Cluster 1 
Authentic, highly effective classrooms focusing on helping students understand was the 

first cluster. This cluster had the highest overall cluster mean at 4.38. Some of the constructs 
contained in this cluster included authentic well-run classrooms that show a variety of teaching 
techniques with multiple subject areas. In addition, teachers want to see lessons of what works in 
the classroom while factoring in preservice teachers’ weaknesses. When developing mathematics 
and science video cases, preservice teachers want to learn how to run effectively managed 
classrooms with quality curriculum being modeled. 

In terms of authenticity, it seems very important to preservice teachers that video cases 
show actual teaching without the lesson being edited down to perfection (Gainsburg, 2009; 
Sherin, Linsenmeier & van Es, 2009). The construct mirroring this idea was “real teachers 
working with real students.” Lessons need to show actual, ordinary students with typical 
responses and actions to help preservice teachers bridge the video case to the actual classroom 
setting. Authenticity is a key element (Gainsburg, 2009); preservice teachers must view the case 
as genuine and unmodified to showcase what they will actually experience in the classroom as a 
new teacher. 

Cluster 2 
The second cluster was labeled intermediate tool-based lessons with procedures showcasing 

cooperative learning. The cluster mean was 3.73, the second highest mean of all the clusters. 
This cluster focused more on routines and procedures; it seemed to focus more on viewing 
mathematics and science lessons with an emphasis on how to use tools and visuals to help 
support cooperative learning in the classroom. Evaluating the constructs contained within the 
cluster, it signifies that preservice teachers need help with the procedures veteran teachers often 
take advantage of knowing. While procedures and routines may seem innate, the preservice 
teachers in this study point out that they need these skills to be modeled and showcased through 
the use of video cases. 

When designing and/or implementing video cases, it is important to allow preservice 
teachers to see tools used in a cooperative setting. Inquiry-based instructional models generally 
encourage teachers to allow students to speak and analyze in a cooperative learning setting. This 
cluster shows that preservice teachers need to see this model in practice through the use of video 
cases. Video cases that demonstrate student thinking and talking in groups have the potential to 
help preservice teachers see and appreciate student thinking and understanding in a cooperative 
learning context (Ding, Li, Piccolo & Klum, 2007). Additionally, preservice teachers would like 
to see the use of tools at the intermediate elementary level to help them teach appropriately. 
According to Star and Strickland (2008) preservice teachers do have difficulty noticing what is 
mathematically significant when analyzing a video case. They need guidance to understand the 
mathematical content and how it supports student learning. Video cases developed and 
implemented with the use of tools, procedures and cooperative learning can be used to cultivate 
this concept. 

Cluster 3 
Preparing, timing and analyzing lessons with diverse students was the third cluster identified. 

This cluster’s mean was 3.49. The primary theme for the cluster was the need to understand what 
the preservice teachers are viewing in a mathematics and science video case. They need feedback 
to better understand what they are seeing and how it relates to effective (or ineffective) teaching. 
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In addition, diverse student populations should be integrated into the video case with specific 
analysis of the students’ varying academic and social needs.  

Expert analysis of the video case is one of the components of this cluster. According to the 
constructs “Expert analysis of the presented lesson” and “Feedback given by the teacher,” 
preservice teachers need experts to guide their viewing of the case. The experts can be available 
online or can be the university instructor. Using experts to guide video case observation is 
possible (Herrington & Kervin, 2007) and expert analysis can help the viewers understand what 
they are looking at and why it is (or is not) quality instruction (Beck, King & Marshall, 2002). 
Sherin and van Es (2005) describe video cases as helping preservice teachers notice and 
understand what they can and should be looking for in classroom situations, particularly what 
encompasses quality instruction in the classroom setting. It is important to also note that the 
video cases can also be analyzed with the university instructor serving as the expert while using 
support from the preservice teachers. With this kind of analysis, it bridges the authenticity of the 
video case to the preservice teachers allowing them to contribute to the analysis (Gainsburg, 
2009). 

Cluster 4 
 This fourth cluster has just one construct “How to collect and pass out materials” and was 
labeled Materials distribution and collection. The mean for this construct was 2.37. Because this 
cluster contains only one construct, it cannot be considered a coherent super-ordinate construct. 
Nonetheless, it shows that when teaching mathematics and science, preservice teachers need 
guidance and assistance from video cases outlining the distribution and collection of the 
necessary mathematics and science materials and supplies. Preservice teachers are novices and 
procedures such as the distribution/collection of materials may be perceived as confusing or 
overwhelming. Seasoned teachers have established a routine that seems natural and instinctive. 
So while collecting and passing out materials may seem straightforward and uncomplicated to 
experts, it can pose a daunting challenge to those just entering the field, particularly in 
mathematics and science where tools are often used. 

Conclusion 
The results of this study provide guidance regarding the integration of video cases in 

mathematics and science elementary preservice teacher education. Video cases have been shown 
to benefit preservice teachers’ instruction; they can improve how preservice teachers’ ability to 
analyze lessons greatly improves with their integration (Alsawaie & Alghazo, 2010; Star & 
Strickland, 2008). Stockero (2008) found that video cases can enhance how preservice teachers 
contemplate student thinking and reflective analysis. However, it is important to also consider 
not just video cases per se, but how video cases should be used in the classroom to support 
preservice teachers’ learning and development. How effective video case integration is can be 
greatly influenced by how they are used in the classroom (Darling-Hammond & Hammerness, 
2002). 

Preservice teachers cannot be expected to know everything they need to be highly effective 
teachers, as they are novices. It is up to the experts (professors) to use the findings in this study 
to help guide the integration of video cases in university coursework. While preservice teachers 
may articulate that they need help with using tools to support instruction in mathematics and 
science, it is up to the professor to determine what tools can best meet his/her students’ needs 
while integrating constructive video cases examples. 
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If one is going to implement cases, it is important to also understand preservice teachers’ 
predilections in terms of video cases integration. Deciding how to develop or use video cases in 
the mathematics and science classroom is a multifaceted process (Wang & Hartley, 2003). The 
goals of the lesson, the finished instructional product, along with curricular ideas somewhere in 
the middle of the goals and finished product must all be considered. This research provides some 
guidance in relation to the requisite features as voiced by preservice teachers. These features can 
be used to support and enhance the teaching of mathematics and science by providing a 
framework for video case integration. 
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PRESERVICE TEACHERS USING LESSON STUDY: RESEARCHING THE NATURE 
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In this study we researched elementary preservice teachers who are using lesson study in a 
mathematics field experience. More specifically, we document the nature of discussions in the 
post-lesson meetings by examining the topics discussed in these meetings and exploring if there 
is a change in the nature of the discussions. Findings suggest that lesson study, which is 
becoming a common way to foster communities of practice among inservice teachers, can be a 
useful tool in early field experiences to support preservice teachers to be reflective on their 
teaching and to learn authentic teaching knowledge.  

Teacher education research suggests that teachers learn a lot from the professional 
community of practice they belong to, and that meaningful teacher learning occurs when teachers 
have opportunities to work in professional communities in order to solve problems that are 
relevant to their teaching practice (Ball & Cohen, 1999; Hiebert, Morris, & Glass, 2003). When 
teachers participate in communities of practice, they can learn mathematical content knowledge, 
pedagogical content knowledge, and how to respect other’s knowledge (Nickerson & Moriarty, 
2005), which helps teachers reflect productively on their profession. 

A community of practice can be created when using lesson study. Lesson study is a model 
for school-based professional development that emphasizes reflection on practice. Lesson study 
is frequently used in preservice and inservice teacher education in Japan as a strategy for 
improving instruction (Fernandez & Yoshida, 2004; Stigler & Hiebert, 1999). In lesson study, a 
group of teachers work together to improve their lessons and produce knowledge for successful 
teaching by going through cycles of planning, teaching, observing and reflecting, and revising 
lessons. 

However, in the U.S., the lesson study method has not been widely used in preservice teacher 
education, even though it has increasingly been applied to professional development for 
inservice teachers. Lesson study could be useful for preservice teacher education in that it can 
help produce good quality teachers, who have appropriate mathematical content knowledge, the 
desire to understand student thinking, and the ability to use resources effectively in order to 
promote students’ meaningful learning (Hart, Alston, & Murata, 2011; Lewis, Perry, & Hurd, 
2009; Parks 2008). Also, lesson study can encourage preservice teachers to have a commitment 
to lifelong professional development because teachers who have experienced the advantages of 
lesson study may have a positive attitude towards communities of practice, and this can be a 
driving force to continue collaborating with peers after becoming a teacher. 

In this study we researched elementary preservice teachers who are using lesson study in a 
mathematics field experience. More specifically, we document the nature of discussions in the 
post-lesson meetings by examining the topics discussed in these meetings and exploring if there 
is a change in the nature of the discussions.  

To achieve this purpose, the following research questions were investigated:  
1. What topics are covered in a lesson study meeting?   
2. What is the nature of preservice teachers discussions during lesson study meetings?  
3. Are there aspects of the nature of discussions that can be quantified?  
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Literature Review 

Theoretical Perspective on Lesson Study 
Lesson study is based on two major theoretical perspectives: cognitive theories of teacher 

learning and situated learning theories (Lewis, Perry, & Hurd, 2009). Cognitive theories explain 
learning as changes in an individual’s mental schema. From this perspective teachers construct 
their knowledge for teaching from their prior perceptions; that is, the knowledge development is 
accounted for as a transformation and a reorganization of teachers’ prior knowledge (von 
Glasersfeld, 1995; Hashweh, 2003). In lesson study, participants confront conflicts between their 
own ideas and the ideas they receive from their colleagues, research, students, and curriculum 
and try to solve the cognitive imbalance through the practical research lesson and discussion. 
Situated learning theories explain learning as the result of participation in a community of 
practice. Participation and communication forms the identity of members, which affects their 
future actions and commitments (Lave & Wenger, 1991). Effective teacher learning occurs when 
knowledge for teaching, beliefs, and practice are shared in a community (Borko, Davinroy, 
Bliem, & Cumbo, 2000). In lesson study, preservice teachers can develop a professional 
community and establish those practices which are desirable for instructional improvement. 

A Model of Lesson Study 
Lesson study is a professional learning approach using a collaborative community for living 

instruction. Teachers using lesson study go through the following steps: (1) Setting goals; (2) 
Planning the lesson; (3) Teaching, observing, and debriefing the lesson; (4) Revising and re-
teaching; and (5) Reflecting and sharing results (Fernandez & Yoshida, 2004; Stigler & Hiebert, 
1999; Stepanek, Appel, Leong, Mangan, & Mitchell, 2007). Setting goals means identifying a 
research theme by considering students’ current knowledge, the key concepts, and the existing 
curriculum. Planning the lesson involves developing a classroom lesson and writing a lesson 
plan. For the teaching, observing, and debriefing the lesson step a teacher from the lesson study 
group conducts a lesson while other group members observe the lesson to collect data about the 
effectiveness of the lesson. After the lesson, the teachers have debriefing time to discuss the data 
from the lesson. The revising and re-teaching step involves revising the original lesson plan 
based on feedback from colleagues and then teaching the same topic again to a new group of 
students with the revised lesson plan. Finally, in the reflecting and sharing results step, the lesson 
study group reports on what they learned from the research lesson and group discussion.  

However, in this study, we will use the term lesson study in a more narrow sense. That is, we 
use it to refer to an approach which uses the steps mentioned above except for part of the fourth 
step. This is because participants in this study were not asked to re-teach a revised lesson plan 
due to constraints of the field experience. Therefore, this modified version of lesson study 
includes planning, teaching, observing, debriefing about the research lesson, and writing a 
revised lesson plan. Debriefing about the research lesson (lesson study discussions) consists of 
three stages: 1) the instructor’s self-reflections; 2) a discussion of the lesson based on 
observations from peers; and 3) plan of the next lesson. In the first stage, a pair of PSTs who 
taught the lesson shares their observations about how the lesson went. In the second stage, the 
other participants share their observations about how the lesson can be improved. In the final 
stage, participants brainstorm ideas about how the next lesson should be taught. 
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Advantages of Lesson Study 
Recently, the National Research Council (2005) noted that elementary children have to be 

taught mathematics by knowledgeable teachers, and that practice-based learning is important in 
order to produce knowledgeable teachers in mathematics education. The NRC emphasized the 
potential of lesson study because it could increase teachers’ content knowledge, their 
understanding of students’ thinking, and could help teachers pursue reform-oriented teaching. 
Marble (2007) researched a lesson study approach in an early field experience. He found that 
there was striking progress in lesson design, classroom management, the quality of students’ 
engagements through meaningful activity, and the quality of student assessments. Furthermore, 
Lewis, Perry, and Hurd (2009) reported that lesson study improves instruction in several ways, 
namely, lesson study changes teachers’ knowledge, beliefs, professional communities, and 
teaching-learning resources; and these changes are related to instructional improvement. 
Additionally, Lewis (2009) studied the nature of knowledge development in lesson study based 
on a lesson study case from a Japanese elementary school. She reports three kinds of benefits 
from lesson study: development of knowledge, interpersonal relationships, and personal qualities 
and dispositions. Research studies such as the ones mentioned above have shown that lesson 
study has been an effective tool in teacher learning. In this study we explored if elementary 
preservice teachers would also benefit from an adapted version of lesson study by researching 
the nature of post-lesson discussions in an early field experience.   

 
Methodology 

The Participants and the IMB Project 
A lesson study group consisting of six preservice teachers, a field experience instructor, and 

an inservice teacher (host teacher), were the focus of this study. The six elementary preservice 
teachers (PSTs) enrolled in mathematics and science methods courses concurrently with the field 
experience course. Preservice teachers attended a 75-minute mathematics methods course twice a 
week and went to an elementary school once a week to teach children one lesson. The PSTs 
taught mathematics during the first half of the semester (6 weeks), and taught science during the 
second half (6 weeks). PSTs were juniors and most of them had considerable motivation to learn 
how to teach mathematics because they had to teach their students mathematics based on what 
they had learned in their mathematics methods course. 

In the field experience, the six PSTs are placed in an elementary classroom to implement 
Iterative Model Building (IMB) cycles. IMB cycles consist of four stages: formative assessment 
interviews; model building sessions; teaching a lesson; and the lesson study meeting. Prior to the 
teaching of the lesson, pairs of PSTs conduct formative assessment interviews (FAIs) and then 
share information about children’s thinking in a model building session. The goal of FAIs is to 
understand students’ thinking about the topics of the lessons and use this information when 
planning future lessons. Then a pair of PSTs teaches a whole-class lesson that had been planned 
the previous week with the lesson study group, while the others in the lesson study group 
observe that lesson. After teaching the lesson, the lesson study group deliberates about the 
lesson, in order to give feedback, and discuss how to improve it for future teaching. Then another 
pair of PSTs presents a draft of the next lesson to the lesson study group and the lesson study 
members suggested ideas for improving the lesson. The PSTs take turns teaching the whole-class 
lesson each week, and each pair of PSTs teach two mathematics and two science lessons during 
the semester. 
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Data Collection 
We watched videos of the lesson study discussions and analyzed their transcripts in order to 

investigate the interactions between the participants in a lesson study group. Only the second and 
the fifth lesson study meetings out of six mathematics lesson study meetings were used for this 
analysis. During the first lesson study meeting, PSTs were learning the lesson study method, 
while the sixth lesson study meeting included content for the preparation of a science lesson that 
would be taught the following week. Furthermore, the two PSTs who taught the lesson were the 
same in both the second and the fifth session, even though the roles of the main teacher and the 
assistant teacher were changed. Thus, we decided it was more meaningful to compare the second 
and the fifth lesson study sessions for the purpose of this study.  

Data Analysis 
To analyze data we used the content analysis method (Krippendorff, 2004) and the 

reconstructive coding method (Carspecken, 1996). Content analysis is used not only to find out 
the meanings of data but also to articulate some working categories of codes by counting the 
occurrences of those codes. Content analysis is conducted following three steps: (a) Locate the 
data that should be representative of some describable universe of content; (b) Do the coding; 
and (c) Do quantifiable analysis of the data.  After collecting the data from the lesson study 
meetings, we started coding the data. For specific coding, we used the reconstructive coding 
method based on the principle of inference and the principle of pragmatics. We started with emic 
coding, which involves developing coding based on an internal understanding of the meaning of 
the data.  

First, we began the data analysis by reading through the transcripts of the post-lesson 
discussions, focusing on the level of meaning that is evidenced in a meaning field or a meaning 
reconstruction. Then, we assigned a short-form label for meaning to sentences and then linked 
that back to data through levels of inference. We named the codes according to three levels of 
inference (high inference, medium inference low inference) – based on how close the codes were 
to the data. After labeling, this coding got layered in two ways: collecting the first level codes 
into families or super codes; and describing the relationships among the super codes as themes. 
Finally, these codes, families, and super codes were combined to produce thematic categories or 
statements by uniting and distinguishing between the various levels of codes. After completing 
the emic coding, we tried etic coding, which involves developing codes grounded in an external 
understanding of the meaning of the data. Etic coding was conducted by referring to the relevant 
literature in order to refine the emic coding as a pathway for quantifiable analysis of data (Lewis, 
2009; Marble, 2007; Parks, 2008; Lewis, Perry, & Hurd, 2009). That is, we examined some of 
the categories used in those studies and looked for categories that overlapped with the ones we 
found in order to narrow down our codes into fewer categories by combining those categories. 
Through this process, we arrived at the refined categories of lesson plan, student, collaboration, 
beliefs, and miscellaneous. After the coding work, we counted the frequency of contributions of 
words related to each code in order to investigate if the nature of the preservice teachers’ 
discussions could be described quantitatively. 

Analysis and Findings 
In this section, following the order of the research questions, we first describe the kind of 

topics covered in the lesson study meetings and then examine the nature of lesson study 
discussions and finally present our attempts to quantify the change in the quality of discussions.  
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Topics Covered in Post-Lesson Discussions at Lesson Study Meetings 
Through the coding of the transcripts, we found that the topics covered in the lesson study 

meetings fell into five categories: lesson plan, student, collaboration, beliefs, and miscellaneous. 
The category of lesson plan includes lesson goals, gear up and gear down activity, launch, 
investigation, summarize, time, task, manipulatives, and group organization. The category of 
student includes students’ thinking (strategies), difficulty, attitude, prior knowledge, students’ 
needs, and response. The category of collaboration includes sharing experience, suggestion, 
reflection by lead teachers, feedback from observer teachers, and elaboration. The category of 
beliefs includes the beliefs about students, beliefs about teaching, and beliefs about mathematics. 
The category of miscellaneous includes things such as chatting and announcements. 

Here are some examples of quotes in each category. A comment like “we met our objectives, 
which were finishing and sitting together, covering an area, counting sets of objects up to 60” 
was coded in the category of lesson plan because the comment mentioned the lesson goals. A 
comment like “They [students] all seemed more confident with the shapes than they are with like 
numbers” was coded in the category of student because it referred to the students’ attitude. A 
comment like “I am thinking if you had done that you could have said what was the least number 
of shapes you could make it with or what was the largest number [of them]” was coded in the 
category of collaboration because it is related to a suggestion to improve teaching. A comment 
like “it’s hard to get everything within that short time, [and] I think that’s why I got frustrated 
because I wasn’t trying to fit things in” was coded in the category of beliefs because the remark 
is related to teaching difficulty, namely beliefs about teaching. 

The Nature of Preservice Teachers Discussions in Lesson Study 
After investigating the topics discussed in lesson study meetings we researched the nature of 

those discussions. Three categories did show remarkable change in the frequency and quality of 
contributions from participants: lesson plan, collaboration, and student. We now describe the 
nature and quality of discussions for these three categories.  

First, in the category of lesson plan, PSTs in the second lesson study were more focused on 
classroom management and group organization for implementing the activity. However, in the 
fifth lesson study, the preservice teachers focused on content knowledge as well as on 
pedagogical knowledge by emphasizing the connection between the previous task and the next 
task. Also, in the second lesson study, the facilitator, Susan, and the host teacher, Ms. Tyler, had 
the main roles leading the discussion about planning  the next lesson; while in the fifth lesson 
study, the preservice teachers led the discussion about lesson planning.  

Next, in the category of student, in the second lesson study PSTs focused mainly on the 
students’ superficial attitudes rather than on their mathematical thinking. However, in the fifth 
lesson study, the preservice teachers reflected more on the students’ thinking, with detailed 
sample evidence. Also, in the fifth lesson study, PSTs often quoted the result of probing the 
students’ thinking, in the form of an interview, in order to back up their observations.  

Finally, in the category of collaboration, in the second lesson study, the facilitator and host 
teacher chiefly led the discussion about suggestions and reflections on lesson. However, in the 
fifth lesson study, the role of the facilitator and the host teacher (who was absent on that day) 
changed, from a person who actively suggested opinions to a person who listened to preservice 
teachers’ opinions and gave only simple feedback remarks such as “good,” “I like that idea,” and 
“Yeah.” Also, in the fifth lesson study, preservice teachers reflected on the lesson in terms of 
launch, investigate, and summarize parts, referring to the structure of the lesson plan.  
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Quantifying Changes in Lesson Study Discussions 
We attempted to quantify the change in the quality of lesson study discussions in two ways:  

the change in the number of contributions to each category of topics and the change in the 
frequency of participation in the lesson study discussions. Given that lesson study meetings are 
opportunities to reflect on practice and to deliberate on how to improve teaching, we thought that 
one indicator of the quality of such meetings would be that all participants contribute to the 
discussions.  We also thought that the frequency of contributions of all participants would tend to 
increase throughout the weeks and get to a point when it would be about equal for all members. 
As a result of keeping track of the frequency of participants’ contributions for each category, we 
found that the overall quality of lesson study meetings improved (see Table 1).  
 

Category Second lesson study Fifth lesson study Increase 
Lesson plan 11 42 31 
Student 40 56 16 
Collaboration 85 106 21 
Beliefs 8 9 1 
Miscellaneous 12 18 6 

Table 1. Change in the frequency of contributions made in post-lesson discussions 
In the category of lesson plan, the number of contributions increased from 11 to 42. In the 

category of student, the number of contributions increased from 40 to 56; and in the category of 
collaboration, the number of contributions increased from 85 to 106. In the categories of beliefs 
and miscellaneous, the number of contributions increased from 8 to 9 and from 12 to 18 
respectively. Based on this result, the change in the category of lesson plan was the most 
remarkable, with an increase of 31; collaboration was second, with an increase of 21; and the 
change for the category student was a noteworthy third, with an increase of 16. The increase in 
the category of lesson plan is attributable to the preservice teachers’ active participation in 
planning the next lesson and suggesting appropriate activities. The increase in the category of 
collaboration is attributable to the active interaction between lesson study members, in things 
such as feedback and suggestions. The increase in the category of student is derived from the 
participation of various preservice teachers when reflecting on students’ thinking and responses.  

 
PST Second lesson study Fifth lesson study Increase 
Amy 8 10 2 
Christina 26 19 -7 
Erin 17 37 20 
Hera 6 32 26 
Jane 17 30 13 
Mary 0 22 22 
Susan 50 81 31 
Ms. Tyler 34 Absent  

Table 2. Change in the number of participations in post-lesson discussions 

In reference to the change in the number of participations in lesson study discussions, five 
out of six preservice teachers showed an increase in their contributions, while one preservice 
teacher showed a slight decrease in the number of her contributions (see Table 2). Also, the 
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participation rate during the fifth lesson study shows more equal frequency of contributions than 
that of the second lesson study. Particularly, Mary who was the only African-American 
preservice teacher in the lesson study group and Hera who was shy about participating in the 
second lesson study discussion showed a remarkable change in the number of times they 
participated.  

Discussion and Conclusion 
In this study we investigated the topics covered in lesson study meetings and the nature of 

preservice teachers’ discussions during their participation in lesson study meetings. We 
examined the nature of these discussions qualitatively and quantitatively. We found that in lesson 
study meetings, discussion topics fell into five categories: lesson plan, student, collaboration, 
beliefs, and miscellaneous. Based on the frequency of contributions in these five categories, we 
also found that the level of preservice teachers’ discussions improved quantitatively and 
qualitatively through the use of lesson study meetings. In particular, the changes in the categories 
of lesson plan, collaboration, and student – in that order – were remarkable.  When examining 
vignettes from the transcripts, we noticed that the improvement in the category of lesson plan 
came from preservice teachers’ active participation in planning the next lesson. The incremental 
change in the category of student was derived from the preservice teachers’ participation in 
reflecting on the students’ thinking and responses. The rise in the category of collaboration was 
attributed to the active interaction between the lesson study members through feedback and 
suggestions. 

From these findings, we can see that lesson study in their early field experience was helpful 
in supporting these preservice teachers to be reflective on their teaching and to learn authentic 
teaching knowledge. These results are consistent with those of other studies showing benefits of 
lesson study (Lewis, 2009; Marble, 2007). However, in this study, the change of beliefs was not 
as much as that found by Lewis (2009) in her study. This might be because, in this study, the 
preservice teachers’ post-lesson discussions were guided by a facilitator in order for them to 
focus more on topic-centered discussions rather than in sharing their beliefs, and also because of 
the way in which we quantified this change, using the frequency of their contributions during the 
post-lesson discussion phase of lesson study.  

This study has implications for preservice teachers and teacher educators. The first 
implication is that preservice teachers would benefit from participating in a professional 
community continuously into the future. Through this early field experience, based on the IMB 
project, preservice teachers exhibited the benefits of lesson study. However, to maintain the 
benefits gained from lesson study, preservice teachers will need to create or join in an inquiry 
community with their colleagues in the future, and discuss their teaching problems or questions 
and make reflection on practice a part of their professional practice. If this disposition takes firm 
root in their teaching practice, preservice teachers will be willing to apply this approach to their 
teaching after they become inservice teachers.   

The second implication is that preservice teachers can benefit from using the lesson study 
approach in mathematics methods courses, as well as in field experiences. Lesson study is 
becoming more popular in professional development and many are embracing it as an effective 
way to improve teaching practice. In this study, we saw how these preservice teachers also 
benefited from lesson study. Our findings give some support to the importance and value of 
using this method with preservice teachers.   
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As an initial effort to challenge preservice teachers in teaching algebra for equity, we 
investigated constructing avatars in Second Life to simulate a diverse middle-grade class. 
Participants created avatars that had many of their own social-cultural characteristics along 
with algebraic knowledge.  Specific research-based guidelines are necessary to assure authentic 
and viable avatars are developed for use in classroom simulations.  

 
Introduction 

As a multi-user interactive virtual environment, Second Life (SL) has great potential for 
providing interactive, effective and engaging teaching and learning for the field of education, 
including preservice teacher education (Bransford & Gawel, 2006; Cunningham & Harrison, 
2010; Goodband, Bhakta, & Lawson, n.d.). Teaching and learning in the SL environment has 
been documented as extremely positive, enjoyable and facilitated (Gao, Noh, & Koehler, 2009; 
Ritzema & Harris, 2008).  

As animated characters with human capabilities and communication tools, avatars can be 
utilized to facilitate teaching and learning with numerous potential benefits (Blake & Moseley, 
2010). Despite the recent increasing research interests in avatar issues, constructing student 
avatars to facilitate teaching and learning in K-12 classrooms has yet to be fully studied (Annetta 
& Holmes, 2006; Hew & Cheung, 2008).  

In this study, through constructing avatars resembling a diverse student population in a real-life 
middle-grade class, we intended to take the initial effort to provide virtual teaching experiences 
for preservice teachers, specifically in the area of mathematics education. We investigated, from 
the perspective of a project team, the process of conceiving and developing a group of avatars 
which will portray middle-grade students with various socio-cultural and mathematical 
backgrounds in the simulated virtual environment for teacher preparation. We expect to gain 
insights into how to design the avatars in the best way to help address equity in algebra teaching 
for preservice teachers.  

This study describes a particular component of the work in the first phase of a 5-year NSF-
funded project. The project aims to design, develop, and test technology-enriched teacher 
preparation strategies to address equity in algebra teaching and learning for all students. The 
project endeavors to discover methods to assist in closing the achievement gap between White 
students and students of color in mathematics. A hypothesis of the project is that technologies 
such as SL can support teacher preparation for a thorough understanding of diverse learners and 
apply deep and specific mathematical knowledge in teaching.  

This study is aligned with the objective of the project to design technology-enriched teacher 
preparation strategies to address equity in algebra learning for all students. Virtual technologies 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1448



will be employed to provide preservice teachers with initial teaching simulations and experience 
in diagnosing, presenting, and evaluating activities of middle-grade student avatars in the content 
area of algebra. We hope that through the interactions between the constructed middle-grade 
student avatars and preservice teachers in SL, the preservice teachers can be better prepared for 
teaching algebra for equity. 

The following research questions guided our study:  
1. What are the social-cultural and mathematical characteristics of middle-grade student 

avatars as constructed by participants in our study?  
2. What are the perceptions about how avatar construction challenges preservice teaching in 

teaching algebra for equity? 
Theoretical Framework 

As illustrated by Sleeter (2001), most preservice teachers lack experience in confronting 
diversity issues in multicultural classes, failing to meet the expectations of working with diverse 
students. Other researchers also pointed out that ‘‘very few teacher education programs have 
successfully tackled the challenging task of preparing teachers to meet the needs of diverse 
populations’’ (Watson, Charner-Lind, Kirkpatrick, Szczesiul & Gordon, 2006, p. 396). Ladson-
Billings (1994) argued, however, culturally relevant teaching will benefit students of color since 
they have a distinct history and culture they bring into the classroom as prerequisites that should 
be nurtured accordingly. According to Lewis (2009), prospective teachers should understand that 
many students of color have the following belief (Kunjufu, 2001): 

 
I don’t become what I think I can, 
I don’t become what you think I can, 
I become what I think you think I can. 
 
Providing knowledge and experience in the classroom for prospective teachers is a significant 

component of teacher education programs. Moreno and Ortegano-Layne (2007) asserted that we 
can learn through either directly or indirectly observing people in real or fictitious situations. SL 
offers exciting opportunities for simulated teaching and learning in teacher education programs 
among other major affordances provided by SL for education such as communication, 
experience (Hew & Cheung, 2008), scaffolds and professional development (Cunningham & 
Harrison, 2010), To be specific, SL “provide(s) access to authentic simulations of…situations 
that would be otherwise impossible to experience” (Cunningham & Harrison, p.98).  

Regarding the content, mathematics educators and researchers have increasingly recognized 
the gatekeeper role of algebra in preK-12 schooling (Carraher & Schliemann, 2007). The 
concepts of change, variable, and operations have been identified as core algebra concepts in the 
middle grades mathematics curriculum (AAAS, 2000; Kulm & Capraro, 2008). In this study, we 
intended to restrict the range in mathematic ability of algebra, thus avatars were developed with 
these three mathematical concepts, and the related prior mathematical knowledge that leads to 
these concepts. 

 
Methods 

Seven graduate assistants participated in this study. All participants are pursuing doctoral 
degrees in Curriculum and Instruction at a large, Southwestern research intensive university. All 
but one participant has a background in mathematics education. The participants are actively 
involved in the NSF-funded project, fully aware of its aims and hypotheses. Before collecting the 
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data for this study, researchers informed the participants that they were faced with preservice 
teachers who are poorly prepared for working with diverse students. Several meetings were held 
for the project involving graduate assistants. During the meetings, researchers clearly indicated 
that graduate assistants were expected to construct middle-grade student avatars in SL to 
represent a sample of diverse students and thus better prepare preservice teachers for issues 
relating to diversity. Researchers also informed graduate assistants that the goal of constructing 
avatars in SL was to start considering possible interventions for preservice teachers by 
simulating a diverse student population in a real-life middle-grade class.  

Given the above prompts, the participants were asked to describe the process of constructing 
a middle-grade student avatar by filling in a survey. The survey consisted of several open-ended 
questions regarding the social-cultural and mathematical characteristics of the avatar they 
conceived. The participants were told that they were going to play the role of their constructed 
avatar in the virtual SL environment and interact with preservice teachers in later phases of the 
NSF-funded project (see Figure 1).  

Through substantive analyses of the open-ended questions in the survey, researchers 
initialized a set of response categories. The first two researchers read the responses to the survey 
individually and exchanged their ideas about the responses. After identifying the key themes of 
the responses to the survey questions, the researchers modified the initial categories to 
accommodate the responses. Responses to the survey were coded on three dimensions: (1) 
social-cultural characteristics of the avatars and underlying reasons for those characteristics, (2) 
algebraic knowledge of the avatars, and (3) perceptions about how avatar construction can 
challenge preservice teachers in teaching algebra for equity.     

 
Figure 1. Constructed middle-grade student avatars interacted with preservice teachers in the 
front of a SL classroom specially designed for the project.  
 

Results 
Social-cultural Characteristics of Avatars and Underlying Reasons 

Participants were asked to describe their avatar’s name, gender, ethnicity, grade, qualification 
for a free lunch at school, family life, first language, personality, and hobbies and interests. In 
terms of gender and ethnicity, most avatars were identical to the participants who constructed 
them (See Figure 2 and Table 1). Most participants explained that by choosing the same gender 
and ethnicity for their avatar as their own, they will be able to relate better to the avatar. Only 
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two participants changed the ethnicity for their avatars from their own and one participant 
changed the gender for his avatar. The participant who constructed an avatar of a different 
ethnicity, African American in this case, stated, “The math performance of African American 
students is unsatisfactory. The achievement gap in math between African American students and 
White students has been well documented. Also, students of color are underrepresented in gifted 
classes”. 

 
Figure 2. Examples of constructed student avatars.  
 
Table 1 
Summary of Avatar Demographic Characteristics 
Avatar Name Grade Avatar 

Gender 
Different 
From 
Participant?  

Avatar Ethnicity Different 
From 
Participant? 

Free 
Lunch 

Glenn Polandia 6 F Yes Hispanic Yes No 
Browniana NR F No Hispanic No No 
Yong Wang 8 M No Asian No No 
NattyJo 8 F No African American No Yes 
Chih-Yu 8 M No Asian No No 
Tonya 8 F No African American No Yes 
Angel 7 F No African American Yes Yes 

The ethnicities of the constructed avatars included African American, Hispanic, and Asian. 
However, none of the participants developed a White student avatar. Results of the socio-
economic status dimension of the avatars showed that only African American avatars receive a 
free lunch at school. Participants explained that according to their research and teaching 
experiences, many African American students are categorized in this socio-economic status. 
Algebraic Knowledge of Avatars  

In regard to avatars’ prior algebraic knowledge, the most frequently occurring theme was the 
concept of mathematical operation. All participants reported that their avatars have some prior 
knowledge of operation. Selected responses include, the avatar “was very good at multiplication 
tables when she was in elementary”, has knowledge of “fractions, ratios, decimals, operations 
with fraction numbers”, and generates “equivalent forms of integers, fractions, decimals, and 
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percent”. The least frequently occurred theme was the concept of change. Only three participants 
regarded knowledge of algebraic change as a part of their avatars’ prior knowledge.  

The results also showed that participants attached great importance to avatars’ prior 
knowledge and lack of a solid foundation for algebra. For instance, when considering the 
connections between arithmetic and algebra, a participant wrote, “Student does not learn well in 
sixth grade and has hard time to connect to the math knowledge in the following grades”, and 
“the knowledge base of my other peers is not very deep”. 

When describing their avatars’ knowledge depth, most participants highlighted lacking the 
knowledge of underlying reasons and applications of formulas and theorems in problem solving 
as indicators of shallow knowledge depth. To be specific, “Though I [the avatar] may not always 
know why I am using the formulas and theorems, I know how to use them. My knowledge is 
probably more procedural. I have not yet gotten the full picture of the theoretical reasons for 
using some math knowledge”; “She [the avatar] understands only the superficial formulas in 
recognition. She cannot apply them”, and “She [the avatar] can recall some algorithms and 
represent situations with symbolic representations. However, she has difficulties in posing and 
solving real-world mathematical problems using equations. She also has a difficulty in 
understanding the underlying reasons and applications of algebra concepts and algorithms.” 
   The theme of variable emerged frequently, together with operations, in the category of 
misconceptions of algebra. Since the concept of variable is a higher-level concept than operation, 
most participants chose some misconceptions related with variable for their avatars. For 
example,  

 
Because in his (my avatar’s) previous arithmetic learning experience, he treats ‘=’ as a 
procedural representation. For example, his habit of computation is:  

5+2=7+3=10-5=5*3=15 
In algebra, his misconception is  
5+X=2+7 
X=2+7+5 
 

The participants further illustrated that their choices for the prior knowledge, knowledge 
depth and misconceptions of their avatars were based on their personal experiences, classroom 
observations, and common misconceptions identified by the literature. For instance, participants 
reported that “Problem solving was a major weakness for me when I was in school”; “Some of 
the math problems encountered by my avatar are the same with which I was faced with when I 
was an adolescent”; “directly related to myself in middle school”; and “I will relate the avatar to 
my previous misconceptions in mathematics.”  
Perceptions about How Avatar Construction Challenges Preservice Teachers in Teaching 
Algebra for Equity 

Some participants implied or directly stated how avatar construction can challenge preservice 
teachers in teaching algebra for equity. One participant provided a sharply focused description 
about why the avatar was constructed as a female student: “My experience has shown that young 
men often display more discipline issues than young women. I wanted my avatar to focus their 
troubles more on the subject (algebra).” It seems that the participant expected that the preservice 
teachers can primarily focus on how to teach algebra in the classroom rather than contend with 
discipline or behavior issues. 
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Other participants shared views of how their avatar construction can purposefully simulate a 
middle-grade student in a racially diverse class to challenge preservice teachers to teach algebra 
for all students. For example, some participants posed specific challenges or opportunities of 
teaching algebra for equity for preservice teachers through constructing avatars: “I want to see 
how teachers negotiate this balance of education, this balance of ‘intelligences’”; “I want to see 
how teachers address and assess the weaknesses of their students”; “I feel that my teachers have 
to go slower because the knowledge base of my other peers is not very deep”; “My avatar would 
like to interact with her teacher in SL. She hopes that her teacher can know more about her 
culture, and teach her accordingly, integrating her culture and the content of algebra”; and “I 
hope that through playing a role of an African American student in SL, I can help prospective 
teachers get some experience about how to work with students of color. I hope that through 
interacting with African American middle grade avatars, prospective teachers can gain some 
instructional practices for meeting the challenge of teaching African American students, 
providing equitable learning opportunities for all students”.  
 

Discussion 
Through this exploratory study, we have examined constructing middle-grade student avatars 

as an initial effort to address teaching algebra for equity. Our analysis suggests that without 
specific guidance in conceiving avatars, participants will tend to create avatars that have many of 
their own characteristics. In our case, participants only thought of minority students when 
considering a diverse classroom, as if White students should not be included in the model for a 
diverse student population. Disparate views of equity and diversity were prominent in our study 
and need to be addressed by further study. Our participants displayed a narrow view of African 
American students, especially in socio-economic aspects. We were left with the nagging 
question, “Why are only the African American students considered to have low socio-economic 
status (receiving a free lunch at school)?” 

The findings of our study suggest that constructing a diverse group of avatars as an initial 
effort to help address teaching algebra for equity lead to positive outcomes. The avatar 
construction may facilitate preservice teachers’ learning to teach algebra for equity in a virtual 
environment since the avatars bear diverse characteristics resembling middle-grade students. 
However, in the process of construction, participants need to follow specific research-based 
guidelines concerning characteristics of real middle-grade students. This finding is consistent 
with the previous study that good preparation and management is required in role-playing 
scenarios such as goal setting, context and role defining, and character researching and preparing 
(Teed, 2009).  

Theoretically, this exploratory study offers a unique contribution by drawing on constructing 
middle-grade student avatars as a means to promote preservice teachers’ learning to teach for 
equity. Although an important starting point, this study provides a foundation to further explore 
how virtual teaching experiences support preservice teachers’ learning in the later phases of the 
NSF-funded project. This study implies that effective design principles and criteria should be 
fully considered for avatar construction (Blake & Moseley, 2010). This study also clearly 
indicates the need for additional research focusing on addressing preservice or in-service 
teachers’ challenge with equity.  
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We examined the interactions of 10 prospective secondary mathematics teachers with video-based 
episodes of high school students’ work on mathematical tasks.  We analyzed and catalogued their 
comments on each case episode to determine their particular orientations along a continuum from 
naïve to mature in mathematical and content specific pedagogical domains.  
 

Introduction 
The use of illustrations of children’ mathematical work in designing tasks for teachers has become 

increasingly popular in mathematics education (Smith & Friel, 2008; Seago, 2004; Goldsmith & Seago, 
2008; Brophy 2004; Borko, Jacobs, Eiteljorg, & Pittman, 2008). Grounded in a situated cognition 
perspective on learning this approach assumes that by providing contexts in which teachers study 
concrete and tangible examples of children’s mathematical practices meaningful opportunities for 
advancing their knowledge for teaching might become more immediately accessible (Brophy, 2004; Star 
& Strickland, 2008).).  These assumptions have given rise to development of different genres of 
resources (videos, written cases, animations of practice) to be used in teacher education.  Although the 
number of reported empirical studies that examine the utility of such resources on teacher learning is 
limited, a close inspection of what exists reveals several major gaps in discussions regarding the criteria 
used in both design and evaluation phases of the work.  First, these reports fail to list the specific 
learning objectives (mathematical, pedagogical) that had guided the development of resources used in 
studies (Santagata, Gallimore, & Stigler, 2005; Goldsmith & Seago, 2008) or ways in which acquisition 
of those objectives were monitored.  Second, little is shared about the quality of interactions of the 
teachers with such resources so to shed light on elements that might be considered when designing 
and/or implementing similar learning media. Third, even in the presence of claims to the effectiveness of 
such resources for teacher learning information regarding aspects of teacher knowledge that might have 
been enhanced from their use is not shared. These discussions are critical to the genre since they can 
greatly impact how these resources might need to be gauged against the particular strengths and 
orientations of the individuals using them (Homphrey & Boaler 2005). 

In this exploratory research project our aim was to gain an understanding of factors that might need 
to be considered when designing and using video-based case tasks in teacher education in order to 
optimize their impact as learning tools. Using three video-based illustrations of children’s mathematical 
work, we examined the quality of interactions of a group of 10 prospective secondary teachers with the 
video-episodes and their reactions to each.  Two specific research questions guided our data collection 
and analysis:  

1. What do teachers’ extract from viewing video-based data of children’s work on 
mathematical problems? 

2. What factors seem to influence how teachers analyze and assess episodes they view?   
 

Background and Context 
The current study is a part of a much larger longitudinal research and development project in which 

we address three interrelated goals.  The first goal of the project is to trace the development of 
mathematical thinking, problem solving skills and attitudes of a cohort of 70 children from 18 different 
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urban communities as they progress from 7th through 10th grade in their respective schools.  Children are 
interviewed twice a year, either individually or in small collaborative groups, experience technology-
based explorations and work on a variety of problems from secondary school curriculum.  The second 
goal of the project is to draw from what is learned about (and from children) to design educational 
resources to be used with secondary mathematics teachers so to enhance their mathematical knowledge 
for teaching. The third goal of the project is to study the impact of these materials on different teacher 
audiences, including prospective and practicing teachers at 6-12 grade levels.  Of particular interest to 
use is determining ways in which different contexts might be designed and used to optimize among 
teachers.    

A major design issue for us is determining what mathematical concepts to include in each case.  We 
contemplate also the amount of information that needs to be utilized in the media.  Additionally, we 
study the type of instructional materials that need to accompany the case based contexts to assure 
specific learning objectives are accomplished. Our primary objectives for using the vide-based case 
studies are to increase teachers’ knowledge of mathematics and content specific pedagogy. The research 
reported here attempted to provide guide on these issues namely, what specific prompts might need to be 
included in the video based case tasks in order to facilitate development of mathematical knowledge of 
teachers.  Our data collection and analysis focused on factors that enhanced or impeded meeting these 
objectives using three specific contexts.   

 
Methodology 

Participants 
The participants consisted of 10 prospective secondary mathematics teachers enrolled in a graduate 

degree program at a large public institution.  At the time of data collection all participants had completed 
three courses in methods of mathematics teaching.  They had fulfilled all mathematics coursework 
required for a BS degree program in Mathematics.  All participants had similar academic backgrounds 
(had taken the same number of mathematics courses, maintained GPAs above 3.4).  Six of the 
participants were female.  

Each participant was interviewed individually. During each interview the participants reviewed and 
analyzed 3 video-based cases.   Each interview session lasted between 2 to 4 hours. All interviews were 
video and audio-taped.  The video camera captured both the computer screen on which the videos were 
shown and the physical movements of the participants and their gestures as they interacted with the 
videos.  This taping format allowed us to identify specific segments of the videos that seemingly gained 
the most attention by the participants. 
Instrumentation 

 Data for the study was collected using three different video illustrations of children’s work.  A brief 
description of each video-episode is offered below. 
 

1.  (Similarity and congruence- 2 minutes and 40 seconds) illustrated a debate between two 
students as they tried to resolve meanings associated with (and consequences of) two 
different definitions found on the internet for similar figures.  The teacher had asked 
students to first find the definition of similar figures on the internet and to then determine if 
specific shapes given on a worksheet were similar. The children had found two different 
versions of the definition (exclusive and inclusive). The children’s argument concerned 
whether congruent shapes were also similar.  The mathematical issue of the episode 
centered around the role of inclusive and exclusive definitions in mathematics.  
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2.  (The rope problem-approximately 5 minutes) depicted a whole group discussion 
moderated by the teacher as four different students presented four different responses to the 
same task involving addition of fractions.  Two of the methods offered close 
approximations techniques often used in real life. One method offered an incomplete 
process of finding common factors. One student had relied on the use of unit drawing.  The 
mathematical issue of concern in this episode was the connections among these various 
methods, particularly the merit of approximation methods children had used in numerical 
analysis methods used in Calculus. 
3.  The third video-case (Horses and Humans problem-approximately 12 minutes) 
illustrated segments from clinical interviews with three children as they solved the same 
problem using different representational schemes.  The problem concerned the use of 
system of linear equations.  Each child had used a particular representational system for 
solving the problem (iconic, tabular and graphic) and without algebra.  The mathematical 
concern of the episode related to importance of each representation for solving particular 
classes of problems in Algebra, Geometry and Calculus. 

The participants were asked to respond to six questions at the end of each case: 
1. What might be considered the major instructional issue in this segment? 
2. What is your assessment of children’s mathematical arguments? (Which of the 

responses is correct?) 
3. What might have contributed to the children’s thinking?  
4. What mathematical concepts could relate to the topic of students’ discussions? 
5. Which of these concepts should the teacher pursue with children at this point in their 

discussion?  
6. What other information might you need to offer a more accurate analysis of what you 

viewed or to suggest for how instruction might need to progress? 
 

The first five questions were used specifically to capture the participants’ knowledge in three specific 
domains: Knowledge of the discipline and its rules and principles; knowledge of connections among 
different mathematical concepts; pedagogical reasoning and decision making as it pertains to the 
knowledge of trajectory of concepts.  The last question was used to document whether participants 
considered alternative approaches to teaching in light of different interpretations of mathematics that 
children shared.  The participants were reassured that they could watch each of the videos multiple 
times, if they felt a need to do so.  
Data Analysis 

We documented the amount of time each of the participants spent on the analysis of each of the 
videos, the type of questions they asked the researcher during the interview, their interpretation of 
individual and group mathematical production and merit of what was proposed, ways in which they 
framed their analysis of each episode and their rationale for pedagogical solutions they offered.  We 
recorded the number of times each of the participants reviewed each of the tapes and noted specific 
portions of the videos they choose to review multiple times.   

Additionally, we coded the participants’ interactions with each case along four broad-categories:  
Reflections on pedagogy and student work; reflections on mathematics of children and their connections 
to structure and form; explanation of mathematical topics that could be explored with children; and 
pedagogical actions which included suggestions for how a teacher could proceed with her lesson in the 
presence of children’s ideas.   
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A network was generated for each of the three episodes first.  These individual networks were 
combined later to build an interactional profile for each of the participants. At the conclusion of each 
individual analysis we compared the entire cohort’s responses to each of the three cases in order to 
construct a model of interaction with video-data that took into account their mathematical and 
pedagogical orientations. These are described more fully below.  

 
Results 

Cataloging Interactions 
Since a primary goal of our research was to identify the type of instructional materials we needed 

to develop in order to engage teachers in focused mathematical and pedagogical analysis, we coded their 
comments and analysis as they pertained to these two particular domains.  As such, drawing from data 
the following indicators were generated and used to code their discourse: 
Mathematical analysis 

• Could identify critical points in each of the arguments that children had used or referenced in 
the episode  

• Could explain why children’s ideas were (or were not) mathematically sound  
• Could identify the sources of children’s difficulties from a mathematical standpoint 
• Could identify trajectory of the content under study and how different mathematical topics 

could be addressed using children’s particular suggestions and conceptions 
Pedagogical (content specific) analysis 

• Could explain why certain pedagogical moves were (or were not) adequate to pursue with 
children 

• Could justify why certain topics should or should not be pursed with children 
• Could identify the advantages and disadvantages of different instructional tools when trying to 

build on children’s ideas to design follow up instruction 
• Could identify specific and relevant approaches for pursuing discussions 
• Could identify how the different pedagogical choices should be implemented individually, small 

group, large group discussions) 
In analyzing the range of the teachers’ modes of interactions with the videos and their discussions of the 
three cases, three specific categories of knowledge/orientation emerged:  Mathematically Conceptually 
Mature, Pedagogically Mature (MCmPm); Mathematically Algorithmically Mature and Pedagogically 
Immature (MAmPi), Mathematically Immature and Pedagogically Mature (MiPm).  Specific behaviors that 
characterized each group are summarized in table 2. 
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Category Actions Focus when reviewing topic 
Mathematically 
Conceptually Mature, 
Pedagogically Mature 
(MCmPm) (n=2) 

• Could articulate the basis for mathematical 
decisions children had made, offer other 
relevant mathematical concepts that could 
be pursued with them. 

• Suggested other instances of similar 
conceptual structure from the discipline, 
offer specific guides for how to extend 
children’s intellectual work-space and a 
rationale for choice. 

• Referenced personal encounters with 
similar issues. 

• Interpreted children’s work 
• Identified strengths and relevance of 

children’s ideas from the mathematical 
standpoint 

• Commented on connections among 
representations 

• Identified strengths and weaknesses of each 
approach drawing from a long term 
perspective on content development 

• Referenced the impact of curriculum and 
instruction on children’s behaviors and 
mathematical performance. 

Mathematically 
Algorithmically 
Mature, Pedagogically 
Immature (MAmPi) 
(n=2) 

• Could explain the children’s work and 
sources contributing to their development. 

• Could offer explanations of why certain 
mathematical actions were sophisticated.  
Could not identify trajectory of the 
concepts. 

• Managed to see the connections between 
different representations that children had 
offered. 

• Choice for practice was insensitive to 
context and particularities presented of the 
case. 

• Identified children’s errors or misuses of 
language 

• Commented on the amount of time it took 
children to complete tasks 

• Commented on how children might be 
guided in the right direction 

• Identified other instances where children 
may not be able to perform adequately 

Mathematically 
Immature, 
Pedagogically Mature 
(MiPm) (n=3) 

• Could not adequately unpack the 
mathematical work of children or their 
connections to other concepts.  Could 
identify some related concepts that 
addressed the mathematics presented in 
the case. 

• Capitalized on the general practices 
(affective) suggested as effective for use 
(group work). 

• Could set some mathematical goals for 
children and instruction. 

• Could identify the impact of school 
curriculum and instruction on children’s 
work and thinking. 

• Managed to draw from theoretical views 
on learning to offer perspectives on why 
certain pedagogical choices would be 
suitable. 

• Attempted to interpret children’s work 
• Commented on children’s apparent talents 

and verbal ability 
• Asked questions about what would be 

appropriate to do 
• Asked questions about what children might 

mean 
• Asked questions about mathematical ideas 
• Asked questions about tasks that could follow 

each of the discussions 

Mathematically 
Immature, 
Pedagogically 
Immature (MiPi) (n=3) 

• Could not adequately unpack the 
mathematical work of the children or their 
relevance. 

• Endorsed decision making to students. 
• Did not formulate specific goals for the 

children’s mathematical learning. 
• Not committed to learning. 

• Avoided commenting on mathematics 
• Commented on the general attitudes that 

children had exhibited as they solved or 
discussed mathematical problems 

Table 2: Behaviors and foci of attention of different groups 
 
The different layers of knowledge and maturity of the participants directly impacted what they extracted 
from illustrations they viewed and how they interacted with them.    Figure 1 illustrates a roadmap of 
anaytical pathways taken by different groups. 
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Figure 1:  Interactional roadmap 

 
The MiPi and MAmPi groups consistently spent the least amount of time on discussing the video data 

(Mean-4 minutes one each case). The MAmPi group quickly judged children’s work as right or wrong 
and rarely addressed the connections among various ideas that children had shared.  This group also 
identified what they perceived as gaps in children’s understandings  and resorted to conventional 
approaches for leading follow up discussions in class including (showing additional examples, 
describing procedures). Neither one of these groups expressed a need for additional information. Neither 
one of these groups showed a desire to consider alternative ways of interpreting children’s ideas, unless 
they were asked to do so specifically..  

The MiPi participants spent over a half of their analysis time discussing how the manipulative 
materials could be used to show children different concepts. These discussions did not address the 
particular ideas presented in the case. In analyzing children’s work they focused primarily on affective 
dimensions associated with classroom learning (i.e. a teacher should acknowledge all answers as correct 
and praise children for their good work). The general tendency of the group was to avoid judging ideas 
and refrain from offering specific guides for how a teacher might proceed with instruction. In suggesting 
pedagogical actions they were willing to endorse mathematical authority to either the children or outside 
sources.  These individuals did not ask questions during the interviews, felt secure in their knowledge 
about children and/or the pedagogical methods they offered. They were less committed to making sense 
of the children’s ideas or testing their merit since they seldom referenced rationale for children’s 
particular choices or practices.   

In contrast, the MiPm group consistently spent the largest amount of time analyzing children’s 
behaviors. They reviewed each of the episodes more frequently(n=3). They were concerned about 
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whether they had fully understood the arguments that children presented or accurately assessed the 
competencies children had shown at each stage.  These individuals successfully offered the largest 
number of mathematical concepts that could be explored in response to the children’s ideas in each of 
the cases they examined. Lastly, these individuals routinely attempted to elicit feedback from the 
interviewer on accuracy of their analysis or ideas. Indeed, these individuals, when asked to generate a 
list of topics and areas about which they needed to growth, offered a more accurate assessment of their 
own educational needs. 

Pedagogically and mathematically mature group members showed the tendency to fold back to 
reviewing the children’s thinking at various points in their analysis.  They used an “if-then” mode of 
reasoning when they offered perspectives on what a teacher could pursue in class.  

 
Discussion 

The findings of our exploratory study support four conjectures.  First, the use of illustrations of 
children’s work and thinking offer fruitful contexts for engaging teachers in generative mathematical 
and pedagogical inquiry. These discussions, if faciltiated robustly, can significantly enhance the quality 
of teachers’ mathematical knowelge for teaching. Second, in order for resources of this type to have 
transformational power careful attention needs to be devoted to designing differentiated contexts for 
discussion and exploration by teachers in order to accomadate for particular strenghts or gaps that might 
exisit in their knowledge.  

Our data indicated that teachers viewed and interpreted tasks differently. Naturally, in the diverse 
setting of a classroom or professional development program what teachers gain from activities depends 
largely on their particular learning trajectories. Therefore,  in order to optimize the educational impact of 
case based tasks different structures might need to be put in place.  This point drives our third conjecture 
which highlights the need for development of detailed instructional resources to augment case based 
tasks.  Avilable case based resources, for the most part, rely on a set of guiding questions for individual 
investigations or group discussions. However, rarely do these materials offer mathematical guide for 
teachers.  This gap is particularly paramount at the secondary teacher education level.  A significant 
finding of this work concerns the sample of teacehrs who despite their immature understanding of 
mathematics tended to show great sensitivity and care when making decisions about how to proceed 
with anaylsis of children work or pedagogical decision making.  This group seemed most receptive to 
learning and prepared to seek and justify the need for mathematical knowledge.  

Lastly, our data indicate that video-based illustrations of children’s work do provide an ideal outlet 
for motivating detailed analysis since they embody mutiple sources of data for teachers to consider when 
analyzing children’s thinking.  In commenting on children’s work the teachers frequently referenced 
particular gestures children had exhibited as evidence of particular congitive actions in which they may 
have been engaged.  Both verbal and non-verbal explanations of children created a space for discussions 
regarding affective factors influencing mathematics learning. 

A particuarly powerful outcome of the use of video-based illustrations was evidence of their efficacy 
for asessing mathematical knowledge for teaching secondary school mathematics.  This was an un-
expected outcome.  Certainly, teachers’ analysis allowed us to make and test conjectures regarding their 
current state of understanding of mathematics, and to formulate plans for the type of follow up activities 
that might productively advance their thinking.  Such an outlet is particuarly important for augmenting 
the content of courses designed for teachers and assessment tools used in teacher education. 
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Technological progress follows an exponential curve. In order to prepare teachers for middle 
school students who are accustomed to having digital technologies on hand, teacher educators 
must help teacher candidates (and in-service teachers) develop technological “habits of mind”.  
This project focuses on the development, implementation, revision, and extension of an 
instructional sequence designed to support prospective teachers’ development of increasingly 
flexible proportional reasoning skills. Results suggest that prospective teachers may learn how 
to integrate technology into teaching most successfully when the engage in these practices as 
part of their own learning rather than when taking technology-specific classes. 

Prognosticators suggest that technological innovation will continue to grow at an exponential 
rate.  Given that their social lives are enmeshed in social technologies, it is not surprising the 
subjects of our study, 38 undergraduates with an average age of 21 years old, are well aware of 
the ways in which accelerated technological change has altered their lives. What is surprising is 
that the majority of these prospective teachers feel that they are already “behind the curve” when 
it comes to figuring out ways to leverage innovations such as e-books and interactive 
technologies to teach mathematics.  The goal of our work has been to explore the nature of this 
ambivalence by unpacking its constituent parts: prospective teachers’ knowledge of --and 
confidence with—mathematics (proportional reasoning), instructional strategies, and technology 
in general. According to Mishra and Kohler (2006), teachers who integrate technology 
effectively in their practice have developed knowledge that lies at the intersection of 
Technological, Pedagogical and Content Knowledge (TPACK).   
 

Theoretical Framework 
In order to support prospective teachers’ development of TPACK, we have created an online 
textbook called the “Dynabook” for use in University-based teacher preparation courses at either 
the undergraduate (prospective) or graduate (credential) levels.  The Dynabook resource 
incorporates a “mash-up” of research findings and interactive tools from two here-to-fore 
bounded disciplines: mathematics education and special education.  In particular, we have 
developed challenging proportional reasoning problems based on the work of Susan Lamon 
(1999) and content described in the Common Core State Standards (ref).  The teaching 
frameworks include a) the Universal Design for Learning (ref), b) the proportional reasoning 
classification framework described by Khoury (2004), and c) the description of effective 
teaching shifts in proportionality by Lobato., Ellis, Charles, & Zbiek, R. (2010). Finally, the 
technological tools include applets for moving blocks on a balance, graphing points and lines, 
moving gears, creating tables, and links to scripting videos.   Figure 1 shows how these pieces fit 
within Mishra and Kohler’s TPACK diagram. 
The idea of using TPACK as a framework for organizing modern prospective teacher education 
programs is not new.  For example, Wilson, Lee, & Hollebrands (2011) describe how 
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prospective teachers developed TPACK by examining each of these knowledge components via 
a video-case. First, the prospective teachers solved the mathematical problems using the software 
featured in the case. Second, they read the lesson plans in the case and discussed various 
pedagogical practices that the teacher in the case had demonstrated.  Finally, they attended to the 
ways in which the students’ activities were mediated by their “conversations” with each other 
and the technology. 
Zbiek and Hollebrands (2008) discuss two ways that university instructors can support the 
emergence of technology-enhanced classroom norms in their methods classes.  First, they can 
ask more cognitively demanding questions that can be explored using modeling software. For 
example, in the current project, we asked a series of questions regarding how weights can be 
distributed to make a see-saw balance.  These questions were explored using a balance applet.  
Second, instructors can explicitly discuss their efforts to establish norms for argumentation 
within the classroom culture. For example, instructors may want their preservice teachers to 
become the ultimate arbiters of whether others’ explanations are clear and accurate.  
When instructors who use technology effectively can also describe the pedagogical practices 
they are enacting, the prospective teachers have opportunities for apprenticeship observation 
(Lortie,1975).  In other words, the instructors are able to describe learning as a socially-situated 
process in which norms for discussion and participation are negotiated on an on-going basis and 
profoundly affected by practices in which they engage and the tools at hand (cf., Sfard & 
McClain, 2002; Cobb & Yackel, 1996; Sfard, 2008). Given the view that learning is profoundly 
affected by the tools we use and the discursive norms that emerge around these tools, how did 
one promote the aim of preparing teachers to teach mathematics in 21st century classrooms? 

The Study 
This study was conducted in one mathematics class for prospective middle school mathematics 
teachers.  Activities from the Dynabook were enacted during 12 consecutive ninety minute class 
sessions.  This particular report will focus on the three day sequence involved in using the 
balance metaphor to model a variety of proportional reasoning examples.  

Subjects and Data Collected 
The class contains 38 prospective elementary teachers who are taking extra mathematics classes 
to earn a “mathematics specialization”.  The particular course focuses on supporting the 
mathematics learned in middle school from a conceptual point of view.  The data set includes, 
digital images of student work, videotaped classroom lessons, video-based interviews with 
students working on the tasks, results from a final “far transfer” balance question posed on the 
final exam, and pre-post results of proportional reasoning items on the Learning Mathematics for 
Teaching test (Hill, Schilling, & Ball, 2004).  

Intervention: The Balance Sequence 
In choosing contexts and tools that would be a part of the bricolage (Papert, 1993) we bring to 
bear to support our prospective teachers in proportional reasoning, we were mindful of both their 
experience as mathematics students and their preparation for teaching. We believed the balance 
model, or lever, could be a representation that would help us accomplish several things. First, we 
knew that balance, or more broadly lever, problems are prevalent in upper elementary and 
secondary texts. While one might argue that “textbook word problems” are not necessarily 
realistic, they are realistic in the realm of prospective teachers who will be helping students solve 
these types of problems. 
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Second, we wanted a representation or model on which they could build connections across 
problem contexts. Students often see proportional reasoning in algebra, geometry, physics, and 
other quantitative disciplines as distinctly different. Students can gain a conceptual 
understanding of levers, averages, mixture problems and the geometric mean by connecting them 
through a familiar model (Flores, 1995). The balance representation had the potential to help our 
prospective teachers recognize proportional reasoning in different settings and in so doing 
develop flexibility as proportional reasoners.  
Third, we believe the balance or seesaw is an experientially-real context (Gravemeijer, 1999) 
from which students could potentially draw on their physical experience to immediately engage 
in personally-meaningful activity. In the absence of physical childhood experiences with 
seesaws, students could experiment with a physical or virtual model. Finally, our choice was 
further influenced by another of the design heuristics of Realistic Mathematics Education 
(RME), that is: students develop models of their informal activity, which become models for 
more formal mathematical reasoning (Gravemeijer, 1999; 2004; Stephan, Bowers, Cobb, & 
Gravemeijer, 2003). We believed the balance could serve as a powerful model, such as the empty 
number line, array model of multiplication, or ratio table. In reifying the notion of equal 
quantities in the symbolism, they could extend reasoning to contexts beyond those encountered 
directly with the model. 

Results 
Results from the paired t-test conducted on pre-post proportional reasoning items of the LMT 
indicated that the increase in average score was significant at the p<.001 level.  This indicates 
that the class did learn how to identify and solve proportional reasoning situations, as well as 
some pedagogical knowledge associated with teaching such topics.  The goal of the qualitative 
analysis was to explore how these pre-service teachers’ discursive engagement changed over the 
course of the study.  The outline for this “mini sequence” and the associated mathematical 
practices that emerged is shown in Figure 1.  
 
 Day 1 Day 2 Day 3 Day 4 
Activities • View intro 

videos 
• Read transcript 
• Solve 3 see-

saw problems 
 

• Modeling 
solutions with 
applet 1 

• Solving 
extension 
problems 

• Using 
decimal 
distance 
measures 

 

• Introduction 
of indirect 
variation 

Associated 
Practices in 
which students 
engaged 

Students used the 
drawing tools, 
video transcript, 
and experiential 
knowledge to 
solve problems. 
No way to check 
viability 

Assigning any 
quantity to be 
represented by 
weights.  
Equivalence via 
multiple 
representations 
Notation emerges 
that reifies action 
with balance 
 

Modified 
balance allows 
for more 
flexibility in 
weights, 
distances, and 
monomials 

Approximately 
half the class 
was able to 
extend the 
metaphor of 
the balance to 
model indirect 
variation using 
notion of 
mathematical 
equality 
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Discussion 
As mathematics educators interested in the development of prospective teachers’ TPACK, we 
have attempted to create a challenging and cognitively demanding mathematical sequence and 
associated exploratory applets that engage them in activities that model the effective use of 
technology in classrooms.  Our research has shown that the students did in fact engage in 
exploratory investigations wherein the balance applet became a strong visual mediator of 
communication.   Moreover, as we had hoped, the use of the applet because reified through 
students’ notation and hence their use of the applet –while initially integral as a model of their 
problem solving efforts—became reified through their notations as a model for more extensions 
to the balance metaphor both in terms of “short term” transfer items such as related problems as 
well as “long term” balance problems such as those involving indirect variation. 
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Pre-service teachers’ negotiations of theory-practice transitions call for an exploration of 
innovative models for faculty mentoring and professional development. This paper describes a 
self-study research project to explore a blended real and virtual model for faculty advising (e-
advisor) during secondary mathematics teacher education field experiences. One goal of the 
study is to disrupt traditional notions of teacher education programs as places to ‘train’ and 
‘prepare’ teachers, with field experience being viewed as the supervised enactment of these 
preparation techniques. Drawing on concepts of Foucault, the research analyzes the 
traditionally performed roles of student teacher, teacher educator, and faculty advisor. 

Description and Purpose of Research Study 
In the field of teacher education, pre-service teachers often reminisce fondly on their 

experiences as students, holding tightly to their preconceived notions (formed through many 
years of the ‘apprenticeship of observation’) of what it means to teach mathematics and, in 
general, to be a teacher (Begg, Davis, & Bramald; 2003; Britzman, 2003; Lerman, 2001; Lortie, 
1975; Nolan, 2010a). Disrupting and reconsidering these notions can prove challenging for both 
pre-service teachers and teacher educators alike. Pre-service teachers’ time in a teacher education 
program represents a critical period of transition from student to student teacher to teacher. 
While there has been valuable research to date on the nature of the transitions required for 
becoming teachers (Garcia, Sanchez, Escudero, & Llinares, 2006; Jaworski & Gellert, 2003; 
Klein, 2004; Nolan, 2008; Ritchie & Wilson, 2000), the specific areas of teacher education field 
experiences and faculty supervision models are still relatively under-documented and under-
explored in the research literature. This is especially true in the case of teacher educator self-
study research that seeks to foster a continuum between the university and the field while, at the 
same time, disrupting the traditionally performed roles of student teacher, teacher educator, and 
faculty advisor. 

This paper discusses one aspect of a larger project, referred to as the e-advisor project. The 
research is a three-year self-study of my own practice as a faculty advisor, working with pre-
service teachers (interns) during their four-month field experience (internship). The purpose of 
the evolving e-advisor project is two-fold: (1) to create and sustain a professional development 
relationship between myself, as teacher educator and faculty advisor, and secondary mathematics 
interns through the use of multiple technologies (such as desktop video conferencing, video flip-
cameras, online chat and discussion forums), and (2) to disrupt traditional notions of teacher 
education programs as places to ‘train’ and ‘prepare’ teachers, with field experience being 
viewed as the ‘supervised’ enactment of these preparation techniques. In other words, the overall 
intent of the self-study is to better understand and deconstruct the role of a faculty advisor in 
reconceptualizing secondary mathematics teacher education programs and field experiences. 
This paper focuses predominantly on the second purpose, using Foucault’s concepts of discourse, 
dividing practices, and technologies of the self to analyze two particular storylines from the 
research data. 
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CONTEXT, METHODOLOGY, AND THEORETICAL PERSPECTIVES 
As a mathematics teacher educator and faculty advisor in an undergraduate teacher education 

program, one of my greatest challenges is encouraging pre-service teachers to reflect and act on 
inquiry-based strategies for instruction and assessment in secondary school mathematics. 
Research indicates that, in spite of introducing new strategies during curriculum courses in 
teacher education programs, traditional textbook and teacher-directed approaches still prevail in 
many secondary mathematics classrooms (Lerman, 2001; Nolan, 2006). Pre-service teachers’ 
negotiations of theory-practice transitions from university mathematics curriculum courses to 
field experience in secondary school classrooms call for an exploration of innovative models for 
mentoring and professional development. To respond to this call, I initiated a research project to 
explore the possibilities of a blended real and virtual model for faculty advising during field 
experience. 

At my university (University of Regina), the culminating field experience in a four-year 
undergraduate teacher education program is a four-month internship experience in schools. Each 
intern is paired with a cooperating (mentor) teacher and assigned a university faculty advisor. As 
part of the faculty-intern mentorship relationship and professional development process, faculty 
advisors are expected to visit, observe and conference with their interns three-five times during 
this four-month internship. A mentorship based on only three-five visits over four months, 
however, is not adequate to bring about change in pedagogy nor to disrupt and challenge the 
view that teacher education programs merely train and prepare pre-services for the real 
experience of school classrooms. As a faculty advisor, my role in the internship feels 
superfluous, since the cooperating teacher is ultimately responsible for overseeing and evaluating 
the day-to-day activities of the intern. I have often reflected on my faculty advisor role in the 
context of feeling like a third wheel—one that does not have clearly defined boundaries or 
expectations associated with it, and one generally not valued on a journey mapped out for two 
(intern and cooperating teacher). Through these reflections, I became motivated to better 
understand my positioning (as a teacher educator and faculty advisor) and the positioning of the 
pre-service teachers with whom I work during this four month internship.  

According to research (Towers, 2008; Van Zoest & Bohl, 2002), the school intern 
placements—the ‘real’ classrooms—are frequently not well-aligned with the inquiry-based 
philosophy and pedagogy being advocated in teacher education programs. In reconceptualizing 
mathematics teacher education, one must consider the importance of either selecting placement 
schools with an environment that is well-aligned with reform ideas or working toward “a 
redefinition and expansion of the role of teacher educator” (Van Zoest & Bohl, 2002, p. 285).  In 
my case—in pondering the shortcomings of the traditional faculty advisor model at my 
university, including dissatisfaction with my superfluous role in the entire process— I was drawn 
to the opportunity for redefinition and expansion. I decided to develop a faculty advisor model 
that would supplement the three-five ‘real’ classroom visits with additional ‘virtual’ visits. Thus, 
the self-study project was initiated in order to understand my role as a faculty advisor and how I 
could make the role more meaningful to me and, hopefully as a result, also make it more 
valuable and meaningful to the interns and cooperating teachers. 

As a methodology, self-study can be defined as the intentional and systematic inquiry into 
one’s own practice. In teacher education, self-study is powerful because of the potential to 
influence pre-service teachers, as well as impact one’s practice as a teacher educator.  
Furthermore, self-study can have a broader impact by informing other teacher educators’ practice 
(Loughran, 2007) and thus other teacher education programs. According to LaBoskey (2004), 
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self-study research practice should produce two kinds of knowledge: the personal embodied 
knowledge of the researcher that often leads to his/her own transformed and reformed practices, 
and a form of public knowledge that (could) contribute to the transformed and reformed practice 
of others (in this case, other teacher educators and pre-service mathematics teachers). Both these 
forms of knowledge are significant in the context of my own Faculty of Education, as well as 
beyond this context into other teacher education programs across the country and internationally. 

Framing self-study in Foucauldian discourse analysis privileges teachers’ stories (text and 
spoken discourse) while providing insights into the ideologies and power relations involved in 
the discursive practices of mathematics teacher education and field experience. This research 
draws on poststructural and socio-cultural theories to challenge and disrupt the traditional 
discourses of mathematics teacher education and field experience and to integrate more 
reflexive, critical approaches to learning to teach, and teaching to learn, mathematics 
(Skovsmose & Borba, 2004; Vithal, 2004). Foucault provides a framework for exploring the 
normalized practices and discourses of schooling as strong forces in shaping teacher identity and 
agency. Drawing on Foucault’s concepts of discourse, power, dividing practices, and 
technologies of self (Foucault, 1977, 1988; Walshaw, 2007, 2010), this paper explores the 
practices and technologies of a faculty advisor in secondary mathematics teacher education.  

Methods and Data Sources 
To transform and reform my own practice as a teacher educator and faculty advisor, my 

research involves listening to the stories of pre-service teachers. Thus, data collection for this 
self-study includes interviews and focus groups with the three (3) pre-service teachers (interns) 
with whom I worked as a faculty advisor during two internship semesters (2009, 2010). The 
interviews and focus groups were conducted both in person and through video conferencing 
software. I also kept a self-study reflective artefact (in the form of a Weblog) to understand the 
role that the e-advisor model might play in the education of secondary mathematics teachers. 
Through the use of multiple technologies (such as desktop video conferencing, video flip-
cameras, online chat and discussion forums, and collaborative authoring/editing through Wiki 
spaces), I sought to create and sustain a professional development relationship between myself as 
a faculty advisor and my pre-service teachers (the first purpose of this research study). The 
second purpose of the study—that of disrupting traditional notions of teacher education as 
‘training’ and ‘preparing’ teachers—is the focus of data analysis for this paper.  

With year two of the three-year self-study research project now complete, key findings have 
made an impact on our teacher education programs (see, for example, Badali & Nolan, 2010; 
Nolan, 2010b), in addition to being used to inform and shape the third year of my research study. 
During each of the first two years of this self-study, a Professional Learning Community (PLC) 
was sustained ‘virtually’ through the use of desktop video conferencing (Skype and Adobe 
Acrobat Connect Pro), as well as the recording and analysis of videos (Flip cameras), online 
chat and discussion forums, and collaborative authoring/editing through Wiki spaces. These 
multiple technologies enabled me to supplement the ‘real’ (traditional school) visits with 
‘virtual’ visits, such that the faculty-student conferencing process evolved into a mentorship 
relationship that was ongoing, synchronous, and without geographical boundaries. In this brief 
paper, it is not possible to conduct a thorough analysis of the data, so instead I focus on two 
particular storylines in the data.  The first relates to my attempts to disrupt traditional notions of 
faculty supervision and classroom observations through the use of flip video cameras; the second 
storyline conveys my efforts to understand the interns’ perceptions of my role as a faculty 
advisor in their professional development during the internship semester. 
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Discussions and Interpretations of Data 
In the first storyline of the data, I sought to deconstruct traditional models of faculty 

supervision based in surveillance and ‘super’vision techniques. Typically, as a faculty advisor, I 
would position myself in the back of the classroom to ‘observe’ the interns, taking notes on 
anything and everything that the intern might want to know about her practice. While the intern 
may identify a few targets for me to focus on, it is generally expected that I comment on the 
lesson structure (set, development, closure, etc.) as well as student and classroom dynamics, 
from the start of the lesson until the end. My goal in this research, however, was to disrupt such 
techniques of observation and surveillance. One way I approached this was to ask each intern to 
use a flip video camera to record three (3) short segments of a lesson, which they uploaded to a 
website for me to access and view. It was challenging for the interns to understand how this 
process might provide me with enough visual and auditory ‘evidence’ of their teaching so as to 
provide them with appropriate feedback for their professional development. Once they were able 
to move beyond the notion of professional feedback coming in only one form and obtained by 
me being physically in the classroom from beginning to end of the lesson, I think that they 
actually learned a great deal from the process. Instead of the faculty advisor taking on the role of 
identifying what aspects of a lesson were worth focusing on and analyzing, I was requiring the 
interns to initiate this decision and reflection on their own, thus disrupting systems of power that 
“both produce and sustain meanings that people make of themselves” (Walshaw, 2010, p. 111). 

 After viewing the videos, I engaged in a Skype conference with each intern individually. I 
was able to begin this “post-lesson conference” in a manner quite different from the usual 
conferences that take place after I have been physically in the classroom for the entire lesson. 
This time I began the post-conference by asking each intern why she selected these particular 
aspects of the lesson to capture on video for me to see.  As part of my research Weblog, I 
reflected on how these short video segments changed in focus as the semester progressed. At the 
start of the semester, each intern captured herself on video, generally positioned at the front of 
the room beside the whiteboard (or SmartBoard), displaying the traditional teacher-centred 
image of “teaching.” As the semester progressed, however, the interns began to feature their 
students, including their conversations with each other and with the (pre-service) teacher, much 
more prominently in their “teaching videos.” In negotiating their identities within the social and 
political networks of the discursive practices of schools, it seems that the interns began to engage 
in a reconstruction of traditional images of teaching and the disciplinary practice of the 
“panoptical gaze” (Foucault, 1977) that is offered by the university through its faculty 
supervision techniques.   

The second storyline conveys my efforts to understand my interns’ perceptions of my role as 
a faculty advisor in their professional development. During the final focus group session with the 
three interns (using Adobe Connect), I questioned the three of them on my role as faculty advisor 
and its overall value to them in terms of their professional development during the internship 
semester. The following excerpt is taken from the transcript of that focus group session: 

Intern1: If our coop is doing their job right they really should be doing that professional 
development process with us, so having you there is just kind of extra, I guess. I don’t know 
if it’s completely necessary. But if you were to do it, I would probably still prefer that you 
come out and see me. 
Faculty Advisor: What [Intern1] brings up is interesting… do you see my role from the 
university being different—or potentially should be different— than what the cooperating 
teacher has to offer you in your professional development? 
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Intern2: Well, I have because [my cooperating teacher] was very new to this… I know that 
you two have had some contact, I don’t know how much, but it was nice for her to be able to 
have you as a liaison kind of, to ask questions to and bounce ideas off of on what her role is 
because, really, she had no idea of what she was supposed to do. 
Intern1: And I know with [my cooperating teacher] it really wasn’t different because he’s 
done this before and he’s had experience and… like, if I had had problems with him then I 
would want you there, I would need someone else, but since we got along then the roles kind 
of seem the same to me. 
Intern3: [My coop] and I have had that same conversation because [she] has had some 
interns in the past that didn’t go over so well. I don’t know, things seemed to go really well 
with us but if they didn’t, like [Intern1] said, it would have been nice to have you out…  

I didn’t exactly leave the conversation here; in fact, I went on to ‘dig a little deeper’ into their 
responses to my question. Even though they eventually added that I may have provided them 
with a few things that their cooperating teachers did not (for example, a few ideas and methods, a 
once-per-month growth perspective that the coop could not give, etc.), the underlying message of 
their responses was essentially the same: I was “just kind of extra.” 

My efforts to disrupt the benign and distant role of the faculty advisor had been constituted 
by the interns as extra and much the same as the cooperating teacher had to offer. In their eyes, I 
had not expanded and redefined my role in the manner I set out to; instead, the interns 
constructed an identity for me as liaison, mediator, umpire, even peacemaker, but definitely not 
advisor or mentor. They specified that, as long as there are no “problems” with the cooperating 
teacher, I am not needed. However, the interns’ constructed ‘truth’ of my value as a faculty 
advisor is not so simply stated if one draws on Foucault’s concepts of dividing practices and 
technologies of the self as a means to unpacking it.  

Once in the schools for their field experience, pre-service teachers are “confronted with the 
task of learning the discursive codes of practice” (Walshaw, 2007, p. 124) in the secondary 
mathematics classroom, and no longer in my own university classroom. It makes sense that 
interns would identify their cooperating teachers as being much better positioned to initiate them 
into these practices. Embedded within the discursive codes of classroom practices are dividing 
practices—those practices that function to categorize and distinguish people/contexts, and which 
can be seen to operate across various social situations. Systems of dividing practices have a 
strong impact on identity formation and “[d]ividing practices that are at odds with each other are 
most keenly felt by pre-service teachers as they move from one disciplinary institutional site to 
another” (Walshaw, 2007, p. 100). Since different practices across different contexts contribute 
to the constitution of one’s identity, there can be a sense of internal conflict in attempting to 
reconcile competing practices. Foucault (1988) proposes that people come to understand (or 
know the ‘truth’ about) themselves through various techniques, or technologies.  He describes 
four such technologies, which are interrelated and together form a specific body of reasoning 
techniques. For the purposes of this paper and brief analysis, Foucault’s concept of “technology 
of the self” is most useful in understanding the truth games being played by the interns.  

According to Foucault (1988), technologies of the self “permit individuals to effect by their 
own means or with the help of others a certain number of operations on their own bodies and 
souls, thoughts, conduct, and way of being, so as to transform themselves in order to attain a 
certain state of happiness, purity, wisdom, perfection, or immortality” (p. 18). Interpreting the 
interns’ above response to my question on the value of my role as faculty advisor in the context 
of Foucault’s concepts of dividing practices and technology of the self, I gain a better 
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understanding of the interns’ constructed truth stories. As Walshaw (2007) puts it, “the transfer 
from the university course into the school brought specific dividing practices sharply into focus” 
(p. 126). Since interns must strategically negotiate the social and political networks of power in 
the cooperating teacher’s classroom, this probably means making a choice: between engaging the 
technologies and practices which are part of the cooperating teacher’s mathematics classroom or 
engaging (valuing) the set of technologies and practices that I ask them to import, so to speak, 
from the university classroom. As long as everyone is “getting along” (which, in the context of 
the transcript excerpt, I interpret to mean that there are no obvious personality tensions or 
conflicts at work between intern and cooperating teacher) then my technologies and dividing 
practices are not needed; in fact, they are viewed as a third wheel on the journey, and not one 
that is easily reconciled by interns as they seek to “transform themselves in order to attain a 
certain state of happiness, purity, wisdom, perfection…” (Foucault, 1988, p. 18). 

CONCLUDING THOUGHTS 

Firstly, it should be noted (almost as an aside to the storylines of this paper) that introducing 
virtual visits with the interns has resulted in real examples of how the use of multiple 
technologies can create a faculty-intern relationship that establishes more of a continuum 
between university courses and internship field experience (Mulholland, Nolan, & Salm, 2010; 
Nolan & Exner, 2009). The significance of this relationship as interpreted by interns, cooperating 
teachers and faculty advisors is, however, an issue to unpack. I initiated this self-study research 
project in order to understand how I could make my role as a faculty advisor more meaningful 
and valuable to me as well as to the interns and cooperating teachers. Through the lens of 
Foucault, one sees how multiple ‘truths’ are constructed for what it means to be meaningful and 
valuable. I must not confuse my truth of what is meaningful and valuable with the interns’ 
constructed truth for the same. At the very least, I should not expect my practices and 
technologies to have a visible (and immediate) impact on my interns’ truths at this point in their 
teacher identity constructions and negotiations. As I delve more deeply into Foucault’s concepts 
for the purposes of further analyzing this research, I appreciate that I am being asked “to always 
be mindful of the technologies and truth games that simultaneously mold and discipline ways of 
thinking and being” (Hassett, 2010, p. 462). 

Nonetheless, by pursuing what I initially thought would be a meaningful way to fulfill my 
role as a faculty advisor I was surprised by several emergent aspects of the research. For 
example, I was able to engage pre-service teachers in dialogue on the role of field experience in 
shaping student-teacher transitions (even if I was not all that pleased with what I heard in the 
dialogue!); to disrupt notions of the roles of teacher education programs and field experience; 
and to challenge traditional images of faculty observation and supervision. Teacher education 
programs are currently steeped in a technical rational model, reflected in the normalized use of 
language such as teacher ‘training’ and ‘preparation’. To challenge the dominant image of 
teacher education as the ‘place’ where theory makes the transition to practice through teaching 
tips and techniques, this research takes critical steps toward reconceptualizing secondary 
mathematics teacher education and associated field experiences. 
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Traditionally, there has been a sharp separation between mathematics content courses and 
methods courses for secondary school math education majors. Content courses, many times 
housed in mathematics departments, and methods courses, housed in colleges of education, 
provide two different but important perspectives on teaching mathematics. However, often these 
courses end up working at cross-purposes. This study examines the territory of cross-
disciplinary collaboration between mathematicians and mathematics educators in order to 
understand the ways in which these courses can better integrate mathematical content and 
pedagogical issues. Observing these collaborations provides a window into the shared and 
conflicting philosophies of these disciplines. 
 

Undergraduate mathematics teacher education in the U.S. typically consists of content 
preparation through mathematics courses taught by mathematics department faculty, general 
education courses taught by college of education faculty, and mathematics pedagogy courses 
taught by mathematics educators in either colleges of education or mathematics departments 
(depending on where the secondary teacher preparation program is housed). Recent 
modifications of this structure include (1) the addition of a “capstone” course focusing on 
connecting the mathematics students study in college with the topics they will teach, (2) the 
institution of separate sections of selected upper division mathematics courses for teachers, and 
(3) the integration of students’ classroom-based experiences with pedagogy courses and the 
expansion of pedagogy courses over multiple semesters. However, despite these changes, 
separation of the study of mathematics from the study of mathematics curriculum and pedagogy 
continues across much of students’ preparation for teaching. The separation persists, in large 
part, because effective methods for cross-disciplinary collaboration in service of teacher 
education are not well understood. 

The separation of subject matter knowledge from teaching methods knowledge is unnatural 
and ineffective – teachers must use their mathematical knowledge in practice and continually 
build new knowledge through practice. Teacher preparation will be more effective when 
students are supported in building integrated knowledge; that is, knowledge of mathematics that 
is tied to issues and concerns of teaching, and knowledge of teaching that is embedded in 
mathematical understandings. How best to link content knowledge development to development 
of knowledge of pedagogy is a central question. It is a problem that demands the combined 
attention of mathematicians and mathematics educators. However, jurisdiction over teacher 
preparation is generally divided across separate and distinct academic units, and administrative 
and cultural barriers impede communication and joint work. Clearly, if teacher preparation 
programs are to be organized so as to support the development of integrated mathematical 
knowledge for teaching, then traditional disciplinary lines must be blurred and collaborations 
among mathematicians and mathematics teacher educators must become the rule rather than the 
exception. Without robust and generalizable knowledge about the processes and products of 
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collaboration, productive collaborations will continue to occur in a hit-or-miss fashion, if they 
occur at all.  

The research reported on here attempts to address this need through an investigation of five 
math/math-ed co-teaching collaborations. Each collaboration consisted of one university 
mathematician and one university mathematics teacher educator who co-taught both methods 
and mathematics courses for future middle and high school teachers. The following research 
questions guided the investigation. 

 
● How do collaborations develop and evolve? What is beneficial and what is challenging 

about collaborating?  
● What intellectual resources (knowledge, tools, practices) are brought to collaborations 

and developed through collaborations?  
● How does the collaborative process influence the collaborators (e.g., how they think 

about content/methods, how they think about their practice)? 
 

Theoretical framework 
Underlying the investigation is a sociocultural perspective on learning, in which learning is 

understood to be a fundamentally social phenomenon inseparable from its historical, cultural, 
and institutional context (Vygotsky, 1981; Wertsch, 1985; 1998). Sociocultural theory assumes 
that access to the world is mediated by psychological and cultural tools (e.g., languages or other 
symbol systems). These tools perform supportive, constraining, and transformational functions. 
Sociocultural researchers examine interactions among human agents as mediated by 
psychological and cultural tools, and how these interactions are situated within local and broader 
contexts (e.g., classroom communities, disciplines, and institutions). 

Within a sociocultural framework, an academic discipline is viewed as a set of theories, texts, 
and methods, but also as a community of individuals with particular social practices and styles of 
discourse (Lattuca, 2002). The methods and practices of disciplines frame the thinking of those 
who work within them; members of a discipline tend to “see” things in similar ways. At the same 
time, it is possible to find great variations among members of a single discipline with respect to 
methodologies, pedagogies, and epistemologies (Lattuca, 2001). Sociocultural researchers 
interested in cross-disciplinary collaborations must consider how individuals are situated within 
their respective disciplines, how the disciplines are situated within institutions, and how the 
disciplines are situated with respect to one another. They must also consider the historical 
contexts of these interrelationships. Studying any of these aspects of cross-disciplinary 
collaboration presupposes an understanding of each discipline in terms of (1) its historical, 
cultural, and institutional context, (2) its tools and methods, and (3) its social practices and 
discourses. Although a full, or even partial, description of the disciplines of mathematics and 
mathematics education is not possible in the space of this report, the following is a very brief 
summary of each discipline, focusing on historical context, methods, and practices. 

Mathematics education developed as an area of study at universities during the early 1900s, 
with research in mathematics education growing out of the fields of mathematics and psychology 
(Kilpatrick, 1992). Nesher (1997) describes “investigations that could improve the practice of 
learning mathematics” and “defining (and redefining) the boundaries of mathematics as a subject 
matter to be learned in school” (p. 34) as two central activities within the discipline of 
mathematics education. To this list a third activity may be added: developing the pedagogical 
and pedagogical content knowledge (Shulman, 1986) of future and current teachers. Until quite 
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recently, investigations within the discipline utilized mainly behaviorist theories and an 
objectivist research paradigm, with quantitative research methods borrowed from the “hard” 
sciences. In the 1980s, neo-Piagetian, constructivist epistemologies, and associated research 
methodologies, began to be adopted and utilized by mathematics educators and researchers. Such 
theories underlie much of the current research on mathematics learning, as well as the practices 
utilized by (and advocated by) mathematics educators in their instruction of pre-service and in-
service teachers.  

Mathematics education research took a “social turn” in the late 1980s, however, with the 
adoption of “theories that [view] meaning, thinking, and reasoning as products of social activity 
(Lerman, 2000, p. 23).  Over the past decade and a half, the analytical lens has shifted from the 
individual to the group, and many researchers now focus on interactions around mathematics 
within small groups of students and across large groups of students and teachers (Tsatsaroni, 
Lerman, & Xu, 2003). Following this trend in mathematics education research, methods for 
facilitating the development of “mathematical learning communities” have become a focus of 
teacher education. Currently, both psychological and sociological perspectives influence the 
content and process of both research and teacher education. With respect to knowledge for 
teaching mathematics, current influences on the field include the idea of “principled knowledge” 
as described in The Mathematical Education of Teachers (Conference Board of the Mathematical 
Sciences (CBMS), 2001), the concept of pedagogical content knowledge (Shulman, 1986) and its 
key components as described by Grossman (1990), and descriptions of the mathematics teachers 
do in practice (Ball, 2003) and mathematical knowledge for teaching (Ball, Thames, & Phelps, 
2005). 

Mathematics is typically seen by its practitioners not as a cultural product, but rather as the 
study of external objects whose properties are not in doubt once discerned and established. 
"Every problem of mathematics gets solved sooner or later. Once solved, a mathematical 
problem is forever finished: no later event will disprove a correct solution” (Rota, 2006). This 
Platonic stance was challenged by discoveries in geometry and analysis in the 19th century, and 
by problems with the foundations of mathematics in the early 20th century. These events led to 
various solutions such as logicism, formalism, and intuitionism, all of which, however, retained 
as a central value the underlying certainty of mathematical ideas (Hersh, 1979). The logical 
structure of mathematics and the relative permanence of its ideas results in a culture that enjoys 
an extraordinary degree of consensus compared to other scientific disciplines. Mathematicians 
tend to view their subject as having a rigid structure, a cumulative nature, and an extraordinary 
compactness. Paradoxically, this allows for a combative intellectual culture—when there is little 
doubt that the truth or falsity of a proposition will ultimately be settled by appeal to external 
norms, there is no need for social practices of negotiation and compromise. Recently, however, 
some mathematicians have advocated grounding the philosophy of mathematics in human 
practice, viewing mathematics as a subject whose ideas and methods are still external to its 
practitioners but nonetheless embedded in human culture (Gowers, 2006; Lakatos, 1976). 

Mathematicians can be characterized as working within a “realist” mode of inquiry, while 
mathematics educators are frequently “relativists.” Becher (1987) suggests that an important 
division exists between these modes of inquiry. For example, scholars working in the humanities 
(relativists) tend to explore particulars or complexity and interpretation, while pure or natural 
scientists (realists) focus on universals and simplification (Frost & Jean, 2003). The research 
reported on here is grounded in an awareness of the ways in which disciplines may differ, but 
also a wariness of simplistic or naïve assumptions about the nature of disciplines. Both 
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differences in the disciplines themselves and beliefs about differences influence the cross-
disciplinary interactions of individuals. 

Collaboration across the disciplines of mathematics and mathematics education is the focus 
of this research report. Although many definitions of collaboration exist, most include the 
following elements: (1) commitment to a common goal and the use of a coordinated effort to 
achieve it, (2) shared authority over the processes and products of collaboration, and (3) 
sustained engagement in interactions that promote collective and integrative cognition (Amey & 
Brown, 2004; Bruffee, 1993; John-Steiner, Weber, & Minnis, 1998). From a sociocultural 
perspective, a fourth element must be added – the development and utilization of a shared 
discourse through the appropriation and transformation of psychological and cultural tools. In 
our research, we seek to understand the how this shared discourse develops, how difference in 
disciplinary cultures are negotiated, and how mathematics teacher education can be enriched by 
the creation of interdisciplinary knowledge and practice. 

A central goal of the collaborations reported on here was to interweave of content and 
pedagogy in courses in which these two elements have traditionally been separated. The method 
for achieving this goal was co-teaching, including joint planning, implementation, reflection, and 
evaluation. Of course, collaborators varied in the nature and development of their collaborations, 
including the ways in which they engaged together with students in the classroom. Analysis of 
the nature and processes of co-teaching encompass four broad areas – planning, content 
integration, teaching, and assessment (Davis, 1995). With respect to content integration, analysis 
is guided by the concept of “principled knowledge” as described by CBMS (2001), and 
categories and descriptions of  “mathematics knowledge for teaching” suggested by Ball, 
Thames, and Phelps (2005), which include (1) common content knowledge, (2) specialized 
content knowledge, (3) knowledge of content and students, and (4) knowledge of content and 
teaching. The use of this framework allows for analysis of the extent to which collaborations 
between mathematicians and mathematics educators support the development of the specific 
types of mathematical knowledge that prospective teachers will need in practice. With respect to 
the analysis of the teaching component of the collaborations, we utilize the classification of the 
classroom roles suggested by Haynes (2002), which include model learner, observer, co-lecturer, 
discussion leader, case facilitator, and resource, and (2) the dimensions of collaboration 
described by McDaniel & Colarulli (1997), including the degree of integration of ideas and 
perspectives, the degree of interaction of faculty members with students, the degree of student 
engagement, and the degree of faculty interdependence. 

 
Methods 

Multiple data sources are being used to investigate the work of each collaborative team. All 
meetings of collaborative teams at their home institutions were audio-taped by the team members 
themselves, “records of practice” were created by each team for one unit of instruction per 
course taught, and team members were interviewed individually at regular intervals 
(approximately twice per month) by research team members during the semesters during which 
the collaborative teams co-taught. The interviews are being used to gain insight into underlying 
perspectives of the collaborators and the influence of their perspectives on the collaborations. 

The unit of analysis in the study is the interactions between team members, as mediated by 
psychological and culturally specific tools, and as situated within sociocultural settings. For our 
purposes, an “interaction” is defined as a bi-directional instance of communication around a 
common topic. The beginning of an interaction is marked by entry into the topic by one 
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collaborator, followed by an on-topic response by another collaborator. The end of an interaction 
is marked by disengagement from the topic by one collaborator. Analysis of movement between 
topics, i.e. “boundaries of interactions”, is crucial, as it is in these spaces where power relations 
are most transparent. Analysis of strings of interactions over time allow for the identification of 
patterns, with respect both to the development of the intellectual terrain and the nature and 
process of collaboration. Rather than depending on self-reports, data includes transcriptions of all 
meetings of collaborative pairs at their home institutions. The within-collaboration purpose of 
these meetings is to plan and reflect upon course activities, but from a research perspective the 
meetings are an irreplaceable source of unfiltered information about the nature of out-of-class 
collaborative work. Within the courses, videotape was collected for one unit of instruction 
(minimum of 3 hours of instruction).  

Analysis includes the identification of tools and the ways they are utilized and transformed 
by team members as they interact with each other and with students, and patterns of interaction 
within teams (as mediated by tools), e.g., the development of a shared discourse, and how it 
evolves over the course of the collaboration. Discourse analysis techniques are being used to 
examine the evolution of speech patterns within teams, including the nature of speaking turns, 
and the use of contrastive pronouns (Edwards & Lampert, 1993; Gee, 2005). Consideration is 
paid to the way tools limit and constrain interactions as well as the ways they afford and 
transform it, with the goal of identifying both generative and limiting collaborative practices.   

Analysis of the nature and processes of collaboration encompass four broad areas – planning, 
content integration, teaching, and assessment (Davis, 1995). We use qualitative data analysis 
software (Transana) to organize segments of interaction into conceptual categories, and 
analytical frames derived from the theoretical framework as starting points for analysis. 
However, we also develop meanings and relationships through the analysis process. With respect 
to teaching, analysis is guided by (1) the classification of the classroom roles of team teachers 
suggested by Haynes (2002), which include model learner, observer, co-lecturer, discussion 
leader, case facilitator, and resource, and (2) the dimensions of collaboration described by 
McDaniel and Colarulli (1997), including the degree of integration of ideas and perspectives, the 
degree of interaction of faculty members with students, the degree of student engagement, and 
the degree of faculty interdependence. Attention is also paid to issues identified in the literature 
on collaborative practice, including differences in roles, time demands, competing obligations, 
expectations, and differences in work methods (John-Steiner, Weber, & Minnis, 1998).  

The trustworthiness and generalizability of findings are established by (1) the independent 
analysis of a representative samples of data by multiple individuals trained in the use of the 
particular theoretical and analytic frames adopted in this study, (2) the systematic search for 
alternative categorizations and meanings, and disconfirming evidence, throughout the data 
analysis process, (3) “member checks” in which findings are discussed with individual 
participants, and (4) the use of multiple sources of evidence (i.e., triangulation). With respect to 
triangulation, findings are based on the following data sources: (1) within-team meetings that 
occurred throughout the semesters of co-teaching, (2) bi-monthly interviews with each team 
member, (3) “records of practice,” including videotape, for of one unit of instruction per course 
taught, (4) interviews of colleagues at participating institutions, and (5) discussions of findings 
with team members.  

 
Results 
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Preliminary results have yielded a promising window into the rewards and challenges of 
collaboration across fields. Collaborators participating in the study not only created meaningful 
strategies for the integration of content and pedagogy in their classrooms, but also uncovered 
their own basic assumptions about the effectiveness of particular teaching methods. Issues that 
arose across the teams included the lack of adequate preparation time, the challenges of decision-
making with a partner (both within and without the classroom), and the demands of clear 
communication with students. However, every participating team felt they had a greater 
understanding of the norms and concerns of their partner's field of study as a result of the 
collaboration. Mathematics teacher educators spoke of gaining a greater sense of the importance 
of mathematical rigor and why mathematicians emphasized it so strongly in class. 
Mathematicians were exposed to alternate ways of teaching mathematics and, in some cases, 
carried these new methods into courses that were not co-taught(or even necessarily made up of 
preservice teachers. Results from two of the four sites, encompassing three collaborations, will 
be discussed in further detail here.  
 
Southeast 
     This site was home to two collaborating teams who co-taught a total of five courses. Elizabeth 
Durand, the mathematician, and Cynthia Roberts, the mathematics educator, were initially wary 
of the other’s knowledge in their own primary field of work. However, they found their teaching 
philosophies to be more aligned than they had previously assumed. Dr. Durand jumped eagerly 
into unfamiliar teaching actions, like facilitating class discussions, even as she struggled with 
being so far out of her comfort zone. Dr. Roberts, meanwhile, found more mathematical 
confidence from working with Dr. Durand. In contrast, the other team from this site, Angela 
Laurent and Dejan Merakovski, started their collaboration with extremely different teaching 
styles and underlying philosophies. This led to extensive conversations on the use of technology 
in the classroom and the development of appropriate tools for assessment. In fact, one discussion 
that spanned two semesters of their Geometry course concerned the creation and utilization of a 
rubric for grading homework. A career mathematician, Dr. Merakovski expected formal 
mathematical proofs from his students, and had previously relied on a primarily intuitive method 
of evaluating student work. He “knew” when a proof was sufficiently rigorous. However, since 
he and Dr. Laurent shared responsibility for grading homework, it quickly became necessary to 
create a system that ensured consistency in assessment. Dr. Laurent's solution to the problem was 
to create a formal rubric that clearly let students know what was necessary for a mathematically 
rigorous proof. For Dr. Merakovski, however, the rubric was too codified and seemed to take 
some of the elegance out of a well-constructed proof. This difference of opinion was central to 
understanding the different approaches to teaching and mathematics that these collaborators 
embraced. While Dr. Laurent proritized communication and clarity over other considerations, 
Dr. Merakovski felt that part of his job as a mathematics professor was to help students grasp 
some of the more ephemeral concerns of aesthetics in mathematics.  

Developing good mathematical communication in students was a central objective in both 
collaborations. To this end, Drs. Durant and Roberts, frustrated by the quality of work they were 
receiving from their students, began to ask their students to critique responses that had been 
produced by their own classmates. Responses were culled from quizzes they gave and activities 
were built around assessing the responses for correctness, clarity and completeness. When 
working on these activities in groups, not only did students usually manage to appropriately 
assess their peers' work, they also gained the pedagogical experience of evaluating student work. 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1481



The pedagogical aspects of these activities were also assessed in the form of a test question that 
asked the preservice teachers to critique hypothetical student answers to mathematical problems.  

 
Midwest 
     At this site, the collaborators had co-taught a course before they participated in the study, so 
they spent less time negotiating their way through the preliminaries of collaboration and more 
time explicitly thinking about strategies for integrating content and pedagogy. Moreover, due to 
the structure of the mathematics education program at this site, the mathematician, Ibrahim 
Haddad, had already garnered some experience with preservice teachers. Given the chance to be 
involved with the methods course, however, gave Dr. Haddad a chance to observe student 
teachers in action and experience life in secondary school classrooms. This exposure led him to 
reevaluate some of the assumptions he had made about the efficacy of certain elements of the 
curriculum for preservice teachers.  

Since Dr. Haddad and his partner Chris Adams began the study as a functioning team, they 
began planning the courses with a shared vision: there would be a clear mathematical goal and a 
clear pedagogical goal for each class meeting of each course. They developed instructional 
cycles for both the content class and the methods class with the intent of constantly 
contextualizing content within classroom realities (content course) and continually modeling 
teaching methods by teaching content (methods course). Both instructional cycles included a 
“classroom connection,” and both courses were designed with “mathematical habits of mind” as 
an articulated student learning goal. As both of these courses ran concurrently and there was a 
large intersection between the class rosters, Drs. Adams and  Haddad found themselves 
occasionally losing track of which class was which. In fact, both classes were taught in the same 
classroom, on alternate days of the week. In planning meetings, the collaborators found 
themselves moving from discussions of one course into discussions of the other fluidly. 
Interestingly, the extreme amount of overlap seemed to make it easier for them to integrate 
content and pedagogy, since the confusion may have broken down preconceived notions of what 
subject matter belonged in each course.  

Data analysis is ongoing, however initial analysis suggests that significant boundaries exist 
between the mathematics and education communities with respect to (1) appropriate use of in-
class time, (2) methods and value of utilizing technology in the service of instruction, and (3) 
goals and processes of student assessment (discussed earlier). With regard to in-class time, we 
found the mathematics educators to be more likely than the mathematicians to think of class time 
as time for “doing mathematics” while the mathematicians saw greater value in demonstrating 
ideas to the whole class. Importantly, both types of individuals seem to believe that active 
engagement was essential for learning; the difference was in the role of in-class time in this 
process. All collaborators felt the fundamental tension of desiring both depth of understanding 
and coverage of content. With respect to utilization of technology, the mathematics educators 
developed Powerpoint slides for organizational purposes, to highlight key ideas, and to introduce 
problems. They also used technological drawing tools (e.g., GeoGebra). The purposes and value 
of such technology was questioned by the mathematicians, some of whom wondered whether the 
time and energy spent in learning and using the technology could not be better spent elsewhere.  

 
Discussion 

The purpose of the study described here was to investigate the processes and outcomes of 
mathematics/mathematics education co-teaching collaborations. Participants constituted five 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1482



collaborative teams and have, to date, co-taught ten courses (mathematics and methods) for 
future middle and high school teachers. Although significant data analysis is currently in process, 
we are able to report some findings at this time. The collaborative experience was quite intensive  
- both intellectually and with respect to the sheer amount of time involved – but all collaborators 
agree that is has been a worthwhile endeavor. It is important to note here that co-teaching comes 
with a significant financial cost, since two professors receive credit for teaching one course. 
However, we would argue that resulting knowledge in the form of connections between 
mathematical and pedagogical learning for students, and knowledge of what is involved in 
working across the academic cultures of mathematics and mathematics education are valuable 
goals deserving of substantial investment. 
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I extend the theoretical work on reflective thinking by John Dewey—in particular, that education 
involves a certain type of mind development—into the supra-individual realm to argue that 
mathematics education can involve the development of mathematizing intellectual entities that 
stretch across student partners, small groups, whole classes, and even teacher professional 
development collectives. Beginning with the reflective development of their own minds in 
collaborative practice, teachers can learn the skills necessary to help individual students and 
collections of students become reflective mathematics problem-solvers. 
 

Introduction 
Although mathematics education has used a variety of psychological perspectives on the 

teaching and learning process to inform its work, these perspectives have, with rare exceptions, 
focused on how individual students make sense of mathematics. Intensive work with 
constructivist epistemologies, for example, involves only the individual pupil’s cognitive 
constructions. Even social constructivist researchers, although acknowledging the social 
component of mathematics learning, still maintain the individual as the “locus of learning” 
(Davis & Simmt, 2003, p. 153) when they examine the social implications for learning; classes 
still are viewed as “groups-of-individuals” (Lave, 1996, p. 149). 

When it comes to teaching mathematics, the story is much the same: Contemporary 
mathematics instruction is designed for augmenting the learning of individuals. Differentiated 
instruction is a clear example of carrying classroom mathematics learning to the individual-is-
the-focus extreme, where some researchers suggest teachers should adapt their instruction to 
meet the diverse needs of unique individuals (Darling-Hammond, Ancess, & Ort, 2002). Other 
researchers have called for smaller class sizes (Bloom, 1984) to facilitate the teaching of the 
individual. Homogenizing the mathematics class through tracking or grade-level advancement is 
an attempt to “individualize the group,” perhaps glossing over the richness inherent in classroom 
environments. The fact that students are assembled in a classroom to learn mathematics results 
from efforts to make schooling efficient and affordable, and not from a plan to create and harness 
community action for learning. In addition, the competitive nature of classes, the assignment of 
individual grades, and the assessment of the isolated individual’s capacities through closed-book, 
written examinations confirms that although students are physically together in classrooms, 
mathematics learning has focus on the individual. This paper extends the theoretical work on 
reflective thinking by John Dewey—in particular that education involves the development of 
mind—into the supra-individual realm, to argue that mathematics teaching can involve the 
development of mathematizing intellectual entities that stretch across collectives such as student 
groups, classes, and even teacher professional development groups. 
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Theoretical Perspective and Method 
Various researchers have suggested such dominant individualistic perspectives could be 

balanced with a perspective on the social (Boaler, 1999; Davis & Simmt, 2003; Davis & Sumara, 
2001; Schoenfeld, 1994). Such a view would be beneficial, especially as many believe 
mathematics, as a domain, transcends any individualistic perspective (Ernest, 1990; Romberg, 
1994). From this perspective, mathematics emerges through communicative correspondence, 
socially posed questions, and group deliberations; all mathematical discovery, all mathematical 
activity, all mathematical explanation can be seen to take place in a complex social context. As 
Boaler (1999) stated, “The behaviors and practices of students in mathematical situations are not 
solely mathematical, nor individual, but are emergent as part of the relationships formed between 
learners and the people and systems of their environments” (p. 260). Even Newton recognized 
this social dependence: “If I have seen farther than others,” he said, “it is because I stood on the 
shoulders of giants.”  

The field of mathematics education has been developing novel approaches to the study of 
collective classroom learning (Cobb & Yackel, 1995; Davis & Simmt, 2003). This paper extends 
this work through a theoretical exploration of the ideas of John Dewey regarding education and 
reflective thought, as applied to supra-individual phenomena. In particular, I first synthesize his 
ideas about education, reflective thinking, and mind development, and then I apply these ideas 
beyond the individual; this theoretical coupling is an instrumental study that generates theory for 
broader application (Stake, 1994). 

 
Results  

According to John Dewey (1981/1933), the act of teaching mathematics is intimately 
involved with the development of mind, namely, of enhancing the mind’s capacity to think: “We 
state emphatically that, upon its intellectual side education consists in the formation of wide-
awake, careful, thorough habits of thinking” (p. 177, emphasis in original). Dewey also stated: 
“LEARNING IS LEARNING TO THINK” (p. 176, emphasis in original); he believed that the 
teaching/learning process helped students develop their mental capacities. Dewey also proposed 
that minds can refine their mode of thinking through practice—this implies that wherever there is 
mind, there can also be “mind refinement.” He also maintained that minds could operate on 
different levels, i.e., not all types of thought were equal: 

Some of these ways [of thinking] are better than others; the reasons why they are better 
can be set forth. The person who understands what the better ways of thinking are and 
why they are better can, if he [or she] will, change his [or her] own personal ways until 
they become more effective… The better way of thinking … is called reflective thinking. 
(p. 133) 

John Dewey considered reflective thinking as a special thought process. Out of the experience of 
life arise perplexities or problems, and “demand for the solution of a perplexity is the steadying 
and guiding factor in the entire process of reflection” (Dewey, 1981/1933, p. 122, emphasis in 
original). Reflective thinking involves careful scrutiny of available data, the formation of 
possible hypotheses, and their testing through action. There is “a question to be answered, an 
ambiguity to be resolved, [which] sets up an end and holds the current of ideas to a definite 
channel” (p. 121). It is a highly developed, refined, and disciplined mode of thinking, not 
exercised by all minds. Dewey (1981/1933) stated: 

One can think reflectively only when one is willing to endure suspense and to undergo 
the trouble of searching. To many persons both suspense of judgment and intellectual 
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search are disagreeable; they want to get them ended as soon as possible. They cultivate 
an over-positive and dogmatic habit of mind, or feel perhaps that a condition of doubt 
will be regarded as evidence of mental inferiority. (p. 124) 

A reflective thinker is able to overcome the urge to make a quick, unjustified, spontaneous 
decision about a perplexity and begin a process of inquiry that leads to knowledge generation 
and an understanding of the dilemma:  

It is at the point where examination and test enter into investigation that the difference 
between reflective thought and bad thinking comes in. To be genuinely thoughtful, we 
must be willing to sustain and protract that state of doubt which is the stimulus to 
thorough inquiry, so as not to accept an idea or make positive ascertation [sic] of a belief 
until justifying reasons have been found. (Dewey, 1981/1933, p. 124) 

Through the process of reflective thinking, an individual is able to provide grounded evidence 
for beliefs held, and act in reasonable, justifiable ways. Refined thinking leads to refined actions, 
higher forms of thought leading to higher forms of action:  

[Reflective thinking] emancipates us from merely impulsive and merely routine 
activity…. it enables us to act in deliberate and intentional fashion to attain future objects 
or to come into command of what is now distant and lacking. By putting the 
consequences of different ways and lines of action before the mind, it enables us to know 
what we are about when we act. It converts action that is merely appetitive, blind, and 
impulsive into intelligent action. (Dewey, 1981/1933, p. 125, emphasis in original) 

In addition, the reflective mind learns through all its actions: “A great advantage of possession of 
the habit of reflective activity is that failure is not mere failure. It is instructive. The person who 
really thinks learns quite as much from his [or her] failures as from his [or her] successes…. 
Nothing shows the trained thinker better than the use he [or she] makes of his [or her] errors and 
mistakes” (Dewey, 1981/1933, p. 206).  

The formation of the mathematics teacher’s individual mind is at the heart of the teaching 
process: “The only way to increase the learning of pupils is to augment the quantity and quality 
of real teaching (Dewey, 1981/1933, p. 140). If the teacher’s mind can be adequately formed, 
reaching sufficient levels of reflective thought, then it is in a position to provide for the 
formation of other reflective minds such as the students (and as I will argue later, supra-
individual minds like the class or professional development groups). Teachers who have 
developed and refined their minds carefully control their actions, basing their actions upon 
beliefs that are rigorously grounded on a foundation of evidence. Teachers should be consciously 
aware of why they act, and should be able to support their decisions and judgments with 
evidence. As Shulman (1987) stated:  

The goal of teacher education… is not to indoctrinate or train teachers to behave in 
prescribed ways, but to educate teachers to reason soundly on their teaching as well as to 
perform skillfully. Sound reasoning requires both a process of thinking about what they 
are doing and an adequate basis of facts, principles, and experiences from which to 
reason. Teachers must learn to use their knowledge base to provide the grounds for 
choices and actions. (p. 15) 

Reflective teaching turns teachers into powerful agents that can influence strongly the students in 
their classrooms. These teachers carefully scrutinize their experience against their knowledge to 
reach justifiable conclusions and act accordingly. Other’s opinions form ideas to be considered 
rather than mantras to be followed: “The material supplied from the experience of others is 
testimony: that is to say, evidence submitted by others that is to be employed by one's own 
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judgment in reaching a conclusion” (Dewey, 1981/1933, p. 323). These teachers are powerful 
because of their powerful actions; powerful actions resulting from powerful modes of thought. 

When teachers are reflective, they have a greater capability of helping their students to 
become reflective. Children naturally exhibit reflective behavior (Dewey, 1981/1933, p. 181); 
the key is only to capitalize on this natural instinct. In addition, “any subject… is intellectual… 
in its function—in its power to start and direct significant inquiry and reflection” (Dewey, 
1981/1933, p. 149). It seems surprising then that many teachers are unable to combine naturally 
reflective children with subject matter that possesses reflective capabilities and generate 
reflective discussion. This is because many teachers are not yet reflected thinkers themselves. 
“Many a teacher is misled into supposing that he [or she] is engaged in disciplining the mind of 
pupils, when in reality he [or she] is creating an aversion to study and a belief that using the mind 
is a disagreeable, instead of a delightful, operation” (Dewey, 1981/1933, p. 183). As John Dewey 
mentioned: 

Only a teacher thoroughly trained in the higher levels of intellectual method and who thus 
has constantly in his [or her] own mind a sense of what adequate and genuine intellectual 
activity means, will be likely, in deed, not in mere word, to respect the mental integrity 
and force of children. (1904, p. 22) 

Preservice, beginning, or experienced teachers should strive to become better reflective thinkers 
so as to better form the minds in their midst; collaboration is a principal means to achieve this.  

Working in communities would help preservice, beginning, and experienced teachers 
develop their reflective capacities. The community provides an environment for the “steady 
infusion of new ideas” (Hiebert & Stigler, 2000, p. 15) and as a testing element for inquiry. 
Rodgers (2002) stated:  

No teacher outgrows the need for others’ perspectives, experience and support— not if 
they are interested in being what Dewey calls life-long students of teaching. The 
community… serves as a testing ground for an individual’s understanding as it moves 
from the realm of the personal to the public. A reflective community also provides a 
forum wherein the individual can put form to what it is he or she was thinking—or 
feeling—in the first place. (p. 857)  

Schön (1983) explained the importance of community for reflection: “The teacher’s isolation in 
[his or] her classroom works against reflection-in-action. [He or she] needs to communicate [his 
or] her private puzzles and insights, to test them against the views of [his or] her peers” (p. 333). 
Communities help teachers “to realize how difficult and yet how essential it is to be able to 
consider phenomena from various perspectives and to experience others’ constructions of 
meaning in the development of one’s own knowledge” (Feldt, 1993, p. 401). Rodgers (2002) also 
considers other benefits of community for reflective development:  

I have identified at least three factors that highlight the benefits of collaborative 
reflection: 1) affirmation of the value of one’s experience: In isolation what 
matters can be too easily dismissed as unimportant; 2) seeing things “newly”: 
Others offer alternative meanings, broadening the field of understanding; 3) 
support to engage in the process of inquiry: The self-discipline required for the 
kind of reflection that Dewey advocates, especially given the overwhelming 
demands of a teacher’s day, is difficult to sustain alone. (p. 857) 
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The community provides both the support and training needed for reflective development. 
Teachers can be exposed to others' ways of thinking, and experiment and test ideas in a non-
threatening environment (Stigler & Hiebert, 1999, p. 152). 
 By working in communities, teachers can develop and refine their minds’ capacities for 
reflective thought. Feldt (1993) stated that Piaget himself “emphasized that … peer interaction, 
that is, discussion and intellectual exchange, facilitated the knowledge-acquisition process by 
serving as a catalyst for reflective thought” (p. 401). Shulman has said (as quoted by Frykholm, 
1998, p. 318): 

This teaching [Standards-based] can only be achieved if we also buy a Deweyan model 
of teacher development where the end of teacher development is not some fixed and final 
set of teaching knowledge, understandings, skills, [or] competencies… If we recognize 
teacher learning is an ongoing process with a form of inquiry as its goal, then that type of 
inquiry must go on in institutions and settings beginning with teacher education and 
continuing throughout their careers. [These settings must be] characterized by teachers 
actively contemplating their own teaching and their students’ learning, having the 
opportunity to reflect on these activities… and to do that with teachers who are engaged 
in similar activities, in a culture that makes space and time and rewards consistent with 
the notion that if teachers aren't learning, student learning will be a transient 
phenomenon. That is the Deweyan vision. (Shulman, 1995)  

Working effectively with colleagues is an essential component in the reflective development of 
any teacher. In a way, a teacher’s professional development group forms a cognitve entity that 
tutors the teacher. 

Following Dewey's belief that minds can operate at different levels of effectiveness, I extend 
this idea to include that mind, wherever it may be found, either individual or collectively-formed, 
can function at different levels of cognitive thought—and reflective thinking forms a better mode 
of operation for any mind. Like the individual human mind, this implies supra-individual minds 
can operate at various cognitive levels as well, the highest and most developed being reflective 
and collective cognition. Sounds far-fetched? It shouldn’t be: Researchers have been touting the 
brilliance of collectively-formed minds from lowly bacteria to the wisdom of human crowds for 
decades (see Shapiro, 1998 or Surowiecki, 2004 for concise reviews of this literature).  

The mathematics classroom environment provides an ideal locale to bring together minds. In 
school, minds are brought together in one location, but their proximity in space does not 
necessitate their being brought together cognitively. Teachers have the opportunity of taking the 
individual minds present in their classroom and weaving them together to form a higher 
cognitive identity, galvanizing the collection of single student minds into a larger collective 
thinking unit—a class mind or a supra-student mind, if you will. Thus, mathematics teachers can 
be involved in mind formation at various levels: both the creation of larger minds and the 
refinement of existing minds toward reflective possibilities.  
 

Discussion 
A handful of researchers have begun to investigate mathematical learning in such collectives 

using the newly-developed theory of complexity theory (Davis & Simmt, 2003), which 
investigates the cognition of learning systems: Mathematics is a collective action by thinking 
entities that engage in communal mathematizing––as a whole––and provide substantial 
opportunities for individual contributions. Because “complex systems transcend their 
components” (Davis & Sumara, 2001, p. 88), creating novel phenomena unpredictable from the 
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components’ behavior, a new kind of research is needed to understand the behavior of these 
systems:  

At each level of complexity entirely new properties appear, and the understanding 
of the new behaviors requires research which I think is as fundamental in its 
nature as any other.… At each stage entirely new laws, concepts, and 
generalizations are necessary, requiring inspiration and creativity to just as great a 
degree as in the previous one. Psychology is not applied biology, nor is biology 
applied chemistry. (Anderson, 1972, p. 393) 

Complexity theory allows mathematics classes functioning jointly as mathematizing superminds 
to be envisioned and studied from a scientific perspective. It opens up a vista heretofore unseen 
by previous individualistic perspectives.  

These complex systems are composite entities formed from interacting, interrelated 
components: “For reasons that are not fully understood, under certain circumstances agents can 
spontaneously cohere into functional collectives—that is, they can come together into unities that 
have … potential realities that are not represented by the individual agents themselves” (Davis & 
Simmt, 2003, p. 141). These smaller entities interact synergistically to form a whole whose 
potentialities are larger than the sum of the parts. The whole becomes an object with power that 
did not exist previously in any of the components, and the whole often exhibits holistic learning 
capabilities at the system level (Delic & Dum, 2005). Examples of complex systems abound, 
from ant colonies to economies to nations. The human body is made up of trillions of individual 
organisms––cells––that are independent living creatures (they can even be separated from the 
larger host and kept alive, as in blood transfusions, organ transplants, skin grafts, etc.), but when 
brought together these tiny creatures interact in such a way as to form a larger whole that is much 
more than the sum of its parts. The cells exist together not only in one location, they also exist 
together functionally. And just as individual cells can form a larger person, so too can 
individuals in a classroom merge to form a larger learning entity––a mathematically functioning 
classroom “organism.” 

Complexity theory may help researchers understand classroom dynamics because students’ 
actions are affecting the system they constitute while simultaneously being affected by that 
system (Davis & Simmt, 2003). The mathematical development occurring is an entire class 
phenomenon—the result of “joint productive activity” (Stein & Brown, 1997, p. 175). 
Knowledge becomes “stretched over” (Lave, 1988, p. 1) the entire class, not the domain or 
possession of any one individual; the mathematics is situated, social, and distributed (Putnam & 
Borko, 2000). Whereas individual and social constructivist paradigms focus on the individual as 
the “locus of learning,” complexity theory sheds light on how the class as a whole develops 
mathematics. Individual knowledge in such a situation cannot be understood, complexity 
theorists claim, by slicing up the classroom and ignoring the larger collective entity of which the 
individual is an active part.  

 
Conclusion 

This paper has explored the writing of John Dewey on reflective thinking and mind 
development to extend these concepts into the realm supra-individual mind development. Just as 
a student can reflectively engage in mathematics problem-solving, so too can a group of students, 
or even the entire class. This perspective suggests that individual student mathematical learning 
can be augmented if teachers attend closely to cognizing classroom collectives (Davis & Sumara, 
2001); these entities, as “mathematizing communit[ies]” (Sfard, 2003, p. 381), parallel the type 
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of communities mathematicians learn and work in (Romberg, 1994). In particular, mathematics 
educators can apply the principles of good teaching espoused by John Dewey into a pedagogy 
that respects not only individual student or teacher learning, but various supra-individual 
learning such as partner, small group, whole-class, or teacher professional development groups. I 
have extended the theoretical work on reflective thinking by Dewey—in particular, that 
education involves a certain type of mind development—into the supra-individual realm to argue 
that mathematics education can involve the development of mathematizing intellectual entities 
that stretch across student partners, small groups, a whole class, and even teacher professional 
development collectives. Beginning with the reflective development of their own minds in 
collaborative practice, teachers can learn the skills necessary to help individual students and 
collections of students become reflective mathematics problem-solvers. 
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A lesson experiment was used to investigate how differentiated instruction impacted prospective 
elementary teachers' conceptual understandings of area and volume. Results include how the 
differentiation supported learning as well as how to enhance future instruction. Information will 
be provided about differentiated instruction, prospective teachers’ understandings and learning 
in measurement, and lesson experiment methodology. 

The mathematical preparation of teachers has recently been a renewed topic of national 
attention. Mathematics Teaching Today (National Council of Teachers of Mathematics [NCTM], 
2007) states teachers need to be “fluent in the language of mathematics and have broad and deep 
knowledge of mathematical content, processes, and contexts” (p. 119). Similarly, several sources 
are calling for teachers to possess “mathematical knowledge for teaching” (e.g., Delaney, Ball, 
Hill, Schilling, & Zopf, 2008; National Mathematics Advisory Panel, 2008). As such, there is 
little disagreement that teachers need a deep and robust knowledge of mathematics for teaching. 
The more challenging aspect however is “In what ways do the content-learning experiences in 
your teacher-preparation . . . program help develop the robust and connected mathematical 
understandings needed for teaching?” (NCTM, 2007, p. 197). This dilemma is magnified by the 
varying understandings, interests, backgrounds, and learning preferences that prospective 
teachers bring to their undergraduate mathematics courses. 

Such student variance is evidenced in nearly all classrooms. To address such diversity in 
grades K-12, teachers have been using differentiated instruction, a process of proactively 
modifying instruction based on students’ current understandings, interests, and learning 
preferences. Effective characteristics of differentiated instruction include clear learning goals, 
ongoing and diagnostic assessments that modify instruction, and challenging tasks for all 
students. The approach is supported by literature on learning and has resulted in the 
improvement of students’ learning. Yet, very little research literature reports on the use of 
differentiated instruction at the undergraduate level, especially with prospective teachers in 
mathematics courses. Chamberlin and Powers (2010) demonstrated the potential of differentiated 
instruction at the undergraduate level by finding that prospective elementary teachers receiving 
differentiated instruction experienced greater gains in their mathematical understandings. 
Questions remain however about specifically how differentiated instruction impacts the learning 
of prospective teachers. The objective of this study is to investigate how differentiated 
instruction impacts the mathematical understandings of prospective elementary teachers enrolled 
in a mathematics content course. 

 
Background and Theoretical Framework 

Differentiated instruction is a process of proactively modifying curricula, teaching methods, 
learning activities, and assessments to meet the diverse needs of students and thereby to 
maximize access to, motivation for, and efficiency of learning (Tomlinson, 1999). These changes 
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are based on students’ readiness (current understandings), personal interests, and learning 
profiles (learning styles, culture, and gender) (Tomlinson et al., 2003). Differentiated instruction 
is supported by theoretical literature on learning (Subban, 2006; Tomlinson et al., 2003; 
Tomlinson & McTighe, 2006) as well as empirical research. Empirical studies across several 
grade levels have found that differentiated instruction leads to achievement gains on standardized 
tests, including mathematics assessments (Hodge, 1997). While achievement gains have been 
found for all students and across all racial and socioeconomic groups (Brighton, Hertberg, Moon, 
Tomlinson, & Callahan, 2005; Tomlinson, 2005), some studies have found particular 
improvement for historically low-performing students, students with exceptional needs, and 
students with gifted abilities (Batts & Lewis, 2005; Brimijoin, 2002; McAdamis, 2001). 

Several core principles guide differentiated instruction (Tomlinson, 1999; Tomlinson et al., 
2003; Tomlinson & Eidson, 2003). First, assessment is ongoing, continuously informs 
instruction, and includes the assessment of students’ understandings, their personal interests, and 
their learning profiles. Second, teachers attend to student differences, accepting students as they 
are but expecting them to become and understand all that they can. Third, all students participate 
in respectful work at a level attainable for them. Lessons for all students emphasize critical or 
creative thinking that promote individual growth. Fourth, the teacher and students collaborate in 
learning, maintaining a balance between teacher-assigned and student-selected tasks and working 
arrangements. Fifth, teachers are flexible in their use of groups, whole class discussion, time, 
materials, and classroom space. Finally, differentiated instruction is proactive rather than 
reactive. The teacher plans lessons that address learner variance from the outset rather than 
relying on adjusting instruction during real-time. Differentiated instruction is not synonymous 
with individualized instruction. Rather, it draws on flexible groupings, space, time, and materials 
to target instruction for subsets of the entire class, which fosters accommodation without the 
overwhelming effort of individualization. Furthermore, the teacher does not differentiate 
instruction during every class. Whole class instruction is still utilized but done so purposefully, 
informed by on-going assessment of students’ needs. Teachers may choose to differentiate their 
instruction with regard to content, learning process, learning product, or learning environment.  

Differentiated instruction is grounded in a sociocultural theory of learning, which also serves 
as the theory of learning for this study. Sociocultural theory emphasizes the role of social 
interaction and culture in the development of the learner (Vygotsky, 1987; Wertsch, 1991). 
Higher order functions develop out of social interaction and culturally organized activities. In 
addition, social and individual human action is mediated by tools and signs. These tools facilitate 
the co-construction of knowledge and aid in future independent problem solving activity. An 
instructional implication of sociocultural theory is that learning should be matched in some 
manner with the child's level of development. As such, Vygotsky proposed the zone of proximal 
development (ZPD), known as the difference in a child’s performance when she attempts a 
problem on her own compared with when an adult or an older or more advanced peer provides 
assistance. Differentiated instruction, with its emphasis on continuous assessment and targeting 
instruction for students' ZPD, aligns with the basic tenets of socioculturalism. 

 
Methods 

For the present study, 19 prospective teachers enrolled in Math 2120 Geometry and 
Measurement for Elementary Teachers in spring 2011. The course utilized the book 
Reconceptualizing Mathematics for Elementary School Teachers (Sowder, Sowder, & 
Nickerson, 2009) and had three primary emphases: two- and three-dimensional shapes, 
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symmetry and congruence, and processes of measurement. Megan was the instructor for the 
course, while both Megan and Michelle served as researchers for the study. The course included 
two in-class exams, a cumulative final exam, formative assessments, homework assignments, 
quizzes, a group project, and various writing prompts. All students in the course were elementary 
education majors with 63% sophomores, 26% juniors, and 11% post-baccalaureates or seniors. 
Students self-identified their mathematical backgrounds as ranging from high school algebra to 
calculus, and all students had taken the first two courses in the elementary education 
mathematics sequence. Students also varied in their self-identified like or dislike of mathematics, 
which they were asked to rate on a scale ranging from 1 (low) to 10 (high). Students’ answers 
ranged from 1 to 10, with most students falling between 5-7 and the class average being 6.1.  

Instruction was differentiated in multiple ways. Several pre- and formative assessments were 
used to gauge students’ readiness, interests, and learning preferences. Varying activities and 
flexible use of small groups (sometimes heterogeneous, other times homogeneous) were 
implemented to meet students’ different needs. Multiple modalities, in particular visual, audio, 
and kinesthetic mediums, were incorporated throughout the course. Students completed the same 
quizzes and exams, but homework assignments were differentiated. To differentiate the 
homework, students’ progress was tracked using learning logs that outlined the learning goals for 
each unit. Students were given choices on writing prompts and the group project, as well as 
being able to select the medium through which material was presented for the project, e.g., 
website, skit, brochure.  

To examine the impact of differentiated instruction on prospective teachers’ mathematical 
understandings, a lesson experiment was utilized. The purpose of a lesson experiment is to 
engage in cycles of creating and testing hypotheses about cause-effect relationships between 
teaching and learning during classroom lessons (Hiebert, Morris, Berk, & Jansen, 2007; Hiebert, 
Morris, & Glass, 2003). It is a deliberate and systematic process that focuses on the key question, 
“What did students learn, and how and why did instruction influence such learning?” (p. 48). The 
process is composed of four steps that take on a character somewhat akin to teacher as 
researcher, reflective practice, and disciplined inquiry. The first step is explicating the learning 
goals for the students, which allows one to investigate whether and how the instruction helped 
the students achieve the desired goals. The second step is assessing whether and to what extent 
the learning goals are achieved during the lesson by gathering data on students’ thinking from 
videos, transcripts, or students’ written work. The third step consists of developing hypotheses 
for why the lesson did or did not achieve the learning goals. The fourth step entails using the 
hypotheses to revise the current lesson or to provide additional ideas about supporting learning 
that can be utilized and tested in future lessons. In conducting a lesson experiment, such steps are 
not necessarily performed in a distinct sequential fashion, although the order of the steps 
provides a general framework for progression. This approach provides a shift of focus from 
teaching in the moment to including preparation and reflection outside the classroom. In 
addition, the approach is a promising response to the gap between research and practice. While 
Hiebert and his colleagues foremost recommend lesson experiments as a way to help teachers 
learn from teaching, they also recommend the approach for teacher educators.  

The lesson experiment took place the third week of the semester and involved a 
differentiation of activities based on students’ conceptual understandings of area and volume. 
The purpose of the lesson experiment was to address how the differentiated area and volume 
activities impacted the students’ learning. Table 1 provides the learning goals for the 
differentiated lesson (Wiggins & McTighe, 2005). 
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Enduring Understandings (EU) 
1. A measurement system allows one 

to measure attributes with a unit 
appropriate for the particular 
context, including the ability to 
measure an attribute with different 
magnitudes. 

2. In learning to measure, elementary 
students are best supported by a 
progression of a.) learning to 
perceive an attribute, b.) comparing 
objects with the same attribute, c.) 
measuring with a unit (nonstandard 
and then standard), and d.) working 
within a standard measurement 
system. 

Knowledge (K) 
1. Area is the number of 

square units that cover a 
region.  

2. Volume is the number 
of cubic units (solid or 
liquid) that fill a space. 

3. Surface area and volume 
are independent. 

4. Without a consistent 
unit, an attribute may 
have different measures. 

Skills (S) 
1. Compare, order, 

and measure area 
and volume using 
nonstandard and 
standard units 
(including 
selecting an 
appropriate unit or 
tool). 

2. Develop 
familiarity with 
standard units for 
area and volume 
(metric and 
English). 

Table 1. Learning objectives for differentiated area and volume lesson 
At the beginning of the course, students completed a measurement pre-assessment. The pre-

assessment asked students to draw and offer an explanation of five attributes (length, area, 
volume, mass, and weight), to order groups of objects for each attribute, to match up various 
objects with an appropriate measure and unit, and to rate their comfort level with English and 
metric units. The pre-assessments revealed that some students had only developing 
understandings of area or volume (e.g., confusing the two, confusing volume with weight or 
surface area), that other students defined area or volume in terms of the measurement formula for 
a rectangle or a rectangular prism, and that most students were not familiar with the metric 
system. Thus, for the differentiated lesson and due to time constraints, students completed 
activities in either area or volume as per their performance on the pre-assessment. The activities 
led students through the learning progression for measurement (see EU2 above). Specifically, for 
the volume group, the first activity was to compare the volume of three cylinders, each formed 
from a standard sheet of paper but taped together in different ways. Second, they measured a 
cylinder with a non-standard unit and then compared their measurement with another group 
(who, unbeknownst to either group, was measuring the same sized cylinder, but with a different 
sized non-standard unit.) This activity highlighted the need for a consistent unit. The third 
activity was to measure the volume of a cylinder using base ten pieces to emphasize the 
advantages of a standard cubic unit. Finally, students filled a hollow base ten cube with water to 
realize that one liter is equivalent to the volume of a base ten cube and thereby to realize that one 
milliliter is equivalent to the volume of one cubic centimeter. The area group went through a 
similar progression, first directly comparing shapes of different area, then using a non-standard 
unit to measure area, then working within the metric system by measuring a variety of items 
using the faces of base ten blocks. 

After the students completed their respective activities, each volume group presented their 
findings to an area group and vice-versa. For the presentation, students talked about how their 
attribute is measured, what metric units are used to measure their attribute, and related their 
activities to the measurement learning progression. Finally, in order to assess students’ 
understandings on both attributes, a post-assessment was given in which students compared the 
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area of two shapes and then justified their decision, considered the best type of unit for 
measuring volume (either a cylinder, cube, or rectangular prism), justified the measurement 
formula for the volume of a rectangular prism, and listed any remaining questions they had.  

During the lesson experiment, various sources of data were collected from nine students, a 
subset of the students who agreed to participate in the research. The data sources included 
students’ work on the measurement pre-assessment, students’ work on the area and volume 
group activities, audio recordings of one area and one volume group, video recordings of 
Megan’s instruction, and students’ work on the post-assessment. Data analysis is in progress. 
Analysis to date has included examining the students’ written work, coding their understandings 
and developing interpretations about area and volume in regard to the learning objectives. The 
associated audio recordings have also been listened to and students’ thinking and discussion 
paraphrased to form initial ideas about how the social interaction and measurement objects are 
mediating students’ learning. Future analyses planned include transcribing the audio and video 
recordings and using grounded theory and constant comparative approaches (Strauss & Corbin, 
1998) to refine the interpretations of the students’ understandings and how the differentiated 
activities impacted their social interactions and use of measurement tools.  

 
Results 

Preliminary results describing which learning goals were met refer to the objectives given in 
Table 1. With regard to K1 and K2, the lesson appeared to enhance students’ understandings of 
area as covering a two-dimensional shape and volume as filling a three-dimensional shape, 
especially for students that demonstrated misconceptions on the pre-assessment. For example, on 
the post-assessment when asked about justifying that a shape had a larger area, all of the students 
either commented about placing the shapes on top of each other or counting the number of 
square units required to cover each shape. However, not many of the students described counting 
the number of square units. While the students appeared to develop an appreciation for area as 
coverage and volume as filling, they did not often describe quantifying these attributes by 
counting the number of square or cubic units. With regard to K3, students seemed to understand 
well that measuring an attribute with different-sized units leads to different measures, as students 
in both groups described this experience in their presentations. In addition, during interactions 
with Megan, it was apparent that the students were implicitly making sense of the inverse 
relationship between the size of the unit and the associated measure. For K4, the volume group 
was shocked by the realization that cylinders with equivalent surface areas may have different 
volumes. Also, due to their interaction with Megan, some students may have gained an 
appreciation for why the circumference and resulting radius formed by the sheet of paper has a 
greater impact on the volume than the height.  

During the presentations and on the post-assessment, students demonstrated some strong 
understandings of S1, selecting appropriate units for measuring area or volume. Students clearly 
understood that circles or cylinders do not work well as units because when placed next to each 
other gaps remain. Nearly all students also deferred on selecting a unit for measuring area or 
volume that would include dimensions of different lengths, e.g., a rectangle or a rectangular 
prism. However, as evidenced on the post-assessment, it was not apparent whether students 
could articulate the complexities involved with using such units, e.g., the need to pay careful 
attention to which dimensions of the unit are used to measure which dimensions of the associated 
two- or three-dimensional object. With regard to S2, students appeared to gain an understanding 
that one milliliter is equivalent to one cubic centimeter. Due to a lack of commentary by the 
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students, they did not seem to learn about any other common referents for standard units of area 
or volume. From listening to the area group audiotape, it appears that these students may have 
developed a general sense of the magnitude of the different metric units for area (EU1). For 
example, when completing an activity entitled ‘Guess the Unit’, they discussed the relative 
magnitude of a kilometer to a decameter to a meter. It is uncertain whether the volume group 
gained a similar sense of such magnitudes for volume as their activities seemed to deal less with 
this issue. Finally, with regard to EU2, all of the students seemed to understand the need to help 
elementary students understand an attribute, e.g., the idea of area as covering and volume as 
filling. However, it is not clear that the students understood all of the steps of the learning 
progression, as they did not talk about the later steps. 

After analyzing the lesson, various hypotheses as to how the instruction helped students 
attain the learning objectives were determined. First, as recommended for K-12 students learning 
about measurement (NCTM, 2000), the activities provided the students with concrete and active 
experiences in finding, comparing, and exploring the attributes of area and volume. In fact, one 
of the students commented on the audiotape that he particularly appreciated the fact that these 
activities involved the activity of measuring rather than just listening to a teacher and performing 
computations on paper. This active process contributed to students’ understanding of area as 
coverage and volume as filling. Second, activities were purposely designed such that the students 
would proceed through the measurement learning progression (Inskeep, 1976; Van de Walle & 
Lovin, 2006) due to our belief that this progression is helpful for all learners regardless of age. In 
this particular lesson, the students also had misconceptions about the attributes of area or 
volume; therefore students were differentiated by being placed in the appropriate group and 
leading them through the learning progression. This differentiation also allowed the students’ 
interactions with the instructor to focus on their developing understandings. For example, while 
interacting with Megan, the volume group was able to further explore the formula for the volume 
of a cylinder. The lesson structure also allowed the students to learn from each other about the 
other attribute. From the presentations and students’ work on the post-assessment, it appears that 
as a result of the area presentation, the volume students learned about the option of placing 
shapes on top of each other to compare area and about a circle not working as a unit of area 
because of the resulting gaps. As a result of the volume presentation, the area students came to 
understand volume as filling, that cylinders do not work as a unit of volume, and that one 
milliliter is equivalent to the volume of one cubic centimeter.  

Analyzing the data of students’ thinking also revealed some differences between the volume 
and area group. In general, the volume group was more active in verifying, justifying, and 
critiquing their own work. For example, on multiple occasions after determining the volume of a 
cylinder by using the formula

€ 

πr2h , the students also verified their calculation by filling the 
cylinder and counting the number of units used. On another occasion, the students were very 
deliberate about wanting to know why the volumes were not equal for cylinders with equal 
surface areas. In contrast, the area group did not verify their measurement calculations, used 
estimation rather than actually measuring certain objects (such as the surface area of a door), and 
seemed satisfied with answers that appeared “fairly close” (when upon further investigation 
would have been shown to be somewhat inaccurate). With their reliance on estimation, the area 
students often thought of quantities in terms of English units and then made rough 
approximations to metric units. This approach was in contrast to the intent for students to 
become familiar with metric units. In hypothesizing about what instructional aspects led to the 
differences between the two groups, several possibilities were considered. First, the students in 
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the volume group have been known through other class sessions to frequently pursue the 
reasoning behind their mathematical ideas and concepts. This raises the question of how to 
encourage such behavior on behalf of other students and how social dynamics and culture may 
play a role. Second, the difference could be attributed to the lack of measuring activity on the 
part of the area group. Because of this, in future offerings of this lesson and for other 
measurement activities in this course, the instructor may need to take an active role in making 
sure the students engage in the activity of measuring. Third, the volume and area activities 
themselves may have contributed to this difference. For the volume activities, the students were 
finding the volume of an object other than a rectangular prism. Thus, the students were using a 
volume formula with which they were less accustomed. Perhaps this led them to be more active 
in verifying their calculations. In contrast, for the area activities, the students were primarily 
finding the area of rectangles. Perhaps their familiarity with the area of such shapes decreased 
the need or desire to verify such calculations. Thus, upon utilizing these activities in the future, 
more irregular two-dimensional shapes in the area activities would be included.  

In considering how the current lesson might be revised or formulating ideas about supporting 
future learning, two unexpected mathematical complexities arose. First, when selecting 
nonstandard units for the measurement activities, unforeseen complexities from using units with 
varying dimensions emerged. As a result, a successive lesson was taught in which students cut 
out nets of cubes and of rectangular prisms and discussed in small groups which of the two 
would serve as a better unit for measuring volume. Second, in covering shapes with sticky notes, 
the area group alluded that shapes with equal area may not necessarily be congruent. Thus, an 
additional lesson was taught using geo-boards to investigate the area of triangles and 
parallelograms which had the same base and altitude (and thus the same area) but looked very 
different. Finally, some learning objectives that did not appear to be met during this lesson were 
addressed in future lessons: the concept that a measurement is the result of counting the number 
of units that match the given attribute, the various magnitudes of metric units of volume, and 
developing familiarity with the metric units, including learning of common referents.  

 
Discussion 

Lesson experiments provide a means for connecting research and practice, as we found to be 
the case for us. In this lesson experiment, we were engaging in two roles: researchers in teacher 
education and teachers of mathematics content. We found this process to benefit both roles and 
to provide feedback between the two. Due to the collection of research data, we enhanced our 
interpretations of the students’ thinking which thereby impacted our future instruction. Similarly, 
our instructional roles provided insight into the students’ activities and experiences during class, 
enhancing our ability to hypothesize how the instruction was impacting the students’ 
understandings. We also found continued promise in the use of differentiated instruction at the 
undergraduate level with pre-service elementary teachers. Differentiating by area and volume in 
this lesson enhanced the students’ understandings, allowed us to maximize the use of class time, 
and possibly provided a model of differentiated instruction for the students. Indeed, we have 
been open with the students about the differentiation process and are undertaking other research 
projects to investigate the potential impact of this on the pre-service teachers’ future pedagogical 
practices. Finally, the lesson experiment process has begun to reveal hypotheses about how 
differentiated instruction is impacting the students’ learning and mathematical understandings – 
the primary purpose of this project.  
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We present the results of an exploratory study utilizing interactive video examples of reform 
teaching in an elementary mathematics methods course and their impact on pre-service 
teachers’ pedagogical content knowledge (PCK) and ability to identify and interpret reform-
based pedagogy. The study utilized a quasi-experimental research design in which all 
participants completed both a pre- post-pedagogical pedagogical content knowledge 
assessment and a pre- post-case analysis assessment. We present the results of this 
intervention; interpret the results and present implications for further research. 

Introduction 
In the United States, the current mathematics education reform movement works with 

teachers to develop pedagogy, which values a deep conceptual understanding of mathematics 
in students rather than a rote procedural understanding. The reform movement’s emphasis on 
mathematical problem solving, reasoning, communication, representation and connections 
(NCTM, 2000) answer the call of the 21st century social and intellectual skills. Teachers must 
be prepared to teach in a manner that incorporates and integrate four knowledge domains, 
knowledge of: content for teaching, pedagogy, learning, and evaluation (Lappin, 2000). 
Despite the efforts of many talented researchers in partnership with inservice and preservice 
teachers, the impact on classroom pedagogy has remained minor.  Thus, mathematics teacher 
educators and researchers continue to explore new and different ways to provide the 
momentum to enable reform-based pedagogy to thrive in working classrooms.   
Shulman (1983) stated that, “…the teacher must remain the key.  The literature on effective 
schools is meaningless; debates over educational policy are moot, if the primary agents of 
instruction are incapable of performing their functions well…” (p. 504).  The traditional 
American teacher preparation program has three main components to develop preservice 
teachers abilities to perform their function: coursework that develops pre-service teachers’ 
(PSTs) knowledge of both content and pedagogy and various field experience components. In 
order to prepare teachers to teach using a reform-based approach, mathematics teacher 
educators and researchers have taken an empirical look at various approaches within each of 
these three phases to help prospective teachers develop reform-based pedagogical approaches 
(e.g. Mewborn, 1999, 2000; Sowder, 2007; Ball & Wilson, 1996). This paper examines the 
results of an exploratory study utilizing interactive video examples of reform teaching in an 
elementary mathematics methods course and their impact on PSTs’ pedagogical content 
knowledge and ability to identify and interpret reform-based pedagogy. 

Perspective 
Developing Reform-Based Teachers 

The constructivist philosophy of learning originates from the research of Vygotsky and 
Piaget.  Here, mathematical learning occurs from the active participation in one’s own 
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navigation of the curriculum.   Knowledge cannot be objectified and then transferred, but 
must be discovered through the processes of perturbation, accommodation, and assimilation 
into existing constructs.   Students use these tenets to learn mathematics by making sense of 
their own experiences and then also the collaborative sharing of these experiences amongst 
their peers.  This type of mathematical teaching is demanding on the practitioner, and 
requires a specific skill set.  Realizing its complexity, Ball (1990) suggested that teachers 
need to understand the nature of knowledge in the discipline, where that knowledge comes 
from, how it varies with time, how truth is established, and philosophically what it means to 
know and do mathematics in order to be effective teachers.  The complexity and versatility of 
knowledge for teaching mathematics is important for the implementation of mathematics 
reform and also the future design of methods courses designed to train PSTs.   

The release of the National Council of Teachers of Mathematics (NCTM) (2000) 
Principle and Standards for School Mathematics document describes an idealized future for 
mathematics classrooms in the US and echoes the international community in its call for 
access for all students to rigorous, high quality mathematics instruction. To make the transfer 
between ideal and reality is the task of the classroom teacher.  

What students learn in their K-12 mathematics experiences is a reflection of the 
procedures in those classrooms.  The construction of learning environments will invariably 
reflect the classroom practitioners’ views on mathematics and mathematics instruction. An 
absolutist teaching of mathematics supports the behaviorist thought that mathematics is a 
rigorous, masculine discipline of which mathematics is out there, awaiting discovery, and can 
be learned by rigorous procedural applications.  Research indicates “that classroom 
instruction, which tends to focus almost exclusively on the knowledge base, deprives students 
of problem-solving knowledge”(Schoenfeld, 2004, p. 263).  As a product, this falls short of 
the goals set forth by mathematics education professionals.  

The belief of mathematics and mathematics instruction being a process, or a series of 
ideas and refutations provides a different fundamental platform for learning.  Discovery, 
improvisation, inquiry, student centered, these adjectives speak of the nature of this type of 
mathematical teaching and learning.  This builds towards the high standards set forth by the 
international research community.  This type of mathematical learning also reveals 
complexities of what is required of practitioners that are urged to teach this way (Hill, Sleep, 
Lewis, & Ball, 2007). 

Studies suggest (Borko et al., 1992; Brown, Cooney, & Jones, 1990) that teacher beliefs 
are influenced a great deal by teachers’ experiences with mathematics and schooling long 
before their entry into the mathematics education workforce, and without significant 
interventions, these beliefs are very difficult to change (Cooney, Shealy, & Arvold, 1998).  
Innovative methods courses can address these difficulties inclusive with exposing these 
practitioners to more clinical experiences.  Field experiences can provide difficulties in that 
there is a lack of control for the beliefs of the inservice teacher.  Therefore, the task may fall 
on technology to provide video cases imbedded in hypermedia in order to provide a quasi-
field experience for preservice teacher training.  This controls for contrasting beliefs, while 
simultaneously providing quality role models for preservice teachers to project methods onto 
their own vision of their future classroom and classroom practices.  

Video Cases 
Teacher education programs have long been criticized that its didactic instruction and 

limited field experience cannot equip pre-service teachers with the insight and experience 
dealing with the messy and complex teaching practice in the real world. In the last several 
decades, case-based method has increasingly been advocated as an effective method of 
preparing pre-service teachers for the real classroom context (Shulman, 1986; Merseth, 1996; 
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Harrington, 1991). Case teaching has a long and productive history in several fields of 
professional education such as law, business and medicine, but it did not gain attention in the 
field of teacher education until mid 1980s. The use of video cases in teacher preparation has 
grown substantially within the last few years.  

Compared with traditional narrative cases, video cases offer further advantages. Primarily 
it satisfies the need for pre-service teachers to observe how teachers handle daily problems in 
real classrooms (Georgi, Redmond, Talley, & Cannings, 2002). Video cases also increase 
PSTs’ opportunities to observe authentic teaching situations; each of which can be viewed 
multiple times.  The opportunity to view and reflect on an episode multiple times allows for 
deeper understanding of the methods and environments that are being viewed. (Georgi et al., 
2000; Sherin, & van Es, 2002).  

In the preparation of preservice mathematics teachers, it has become apparent that 
importance must be placed on facilitating skills such as listening to, hearing, and watching 
students. Many programs such as CGI (Phillip, Armstrong, & Bezuk, 1993), IMAP (Phillip et 
al., 2007), and DMI (Schifter, Russell, & Bastable, 1999) have found success in the emphasis 
on studying children’s thinking. Various studies have demonstrated the advantages of using 
video cases over written cases in promoting such skills. In a study that compares the 
reflective abilities of two groups of pre-service teachers in a mathematics methods course, the 
group that enrolled after the introduction of a video case curriculum tends to focus more on 
individual student’s mathematical thinking (Stockero, 2008).The video cases applied in the 
curriculum are unedited recordings of classroom activities during middle school math classes. 
Compared with written cases, the unedited video series provide pre-service teachers with the 
opportunity to locate the important issues and concerns from the recorded classroom 
interactions.  This finding is in accordance with Wang and Hartley’s (2003) conclusion that, 
video cases are more efficient than written cases in facilitating the development of the 
knowledge and skills of observation. Sherin (2004) also pointed out that such development 
enhances the ability of identifying the issues that are critical to the profession, such as 
discovering and understanding students’ mathematical thinking patterns.  

In addition to helping teachers to realize the students’ mathematical thinking levels, 
video-based pedagogy has also been demonstrated to facilitate teacher’s reconstruction of 
their beliefs about how children learn mathematics and shape a student-centered rather than 
the teacher-centered perspective (Friel & Carboni, 2000). The use of video cases in teacher 
education is also found to be helpful in developing the pre-service teachers’ ability to 
examine student ideas (Richardson, 1999; Sherin, 2004) and to clarify students’ conceptual 
understanding (Sherin & Han, 2004). 

Examining Pedagogical Content Knowledge 
In his landmark article, Shulman (1986) raised the following questions, “Where do 

teacher explanations come from? How do teachers decide what to teach, how to represent it, 
how to question students about it and how to deal with problems of misunderstanding?” (p. 
8). The type of knowledge teachers required to address these questions is what Shulman 
referred to as pedagogical content knowledge (PCK). Our position is that interactive video 
examples of reform-based pedagogy can be an accessible source of knowledge for PSTs to 
develop PCK. Thus we have employed Shulman’s description of PCK to use as a lens 
through which to view what PSTs know and notice about reform-based teaching. Thus, as we 
analyzed our data for what PSTs knew and noticed about reform-based pedagogy, we 
examined it for evidence of PSTs’ knowledge of students and student learning, appropriate 
and powerful mathematical representations, and PSTs’ ability to interpret and make sense of 
students’ mathematical work and thinking. In order to further frame our examination of PSTs 
knowledge and noticing of reform-based pedagogy, we employed the NCTM Principles and 
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Standards for School Mathematics (2000) document. Specifically germane to our 
assessments are he teaching and learning principles, the number and operations content 
standard, and the five process standards of: problem solving, reasoning and proof, 
communication, connections, and representations. 

The purpose of current study was to examine the influence of video cases on pre-service 
teachers’ pedagogical content knowledge. Specifically, this study addressed following 
research question, What is the influence of video cases on pre-service teachers’ pedagogical 
content knowledge as it pertains to reform-based mathematics instruction? 

 
Methods 

Participants 
Forty-two students enrolled in two sections of elementary mathematics methods at a large 

Midwestern university course participated in the study. The third author served as the 
instructor for the two sections. There were 38 Females and 4 Males.  All participants were 
seniors enrolled in the methods course the semester prior to their student teaching experience. 
In conjunction with course, participants also spent 32 hours observing and teaching 
mathematics and science within an elementary classroom. 

Measures 
Pre-post pedagogical content knowledge assessment. Participants completed a 

pedagogical content knowledge assessment in a pre-post format. The open-ended 
questionnaire included four questions that assessed pre-service teachers’ understanding of 
number and operations and how they might approach teaching this content. Specifically, the 
questions were: 1. What mathematics makes up number and operations?; 2. How would you 
teach topics in number and operation (i.e., what are some approaches, methods, etc.)?; 3. 
How do you know a student is struggling with ideas in number and operation?; 4. How do 
you know a student has a good understanding or mastery of ideas in number and operation? 

Pre-post case analysis assessment. Participants also completed a video case analysis 
assessment, which was utilized to assess their ability to observe and notice reform-based 
mathematics teaching practices. Participants watched a video clip (6 minutes and 21 seconds) 
that showcased a sixth grade classroom engaged in learning fractions and percentages. After 
watching the video, participants completed a questionnaire with three questions that assessed 
their ability to notice teaching practices. Specifically, the questions were: 1. What do you 
notice about the teacher? 2. What do you notice about the students? 3. What do you notice 
about the mathematics? 

Procedure 
The study utilized a quasi-experimental research design where students enrolled in one 

section of math methods course acted as experimental and another section served as control. 
Both sections were taught by the same instructor, which removed any potential instructor 
effect. Participants in the experimental section had access to an online video case library that 
showcased reform-based mathematics instruction where as control section did not have 
access to the video case library. The video case library included 4 teachers teaching various 
lessons within the topic of numbers and operation with a total number of 37 video clips. The 
participants could search the video case library using a theme, keyword, or teacher. The 
themes included more broad categories, such as task launch, task exploration, student 
explanations, and task summarize, where as keywords were more specific instances of 
mathematics teaching practices. Participants from the experimental section were given seven 
bi-monthly assignments to watch a series of video clips and respond in an electronic 
reflection journal to three prompts: “What do you notice about the teacher?”, “What do you 
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notice about the students?”, and “What do you notice about the mathematics?”. The control 
participants, on the other hand, did not watch the video cases, and were instead required to 
respond in their electronic journals to a series of journal prompts selected from the end of 
chapter discussion questions in their course textbook. All participants completed both the pre- 
post-pedagogical content knowledge assessment and the pre- post-case analysis assessment 
described above.  

Data Analysis 
Researchers developed a coding rubric to analyze the pedagogical content knowledge and 

case analysis assessments. The rubric was developed using the assigned readings for the 
course (Van de Walle, 2009) and the NCTM Principles and Standards for School 
Mathematics document (2000). Specifically, the rubric consisted of acceptable responses for 
each of the questions and participants were assigned a 1-point for each correct response and 
could score multiple points for each question based of the total number of acceptable 
responses for the given question. The researchers coded each participant’s assessments 
individually and then met to discuss their assigned scores and to reach consensus for the final 
score for each participant. One example of coding scheme for each assessment is in Table 1. 

Pedagogical Content Knowledge Assessment 
Question 1:  What mathematics makes up number and operations? 
Code: 0-2 (continuous); 0 points for “I don’t know” or other incorrect answers; 99 for blank 
Scale – provide 1 point for supplying each answer or similar worded idea (up to 2): 

• Identifies the four main operations (addition, subtraction, multiplication, division) 

• Identifies	  various	  number	  systems	  or	  classes	  of	  numbers	  (whole	  numbers,	  
fractions,	  decimals,	  percents,	  ratio)	  

Case Analysis Assessment 
Question 1 – “What do you notice about the teacher?” 
Code: 0-9 (continuous); 0 points for “I don’t know” or other incorrect answers; 99 for blank 
Scale – provide 1 point for supplying each answer or similar worded idea (up to 9): 

• Teacher ask for/encourages different ways of explaining 
• Teacher asks students for students’ attention   
• Teacher shows interest in student explanations/thinking 
• Teachers values student explanations/thinking 
• Teacher revoices/restates student thinking for class  
• Teacher encourages student-student questions communication 
• Teacher asks questions to encourage students to clarify/refine their thinking 
• Teacher moves around the room and talks to students during exploration time 
• Teacher provides opportunities to students to work on the problem on their own 

Table 1: Assessment rubric samples 
Results 

Pre-post Pedagogical Content Knowledge Assessment 
The results suggest that overall video cases increased students’ pedagogical content 

knowledge of numbers and operation (See Table 2 for means and standard deviations).  
However, ANCOVA results suggest that condition was not a significant factor for 
participants understanding of what mathematics makes up number and operations (F(1, 
41)=3.70, p=0.06); how to teach topics in number and operation (F(1, 41)=0.09, p=0.77); 
identifying student struggling with ideas in number and operation (F(1, 41)=0.48, p=0.49); 
identifying student mastery of ideas in number and operation (F(1, 41)=0.01, p=0.92). 
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Condition Q1 Q2 Q3 Q4 

Traditional 0.21 (0.42) 1.84 (0.83) 0.95 (0.62) 1.16 (0.69) 

Video Cases 0.65 (0.77) 1.91 (0.90) 1.04 (0.64) 1.09 (0.67) 

Table 2: Means and standard deviation of pedagogical content knowledge 
assessment 

Pre-post Case Analysis Assessment 
Results showed that pre-service teachers’ ability to notice reform-based mathematics 

teaching practices increased when video cases were used (See Table 3 for means and standard 
deviations). ANCOVA results exhibited that video cases significantly influenced pre-service 
teachers’ ability to notice students (from the video vignette) using variety of tools, student-
student mathematical interactions and students giving procedural and conceptual explanations 
of equivalence, (F(1, 40)=4.72, p=0.04).  However, ANCOVA results exhibited that 
condition was not a significant factor for pre-service teachers’ ability to notice reform-based 
teaching practices (F(1, 40)=0.28, p=0.60); and identifying mathematical content (F(1, 
40)=2.58, p=0.12).  

 
Condition Q1 Q2 Q3 

Traditional 0.21 (0.42) 1.84 (0.83) 0.95 (0.62) 

Video Cases 0.65 (0.77) 1.91 (0.90) 1.04 (0.64) 

Table 3: Means and standard deviation of case analysis assessment 

Discussion and Conclusions 
Past research has indicated the use of video case examples can impact teachers’ 

knowledge and abilities. Aside from the one significant result, the findings from this 
exploratory study do not seem to support these results. We provide a possible explanation for 
the lack of effect and present some directions for our further investigations.  

A valuable aspect of using video cases is PSTs opportunity to have discussions with their 
peers and instructor of the episodes, what they noticed, and how they reflected on and made 
sense of their observations. Due to time constraints within the structure of the methods 
course, PSTs only gave written responses to the video cases and were not afforded this 
opportunity. We believe relying solely on written reflection limited the PSTs’ opportunities 
for developing PCK. As a result of this study, we have realized that the time spent in class on 
reflection of the video cases is crucial to maximizing PSTs’ opportunities to learn. 

A second change we intend to make moving forward is to further refine our approach for 
examining PCK; specifically by using the construct of mathematical knowledge for teaching 
(MKT) (Hill, Sleep, et al., 2007; Ball, Thames, & Phelps, 2008). For example, the one 
significant result indicated use of video cases had a significant effect on PST’s ability to 
recognize student indicators of reform-based teaching practices: students using a variety of 
tools, student-student mathematical interactions, and students use of procedural and 
conceptual explanations. We argue that these are aspects of, or are related to, PSTs’ 
Knowledge of Content and Students (knowledge of the ways students think and learn) and 
Common Content Knowledge (the mathematical content teachers are responsible for teaching 
to students). We can also use MKT to frame our other results. For instance, we saw a change, 
although not significant, within aspects of Specialized Content Knowledge (mathematical 
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knowledge used for teaching but not taught directly to students) as well as Knowledge of 
Content and Teaching (knowledge of task selection, appropriate representations, questioning 
strategies, etc.). In further iterations of this study, it is our intent not only to use MKT in our 
analysis, but to gear the discussions of the video cases within the methods course around 
MKT as well.  
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As a field, we know little about how teachers take up practices and sustain them (or not) due to 
professional development. This project provided professional development based on CGI and 
studied change in classroom practices over two years with K-3 teachers in an urban district with 
a high population of ELLs. Findings illustrate the complex nature of changing mathematics 
classrooms. 
 

As a field, we know little about teacher experimentation in classrooms based on participation 
in practice-based professional education (PBPE) (Kazemi, 2008). Questions remain about which 
practices are taken up easily or which ones are more complex to bring across the boundary of 
professional development (PD), how practices are adapted or not taken up at all, which practices 
are sustained over time or which are left behind. At the same time, teachers do not have sole 
control of their classrooms. 

In this paper, we present 2 years of analysis on a PD effort in an urban district in Arizona 
with a high population of English Language Learners (ELLs). The professional development in 
this study focused on embedding Cognitively Guided Instruction (CGI) within classrooms in this 
district. The purpose of the PD was to enable teachers to gain insight into how their students 
think, understand a variety of mathematical concepts, use that knowledge to inform their 
practices, and learn practices for supporting ELL students in mathematics.  

The analysis entails two years of observations focused on the mathematics practices that 
teachers were experimenting with in their classrooms. We looked at when new practices emerged 
and if they were sustained. This study adds a detailed look at mathematics instructional change 
and the impact of PD on classroom practice. We begin by reviewing work that looks at the 
effects of change efforts on teachers’ practice. The paper then shifts to consider what research 
says about how educators can best serve ELLs in mathematics. 
 

Reform Efforts and Teacher Change 
The research on effects of change efforts often focuses on the top down nature of PD efforts 

and teacher fidelity to the reform. This section looks at teachers’ responses to change efforts as 
well as how teachers experiment within PD. 

Teacher interpretation often gets framed negatively because reform efforts could be attending 
to rigid notions of fidelity, but not all adaptations are resistance or contrary to change efforts. 
Certainly, PD goes through a process of translation as it moves across levels of the school system 
(Eisenhart, Cuthbert, Shrum, & Harding, 2001). For instance, teachers can adapt policies 
according to their own students’ needs (McLaughlin & Talbert, 1993, Tyack & Cuban, 1995). 
The adaption of PD to students is consistent with CGI, which is not meant to have rigid fidelity. 
In CGI professional development it is understood that teachers are best situated to adapt what 
they are learning to their classrooms. However, translation of change can also occur because 
teachers have little understanding of the implementation (Cuthbert, 1984). In that case, we would 
agree that teacher translation is problematic. When change efforts align with teacher beliefs and 
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allow teachers to implement practices, PD can spur teachers to implement practices more aligned 
with children’s home lives (Heath, 1983). Across this work, teachers adapt policy for student 
needs, connecting to families, but also for a lack of understanding. 

Within this space of understanding teachers’ responses to change, we understand very little 
about classroom experimentation during implementation and how this changes over time 
(Kazemi, 2008). We do not know which practices change first, which change last, how teachers 
implement and adapt new practices, and how or whether various practices are sustained over 
time. Bringing practices across the boundary between professional development and classrooms 
is extremely complex (Authors, 2008). It is not a simple issue of fidelity to a predetermined 
model since we expect teachers to design mathematics instruction in a way that is tailored to the 
needs of students. However, in bringing practices across this boundary, we know little about 
what makes practices easy or complex to translate into classroom practice and how sustainable 
particular instructional practices are over time. Understanding these micro-changes in practice 
could help professional developers design PD better by understanding how teachers respond to 
the demands that learning new practices places on them. 
 

Supporting Latinos and ELLs in the Mathematics PD 
With the increasing concern about Latino students and ELL students in particular, there is a 

growing body of work focused on instructional practices that engage Latinos in learning 
mathematics with understanding (DeAvila, 1988; Flores, 1997; Gutiérrez, 2002; Khisty, 1995; 
Moschkovich, 1999). While the current study engaged teachers of Latino students, this work is at 
the intersection of providing mathematics professional development in schools with a high 
population of Latinos who are designated as ELLs as well as those who are not. A major gap in 
the mathematics education literature is professional development that integrates learning about 
teaching mathematics for understanding and ways to support the learning of ELLs. In this 
project, we integrated some of the research literature about instruction that serves ELL students 
to support teachers in their mathematics teaching. We briefly review some of this work below. 

In focusing on instruction for ELLs, we often see an overemphasis placed on mathematical 
terms without mathematical meaning (Khisty, 2006). While acquiring vocabulary is an important 
part of learning to use the register of mathematics, students’ ability to “construct multiple 
meanings, negotiate meanings through interactions with peers and teachers, and participate in 
mathematical communication” is even more important (Moschkovich, 2007, p. 89). This is 
particularly important in mathematics, since many words hold different meanings in the 
mathematical register as compared to natural language (Khisty, 1995). Moreover, by placing an 
emphasis on vocabulary without properly contextualizing the mathematical terms, we run the 
risk of perpetuating deficiency models of students since focus is placed on what students cannot 
do rather than on what they can. As Moschkovich (2007, p. 90) argues, 
 

If all we see are students who don’t speak English, mispronounce English words, or don’t 
know vocabulary, instruction will focus on these deficiencies. If, instead, we learn to 
recognize the mathematical ideas these students express in spite of their accents, code 
switching, or missing vocabulary, then instruction can build on students’ competencies and 
resources. 

 
A related finding in this research is that using and valuing home language is critical. This 

practice is linked to higher achievement, especially in mathematics (Khisty, 2006). Beyond using 
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students’ home language, instruction must also draw on cultural understandings. Secada (1991) 
found that when the forms of language and culture in word problems do not match students’ 
experiences, they have a difficult time developing solution strategies. In a study of think-alouds 
used in mathematics classrooms, Celedon-Pattichis (1999) determined that ELLs needed to 
translate the problem to Spanish, read it at least twice, attribute meaning, translate the meaning 
into mathematical symbols, and ignore irrelevant words. This research demonstrates the 
complexity of the cognitive activity that ELLs engage in when participating mathematically in 
classrooms. 

Across this work on providing effective mathematics instruction to ELLs, we find that it 
needs to provide numerous opportunities to engage in mathematical discussion, speaking, 
listening, reading and writing the content as well as encourage meaning making within relatable 
contexts (Moschkovich, 1999). Additionally, to support this form of instruction, teachers need to 
be able to change curriculum to meet the needs of their students and reject deficit models 
framing students as intellectually inferior. This professional development attempted to integrate 
these ideas with more established research on CGI professional development. 
 

Methods 
This research study takes place in Monroe elementary school district, an urban school district 

in Arizona composed of four schools. One of the schools chose not to participate in the project 
and did not receive any treatment. The remaining three schools participated in mathematics 
professional development based on Cognitively Guided Instruction (CGI). 

 
Participants and Background 

These schools have been identified as having “not met” the adequate yearly progress for No 
Child Left Behind (NCLB). In the second year of the project two schools were in year two of not 
meeting, while one was in year one. A third year would make them candidates for being taken 
over by the state. In 2009, 52% of students in the district tested proficient in mathematics on the 
Arizona Instrument to Measure Standards (AIMS) as opposed to 62% the year before (2009 state 
average was 72%). On the Terra Nova, 35% of third graders tested proficient in mathematics 
compared to 40% in 2008 (the national average was 50%). 

According to the Arizona District Report Card 2006-07, 45.7% of the teachers have been in 
the district three years or less. On the other hand, 33.1% of the district teachers had been working 
there for ten or more years. Also, 19% of the teachers held a provisional certification. The 
percentage of female teachers participating was 82%. 

Teachers participated in the project during different periods: kindergarten and first grade 
teachers participated during the first two years. Second and third grade teachers participated 
during the second year. The project is ongoing, but only the years are included in this paper.  

Twenty-one kindergarten and first grade teachers participated in the first year (cohort 1). Due 
to teacher turnover, we lost 7 teachers from cohort 1 in year 2. Two teachers also moved grade 
levels. In year 2, 23 new teachers began participating (cohort 2). Eight of those teachers replaced 
cohort 1 teachers in kindergarten and 1st grade. A total of 44 teachers participated in the study. 
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Professional Development Context 
The professional development consisted of on-site monthly meetings and on-site weekly 

visits. The professional development focused on the principles of CGI, combining the earlier 
work on student strategies and problem types (Carpenter, Fennema, Franke, & Levi, 1999) with 
more recent work on algebraic thinking (Carpenter, Franke, & Levi, 2003) and counting 
(Schwerdtfeger & Chan, 2007). This broader take on the work allowed the professional 
development to be designed around the content in which teachers were currently working. 
Workgroup meetings 

 The meetings lasted approximately 1.5 hours and were held at one of the three 
participating schools. The professional development focused on gaining knowledge of student 
thinking as a way to develop instruction towards teaching mathematics for understanding.  
On-Site Visits 

In addition to the workgroup meetings, the teachers and professional developers worked 
together at the school sites. We spent approximately one day each week on-site. During the 
weekly visits, the professional developers observed classes, worked with teachers and students, 
and were available for informal conversation about whatever the teachers wanted to talk about. 
Our goals were to support teachers, engage with them informally, and to explicitly draw on 
teachers’ practices in designing future PD. Our time at the schools was important to remind 
teachers to experiment with new practices and to build relationships with students and teachers. 
 
Measures and Analysis 

Data for this paper were collected during a two-year period. We collected data using three 
measures: a teacher knowledge assessment, field notes, and interviews. This paper only details 
the classroom observations collected through field notes to examine teacher experimentation. We 
detail this measure below. 
 
Classrooms' Observations 

For the duration of the project, teachers were visited once a week during their math time by 
professional developers. The visits lasted from 30 to 50 minutes. During the observations, field 
notes were taken focusing on the new practices the teachers implemented when teaching 
mathematics, specifically those that were based on student thinking and tied to the content of the 
professional development. The professional developers dialogued about the practices and what 
they noticed with the teachers to clarify ideas and discuss future directions for the lessons. These 
notes included the kinds of participation facilitated in the class (for example, retrieving 
memorized answers vs. eliciting strategies), types of activities (word problems vs. drill 
worksheets, activities designed by the teacher or adapted from the textbook, or just the using the 
problems in the book), and types of interactions between teacher and students.  

We looked across the field notes, noting themes and practices that appeared repeatedly across 
classrooms and teachers. Those practices became categories that were contrasted again with the 
notes, in order to confirm their validity. The authors then took notes on the frequency of 
appearance of those practices, as well as when they became a regular part of these teachers' 
classroom. The practices were coded according to semester they emerged and were only included 
in the analysis if the teachers maintained them in the classroom. These codes were analyzed and 
examined across years 1 and 2 for cohort 1 and for year 1 for cohort 2. 

After a detailed reading of the field notes collected through two years 10 categories of 
interest emerged: (i) use of word problems, (ii) journals, (iii) student sharing, (iv) counting, (v) 
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breaking apart numbers, (vi) use of tools (e.g. manipulatives), (vii) attending to the details of 
student thinking (e.g. organizing activities around student strategies), (viii) adapting the 
textbook, (ix) designing their own problems and (x) questioning student thinking. These 
categories arose from the content of the professional development sessions as well as the 
classroom practices observed. In addition, since the PD was informed by research, these 
categories represent mathematics teaching practices aimed at teaching for understanding. We 
cannot completely expand on these categories, but we briefly explain them below. 

We drew on the original CGI work in focusing on use of word problems, student sharing, 
tool use, teachers designing problems tailored to student thinking, and attending to the details of 
student thinking (Carpenter, Fennema, Franke, 1996; Carpenter et al., 2003). In this same vein, 
using textbooks to meet the needs of particular students in the classrooms means monitoring 
“curriculum use and selection” (Franke & Grouws, 1997, pg. 334). In the words, there is no 
perfect curriculum and teachers must adapt curricula to meet the specific needs of their students. 
We also drew on more recent work on counting collections  (Schwerdtfeger & Chan, 2007) and 
the algebraic thinking work that focused on breaking apart numbers while using the equal sign 
more flexibly (Carpenter et al., 2003). Another important code was teacher questioning as a 
follow-up to student thinking (Franke, Webb, Chan, Ing, Freund, & Battey, 2009). In the case of 
this paper, this merely means that teachers posed questions to students after a shared strategy. In 
this sense, it is a less detailed form of attending to the details of student thinking mentioned 
earlier. Lastly, we focused on journals as a way of recording student solution strategies and 
student thinking. This is a way of making student thinking explicit for teachers (Kazemi & 
Franke, 2004). These ten codes served as a way to look at the micro-changes that occur as 
teachers attempt to teach mathematics for understanding. 
 

Results 
New Mathematical Practices of Cohort One and Cohort Two in First-year Participation 

In the coming paragraphs we review how the two cohorts of teachers behaved after being 
part of the professional development project for one year. The fact that cohort one consisted of 
teachers of kinder and 1st grade, and cohort had primarily 2nd and 3rd grade teachers should be 
considered when comparing these teacher groups. 

In year 1, cohort one added a number of instructional practices into their mathematics 
classrooms. When appropriate we also present the percent of teachers that used the practices 
before the professional development. The practices cohort 1 engaged in the most were counting 
collections (44% of teachers, 6% already used this), tool use (38%, 13%), breaking apart 
numbers (25%), and using word problems (25%, 6%) (see table 1). To be clear, the teachers who 
used the practice are not included in the teachers who began the practice.  For instance, 50% 
(44%+6%) of cohort one teachers counted collections by the end of year one (51% for tool use). 
Conversely, the least used practices were journaling (13%), editing the textbook (13%), 
designing their own problems (13%) and questioning student thinking (13%). While in some 
ways these might not seem like overly impressive percentages, 44% of cohort one began and 
maintained counting practices throughout the first year of the professional development in 
addition to the 6% who already used this practice. It is important to note again, that if teachers 
tried the practice once but did not continue it, it was not included in this analysis. 
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 Practices 

Teacher 
Group 

Word 
Problem 

Use 
Journals Student 

Sharing 
Counting 

Collections 

Breaking 
Apart 

Numbers 

Tool 
Use 

Attention 
to Student 
Thinking 

Editing the 
Textbook 

Questioning 
Student 

Thinking 

Designing 
Problems 

Cohort 
1 year 1 

a 
25% 13 19 44 25 38 19 13 13 13 

Cohort 
2 year 1 

b 
4 4 22 7 7 4 22 4 26 7 

a n= 27, b n = 16 
Table 1: Percentage of Teachers Engaging in New Instructional Practices 

 
In year 1 for cohort 2, the instructional practices embedded in their classrooms more were 

student sharing (22%, 19% already used this practice), questioning student thinking (26%, 7%), 
and attending to the details of student thinking (22%, 4%). The practices that cohort two 
incorporated the least were word problems (4%, 4%), tool use (4%, 19%), journaling (4%, 15%), 
editing the textbook (4%, 4%), breaking apart numbers (7%), counting (7%, 4%), and designing 
word problems (7%, 4%). For seven of the ten practices, no more than 7% of the teachers 
engaged in them during instruction. However, it should be noted that the practices that cohort 
two engaged in more centered on student thinking and that 19% of teachers already practiced 
some form of student sharing. 

The two cohorts were similar in taking on practices around attending to student thinking, 
student sharing, journaling, editing the textbook, and designing problems. The only difference 
that favored cohort two was questioning student thinking, but this difference was fairly minor. 
On four practices however, cohort 1 significantly incorporated them more into their classroom 
practice. Across word problems, counting, breaking apart numbers, and use of tools, between 18 
and 37% more cohort 1 teachers incorporated these practices into their classrooms. 

 
New Mathematical Practices across Years One and Two for Cohort One 

The question guiding this section is how did their participation change in terms of the 10 
practices in their second year of the PD? In looking across years one and two for cohort one, 
teachers increased their level of participation very little. While cohort one teachers did not 
decrease their use of any practices, they minimally increased their use in two categories. We 
discuss possible reasons for this in the discussion. 

In table 2, you can see that the two practices that more teachers took on were counting (from 
44% to 50%) and questioning student thinking (from 13% to 19%). None of the use of other 
practices changed. To say this is disappointing would be an understatement. The cohort that took 
more practices on in their first year of participation seemed to stop changing. Remember this was 
occurring at the same time as cohort two year one. So during the same year of professional 
development, while cohort one stopped taking on new practices, cohort two also did not take on 
many new classroom practices. The pattern seemed to point towards it being more difficult for 
teachers to take new practices on in the second year of the project across cohorts.  
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 Practices 

Teacher 
Group 

Word 
Problem 

Use 
Journals Student 

Sharing 
Counting 

Collections 

Breaking 
Apart 

Numbers 

Tool 
Use 

Attention 
to Student 
Thinking 

Editing 
the 

Textbook 

Questioning 
Student 

Thinking 

Designing 
Problems 

Cohort 1, 
year 1 b 25 13 19 44 25 38 19 13 13 13 

Cohort 1, 
Year 2 b 25 13 19 50 25 38 19 13 19 13 

a n = 16, b n= 27  
Table 2: Percentage of Teachers Using New Instructional Practices 

 
Discussion 

The classroom practices data shows that the first year teachers were trying and sustaining 
practices. For sustaining practices, we think these numbers are quite realistic. About 40% of the 
first year teachers maintained two practices (counting and tool use). Another 25% of teachers 
maintained two practices (breaking apart numbers, and using word problems) and 19% of 
teachers maintained two other practices (student sharing and attention to student thinking). There 
are a number of factors that could be limiting teacher change in year 2.  

It is possible the project did not engage the teachers as well in year two. While this is a 
possibility, the same professional developer provided the training. Additionally, our relationships 
with teachers grew and we came to better know their classrooms. Another possibility is that we 
did not integrate the ELL practices well with CGI principles. Since it was the first time we 
attempted this, it is a possibility, but teachers changed I year 1 with this integration. The most 
likely explanation is that new educational policy in the state affected teacher practice of ELL 
students. This impacted all of out teachers in year 2 of the project and could have limited new 
practices they were willing to try in classrooms. We discuss this elsewhere (Authors, 2010). 

Here however, we want to focus on the nature of experimenting in classrooms. One idea to 
be pulled out from this data is that practices that can be used as entire activities seemed to be 
taken up easier. Counting collections, breaking apart numbers, and word problem use are all 
practices that are supplemental activities to add on to lessons. This makes sense, especially if we 
see these activities as holding their own norms and ways of engaging students. 

Practices that cut across lessons such as editing the textbook, designing problems, and 
questioning student thinking were slower to be taken up by teachers. These practices are ways of 
interacting in the math classroom across differing activities, from whole class to group work to 
individual practice. This may require more fundamental change from teachers since we asked 
them to change these practices to begin teaching for understanding. 

If we take this notion of the types of practices that are easier for teachers to take up, we pose 
two questions for the field. Should we begin PD with practices that are add on activities for 
teachers to be successful with the principles of professional development early on? This is one 
way to interpret these findings and might be a way to begin to build trust with new instructional 
methods. Can we incorporate these more difficult practices in routinized ways so teachers can 
practice the norms of questioning students and designing problems? The notion of routinizing 
practices does not mean that we endorse simplifying them, but rather that we think teachers need 
to build standard ways around these practices before they can take on the complexity of more in 
depth student questioning. These ways of approaching PD may give us more insight into how to 
support teachers as they transition from learning with colleagues into learning with students in 
the classrooms. 
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UNPACKING START-UP DIFFICULTIES OF MATHEMATICS COACHING 
 

Patti Brosnan 
The Ohio State University 
Brosnan.1@osu.edu 

 
This study, representing a small part of a larger six-year mathematics-coaching project, focuses 
on the difficulties that can arise as schools take on a coaching program. The program studied 
provided guidance to district personnel regarding how to begin a coaching program. Sixteen 
schools were chosen at random and separated into two groups that were designated as having 
higher or lower student growth. Results indicate that schools that were more closely aligned with 
the program protocol had fewer difficulties and greater student growth. 
 
 Mathematics coaching used as a model for professional development has gained momentum 
(McGatha, 1999). Results are mixed as to how coaching influences teachers’ practice and student 
mathematics achievement. Little is known about what factors determine whether coaching 
works. The roles and responsibilities of a mathematics coach are many and varied. For this 
paper, we define mathematics coaches as those who team with teachers in classrooms with 
students daily for six weeks before moving on to the next set of teachers (Brosnan & Erchick, 
2010). The purpose of this report is to reveal some of the many issues that arise before coaching 
even begins. 
 The context for this study is a mathematics-coaching program that has been in existence for 
six years and has shown many compelling results. Having served close to 200 schools, many, but 
not all, schools have shown increases in both teacher and student mathematics knowledge 
(Brosnan & Erchick, 2010). Mathematics coaching can be both challenging and rewarding, but 
starting without careful planning can be futile.  
 

Purpose of Study 
 The purpose of this study is to unpack what has proven to be a myriad of stumbling blocks in 
the establishment of mathematics coaching in schools. The mixed results that published papers 
have reported, may be related to how many of the to-be-noted difficulties schools, coaches, and 
teachers have at the beginning of the process.  These difficulties that can and have arisen in 
establishing mathematics coaching in the program discussed here, will reveal how starting off in 
the wrong direction may lead to little or no measurable improvement in mathematics 
achievement. 
 The work discussed in this paper is part of a larger research study and professional 
development program aimed at preparing a cadre of mathematics coaches to work in classrooms 
with teachers to enact research-based instructional strategies. The goals of the larger project are 
1) To increase coach and teacher mathematics content knowledge; 2) To increase coach and 
teacher mathematics pedagogical knowledge; and 3) To increase student mathematics 
achievement on standardized tests. Because the results of this larger project are mixed, and in an 
attempt to help schools that did not increase achievement, a study to determine factors that 
prevent coaching success from the outset was warranted. To prepare schools for entering into 
mathematics coaching, the project provides building principals and coaches with three important 
documents a Coach Selection & Information Packet, Program Assurances and a Start-Up 
Packet. 
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 These three documents were designed to assist school administrators and coaches in getting 
the coaching program off to a good start. The Coach Selection & Information Packet includes 
information about the program, program results, coach qualifications, suggested coach selection 
procedures, and a coach interview protocol. Project members offer to assist in the selection of a 
coach and/or to administer and score a test in mathematics and pedagogy. Coach qualifications 
listed in the packet for administrators to consider include such things as degrees and/or 
coursework in mathematics and mathematics education, successful teaching of mathematics, 
successful teaching of students who struggle, experience working with adults, good personal 
relation and communication skills, and commitment towards student learning of mathematics. 
 Our Program Assurances document has proven to be a very important guide to program 
fidelity. This document is a signed contract between school administrators, the state department 
of education, and program directors. Program expectations ensure that each participant knows 
what is expected from them and for them while engaged in the work of the coach. For example, 
project personnel are expected to provide professional development for coaches, facilitators, site 
visitors, and administrators; administrators are expected to assist the coach in arranging teachers’ 
schedules to align with the coach’s schedule, not use coaches as substitute teachers, and build a 
school-wide positive disposition for mathematics; coaches are expected to team teach with four 
teachers daily for six weeks, have pre- and post-conferences with teachers, and administer 
program assessments; and teachers are expected to team with the coach, conference with the 
coach at least once per week, and be willing to try new approaches in practice. 
 The Start-up Packet provides facilitators and coaches the tasks that must be completed before 
coaching begins. These tasks are broken into immediate and on-going categories. The immediate 
tasks include things such as building relationships with teachers; aligning curriculum to the 
current standards; taking inventory of school supplies, equipment, and manipulatives; 
administering and scoring pretests for teachers and students; collecting, synthesizing, and 
analyzing student data records; and other important start-up tasks. The on-going tasks include 
working with data; collecting student work samples; building trust with teachers and principals; 
making reports to program facilitators and directors; and other important management tasks. 
 

Theoretical Framework 
 The framework's approach depicts a learner-responsive pedagogy comprised of elements 
from three areas, 1) mathematics content; 2) pedagogy; and 3) socio-cultural contexts. The 
mathematical elements include a rigorous, integrated procedural/conceptual perspective on the 
content (Baroody, Feil, and Johnson, 2007), processes for understanding, and a content that is 
richly connected (NCTM, 2000). The MCP pedagogical elements include student-centered 
interactions, where assessment has an informative focus, and grounds instruction incorporating 
problem-based tasks. These elements are drawn from scholarship of those who focus on the 
critical features of instruction (Hiebert, J., Carpenter, T., Fennema, E., Fuson, K., Wearne, D., 
Murray, H., Oliver, A., & Human, P., 1997), teacher content knowledge and content knowledge 
needed for teaching (Ball, Hill & Bass, 2005; Leinhardt & Smith, 1985; Lampert, 1990; Ma, 
1999), and teacher pedagogical content knowledge (Leinhardt & Smith, 1985; Ball, 2000; 
Shulman, 1986, 1987; Wilson, Shulman & Richert, 1987). These scholars recognized the 
complexity of teacher knowledge and the role of both content knowledge and pedagogical 
content knowledge (PCK) in effective instruction. PCK embodies an understanding of how to 
draw from one’s own knowledge of the subject matter to make the content accessible to children, 
make sense of students’ thinking and draw on their ideas to orchestrate classroom instruction so 
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to advance mathematical learning through continuous formative assessment. Finally, the 
contextual elements for coaches and teachers include an understanding of the learner in terms of 
both cognition and culture, and a learning environment where authority is shared between the 
learner and the teacher. A commitment to action distinguishes the equity, diversity and social 
justice element, where knowledge of the learner and understanding content and pedagogy are not 
enough. Using that knowledge to further the growth of the learner is an intentional commitment.  

The MCP instructional approach is grounded in the situated cognition (Lave & Wenger, 
1991) perspective. As such, it incorporates Liping Ma’s (1999) notion of positioning the content 
development of teachers’ in the context of student learning and classroom practice. In 
mathematics education this perspective has been supported by a number of scholars of teacher 
education and preparation. For instance, Ball & Cohen, 1999- cited in Smith (2001), 
acknowledged professional development should be situated in the context of practice in order for 
learning to be meaningful and transferrable. Others have argued that such learning should 
provide teachers with enactment strategies that would allow them to enhance learning for all 
students (Manouchehri & Goodman, 2000).  

 
What We Know About Coaching in the Literature  

 Coaching is grounded in the notion of building capacity for positive change in teaching 
practice and having highly trained practitioners working with their colleagues to promote 
learning and improve practice (Becker, 2001). Working with teams of teachers, these coaches 
share their expertise and provide feedback and assistance as teachers learn new teaching skills 
and solve classroom-related problems (Galbraith & Anstrom, 1995; Borko, Davinroy, Bliem, & 
Cumbo, 2000; Breyfogle, 2005; Franke, Carpenter, Fennema, Ansell, & Behrend, 1998). While 
researchers indicate that teacher coaching can be practiced using a variety of structural 
approaches, it has not yet been studied extensively (Biancarosa, Bryk, & Dexter, 2010; McGatha, 
2009). Other studies have been designed to examine what coaches do but have not yet shown 
much connection to actual improved student achievement (Campbell & Malkus, 2009; Wei, 
Darling-Hammond, Andree, Richardson, & Orphanos, 2009). In studies in which university-
based researchers have taken on the role of coaches and reported on their interactions with 
teachers in schools (Olson & Barrett, 2004), there has been only limited information about how 
and what type of professional skills have been developed at the coach level, and then effectively 
communicated with teachers in ways that knowledge is enacted in classroom practice. 
 

Methods 
Participants 
 In the larger study, the participants include approximately 185 schools, principals, coaches, 
and teachers. Most of the schools were in School Improvement Status and Title I served. Grade 
levels in buildings varied from K-8. Some buildings housed K-5 students, some K-3, 5-6, 6-8, 
and other groupings. In this smaller study, a random sample of 16 schools, principals, coaches, 
and teachers were selected. These 16 schools were then placed in rank order by student 
achievement growth. Half were placed in the higher growth school group and half in the lower 
growth school group. 
 
Data Collection 
 For this report we use data from Facilitator and Site Visitor Reports. In addition, teachers 
and principals were interviewed once during the school year using a semi-structured interview 
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protocol. These interviews focused on how teachers and principals understood the reform work 
and how they chose to follow program initiation protocols. 
 Facilitators are mathematics specialists who were chosen by the geographic area of the state 
in which they worked as university faculty or as state agency professional development 
providers. They are hired by the program to work four days per month. Two days per month, 
they attend the training as their coaches do to learn the program as presented, and the other two 
days per month they meet with small groups of coaches who work in the same geographic area. 
These small group sessions are designed to detail the work in enacting their duties as a coach. 
Site visitors are also mathematics specialists who work in state agencies around the state and are 
hired to work for our program to visit all of the schools participating in the mathematics-
coaching program. Both the Site Visitors and Facilitators used the same measuring instrument, 
the Site Visit Inventory, to document what coaches actually do or report doing in the schools. 
This instrument serves as a tool to document evidence of the progress, challenges and issues that 
arise in coaching. The instrument was designed with the program framework, assurances, and the 
envisioned roles and responsibilities in mind to determine fidelity of implementation. 
 
Data Analysis 

The process of analysis was the same for each set of data, with the analytic procedures falling 
under constant comparison methods. First, data were entered into a qualitative research software 
program and reviewed by project researchers to discover emergent themes. Emergent themes in 
each data set determined the creation of additional codes added to pre-determined research-based 
codes. Data was then coded using NVivo qualitative analysis software, and sorted into the coded 
categories.  

 
Findings 

 Mathematics coaching is a challenging endeavor. Careful planning at the outset makes a 
difference as to whether coaching may be successful in terms of improved student mathematics 
achievement. After analyzing the reports from the 16 randomly selected schools, the categories 
that emerged from the data include 1) Coach selection criteria, 2) Compliance with program 
Assurances, and 3) Completion of Start-Up Tasks. 
 
Coach Selection 
 Although there were few data sets that actually revealed how coaches were selected, what we 
did learn from interviews was that in schools that began in a less-than-optimal way, the coaches 
hired by school districts had no greater mathematics knowledge than the teachers they were 
coaching; some either disliked or never taught mathematics; several union contracts required 
hiring by seniority only, resulting in several coaches who sought alternatives to classroom 
responsibilities; and others did not have the necessary leadership nor human relation skills 
optimal for the job of coach. In one situation we learned that the principal selected her “worst” 
teacher (principal’s term) in the building to be the coach. It would appear obvious that none of 
these situations would proffer much hope for a successful start to a coaching program. 
 In one of the principal interviews when asked about her coach’s leadership skills, she said, 
“He leads by example.  At no time does he expect more from his teachers than he is willing to 
give.” Another principal said that he hired his coach from a small group of applicants, in a time 
crunch. He thought he made the right choice, given the applicants. 
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Compliance with Assurances 
 Engaging in large-scale school reform requires participants to be ever so vigilant in following 
guidelines gleaned from the literature and experience. Following our set of Assurances was our 
proactive approach to waylaying some of the usual pitfalls.  
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Assurance Constituent 

Schools with 
Higher/Growth  
Mathematics 
Achievement 

Schools with 
Lower/Growth 
Mathematics 
Achievement 

Administrators are expected to 
• Assist the coach in arranging teachers’ schedules 

to align with the coach’s schedule 
• Not use coaches as substitute teachers 
• Build a school-wide positive disposition for 

mathematics in the building 

 
75% 
 
87.5% 
62.5% 

 
50% 
 
50% 
50% 

Coaches are expected to 
• Team teach with four teachers daily for six weeks  
• Have pre- and post-conferences with teachers  
• Administer program assessments 

 
62.5% 
75% 
100% 

 
37.5% 
25% 
87.5% 

Teachers are expected to 
• Team with the coach 
• Conference with the coach at least once per week  
• Be willing to try new approaches in practice 

 
75% 
75% 
87.5% 

 
62.5% 
37.5% 
50% 

Table 1. Compliance with program assurances comparison 
 Data from Table 1 indicated that those schools that had greater levels of compliance with 
program assurances had a better likelihood of achieving greater growth. The reports also showed 
that those who started out in alignment with the assurances also demonstrated a greater sense of 
enthusiasm in the school at large resulting in building strong relationships from the start. 
 Site visitors reported that one coach works with four teachers but for only 30 minutes each. 
Another coach moves to a new building every two to three weeks and may work with 2-3 
teachers at a time, depending on the situation. Another site visitor reported that some coaches are 
given far too many non-coaching responsibilities. For example one has breakfast, lunch and 
dismissal duties and is also part of the district Improvement Process team and is in charge of 
AIMS web for both mathematics and reading. She is the contact for two math/computer 
programs, Alex & Math Tracks. She also has the responsibility of reordering math materials and 
the like. Another coach is in charge of AIMS web testing, grade 2 and 5 oral reading fluency 
testing, and Orleans H Algebra Prognosis Tests. 
 Regarding one coach who did not like relinquishing control of the teaching to the classroom 
teachers, the site visitor wrote, “If she is the only one planning and teaching, she should not be so 
puzzled by the fact that when she does leave, they are discontinuing the use of the strategies.” 
This same site visitor reported asking a coach why she was not coaching in more than one 
classroom, the coach replied, “… Their schedules had already been developed, with many of the 
teachers teaching math at the same time. And, they didn’t want to change their schedules for the 
year.” As a consequence, the principal told the site visitor, “You are not going to see what you 
want to see today, but next year we are going to fix it.  There are 6 math teachers and next year 
she will interact with them like we need her to.” 
 All of these statements indicate how important the assurances can be to whether a coach is 
able to their job well under certain conditions. 
Start-Up Tasks 
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 These tasks were designed to prepare coaches to coach. We felt that coaches need to know 
and align the curriculum with standards, know and understand student records and culture, and 
take time to complete test administration and build teacher relationships.  
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Task Description 
Immediate 
• Building relationships with teachers;  
• Aligning curriculum to the current standards;  
• Taking inventory of school supplies, equipment, and manipulatives;  
• Administering and scoring pretests for teachers and students;  
• Collecting, synthesizing, and analyzing student data records; and  
• Other important start-up tasks. 
Ongoing 
• Working with data;  
• Collecting student work samples;  
• Building trust with teachers and principals;  
• Making reports to program facilitators and directors;  
• Other important management tasks 

Table 2. Sample Start-Up Tasks 
 Program Start-Up Tasks were important for our mathematics coaches to complete before 
they began coaching. First, these tasks are necessary for the coach to learn about curriculum, 
school data, and classroom culture. Secondly, teachers are so grateful to have someone do work 
for them that is very time consuming, and finally because of the many tasks done ahead of time 
contribute greatly to building rapport with teachers. The following excerpts from the facilitator 
reports confirm these observations. 

Principal: “Teachers tend to be surprised when working through this analysis with [the 
coach]…it helps them understand the curricular needs of their students.” 

“He has worked very hard to build a positive rapport with the teachers by doing tasks that are 
very helpful to their teaching but they just don’t have time for…such as the gap analysis sheets, 
vocabulary, matching lessons to the SST goals, etc. He works with grades 3-4-5 and he did a gap 
analysis study for them to go with the new series.  He also found activities and lessons to fill-in 
the gaps not covered.” 

 “[She] gives students a pretest and goes over the results, making a spreadsheet identifying 
the strengths and weaknesses of the students.” 

“I shared data from the [state] tests with the teachers.  This was the first eye-opener for the 
teachers.  The teachers don’t have time to analyze the test questions.” 
 

 
 

Conclusions 
 The evidence in this study shows that following the prescribed program protocol is important 
to establishing a mathematics-coaching program.  The selection process used in hiring a coach 
cannot be understated. Teachers having greater mathematics content knowledge, successful 
teaching records, good relationship building and leadership skills prove to be necessary 
characteristics in beginning coaches. In cases where there was little choice in how a coach was 
hired, i.e. union contract seniority regulations, there was more opportunity for a non-optimal 
selection. 
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 One of the unique elements of the mathematics-coaching program studied was the design and 
adherence to program assurances. It is often the case that when university and school 
partnerships go awry, lack of implementation fidelity can certainly lead to a lack of program 
impact. The assurances in this study that seemed to make a difference in whether a school started 
off in better ways was whether the coach was able to coach as prescribed; whether the coach was 
stretched between buildings; or if the coach was given too many extra-program responsibilities. 
Also, in the assurances category, if teachers were reluctant to team with the coach, the possibility 
for the coach to build capacity was clearly diminished. 
 The program start-up tasks proved to be useful in getting coaches ready to do their job. For 
example, aligning the school curriculum to the current standards and synthesizing classroom 
student data reports were the two most highly touted ‘helps’ for teachers who say, they never 
have ‘time’ to do such things and the information is so important and useful.  
 School districts interested in establishing a mathematics-coaching program should consider 
using the program protocols described in this paper. Coaching is difficult in any capacity let 
alone falling prey to some of the pitfalls described herein. 
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Content-specific cognitively guided instruction (CGI) professional development programs have 
been shown to lead to positive changes in instruction in the elementary grades.  This paper 
presents the results of a study that investigates how teachers use new knowledge gained from a 
CGI professional development workshop, on proportional reasoning in the middle grades, to 
inform their instructional decisions. Four teachers’ instruction and their rationales for their 
instructional decisions were examined before and after the workshop intervention.  All four 
teachers’ instruction changed to become more cognitively guided. 

Introduction 
The National Council of Teachers of Mathematics [NCTM] (2000) recommends that 

proportional reasoning become a major focus of the middle grades curriculum by interweaving it 
with percents, similarity, scaling, linear equations, graphs, probability, histograms, and problem 
solving. Furthermore, proportionality is involved in at least one of the focal points for each of the 
middle grades. Students who fail to develop an understanding of proportional reasoning in 
middle school are likely to struggle in algebra and other higher level mathematics (Langrall & 
Swafford, 2000). 

Although proportional reasoning and facility with rational numbers are so important, research 
shows that many students struggle with them (Misailidou & Williams, 2003; Singh, 2000). In 
fact, preservice and inservice teachers often lack a deep understanding of proportionality (Bezuk, 
1988; Conner, Harel, & Behr, 1988). Furthermore, teachers often have weak pedagogical content 
knowledge (Hines & McMahon, 2005) and knowledge of their students (Ruchti, 2005) related to 
proportional reasoning.   

In order to understand the true breadth of the area of proportional reasoning, teachers must 
understand both the subtle (e.g. number structure) and obvious (e.g. context) nuances of 
proportion problems (Franke, Fennema, & Carpenter, 1997).  Additionally, teachers need to be 
able to analyze a problem to determine the range of strategies that students are likely use when 
solving it.  This ability better enables them to determine the difficulty level of a problem.  
According to Carpenter and Fennema (1991), “analyzing problems, strategies, and development 
allows for the ability to select critical problems both to differentiate between levels of 
performance but also to help children progress to the next level” (p. 9).   

In 1989, Carpenter, Fennema, Peterson, Chiang, and Loef developed an approach to 
professional development, cognitively guided instruction (CGI), which focused on increasing 
teachers’ pedagogical content knowledge and knowledge of their students in a specific content 
area.  Since, participation in a content-specific CGI program has been shown to have a positive 
effect on teachers’ pedagogical content knowledge and lead to changes in classroom practice 
towards instruction guided by students’ thinking. 

This study investigates how teachers use new knowledge gained from a CGI professional 
development program on proportional reasoning to inform their instructional decisions.  
Particularly, the ways that the teachers generated student thinking prior to and after gaining 
access to research-based models of students’ thinking about proportional reasoning were 
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examined. This study is intended to extend the CGI studies, which focused primarily on 
operations in the elementary grades, to proportional reasoning in the middle grades. 

Theoretical Framework 
A few assumptions about the goals of instruction and what instruction should look like 

underlie the CGI philosophy (Carpenter & Fennema, 1991). First, the goal of instruction is to 
increase students’ understanding by connecting to their prior knowledge (Donovan & Bransford, 
2005). To effectively structure instruction to build off students’ prior knowledge and 
experiences, teachers must have strong pedagogical content knowledge, as well as a deep 
understanding of their students.   

Second, effective instruction requires teachers to make informed instructional decisions, by 
continually reflecting on their instruction and students’ learning. Thus, teachers must continually 
assess their students’ understandings through using appropriate tasks and questions that enable 
students to showcase their thinking. 

Third, for learning to occur students need to develop mathematical explanations and 
justifications and connect them to their existing body of knowledge.  The teacher’s role is to 
choose meaningful exploration activities and provide a learning environment where 
mathematical conjectures, multiple techniques, and mathematical dialog are valued.   

Methodology 
The professional development program which provides the context for this study is briefly 

described here. Data collection and analysis methods will also be discussed.  

Professional Development Program 
The context of this study was a two-day professional development workshop, followed by 

ongoing implementation support over the six subsequent months. The workshop design was 
inspired by the CGI studies. During the workshop, we discussed the research findings in the area 
of proportional reasoning that are related to (a) students’ strategies; (b) problem types; (c) factors 
influencing students’ success and strategy choices; (d) prerequisites to the development of 
proportional reasoning; and (e) developmental theories, specifically those of Piaget (Piaget & 
Inhelder, 1969), Noelting (1980a, 1980b), Milsailidou and Williams (2003), Lesh, Behr, and Post 
(1987) and Karplus et al. (1983a).   

Written and video cases illustrating real classroom teaching episodes were also used to 
illustrate CGI.  The teachers were asked to analyze the pedagogy, questioning, student thinking, 
and teacher’s role within the cases.   

Researchers have found that teachers are more likely to change their instruction as a result of 
professional development when supported (Steele, 2001). Here, when initiated by the teachers, 
the researcher served as a mentor to aid in planning and analyzing students’ strategies.   

Participants 
The participants in this study, who volunteered, were four middle school teachers from the 

same school in a rural part of Virginia. The teachers had varying levels of experience from 1 to 
22 years. There was one teacher from each grade, 6-8, and one who taught in eighth grade for the 
first half of this study and seventh grade for the second. The sixth grade teacher (Bob), seventh 
grade teacher (Abby), and the seventh/eighth grade teacher (Julie) were all in their first year 
teaching mathematics.  However, Julie had four years of science teaching experience.  The 
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eighth grade, and veteran, teacher (Sue) had taught mathematics for 22 years. All of the 
mathematics teachers in the school participated in the workshop. 

Data Sources 
The data analyzed here were collected primarily through classroom observations, interviews, 

and document compilation. Each participant was observed and interviewed prior to the workshop 
to examine their instructional style and bases for making instructional decisions.  In addition, 
documents were collected that illustrated how each teacher had taught or planned to teach 
proportion concepts.   

After the workshop, each teacher was observed teaching ratio and proportion concepts on 
several occasions, ranging from 4 to 16 instances. The large variation in the number of 
observations per teacher was due to differences in the depth of curriculum coverage of 
proportions between sixth and eighth grade. Detailed field notes were compiled during each 
observation which focused on (a) what the teachers did and said during instruction, (b) how the 
students reacted to the instruction, and (c) how the teacher interacted with the students. 

Following each observation, the teachers were interviewed by the researcher to determine 
their rationales for their instructional decisions. The interviews were recorded and later 
transcribed to capture the teachers’ responses accurately. These interviews were semi-structured; 
they began with a predetermined list of questions, and appropriate follow up questions, and 
ended with questions related specifically to the observations.  

Data Analysis 
A case study and cross-case analysis was conducted to describe each teacher’s instruction 

and rationale before and after the workshop.  Systematic data analysis was used to derive causal 
descriptions and lawful relationships among the data. The three frameworks that guided the 
initial coding were derived from: (a) the content of the CGI workshop on proportional reasoning, 
(b) Franke, Carpenter, Levi, and Fennema’s (2001) schema for analyzing teachers’ actions on a 
CGI scale, and (c) Stein, Smith, Henningsen, and Silver’s (2000) schema defining levels of 
cognitive demand. To ensure validity, the data was triangulated across methods, member 
checking was used, and colleagues of the author were asked to evaluate the author’s 
interpretations of the data.  

Findings 
The purpose of this study was to answer the following research questions: (1) How did the 

four teachers generate student thinking through their instructional decisions prior to participating 
in the workshop? (2) What were the four teachers’ instructional decisions based on prior to the 
workshop? (3) How did the four teachers change in order to generate student thinking through 
their instructional decisions after participating in the workshop? 

How Was Student Thinking Generated through the Teachers’ Instructional Decisions Prior to 
the Workshop? 

All four teachers involved their students in their lessons to varying degrees before the 
workshop, but they all focused their tasks and questions on applying and remembering 
procedures rather than developing connections and understandings.  Thus, the teachers rarely 
generated student thinking through their instructional decisions.  

All four teachers used questioning to involve their students, but all their questions were 
categorized as placing low cognitive demands on students.  For example, the teachers commonly 
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asked students to: state the next step when applying a procedure, give an answer, or perform a 
computation. Two teachers were observed presenting a task with a high-level of cognitive 
demand, but their treatment of the task had the effects of lowering the cognitive demand.  For 
example, one teacher had “tricky” problems, which were different than those the students had 
seen before, at the end of a worksheet.  Those tasks were initially categorized as high-level tasks 
because the students need to form connections or “do mathematics” (Stein et al., 2000).  
However, the teacher immediately pointed out the tasks as “tricky” and prescribed another 
procedure for solving them, ultimately lowering the demands of the tasks to “procedures without 
connections”.    

What Were the Four Teachers’ Instructional Decisions Based on Prior to the Workshop? 
Sources. Prior to the workshop, the novice teachers relied on others for the majority of their 

lesson ideas: two teachers almost exclusively relied on their textbook while the other relied on 
worksheets and materials provided by colleagues. Unlike the novice teachers, the veteran teacher 
was not entirely dependent on other sources for lesson ideas. 

The novice teachers lacked confidence in their ability to plan appropriate lessons to meet the 
Virginia Standard of Learning (SOL) objectives, which likely stemmed from their lack of 
experience teaching mathematics and their unfamiliarity with the content and pedagogical 
techniques for teaching.  One teacher exclusively used the materials that came with the textbook. 
The role of the textbook was also significant for the veteran teacher.  However, she created her 
own example problems to relate the new concepts to her students’ background knowledge and to 
be relevant to their lives.   

Rationales. All four teachers followed the general sequencing determined by their pacing 
guides or the textbook, but the three novice teachers did so blindly. The three novice teachers did 
not have an overview of the general sequencing of their courses, indicating that no consideration 
was given to the order in which they introduced different mathematics topics.  One admitted that 
she planned her lessons one day or one week at a time and followed the pacing guide. When I 
asked her how she typically planned her lessons, she replied, “Day-by-day. We have our 
planning guides, they are really helpful. It tells you day-by-day exactly what they need to know.”  

All four teachers’ planning decisions regarding which types of tasks to include in their 
lessons, as well as how to sequence them, were influenced largely by what appeared in their 
lesson planning sources and by their goal to have students memorize and master procedures to 
prepare for state-mandated testing.  However, the veteran teacher referenced what her students 
knew or where they were in their development of understandings when describing her reasons 
for her instructional decisions, while the other teachers did not.   

How did the Four Teachers Change in order to Generate Student Thinking Through Their 
Instructional Decisions after Participating in the Workshop? 

Student involvement and questioning. All four teachers changed, to varying degrees, to 
encourage more individual high-level thinking from their students.  They did so by asking 
students to solve problems rather than exercises exclusively and by asking high-level questions 
in addition to low-level questions. They all asked more questions and used more tasks that I 
categorized as requiring high-levels of cognitive demand; unlike prior to the workshop, when all 
four teachers posed only low-level questions and tasks. All four teachers allowed their students 
to solve problems without any prior instruction on how to do so, but Abby and Bob always 
presented procedures after students were given the opportunity to solve the problems on their 
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own. Prior to the workshop, none of the teachers allowed their students to solve problems 
without prior instruction.  

Sources. The sources that Sue, the veteran teacher, and Bob used for lesson ideas only 
changed minimally, while the sources the other two teachers used changed more substantially. 
The novice teachers all still relied on the pacing guide to determine their overall instructional 
sequence of topics, while the veteran teacher was observed referring to the textbook for the 
general sequence of topics. 

Immediately after the workshop, Julie became less reliant on the textbook materials.  She 
began creating her own warm-up exercises to meet her instructional goals and to highlight her 
students’ relevant background knowledge.  Although she initially depended on the textbook to 
provide her with appropriately sequenced problems, she chose which problems to include in her 
lessons.  In her second time teaching proportion concepts, after moving to the seventh grade, she 
relied even less on the textbook.  Instead, she used what she learned in the workshop, together 
with problems from a SOL Test Bank, to plan her lessons.   

In Abby’s case, there was a substantial change in her planning sources. She crafted her own 
problems for worksheets on proportions, percents, and cross multiplication where before she 
only used worksheets others had created.  

Similar to before the workshop, all the novice teachers said that the overall sequencing of 
their lessons was determined by the outlined sequence and timing given in their pacing guides.  
They did not seem to have an overview of the topics and sequence of their courses.  They 
planned their lessons on a weekly basis, often without looking ahead in their pacing guides.  
There were occasions when they could not tell me what was coming up next or generally when 
they would be teaching a specific topic.   

Rationales. After the workshop, three of the teachers expressed that they had sequenced tasks 
in order to further their students’ development. Of these three teachers, the increase in Julie’s 
attention to the sequencing of the tasks used was the most profound.  The fourth teacher, Bob, 
generally articulated no particular reason for the sequences of tasks he was observed presenting, 
besides following the sequence in the textbook.  However, all four gave some consideration to 
the numerical structure of the tasks.  

Changes in the teachers’ levels on the CGI scale. All the teachers increased at least one level 
according to Franke and colleague’s (2001) CGI schema indicating that their instruction was 
more cognitively guided, after the workshop.  

Julie had the most significant changes in her instruction and beliefs, from Level 1 to Level 3 
or Level 4A. In Franke and colleague’s (2001) schema, Level 1 corresponds to instruction that is 
not cognitively guided and Level 4B corresponds to instruction that is completely cognitively 
guided. Julie was at Level 1, prior to the workshop, for several reasons. First, she believed that 
her students were not capable of solving problems without the help of delineated procedures or 
their textbooks. During my observation, she did not allow her students to figure out how to solve 
problems on their own and from her description of her standard lesson plan, it was clear that 
Julie did not allow her students to invent their own strategies for solving problems. In fact, she 
never posed a “problem,” instead she used tasks where procedures were given or exercises that 
were similar to previously solved tasks. Like the tasks Julie used prior to the workshop, the 
questions she asked her students required low-level cognitive demands of students; she did not 
ask them about their thinking.   

After participating in the workshop, Julie satisfied all of the characteristics of a teacher at 
Level 3. First, while there was no change in Julie’s expressed beliefs about how students learn 
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mathematics best, her teaching style changed to corroborate these beliefs. In both instances she 
indicated that discovery was the best method for learning and that teachers should always allow 
their students to solve problems, but Julie commented that she learned how to teach in this way 
through the workshop. Post workshop, Julie never taught a procedure before allowing her 
students to discover their own ways first; in fact, in most cases she avoided teaching procedures 
all together.   

Second, after the workshop, Julie encouraged her students to solve problems in different 
ways. She asked, “Did anyone do it differently?” so frequently that her students began to 
volunteer to share alternative approaches. Third, Julie used a variety of different types of 
problems after the workshop. She attempted to teach in a developmentally appropriate way by 
creating progressions of problems according to their difficulty levels or the strategies they were 
likely to elicit from her students. For instance, one of her lessons on proportions progressed from 
problems involving an integer factor of change to problems without integer factors of change and 
with large numbers, to encourage her students to first develop a factor of change strategy and 
then advance to cross multiplication (CM). She said, “I deliberately gave them a problem where 
factoring was going to blow their minds so that they would be forced into the other [developing 
CM].” She explained that she “wanted to lead them [her students] into discovering CM or 
needing the CM algorithm.”    

Fourth, Julie expected her students to share their thinking with the class, after the workshop. 
Before the workshop, the only questions Julie was observed asking had low-level demands, but 
after the workshop Julie also asked questions with high-level demands. In fact, as more time 
passed after the conclusion of the workshop, Julie asked more and more questions placing high-
level demands on students. Immediately after the workshop, Julie asked her students to share 
their solution strategies with the class, but she focused more on the processes than on her 
students’ reasons for their actions or why their strategies worked. Over time she asked more 
questions about her students’ thinking, such as, “Why does this work?” or “Why did you put the 
numbers there [within a proportion]?” Julie’s eighth-grade students really responded well to their 
new responsibilities involving solving problems and sharing their thinking. One of her students 
went to the board and announced, “All eyes on me. Ok…” and then she proceeded to explain her 
solution process. This was a drastic change; before the workshop, Julie’s students were far more 
disruptive than participatory. Julie noticed this too and she attributed the change in her students 
to requiring them to think: 

Yeah ever since I switched it [switched her teaching to problem based rather than read in the 
book and fill in the blanks], he has been into it. Because he is using his mind. And you know, 
S [another student] did too [got into the lesson]. 
For these reasons, Julie was at least at Level 3 on the CGI scale after the workshop. But Julie 

also possessed some of the characteristics of a teacher at Level 4A. Julie may have been in 
transition to this level. She focused her lessons around problem solving. The majority of the 
tasks Julie posed were word problems after the workshop. She always asked her students to solve 
problems in their own ways and to share their approaches with her class. As I mentioned earlier, 
she based her instructional decisions on her students thinking, attempting to push them further 
along in their development of understandings. There was also at least one instance when she 
based an instructional decision during class on her students’ thinking. This instance was when 
one of her students explained that he was writing percent proportions in the order in which the 
values appeared in the problem. In response, Julie posed a problem where this students’ 
misconception would be highlighted. Later she explained to me, “They wrote it [a student said, 
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‘It has to go 78 over 58 because it is 78% of 58’] and I thought I have to use the other [another] 
problem to show that it may not go in order.”    

Sue changed her instruction from Level 2 to Level 3.  Prior to the workshop, Sue was at 
Level 2 for several reasons. Unlike the other teachers, Sue occasionally asked her students to 
solve problems on their own and repeatedly stressed the importance of relating new knowledge 
to students’ background knowledge (e.g. “If they can tie it to something that they have learned 
previously, it tends to stick a lot better.”). She also described being open to a variety of 
approaches to solving problems, which was characteristic of a teacher at Level 2. However, that 
behavior was not observed through her teaching. Because she showed her students how to solve 
problems with her anticipatory set, note-taking guides, and approach to dealing with students’ 
difficulties, Sue was not at Level 3 prior to the workshop. 

After the workshop, Sue’s instruction changed in several ways to become more cognitively 
guided. The following changes led to a Level 3 characterization: (a) Unlike before, Sue allowed 
her students to solve problems in their own ways without first asking them to read about 
procedures for solving similar problems. (b) When her students had trouble figuring out a way to 
solve a novel problem, Sue posed questions to help them discover a solution strategy. She did not 
resort to dictating a strategy, like she did prior to the workshop. (c) She demonstrated the 
openness to a variety of strategies that she expressed previously. Her students also perceived her 
receptivity to different approaches; During one of my observations, Sue asked her students, “Do 
you have to do it that way?” and one student replied in a mimicking tone, “No, whichever way 
works for you.” (d) Sue asked questions placing higher-level cognitive demands on her students, 
such as, “Why can we do that?” or “What is another way you could do this?” These types of 
questions encouraged her students to discuss their thinking, as well as develop connections and 
understandings.   

Both Abby and Bob progressed from Level 1 to Level 2. Prior to the workshop, neither 
teacher allowed their students to solve problems on their own. Instead, they demonstrated how to 
solve problems and then asked their students to solve similar exercises. For this reason, it 
appears that they did not believe that their students were capable of figuring out their own ways 
to solve problems.  

Both teachers were not observed posing questions or tasks that placed high-level demands on 
their students prior to the workshop. Actually, Abby and Bob used tasks and questions that could 
have been deemed high-level, but their treatment of them had the effect of lowering the tasks’ 
cognitive demands. Neither Abby nor Bob asked their students about their thinking. 

After the workshop, both teachers progressed to Level 2 on the CGI scale. They occasionally 
allowed their students to solve problems on their own, which they did not do previously. 
However, they both always taught procedures for solving problems after their students had been 
given a chance to solve them on their own. Bob recognized that there were a variety of 
proportion problem types and that those types can have an effect on students’ thinking. He varied 
the types of problems he included on his proportion assessment and spoke about his decision 
being influenced by the fact that different numerical structures would encourage different 
strategies. Abby also considered different problem types and varied the numerical structures and 
contexts she chose to include in her lessons. However, she only allowed her students to use a 
factor of change or CM strategy. Additionally, both teachers elicited more thinking from their 
students after the workshop and asked some questions with high-levels of cognitive demand. 
Abby and Bob were not at Level 3 due to the fact that neither teacher freely allowed their 
students to solve problems in their own ways. 
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Conclusions 
A content specific professional development program, regardless of content or grade-level, 

can lead to positive changes in teachers’ instruction to become more cognitively guided. 
Although this workshop intervention was brief, all four teachers changed their instruction to 
become more cognitively guided afterwards. It is reasonable to assume that a longer professional 
development opportunity may have lead to greater positive changes in instruction.  
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GRADUATE EDUCATION PROGRAMS FOR IN-SERVICE TEACHERS HAVE BEGUN 

FOCUSING ON THE USE OF TECHNOLOGY IN MIDDLE AND SECONDARY 
MATHEMATICS SETTINGS TO OFFER OPPORTUNITIES FOR STUDENT LEARNING. 

DISCONNECTS BETWEEN IN-SERVICE TEACHERS AND TEACHER EDUCATORS 
REGARDING AVAILABLE TECHNOLOGY CAN HINDER EFFORTS TO SUPPORT 

STUDENT LEARNING THROUGH TECHNOLOGICAL MEANS. IN THIS STUDY, WE 
IDENTIFIED THE ACCESSIBLE TECHNOLOGY IN-SERVICE TEACHERS IN A MASTER’S 

PROGRAM HAVE IN THEIR CLASSROOMS, AND PROVIDED THE INFORMATION TO THE 
TEACHER EDUCATORS OF THE GRADUATE PROGRAM. AFTER GATHERING TEACHER 
EDUCATOR PERCEPTIONS OF THE TEACHER PARTICIPANT TECHNOLOGICAL DATA, 

WE SUMMARIZED HOW THIS PROCESS MIGHT REDUCE SUCH DISCONNECTS AND 
PROMOTE MEANINGFUL TECHNOLOGY INCORPORATION IN THE PROGRAM.  

 
INTRODUCTION  

The challenge of providing teacher education that encompasses appropriate use of 
technology for student mathematical learning spans traditional discipline borders in graduate 
programs (NCTM, 2000; Signer, 2008). Cuban (1986) and Lloyd and McRobbie (2005) make a 
case for professional development that provides opportunities to learn about pedagogically 
appropriate technology, focusing on activities similar to teachers’ current classroom practice. 
However, graduate education and professional development programs are struggling to follow 
such advice, in part due to varying advice on how technology education can best influence 
classroom practice (Dede, Ketelhut, Whitehouse, Breit, & McCloskey, 2009; Wilson & Wright, 
2010). This paper describes a study aimed to improve technology education within a graduate 
program designed for in-service mathematics teachers.  

Graduate and professional development opportunities for teachers are central to national 
improvement efforts, and effective classroom implementation of new teacher learning is seen as 
a determining factor of success (Lemke & Fadel, 2006; O’Dwyer, Russell, & Bebell, 2004; 
Penuel, 2006). Putnam and Borko (2000) explained, “professional knowledge is developed in 
context, stored together with characteristic features of the classrooms and activities, organized 
around the tasks that teachers accomplish in classroom settings, and accessed for use in similar 
situations” (p.13). Also, professional development with technologies related to local curricula, 
standards, and current teaching practices are more likely to have a positive impact on 
implementation of that technology (Martin et al., 2010; Penuel, 2006).  

Since Cuban (1986) first emphasized the importance of making explicit connections between 
technology and teachers’ specific types of instruction, the subject has received substantial 
attention. In particular, professional development involving technology can impact teacher 
practice in significant ways, and has been shown both to increase and fundamentally change 
student learning (Pea, 1985; Penuel, 2006; Ravitz, 2009; Ringstaff & Kelley, 2002; Stevens, To, 
Harris, & Dwyer, 2008). The work of Stevens et al. (2008) and Martin et al. (2010) addressed the 
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connection between a teacher’s professional development about technology and student learning 
outcomes. Stevens et al. (2008) found teachers’ self-efficacy and self-determination improved 
through participation in a professional development program focused on technology and was 
correlated with “positive educational outcomes for students” (p. 215). In Martin et al.’s (2010) 
study, after participating in a technologically-focused professional development program, 
teachers’ use of mathematics technology had a strong and positive relationship to student 
achievement across elementary and middle school levels. While these results are positive, 
researchers emphasize the importance of keeping technology tied to classroom practices (Glazer 
& Hannafin, 2006; Mouza, 2009).  

The purpose of this study was to examine perceptions of teacher educators regarding 
availability and use of technology for mathematics teachers enrolled in their graduate classes. 
Specifically, we sought to answer the following research questions: (1) What original 
assumptions and beliefs do teacher educators have about the availability and use of technology in 
the K-12 classroom? (2) How are teacher educators’ plans for instruction with technology 
influenced by knowledge of the availability and use of technology in the K-12 classroom? and 
(3) What are the felt needs about technology expressed by teachers and teacher educators in a 
technology-rich professional development setting? 

 
Methodology 

Participants and Setting 
This study focused on a two-year master’s program in mathematics for secondary teachers1. 

Designed for middle and high school mathematics teachers, courses are offered year-round 
through online and blended educational settings. The program incorporates a variety of online 
technologies during the school year and combines face-to-face and distance instruction in the 
summer. At the time of the study, participating teachers were primarily from two states in the 
Rocky Mountain region, and will hence be called teacher participants.  

While this study summarized data from the 35 teacher participants taking courses during the 
summer, our main focus was on the four teacher educators who taught the courses. The four 
courses offered were Mathematical Problem Solving, Modern Geometry, Teaching Geometry, 
and History of Mathematics, with each teacher educator instructing one course (see Table 1).  

 
Data Collection and Analysis  

We investigated the research questions using a combination of survey and interview methods 
with both teacher participants and teacher educators. First, we administered an open-ended 
survey to the teacher educators, the Technology Input Survey (TIS). This seven-item survey 
asked about beliefs regarding the technology available to teacher participants. Two questions 

Teacher Educator  Subject Matter Expertise Number of Courses Taught in the 
Program 

Dr. Heilmann Mathematics Education More than 3 

Dr. Torres Applied Mathematics None 

Dr. Selvidge Mathematics More than 3 

Dr. Atteberry Mathematics 1 

Table 1: Teacher Educator alias and description. 
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gathered information on how teacher educators planned to incorporate technological instruction, 
and how the instruction would assist teacher participants in teaching with technology in their 
own classrooms. All four teacher educators completed the survey.  

We then developed and administered a second survey, the Classroom Technology Survey 
(CTS). Completed anonymously, online, by all teacher participants in the month before summer 
classes began, this survey consisted of nine open-ended questions about what technology was 
available and used in teacher participants’ classrooms and how participants characterized the use 
of technology in their classrooms. The response rate for the CTS was 22 out of 35 (63%).  

In addition to the surveys, we conducted semi-structured interviews with each teacher 
educator of the summer courses. A summarized version of the CTS data was shared with the 
teacher educators shortly before the beginning of the summer term. Interview questions were 
asked to elicit responses on the implications of the CTS data, such as “What is your initial 
reaction to the information presented? Does the information we have shared with you influence 
your plan to teach the course this summer? If so, how? If not, why?” The individual interviews 
took place two weeks prior to the summer courses started and were audio recorded and 
transcribed. 

The TIS results were first summarized for each teacher educator, and responses from the 
question, “What information about teachers’ use of technology would be helpful to you as an 
instructor” were incorporated into the CTS. Other responses were summarized and grouped 
according to the research questions they addressed. Following collection of the CTS, descriptive 
statistics were calculated regarding the type and frequency of technology teachers reported was 
available and used by them. Completely opened-ended questions (such as how teachers 
characterized the use of technology in their classroom) were open-coded (Creswell, 2007) then 
arranged into categories before being summarized into the examples provided in the summary 
given to teacher educators (see Figure 1). In a similar process, instructor interview transcripts 
were open coded to distinguish themes among instructor perspectives about the CTS data. 
Researcher and data triangulation occurred through the TIS and interview analysis process.  

 
Figure 1: An example item from the CTS summary of teacher participants’ reported availability 
and use of computer rooms. 

Results 
Teacher educators’ beliefs and assumptions about the availability and use of technology in 

teacher participant classrooms were altered after presentation of the CTS data. Prior to seeing 
this data, each teacher educator believed all teachers would have access to graphing calculators 
and that most would have access to a computer lab with dynamic geometry software. Three of 
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the teacher educators reported they believed SMART Boards would be available to some of the 
teacher participants. Drs. Atteberry, Selvidge, and Heilmann, all having prior experience with in-
service teachers as learners, reported making the assumptions based on conversations with 
teachers and previous teaching experience. Dr. Torres based her assumptions on her experiences 
working with other in-service teachers, attending sessions at conferences dealing with classroom 
technology, and reading reports of classroom technology availability. After receiving the CTS 
data, all four teacher educators indicated being surprised by the high number of interactive 
whiteboards available to the teacher participants; specific reactions for each teacher educator are 
described below.  

Dr. Atteberry believed his role as an instructor was minimal in connecting technology to the 
teacher participants’ classrooms. Dr. Atteberry also expressed his belief that calculators and 
other technology were overused in classrooms. He stated, “I worry about people creating graphs 
so much with technology they can’t do it anymore...we have a lot of evidence of that...when I 
taught calc I [to undergraduate students last year].” Dr. Atteberry said he planned to use 
technology in his course, “only minimally - I would concentrate on showing different kinds of 
problems that can be facilitated with the computer or graphing calculator.”  

After reading the results of the CTS, Dr. Atteberry expressed surprise at the prevalence of 
whiteboard and digital projectors in the teacher participants’ classrooms. He asserted that the 
cost of the technology must be less of a hindrance for having the technology than he originally 
believed, but that the information seemed unlikely to change his instruction during the summer 
course. Dr. Atteberry said he still had numerous questions, and offered suggestions for the next 
steps in continuing to provide information to teacher educators: “The glaring thing that’s missing 
on these kinds of things are, ‘did you feel that using the technology was helpful for your students 
in high school?...Did they learn better, are they more motivated? What is your evidence? What 
was good about it?” Dr. Atteberry felt that asking the teacher participants to gather data from 
their classes about students’ perception of technology would be quite valuable, since students 
may be ‘engaged’ with a type of technology such as a computer because they thought of it more 
as a video game than mathematics. Dr. Atteberry also recommended asking teacher participants 
the question, “what technology would you wish someone would invent?” because, he said, 
“they’ll probably have an idea of something they need and it may be invented and just not 
available or nobody bought it.”  

Dr. Torres thought SMART Boards and programs such as Geometer’s Sketchpad were used 
in geometry instruction, and would like technology to be used in teacher participants’ classrooms 
in ways that support mathematical conversations with students and provide powerful 
demonstrations for students. She also believed in-service teachers do not integrate technology 
into teaching because they fear their students will be prohibited from using the technology on 
required exams or in college classes (e.g., where calculators are not allowed). Dr. Torres planned 
to incorporate video cameras for individual recordings during her class, with possible use of 
Geometers Sketchpad and Excel, but she claimed this technology use was far removed from the 
context of the teacher participants’ classrooms. Dr. Torres planned to use assessments that 
incorporated electronic submissions, which could be connected to technology in teacher 
participants’ classrooms.  

When given the information from the CTS, Dr. Torres said the data were useful in helping 
her make decisions about what technology to use in instruction. For example, Dr. Torres 
mentioned she would like to know if teachers can get past the firewall at their respective schools 
– if they cannot, then showing YouTube videos might not be a tool she should use. When asked 
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how, specifically, the information presented might affect her instruction, she said that, due to the 
nature of the course, it probably would not affect her plan for the way the course would be 
taught. However, Dr. Torres said that if it were a different course, more information about 
software would have been helpful. She deduced from the information we gathered that “new 
sites, new software” are things the teacher participants want to learn with the condition that they 
will have access to them in their classroom. Similar to Dr. Atteberry, Dr. Torres also wanted to 
know how computer programs such as Excel were being used in the classroom for the 
preparation of documents or for doing mathematical problems with equations. 

Like Dr. Torres, Dr. Selvidge wanted teacher participants to use technology in their 
classrooms to support student exploration of mathematical ideas. Dr. Selvidge stated she had no 
specific plans for how to make the connection between technology in her course and the teacher 
participants’ classrooms, but she planned to emphasize GeoGebra because she believed the 
teacher participants had access to computer rooms and the program was free for all users.  

Upon receiving the CTS data, Dr. Selvidge indicated she was encouraged to think about 
technology use in more “innovative” ways, given the prevalence of technology such as 
interactive whiteboards. Like Dr. Torres, Dr. Selvidge wondered about the comfort level the 
teacher participants might have regarding technology and openness to learning about new 
technologies. Dr. Selvidge was also curious to know how various technologies can be used in 
mathematics classrooms to enhance learning. She mentioned specific interest in learning how 
technologies such as SMART Boards, writing tablets, iPads, document scanners, and programs 
such as GeoGebra, Dropbox, and Google Docs might be applied by teacher participants in their 
own classrooms to enhance learning.  

Dr. Heilmann’s assumptions about teacher participants’ access to technology were similar to 
Dr. Selvidge’s. He believed if teacher participants had access to SMART Boards then they would 
use them daily. Dr. Heilmann stated he would like technology to be “fully integrated into 
[teacher participants’] classrooms” and listed several technologies he would like teacher 
participants to use (e.g., networked graphing calculators, web 2.0 computer applications). Dr. 
Heilmann reported his plan to teach the summer course using GeoGebra because teacher 
participants could take this technology back into their classrooms. Dr. Heilmann also had plans 
to poll his students to determine how many had access to computers in order to best incorporate 
the GeoGebra lessons.  

After examining the results of the CTS, Dr. Heilmann stated “there is more technology in the 
classrooms than I thought...it’s very helpful to know what’s there and the potential for use.” Dr. 
Heilmann added his surprise about the prevalence of GeoGebra: “eight of the 22 [teachers] 
already use a technology that was planned to...introduce. So...when it comes to that lesson I may 
have to do some differentiated instruction. And so now I’m thinking to myself, do I really know 
enough to really push people that use GeoGebra in their instruction? So that’s what I learned 
from this survey.” He made clear that the data we provided him would be used to make 
decisions, and concluded, “It makes me pause and ask myself, ‘do I know more technology than 
the teachers in the classroom that I’m going to be having?’” Dr. Heilmann commented on a 
specific change he would also be making in his course: he no longer needed to poll the teachers 
about the availability of computers in their classrooms. Dr. Heilmann’s only other comment was 
to mention how the survey data could be inflated, and he suggested observations to verify the 
data.  

 
Educational Implications 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1542



Providing graduate education to positively influence mathematics classroom practice is a 
major hurdle for program instructors and administrators. In this study, we followed Cuban’s 
(1986) guidelines that technology education should be grounded in teachers’ current practice in 
order to help link education to practice (Putnam & Borko, 2000). Teacher educators reported the 
data on K-12 technology use and availability was useful in (a) answering their original questions 
stated in the Technology Input Survey, (b) aligning their beliefs about teachers’ availability to 
technology, and (c) self-reflecting on the appropriateness of graduate program technology 
instruction intended for transfer to teachers’ classrooms.  

Teacher educators all reported being surprised by at least one shared from the CTS. For 
instance, all four teacher educators were surprised at the large number2 of teacher participants 
with unlimited access to an interactive whiteboard. Stemming from this revelation, all four noted 
that the information made them (re)consider the role of technology planned in the courses they 
would teach. For instance, Dr. Selvidge said that she had “not been thinking a lot about how to 
use it to enhance instruction...I sort of feel like after having reading this that I need to step it up a 
little bit.” Even though Dr. Atteberry and Dr. Torres stated this information would not change 
how they planned to use technology in their summer courses, it did make them consider aspects 
of technology and ask additional questions about the topic. New questions brought up by teacher 
educators included the role the technology had in the K-12 classroom, how technology use 
supported student learning, and how technologically adept the teacher participants considered 
themselves. The teacher educators commented that these questions might only be answered 
through observations or interviews with teacher participants.  

Data on teacher participants’ reports on use and availability of classroom technology was 
offered to teacher educators to support their reflection on their own college instructional practice. 
The offer was timely in that it happened in the month before they taught a summer course that 
had a significant technology component – teacher participants were using technology as learners 
in the summer courses. The goal was to provide teacher educators an occasion to become more 
aligned with teacher classroom practice and to be more reflective about their instruction. We 
recommend future studies continue this effort, and expand on the reported survey and interview 
data by including classroom observations of both teacher educators and teacher participants. The 
efforts in this study were worthwhile in providing teacher educators information that can help 
structure graduate education in beneficial ways for in-service teachers. In making the connection 
from learning to practice clearer for educators, we hope to improve teacher education and 
subsequently student learning. 

 
End Notes 

1. This material is based upon work supported by the National Science Foundation under Grant 
No. DUE0832026. Any opinions, findings and conclusions or recommendations expressed in this 
material are those of the authors and do not necessarily reflect the views of the National Science 
Foundation. 
2. Eighteen of 22 teacher participants reported having unlimited access to an interactive 
whiteboard, such as a SMART Board, in their classroom. 
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This paper reports results of an analysis of data from a mathematics coaching professional 
development program. The goal of the study was to investigate whether a relationship exists 
between program implementation fidelity and student achievement. Data were obtained from 
Mathematics Coaching Program (MCP) documents collected during the 2009-2010 school year. 
Documents included site visitor inventories, end-of-year inventories, and facilitator weekly logs. 
From these data emerged four categories for future analysis: 1) coach leadership; 2) alignment 
with MCP assurances; 3) coach’s role; and 4) coach and teacher emphasis on student thinking. 
Initial results indicate program implementation fidelity impacts student achievement.  
 
 Mathematics education in the United States has been unfavorably compared to that of other 
countries for decades (Miller, Sen, & Malley, 2007; Nelson, 2003). Numerous reasons are 
suggested as to why a majority of the students in U.S. schools seem to lack both an 
understanding of and an appreciation for mathematical literacy. By the time many of them reach 
high school, mathematics is one of their least favorite subjects and they fail to see its relevance to 
any aspect of their lives. Therefore, it becomes critical to ensure that mathematical instruction at 
the elementary school level encourages and inspires students while providing them with the 
necessary knowledge to not only be successful, but also be prepared for the rigors of middle 
school and high school mathematics. 
 Even though elementary mathematics education sets the foundation for each student’s future 
success, most students at this level are taught by teachers with limited mathematical preparation 
as few were probably required to take more than two or three mathematics content courses and 
possibly one mathematics content pedagogy course (Fennell, 2007). Literature confirms that 
teacher preparation programs and professional development need to emphasize both 
mathematical content knowledge and mathematical pedagogical content knowledge (Cavanagh, 
2008; Hill et al., 2005; Li, 2008). In light of these suggestions, calls for designing professional 
development programs that target teachers’ subject matter understanding while increasing their 
sensitivity to children’s thinking have been wide spread (Becker & Pence, 2003; Bruce & Ross, 
2008; Cavanagh, 2008; Hill et al., 2005; Li, 2008; Murray, Ma, & Mazur, 2009).  
 This report is part of a larger longitudinal research project that closely studies the link 
between a mathematics coaching professional development model and student learning (Brosnan 
& Erchick, 2010). While there are several studies examining how mathematics coaches impact 
teachers (Bruce & Ross, 2008; Gerretson, Bosnick, & Schofield, 2008; Lord, Cress, & B. Miller, 
2008; McGatha, 2008; Murray et al., 2009), there remains a concern that is yet to be addressed as 
to whether or not mathematics coaches impact student achievement (Murray et al., 2009). 
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Results indicate that the (MCP) model, which has been in schools throughout Ohio in partnership 
with The Ohio State University (OSU), is having a positive impact on student achievement 
(Brosnan & Erchick, 2010). The purpose of this paper is to report results of a more focused yet 
preliminary analysis of program data to determine whether there was a relationship between 
program implementation fidelity and student achievement. 

 
Theoretical Framework 

The theoretical framework for this study was based on the roles and responsibilities of a 
mathematics coach as discussed in the literature and on the conceptual framework of the 
Mathematics Coaching Program model (Brosnan & Erchick, 2010). The roles and 
responsibilities of a mathematics coach take on many forms and change from day-to-day. 
Literature (Fennell, 2007; McGatha, 2008; Reddell, 2004) summarizes most of the roles and 
responsibilities of mathematics coaches into the following categories: 1) implementing standards 
and research; 2) planning and facilitating professional development; 3) working collaboratively 
with classroom teachers and administrators; 4) analyzing and interpreting data; and 5) organizing 
and coordinating mathematics resources. To ensure that students are receiving necessary 
mathematical instruction, mathematics coaches align their curriculum with local, state, and 
national standards and encourage classroom teachers to carry this into instructional practice. 
Coaches also need to be familiar with the most up-to-date research about teaching and learning 
so that they can influence teachers to use more effective methods of instruction. Since content 
knowledge and pedagogy are weaknesses for many elementary mathematics teachers, coaches 
are responsible for planning and facilitating professional development opportunities that will 
provide teachers with the necessary knowledge and instructional practices to be effective in the 
classroom. Collaboration with classroom teachers is critical and includes such activities as co-
planning, co-teaching, reflecting on, and occasionally modeling a lesson. Mathematics coaches 
work with teachers and administrators to examine data and use it to guide future instructional 
and assessment practices. They also serve as the resource person responsible for gathering, 
organizing and coordinating the use of mathematical resources such as manipulatives, 
calculators, and rulers. These roles and responsibilities, while not exhaustive, provided a general 
framework from which implementation fidelity of the MCP model was investigated.  

Additionally, the conceptual framework of the MCP model guided our study of the relation 
between implementation fidelity and student achievement. This framework focuses on learner 
responsive mathematics education with respect to both coach-teacher interaction and teacher-
student interaction, consisting of elements from mathematical, pedagogical, and socio-cultural 
context (Brosnan & Erchick, 2010).  

 
Background 

 The MCP coaching project that is the focus of this paper was developed over six years ago at 
OSU as a means by which to provide embedded professional development to mathematics 
teachers in the state of Ohio. The original recruitment for the program targeted low-performing 
schools around the state as determined by results of the Ohio Achievement Test and Ohio 
Proficiency Test. Three years of professional development and administrative support for the 
program are funded through grants from the National Science Foundation and the Ohio 
Department of Education. While school districts are responsible for funding the mathematics 
coaches, the monthly professional development is provided at no cost to schools. Coaches attend 
two consecutive days of training each month and two non-consecutive days of collaboration with 
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other coaches clustered geographically and led by an MCP facilitator. Quantitative and 
qualitative data are collected within various aspects of the program. 
 The MCP model consists of the following four areas: 1) MCP conceptual framework; 2) 
coaches’ professional development; 3) design and structure for implementation; and 4) 
accountability and quality control (Brosnan & Erchick, 2010). For the purpose of this paper, data 
analysis will focus on the two latter areas of design and structure for implementation and 
accountability and quality control. 

 
Methodology 

 Participants in this study were ten coaches in schools participating in the Mathematics 
Coaching Program that showed the greatest and the least growth between the school years of 
2008-2009 and 2009-2010. To determine the top five and bottom five schools in terms of student 
achievement growth, a spreadsheet analysis of Ohio Achievement Test (OAT) results was used 
to compare scores from the year prior to the first year of participation (2008-2009) in MCP with 
those at the end of the first year of participation (2009-2010) in the program. Difference scores 
(09/10 – 08/09) between each grade level in the building were calculated and the sum total of the 
differences was identified. The top five schools were those with the largest positive sums and the 
bottom five were those with the largest negative sums. Some schools for which OAT results 
were not available for both years were eliminated from consideration as well as those schools 
whose scores were extremely inconsistent across grade levels.  

Data Sources 
 This paper presents results from an analysis of documents obtained through the MCP during 
the 2009-2010 school year. Data collected and considered for this research included: 1) site 
visitor inventories; 2) end-of-year inventories; and 3) facilitator weekly logs. 
 The site visitor inventory is an extensive document completed by MCP personnel during a 
full-day visit and observation at each school staffed with an MCP mathematics coach. As part of 
the site visitor inventory, classroom observations are documented, interactions between coaches 
and teachers are noted, and a series of pre-written interview questions regarding their work as 
coaches are administered. Site visitors received training on how to conduct site visits. 
 End-of-year inventories are completed by facilitators - MCP personnel in charge of 
overseeing small groups of coaches - towards the end of each school year. The contents of the 
end-of-year inventory are virtually identical to the site visit inventory, but do not include 
components that require the facilitator to actually visit schools. Facilitators work with coaches on 
a more personal level than do the site visitors, making the end-of-year inventory a contrasting 
perspective to the site visitor inventory.  
 Facilitator weekly logs are completed by facilitators, and are intended to document 
encounters with coaches at small group meetings as well as other discussions and conversations 
between facilitator and coach.  
 
Analysis  
  Employing an interpretive case-study approach, analysis of the data took place through 
documenting emerging themes and recursive evaluation of findings (Merriam, 1988). Categories 
for qualitative analysis emerged from two sources: review of MCP data and existing literature on 
implementing coaching models. Issues of validity, trustworthiness, and credibility, as 
recommended by Lincoln and Guba (1985), were dealt with by utilizing multiple data sources, as 
well as independent coding by three researchers.  
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Results 

 The role of mathematics coaches in their first year of work with MCP creates many new 
challenges. Coaches are not only responsible for learning the program, but are also tasked with 
developing rapport with teachers and administrators, promoting their role as a coach within their 
building, balancing their time between planning, teaching, data analysis, collaboration with 
teachers, providing  professional development and attending their own professional development 
sessions each month. Becoming a coach is a complex process, but one that can be mutually 
beneficial and can create a positive learning community among coaches, teachers, administrators, 
and, most importantly, students. 
 Prior research categories related to coaching and iterative analysis of the multiple data 
sources suggested several categories of differences between those schools showing the greatest 
and the least growth in student achievement. The four most prominent, recurring themes were 1) 
coach leadership, 2) alignment with MCP assurances, 3) role of the coach, and 4) coach and 
teacher emphasis on student thinking. Coach leadership refers to the demonstration of leadership 
by a coach within the school. Alignment with MCP assurances refers to how well a coach’s 
school followed the MCP guiding principles for coaches and administrators. Role of the coach 
refers to the types of activities for which the coach felt responsible. Finally, coach and teacher 
emphasis on student thinking refers to the evidence describing the types of opportunities in 
which coaches and teachers allowed children to serve as problem solvers and use their own 
mathematical ideas.. Brief case studies of the five schools showing the least growth, as well as 
the five schools showing the greatest growth, will be used to demonstrate instances of these four 
themes.   
       
Cases from Schools Showing the Least Growth 

A commonality among the schools demonstrating the least growth was that the coaches in 
those schools often demonstrated a lack of leadership; not leading professional development at 
their schools, passively participating with fellow coaches, and an unwillingness or passiveness to 
engage with uncooperative principals. What follows are samples from the various data-source 
documents that give examples of coach leadership in the schools showing the least growth: 

• Facilitator End-of-year Inventory on Coach X: Coach X is a pleaser. She does not tend to 
take the lead during Columbus PD. She has a quiet spirit, but gains approval from her peers by 
listening and understanding their needs. Coach X needs to stand up to her principal and qualify 
what she is doing and what she needs to take off her plate. She tends to follow her table-mates 
rather than make suggestions to solve problems.  

• Site visitor form for Coach Z: I believe Coach Z has a lot that could be shared with the 
teachers, if only she took the opportunity. 

• Facilitator End-of-year Inventory on Coach Y: Coach Y needs to model professional behavior by 
not being on her tech devices during meetings or conducting side-bar conversations when 
inappropriate, this gives the perception that she is not engaged with the other coaches and is not 
on task.  

For the schools demonstrating the least growth, the most prevalent trend was the tendency to 
stray from the MCP assurances document. Principals are expected to support coaches in their 
work with teachers, and are asked to not interfere with the proposed coaching schedule by 
requiring coaches to do office work and non-coaching related tasks. Coaches are also asked to 
work with 3 or 4 teachers over a 6-week period of time. What follows are samples from the 
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various data-source documents that give examples of the types of challenges coaches 
encountered with respect to following the MCP assurances: 

• Site visitor form on Coach X: This coach is constantly being asked to do “chores outside her 
MCP assignment”. She is asked to serve on building and district committees, collate OAA 
questions for teachers, deliver packets of “to-dos” to teachers that are inconsistent with MCP. 
However, when the coach is coaching, she is following the MCP model. Just that her time is 
limited. Quote from Coach X: I prefer to be with kids and not doing office work! 

• Site visitor form for Coach Y:  Things Coach Y does that are NOT COACHING: 
o AM duty 7:25-7:45 which is Hall duty; PM duty 2:00-2:15 Dismissal duty 
o Design Team committee which meets 2 times a month for 2 hours after school 

and once a month all day 
o Out of the building [beyond the 4 days required by MCP]. 

• Site visitor form for Coach Z: The principal tells her certain groups/targeted grades. She visits 
those classrooms first…So….she has 11 total teachers to work with and she is coaching in 5 
different classrooms.  

• Facilitator End-of-year Inventory on Coach X: The principal did not support all of the 
assurances of the MCP initiative. Coach X was caught in the middle between MCP directives and 
her assignments from the school principal. Coach X stayed true to MCP when allowed to do so. 
When the principal over-rode her assignment, it was difficult for Coach X to coach as needed. 

Coaches in schools showing the least growth also demonstrated two additional themes; 
confusion about the role of the coach, as well as a struggle to emphasize student thinking in the 
classes in which they worked. This included modeling how to teach without coaching teachers 
on how to learn from their modeling, serving only as an intervention teacher, and feeling 
uncertainty about how to approach coaching. It also included a heavy emphasis on students 
working in groups, but failed to focus on developing more substantive mathematical tasks for 
students. What follows are samples from the various data-source documents that give examples 
of coach struggles in schools showing the least growth. These examples define the role of the 
coach and focus on student thinking: 

• Site visitor form on Coach X: I got the idea that in the K-4 classrooms when students are in 
“groups” Coach X is taking a “group” and working with them, but not really changing much else.  

• Site visitor form on Coach Z:  The visit in the 3rd grade classroom did not show me an 
intellectually engaging lesson….it was all question/answer test prep. 

She is not confident in her abilities and second guesses her coaching 
I did not see evidence of her 1) Coaching the teacher in learning how students think, 2) Coaching the 
teacher in how to use the mathematical knowledge in the room, 3) Coaching the teacher in questioning 
techniques, and 4) Coaching the teacher in using the process standards regularly. 
 
Cases from Schools Showing the Greatest Growth 
 The following cases describe the most common aspects seen within schools showing the 
highest margin of growth after one year of mathematics coaching. The coaches in these schools 
possessed similar traits, approached challenges in similar ways, provided leadership consistently, 
and followed the MCP model most closely.  

Coaches within high growth schools showed leadership qualities both within their schools 
and during monthly professional development sessions. Within their schools, these coaches 
understood and promoted their roles as coaches. They ensured that teachers understood they 
were co-teachers and not evaluators. As well, these coaches took measures to build trust with 
teachers while also communicating to their administrators that they would discuss general 
information about student achievement, but would not betray the confidence of their colleagues. 
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• Facilitator End-of-Year Inventory on Coach A: Coach A has approached her job by 
establishing trust with her staff and taking things slowly. This method has worked for her 
in that more and more teachers are seeking to work with her. 

• Facilitator End-of-Year Inventory on Coach B: What does the coach find most 
challenging in the coaching process? At first, getting everyone (administrators, staff) on 
the same page. The district’s expectations of the math coach were different from MCP at 
first. 

At monthly MCP professional development sessions, these coaches were highly engaged, 
modeled leadership qualities and set professional examples for their colleagues. 

• Facilitator End-of-Year Inventory on Coach C: Coach C participates at every meeting. I 
commend her for not following others at her table and getting onto her computer…her 
professional approach to the MCP PD is to be commended 

 Schools with the highest growth consistently showed evidence of adherence to the MCP 
assurances document. Coaches worked with three to four teachers every six weeks co-teaching 
rather than modeling, principals offered strong program support, and coaches engaged in few 
additional duties beyond their coaching duties.  

• Site Visitor Form on Coach C: Coach C is in four rooms each day. She also has time built in 
where she takes an enrichment group, she has one planning time and lunch. According to her 
schedule and discussions, she spends the majority of her day coaching.  

• Site Visitor Form on Coach A: She plans, co-teaches, models and debriefs. She has built 
capacity with the teachers. 

• Site Visitor Form on Coach C: Coach C suggests when coaching, that she and the teacher go 
back and forth in facilitating the lesson. 

• Site Visitor Form on Coach D: Coach D said she is coaching 4-5 hours, or most of the day. 
 Another commonality among schools with the highest growth was the structure of the 
coaching process. The MCP coaching model is designed to include a pre-lesson and post-lesson 
conference in order to encourage collaboration and reflective practice between coaches and 
teachers. Coaches in high growth schools spent more time in pre-lesson and post-lesson 
conferencing. Further, these conferences were planned and intentionally included in the coaches’ 
daily schedule. 

• Facilitator End-Of-Year Inventory on Coach A: Coach A puts time in her weekly 
schedule for pre and post conferences with the teachers she is working with, and for 
planning activities. She spends time debriefing, especially with her one afternoon teacher. 

• Facilitator End-of-Year Inventory on Coach C: She allows the teacher to realize where 
the lesson could be improved and guides the conversation to encourage self-discovery of 
transforming their classroom to a more student-centered culture. 

Finally, coaches and teachers in high growth schools consistently emphasized the MCP 
principle of focusing on student thinking. 

• Site Visit Form on Coach A: Coach A helps remind me the kids need to do the talking and 
thinking. I say so and so has a question….who can answer for them?...the kids help each other. 

• Site Visit Form on Coach D: One teacher told Coach D….you taught me it is ok for 
students to be loud and communicate.” “A lot of the teachers are letting kids loose.” 

General Observations 
 Utilizing the scoring rubric completed by facilitators and site visitors on their respective 
inventories, trends emerged demonstrating differences between the coaches in schools showing 
the most versus the least growth. Coaches in schools showing the most growth scored as well or 
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better than coaches in schools showing the least growth with respect to: 1) co-planning with 
participating teachers; 2) co-teaching with participating teachers; 3) coaching related to student 
thinking; 4) coaching related to using mathematical knowledge in the classroom; 5) coaching on 
questioning strategies; 6) coaching on process standards; 7) coaching on identifying rich 
problems and activities; and 8) debriefing lessons with teachers. In addition to differences on the 
preceding coaching categories, the scoring rubrics also indicated that site visitors and facilitators 
did not view the two groups of coaches to be different in their content knowledge and knowledge 
of coaching. However, coaches in the higher growth schools received far more favorable scores 
with respect to pedagogical knowledge and comfort level with the program.   

 
Discussion 

 Results from this study, although preliminary, show potentially useful areas that may be 
worthwhile to explore in order to better understand the relationship between the implementation 
of effective coaching and student achievement gains. All participating coaches were part of the 
same coaching program, yet each had unique experiences with the participating schools, 
teachers, and project goals that impacted their ability to effectively encourage instructional 
change and student achievement gains.  
 The MCP assurances document is designed as a mechanism to help ensure that coaches are 
able to effectively do the job of a mathematics coach. The situations showing the greatest 
alignment with the MCP assurances were also those showing the largest student achievement 
gains. Specific components of the MCP assurances document, such as the role of the coach, 
occurred frequently in the analysis. Coaches showing evidence of the viewpoint that it is the role 
and responsibility of the coach to plan, co-teach, and debrief lessons with participating teachers 
were far more likely to be coaching in a school showing the largest student achievement gains. 
Although the actual substance of the planning, co-teaching, and debriefing procedures enacted by 
coaches is not a component of this analysis, the discrepancy in viewpoints about the role of the 
coach found in this analysis indicates that a commitment to a coaching approach that honors all 
components of the teaching process (planning, teaching, and reflection) could be related to 
instructional change and subsequent student achievement gains.  
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Conclusion and Implications 
 As a result of this investigation, it is apparent that further research is necessary to form a 
more concrete understanding of the factors that most deeply impact student achievement in 
schools with mathematics coaches. Further, from this data emerged four a priori categories for 
future analysis within this data set: 1) coach leadership, 2) alignment with MCP assurances, 3) 
role of the coach, and 4) coach and teacher emphasis on student thinking. As well, it is proposed 
that at least one of the data sources be improved – the Site Visitor form – to create a more 
provocative instrument that can produce detailed accounts of the impacts of these proposed 
categories upon the coaches’ ability to do their jobs. It is also proposed that a greater number of 
MCP participating schools be investigated. Additionally, an increased number of observations of 
coaches in those schools could begin to more clearly elaborate the components of the assurances 
that appear to have the greatest impact on student achievement. 
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SECONDARY MATHEMATICS TEACHERS INCORPORATING DIGITAL 
TECHNOLOGIES INTO THEIR CLASSROOM PRACTICE 
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The work we present here contributes to research on teacher learning on the issue of 
incorporating mathematics technology into classroom practice, approaching relatively new in-
service teacher training design and using Zbieck & Hollebrands (2008) revisited theoretical 
framework of analysis related to introducing innovation in school. The main data were obtained 
from videos of participant teachers taken during their classroom practice. These teaching videos 
revealed five different ways that participant teachers achieved to incorporate mathematics 
technology into their classrooms. 

Introduction 
According to Cobo (2009), there are many new digital artefacts that have the potential to be 

used in classrooms. From his point of view, the educational field has benefited from the irruption 
of digital technologies, especially with the emergence of the Web 2.0. 

However, as the same author set out, the advent of new technologies generates the possibility 
for new student abilities and skills. Then, it makes teachers face real challenges: they have to be 
acquainted with new digital resources and should learn how to integrate these technological tools 
into their classrooms. 

In this context it is plausible reconsider the following research questions. 
 i) In reality, what has been the influence of digital technologies in school, especially 

regarding mathematics learning? 
ii) What do teachers think about using digital technologies in mathematics classrooms? 

iii) How do mathematics teachers achieve using digital technologies into their classrooms? 
The work we are presenting here contributes to answering the third question, building upon 

previous work accomplished mainly by Zbieck and Hollebrands (2008), Ruthven (2007; 2002) 
and Ruthven and Hennessy (2002). 

Specifically, we have already set up an exploratory study on the practice achievements of in-
service secondary teachers, as they try to incorporate mathematics technology into their 
classroom. 

Finally, in relation with the two first questions, we will only revise here some relevant 
research results mainly noticed by Olive et al. (2010), Ruthven (2007; 2002) and Zbieck & 
Hollebrands (2008).  

Background 

Technological Tools in School 
In according with Olive et al. (2010), at the end of 80’s and during the 90’s there were great 

expectation in relation with the potential of new technologies to transform the way mathematics 
could be taught and learned (Howson & Kahane, 1986, cited in Olive et al, 2010). 
However, as Ruthven (2007) points out, in opinion of revolutionary software designers (as S. 
Papert, the LOGO creator), the uses of technology in education have often simply replaced paper 
with computer screens without changing tasks. More over, computers have been used to “simply 
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transfer the traditional curriculum from print to computer screen” (Kaput 1992, p. 516), in ways 
that resemble traditional worksheets and structured learning environments, rather than working 
to transform learning (Tyack and Cuban 1995. Cited by Ruthven, 2007). 
Even it happens that “the most insightful… teachers working in conventional schools understand 
what they are doing today… [as] not being the ideal they wish for” (Papert, 1997. Cited by 
Ruthven, 2007). Papert then suggests (Ruthven, 2007) that “as ideas multiply and as the 
ubiquitous computer presence solidifies, the prospects of deep change become more real” 
(Papert, 1997. Cited by Ruthven, 2007). 
In his analysis of the relationship between teachers, technologies and structures of schooling, 
Ruthven (2007) mention that, indeed, contemporary theories of educational change, just like 
those of technological innovation, acknowledge how these processes, like change for integration 
of technology into classrooms are shaped by the sense-making of the agents involved (Spillane, 
Reiser & Reimer, 2002. Cited by Ruthven, 2007). 

Teachers´ Conceptions about Using Digital Technologies in Mathematics Classrooms 
Specifically, in this section we will only refer to the work published in 2002 by K. Ruthven 

& S. Hennessy on teachers’ ideas about their own experience of successful classroom use of 
computer-based tools and resources. 
These authors obtained teacher accounts that were elicited through focus group interviews 
involving mathematics departments in secondary schools. They then analyzed these interviews 
qualitatively and quantitatively so as to identify central themes and primary relationships. 

Then, in relation with the use of technology they found that teachers thought that it can serve 
as a means of: (i) Enhancing ambience through changing the general form and feel of classroom 
activity; (ii) Assisting tinkering by helping to correct errors and experiment with possibilities; 
(iii) Facilitating routine by enabling subordinate tasks to be carried out easily, rapidly and 
reliably; and (iv) Accentuating features by providing vivid images and striking effects which 
highlight properties and relations. 

Ruthven & Henessy also obtained teacher information in relation with those themes more 
directly related to major teaching goals: (v) Intensifying engagement related to securing the 
participation of students in classroom activity; (vi) Effecting activity related to maintaining the 
pace and productivity of students during lessons; (vii) Establishing ideas related to supporting 
the development of student understanding and capability. 

Finally, these authors also obtained information related with key learning topics connected 
with teaching uses and goals: (vii) Improving motivation through generating student enjoyment 
and interest, and (viii) building student confidence; (ix) Alleviating restraints through mitigating 
factors which inhibit student participation such as the laboriousness of tasks, the requirement for 
-and the demands imposed by- pencil-and-paper presentation, and vulnerability to mistakes being 
exposed; and (x) Raising attention through creating the conditions for students to focus on 
overarching issues. 

It is worth to mention that Ruthven (2007) points out to the fact that each of 10 mentioned 
constructs represented a desirable state of affairs which teachers seek to bring about in the 
classroom, to which they see the use of technology as capable of contributing. But, as Ruthven 
says, that is only a model based on teachers’ de-contextualized accounts of what they saw as 
successful practice, not supported by examination of actual classroom events (Ibidem, p.56). 

In the work we are presenting here, we report the teaching practices that 15 secondary math 
teachers achieved into their classrooms, after they participated in an online comprehensive 
course on the use of technology and to do mathematics with technology (based on a problem-
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solving approach). 

Methodology 
Design of an Online Training Course 

From the work realized by Zbieck and Hollebrands (2008), which synthesize tenth years of 
research on the topic of incorporating mathematics technology into classroom teachers´ practice, 
we extracted a structure to set up an online training course (OTC) of six months on mathematics 
and information technology topics for secondary mathematics in-service teachers. Specifically 
useful in this aspect was Zbieck and Hollebrands’ (2008) re-conceptualization of the PURIA 
model of Beaudin & Bowers (1997), which also allowed us to analyze the data obtained as those 
derived from the introduction of technological innovation. 

The general context we set the OTC up in was within the official educational policies current 
in most of the world’s countries. According with them, in-service teachers should learn how to 
incorporate mathematics technology into their classrooms (see for example, Assude et al. 2006). 
In Mexico too, official educational policies are supporting the integration of new technologies 
into teaching, with particular attention to the teaching of mathematics. 
To train teachers so that they could meet the task of incorporating mathematics technology into 
their classrooms practice, we implemented an exploratory online training course (see: 
http://upn.sems.gob.mx) of six months with 15 in-service secondary teachers that would allow 
the participants to learn to use technology and learn to do mathematics with technology. 

Both of those mentioned aspects (learn to use technology and learn to do mathematics with 
technology) constitute important modes in the PURIA model of development along a learning 
continuum (Zbiek & Hollebrands, 2008). In fact, that model implies that teachers experiment 
different modes or development states to advance toward successfully incorporating technology 
into classrooms: The Play, Use, Reccomend, Incorporate and Asses modes. 

As Zbiek and Hollebrands said, the growth during the P and U modes includes the transition 
of the technology as the developer’s tool into the teacher´s instrument for doing mathematics. 

Moreover, in the Incorporate and the Assess modes, the teacher’s attention turns, implicitly 
or consciously, toward the use of technology as a pedagogical tool, including the development of 
instructional orchestrations (Trouche, 2000. Cited by Zbieck & Hollebrands, 2008), or elaborated 
plans regarding use of technology in the social dimensions of classrooms. Finally, the 
Recommends mode seems marked by a transition between mathematical and pedagogical aspects 
of the technology (Zbieck & Hollebrands, Ibidem, p.295). 

Data Collection 
On the Different Technological Resources Displayed throughout the Online Training Course 
(OTC) 

The OTC’s topics we addressed for teachers learning to use technology were related with 
computer programming, particularly an introduction to HTML and JavaScript programming, 
design of algorithms and their representations, algorithm development, flow charts, and 
codification. These topics were taken up with the specific purpose that the teachers could 
experiment a change in the way they approached to study mathematical algorithms. 

The training course also included reviewing sequences of activities on the use of interactive 
software (eg. Logo, Geogebra, Aplusix, Excel, RecCon, FunDer); and exploration of a wide 
range of digital possibilities put in the Internet, for example, the library of virtual materials (eg. 
http://nlvm.usu.edu/en/nav/vlibrary.html) of Utah University (USA). 
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On the Mathematical and Pedagogical Tasks along the OTC 

Some of the maths topics studied (with the purpose of teachers did mathematics with 
technology) were introductions to the fundamental arithmetic theorem, Goldbach’s conjecture, 
graph theory, and calculating roots of polynomials (with the bisection method and the Regula 
Falsi method, the secant and Newton’s method) purposed to review some of the algorithms 
important to secondary math contexts, as well as the distinct possibilities of representing them in 
mathematics and computing.  

Although we can observe that those topics are notably more advanced than the included in 
the standard secondary mathematics curriculum, they were planned so as to present the teachers 
with a challenge to their existing knowledge and to solve problems on topics they do not 
necessarily already master. 

In relation to the pedagogical activities displayed throughout the OTC, it was included four 
weeks of activities (two at the end of the first 10, and two at the end of the next 10 weeks) where 
teachers had to:  
(a) Choose one high school mathematical topic, along with the software, tools, or digital 
materials they thought it would be useful to use on teaching the chosen topic; (b) orchestrate a 
classroom work session with their students in a convenient way according to their chosen digital 
material; (c) video-record that work session; (d) upload a seven minute version of that recording 
to YouTube; and (e) finally, upload to the training platform a descriptive report of the video’s 
content together with its URL.  

In fact, it was from this last segment of activities that were extracted the main data that 
generate the results we are presenting here. 

Results 
By the online training course (OTC) that we could instrument, we obtained evidence that 

showed teachers displaying the PURIA modes of Play, Use, and Recommend, and we also could 
observe how they started to display the Incorporate mode to integrate mathematics technology 
into the classroom. 
Description of Teacher’s Different Ways of Incorporating Mathematics Technology in 
Classrooms 

There were only 9 teachers (from the total of 15 that participated in the group of observation) 
that accomplished all of the tasks required during the online training course. We summarize the 
participant executions in the following table. They are classified focusing on the topic and the 
digital tool teachers chose and the way they realized how to incorporate mathematics technology 
into their classroom practice. 
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 General data 

(a) Teacher initials 
(b) City of residence 

Topic and digital tool chosen & Video URL Method of 
incorporation into 
classroom practice. 

1 (a) HA 
(b) Veracruz 

 
 

- Resolution of equations 
- PPT software 
http://www.youtube.com/watch?v=PlLYsIO-
Vh0&feature=related 

Classic pattern of 
teaching, in the sense 
that the teacher uses a 
LCD, a laptop, and some 
software to explain or 
introduce a math topic. 

2 (a) AG 
(b) Baja California 

 

- Relation between a function and its derivative 
- Geogebra 
http://www.youtube.com/watch?v=Lk2yVHDje
xA 

Classic pattern of 
teaching (see the 
specification above) 

3 (a) AM 
(b) Guanajuato 

 

- Simplification of rational algebraic expressions 
- Java and HTML 
http://www.youtube.com/watch?gl=MX&hl=es-
MX&v=N1FwbEo5KGI 

The teacher adds to a 
classic pattern of 
teaching, questioning 
students on related math 
topics. 

4 (a) HM 
(b) Baja California 

 

- Calculation of the area of geometrical figures 
(2D) 
- Geogebra 
http://www.clipshack.com/Clip.aspx?key=CDF7
2468862861A8 

The teacher adds to a 
classic pattern of 
teaching choosing 
appropriated digital tools 
to justify or confirm 
complex calculations. 

5 (a) FM 
(b) Veracruz 

 

- Graphics and ecuations of functions 
- Geogebra 
http://www.youtube.com/watch?v=BXAE2b5U3
M4 

The teacher adds to a 
classic pattern of 
teaching choosing 
appropriated digital tools 
to justify or confirm 
complex calculations. 

6 (a) AL 
(b) Sinaloa 

 

- Design of geometrical figures and calculation 
of areas 
- Geogebra 
http://www.youtube.com/watch?gl=ES&hl=es&
v=yhXs8BLMFlM 
 

The teacher is able to 
orchestrate student 
computational work, 
driving student activity 
by means of a work 
template. 

7 (a) SM 
(b) Colima 

 
 

- Equation of a straight line 
- Geogebra 
http://www.youtube.com/watch?gl=MX&hl=es-
MX&v=X4c8IHEzQsM 

The teacher is able to 
orchestrate student 
computational work, 
driving student activity 
by means of a work 
template. 

8 (a) OV 
(b) Baja California 

 

- Resolution of inequations 
- Aplusix 
http://mx.youtube.com/watch?v=gwGcPtyXYbs 

The teacher orchestrates 
the use of both digital 
tools and paper and 
pencil in order for 
students to compare 
affordances and results 
issued from both 
contexts  

9 (a) FG 
(b) Hermosillo 

 

- Mathematical proprieties of instruments in 
Physics 
- PPT software 
http://fcogurrola.blogspot.com/ 

The teacher is able to 
orchestrate student 
computational 
autonomous work, based 
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on the organization of 
student projects and 
small group cooperation. 

Summarizing, the analysis of the teaching videos revealed five different ways of teaching 
that showed how teachers started to use mathematics technology in classrooms: 
 (a) A pattern of incorporation of the technology probably derived from the classic approach to 
teaching (see cases 1 and 2 in the table). This is to say that the teacher uses a LCD, laptop, and 
software to explain or introduce a math topic. One could name that way of using technology as a 
classic pattern of introducing mathematics technology in the classroom. 
 (b) A modified version of the classic pattern that added teacher interaction with the students, 
basically by teacher questioning to the whole class (see case 3). Or the teacher adds to a classic 
pattern, choosing appropriate digital tools to justify or confirm complex calculations (cases 4 and 
5). 
 (c) An instrumental approach of the activity (Verillon and Rabardel, 1995; Assude et al., 2006) 
mainly directed by the use of a script. In these cases (see #6 and  #7 in the table) the teacher is 
able to orchestrate some student computational work. 
(d) An orchestration (Trouche, 2004) of the activity using different instruments or artifacts, plus 
group negotiation of meaning. In this orchestration the teacher uses both digital tools and paper 
and pencil in order for the students to compare both executions and results (case 8). 
(e) An organization of cooperative work centered on student appropriation of technology. Here, 
the teacher is able to orchestrate student computational autonomous work, based on student 
project work and small group cooperation. 
In order to see some raw data of each type found, readers may access the URLs in the table. Next 
we will show some pictures of them, and also the conclusions. 

 
Figure 1. Classic pattern of teaching, adding teacher questioning to the whole class (see case 3 in the table). 
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Figure 2. The teacher drives an instrumentalization of the activity led by the use of a work template (see cases 6 and 
7). 

Conclusion and Work Prospective 
The different ways teachers displayed their integration of mathematics technology into 

classroom instruction allows us to make a qualitative appraisal of their craft knowledge 
(Ruthven, 2002) related with the use of technology in their teaching practices, which came after 
they participated in the online training course already mentioned before.  
Thus it becomes feasible to predict teacher progress in the process of learning to use technology 
for teaching mathematics. According to the extended PURIA Model (Zbieck and Hollebrands, 
2008), participant teachers would pass to the last mode of using technology (the Assess one) 
through involving themselves in assessing or noticing their students’ mathematical thinking (see, 
for example Jacobs, Lamb and Philipp, 2010; or Herbst, 2010). 

Finally, a base for attaining the next stage in teacher development, mainly in cases 1 to 5 in 
the table (which are less advanced than the others teaching types, basically because in these cases 
teachers do not turn to see what their students are learning by using technology) could be 
conformed by three principal components that would be used as methodological or pedagogical 
tools to develop professional teacher knowledge.  

i) Teacher working on the construction and/or adaptation of digital resources to incorporate 
them into their mathematics classrooms (Gueudet &Trouche, 2010);  

ii) Teacher planning and video-recording their own practice, plus uploading their videos to 
the digital platform already in use (Hoyos, 2010); 

iii) Teacher involvement in noticing student mathematical thinking (Jacobs, Lamb and 
Philipp, 2010), and reflecting from a teaching representation approach (Herbst, 2010).  
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The combination of peer coaching, and the resources and professional focus provided by the Ten 
Dimensions framework can prove to be effective model of professional development. Through 
teacher interviews and pre- and post-observation meetings, this study determined how teachers 
engaged in peer coaching, and what components of the framework support the process. The 
pairing of a Grade 1 and 3 teacher found that initial hesitancy in having a colleague observe 
them teaching was eased by supplementary resources. The teachers felt that peer coaching made 
them more aware of their teaching practices and they enjoyed working with a colleague. 

Mathematics education reform documents (NCTM, 1989, 1991, 2000) emphasize the need 
for change in the mathematics classroom environment from one in which the teacher transmits 
knowledge to the students to one in which teachers and students interact as a community of 
learners in mathematical investigation and exploration. There are many challenges involved in 
creating such a learning community and also in determining the extent to which teachers 
progress towards this ideal of math reform. Teachers do adapt to change, but they require 
instruction on the nature of the required changes. Mathematics reforms are complex, however, 
and most reform efforts underestimate the complexities. Teachers can help each other change, 
and peer coaching has been used to help teachers improve their teaching practices (Loucks-
Horsley, Love, Stiles, Mundry & Hewson, 2003). 

This study aimed to discover how elementary school teachers engaged in a peer coaching 
model of professional development. The research questions were:  

1. How can the Ten Dimensions of Mathematics Education act as a framework to focus 
efforts of professional development? 

2. What components of the peer coaching process nurture professional growth? 
3. What are the perceived benefits and challenges of the peer coaching process? 

Conceptual Framework 
For profession development to be effective, it needs to be intentional, ongoing and systemic 

(Guskey, 2000). A peer coaching model of professional development along with the support of a 
framework such as the Ten Dimensions of Mathematics Education (McDougall, 2004) has all 
three of these characteristics. 

Peer coaching involves the pairing of two colleagues in a session with classroom observation, 
giving feedback and discussion to allow both members a chance to learn from one another 
(Loucks-Horsley et al., 2003). Both participants have a chance to reflect on what they observe 
along with their own teaching practices in order to grow. This reciprocal gain is one of the major 
benefits of peer coaching. Having an extra set of eyes in the classroom gives teachers another 
perspective that they may not have come up with on their own reflections (Guskey, 2000). The 
colleague can help identify both strengths and weaknesses for the teacher to focus on along with 
seeing practices that they may not have had exposure to beforehand.  
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At first, there may be hesitation to engage in the process as the teacher may be uneasy at the 
prospect of being observed and evaluated, but being paired up with a colleague that they trust 
will calm some fears (Arnau, Kahrs, & Kruskamp, 2004). An environment of “trust, collegiality, 
and continuous growth” (Loucks-Horsley et al., 2003, p. 208) will ensure that participants feel 
more comfortable. Each member of the pair must acknowledge the body of knowledge that they 
bring to the partnership as well as the expertise that their colleague can contribute to the dialogue 
(ross, Rolheiser, & Hogaboam-Gray, 1999). As long as both participants focus on the goal of 
professional development and maintain a level of respect or their peers, the advantages will 
certainly outweigh the disadvantages (Slater, & Simmons, 2001). 

This study uses the Ten Dimensions of Mathematics Education (McDougall, 2004) as a 
conceptual framework to improve the quality of mathematics education in elementary 
classrooms. The Ten Dimensions of Mathematics Education framework was developed through a 
multi-year research project (McDougall et al., 2006; McDougall, 2004; McDougall & Fantilli, 
2008; Ross et al., 2002). The framework was created to give teachers areas in which they can 
focus their attention in order to improve their teaching, knowing that many of the Dimensions are 
interlinked and focusing on one invariably leads to improvement in other areas. 

The Ten Dimensions are: (i) Program Scope and Planning (focusing on the inclusion and 
integration of all strands of mathematics in the classroom); (ii) Meeting Individual Needs 
(teachers should use different teaching strategies and techniques to cater to the needs of the 
diverse student body); (iii) Learning Environment (consideration of classroom organization, 
cooperative groups, teacher feedback and student input/choice improves student achievement); 
(iv) Student Tasks (teachers should use rich tasks within the mathematics classroom); (v) 
Constructing Knowledge (a variety of instructional strategies and effective questioning 
techniques should be used); (vi) Communicating with Parents (parents should be involved with 
their child’s mathematics learning); (vii) Manipulatives and Technology (students should be 
allowed to use and experiment with these tools); (viii) Students’ Mathematical Communication 
(teachers should provide opportunities for students to use both oral and written forms of 
communication); (ix) Assessment (teachers should use diagnostic, formative and summative 
assessment to report on student achievement); and (x) Teacher’s Attitude and Comfort with 
Mathematics (teachers should develop a comfort level with mathematics and promote a positive 
attitude towards the subject). 

The School Leadership Handbook for Elementary Mathematics (McDougall, 2004) includes 
resources for educators who are using the Ten Dimensions. An interview protocol includes 
questions that can be asked before an after the lesson. There are general questions about the 
lesson format and content, and specific questions related to key areas of each of the ten 
dimensions. These questions help the observer to understand the thought processes of the teacher 
as well as to prompt the teacher to reflect on their own practices. Through this questioning, 
participants will gain a better understanding of the dimensions and the qualities that need to be 
focused on for improvement in these domains. An observation template lists ‘look-fors’ and 
guiding questions specific to each dimension. This template can be written on during the lesson 
and as a prompt for the observer’s own field notes. 

The Ten Dimensions framework encourages teachers to focus on key areas that will generate 
higher levels of student achievement, giving teachers an intentional approach to their growth. 
With set goals and areas for improvement that are selected by the teacher, the personal interest 
and investment towards professional change is undoubtedly present. Teachers focus on one or 
two dimensions at a time. In order for a substantial consideration to be made in each of the ten 
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dimensions, ongoing commitment for professional development is required. Thus, the intentional 
and ongoing commitment to professional growth fostered by the Ten Dimensions coupled with a 
systemic change through peer coaching facilitates an effective vehicle for professional 
development. 

Method 
This study spanned two years and concluded in November of 2008. Four schools from a large 

urban city in Western Canada participated in the study. The teachers and administrators in the 
participating schools attended a professional development session about the Ten Dimensions of 
Mathematics Education. In this session, teachers learned about the Ten Dimensions framework, 
were introduced to this project about peer coaching and were invited to join. 

The teachers and administrators then completed the Attitude and Beliefs Survey (Ross, 
Hogaboam-Gray, McDougall, & Le Sage, 2003) to determine how their current practices fared 
with respect to current mathematics education trends. Each of the 20 questions on the survey is 
related specifically to one of the Ten Dimensions and the higher the score on each dimension, the 
more the educator’s attitude and teaching practices are aligned to reform trends. A low score may 
be impetus for the educator to focus on that particular dimension for personal growth. Individual 
teachers could decide which areas they wanted to concentrate on for personal improvement. 

Participants 
Within each school, colleagues were paired up. There were some teacher-teacher pairings as 

well as teacher-administrator pairings. There were a total of 10 pairings within the four schools. 
In this paper, I discuss the findings from the pairing of Grade 1 teacher, Meredith and Grade 

3 teacher, Christina. Meredith has been teaching for 25 years in the Primary division and also has 
experience teaching Kindergarten. Christina has taught her entire career at Grace School. In her 
19 years of teaching, she has taught at both the Primary and Junior level. 

Teacher Interviews 
Participants were individually interviewed at the beginning of the study. These semi-

structured interviews were approximately 45-minutes long and teachers were asked questions 
about their professional background, views and beliefs as a teacher, and goals as a mathematics 
educator. As well, interviews about the peer coaching process itself were conducted immediately 
after each peer coaching session. 

Peer Coaching Sessions 
The peer-coaching sessions consisted of three parts: a pre-observation conference, classroom 

observation, and a post-observation debrief. 
In the pre-observation conference, the observer would ask the teacher a series of guiding 

questions from the Ten Dimensions of Mathematics Education resources (McDougall, 2004). 
These questions uncovered the lesson topic, structure, activities, and goals. Guiding questions 
specific to the teacher’s chosen dimension were also asked and the teacher shared the area in 
which (s)he wanted the observer to focus.  

During the classroom observation, the observer could use the observation template provided 
in the Ten Dimensions resources or could make informal notes of their choosing. The observer 
could interact with the students if they wished. 

The post-observation debrief followed a similar format to the pre-observation conference. 
Again, a series of guiding questions from the Ten Dimensions resources were asked and teachers 
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reflected on their lesson through the lens of the dimension of focus. Observers shared their 
observations of the lesson, specifically mentioning points that relate to areas that were 
highlighted for focus by the teacher. Judgments about the teacher were withheld unless the 
teacher asked for suggestions for improvement. A final question asking the teacher about their 
next steps concluded the post-observation debrief. 

Data Collection and Analysis 
There were four peer coaching sessions in total, such that each teacher observed her 

colleague twice and was observed twice. All interviews, pre-observation conferences, and post-
observation debriefs, were audio-taped and transcribed by the researcher. Qualitative analysis 
was completed using nVivo8 software.  

This study used a grounded theory approach to determine the effects of peer coaching on the 
participating teachers, thus, I allowed the data to dictate the outcome as the themes that emerged 
from the data analysis became the foundation for the major findings of the study (Glaser & 
Strauss, 1967). Coding was completed by first highlighting key ideas and these ideas were then 
grouped into themes. 

Findings 
In examining the pairing of Meredith and Christina, insight was gained from their 

experiences with the peer coaching model of professional development. They shared their 
feelings about the process itself, the benefits and challenges of the peer coaching model and how 
the Ten Dimensions framework and its resources anchored their efforts of professional 
development. 

The Ten Dimensions Framework 
Both Meredith and Christina selected dimensions that were of personal interest to them. 

Meredith wanted to select dimensions which she though had the most impact on students and of 
personal interest. She shares: 

To me, [Dimension 5] seemed very important. They are all important, but to me, [Dimension 
5] gets back to how we present this, how we allow them to explore, how we allow them to 
tell use what they know already and go from what they know already to where they are 
going. I thought that was a really important one. We use manipulatives so much because it 
helps them in their concept development so I just thought it was really important. I just 
picked the ones that were really important to me. I think that [Dimension 5] is one of the key 
things and manipulatives fit into everything that I do in math. (Teacher interview, November 
28, 2008) 

By selecting two dimensions to concentrate on, Meredith was able to improve in a focused way 
in an area in which she was passionate. 

Christina also selected Dimensions 5 and 7 for professional growth. As she wanted to 
improve her teaching practices, Christina explained that the Ten Dimensions of Mathematics 
Education framework gave her specific areas in which she can improve her teaching.  

Christina shared that the resources, including the Attitudes and Beliefs Survey and the School 
Mathematics Improvement: Leadership Handbook were able to provide valuable information 
about the areas of her teaching in which she wanted to improve. She says: “[The Ten 
Dimensions] have made me more aware of how I can give [the students] an activity whether it be 
a problem of the day or a mega problem of the week or whatever it is and then give them the 
time to come up with their own strategies or connections” (Teacher interview, November 28, 
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2008). She adds, “It has actually made me more aware of how I am teaching” (Teacher 
interview, November 28, 2008).  

With a clear focus for areas of professional growth, both teachers were ready to engage in the 
peer coaching sessions. Neither teacher had experience with the peer coaching process and both 
were apprehensive about how to organize and use the process to improve their teaching practice. 
The Ten Dimensions provided areas in which the teachers could focus for professional growth as 
well as resources that could guide them during peer coaching sessions. 

The Peer Coaching Process 
The teachers enjoyed the structure of the peer coaching process. The pre-conference allowed 

the teachers to focus on their goal of professional growth before heading into the classroom. 
Each member of the pairing could ease into the process through asking, answering and reflecting 
on the questions that were specific to the dimension chosen by the teacher. 

The teachers used the guiding questions provided by the protocol instead of having to create 
their own questions. With their busy schedules, the teacher shared that they were grateful for the 
resources provided by the Leadership Handbook. 

The interview protocol helped the participants to explore teaching behaviours and practice. 
These questions were specific to their chosen dimension and allowed observers to ask relevant 
questions even if they were unfamiliar with key components of the dimension. The guiding 
questions allowed both observer and teacher to instantly frame their thinking within the 
guidelines of the dimension. As Christina puts it, the guiding questions allowed her to “pinpoint” 
key areas pertinent to the chosen dimension (Teacher interview, November 28, 2008). 

The observation template helped to anchor the observer’s thoughts. Meredith thought that she 
should focus her notes on the areas in which Christina wanted feedback. As such, she used the 
area of focus as the main heading for her notes and added secondary comments that related to the 
prompts on the observation template only if they were relevant to Christina’s improvement plan. 
She explained that the guiding questions and observations template helped her to focus on what 
to look for specific to the dimensions, however, she said it was “most helpful to know what the 
teacher wants me to look for” (Teacher interview, November 28, 2008). 

Christina used the observation template as more than just a prompting device. She thought 
that the template was easy to use and simplified the process. Christina explained that “it was 
really well laid out and we could just quickly jot down what we were looking for” (Teacher 
interview, November 28, 2008).  

Both teachers found the resources provided to be helpful in the peer coaching process. As 
they had never engaged in such a process before, Meredith and Christina valued having these 
tools to guide them and focus their thinking to parallel with their chosen dimensions. 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1566



Challenges of the process. A challenge that the teachers faced was the amount of time that 
the process required. Even before engaging in the peer-coaching process, Christina expressed 
that “just having the time to meet, to share, to go into each other’s classes to observe, and talk 
about what was really great and what we need to do further” would be of benefit to her 
development (Teacher interview, October 5, 2007). After engaging in the process, she reiterated 
that it was a challenge to find time for the peer coaching process. In order to save time, the actual 
observation would often take place during the observer’s prep time, however this was 
complicated to schedule. Christina shared one example of how they were able to schedule a 
session:  

This week, we did it during our prep time. While my students were at gym, I went into 
[Meredith’s] room. We coordinated so that she would have her math class at that time, and, 
she did the same during her music time. I taught math in the afternoon, where I would not 
normally teach math because I like to [teach math] in the morning. (Peer coaching session, 
May 15, 2008) 
The teachers’ initial hesitation towards the peer coaching process quickly disappeared after 

going through the process for the first time. Although both teachers expressed concern for having 
a colleague and a researcher observe them teach, they quickly realized that they were so engaged 
in their teaching that observers would not affect nor effect their work. Meredith shared: “After 
awhile, I did not even know you guys were in the room. I am too busy and I am trying to get to 
as many kids as possible” (Peer coaching session, January 23, 2008).  

The teachers are hesitant about being judged by observers, however, their overwhelming 
desire to improve reinforced to them that peer coaching can illuminate their practices and allow 
them to improve in the areas in which they were focusing on. The teachers’ positive outlook 
towards this process allowed them to focus on the benefits rather than focus on the challenges. 

Benefits of the process. Both teachers admit that the benefits of the peer coaching process 
clearly outweigh the challenges. Meredith and Christina shared that one of the biggest benefits 
was the chance to dialogue with a colleague. The teachers appreciated getting feedback after 
being observed. Meredith shared about this component on several occasions. First, she said she 
likes to have “something that someone else could look for” (Peer coaching session, January 23, 
2008) and later she said, “It is good to get the feedback. [Christina] notices things that I may do 
naturally, but I do not notice, so that is good” (Teacher interview, November 28, 2008). 

It was the act of collaboration that had profound effects on the teachers. The teachers saw 
that they were more than just sharing their observations with their colleague, but were able to 
work together to improve each other’s practices. There was a reciprocal investment in their 
growth in that each teacher contributed ideas and suggestions for improvement. 

Going into a colleague’s classroom as an observer served as both a chance to provide 
feedback to the teacher, but also a chance for the observer to watch another professional in 
action. Meredith enthusiastically talked about this benefit: “Christina is such a good role model. I 
really enjoyed [observing her], because I see her way of going about it” (Teacher interview, 
November 28, 2008). In watching a colleague the teachers could further reflect on their own 
practices. Meredith said that watching Christina made her think about what she was doing in her 
own classroom.  

In her final interview, Christina summarized the benefits of the peer coaching process: 
We enjoyed doing [peer coaching] together and it was nice to be a part of the learning 
process on both ends. Not only being in the spotlight, but also having somebody else come in 
and say, ‘I really like the way you did that, and this is what I observed’ and reinforcing what 
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you may have already known or maybe we have a tendency to be a little bit too harsh on our 
own self, being the perfectionist that we think that we are. (Teacher interview, November 28, 
2008) 

Conclusions 
In this research project, the goal was to discover how a peer coaching model of professional 

development effects elementary school teachers and how the Ten Dimensions of Mathematics 
Education acted as a framework for professional growth. Through teacher interviews and in-class 
observations of peer coaching sessions, it was found that teachers benefited from engaging in a 
peer coaching model. Although the participants admit that there are challenges in engaging in 
professional development opportunities, their underlying goal of being better teachers to improve 
the quality of learning of their students and the support that they receive from their principal and 
each other is worth the hardship.  

For professional development to be effective, it needs to be situated in school and classroom 
based contexts (Walker, 2007; Zwart, Webbels, Bergen, & Bolhuis, 2009). The peer coaching 
model allows for feedback to be shared between colleagues as a result of classroom observations 
and invites teachers into each others classrooms to observe teaching strategies in practice. The 
participants in this study described that the quality of their reflections was deepened based on the 
feedback that they received from their colleague and that they learned new strategies from 
observing their colleague in the classroom. 

In the peer coaching process, the participants shared that it was stressful to be observed by a 
colleague, however, found it reassuring to work with a colleague whom they trusted and knew 
would be respectful of their shortcomings. These findings are consistent of the work of previous 
research emphasizing the need for teachers to take a respectful responsibility to collaborate with 
their peers (Arnau et al., 2005; Klingner, 2004). A guideline of the peer coaching model used in 
this study asked the observer to state observations rather than judgments of what they saw in the 
classroom. This guidance allowed the teachers to focus on improving the areas in which they 
wanted to improve rather than promote a feeling of evaluation (Slater & Simmons, 2001). Both 
participants shared that they welcomed additional feedback from their partner, thus giving 
evidence that there was mutual respect between the teachers. 

In this project, peer coaching was examined as model for professional development. The use 
of a framework such as the Ten Dimensions of Mathematics Education (McDougall, 2004) 
allowed the model to be more effective by focusing the efforts of the participants. Resources 
from the Leadership Handbook facilitate the peer coaching process, alleviating some of the 
challenges that arise from never having gone through the process before and general pressures of 
the field. Teachers reported that peer coaching had many benefits. Among them include a chance 
to watch a colleague in action, a chance to see other students in other classrooms and/or grade 
levels, a chance to get feedback, and reflect on their teaching. These benefits, however, were 
outshone by the joy of being able to work with a colleague, to share, discuss and collaborate with 
a fellow educator in an often solitary profession. 
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In secondary schools, multiple teachers often teach the same course. The Collaborative Teacher 
Inquiry Project invited teachers, department heads and heads of schools to work together to 
improve their Grade 9 Applied Mathematics programs. The focus of this study was to find out the 
benefits and challenges of working collaboratively. Teacher interviews resulted in findings that 
highlight that collaboration can happen in many ways. In order for the collaborative team to be 
successful, members need to have and work towards the same goals. A conceptual framework 
such as the Ten Dimensions of Mathematics Education can provide this focus. 

Traditionally, teachers work alone in their classrooms, planning in solitude and delivering 
material as they see fit (Hargreaves, 1994; Lortie, 1975). Although pre-service teachers work 
collaboratively with peers and mentor teachers to create activities, lessons, and unit plans, once 
out in the workplace, they are often left to their own devices. 

The Learning Consortium’s Collaborative Teacher Inquiry Project had three purposes: 
1. To improve the teaching the learning of Grade 9 Applied Mathematics; 
2. To investigate the use of the Ten Dimensions of Mathematics Education framework to 

improve student achievement in secondary school mathematics; and 
3. To investigate collaborative inquiry as a professional development strategy. 
For the purposes of this paper, the authors wish to focus on the third purpose. The Learning 

Consortium is a partnership between the University of Toronto and four local school districts in 
the Greater Toronto Area. From these four school districts, 11 schools participated in the project, 
which spanned three semesters from January 2009 to May 2010. Participants included teachers, 
department heads/curriculum leaders, and administrators. 

Conceptual Framework 
The relatively formal structure of subject departments is a long-term and widespread 

phenomenon at the secondary school level. Such a structure serves administrative, 
communicative and pedagogical purposes. Not surprisingly, professional development at the 
secondary level, collaboratively-based or otherwise, has been traditionally department-based. It 
has been assumed that the natural cohesiveness of subject departments provides a logical starting 
place for collaboration among teachers.  

A number of studies have confirmed that, in secondary schools, the most efficacious 
communities tend to reside at the level of subject-matter departments (Talbert & McLaughlin, 
2002; Siskin & Little, 1995). There is evidence that these loosely knit teacher communities can 
influence approaches to classroom practice (Gutiérrez, 1996; Johnson, 1990), as well as shape 
responses, positive or otherwise, to reform (Ball & Bowe, 1992; Coburn, 2001; Little, 1995). 

Within a department, teachers are socialized into a tradition with its own norms of teaching, 
learning, grouping, and assessment (Siskin, 1997), which in turn shape their work and their 
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students’ classroom experiences (Gutiérrez, 1996). Departments typically have an infrastructure 
in place to allow for collegial work on professional projects like course modifications, 
implementation of new curriculum or learning about technology. Subgroups of teachers often 
arise to meet short-term demands, such as modifying or even creating new courses of study. 

Most research into teacher collaboration has focused on the logistical parameters of delivery 
and evaluation. Recent efforts have looked at the potential for improving “on-the-job” 
collaborative opportunities for teachers in a seamless, situated fashion. 

Guskey (2000) defines professional development as a process that needs to be intentional. In 
order for professional development to be effective, participants need to have clearly stated goals 
and expectations. These explicit purposes and goals focus participants to ensure that they will 
work together with the same purpose as opposed to working against each other towards divergent 
goals. These goals must be meaningful and applicable to those involved in the professional 
development. As such, all parties will feel involved and the personal commitment towards their 
goals will ensure a deeper investment towards the process. If it is to be worthwhile, professional 
development must be developed with participants who are motivated, based on clearly defined 
goals that can be measured. 

The Ten Dimensions of Mathematics Education (McDougall, 2004) is a framework 
consisting of ten research-based domains of mathematics education that help teacher to focus 
their professional development efforts. This framework encourages teachers to focus on key 
areas that will generate higher levels of student achievement, giving teachers an intentional 
approach to their growth. The ten dimensions are: (i) Program Scope and Planning (encouraging 
teachers to consider all strands, expectations/outcomes and key ideas of the mathematics 
curriculum); (ii) Meeting Individual Needs (teachers should vary lessons and instruction to cater 
to the needs of all students); (iii) Learning Environment (varied student groupings and student 
input should be used); (iv) Student Tasks (teachers should vary the types of tasks that are being 
used in lessons and all tasks should be meaningful); (v) Constructing Knowledge (multiple 
instructional strategies and thoughtful questioning techniques help students construct 
knowledge); (vi) Communicating with Parents (parents are influential in student achievement 
and as such, should be kept informed); (vii) Manipulatives and Technology (these teaching tools 
enhance student learning); (viii) Students’ Mathematical Communication (students should 
experience oral, written and physical forms of communication); (ix) Assessment (teachers should 
use a variety of assessment strategies to gain diagnostic, formative and summative data about 
their students); and (x) Teacher’s Attitude and Comfort Mathematics (teachers affect student 
perception and should project positive attitudes towards mathematics). Although educators may 
select just one or two dimensions for school-wide focus, the dimensions are not discrete and a 
focused effort to improve in one area will inevitably improve their teaching practices more 
globally. 

Method 
The Collaborative Teacher Inquiry Project (McDougall, Jao, Maguire, Stoilescu, & 

Gunawardena, 2010) spanned three semesters from January 2009 to May 2010. There were 11 
schools from four school boards across the Greater Toronto Area involved with the project. 
Participants included: teachers who taught Grade 9 Applied Mathematics for at least one 
semester during the project; mathematics department heads from each of the participating 
schools and a member of the school’s administrative team.  

The timeline of the project is as follows: 
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Semester 1: Introduction to the Collaborative Teacher Inquiry Project, the Ten Dimensions of 
Mathematics Education, completion of the Attitudes and Beliefs Survey (Ross, Hogaboam-Gray, 
McDougall, & Le Sage, 2003), selection of dimensions for department and personal foci, 
Learning Consortium organized professional development workshops focused by dimension, and 
individual reflection of participation in the project. 

Semester 2: Learning Consortium organized professional development in-service sessions, 
co-planning and collaboration within math implementation teams at each school, and individual 
interviews with participating teachers. 

Semester 3: Learning Consortium organized workshops, individual and team collaboration, 
and school team and individual reflections on the Collaborative Teacher Inquiry Project. A final 
celebration with a panel and school presentation was held at the end of the project. 

Back at their home schools, participants team-taught classes, observed their colleagues 
teaching, and had group meetings for program planning. Participants were asked to complete 
reflections at the end in June 2009 and May 2010 to reflect on their journey throughout the 
project. Data was collected in two different ways: teacher interviews and the reflection surveys. 

Data Collection 
Teachers and department head/curriculum leaders were individually interviewed to determine 

participants’ professional background, beliefs, goals and visions for education. These semi-
structured interviews were 45-minutes in length, audiotaped and transcribed. 

Teachers were asked to complete reflection forms that asked questions to specifically focus 
on the benefits and challenges of the collaborative process, the affect of the Ten Dimensions 
framework throughout their journey, future plans, and general reflections about the Collaborative 
Teacher Inquiry Project. 

Data Analysis 
A qualitative approach was used to gain a deeper, authentic and descriptive perspective of the 

issues being explored (Denzin & Lincoln, 2000). Qualitative analysis software, Nvivo9, was 
used to efficiently organize and perform a multi-faceted data analysis to uncover trends and 
patterns in the data. The data analysis followed a series of coding cycles. For this study, an open 
coding format was used where data were examined, compared and categorized (Strauss & 
Corbin, 1990). 

This open coding process involved the reading of transcripts during which time key ideas 
were highlighted and labeled. The key ideas were grouped by similarity to form sub-categories 
and sub-categories were further re-grouped by similarity (Strauss & Corbin, 1990). These 
components were called concepts and categories respectively (Glaser & Strauss, 1967). The 
categories were considered the over-arching themes extracted from the data. 

This study followed a grounded theory approach (Glaser & Strauss, 1967) and as such, the 
data collected were the source of the major findings of the study, however, categories and 
subcategories were created with components of existing literature in mind to be able to generate 
a possible hypothesis that could be relevant to current research and practices (Glaser & Strauss, 
1967). 

Findings 
The data re-iterated that teachers face many challenges. Participants shared that the 

Collaborative Teacher Inquiry Project was a mode of professional development that allowed 
teachers to work collaboratively to improve their teaching practice in often a solitary profession. 
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Participants reported that the project acted as a vehicle for collaboration in several modes: with 
other teachers within their mathematics department, across departments within their school, with 
other participants within their school board and with those from other boards involved in the 
project. 

Collaboration within the Department 
The Collaborative Teacher Inquiry Project showed that teacher inquiry within the department 

could take many forms. Some school teams met as a group, scheduling times to meet, plan 
together, create consistent activities and assessments to use in each of their classes, and discuss 
challenges that they faced in their classes. Other school teams collaborated by meeting before 
class to plan their lessons and then engaging in team teaching. Other schools had teachers 
observe one another teach to learn new strategies and reflect upon their own teaching practice.  

One challenge reported by school teams was the change of teaching staff within the school 
team. Teachers said that school teams would have been more successful had the same teachers 
been teaching the Grade 9 Applied Mathematics course for each of the three semesters of the 
project. Teams found that it took time to get the new members of the team involved and would 
have been able to more efficiently use their time if the members were consistent throughout the 
project. Although teams wanted to work collaboratively, they were unable to create a cohesive 
unit with when their group was continuously changing. 

Teachers also stressed that, in order for collaboration to be successful, participants need to 
respect and be respectful of one another. It also helped if all teachers have the same vision for 
mathematics. This, of course is not always possible, so to facilitate this, the educators 
appreciated the Ten Dimensions of Mathematics Education as a framework to guide their 
improvement plan. This ensured that although teachers may have had different professional 
goals, they could still all work towards the same school-wide goals. 

In general, teachers appreciated the change to work together. The following quote from a 
participant describes how her school collaborated and the positive impact it had on their team: 
“We established a core team to work together on everything from lesson planning to writing new 
culminating activities to coordinated EQAO (Provincial testing) preparations. Our new Grade 9 
Applied program is more cohesive and purposeful to address student engagement and 
achievement gaps” (Maria Kovalevskaya School, Team reflection, May 27, 2010). 

Collaboration within the School 
School teams also collaborated with other educators within their school. This type of 

collaboration came in two forms: support from the administration and collaboration with other 
departments.  

Teachers shared that a supportive administration encouraged their team to put a positive 
attitude towards the project. Teachers shared that they appreciated when they felt that their 
administration valued the work that they were doing and were invested and showed a strong 
desire to improve their school’s mathematics program.  

Other departments that got involved with the school teams’ efforts include special education 
and English. Participants reported that these collaborations were especially beneficial as support 
during the provincial standardized exam organized by the Education Quality and Accountability 
Office (EQAO). This collaboration also strengthened the professional community at the school. 
Many of the participating schools have a high number of students with documented learning 
exceptionalities and school teams attributed part of their increase in EQAO results to this 
improved relationship. 
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Collaboration within the School Board 
Participants reported that a very useful collaboration, and one that they believed that they 

should further develop, is with feeder schools. In the Ontario school context, secondary school 
starts at Grade 9 and therefore educators do not have the natural lines of communication between 
Grade 8 and 9 that exist with teachers within the same school. One school reported on a board-
wide initiative between secondary schools and their feeder schools. It was explained that this 
program opens the lines of communication between secondary and feeder school teachers to 
ensure that students have a smooth transition between the two divisions. While this initiative has 
a student focus, teachers reported that they had a better understanding of the skill level of their 
students entering Grade 9 and could therefore better frame their Grade 9 Applied Mathematics 
program to meet their students’ needs. 

The Learning Consortium organized professional development sessions were the only 
structured opportunities for teachers within the same school board to meet and share ideas. 
Teachers appreciated collaborating with teachers from other schools and having the change to 
learn about the teaching strategies they have tried and to have worked for them. They also 
appreciated the chance to clarify and find consistency between schools for different board-wide 
initiatives. 

Teachers expressed that it was a challenge to find time to collaborate teachers at other 
schools, given teachers’ busy schedules and the distance that teachers would have to travel to 
meet one another. An online platform was created for the Collaborative Teacher Inquiry project 
for this very reason. The wiki was, unfortunately, not used to its full potential. Teachers reported 
that they liked the idea of a wiki as a platform to share ideas with other participants, however, 
not many participants posted resources, nor did any indicate why this resource was not used 
more often. This should be a platform that is further expanded on in future studies as it could 
overcome many logistically barriers to teacher collaboration. 

Collaboration between School Boards 
The Collaborative Teacher Inquiry Project allowed teachers to work with teachers from other 

school boards. The reported benefits of this type of collaboration are similar to those shared 
about collaboration between schools. 

One participant described how this project opened her eyes to the possibility of teacher 
collaboration. She shared how she wanted more opportunities to collaborate with other 
educators, discuss ideas, trade resources, share success stories and hear about what is happening 
in other schools and school boards. 

I wish when we went to [more] meetings with the four school boards, I wish we could do 
more and see more student work. To invite me to a meeting and get me to do mathematics is 
not something I find useful. I really wish that we could sit down together and mark students’ 
work together to see if we are all marking fairly and marking - if I am marking fairly. I would 
like to see the work that other students do in other schools. Because I only have my students 
to base my evaluations on. I do not ever see the work of other kids, good or bad. Just meeting 
the teachers from the other boards and hearing that they are dealing with the same types of 
students that we have that are coming to us without skills and for us to be teaching them 
curriculum that is often abstract and might be obvious to us as adults but is totally not 
obvious to the children. (MK2, Interview, November 26, 2009) 
Another teacher shared the impact that the Collaborative Teacher Project and the chance to 

dialogue with teachers across the four school boards has made on their professional practice: 
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The Learning Consortium has been a good eye-opener for a lot of us. I did not really know 
what was going on in other schools, and other schools did not know what was going on with 
our school. The fact that we had that time to collaborate, and share our resources, and discuss 
how we are running programs and how we are achieving success in our different courses. I 
think that is fantastic. For sure I think that was one of the good things about how schools can 
be more effective in the way they help students be more successful in math. Especially with 
our EQAO results, we jumped a lot from the year before to last year and again it was most 
because of collaboration with other schools, other boards, other teachers. Finding out what 
they are doing to help their kids to be successful, and same thing back, we are providing all 
the information that we have, sharing assessments, all that stuff, sharing our workbook even. 
I think the collaboration is what is helping us understand what can make math or how to 
make math more successful for the kids. (FC3, Interview, November 26, 2009) 

Significance of the Study 
This paper reports on the challenges and benefits of teacher collaboration on teachers’ 

professional development. As such, the participants were able to improve their teaching practices 
through this dedicated time to focus on their Grade 9 Applied Mathematics program. Participants 
shared that their self-efficacy increased and were able to develop their instructional and 
assessment strategies. Extending out of this study, the findings can help other educators, 
department heads/curriculum leaders and school administrators who also want to improve their 
Grade 9 Applied Mathematics program. Although this study specifically focused on teachers of 
the Grade 9 Applied Mathematics course, similar challenges and benefits will most likely occur 
in other secondary grade levels and even other subject areas. This study showed that teacher 
collaboration is a worthy professional development strategy of mathematics educators across 
four school boards across the Greater Toronto Area. 
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This study investigated using “prediction” as a means of mathematics teacher professional 
development. Throughout the study, one middle school classroom teacher developed prediction 
questions around the main mathematical ideas of each lesson, posed those questions to students 
at the launch of that lesson, and orchestrated a classroom discussion on students’ predictions 
and reasoning. Developing such prediction questions was a challenging task that required a 
careful examination of the mathematics being taught as well as students’ mathematical thinking. 
It also facilitated well-planned instruction and teacher reflection on teaching. The results show 
the teacher’s improved understanding of the content and changes in her teaching practice, which 
supports the use of prediction for mathematics teacher development.  
 
     The teaching and learning of mathematics greatly depends on the teacher. Everyday on-site 
instructional decisions that teachers make influence the quality of mathematics instruction that 
the students experience. For example, the task a teacher chooses to discuss in the whole group 
determines the kinds of mathematical strategies and reasoning that are shared. In order to make 
appropriate instructional decisions, teachers need to know the big ideas of the main instructional 
task, connections between the task and other tasks before and after, potential difficulties students 
might have, and useful mathematical representations of the big ideas. It has been widely 
acknowledged that teacher preparation at the college level is not sufficient to help develop the 
kinds of teacher knowledge required for effective mathematics teaching, and thus continued 
teacher professional development is very important (Loucks-Horsley, 1997). Because of this 
need, various teacher professional development activities have been developed, implemented, 
and examined. This case study developed, implemented, and examined such activities with an 
initiative to use prediction as a teacher professional development context for middle school 
mathematics. What prediction is and why this particular procedure is suggested is described 
below.  
 

What Is Prediction?  
In this paper, prediction refers to a type of reasoning, more specifically, reasoning about the mathematical ideas of the lesson at the 

launch by using prior knowledge, patterns found, or connections made from related concepts (Kim & Kasmer, 2009). Peirce’s (1998) notion 
of abduction supports the importance of prediction in developing human knowledge. According to Peirce, abduction is forming a prediction 
without any positive assurance, is the only way in which people are introduced to a new idea, and makes a logical connection between 
deduction and induction.  

 An example from Kim and Kasmer (2009) further explains what prediction is like in the 
mathematics classroom. Before exploring a problem on linear relationships, students are asked to 
predict what effect increasing walking rates will have on the table, the graph, and the equation as 
they examine the relationship between distance and time. When making such predictions, 
students have to look back on what they already know (i.e., what walking rates mean, and how 
those rates are represented in a table, a graph, or an equation) and use that to reason about what 
will happen when a rate is increased. Even though students’ predictions will vary and often will 
not be accurate, such an opportunity to make a prediction encourages students to check their 
prior knowledge and concepts in relation to the mathematical ideas embedded in the prediction 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1577



question and its context. This facilitates thinking about the mathematical ideas in the problem 
they solve and making connections between what they already know and a new exploration.  
 

Why Is Prediction Used for Professional Development? 
Because of the usefulness of prediction, in various disciplines, prediction has been 

investigated as a means of promoting students’ learning. In reading education, for example, 
students were asked to make a prediction in reading activities using questions such as, “What do 
you know about this character that helps you predict what he or she will do next?” and “Given 
the situation in the story, what will possibly happen next?” The results showed that asking 
students to make such a prediction helped increase their reading comprehension (e.g., Block, 
Rodgers, & Johnson, 2004). Gunstone and White (1981) incorporated prediction in science 
teaching and suggested a prediction-observation-explanation model, which was utilized in 
several other studies (e.g., Lavoie, 1999; Palmer, 1995). Interestingly, de Bruin, Rikers, and 
Schmidt (2007) asked college students to make a prediction when they learned how to play chess 
in a computer game setting. They found that students who were asked to predict and explain their 
predictions learned chess principles better than those who only predicted chess moves and those 
who observed games without making predictions.  
 In mathematics education, while exploring students’ learning in geometry, Battista (1999) 
found benefits in having students make predictions. According to him, a discrepancy between 
predictions and actual answers made students reflect on their strategies and helped build useful 
mental models for problem solving. Buendía and Cordero (2005) viewed prediction as a social 
practice that supports the construction of mathematical knowledge, and provided such evidence 
in the context of periodic functions. In fact, the analysis of state mathematics standards revealed 
that prediction was the most prevalent reasoning expectation across grades as well as content 
strands (Kim & Kasmer, 2006). Kim and Kasmer (2007, 2009) and Kasmer and Kim (2011) also 
investigated the potential of using prediction for the development of students’ mathematical 
understanding and reasoning in the middle school algebra context over years. Using prediction 
provided an opportunity for students to make connections among mathematical ideas that they 
learned and to develop the meaning of algebraic concepts. As a result, students who participated 
in prediction activities developed better mathematical understanding and reasoning around 
algebraic concepts than those who did not. Moreover, using prediction offered additional 
classroom benefits, such as promoting classroom discussion on mathematical ideas, helping 
teachers assess students’ thinking informally and formatively during instruction, and 
encouraging teachers to reflect more often on what they plan and teach.  
 Even though the advantages of using prediction in the teaching and learning of various 
subjects including mathematics have been reported, the focus has mainly been on student 
learning outcomes. Little has been investigated in terms of teaching practice and teacher 
development. Given the effectiveness of using prediction on student learning and the potential 
benefits for teachers (e.g., prediction serving as a means to promote classroom discussion rather 
than direct teaching, and quick informal assessment on student thinking during instruction), 
further investigation is needed on how utilizing prediction can prompt teacher professional 
development.        
 

Research Questions and Analytic Framework 
Based on the above rationale, this study addresses an overarching question, How does using 

prediction promote teacher professional development? In this study, I define professional 
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development as Therefore, to analyze the impact of using prediction on professional 
development, two aspects are closely examined: teacher knowledge and teaching practice—
whether positive changes occur in each aspect and, if so, what the changes look like. Two 
research questions are formulated to address each of the two aspects.  

1. Does using prediction help increase teacher knowledge? If so, what aspects of 
knowledge?  

2. Does using prediction help improve teaching practice? If so, what aspects of teaching 
practice?  

First, teacher knowledge is accounted for with respect to (1) understanding of big ideas in tasks 
and lessons, (2) understanding questioning strategies, and (3) content knowledge measured on a 
standardized exam relative to a norm-referenced group. Second, teaching practice is examined 
with respect to (1) the characteristics of classroom discussion, and interactions with and among 
students, (2) kinds of questions asked by the teacher, and (3) ways in which the teacher reflects 
on her own teaching practices. 
 

Professional Development Procedure  
The main procedure of this professional development centers on a middle school teacher’s 

involvement in activities, such as examining the content of the lessons to teach, developing one 
or multiple prediction questions for each lesson, asking them at the launch of each lesson and 
organizing discussions on students’ predictions and reasoning, and reflecting on teaching. The 
detailed process is given below.     

 
Teacher Selection 

One middle school mathematics teacher was selected based on her interest in the study as 
well as her teaching and professional development experiences. She taught middle school 
mathematics for 12 years. Throughout her teaching career, she used Connected Mathematics 
Program (CMP). At the time of the study, she had been using the second edition of the 
curriculum (CMP2) for one year. She was an experienced teacher and confident about her 
teaching. She, however, wanted to identify areas to improve and welcomed an opportunity for 
professional development. In particular, her decision to participate in this study was based on the 
fact that she felt that she was losing her initial enthusiasm and settling into routines, as she had 
taught for many years. It was also based on her desire to discuss the mathematics that she taught 
and pedagogical strategies that she wanted to be equipped with. 
 

Content Area 
Algebra was chosen for the target content area of the mathematics lessons because it is one of 

the most important and difficult topics in middle school mathematics. Also, algebra units are 
taught throughout the year. The unit taught during the study was The Shapes of Algebra (Lappan, 
Fey, Fitzgerald, Friel, & Phillips, 2009) from CMP2, which was about linear systems and 
inequalities. Because of the abstract nature of the content and extensive use of symbols, teaching 
this unit was very challenging, especially in helping students understand what they were doing 
and why when they manipulated symbols, and what that meant in the problem context.       

 
Teacher Professional Development Activities Using Prediction 

There were three stages of teacher professional development activities using prediction 
during the study. In the first stage, I provided the teacher with prediction questions of each 
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algebra lesson so she could use them in her teaching. During this stage, the teacher became 
accustomed to using them in class and examining how prediction questions provoked students’ 
thinking and guided her teaching. In the second stage, the teacher and I developed prediction 
questions together, and the teacher used them in her teaching. In the final stage, the teacher 
developed prediction questions on her own to use in her lessons. Before and after each stage, the 
teacher and I discussed the big ideas across the lessons, how prediction questions would 
stimulate or stimulated students’ thinking, advantages and disadvantages of particular prediction 
questions, and possible alternatives of the prediction questions proposed or used. Each stage had 
three lessons, and nine total lessons were taught during a one-month period. (Each lesson often 
needed more than one day. The teacher also used practice problems for a few days in between 
lessons to help improve the students’ ability of symbol manipulation.)  

At the individual lesson level, the following process repeated throughout the professional 
development: 

• Examine mathematical ideas of a lesson and create prediction questions for instruction 
• Pose prediction questions at the launch of the lesson and elicit students’ responses and 

their reasoning 
• Use information to adjust lesson plan  
• Reflect on teaching, plan for next day, and revise prediction questions for future use  

 

Data Collection and Analysis 
During the project, data were collected to measure the growth of teacher knowledge and the 
improvement of teaching practice. Data collection and analysis of each data source are described 
below. 
 

Paper-and-Pencil Measures 
Teacher knowledge was examined by using a paper-and-pencil measure, which was 

developed and tested by a research group at the University of Michigan (Content Knowledge for 
Teaching Mathematics [CKTM] measures). The CKTM measures have two forms that measure 
middle school teachers’ knowledge of algebra. One form was used at the beginning of the project 
and the other at the end of the project. Each form contained about 20 items. Questions about the 
items were asked during the pre- and post-interviews looking for teacher reasoning and further 
explanations regarding particular choices made. The two test responses were compared using the 
reference group provided by the test developers.  

 
Interviews and Discussions 

During the study, through interviews (pre- and post-interviews) and discussions (before and 
after each stage) with the teacher, I had opportunities to clarify the teacher’s thinking in terms of 
teaching and her own understanding of the mathematics being taught. During the interviews and 
discussions, the teacher was asked about big ideas of tasks and lessons, the purpose of particular 
prediction questions and advantages and disadvantages of those questions, and her instructional 
decisions made on site. All the interviews and discussions were audiotaped and transcribed. 
These transcripts were analyzed for evidence of change in her knowledge and teaching practice.   
  

Classroom Observations 
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During the project, the teacher’s instruction of the unit was videotaped three times, one per 
stage. Those lessons videotaped were used for the analysis of characteristics of classroom 
discussion, and interaction with and among students by looking at related teaching actions, such 
as kinds of questions asked after prediction questions and other main questions, kinds of 
responses given to students, and ways in which student responses were used in teaching. In 
particular, the Coding Rubric for Measuring the Quality of Mathematics in Instruction (QMI 
instrument, Learning Mathematics for Teaching, 2006) was used to analyze whole-group 
discussion periods, for the purpose of looking at kinds of classroom discussion and how the 
teacher organized discussions. This instrument was designed to measure teacher knowledge 
revealed in instruction, and therefore it was helpful to account for what kind of teacher 
knowledge was used in teaching and in what ways. Each coding element required an indication 
of whether evidence was “present” or “not present” and whether it was “appropriate” or 
“inappropriate” for every 5-minute segment. Important segments identified during this coding 
process were transcribed for further analysis. Once every lesson was analyzed, characteristics of 
each stage were summarized and then the three stages were compared.  

Another coding tool used was the Reformed Teaching Observation Protocol (RTOP) (Piburn, 
Sawada, Falconer, Turley, Benford, & Bloom, 2000), which was developed as an observation 
instrument to provide a standardized means for detecting the degree to which K-20 classroom 
instruction in mathematics or science is reformed. For the purpose of the study, the coding 
elements on classroom culture (communicative interactions and student/teacher relationships) 
were used. Each element was coded by a 5-point Likert-scale (0 being never occurred and 4 
being very descriptive). Once the coding was done, a score for each lesson was assigned by 
finding the mean of the codes. The scores of the three videotaped lessons were compared to 
determine any changes in classroom culture.  

 
Lesson Plans 

The teacher provided one lesson plan using prediction during each stage. Each lesson plan 
was provided before the actual lesson took place. The teacher chose the format of the lesson 
plans. Once the lesson was taught, the teacher provided a reflection on the lesson. These lesson 
plans were analyzed to account for whether each lesson was formulated to highlight the big ideas 
of the lesson, whether prediction questions were used to help students make connections between 
the main ideas of the lesson and previous concepts, whether the overall lesson sequence as well 
as specific questions and guidance encouraged students to develop the big ideas of the lesson, 
and what strengths and weaknesses the teacher identified in her lessons and lesson plans.  

  
Teacher Journal Entries 

The teacher kept a weekly journal during the study. Although the teacher had the freedom to 
choose any lesson of the week to write about, each journal entry had specific components: big 
mathematical ideas of the lessons of the week, prediction questions asked, how prediction 
questions helped instruction (from the perspectives of teaching and learning, respectively), what 
went well and what did not and possible reasons, and what she would do differently next time. 
When analyzing teacher journal entries, patterns of reflections in each of the three stages were 
searched in terms of ways in which the teacher reflected on her teaching, and the breadth and 
width of her reflection.  
 

Results 
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The results are described to answer the two research questions, and highlight the areas in 
which using prediction positively impacted the teacher’s professional development.   
 

Teacher Knowledge 
The results indicate that using prediction helped increase teacher knowledge, especially 

knowledge of the content that she taught and knowledge of questioning in teaching.   
  

Content Knowledge 
The teacher and I discussed the content and its representations in-depth throughout the study 

in order to create good prediction questions to use in instruction. Teacher interviews and 
discussions show that creating and using prediction questions challenged the teacher’s 
knowledge base. The teacher revealed her strong and weak areas, developed a better 
understanding in the weak areas, and realized things that she did not think about before. For 
example, during the first discussion, the teacher talked about the content of three lessons and 
what she would focus on. She understood the importance of using graphical representations for 
the solutions of linear inequalities, and yet did not see the connection between “a number-line 
graph” and “graphs of two linear functions” on the coordinate plane. (The number-line graph is, 
in fact, shown on the x-axis of the coordinate plane.) Therefore, she focused on the number-line 
representation of linear inequality solutions and did not plan to spend time on the graphical 
representation of the coordinate plane. When further examining the latter during the discussion, 
she saw that the number-line graph was embedded in the graphical representation on the 
coordinate plane and how the two representations were related, and she gained confidence in 
using both of them in instruction. As the study progressed, the teacher began to focus more on 
big ideas and meaning along with symbolic solutions and to make more solid connections. 
Previously, she was concerned about her students’ skills on symbol manipulation (“The biggest 
priority is, can you solve a linear inequality?”) rather than whether they understood what they 
were doing. Standardized measures, CKTM-middle school algebra, also indicated that her 
knowledge on the content increased. IRT scores on pre- and post-CKTM were 1.1295 and 
1.8781, respectively. Both were high scores according to the norm group, but the latter was the 
highest, whereas the former was the fourth highest.  

 
Knowledge of Questioning 

The teacher explicitly mentioned several times that she tried to improve her questioning 
skills. In fact, a comparison of the first day and the last day observed as well as a review of the 
lesson plans shows that, at the end of the study, the teacher demonstrated greater knowledge of 
what to ask and how to probe students’ thinking. By her choice, one of the components in her 
lesson plans was “questions I will try to ask to extend our discussion.” The last lesson plan 
included a longer list of questions, even with rationale, including: “How does this process (what 
students just did) relate to the type of process we learned yesterday? Can you do this for all 
problems of this type? Is it possible to solve this system using x= instead of y=? What happens if 
you do solve it for x=?” She asked these questions to encourage students to make connections 
between what they did and previous learning, to make conjectures, and to think about 
alternatives.  

In fact, it is difficult to formulate good prediction questions when the content is very abstract, 
as in this unit. Nevertheless, she was able to create good prediction questions on her own later in 
the study. For example, the problem context was as follows: “The eighth graders are selling T-
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shirts and caps to raise money for their end-of-the-year party. They earn a profit of $5 per shirt 
and $10 per cap.” One of the questions she posed was, “What do you predict will be the equation 
that shows how the profit is related to the number of shirts and caps sold? Explain your 
reasoning.” The students had experienced linear “only in the y = ax + b form” and ax + by = c 
was new to them. She realized the benefit in using equations for the situation that students came 
up with to guide her next steps during the lesson. It also would provoke students to think about 
what they knew already and relate that to this situation—whether the standard form (y = ax + b) 
would work or if they would need a different form to represent the problem context.  
 

Teaching Practice 
The results reveal that using prediction was effective in improving classroom practice. The 

areas positively influenced include classroom culture, questioning skills, and teacher reflection.    
 

Characteristics of Classroom Discussion 
First of all, more discussion time was spent during instruction as the study progressed. In the 

first observation, class discussion lasted for 5 minutes except for discussions on prediction. The 
lesson in the second stage included 10 minutes of discussion, and in the last lesson observed, 
more than half of the 50-minute class period was for discussion. Even when checking homework 
answers, the teacher initiated discussion on important mathematical ideas behind the solutions. 
Second, she devoted much time to discussing the meaning and reasoning behind the procedures. 
During teacher interviews and discussions, she repeatedly expressed that she had difficulty 
juggling between increasing students’ symbol manipulation skills and focusing on the big ideas 
she identified. For example, it took time to help students understand ax + by = c as linear, as 
opposed to focusing on symbolical problem solving alone. Often students graphed it by putting 
points and connecting them, not realizing that this new form also represented a linear 
relationship between x and y. Likewise, students focused on solving for x or y, not understanding 
what that x- or y-value meant. This year, the teacher spent a great deal of time helping students 
understand the rationale behind the procedure or symbolic manipulation that they were engaged 
in. She also helped students to make sense of what they did by connecting back to the problem 
situations when appropriate. For such purposes, she asked many questions, such as “Why do you 
solve for x? What does that mean? What’s next? Which equation should be used to substitute x? 
What would happen if the other one is used? What does that mean? Why do they give the same 
y?”  
 RTOP results also indicated that her classroom culture slightly changed (first, second, and 
third stages scored 2.8, 3.0, and 3.1, respectively). In particular, student-teacher relationships 
remained the same (3.2), and yet communicative interactions changed a bit (2.5, 2.8, 3.0) as the 
study progressed. Areas that improved include:  

• The teacher’s questions triggered divergent modes of thinking. 
• There was a high proportion of student talk and a significant amount of it occurred 

between and among students. 
• Student questions and comments often determined the focus and direction of classroom 

discourse. 
 
Questioning Strategies 

Lesson plans and classroom videotapes showed improved teacher questioning skills. As 
shown in earlier examples, the teacher asked more “why” questions along with “how” and more 
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probing questions, and asked more about the meaning behind procedures to help students 
develop algebraic reasoning with symbols.    

Reflection on teaching.  The teacher reflected on teaching more often, ranging in topics 
from fundamental teaching philosophy to specific teaching strategies. Such regular ongoing 
reflection helped her improve her teaching practice. Some teacher reflections at various points 
are as follows:  

• It [using prediction] helped me revisit and refine my philosophy of mathematics teaching 
– something that had become a bit dusty from underuse… It strengthened teaching skills. 

• It forced me to think about their responses, the flow of the lesson, the types of questions I 
needed to ask if they got or didn’t get the question.  

• It also caused me to reflect more on the lesson before teaching it and, of course, after 
teaching it, something that I’ve lost along the way for lack of time to devote to this 
process. 

 
Conclusion and Significance 

This is a case study involving one teacher. During one month of the study, the teacher had 
extensive and in-depth discussions with me about the content she taught and prediction questions 
to use in teaching the content, as well as pedagogical challenges and strategies, such as 
questioning skills. The results show not only that using prediction for professional development 
is feasible, but also that such professional development activities are effective. Using prediction 
provided a significant context for professional development. To create good prediction questions, 
the teacher had to closely examine lesson content, which led her to focus on big ideas of the 
lessons and connections among those ideas for her students and to build on her own learning of 
the content that she was teaching. To use those prediction questions in teaching, she had to think 
about appropriate probing questions and to organize classroom discussions around meaning of 
and reasoning about mathematical ideas and procedures. The next step is to design professional 
development activities for multiple teachers working together over a longer period of time. A 
group of teachers engaging in this type of professional development would benefit from 
discussing mathematical ideas, formulating prediction questions, and reflecting on their teaching 
as a group.  
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MEASURING THE EFFECTIVENESS OF A HYBRID PROFESSIONAL 
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Hea-Jin Lee 

Ohio State University-Lima 
lee.1129@osu.edu 

This study explores how a hybrid professional development model may support quality and 
success of mathematics teachers. The primary focus of this study is on the experiences and the 
opportunities, which on-line discussion and face-to-face workshops provide for mathematics 
teachers’ professional learning. The findings present the impact of the program on teachers’ 
practice, as well as the nature of the virtual interactions including frequency and content of 
virtual communication.  The conceptual discussion includes potentials and limitations to be 
considered in further dialogue, development, and research in designing and evaluating a hybrid 
program for teacher success in deep learning and practice. 

Purposes of the Study 
This study is based on a year-long professional development program for middle school 

mathematics teachers.  Our project program was designed considering the following issues: How 
should the professional development program be designed to maximize teacher learning and 
improve instructional practice?; What types of professional learning experiences should teachers 
experience in the program?; and How should the professional development program foster 
professional interactions?  This paper investigates the nature of participants’ interactions in a 
virtual learning community, as well as the impact of the professional development program on 
teachers’ view about mathematics and their practice. 

Conceptual Framework 
Studies comparing online and traditional courses report no significant differences between 

the two programs. The professional development program of this paper was designed under this 
assumption that there is little difference between these two models.  Consideration for a teacher’s 
busy schedule and the need for on-going teacher interaction led the professional development 
program in this study to adopt a Blended Learning System, which forms a harmonious 
combination rather than random cost efficiency (Graham, 2005; Heinz & Procter, 2005). 
“Blended Learning is learning that is facilitated by the effective combination of different modes 
of delivery, models of teaching and styles of learning, and founded on transparent 
communication amongst all parties involved with a course” (Heinze & Procter, 2004, p. 12). 

Since Dewey, the social nature of all human learning and the role of communication 
ability/skill in the human development process are the most often discussed concepts in higher 
education (Feldman, 2000; Heinze & Procter, 2005).  Learning in Communities of Practice, 
networks of practitioners, relies on communication between individuals and occurs as an 
interaction among practitioners takes place (Heinze & Procter, 2005, Kahan, 2004). 
Communities of Practice “are creating a Zone of Proximal Development with capable peers. 
There is no one on the stage who is the knowledge source, but all individuals have an equal right 
to share their experience, and their stories are valuable contributions to the community” (Heinze 
& Procter, 2005, ¶ 3). 
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When we discuss students’ learning, our question should not be whether students can or 
cannot achieve mathematical skills but about whether students will elicit maximum success in 
mathematics. “Such recommendations call for an approach to mathematics teaching that allows 
students to communicate, problem solve, and engage in conceptual mathematics.  …  From a 
professional development standpoint, this perspective suggests that programs should provide 
opportunities for teachers to learn mathematics around specific content and teaching situations 
that may arise in practice.” (Brown & Benkenp, 2009, p. 56). The key concerns, therefore, for 
online professional development are to ensure peer exchange of ideas and information 
(Hammond, 1998); the creation and assimilation of knowledge (Thomas, 1992); and providing a 
climate of accelerated change in which participants need to access up-to-date knowledge and 
apply new skills flexibly in changing circumstances (Hargreaves, 1994). The learning 
community should be more than a forum for the exchange of information (Chapman & Ramondt, 
2003). It must evolve in response to the diverse needs of learners and the communities in which 
they work. 

The project being investigated is developed to provide a blended learning option. The project 
incorporated a combination of face-to-face and online communication that has the potential of 
increasing the participants’ sense of community (Rovai & Jordan, 2004) and continuation of 
professional learning. It was recognized that a sense of community was critical for sustaining 
teacher interest.  Participants in the program came from various backgrounds and diverse 
experiences, which made bonding a challenge. The assumption was that if teachers could form a 
community in supporting and learning from each other, then they would be more likely to 
succeed with their learning. 

Methods 
The professional development program of this study was designed to improve student 

mathematics knowledge and attitude by (1) increasing teacher content knowledge and (2) 
improving instructional skills to teach mathematics concepts in an environment rich in context, 
community, and connections. The major activities of the project consisted of three components: 
face-to-face workshop courses, implementation, and sustaining a professional community. The 
online conversations between face-to-face meetings facilitated the building of a professional 
community among project participants.  Desire2Learn was used to sustain the professional 
network during and after the project period. 

Twenty-nine teachers in grades 5 - 9 participated, 22 first year and 7 continuing participants. 
A team of 2-4 mathematics teachers from each district was recruited. Each participant received 9 
graduate credits, and all participants engaged in 73 hours of face-to-face workshop meetings, at 
least 18 hours of an online workshop course, and co-teaching with project instructors.  Teachers 
explored how algebra is taught at different grade levels, is related to other math content, and 
applies to our daily life.  The workshops were conducted through discussions; collaborative 
group work; hands-on activities; problem-solving opportunities; and presentations by 
participants.  Assignments included readings in the textbooks; reflecting on activities introduced 
during the workshop; developing lesson plans; providing critical comments on lesson plans 
developed by peers; solving mathematical problems using invented ways; employing various 
technology to solve problems and perform tasks and mentoring; observing peer participants 
classroom practice and provide productive comment on their practice; on-going communication 
with colleagues through Carmen (Web-based course tool); and evaluating web-based resources. 

In order to answer research questions, pre- and post- surveys, interviews, field observations, 
and online discussion messages were analyzed.  Surveys, interviews, and filed observation notes 
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were analyzed, mean scores compared, and synthesized in the Results section.  All 1149 online 
messages were analyzed and coded.  Three coders were trained and checked for inter-rater 
reliability at the end of training by using a sample set of coding.  The Assignment 1) postings 
(237 messages) were coded by all three coders and checked for inter-rater reliability.  For the 
assignments 2, 3, 4, and 5, each coder was assigned a series of threads to code. Coders and the 
researcher had regular meetings to discuss issues and questions. 

Results 
Changes in Teachers’ Opinions about Mathematics and Classroom Practices 

Teachers had a good understanding of effective questioning techniques and their use in the 
classroom; the average rating on this item increased significantly (from 1.96 to 1.54); a 
significant increase in those agreeing that they had the methods necessary to teach math concepts 
effectively (up from 74% to 96% and the mean went from 2.26 to 1.73); significant 
improvements on their understanding of authentic assessment methods used to measure student 
performance (mean went from 2.37 to 2.00) (Lower mean score indicates a higher level of 
agreement, as “Strongly Agree” was represented by the value of 1 and “Strongly Disagree” had 
a value of 5).  Although all started the program saying that they had a good understanding of 
fundamental core content in their discipline, this dropped slightly by year-end (89%), which may 
suggest that the course made them aware of some gaps in their knowledge. 

The teachers expressed the highest level of agreement with, “Classroom interaction involves 
a dialogue among teacher and students” (74%), and by year-end, most (92%) confirmed that this 
was true of their classes; there was a significant movement on the average response (up from 
3.96 to 4.46).  There was also a significant increase in those saying that the “Student role is to 
apply inquiry and problem solving skills to discover solutions to problems” (increased from 56% 
to 81% and average was up from 3.70 to 4.23). Participants were significantly less likely to 
report that students worked independently (down to 8% from 19% and the average decreased to 
2.23 from 2.89) and that instruction emphasized broad coverage of information (down to 4% 
from 12% and the average decreased to 2.27 from 2.65). Finally, increased use of alternative 
assessment methods was confirmed in the significant gain on the average use reported (up from 
2.37 to 2.77). 

Participating teachers showed initial variation in teachers’ comfort with some of the listed 
practices. Significant differences in participants’ use of specific instructional practices in math 
and professional activities are highlighted in Table 1. Teachers’ responses pointed to increases in 
their use of inquiry-based instructional practices and alternative assessment. They had also 
expanded their professional development activities at their schools and online. Teachers 
emphasized the changes that they made to their instructional approach.  “I try very hard not to be 
the primary speaker in the classroom. As often as possible, I have the students working together, 
explaining to each other and answering each other’s questions. I try to stress the importance of 
being able to explain how an answer was found and the fact that there are many different paths 
to a correct answer.” 

Individual teachers made a lot of change in what they were doing and more teachers 
choosing more student-centered approaches. The conversation was much deeper and their 
questioning skills got advanced. Teachers were looking for ways to question and find out now to 
get the ideas into the classroom. The biggest change is that the project encouraged teachers to do 
were random responses and encourage all students to be listened to and heard. Instead of 
responding to students who had their hands raised, they were randomly selecting students and 
giving opportunities for those students to respond. Every student was given the opportunity to 
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summarize, and if confused, to ultimately resolve that confusion. The teacher was constantly 
asking the question “why” and not simply accepting an answer but requesting support for that 
answer. A much higher level of learning was occurring. 

 
Table 1: Changes in Teacher Practices and Professional Activities (Sorted by Mean Difference) 

 Percentage Difference Mean Difference1 

 Pre-
survey 

Post-
survey 

More 
Frequent 

Pre-
survey 

Post-
survey 

More 
Frequent 

I utilize the project website during and after the 
project. 14.8 32.0 N.S. 2.58 1.88*** -0.70 

I encourage students to engage with materials in a 
more in-depth way for longer periods of time. 7.4 53.8*** 46.4 2.11 1.46*** -0.65 

I include opportunities for students to engage in 
active and inquiry-based learning. 29.6 80.8*** 51.2 1.78 1.19*** -0.59 

I actively participate in classrooms and virtual 
communications. 14.8 38.5 N.S. 2.40 1.85** -0.55 

I match instructional strategies and materials to 
identified students’ learning experiences. 37.0 61.5** 24.5 1.78 1.42*** -0.36 

I develop a resource binder, collection of ORC 
lessons, instructional materials, and readings. 37.0 61.5** 24.5 1.89 1.54*** -0.35 

I use problems for which there is no immediately 
obvious method or solution. 18.5 46.2** 27.7 1.96 1.65*** -0.31 

I monitor student performance in mathematics by 
applying rubrics and keeping records of alternative 
assessment tools. 

7.4 30.8** 23.4 2.22 1.92* -0.30 

I encourage students to debate ideas or otherwise 
explain reasoning. 55.6 80.8* 25.2 1.48 1.19* -0.29 

I conduct a team-designed professional 
development in own school district. 3.7 12.0 N.S. 2.81 2.60* -0.21 

I develop inquiry and problem solving activities to 
help students associate the subject matter with 
their own experience and redefine the concepts. 

22.2 50.0** 27.8 1.81 1.50 N.S. 

1Lower mean score indicates a higher level of frequency, as “Frequently” was represented by the value of 1 and “Never” 
had a value of 3.  N.S. = Not Significant 
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Table 2: Changes in Teacher Opinions about Mathematics (Sorted by Mean Difference) 
 Percentage Difference Mean Difference1 

 Pre-
survey 

Post-
survey 

Change in 
Agreement 

Pre-
survey 

Post-
survey 

Change in 
Agreement 

It is a good use of time to work on 
mathematics problems that have no 
precise answers. 

66.7 92.3 N.S. 4.26 5.27*** 1.01 

Strategies help a student learn 
mathematics. 96.3 100.0 N.S. 5.00 5.31* 0.31 

It is a waste of time to work on 
mathematics problems that have no exact 
answers. 

18.5 0.0* -18.5 2.00 1.42* -0.58 

Mathematics is primarily a solitary 
activity, done by individuals in isolation. 14.8 3.8 N.S. 1.93 1.27* -0.66 

1Positive difference indicates a higher level of agreement. Negative difference indicates less agreement. 
N.S. = Not Significant 

Table 2 reveals teachers’ opinions about mathematics.  Responses on teachers’ confidence 
about their preparation to answer students’ questions indicated that teachers were more 
comfortable about their skills in mathematics at year-end.  Teachers’ view of math has shifted, 
particularly with respect to the value of working on problems that do not have a precise answer. 
They also increasingly view strategies as a way to help students learn math. Finally, they were 
less likely to view math as a solitary activity. This is consistent with the results with another 
survey in which participants were significantly more likely to have students working in groups. 

The greatest change in the classrooms was the expectation that all students actively 
participate. One shared, “I have a better idea of how to get the students involved and know better 
now how to help the students do more and on their own.” Others stressed how they have made 
their classes more student-centered. Teachers noted, however, that students were often initially 
resistant. A participant explained, “They sometimes have a difficult time accepting the fact that I 
am not just giving them the answers or telling them exactly how to do the problems.” 
Encouragingly, by year-end, several revealed that they had succeeded in getting their students to 
buy-in to the changes. 

Virtual Communication Frequency 
Three structured online assignment topics were assigned during the academic months from 

March to May, and two assignments were given from September to November. Online 
discussion occurred between monthly face-to-face meetings.  During the summer, there were 
intensive face-to-face meetings for a week. 

Figures 1 and 2 depict the average number of messages per individual teacher. 
Approximately 10 of 22 teachers posted more than 8 messages while all 2nd year teachers posted 
more than 8 messages. Overall, more contributions in online communication were made by 2nd 
year teachers than 1st year teachers: an average of 8.9 messages by the first year teachers and 
12.4 messages by the 2nd year teachers. 
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Figure 1. Average No. of Messages Posted by Year 1 Teachers Figure 2. Average No. of Messages Posted 

by Year 2 Teachers 

Figure 3 compares average number of messages posted 
per assignment. The first year teachers posted the most 
number of messages for the Assignment 1) Book Reading 
Discussion and Assignment 2) Video Critique. Compare to 
the first two assignments, relatively lesser number of 
messages were posted for three Implementing discovery-
based lessons, Assignments 3), 4), & 5), which required 
creation of lessons and implementation, and commenting peer 
teachers’ work. (no messages by the 2nd year teachers for the 
first three assignments, because they joined in the program 
for the last quarter).  The second year teachers’ contribution 
was much more active and interactive than the first year teachers’. 
Virtual Communication: Purpose and Content 

In addition to communication frequency, our study analyzed the data to find the purpose of 
messages and their content. Our codes were founded in Gareis and Nussbaum-Beach (2007), 
Interstate New Teacher Assessment and Support Consortium (1992), and Joint Committee on 
Standards for Educational Evaluation (1988) and finalized after two initial analyses.  Table 3 
provides final codes and sample messages. 

Table 3. Discussion Messages Analysis Codes and Sample Messages 
Codes Sample messages 

Reflection I should be more forth coming making sure they hold the spaghetti towards the 
end of the spaghetti and maybe they would have achieved better results.    

Sharing experience I did this activity with my Algebra class.  I found this lesson through the Math 
Portal site.  The lesson took two class periods, which are about 42 minutes in 
length 

Issue/problem but I always have a few kids who just write one or two words 
Question/Suggestion With all of the variables that prevented a linear graph, was it worth it or would 

you use a different route?  
Instruction (not based 
on personal exp. but 
used information from 
other sources) 

Geometry Made Simple (High School Edition), Frank Schaffer Publications – 
This is where I found the Logic 101 questions.  www.printable-puzzles.com – 
This is where I found the logic puzzle.  This is a great website with a lot of 
different types of puzzles (crosswords, sudoku, cryptograms, word searches, 
etc.). 

Students (extended 
message about students) 

They always want to help so and so add to their answer- no one ever tells 
another student "No, you're wrong".  

Guided Advice I covered my box with metallic Contact paper, which by the way is dry erase. I 

 
Figure 3. Average No. of Messages per 
Assignment	  
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then used a piece of sparkle craft foam for the screen and white craft foam for 
the dial. Lastly, I used a pair of old school (large) headphones for the top. Easy 
and durable!  

Simple Agreement I agree that the number line is a great way to get the year started 
Acknowledgement I am interested in seeing this in action. It does sound like a good activity 

Even though the first assignment was reading reflection, the main focus of discussions was 
not the information presented in the reading chapter.  Teachers’ interacted discussions were 
mostly about how to work with certain math concepts, sharing their experience as well as asking 
questions for instructional delivery including how to relate math concepts to the real world; how 
well a specific strategy works; games and websites that could help their students with learning 
concepts; creative ways to demonstrate concepts to their students; the most effective way to use 
manipulatives in the classroom; how to allow for more student centered time in the classroom; 
being able to make mistakes in math, not being afraid to do this, and allowing students to help 
teachers correct them by collaborating with them or turning the mistake into its own mini lesson; 
the connections made between the different concepts covered in math and all the standards that 
need to be addressed; the use of vocabulary as a way to help with math communication; and how 
to overcome time constraints to allow them to teach the “why” as much as they would like to. 

Teachers also discussed the growth that they saw in their students, such as asking questions 
and working more efficiently.  They expressed excitement about each student being able to be 
the “teacher” and also having every student present themselves as a star in the classroom at some 
point. They discussed the importance of mathematical wording in the classroom, feedback from 
students on what they think makes a good teacher and also classroom control and how difficult it 
is for teachers to give that up to allow for a more student directed classroom at times. 

Teachers shared struggles that they have faced with math and how they can and have turned 
that around to help their students.  They discussed ways they have made personal connections 
from their own learning in school and also things that they still want to learn so that they can 
help the students to hopefully more easily get past the things that they had a lot of difficulty with 
when they were in school. They also talked about how even teachers are scared about not 
knowing how to explain the “why” to students, which is the most important part. 

Some discussions were about inclusion teachers and general education teachers.  They were 
taught so differently when they were in school that they don’t feel comfortable with teaching 
certain concepts to their own students. They were taught that there is only one way to do 
problems, but they want to be able to teach their students that there are multiple ways of solving 
and learning. That was one of the main things they were hoping to gain insight into from this 
class. They also discussed with interest the similarities teachers share with students in that they 
all have different ways of learning, such as hands-on, visual, auditory, etc. 

There was also a great deal of discussion about how important it is for a teacher to be able to 
continue to learn and make changes in the classroom, but to try to do this in small amounts (they 
suggested 10% at a time) to make it easier and more feasible.  They also discussed how 
important it is to find time to talk to and work with your colleagues. (Quantified results of the 
content analysis will be shared during the presentation.) 

Discussion 
This study investigated the effectiveness of a hybrid professional development program and 

online communications.  Approximately half of the group at the first workshop session revealed 
they were most comfortable with traditional instructional practices. Nevertheless, teachers 
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overwhelmingly expressed an openness and desire to improve their math instruction in ways that 
would address the needs of their students. At the end of the summer course, teachers emphasized 
their appreciation for exposure to additional ideas about how to teach algebra to their students. 
Participants stressed that they increased their understanding of math content and learned about 
practical strategies that are applicable to their classrooms. They also valued the sheer number of 
new hands-on and inquiry-based activities that were covered. By year-end, it was evident that 
participants had made an effort to make their classrooms more student-centered and inquiry-
based. Students were doing more group work and the teachers had learned strategies that resulted 
in their involving all students in their classrooms. They had begun requiring students to explain 
their answers and to respond to “why” inquiries if their explanations were not sufficiently clear. 
They had also begun incorporating more alternative assessments. 

Overall, teacher participants increased their math content knowledge and improved their 
instructional skills. Furthermore, teachers enthusiastically described changes that they have made 
in their classrooms as part of enriching their students’ math learning. They have made their 
classes more student-centered, including giving students more opportunities to do inquiry-based, 
exploratory activities in which they have to present and explain their answers to the class. 
Teachers also learned additional questioning strategies, which they have applied in their classes. 
Finally, teachers were more frequently having their students working in groups and using a wider 
variety of manipulatives than in the past. 

With regards to the effectiveness of the online part of the program, there were some trivial 
findings and unexpected outcomes that can provide an insight into mathematics teacher 
educators.  Most face-to-face discussions centered on the activity or mathematics problems that 
were presented in class; whereas online discussions reflected on and shared experiences in their 
own classrooms. The content of online discussions made no distinction between different 
assignments.  The main focus of discussions was sharing their experience about teaching 
mathematics instead of focusing on what they were required to discuss. It would be important to 
investigate how different online discussion topics and assignments contribute to teachers’ active 
learning and participation. 

Another interesting finding was the differences in the total number of messages for each 
assignment. First year teachers had more to share when they were asked to reflect on book 
readings or video-taped best practices than to exchange their own ideas and experiences about 
planning and implementing a discovery-based lesson. What teacher educators can learn from this 
finding is the sequential order of the online professional development program.  Practitioners 
also need plenty time for learning the website and technology that the online PD uses. 
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This study investigated the ways in which a teacher developed conceptions of measurement 
teaching and learning as she collaborated with a researcher to learn and implement a 
measurement learning trajectory (MLT) (Clements & Sarama, 2009) with two of her students 
over the course of 18 weeks. The results indicated that several of the components of the 
professional development program were critical to the teacher’s growth from a Level 3 to a 
Level 4-A on the CGI framework for teacher knowledge developed by Fennema and her 
colleagues (1996). 

 
Objectives 

This study sought to determine which aspects of a professional development experience were 
most important to an elementary teacher’s professional growth by developing accounts of 
practice for a teacher as she extended her pedagogical content knowledge of measure. More 
specifically, this study sought to develop a model for a professional development opportunity 
which incorporates research on student understanding of measurement into a teacher’s 
instructional practices. The researcher sought to offer a unique opportunity involving 
collaboration, relevant research, teaching sessions with individual students, weekly professional 
development tasks and reflection to encourage and support a practicing teacher to unpack her 
own students’ conceptual knowledge of measure. A Measurement Learning Trajectory (MLT) 
for length and area (Clements & Sarama, 2009; Barrett & Clements, 2003) was used as the 
research-based framework of student knowledge that the teacher used as a lens to view her 
students’ understanding and misconceptions of measure. With a focus on ways of guiding a 
practicing teacher to understand and students’ ways of thinking about mathematics, the 
Cognitively Guided Instruction theory for professional development provided a model for 
designing this study within which the measurement learning trajectories served as the 
researched-based framework for identifying and addressing students’ misconceptions (Fennema 
et al., 1996; Carpenter & Fennema, 1992).  
 

Theoretical Framework 
This study combined aspects of both a Teacher Development Experiment (TDE) and a 

Three-Tiered Teaching Experiment to form a collaborative teaching experiment model for 
professional development. A TDE (Simon, 1999) is one tool for conducting a professional 
development program that allows for in-depth analysis of the procedures involved in the 
professional development experience and the ensuing teacher growth. Because this methodology 
allows researchers to closely study and foster the development of teachers through cycles of 
analysis and intervention, the TDE offered a framework that could be used to gain insight into a 
teacher’s developing expertise. In a TDE the focus is not only on the teacher’s mathematical 
development, but also on the generation of models that describe how teachers develop 
pedagogical knowledge (Simon, 1999). The researcher used the TDE to help determine which 
aspects of our interaction seemed to be most helpful to the teacher and allowed for the creation 
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of a model for how the teacher grew. This study attended to the teacher’s development of 
pedagogical content knowledge in the area of measurement as she collaborated with a 
mentor/researcher and as she interacted closely with two students in teaching experiments to 
develop their measurement knowledge. The teacher’s pedagogical content knowledge was 
developed through the process of learning a measurement trajectory and using it as a tool for 
guiding tutoring sessions with two of the teacher’s students. 

In order to attend to the teacher’s growth, as well as my own growth as a professional 
developer I employed a modified Three-Tiered Teaching Experiment model, placing emphasis 
on the researcher and teacher tiers (Lesh & Kelly, 2000). Teaching experiments (TE) (Steffe, 
1988) are the basis of a variety of research designs and “focus on development that occurs within 
conceptually rich environments that are explicitly designed to optimize the chances that relevant 
developments will occur in forms that can be observed” (Lesh & Kelly, 2000, p. 192). The 
Three-Tiered Teaching Experiment allows attention to focus on students’ developing knowledge, 
teachers’ developing pedagogical content knowledge, and the researcher’s developing 
understanding of the students’ and teachers’ developing conceptions. See Table 1. 
 

Tier 3: 
The Researcher 

Level 

Researchers develop models to make sense of teachers’ and 
students’ modeling activities. They reveal their interpretations 
as they create learning situations for teachers and students and 
as they describe, explain, and predict teachers’ and students’ 
behaviors. 

Tier 2: 
The Teacher Level 

As teachers develop shared tools (such as observation forms 
or guidelines for assessing students’ responses) and as they 
describe, explain, and predict students’ behaviors, they 
construct and refine models to make sense of students’ 
modeling activities. 

Tier 1: 
The Student Level 

Three-person teams of students may work on a series of 
model-eliciting activities, in which the goals include 
constructing and refining models (descriptions, explanations, 
justifications) that reveal partly how they are interpreting the 
situation. 

Table 1      Three-Tiered Teaching Experiment (Lesh & Kelly, 2000) 
 
 Three-Tiered Teaching Experiment allowed the researcher to focus on hypothesizing about 
the processes and mechanisms that promoted growth through the collaborative teaching 
experiment. In a teaching experiment a researcher generates and hypotheses about a student’s 
thinking strategies and then tests those hypotheses in individual interviews (Steffe, 1988). In this 
study the teacher was encouraged to assume the lead role in this process as she used the 
measurement learning trajectories for length and area to guide her development of teaching 
experiments with two students.  

The researcher focused the teacher’s attention on weekly decision-making activities that 
involved explanations or justification of predictions that exhibited how the teacher was 
interpreting situations and problems (Lesh & Kelly, 2000). Through these weekly professional 
development tasks (PDTs), the researcher hypothesized, tested, and refined my own developing 
ideas about the mechanisms that were promoting the teacher’s growth and adapted a model of 
her thinking accordingly. An account of the teacher’s practice was thus formed in the first three 
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weeks of the collaborative teaching experiment and was used as the benchmark for determining 
if this initial account of her practice changed throughout the 18 week collaborative teaching 
experiment (Heinz, Kinzel, Simon, & Tzur, 2000). 

The Cognitively Guided Instruction Professional Development framework (Fennema et al., 
1996) was used as a tool to guide the decisions made during the process of creating the model of 
the teacher’s measurement instruction. After identifying the major components of instruction and 
beliefs fundamental to the goals of the CGI program, Fennema et al. (1996) defined four 
instructional levels. These levels were used in the current study as a lens for viewing teacher 
change. Although every math lesson was not observed, the four pre- and four post-lessons, as 
well as the three measurement lessons the teacher invited me to observe were viewed through 
this lens. This framework identifies four major levels of instruction that are fundamental to the 
philosophy of Cognitively Guided Instruction (Fennema et al., 1996). See Table 2.  
 
Level Description 
1 Provides few, if any, opportunities for children to engage in measurement 

problem solving or to share their thinking in measurement. 
2 Provides limited opportunities for children to engage in measurement problem 

solving or to share their thinking in measurement. Elicits or attends to children’s 
measurement thinking or uses what they share in a very limited way. 

3 Provides opportunities for children to solve measurement problems and share 
their measurement thinking. Beginning to elicit and attend to what children 
share but doesn’t use what is shared to make instructional decisions. 

4-A Provides opportunities for children to solve a variety of measurement problems, 
elicits their thinking, and provides time for sharing their thinking. Instructional 
decisions are usually driven by general knowledge about his or her students’ 
measurement thinking, but not by individual children’s measurement thinking.  

4-B Provides opportunities for children to be involved in a variety of measurement 
problem-solving activities. Elicits children’s measurement thinking, attends to 
children sharing their thinking, and adapts instruction according to what is 
shared. Instruction is driven by teacher’s knowledge about individual children’s 
measurement thinking in the classroom. 

Table 2    Levels of Cognitively Guided Instruction (Adapted from Fennema et al., 1996) 
 

In this study, the researcher blends aspects of the Teacher Development Experiment and 
the Three-Tiered Teaching Experiment and proposes a different approach to professional 
development. This trajectory-focused approach is called a Trajectory-Based Collaborative 
Teaching Experiment (TBCTE). Different from Simon’s Teacher Development Experiment, the 
TCTE is a close collaboration working one-on-one with a teacher as they learn to use learning 
trajectories specific to the measurement content domain. The CGI levels of professional 
development were used as a lens for viewing teacher change as the researcher supported the 
teacher as she developed tasks and assessed two of her students.   
 

Methodology 
In order to identify essential aspects of the TBCTE I worked with one, fifth grade teacher 

from the rural Midwest over the course of 18 weeks. Because the Measurement Learning 
Trajectory (MLT) was the focus of the professional development experience, the teacher was 
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given opportunities to explore her own concepts of measurement and students’ measurement 
misconceptions prior to learning the MLT. Weekly Professional Development Tasks (PDTs) 
were used to provide the opportunity for the researcher to hypothesize about the teacher’s 
responses and refine and reorganize conceptions about the mechanisms that were promoting the 
teacher’s growth, ultimately helped the researcher adjust and refine the model of the teacher’s 
thinking.  Such mechanisms included: critiquing example problems for strengths and 
weaknesses, role-playing, presenting her own problems to the entire class, determining which 
trajectory levels different tasks addressed, and writing performance assessment tasks for her 
students. 

Before the teacher was introduced to the MLT her students were given a measurement 
assessment. She was also asked to read related literature and reflect on those readings prior to 
learning about the MLT. The researcher observed two whole class lessons and used these 
observations to document an initial interpretation of the teacher’s CGI Level in an attempt to 
build an initial model of her thinking. Weekly PDTs were then created and posed to the teacher. 
The researcher made predictions about how the teacher would respond to the tasks so these 
predictions could be prepared to the teacher’s actual responses. This cyclical process of model 
building through predictions and examinations using PDTs continued throughout the study as the 
researcher gradually refined, expanded, or rejected the current interpretations of the teacher’s 
growth (Lesh & Kelly, 2000). Readings, reflections, meetings with the researcher, and PDTs 
continued throughout the entire 18 weeks of the professional development experience. 

In week four the MLT was introduced as a tool for assessing student knowledge of length 
and area. Two students were chosen based on parent permission and their initial assessments. 
After the teacher had time to practice using the MLT to analyze other students’ thinking 
strategies and discuss her thoughts with the researcher, they individually reviewed the two focus 
students’ initial assessments in an effort to determine the level at which the two students were 
operating for the majority of the length and area tasks. Once an initial level of student thinking 
was identified, the teacher predicted how she thought the student would respond to new tasks 
that were presented in individual interview sessions. Following each interview the teacher was 
encouraged to make a claim about the student’s length or area knowledge based on the learning 
trajectory. This cycle of planning, predicting, and checking started in week seven and continued 
for six sessions per student, requiring 12 weeks to complete this cycle with the pair of students as 
the teacher gradually reorganized, expanded, or rejected her current interpretations of their 
thinking level. 

  
Results 

Weeks 1-3 CGI Level 3 
Based on my observations and the teacher’s reflections from the first three weeks, the initial 

model of the teacher’s measurement instruction was at a Level 3 on the CGI professional 
development framework because she “elicits and attends to what children share but doesn’t use 
what is shared to make instructional decisions.” The researcher looked for changes in the 
teacher’s ability to elicit student thinking in the individual interviews and her use of that 
information to inform whole-class instruction and assessment. Such changes informed decisions 
to make new models of the teacher’s pedagogical content knowledge throughout the remaining 
fifteen weeks of the professional development program.  
Weeks 4-7 Level 4-A 
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Following these first three weeks, the teacher was given weekly PDTs to assess her use of 
measurement content knowledge and her knowledge of the measurement learning trajectories to 
guide instruction and assessment. These tasks were used to predict her responses based on the 
knowledge the researcher gained in week three. Her actual responses were then used to guide the 
creation of the next PDT. Along with these tasks the teacher was introduced to the trajectories 
and began planning and conducting the individual interview sessions with the two focus students. 
In the following weeks the teacher also shared ways that she had changed whole-class instruction 
and invited the researcher into her classroom on two occasions to observe measurement lessons 
she had created. These events form the context for the adaptation and refinement of the model of 
her thinking at various CGI instructional levels. 

During weeks four through seven, the teacher was given many opportunities to use the MLT 
as a tool for analyzing assessment problems as well as her students’ answers to measurement 
tasks. Also during this time frame, without a prompt from the researcher, the teacher 
significantly altered a measurement lesson to incorporate the information she had learned 
through the trajectory use and the measurement articles she had read. At the conclusion of week 
seven the teacher’s actions demonstrated instruction at the 4-A Level because, on more than one 
occasion, she had provided “opportunities for children to solve a variety of measurement 
problems and elicited their thinking.”  

Another indication of Level 4-A was when the teacher explained how she had discovered that 
her students did not know that a meter stick was comprised of 100 centimeters. She explained 
that she addressed the meter stick misconceptions the following day by engaging students in a 
discussion about the units on the meter stick, which indicated that she had based instructional 
decisions on general knowledge about her students’ measurement thinking. Over the course of 
the next 11 weeks, the teacher continued to read measurement articles, complete weekly PDTs, 
and began the interviews with the two focus students. 
Weeks 8-11 Level 4-A 

The teacher’s responses to the PDTs for weeks eight through ten indicated that she indeed 
understood the importance of the problem statement. She changed two problems to better assess 
her students’ knowledge of length. These changes were a result of her knowledge of 
measurement misconceptions she had learned about from the readings. The model of her 
thinking was not changed as a result of these three weeks and remained at Level 4-A because she 
had changed measurement problems to allow “opportunities for children to solve a variety of 
measurement problems and elicited their thinking.” 
 During week eight the teacher described a change in a task she had done in previous years. 
She changed this task due to what she had learned about one focus student’s difficulties with 
understanding the difference between area and perimeter when given a rectangular grid instead 
of labels on the sides of a rectangle. The teacher asked her class to make a rectangle that had a 
perimeter of 12 units using square tiles. No student was able to correctly do this task. Her 
findings are consistent with prior findings (Chappell & Thompson, 1999) that illustrate the 
difficulty students have when asked to produce a drawing to show a specific perimeter. Although 
the teacher suspected there would be some students who struggled with this task, she was 
surprised that no student could do this task correctly. 
Weeks 12-15 Level 4-A 

Over the course of these four weeks, the length and perimeter TEs were completed and work 
with area began. By this time in the program, the teacher had gained confidence in her 
measurement knowledge and was taking on more of a lead role in the TE task creation by asking 
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more probing questions during the TEs. For a PDT task, she was asked to find an area problem 
she typically assigns as homework and change the task to make it a better task for informing her 
about students’ knowledge of area. The problem the teacher chose to change showed a three by 
four grid made of toothpicks and asked students to determine how many toothpicks formed the 
perimeter and to find the area of the figure. She changed this task to include the length of the 
tooth picks as 1 cm long and asked her students to draw a line that would be equal to the length 
of the perimeter of the rectangle. In addition to having the students find the area, she asked her 
students to draw a square that was the same size as one of the area units. The teacher explained 
the rationale for her changes. “I would like to make this into a problem where the student was 
using construction to help them ‘see’ or ‘understand’ the difference between perimeter and area 
units.” Her attention to perimeter and area beyond formula use indicated that she had a better 
understanding of how to address her students’ misconceptions about these formulas.  

The changes the teacher made to the homework question indicated that her knowledge of 
student misconceptions motivated her to focus students’ attention on the notion that perimeter 
was composed of length units and area was composed of square units. There was not substantial 
evidence to indicate there was a change in the teacher’s model for teaching measurement during 
these four weeks. She had changed measurement problems to “elicit students’ thinking” and had 
used information about Eliza’s struggles with an area task to make a decision about how to 
rewrite the task for the whole-class final assessment. These actions fit with Level 4-A, which is 
indicated when “Instructional decisions are usually driven by general knowledge about her 
students’ measurement thinking, but not by individual children’s measurement thinking.” 
Weeks 12-15 Level 4-A 

During the last TEs the teacher exhibited a great deal of confidence with her knowledge of 
students’ misconceptions and carried out the interviews with little assistance. She made decisions 
based on her understanding of the role each task played in her quest to assess students’ 
understanding of measurement and move them into higher levels of thinking. The post-
questionnaire exhibited the teacher’s changing conceptions about measurement teaching and 
learning. Her responses to the post-questionnaire focused on the role the MLT should play in her 
teaching practices. She used more specific measurement ideas to explain her understanding of 
the big ideas of measurement in the post-questionnaire. She wrote, “The importance of equality 
of length, conserving space and iterating units need to be mastered before I can expect them to 
understand more advanced ideas.  Looking at my questioning techniques from a different angle, 
not only as a probe, but also as a way to encourage them to cross over into that next level 
conceptually is something I think about more often.” There was no evidence to indicate that the 
teacher had moved beyond Level 4-A and into Level 4-B which would require her to base 
instructional decisions on her “knowledge about individual children’s measurement thinking in 
the classroom.” 
 

Discussion 
The findings of this study indicate that although the teacher’s measurement content 

knowledge changed little, her understanding of students’ misconceptions about measurement 
conceptions improved. The critical aspects of the professional development experience were the 
measurement readings, the PDTs, the teacher’s reflection practices, the MLTs, the cyclical nature 
of the TEs, and the weekly collaborative meetings. The order in which these components were 
incorporated into the experience was also important to the manner in which the components 
impacted each other. For example, the findings indicate that the readings were critical in 
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sparking the teacher’s curiosity about her own students’ measurement thinking and learning and 
validated the need for the trajectories. This helped in the teacher’s acceptance of the MLTs and 
prompted her to develop measurement lessons on her own. Later the intense cycles of reading 
and applying the information in the form of TEs helped the teacher make sense of the MLTs. 
After the MLTs were introduced, the researcher found that the PDTs served as a means to give 
the teacher experiences that supported her developing understanding of and use of the MLTs to 
assess student responses. 

Through the teacher’s participation in the professional development experience using the 
MLTs, she shifted on the CGI scale for teacher knowledge from a Level 3 to a Level 4-A. By 
utilizing both a CGI model for professional development and a learning trajectory for length and 
area, this study offers unique insight into how this combination might impact a teacher’s 
professional growth. The researcher anticipated that this model of a professional development 
program would give readers a clear picture of the developmental processes involved when a 
teacher and a researcher collaborated in an attempt to help the teacher and researcher grow as 
professionals.  

As researchers and professional developers work to determine ways in which practicing 
teachers might incorporate research into their own classrooms this teacher’s incorporation of the 
ideas she read about into her own classroom, indicate one possible avenue. Also, the research-
based learning trajectories were accepted and used by the teacher as a lens to view and make 
sense of assessment and student learning. The findings indicate that the cyclical nature of the 
readings and the application of that material into the TEs helped the teacher grow as a 
professional. This study offers a promising method for incorporating research into teachers’ 
everyday practices.   
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This study discusses the evolution of one teacher as a result of participating in professional 
development focused on children’s mathematical thinking. Viewing her interactions with 
students in video-taped problem solving interviews from the beginning and third year of her 
participation in the professional development, prompted her to reflect on the changes that she 
had made. She reported that she had begun to capitalize on mathematics as it came up 
throughout the day, as well as valued student strategies rather than their success at solving 
problems. These perceptions were consistent with previous research findings even though 
different student populations were examined. 
 

In an attempt to improve teacher quality in mathematics, the National Council of Teachers of 
Mathematics (NCTM) developed and set forth their 1991 Professional Standards for Teaching 
Mathematics, which provide goals to guide teachers in continuous learning and improvement. As 
part of these goals, teachers are encouraged to participate in “appropriate and ongoing 
professional development” (NCTM, 1991). The rational for encouraging teachers to participate 
in continuous learning is to enhance their reflective and metacognitive processes. Ideally, they 
will create opportunities for their students’ metacognitive mathematical thinking, as well as share 
best practices for teaching mathematics with other colleagues (NCTM, 2000).  

To have the greatest impact on teacher improvement and student achievement, prior work 
suggests that professional development programs be rigorous, ongoing, and provide teachers 
with the opportunity to engage in collegial exchanges (Darling-Hammond, Wei, Andree, 
Richardson, & Orphanos, 2009). Stigler and Hiebert (cited in NCTM, 2000, p.18) have found 
that “collaborating with colleagues regularly to observe, analyze, and discuss teaching and 
students’ thinking or to do ‘lesson study’ is a powerful, yet neglected, form of professional 
development in American schools”. Fortunately, there has been a push to increase the number of 
reform based professional development programs and investigations of the impact of those 
programs on teacher practice. This study examined the effects of one such reform based 
professional development program (PDP) and provides insight into the changes of one teacher’s 
mathematical instruction in an urban school district in northern California.  

 
Theoretical Framework 

Our study investigated the effects of a PDP using the principles of Cognitively Guided 
Instruction (CGI), (Carpenter, Fennema, Peterson, Chiang, & Loef, 1990). In professional 
development programs using CGI, leaders share “an organized set of frameworks” (Franke & 
Kazemi, 2001, p. 103) of the different types of mathematical problems children solve and the 
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invented solution strategies they employ. Not only is there a focus on the different invented 
solution strategies, but also on the explanations students provide to justify those strategies. If 
teachers are aware of different solution strategies and how students explain their thinking, they 
can help students verbalize their thinking, make more sense out of what their students are 
thinking, and more effectively plan instruction and guide classroom discussions (Franke, 
Carpenter, Levi, & Fennema, 2001). 

Research investigating teachers, who have participated in CGI PDPs, and their pedagogical 
beliefs have shown that by the end of the professional development, teachers had stronger beliefs 
in students’ abilities to solve problems without explicit instruction. These teachers also tended to 
created environments in which students were encouraged to develop their own solution strategies 
and share them with others. They also saw their role as a guide who questioned children and 
supported their thinking when the need arose (Fennema, Carpenter, Franke, Levi, Jacobs, & 
Empson, 1996). This research is over 15 years old now and conditions for teachers have changed 
tremendously during that time. This study examines the degree to which CGI continues to foster 
this kind of change for teachers. 
The research questions that guided our investigation were: 

• How does one teacher in a CGI PDP perceive that her participation has impacted her 
teaching? 

• What is one teachers’ perception of the evolution of her interaction with her students? 
In order to investigate these questions, we interviewed a participant from our CGI PDP to 

gain insights into her evolution as a mathematics teacher. Given the variability between teachers, 
such as differing personal and professional experiences, levels of education, or previous 
professional development, we focused on one particular teacher who took advantage of what was 
offered, a sort of best case scenario. Mrs. K, a first grade teacher who has taught for 12 years and 
is bilingual, was chosen to be interviewed because she had participated in all three years of our 
CGI PDP. She often provided thoughtful comments during after school meetings and she 
implemented many of the strategies discussed in the professional development which was 
evident from classroom observation and student interviews. 

Methods 
In the spring of the 2007-2008 school year, professional development began in a small urban 

school district in northern California with a high percentage of English Language Learners. This 
three year grant-supported program invited kindergarten through second grade teachers from 
around the district to join each year. Unlike previous CGI PDPs, our program situated interviews 
and other professional development material within the district and teachers’ classrooms instead 
of relying on original CGI materials, which depicted homogeneous classrooms quite different 
than those found within the teachers’ district. This is done to change teachers’ preconceive 
notions and promote the idea that children from diverse ability, cultural, economic, and language 
backgrounds are capable of problem solving without direct instruction.  

As part of the professional development, teachers attended monthly after school meetings to 
discuss students’ mathematical thinking by viewing video-clips of their students solving 
problems; listening to audio-clips of students in classrooms sharing solution strategies; and 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1604



PME-NA 2011 Proceedings 

 

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics 
Education. Reno, NV: University of Nevada, Reno 

 

learning ways to scaffold critical thinking during problem solving. During the after school 
meetings, teachers were given story problems to present to their students and a member of the 
professional development team scheduled a time to visit each teacher’s classroom to observe and 
audio-tape student solution strategies. The teachers also selected three students to interview 
during the fall and spring of each year, which provided them with an opportunity to implement 
strategies learned in the professional development in a one on one session with their students. 
These interviews provided teachers with an opportunity to develop elicitation and questioning 
strategies. Because these interviews were videotaped, they, as well as classroom observations 
and audio recordings, formed the basis of our instructional material to present during meetings to 
elicit authentic, meaningful comments and begin dialog amongst the teachers.  

In the summer of 2010, we invited Mrs. K to discuss her impressions of the PDP as well as 
perceived changes in her teaching as a result of her participation in the program. In the summer 
interview, the two authors of this paper used a semi-structured interview protocol to discuss with 
Mrs. K her experiences in the professional development (Merriam, 2009). Videos of past 
interviews with students were also used as artifacts to spark discussions and also to provide a 
diachronic report, which described phases of development or change that captured her evolution 
as a teacher (Weiss, 1994). The interview occurred at the university office of one of the authors, 
which contained the audio/video equipment used to play the student interviews. The interview 
lasted about two hours, and was audio recorded in order to retain the original data as well as to 
ensure that our interpretation and analysis was accurately constructed out of the participant’s 
words (Seidman, 2006). 

Our goal was to provide an account of one teacher’s evolution as a result of participating in a 
child centered professional development. The interview was transcribed to enable the authors to 
make judgments about the data without imposing their own reference frame too early in the 
analytic process (Seidman, 2006). After transcribing, the transcripts were read in more detail but 
particular attention was devoted to segments when Mrs. K specifically discussed changes in her 
practice and/or perceived differences in her interactions with children.   

Results 
Reflecting on Practice 

We began our interview with Mrs. K by asking her to reflect on her three years in the PDP, 
and in particular what changes she had noticed in her instruction. Throughout the interview, Mrs. 
K described her realization that mathematical concepts and ideas were not only occurring during 
her math lessons, but that there were opportunities to explore these concepts throughout the 
school day. She described her process of math instruction before the professional development 
as, “I got to teach math, let’s get our lesson, let’s get through it, and then we’re moving on to a 
new subject…The lesson is just one day and we turn the page and move on.” Her instructional 
process was one that focused on efficiency and getting through the material to move on to 
something different and that by doing this, she believed that her students understood the material.  

After participating in the professional development and reflecting on how her math 
instruction had changed, she stated,  
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I really have noticed that there are math concept ideas throughout the day, it’s not 
just math time. You look for opportunities to do story problems. I really recognize 
moments throughout the day where it’s just so easy to pose a question…  

Mrs. K recognized that although it may seem more efficient to follow a pacing guide or the text 
book and quickly move through topics, it is insufficient and that to accurately gauge how well 
her students were making sense of the mathematics, she had to take the time to incorporate the 
math throughout the day, listen, and observe her students. She also realized that the way she 
taught previously was underestimating what her students were able to accomplish. 

She discussed a previous perception of her role as a classroom teacher indicating, “I pretty 
much knew everything and I’m going to tell you everything and then you’ll walk away knowing 
things.” But after engaging in the PDP, she stated that, “I teach completely differently as a result 
and I give kids more opportunities. We are learning together. It’s kind of exciting. It takes a lot 
of pressure off.” Here we see Mrs. K’s shift in perceptions of her role as transmitter of 
information to facilitator. Where other teachers may find it more difficult to guide students 
through the problem solving process, Mrs. K found this process to be exhilarating, less stressful, 
and lead students to anticipate math throughout the day. She explained that her students “are 
always looking for a way to solve the problems themselves. Before I even know that that’s what 
I want to do, they’re already doing the numbers.” This process slowly became a classroom norm 
and children began to anticipate mathematics on a daily basis; without prompting, children began 
mathematizing for themselves.  

Not only did Mrs. K describe the evolution in her teaching but she also mentioned how her 
students responded in a positive way to her teaching methods. She described her students as 
becoming more confident in their mathematical abilities and enjoying the process.  

Everything is a way to do math and they love it. It’s surprising how much they 
actually enjoy it. It really surprised me, they look forward to it…I’ve noticed I can 
let go and students are learning from each other. And they feel good about it. 
They look forward to it. They are looking forward for opportunities to show what 
they know. 

With this change in teaching practices and in her role as a teacher, Mrs. K created an 
environment where student thinking was valued and students were able to take charge of their 
math learning. 
Viewing of Student Interviews 

After discussing the perceptions in her practice, we then asked Mrs. K to view video-clips 
from two sets of her student interviews. One set was recorded after her first year participating in 
the PDP and the second set was recorded after her third year. We decided to view student 
interviews that were recorded after her third year of participation first for her to identify potential 
differences. Each set of interviews were about 15 minutes in length and we watched short 
segments and asked her to discuss her interpretation of the child’s thinking and/or her scaffolding 
techniques. The following results will focus on a particular type of story problem, a Compare 
Difference Unknown (CDU) problem, selected because these problems have been found to be 
especially difficult for children. (Fuson, Carroll, & Landis, 1996)  
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This first segment, recorded after her third year in the PDP, was with a child Luis, a 
designated English Language Learner (ELL). Luis struggled at the beginning of the school year 
but by the end of the year, he had improved academically even though his English language was 
developing. The first text box describes what occurred in the video-clip as he solved the 
following story problem:  

• Julissa has ten flowers and Brianna has 16 flowers. How many more flowers does 
Brianna have than Julissa? 

 

 
Mrs. K actively interacted with Luis. She revisited the specifics of the problem with him, 

asking him to consider the relative size of the quantities. When he gave her the wrong answer, 
“2” she asked him to consider how his cubes related back to the problem, “what are you holding 
in your hand?” She then evoked the work that he had previously done (“they both have one, they 
both have two…” by asking him, “when you put them next to each other, who has more 
flowers?” Mrs. K’s interactions with Luis were not extensive but it is clear from her questions to 
him that she was actively listening to his comments and closely observing his work. She was 

[Luis began counting out cubes to represent each set. He made a set of eight which he 
miscounted as ten and connected them together to make a long stick of cubes and then he 
made another long stick of 16. He then stopped, reread the problem, and lined up the two 
sticks next to each other.] 

L: They both have one, they both have two, they both have three, they both have four, they 
both have five, they both have six, they both have seven, they both have eight. 

[He realized that he was missing two more cubes on Julissa’s row and added two more 
cubes.] 

L: They both have nine, they both have ten. [He stopped and looked at the remaining cubes.] 
Julissa has ten and Brianna has 16. 

Mrs. K: Right, how many more does Brianna have than Julissa? 
[He reread the problem out loud.] 
Mrs. K: She has 16, Julissa has ten, so that means Brianna has more right? How many more 

does she have? How many more flowers? 
L: Two flowers. 
Mrs. K: Well, what are you holding in your hand? We are pretending those are what? 
L: Flowers 
Mrs. K: Ok, show me Julissa’s flowers. [He held up the stick with ten cubes.] Show me 

Brianna’s flowers. [He held up the stick with 16 cubes.] So when you put them next to 
each other, who has more flowers? 

L: Brianna 
Mrs. K: How many more flowers does she have? 
[He looked at the cubes which were next to each other and counted the ones that were extra.] 
L: Six 

Teacher-Student Interview: Spring 2010   
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actively supporting him without taking over his thinking. The next text box is Mrs. K’s reaction 
to the previous video-clip.  
 

 
In this reflection of the video, Mrs. K is not being critical of the child and she is noticing that 

he could build the sets but did not know what to do with them. She also realizes that Luis needs 
more experience to be facile with this problem type. 

In the next segment we examined Mrs. K’s reaction to an interview during her first year in 
the PDP. The student, Daniel, a native English speaker, was solving the following problem:  

• Erica has 12 stuffed animals. Melissa has nine stuffed animals. How many more stuffed 
animals does Erica have than Melissa? 

 

 
While watching her interview, Mrs. K responded with the above quote which acknowledged 

that her interaction was not productive. The next text box continues with the teacher and student 
interview. 

 
In this episode, Mrs. K only repeated the problem to Daniel as opposed to the first episode 

with Luis where she questioned and supported him in figuring out the answer. At this point in her 

Mrs. K: He knows how to compare but he just doesn’t know. He knows how to set it up but 
doesn’t know where to go from there. He’s on his way.  

Researcher: He kind of lost his flow. So I think that shows that comparison problem isn’t 
that solid for him yet. You didn’t tell him what to do, he figured it out finally. 

Researcher-Teacher Interview: Summer 2010  

[Mrs. K read the problem twice for the student. After hearing the problem the second time 
Daniel wrote on his paper 12+. Mrs. K then read the problem a third time.] 

D: Ok. 
Teacher-Student Interview: Spring 2008 

 
Mrs. K: Me rereading the problem doesn’t do anything. Poor kid, oh my gosh! 

Researcher-Teacher Interview: Summer 2010 

[He crossed out the plus sign next to the 12 and wrote the number nine under the 12 and then 
wrote a six under the nine.] 

D: Twelve minus nine is six. 
Mrs. K: Is that right? You want to check with the cubes? You can.  
[He started counting out cubes.] 
Mrs. K: Count out loud so I can hear you. 
D: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 [He counted out loud as he connected the cubes together 

to make a stick. He then started making another stick of six. He lined them up and 
counted backward starting at 12 and ending at six. He then looked up at Mrs. K.] 

Mrs. K: Would you like me to read it again? [They read the problem again together and 
then she reread it two more times.] 

Teacher-Student Interview: Spring 2008 
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professional development she did not know how to offer support and so took a passive role in her 
interaction with the student.  

 
This observation suggests that she sees other ways she could have supported his thinking 

rather than just repeating the problem. She recognizes that she could have asked him about his 
strategy and thinking, especially in the six. At this point in her professional development, she 
realized that questioning the student’s strategy/thinking can inform her interactions with the 
child. As she noted, “For me I was just looking for the correct answer not the process in getting 
there.” 
 By observing these two episodes of her student interviews, Mrs. K could see the 
difference in her interactions. She reported that she was unclear as to what her role was in the 
interaction, so she chose to restrict her activity to restating the problem. After viewing this 
second episode, Mrs. K discussed how she was thankful to have seen these two episodes, 
especially at that point as opposed to after her first year because “if I would have seen it, I 
wouldn’t have known what to compare it to. So I think this is actually effective. For me looking 
at it, I really see a difference.” This suggests that her interpretations of interactions with children 
had changed significantly from the beginning to the end of the PDP, with her having a much 
better sense of how to support children in figuring things out for themselves at the end of her 
three years. She now values students’ mathematical thinking rather than looking exclusively at 
their success in solving problems.  

Discussion 
In her reflection of the changes she had noticed, Mrs. K mentioned that she had perceived 

changes in her role as a teacher, especially in the way she approached her mathematical 
instruction and in the way her students participated in mathematics in the classroom. Two of the 
most important roles for teachers in reform based classrooms are creating environments where 
students explore, justify their solutions, and make sense of the mathematics; and guiding 
activities and discussions while not taking over students’ thinking (Hiebert, Carpenter, Fennema, 
Fuson, Wearne, Murray, et al., 1997). Instead of teaching in a didactic way using algorithms and 
direct instruction, teachers should encourage students to develop their own solution strategies 
and help make connections between manipulatives, mental arithmetic, and written methods 
(Verschaffel, Greer, & DeCorte, 2007; Fuson & Burghardt, 2003). Mrs. K, with the help of the 
PDP, viewed herself as a facilitator as opposed to a distributor of knowledge and she created an 
environment in which she and her students were learning together. Her comment “I have taken 
the time to listen to them…and time to observe the strategies that kids use,” highlights this 
change in her role and the new focus of her instruction. 

By examining student interviews from Mrs. K’s first and third year of participation in the 
PDP, we were able to compare and visualize the evolution which she had undergone while in the 

Mrs. K: Oh my gosh! I’m torturing him. This is horrid! I’m not even questioning why he’s 
holding on to that six…I’m not giving him any direction you know, there’s nothing. He’s 
just out there trying to do something.  

Researcher-Teacher Interview: Summer 2010 
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program as opposed to relying on self assessment. It is unclear if this evolution would have been 
evident had we only used the original CGI professional development materials. The CDU 
problems were of particular interests because research has shown that these problems are one of 
the most difficult problem types for children to solve, as there is no clear action stated within the 
problem (Fuson, Carroll, & Landis, 1996). Also, children have limited experience with this type 
of problem as they are more accustomed to joining, separating, sharing, counting groups of 
items, and identifying greater/lesser quantities, but rarely do they ever calculate the difference. 
Because of this lack of action in the problem, teachers too find it difficult to scaffold students 
without explicitly teaching them how to solve them. In the case of Luis, Mrs. K was able to 
skillfully question him so that he was able to figure out the solution for himself without her 
telling him how to do so directly.  

Through the interview with Mrs. K, it appears that the PDP was a valuable experience that 
had a positive effect on her mathematical instruction as well as having beneficial effects on her 
scaffolding skills and interactions with their students. Although only one teacher’s experience 
was presented here, several other teachers have expressed similar perceptions and experiences in 
their classrooms and interactions with their students. We have continued our professional 
development in this school district by incorporating third and fourth grade teachers into the 
program. We anticipate similar outcomes from this program for developing teachers. 
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This paper investigates a group of elementary teachers’ uses of a learning trajectory to making 
sense of children’s mathematics during professional development. Teacher learning activities 
focused on understanding students through observation and analysis of written work, as well as 
considering next instructional steps in response. Results suggest that mathematics learning 
trajectories can support teachers in identifying, interpreting, and responding to evidence of 
student cognition. 

 
As stated by Principles and Standards for School Mathematics (NCTM, 2000), assessment 

“should be an integral part of instruction that informs and guides teachers as they make 
instructional decisions” (p. 22). Though work to improve large-scale assessment systems and 
accountability models has received much attention recently, Black and colleagues (2004) remind 
us of the importance of considering what happens “inside the black box” of classrooms. Informal 
classroom assessments, such as observing students engaging in mathematical tasks or reviewing 
their written work, have the potential to improve student learning provided teachers use these 
assessments to guide instruction. 

Some researchers have reported the benefits of having a framework for understanding the 
mathematics of children to interpret students’ mathematical work (e.g. Carpenter, Fennema, 
Franke, Levi, & Empson, 1999). Such structures for making sense of students’ approaches to 
mathematical concepts assist teachers in identifying likely understandings and misconceptions 
that may direct teachers’ instructional choices and ultimately support greater student 
achievement (Carpenter et al. 1999). One such structure currently receiving attention is the 
construct of learning trajectories (LTs). Some have conjectured such positive benefits of LTs 
(Confrey & Maloney, in press; Corcoran, Mosher, & Rogat, 2009), and early research on the 
ways in which teachers may use their understandings of LTs in classrooms suggests that they 
may serve as a framework for understanding students’ mathematics (Wilson, Mojica, & Confrey, 
2010).   

The purpose of this paper is to explore teachers’ uses of an LT in identifying, interpreting, 
and responding to evidence of students’ mathematical thinking when observing students and 
when analyzing written work on instructional tasks. The research reported describes the ways 
that a group of practicing elementary teachers used their knowledge of an LT to make sense of 
students’ mathematical activity by addressing the following research questions: In what ways do 
elementary mathematics teachers in a professional development setting use their knowledge of a 
learning trajectory to understand students through the classroom assessment practices of 
observation and analysis of written work? In what ways do they respond instructionally?  
 

Perspectives 
The current notion of learning trajectories is related to Simon’s (1995) seminal work on the 

Hypothetical Learning Trajectory, the idea that a teacher coordinates his or her knowledge, 
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learning goals, and plans for instructional activities to form a hypothesis about a student’s 
learning process. In recent years, researchers have built upon this idea by synthesizing research 
and empirically supporting descriptions of the ways student understanding evolves over longer 
periods of time (Confrey & Maloney, in press). Though multiple definitions exist among 
researchers, most agree that LTs are descriptions of the varying levels of reasoning sophistication 
held by students as they refine their informal understandings into more adequate, complex 
conceptions. This study uses Confrey et al.’s (2009) definition which states that a LT is “a 
researcher-conjectured, empirically-supported description of the ordered network of constructs a 
student encounters through instruction (i.e., activities, tasks, tools, forms of interaction, and 
methods of evaluation), in order to move from informal ideas, through successive refinements of 
representation, articulation, and reflection, towards increasingly complex concepts over time” (p. 
347). From this perspective, learning is closely related to students’ instructional experiences, 
highlighting the teacher’s role in supporting student learning (Confrey & Maloney, in press).  

In Knowing What Students Know (NRC, 2001), the authors of the report cite a common 
principle for all assessment to be reasoning based on evidence. Assessments serve various 
purposes in various contexts, from the large-scale evaluation of programs to the examination of 
individual student achievement. Of particular relevance to this paper is the report’s point 
concerning classroom assessment. It describes classroom assessments as “informal methods for 
determining how students are progressing in their learning” that are used by teachers “to inform 
day-to-day and month-to-month decisions about next steps for instruction”; such assessments 
include “classroom observations, written work, homework, and conversations with and among 
students” (pp. 37-38).  

The report presents a three-part framework that underlies the assessment process called the 
Assessment Triangle (figure 1). The framework illustrates how three facets of assessment, one at 
each vertex of the triangle, are integrally related. The Observation vertex represents the “a set of 
beliefs about the kinds of observations that will provide evidence of the students’ competencies” 
(p. 44). The Interpretation vertex represents the process by which one makes sense of evidence. 
The Cognition vertex represents a model of cognition and learning for a particular domain of 
knowledge. Each of these facets works together for an assessment to draw conclusions about 
what students know based on their performance.  

This paper explores the possibilities of LTs serving as a model for student cognition at the 
Cognition vertex. It seeks to characterize the observations and interpretations teachers make 
during classroom assessments when an LT is taken as a model of cognition. As classroom 
assessments may be made for the purpose of informing and guiding instruction, it also 
investigates possible steps that teachers might take in response to their assessment of student 
learning. 
 

 
Figure 18. Assessment Triangle (NRC, 2001). 

 
Methods 
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Design studies methodology was used to investigate the ways in which teachers used their 
understandings of an LT to observe students and to analyze written work. Design studies seek to 
engineer learning environments and study the learning that results from them (Confrey, 2006). 
They are based on the iterative design, implementation, and refinement of conjectures of how a 
particular form of learning unfolds (Cobb, Confrey, diSessa, Lehrer, and Schauble, 2003; 
Confrey & Lachance, 2000). For this study, a professional development experience was designed 
for elementary teachers to support their transition to newly adopted state standards that 
represented increased content knowledge on rational number by focusing on a single learning 
trajectory for rational number. 

A learning trajectory for equipartitioning (EPLT) (Confrey et al., 2009) was selected as a 
context for studying the ways teachers might use knowledge of an LT. Confrey and her research 
group define equipartitioning as the set of cognitive behaviors that have the goal of producing 
equal-sized groups or parts from collections, single wholes, or multiple wholes such as is 
typically encountered by children in the context of ‘fair sharing’ (Confrey et al., 2009). The 
EPLT describes how children’s experiences with fair sharing develop into an understanding of 
partitive division across the elementary years. Its levels describe the strategies, mathematical 
practices, emerging relationships, generalizations, and misconceptions that children may 
encounter as they gain proficiency in an understanding of a ÷ b as b equal-sized parts of a 
(Confrey, Maloney, Wilson, & Nguyen, 2010). A central part of the EPLT is a description of the 
ways that children work to coordinate three equipartitioning criteria. When equipartitioning, 
students must (1) create the correct number of groups or parts, (2) create equal-sized groups or 
parts, and (3) exhaust the whole or collection. The EPLT outlines how different parameters, such 
as the number of parts created (e.g. repeated halving is easier than creating odd numbers of parts) 
or the type of whole (collections, a single whole, or multiple wholes) affect the level of difficulty 
of instructional tasks. 

Twenty hours of professional development on the EPLT was designed for elementary 
teachers. In five 2-hour after-school sessions, teachers studied the EPLT as well as engaged in 
instructional practices focused on elucidating, understanding, and using student thinking in 
instruction. These practices included observing and conducting clinical interviews with students, 
selecting and adapting instructional tasks, and analyzing students’ written work. The remaining 
ten hours involved classroom-based activities with students pertaining to these practices (Wilson, 
2009). 

Thirty-three K-2 teachers from two rural schools in the southeast participated in the study: 11 
Kindergarten, 11 First Grade, and 11 Second Grade. Of these 33 participating teachers, 88% 
received undergraduate training in elementary education and 24% held a master’s degree in 
education. Their average number of undergraduate credit hours was 6.4 hours in mathematics 
(SD = 4.1 hours) and 4.4 in mathematics methods courses (SD = 2.1 hours). Six of the 
participating teachers were currently enrolled in a graduate program in elementary education. 
Two of the teachers were certified by the National Board of Professional Teaching Standards in 
Elementary Education. On average, the teachers had 12.0 years of experience (SD = 7.2 year), 
9.2 of which were with students in grades K-2 (SD = 5.8 years). Upon completion of the 
professional development, participants earned two continuing education units toward license 
renewal.  

Primary data sources for this investigation are three activities from the professional 
development. In the Session III Student Work Analysis activity, grade-level groups of teachers 
analyzed various hypothetical written work samples from students engaged in fairly sharing 
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circles and rectangles among various numbers of people. They were guided by a series of 
questions about what the students may know or not know about equipartitioning, what kinds of 
feedback they would provide to the student, and what next instructional moves they might take 
with the student. Later in the professional development, teachers met in cross-grade groups 
during their final meeting (Session V) to analyze two samples of written work from a 
Kindergartener, Emma, who had fairly shared a circle among three and four people. Their 
discussions were guided by questions similar to those in the previous written work analysis 
activity. The third source was an Interview Analysis activity that immediately followed the 
Session V Student Work Analysis activity. Teachers viewed a clinical interview of Emma fairly 
sharing rectangles and circles among two, four, three, and six people. Before each task, the 
recording was paused and teachers anticipated how they believed Emma would complete the 
next task. After viewing the episode, the recording was again paused while teachers summarized 
what they believed Emma knew about fair sharing and predicted her approach for the next task.  

Participants’ written responses to the three activities served as data for the analysis. In 
addition, video and audio recordings of each of the three activities were viewed to identify 
critical moments (Powell, Francisco, & Maher, 2002) for transcription. Written responses and the 
transcripts were coded for teachers’ observations, interpretations, and conjectured responses. 
Analysis was conducted using the constant comparison method (Glaser, 1992), allowing for the 
identification and distillation of patterns within each of these categories. 
 

Results 
Observation  

An analysis of the instances of observation indicates that experience with the EPLT during 
the professional development sensitized teachers to students’ behaviors and verbalizations that 
were indicative of particular approaches to instructional tasks. In the Session V Student Work 
Analysis activity for example, the work samples had been inscribed by the student with “1 = 3” 
on each unequal-sized part when using vertical lines to share among three people and “1 = 4” on 
each fourth when sharing among four. Some of the teacher groups noticed this inscription and 
rather than dismissing it as mathematically incorrect, the teachers used this as evidence to further 
refine their understanding of Emma’s thinking about equipartitioning. As one teacher in a group 
stated, “I think she’s trying to say one of the four instead...” The teacher’s comment may indicate 
that she believed that Emma was attempting to meet the three equipartitioning criteria by 
exhausting the whole and making the correct number of equal-sized parts as described by the 
EPLT. 

Also, the teachers were sensitive to students’ verbalizations. Recall that the interview viewed 
by teachers depicted Emma creating written work for sharing among three that the teachers had 
just examined. During the Interview Analysis activity, many of the teachers commented on 
Emma’s utterance, “it’s bigger than you think,” believing that this indicated Emma’s 
understanding of the need for equal-sized parts when sharing among three but her inability to 
create them on a circle. Drawing on their understanding of the three equipartitioning criteria and 
the task parameters, one teacher stated, “Odds, such as three, seem to be more difficult and 
circles seem more difficult than squares. She knew it was thirds, so she understood parts, but she 
didn’t know how to get them equal. Saying ‘it is bigger than you think’ implies she knew it [one 
of the parts] wasn’t big enough.” With the EPLT as a model of student cognition, the teachers 
were sensitive to evidence in students’ work and words when observing students and analyzing 
written work. 
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Interpretation  

The data also suggest that teachers were able to locate a particular student’s understanding 
within a range of understanding described by the EPLT. They used their knowledge of the 
trajectory to describe the ideas a student was likely to already understand and which ideas were 
likely to develop next. For example in the Interview Analysis activity, when asked to anticipate 
how Emma would share a rectangular cake among three people, one teacher recalled the 
increasing difficulty of splits from the EPLT and stated, “The student is not sure how to divide 
the cake to make equal parts when there are an odd number of pieces. She understands how to 
divide the cake if it cut into an even number of pieces.” The teacher used the EPLT as a model of 
how students progressed through increasingly difficult equipartitioning tasks together with her 
observations to locate Emma’s understanding within this range.  

In the Session III Student Work Analysis activity, a group of Kindergarten teachers 
considered a sample of student work on equipartitioning a circle into three parts. They discussed: 

T1: The student was asked to share a key lime pie among three people. What do you think 
the student understands? 
T2: They understand a half - they started with the half. They knew they had to have three 
pieces… so they halved the other one, so… 
T3: The evidence is they had a line down the middle. And they have another line to create 
three pieces. 
T1: [writing] “…has a diameter cut and another cut.” 
T3: What do you think the student does not understand? 
T2: Equal parts. 
T1: He doesn’t understand how to cut a circle into thirds. 

The teachers establish that the student can halve and that he or she may understand that there 
needs to be a one-to-one correspondence between the number of pieces created and the number 
of people sharing the cakes but is still in the process of coordinating the three equipartitioning 
criteria when creating thirds. In these and other examples, teachers used the EPLT when 
interpreting evidence to situate a students’ conception in terms of what the student was likely to 
already know and what the student might learn next. 
 
Response  

Suggesting next moves. In many instances, teachers were able to make decisions about their 
next instructional steps based on their location of student’s conceptions along the EPLT. One 
type of instructional decision involved altering the parameters of a task, such as changing the 
shape from a circle to a rectangle in order to focus the student on creating a particular number of 
equal-sized parts. For instance in the Interview Analysis activity, teachers were asked what they 
would do next with Emma after she did not create equal-sized pieces when sharing a circular 
cake among three. One teacher wrote, “I would work on fair sharing from the stand point of 
equal. I would show Emma how to divide for a square, rectangle, then circles.” Another teacher 
suggested, “…have her practice sharing with three and six people – she would catch on to this 
quickly. She needs other ways to share than just halving.”  

Similarly in the Session III Student Work Analysis activity, teachers were asked what they 
would do next with the student based on the work sample. Some of the groups of teachers 
suggested changing from a circle to a rectangle as their next move or changing the number of 
people sharing from six to four to decrease the difficulty of the task. For example, when 
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suggesting next moves for the student whose work indicated that he or she made four equidistant 
cuts on a rectangle (creating five parts) while attempting to share among four people, one group 
discussed: 

T1: Well, you could ask, “do you have four pieces?” He’s going to say, ‘No, you have five,’ 
and then… 
T1: What are you going to do about that last piece? How are you going to make it equal? 
How will you divide it fairly? 
T2: That kind of answers the next question, too. 
T3: What will you do next with the student? Let them eat cake. 
T3: Would you? Give him a new cake? Or slab of play dough or whatever 
T2: And say try again and see if you can divide this, all of the cake, between four people 
without a left over piece. 
Other teachers suggested revisiting previous proficiency levels of the EPLT when planning 

follow-up activities. During the Interview Analysis activity, one teacher recommended, “Go back 
to sharing cookies, gold, etc. [collections] with 3 people.” Similarly, another teacher wrote, “I 
would give her objects like counters and ask her to fair share among different numbers of 
people.” Here, the teachers were recommending that the next instructional task for the student 
should be aligned with a lower proficiency level of the EPLT. As a model for thinking and 
learning, the EPLT not only assisted teachers in observing and interpreting but also suggested 
instructional steps to move a student from their current understanding to the next as described by 
the trajectory.  

Predictability. Also based on how they located a student’s understanding along the trajectory, 
teachers were able to anticipate what evidence they might see within the student’s actions, work, 
or words on subsequent tasks. That is, the EPLT allowed teachers to make predictions as to how 
a student might approach a new task. For instance, after each segment of the video recording of 
the Interview Analysis activity, teachers were asked to predict how Emma would solve more 
difficult equipartitioning tasks, and many of the teachers suggested strategies described by the 
trajectory; in particular, creating six equal-sized parts of a circle tends to be less difficult than 
creating three (Confrey et al., 2010). After viewing a clip of Emma unable to share a rectangular 
cake fairly among three, one teacher wrote, “I believe Emma will be able to share among six 
people based on the attempts for three. She begins with cuts in half which makes her chances 
better since six is an even number.” Later, after viewing segments of Emma’s attempts at sharing 
a rectangular cake among three, six, and at sharing a circular cake among three, another teacher 
predicted this about Emma’s sharing of a circular cake for six: 

She will cut the cake in half diagonally and then again to create 4 parts. She will then draw a 
line through the middle to make unequal-sized parts. I think she’ll do this because she sees 
things in halves and only makes cuts that result in halving the section. Emma will make a 
diagonal cut through the cake and will probably cut though the mid-line again to make six 
sections. If she can’t make six sections (on a rectangle), she probably won’t be able to do six 
(on a circle). 

In both examples, the teachers used their observations and interpretations in relation to the ELPT 
to anticipate the way that Emma would approach the next task. Thus, the sensitivity and ability to 
locate a student’s understanding within the EPLT afforded by the model of cognition also 
provided teachers with the ability to predict of how students would engage in a task. In turn, 
these anticipations would likely sensitize teachers to evidence of understanding on subsequent 
tasks. 
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Discussion 

One promise of learning trajectories for teachers is the “ability to respond appropriately to 
evidence of their students’ differing stages of progress by adapting their instruction to what each 
student needs in order to stay on track and make progress toward the ultimate learning goals” 
(Corcoran et al., 2009, p. 19). In this paper, an LT was taken as a model for student cognition 
and learning using the Assessment Triangle framework to investigate teachers’ observations and 
interpretations of evidence as well as the ways in which they might adapt instruction as a result. 
As depicted in Figure 2, LTs may sensitize teachers to evidence of particular ways of thinking 
within a domain of knowledge and assist them in locating a student’s understanding within a 
range of conceptual development through informing their interpretations of evidence. 
Additionally, these “models” of student thinking (Wilson, Mojica, & Confrey, 2010) inform 
teachers’ instructional adaptations in response to evidence. Two ways that this might happen that 
are indicated by this study include: (1) the suggestion of targets for subsequent instructional 
activities believed to help the student move along the trajectory; and (2) the ability to predict a 
student’s approach to a task, supporting the anticipation of more evidence for assessing a 
student’s understanding. Thus, this paper offers an elaboration of the Observation and 
Interpretation vertices when an LT is taken as the Cognition vertex. Observations are enhanced 
as the LT brings sensitivity to evidence. Interpretations are informed by the LT in a way that 
locates a conception along a progression of growing understanding. Moreover, the findings begin 
to specify what it means to respond to evidence with knowledge of an LT. 
 

 
Figure 19. Results in relation to the Assessment Triangle (NRC, 2001). 

 
Classroom assessment, the focus of the teachers’ learning activities in this study, when used 

to guide instruction is one type of formative assessment, a practice widely accepted as a means 
of increasing student achievement (Black & Wiliam, 1998). In Learning Progressions: 
Supporting Instruction and Formative Assessment, Heritage (2008) describes eliciting evidence 
as one of several elements of formative assessment for which LTs are “foundational.” She states, 
“When formative assessments arise spontaneously in the course of a lesson, interpretations of 
how learning is evolving can be made based on the trajectory of learning represented in the 
progression” (p. 6). This study offers a look at the classroom assessment practices of student 
observation and analysis of written work as two examples of “spontaneous” formative 
assessment and describes the role that an LT may play in reasoning about how student learning is 
progressing based on evidence.  
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This study investigates how teachers plan lessons and what mediates their lesson planning and 
ultimately how they teach. Four elementary teachers were observed planning and teaching 
elementary lessons. In addition, they were interviewed during this process. The findings revealed 
that standardized testing strongly influenced the lesson planning process and even the teaching 
style. Three teachers focused on teaching skills and algorithms for the test, as opposed to 
teaching for conceptual understanding. In this paper, we propose a theory that teachers followed 
a testing trajectory as opposed to learning or teaching trajectory.  
 

Background 
Lesson planning is a component of the cyclical process of teaching (Carlson & Bloom, 2005) 

that occurs when teachers make decisions about what they will teach and how they will go about 
delivering the lesson content (John, 2006).  This process allows teachers to make decisions about 
future learning based on past student performance, with the intention of promoting student 
achievement (Bage et al., 1999). To plan effective lessons, teachers should take time and think 
about their learning goals and outcomes for students (Morris, Hiebert, & Spitzer, 2009). The 
process of planning lessons is a key component to delivering effective lessons; however, limited 
research exists on this topic. As a result, it is important to thoroughly analyze the lesson planning 
process to gain an understanding of teacher planning practices and to understand how teachers 
use lesson plans as they teach. 

 
Theoretical Perspectives 

The purpose of lesson planning is to support the learning of children (Bage, Grosvenor, & 
Williams, 1999). Teachers should design lessons that will help students achieve learning goals 
by utilizing their knowledge of content and pedagogy (Panasuk & Todd, 2005; Morris et al., 
2009; Simon, 1995). In the process of designing lessons, teachers decide what will happen 
during their teaching and they make instructional decisions that influence the lesson that takes 
place (Bumen, 2007; Gilbert & Musu, 2008; John, 2006; Panasuk & Todd, 2005). All of the 
decisions teachers make during the lesson planning process have the potential to affect the 
student learning that takes place in the classroom (Borko, Shavelson, & Stern, 1981). When 
teachers consider elements of effective teaching strategies as part of the lesson planning process 
student learning is increased (John, 2006).  

Teachers may consider a multitude of issues when planning lessons, but often influences 
beyond the teacher’s control play a role in shaping the lessons that are planned (Regis, 2008; 
Shavelson & Stern, 1981). These influences can originate at the national or state level; however, 
many of the influences that affect day-to-day planning are due to decisions made at the district or 
school level. As a result, teachers’ original ideas are influenced by constraints and affordances, 
often beyond their control. As a result, understanding how teachers plan, the influences they 
encounter, and why they make specific decisions, provides insight into how lessons are 
constructed. 
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This information is important for teacher preparation programs and for administrators seeking 
to assist teachers in improving student learning. Additionally, this information is important for 
future student achievement because lesson planning is related to the learning that takes place 
(Panasuk & Todd, 2005).  

Educators should understand how teachers are planning elementary mathematics lessons to 
know the affordances and constraints in the planning process, and to understand how teachers’ 
considerations are shaping elementary mathematics lesson plans. Additionally, because lesson 
plans serve as a guide for teaching (Shavelson & Stern, 1981) and teaching influences learning 
(Franke et al., 2007), it is important to understand how teachers are making decisions in this 
process. As a result, this study addresses the following question related to lesson planning: 

5. How do elementary teachers plan mathematics lessons? 
 

Method 
A multiple-case design of case study (Yin, 2009) was used to explain how four, fourth-grade 

teachers from the same school made decisions in the lesson planning process, why they made 
these decisions, and to discover the mediating influences of these decisions. This approach 
allowed for an in-depth study of the participants, their institutional contexts, and their practices. 
Case study was utilized to optimize the understanding of the situation by providing data to 
answer the specific research questions (Stake, 2005). The teachers worked at a school that had 
made Adequate Yearly Progress (AYP), according to state standardized tests, in mathematics for 
the past three consecutive years. The school district had adopted Everyday Math as the 
curriculum of use seven years prior to the study. Of the four teachers in the study, Amie was a 
first year teacher and Bonnie, Carla, and Dana had each been teaching for about twelve years.  

Data was collected through interviews, written lesson plans, direct observation, and physical 
artifacts. All audio recordings were transcribed and data was analyzed using a grounded theory 
approach with the purpose of describing the practices of teachers and adding to the theory related 
to the topic (Corbin & Strauss, 2008).  

 
Results  

Even though the data for this analysis was collected during the end of the school year after 
the high stakes state CRT test, teachers continued to consider the high stakes assessments 
throughout their planning practices. In addition to the state mandated CRT examinations, 
students in the district where the data was collected annually took three District Benchmark 
Examinations, often referred to as “Benchmarks.”  The Benchmark tests were intended as 
formative assessments for teachers. However, the teachers viewed these exams as a summative 
assessment.  The results from these examinations were entered into data analysis software and 
administrators and teachers were able to analyze results based on individual teacher, individual 
student, individual standard, or question type. The CRT and the Benchmarks tests influenced 
planning and teaching in the ways described below. 

 
District Level Influences 

The school district influenced the lesson planning process by publishing district-wide 
Benchmark assessments, adopting specific curricula, promoting the use of state standards in 
mathematics, and allocating resources.  
Amie 
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Amie planned lessons to help students do well on the district Benchmark test, by planning to 
teach content that would be on the district Benchmark test. Her written lesson plan is evidence of 
this action (see Figure 1).  

 

 
 

Figure 1: Amie’s written lesson plan for test preparation. 
Amie devoted entire lessons to practicing problems similar to the questions that would be asked 
on the tests. 
Carla 

Carla was influenced by district standards as she worked to prepare students for the state test. 
When lesson planning, she focused on the district standards because the content in the standards 
was the content that would be tested. She was asked about lesson planning influences in 
mathematics.  

Researcher: District and state and national standards and policies? 
Carla: Uh, the, well, the standards, based on the fact that the kids are tested on the standards. 
So, I do, again, in long-range planning, make sure that those skills, I have covered in the 
classroom and that they will be tested on them.  

Carla considered the standards as a set of skills that must be taught because the students would 
be tested on the standards. Therefore, the district standards mediated Carla’s decision making 
while planning because she recognized that the plans she made should be based on the skills 
students would need for the tests. 

The planning practices of all of the teachers were influenced by the district adopted standards 
in mathematics. These standards were used to write the district level Benchmark assessments and 
teachers were incorporating considerations for these tests into their planning. As a result, 
decisions made at the district level regarding standards and testing influenced teacher lesson 
planning. 

Levels of Planning and Sequencing 
The teachers used the Benchmark to guide their planning on a yearly level, so they were 

sequencing lessons over the course of a year based on the Benchmark topics. There were three 
Benchmark exams, so the teachers would spend the first third of the year teaching the content 
that was on the first Benchmark exam. They spent the second portion of the year teaching 
content that would be tested on the second Benchmark and the third portion of the year was spent 
teaching the content that would be on the third Benchmark exam. As a result, the test content 
determined how teachers planned on a yearly and daily level because the teachers were 
continually referencing the Benchmarks to determine the sequencing of mathematical topics 
within the context of the school year.  
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Carla 
Carla looked at specific test questions and made lesson plans that aligned with the specific 
questions that would be asked, as opposed to following the Everyday Math curriculum. 

Researcher: Okay. How do you determine what in Everyday Math you are going to use or not 
use?  
Carla: Mmm, hmm. I (pause), umm, one, I look to see if it is even an idea that I like. For 
example, you know, finding the area of your skin. I, forget that. I am just like, “What are you 
freaking kidding me?” Because that’s like, that activity is not how they test area on the test. 
They need to know the basic formula of a square or a rectangle to do that. So, activities like 
that, I am like, we, they take so long first of all. We don’t have the time to be wasting on an 
activity that is not relevant to what we are going to be looked upon. Umm, so that’s part of it. 
And, some of it, if it’s, yeah, if it’s just not what I would consider a worth-while activity—it 
is going to take forever, I can’t see how the activity is going to relate to something that they 
are going to be tested on, then, it’s uh, no. I don’t do it. I know it probably develops that 
higher level thinking, but counting boxes on your hand is, I just, you know, or you measure 
the distance around your head. And, I know they are trying to get that manipulative, like get 
up and move, but it’s, it’s not, it’s not worthwhile. It is not worthwhile. You know, there are 
four lessons in that fourth grade book on compasses. Well, you know, I throw that out as kind 
of like a center activity. Why am I going to waste four days on compasses when compasses 
does me no good anywhere else in the whole year? 

Carla focused on the exact skills students would need for the test. As a result, when the reformed 
curriculum included a lesson to build conceptual understanding by measuring area of skin, Carla 
did not teach the lesson because fourth graders “only have to find the area of rectangles and 
squares on the state test.” She made this decision even though she knew the lesson “develops that 
higher level thinking” because she considered whether or not the lessons seemed “worthwhile” 
as they related to the test. Therefore, the CRT examination and Benchmark examinations 
mediated Carla’s curriculum decisions.   
Dana 

The Benchmark assessments influenced how Dana planned the order of mathematical topics 
she would teach. She considered the order in which the standards would be tested on the 
Benchmark Examinations and follow the Everyday Math order for those tested topics.  

Researcher: And how do you determine the exact content of the lesson you will teach? 
Dana: The standards. Yeah. I will pull…. 
Researcher: Is there any specific order? 
Dana: I try to follow the standards as they are in the Everyday Math because they follow the 
Benchmark, the test that the kids take once every trimester, so I do try to stay, umm, up to 
whatever the standards are in the order they are presented in those tests. 

Dana viewed the Benchmark as containing material that was in the standards, and she 
determined content based on the standards. Therefore, she referenced the Benchmark 
assessments to determine the order she would follow when sequencing lessons.  
 

Curriculum Use 
After the original adoption of Everyday Math, the teachers reported that they used the 

curriculum with fidelity; however, seven years after the adoption, the teachers were heavily 
supplementing, replicating lessons from others, and inventing lessons to attempt to have to their 
students do well on standardized tests. The CRT and Benchmark examinations mediated 
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curriculum use because teachers only taught curriculum content that was tested because they 
wanted students to do well on the test. Therefore, material in Everyday Math was taught if it 
aligned with the testing standards. Furthermore, the teachers’ desire for students to master test 
content mediated curriculum use because the teachers would repeat the content of a lesson until 
students had reached mastery, thus disregarding curricular pacing to continue with subsequent 
lessons.   
Bonnie 

Bonnie’s fourth grade lesson planning was mediated by the fifth grade teachers’ preference 
for teaching traditional algorithms, so that students would not be confused by multiple solution 
strategies. The fifth grade teachers at the school requested that Bonnie, a fourth grade teacher, 
teach traditional algorithms to her students, even though the district adopted Everyday Math 
taught multiple ways to solve problems, such as the lattice and partial quotients approach. 

Researcher: Do you work with anyone when you plan your lessons? 
Bonnie: Usually no. I mean sometimes we will discuss what we are doing with math. There 
was a big thing a couple of years ago where the fifth grade teachers were getting frustrated 
because the kids were going to them using lattice and like partial quotients and the varying 
algorithms that are taught in the Everyday Math program and that is not what our fifth grade 
teachers are teaching them, so the kids have no idea, as to, you know what they were talking 
about and weren’t prepared when they were going there. So, there was kind of a consensus 
between fourth and fifth grade a couple years ago that we would teach them the traditional 
methods of multiplication and division as opposed to the other. Now, I know there are a 
couple teachers who still might teach the partial quotients, but I don’t think anybody is still 
teaching the lattice. But, we try to, we try to listen to what fifth grade needs, as far as what 
they need to have, you know what their students need to be able to do, and be prepared for 
coming into fifth grade and we kind of do the same thing for coming into third grade. You 
know, as far as what those students, what we expect of them when they are coming in to 
fourth grade. Although, you know, that is not always you know, happening, so….(laughs). 

The fifth grade teachers requested that Bonnie discontinue teaching multiple methods for 
multiplication and division, so that the students would be familiar with the traditional algorithms 
when they moved up to fifth grade. These teachers were focused on students getting correct 
answers, as opposed to helping student understand various mathematical processes. As a result, 
Bonnie reduced the conceptual focus of multiplication and division lessons by eliminating 
curriculum components at the request of the vertical grade level teachers. She disregarded the 
reformed curricula and chose to teach traditional algorithms for solving problems so that students 
would be procedurally sufficient at algorithm use for testing.    
Dana 

Dana planned for a teaching sequence that would take students from the use of a 
manipulative to demonstrate a procedure to more abstract representations of the procedure 
through the use of paper and pencil, while basing her yearly plan on the Benchmark 
examinations. Dana’s knowledge regarding concrete and abstract learning influenced her 
planning because she considered the sequence of lessons for students along the concrete to 
abstract continuum.  

Researcher: Okay, can you describe what you are teaching today? 
Dana: Yep. So, today, moving from, I am taking the area from that irregular object, being 
their hand print, moving toward the formulas of the squares and the rectangles, and I will 
show them a model of a square foot, a square inch and a square centimeter and then we will 
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pull in different, as a modeling, pull in different sized things to show them which would be 
the best thing to use for each item. Should we use the square foot for this? Should we use the 
square inch for this or the centimeter? And then show them, and then I will have lots of 
square inches cut up and take like a textbook and show them. Well, we can measure that with 
square inches and then lay them all out and show them how cumbersome that is and how 
long that takes and then try to guide them toward what would be a better way to do that, a 
faster way to do that, and then lead them into the measurement and then they will break up 
into partners again and then go out and measure the area of different squares and rectangles 
that they find in the classroom. 

Dana considered how she would take students from the concrete representation of square 
manipulatives to determine area, and lead them to constructing the algorithm for area. Her 
purpose with using the squares was to make the point that finding the area with manipulatives is 
cumbersome and that the algorithm should be used instead. Consequently, the model she used 
was not conceptually based, but was focused on demonstrating the need for an algorithm to find 
the area. Dana’s conceptualization of taking students from concrete to abstract was a focus on 
concrete representations that lead to memorized algorithm use, resulting in a skill focus for the 
context. 

On a daily level, Carla and Dana acknowledged the learning process of taking students from 
manipulative use to paper and pencil practice, so they utilized this focus to sequence their lessons 
within a topic. However, their purpose of using this format was to lead students to the use of a 
specific algorithm to solve their problems, so that students would be proficient with skills when 
tested. The concrete representation was not viewed as a tool for building conceptual 
understanding, but was rather used to show students how “cumbersome” a model can be, which 
encouraged students to disregard the model and place their emphasis on the correct algorithm. 

The teachers’ use of the Everyday Mathematics curriculum decreased over the prior seven 
years and had been replaced with the incorporation of multiple supplemental materials that the 
teachers considered to align with the standards and would prepare students for tests. These 
replacement materials focused on skill mastery through repetitive practice of similar problem 
types. Bonnie disregarded the suggested use of Everyday Math altogether and incorporated a text 
that was not reformed based and focused on mastery. The changes the teachers made prioritized 
skill practice over conceptual understanding and all content was determined and sequenced based 
on testing content.  
 

Discussion 
The institutional context afforded a heightened emphasis on proficient test scores over the 

past several years. Specifically, in the state where the study took place, administrative pressure 
focused on increasing student achievement on the CRT examinations. The school district where 
the study took place published Benchmark examinations that teachers considered to be 
guidelines for how students would perform on the CRT examinations. As a result, the context of 
the study gave rise to teacher pressure for students to achieve high scores on both the 
Benchmarks and CRT examinations. 

Due to the testing pressure, the teachers adjusted their teaching practices in an effort to 
improve student achievement. When reflecting on their individual teaching practices, and their 
students’ achievement, the teachers believed that the adopted curriculum was not meeting the 
testing demands because a lack of focus on mastery. As a result, the teachers only taught 
pertinent curricula components, specifically content related to what would be tested. The 
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teachers influenced student learning by focusing on specific curricula components over other 
curricula components (Remillard, 2005). In this study, teachers completely disregarded curricula 
components that they considered to be irrelevant for the standardized testing. Even though 
curricula guides what teachers teach (Remillard, 2005), the testing pressure on the teachers was 
so extensive that the teachers began to slowly eliminate all use of the adopted curricula.   

While the changes in testing emphasis were taking place, teachers were faced with new 
demands they had not experienced in the past. Throughout this time, the teachers did not have 
district or school support focusing on using the Everyday Math curriculum to meet the testing 
demands. The only professional development on the curriculum had been conducted seven years 
prior, when the curriculum was purchased. As a result, the teachers were not confident in the 
ability of the curricula to meet the recent testing demands. Therefore, the teachers began using 
supplements for the majority of their lessons and they relied very little on the adopted Everyday 
Math curriculum. The elimination of the curriculum brought with it an increased emphasis on 
skill mastery. The teachers sought to incorporate curricular materials that would prepare students 
for testing by exposing them to repeated practice of skills that would be necessary for testing.  

The supplements the teachers decided to use were focused on skill and practice through 
repetitive algorithm use. The teachers began using test preparatory practice in their lessons and 
taught lessons that were based solely on test content. Supplements became the main source of 
lesson content because teachers considered supplemental programs to better prepare students for 
the high stakes tests.   

All four teachers in the study made decisions when planning that they believed would be the 
most beneficial for supporting student achievement. They were faced with challenges, such as 
preparing students for testing, and were forced to make decisions about what they would teach. 
These challenges were a result of the institutional context (Cobb et al., 2003) that fostered an 
environment with an emphasis on testing and student achievement on the tests. As a result, the 
teachers made the decisions they considered would be the most beneficial for the students and 
worked to prepare students for the assessments. The lesson planning that occurred was a result of 
the compensation and considerations the teachers made within the institutional context where 
they taught. These teachers were following a testing trajectory and making decisions based on 
the examinations, as opposed to following a learning trajectory (Simon, 1995).  

 
Implications 

This study highlights the need for professional development to support teaching for 
conceptual understanding. This means that teachers need to be familiarized with teaching 
concepts and need specific direction on how to teach for conceptual understanding. Likewise, it 
is important that teachers understand the benefits of making connections for students between 
and among concepts (Bransford et al., 2000) with the intention of forming links in student 
learning.  

Additionally, it is important for teachers to understand how to use their curricula to meet the 
learning goals they have for students. Teachers with reformed curricula need support beyond the 
initial implementation of the curricula. Furthermore, when faced with changes in the institutional 
context, such as a heightened testing awareness, it is imperative that administrators are cognizant 
of the changes and provide teachers with support. 

Finally, the study indicates a need for teacher support to prepare students for testing.  The 
teachers made accommodations they considered would be helpful, but they did not have 
direction or support when making changes. As a result, preservice teachers should be 
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familiarized with the pressures they will face when teaching and should be provided with support 
so when they begin teaching they are prepared to face the testing challenges. Practicing teachers 
also need support with how to prepare students for the examinations. This support should not be 
focused on skill and practice, but should instead highlight the importance of teaching for 
conceptual understanding.  
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Horizon knowledge is still a relatively new and unexplored domain of mathematical knowledge 
for teaching. In preparation for an empirical study to take place in February and March of 2011, 
this paper will analyze research on student learning and teacher education to identify potential 
horizon knowledge as it relates to place value concepts. 

Introduction 
In the 1980s, Lee Schulman (1986) proposed a theoretical framework for conceptualizing the 

kind of knowledge needed for the practice of teaching. It has not been until the past decade, 
however, that researchers have empirically observed and designed measures to identify this kind 
of knowledge in teachers of mathematics (Ball, Thames, & Phelps, 2008). Ball et al. (2008) have 
identified six domains of subject matter and pedagogical content knowledge that accommodate a 
wide range of specialized mathematical knowledge for teaching (MKT). In their work to refine 
Schulman’s framework for use in mathematics, Ball and colleagues provisionally included a 
category of subject matter knowledge (SMK) specific to the practice of teaching called horizon 
knowledge, that is neither common nor specialized mathematical knowledge (Ball et al., 2008; 
Ball & Bass, 2009).  

At the present time, many important issues regarding horizon knowledge have yet to be 
addressed by the mathematics education research community (Ball & Bass, 2009). The purpose 
of this article is to contribute to both the emerging conceptualization of horizon knowledge and 
the development of a conceptual framework that will support an empirical study of horizon 
knowledge, specifically as it relates to place value concepts. 

Theoretical Framework 
Research supports the claim that possession of mathematical knowledge is a fundamental 

part of MKT (e.g., Ma, 1999). In her study of primary teachers’ knowledge of elementary school 
level mathematics, Ma (1999) described and identified SMK called profound understanding of 
fundamental mathematics (PUFM). She concluded that the elementary teachers in her study 
possessing PUFM had developed it over the course of their teaching practice and that it was only 
present in teachers with substantial teaching experience. However, the development of this kind 
of knowledge does not occur easily nor does it necessarily happen at all, even in the presence of 
experience (Ball, 1990; Ball & Bass, 2000; Ma, 1999). How to measure and develop this 
knowledge in teachers, therefore, remains a significant challenge for researchers and educators.  

In some cases, especially in studies using the number of university courses taken as a proxy 
for mathematical knowledge, advanced mathematical knowledge may not even have a significant 
effect on teaching knowledge (Fennema & Franke, 1992; Huang, Li, Kulm, & Willson, 2010). 
Only relatively recently have changes in methodology have allowed researchers to observe that 
teachers’ mathematical knowledge does impact pedagogical decisions and by extension, must 
impact learning, although direct connections between teaching and learning remain unclear 
(Fennema & Franke, 1992, 149; Fuson et al., 1997). 
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The framework developed by Ball et al. (2008) has made a significant contribution to our 
conceptualization of MKT because it emphasizes knowledge of pedagogy, a component of 
teaching knowledge elevated by Schulman in the 1980s, in addition to SMK. Through empirical 
observations, Ball et al. (2008) have identified six domains of subject matter and pedagogical 
content knowledge. Five of these domains, horizon content knowledge, specialized content 
knowledge, knowledge of content and students, knowledge of content and teaching, and 
knowledge of content and curriculum, are specific to the practice of teaching while the sixth 
domain of MKT, common content knowledge, describes mathematical knowledge that is not 
unique to the practice of teaching but may be used in a variety of professional and/or 
nonprofessional settings (Ball et al., 2008).  

Critics have argued that the MKT framework proposed by Ball and et al. (2008) ignores 
global mathematical knowledge in favor of isolated content knowledge (Clay, Silverman, & 
Fischer, 2010). At the time they proposed their framework, however, Ball and colleagues 
provisionally included a category of SMK specific to the practice of teaching, called horizon 
knowledge, which they described as “an awareness of how mathematical topics are related over 
the span of mathematics included in the curriculum” (Ball et al., p. 403). According to Ball and 
Bass (2009) their most recent conception of horizon knowledge has four constituent elements: 

1) A sense of the mathematical environment surrounding the current “location” in 
instruction. 

2) Major disciplinary ideas and structures  
3) Key mathematical practices  
4) Core mathematical values and sensibilities. 
Although horizon knowledge is purely a mathematical domain of MKT, in practice, it is 

likely to have a significant influence on pedagogical decisions (Ball, 1993; Ball & Bass, 2009; 
Ball et al., 2008). As a result, no one is sure “how far out or in what direction the pedagogically 
relevant and useful horizon extends,” nor does anyone “know how horizon knowledge can be 
helpfully acquired and developed” or “have ways to assess or measure it” (Ball & Bass, 2009). 
The goal of the study presented here, therefore, is to examine the extent to which available 
research on teaching and learning can guide researchers’ conceptualizations of horizon 
knowledge and then utilize these conceptualizations to measure teacher knowledge. 

In particular, a wealth of research on student learning, in addition to recent work on 
conceptions of prospective teachers, suggests that the area of place value is an important context 
in which to explore and define horizon knowledge and its pedagogical relevance (Baroody, 1990; 
Hiebert & Wearne, 1992; Mills & Thanheiser, 2010; Stacey et al., 2001; Thanheiser, 2009). 
Place value concepts arise in a variety of topics in the K-8 curriculum including reading and 
writing numbers, rounding and estimation, addition and subtraction of natural numbers, standard 
algorithms for the four operations, ordering numbers, representations of rational numbers, and 
scientific notation. Further, place value knowledge is also fairly difficult to construct and takes 
place over an extended period of time (Kamii, 1986).  

Because our notational system is the product of social conventions and logico-mathematical 
knowledge (the construction of mental relationships), children cannot discover place value 
concepts (Kamii, 1986; Verschaffel, Greer, DeCorte, 2007). Place value refers to a system of 
notation in which the relative positions of the symbols is used to encode the value of a number. 
In the decimal place value system, the value of a numeral is given by the sum of the value of the 
individual digits; the value of each digit given by the product of its face value with its place 
value. The symbols 0-9 and the words zero, one, two, … used to represent numbers are social 
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conventions. Similarly, by convention it is determined that the value of each column increases 
from right to left and adjacent positions are related by ten-for-one trades. Fractional values are 
represented to the right of the decimal. Making sense of place value notation requires 
constructing mental relationships such as connecting the column position of a numeral with its 
value (Kamii, 1986).  

Research shows that constructing these mental relationships can be difficult for both children 
and preservice teachers (e.g. Thanheiser, 2009; Kamii, 1986) Many of these difficulties arise as a 
consequence of forming a strong unitary conception of number without developing a multi-unit 
one such as evidenced by a failure to differentiate between the complete value of a number and 
face value of the digits (Fuson, 1990; Varelas & Becker, 1997). For example, often both children 
and preservice teachers, while capable of identifying that 16 represents 16 ones, will also 
indicate that the 1 in the numeral 16 represents 1 one instead of 10 (or 1 ten) (Hiebert & Wearne, 
1992; Kamii, 1986; Resnick et al., 1989; Thanheiser, 2009).  

In contrast, a multiunit conception would allow for simultaneously viewing 16 in terms of 
reference units such as 16 ones or 1 ten and 6 ones. Thanheiser (2009), however, found that only 
20% of the preservice teachers in her study could reliably conceive of a number in terms of 
reference units. Further, 67% of the preservice teachers in her study displayed concatenated 
conceptions of number where most or all digits were conceived of in terms of ones regardless of 
the position of the digit. These concatenated conceptions of number also appear in research on 
student learning of operations. For example, expressing the sum 38 + 24 as 512 and sometimes 
calling the answer “fifty twelve” is a frequent and widespread error (Fuson, 1990; Hiebert, 1992; 
Hiebert & Wearne, 1992; Kamii, 1986). 

Many researchers have suggested that the English named-value spoken system of number 
words makes it more difficult to learn base 10 place value concepts, especially because a 
majority of the English number names between 1 and 100 do not correspond directly to the 
written form of the number (Fuson, 1990; Fuson & Briars, 1990; Miura & Okamoto, 1989; 
Verschaffel, Greer, DeCorte, 2007). In contrast to verbally expressing the number 40 as “forty,” 
for example, Asian languages would read more like “four-ten,” making it more likely for a child 
to “construct number representations that reflect the Base 10 numeration system” (Fuson et al., 
1997; Miura & Okamoto, 1989, p. 109). The irregularity of the decade names may also 
contribute to the tendency for American children rely on unitary conceptions of two-digit 
numbers (Fuson, 1990). Unitary conceptions of two-digit numbers appear to be used frequently 
by adults and children who may use the nonstandard language “twenty ten” to refer to the year 
2010 or read 2500 as “twenty-five hundred” (Fuson, 1990). 

Studies also show that decimal concepts are difficult for children and preservice teachers 
(e.g. Hiebert, 1992; Stacey et al., 2001). Sakur-Grisvard and Leonard (1985) found that errors 
occurred as children utilized three intermediate rules to compare decimals beginning with 
treating decimals as whole numbers (longer number is larger) and then moving on to rules that 
take into account the decimal point but still ignore place value. Later, Resnick et al. (1989) 
showed that these intermediate rules appear to have resulted as students attempted to integrate 
new material with their prior knowledge of whole numbers, fractions, and zero. Although the use 
of these intermediate rules declines with age, evidence suggests that errors involving “shorter-is-
larger” conceptions may persist in preservice teachers (Stacey et al., 2001). Further, preservice 
teachers may be unaware of the “shorter-is-larger” conception that children may develop as a 
result of prior experiences with fractions (Resnick et al., 1989; Sakur-Grisvard & Leonard, 1985; 
Stacey et al., 2001). 
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According to Ball and Bass (2000), students may expect symmetry in the place value names 
about the decimal. However, while there is a naming symmetry about the ones place value 
position, a similar symmetry does not exist for value. As stated above, in our base 10 notational 
system, the value of each column increases from right to left and adjacent positions are related 
by ten-for-one trades. This is true for both whole numbers and decimal numbers. Resnick et al. 
(1989) found, however, that children who use whole number rules for comparing decimals 
(decimal with more digits is larger) also demonstrate errors related to naming symmetry. For 
example, for “6 tenths and 2 hundredths,” children may write 0.026 or 2.6, both of which could 
correspond to thinking of the positions of the whole values, 6 tens and 2 hundreds (Resnick et al., 
1989). Finally, preservice teachers in the study by Stacey et al. (2001) displayed errors when 
comparing decimals with zero suggesting that “many preservice teachers do not understand the 
relationships among decimals, whole numbers, fractions, zero, and negative numbers” (p. 222). 

Place value concepts develop over a long period of time and across a wide range of 
mathematical content. Further, studies also suggest that teachers and programs/curriculum 
sequences impact the kinds of strategies children utilize in problem solving (Fuson et al., 1997; 
Resnick et al., 1989). Therefore, pedagogically useful horizon knowledge should include 
mathematical connections that can be used to bridge or direct a student’s current understanding 
toward concepts to be acquired in the future. I argue here that it is possible to both gain insight 
into the kinds of horizon knowledge that is pedagogically useful and devise ways to measure and 
assess that knowledge in teachers by studying the literature on student learning and teacher 
knowledge, such as explored above.  

Methods 
The approach I took to determine potential horizon knowledge involved two phases. In the 

first phase I conducted a search of the existing literature on the teaching, learning and preservice 
teacher conceptions of place value. To learn about preservice teacher knowledge I used the 
recent work by Thanheiser (2009), Mills (Mills & Thanheiser, 2010), and Stacey et al. (2001) 
who have examined preservice teacher knowledge related to place value and decimals. To locate 
work on teaching and student learning of place value I used Google Scholar and educational 
databases such as ERIC to search for keywords, for example “place value” and “place value 
decimal.” Additional works were obtained by repeatedly examining and obtaining literature 
found in the reference lists and citations within the papers I already possessed, beginning with 
the above works on preservice teacher knowledge and the results of the database searches. 

The second phase involved a mathematical analysis of the literature obtained regarding the 
teaching and learning of place value concepts. I began by narrowing the literature to areas in 
which the conceptions of place value for preservice teachers and students were well documented, 
as outlined in the literature review above. I then analyzed these conceptions for mathematical 
connections in an effort to determine horizon knowledge that had a potential to impact 
pedagogical decisions regarding place value across the curriculum. 

This mathematical analysis was then used as a basis to design a pilot study to be conducted in 
February and March of 2011. The participants of the pilot study are approximately 11 preservice 
teachers enrolled in a mathematics methods course for K-5 offered at a large public university in 
the southwestern United States. Each preservice teacher was asked to conduct one-on-one 
problem solving interviews with elementary school children in which the preservice teacher 
posed various addition/subtraction and multiplication/division problems, assessed the child’s 
strategies, and designed and discussed ways in which they could extend and support the child’s 
mathematical thinking. The resulting paper written by the preservice teachers will be analyzed to 
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determine the extent to which preservice teachers display applicable horizon knowledge in their 
discussion. The preservice teachers will then be interviewed to further explore the extent of the 
mathematical connections they can identify as being pedagogically relevant to supporting and 
extending the mathematical thinking of the child in their interview. 

Results/Discussion 
In this section, I discuss some mathematical connections between whole numbers and 

decimal numbers that may comprise pedagogically useful horizon knowledge for place value. 
One potentially powerful example of horizon knowledge for place value is related to the 
conventions that allow for making connections between whole numbers and decimals. For 
example, in the verbal expression “twenty-five hundred,” the 25 occupies the hundreds place and 
violates notational conventions because it indicates that there is more than one digit in the 
hundreds place value position, as in 2500. A similar problem presents itself if we want to write 
the decimal representing “one hundred twenty five thousandths” where all three digits can be 
thought of as occupying the thousands column, as in 0.00125. However, for all decimals we 
know that the values of each column increase from right to left. Further, each column in the 
standard decimal representation is related by ten-for-one trades, which is also true of the digits 
already comprising 25 and 125. Therefore, these conventions together tell us to trade each digit 
left until they occupy their own column, as in 2,500 and 0.125. 

A similar example of horizon knowledge arises out of the meaning of the decimal; the values 
of the columns appearing to the right of the decimal are fractional. Additionally, we know that 
the contrapositive of the above must hold true for both whole numbers and decimals, column 
values decrease from left to right. If we consider 3.5%, we can view it as “three and five tenths 
of a hundredth.” This can be represented as 0.03.5 using the underline decimal notation 
introduced above. In this case, the hundredths represented in this decimal contains both whole 
and fractional parts. According to notational conventions then, we have three whole hundredths 
and the fractional part is traded to the right of the (original) decimal for five thousandths, giving 
0.035. This concept extends naturally to numbers that are represented using decimals along with 
reference units, as in 12.5 million or similarly, using scientific notation as in 1.25×107. In the 
first case we have 12.5,000,000 which has 12 whole millions in addition to a fractional 0.5 (or 
half) million. In the second case we have 1.250,000,000 or 1 whole ten million and 25 
hundredths of a ten million. In both cases, the notational conventions tell us that wholes trade 
with larger values to the left and fractional values trade with smaller values to the right, resulting 
in 12,500,000 in both cases.  

The impact of a lack of horizon knowledge such as that described above is illustrated by the 
observations that children who displayed whole number rule errors while comparing decimals 
were likely to represent “two tenths and five hundredths” as 0.052 or “three hundredths” as 0.300 
(Resnick et al., 1989). This may suggest that the rules utilized by the children in the study 
emphasized superficial features of whole numbers such as tens are positioned to the right of 
hundreds or the number three hundred is followed by two zeros (Resnick et al., 1989). The above 
examples, however, show a variety of connections that have a potential for being pedagogically 
powerful because they emphasize whole number concepts that are not unique to whole numbers 
but also carry over to decimals.  

In the above examples, common fractions were not considered directly because it is often 
more efficient to determine a decimal representation using a division algorithm.  Now I propose 
another potential example of horizon knowledge of place value involving connections between 
division algorithms, decimals, and the interpretation of whole number division as partitioning. 
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For example, consider 6625 ÷ 53 and 66.25 ÷ 5.3. An inefficient way to partition 6625 is to “deal 
out” 1 at a time into 53 groups until the 6625 is gone and then count the number of 1s in each 
group. A more sophisticated way to partition would be to “deal out” to each of the 53 groups 100 
at a time, then 10, and so on. As a result we see that 6625 contains 1 set of 53 hundreds, 2 sets of 
53 tens, and 5 sets of 53 ones, or 53 sets of 125. Similarly, 66.25 can be partitioned into sets of 
5.3. We know that 66.25 can be partitioned into 1 set of 5.3 tens, 2 sets of 5.3 ones, and 5 sets of 
5.3 tenths, or 5.3 sets of 12.5.  

As with many computational algorithms, division can be described completely in terms of 
manipulations of symbols and no reference to place value. For example, computing 6625 ÷ 53 
might start out like “53 goes into 6 zero times, 53 goes into 66 one time…”. Further, when 
considered purely as symbolic manipulations, the whole number algorithm does not provide any 
clue as to how the algorithm must be adjusted to accommodate decimals. Instead, long division 
with decimals may begin by memorizing additional rules such as rewriting 66.25 ÷ 5.3 as 662.5 
÷ 53, placing the decimal in the quotient directly above the decimal in 662.5, then following the 
procedure for whole numbers. However, mathematical meaning lies not in the rules of symbol 
manipulation but in the construction of connections between the “quantities and the symbols and 
rules that represent them” (Hiebert, 1992, p. 297). In the example above, explicit references to 
place value in both whole number and decimal division illuminates the division algorithm as a 
sophisticated form of partitioning and eliminates additional rules used to modify whole number 
division for use with decimals. Therefore, it is conceivable that possession of this horizon 
knowledge would encourage a teaching approach that helps students construct a conceptual 
understanding of division of whole numbers as partitioning with respect to reference units that 
would support a conceptually similar concept of decimal division. 

Finally, the last example of horizon knowledge that I propose here is related to the 
connections between place value and infinite series. Further, this knowledge can also extend to 
mathematical habits of mind as described by Cuoco, Goldenberg, and Mark (1996) including a 
disposition toward description and looking for patterns. As we considered the algorithm above, 
implicitly we realize that the quotient, 12.5, of 66.25 ÷ 5.3 is given by the sum 10 + 2 + 5/10. By 
using the division algorithm to find the decimal representation of a nonterminating decimal such 
as 1/3, we can easily recognize its equivalence to the infinite series 3/10 + 3/100 + 3/1000 + …. 
Further, this example illustrates the power decomposing numbers in various ways can create an 
awareness of interesting mathematical connections. 

For example, solving the standard Towers of Hanoi puzzle gives another glimpse the power 
obtained by flexibility in the representation of numbers. The standard Towers of Hanoi puzzle 
uses a playing board with three pegs and n discs with increasing radii stacked on one of the pegs. 
The goal is to move all n discs from one peg to another, without placing a larger disc on top of a 
smaller one, in the least amount of moves. Table 2 shows the minimum number of moves, m, to 
solve the Towers of Hanoi puzzle for n  = 1,…,5 discs along with several representations of each 
number of moves.  

n m 
1 1 21 – 1 20 
2 3 22 – 1 20 + 21 
3 7 23 – 1 20 + 21 + 22 
4 15 24 – 1 20 + 21 + 22 + 23 
5 31 25 – 1 20 + 21 + 22 + 23 + 24 

Table 2. Minimum number of moves, m, to solve Towers of Hanoi with n discs. 
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By representing the number of moves in different forms, we not only illuminate a functional 
relationship, , between the number of moves and the number of discs but we also 
find that , the closed form for the (n – 1)th partial sum of the power series 

. 
In conclusion, the above analysis of research on student learning and teacher knowledge 

suggest that place value concepts are important across the K-8 curriculum. Further, horizon 
knowledge of place value that appears to be pedagogically useful may extend quite far, both in 
terms of central mathematical ideas and practices. However, while the range of horizon 
knowledge is potentially vast, research on student learning can help narrow our conceptions of 
what may comprise the core of horizon knowledge we desire to find or develop in those involved 
in the teaching profession. 
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The purpose of this study was to understand teachers’ mathematical content knowledge, efficacy, 
problem solving abilities, and teacher beliefs in an elementary education mathematics methods 
course for special education teachers in alternative certification programs.  Findings revealed a 
significant increase in mathematical content knowledge and teacher self-efficacy.  Additionally, 
teachers were found to have high self-efficacy at the end of the semester and strong problem 
solving abilities.  Further, teachers generally found that helping students with disabilities learn 
mathematics was the biggest issue in their teaching, and that the use of technology and 
manipulatives were the most important topics addressed in their learning.   

 
The purpose of this study is to provide an understanding of teachers’ mathematical content 

knowledge, self-efficacy beliefs, level of problem solving abilities, and teacher beliefs in an 
elementary education inquiry-based mathematics methods course for special education teachers 
in the New York City Teaching Fellows (NYCTF) and Teach for America (TFA) programs.  
Understanding teacher knowledge is important because it is directly related to student 
achievement (Hill, Rowan, & Ball, 2005).  Self-efficacy is a teacher’s belief in his or her ability 
to teach effectively and positively affect student learning outcomes (Bandura, 1986; Enochs, 
Smith, & Huinker, 2000), and an important component for successful teaching.  Further, it is 
recommended that mathematics should be taught through a problem solving perspective (NCTM, 
2000; Schoenfeld, 1985).   

Problem solving continues to be of high importance in mathematics education (NCTM, 2000; 
Posamentier & Krulik, 2008; Posamentier, Smith, & Stepelman, 2006).  It is one of the five 
National Council of Teachers of Mathematics (NCTM) standards (NCTM, 2000), and is 
critically important in how students best learn mathematics (Posamentier et al., 2006).  The 
National Council of Supervisors of Mathematics (NCSM) has considered problem solving to be 
the principal reason for studying mathematics (NCSM, 1978).  

In order to understand what problem solving is, first it must be understood the definition of a 
mathematical “problem.”  Charles and Lester (1982) defined a mathematical problem as task in 
which (a) The person confronting it wants or needs to find a solution; (b) The person has no 
readily available procedure for finding the solution; and (c) The person must make an attempt to 
find a solution.  According to Krulik and Rudnick (1989), problem solving is a process in which 
an individual using previously acquired knowledge, skills, and understanding to satisfy the 
demands of an unfamiliar situation.  Polya (1945), in his seminal work How to Solve It, outlined 
a general problem solving strategy that consisted of (a) Understanding the problem; (b) Making a 
plan; (c) Carrying out the plan; and (d) Looking back.   

Understanding the level of elementary school mathematics teachers’ problem solving 
abilities is critical in supporting them to teach their students from a problem solving perspective.  
For example, teachers are critically important in developing abstract thinking in students in the 
problem solving process.  However, Cai (2000) has shown that sixth grade U.S. students rarely 
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used abstract strategies in their problem solving.  Strong problem solving abilities among 
teachers are needed if teachers are to teach mathematics well because content knowledge by 
itself, while being necessary, is not sufficient for good teaching (Ball, Hill, & Bass, 2005; Ma, 
1999).  The NCTM (2000) said, “Problem solving is not only a goal of learning mathematics but 
also a major means of doing so” (p. 52).  If there is interest in good student problem solving, 
teachers need to be more than proficient in their own problem solving abilities.    

The theoretical framework of this study is based upon the emphasis of the importance of 
content knowledge for teachers (Ball et al., 2005).  Additionally it is founded on Bandura’s 
(1986) idea that teacher self-efficacy can be subdivided into a teacher’s belief in his or her ability 
to teach well, and his or her belief in a student’s capacity to learn well from the teacher.  Finally, 
the NCTM (2000) and Schoenfeld (1985) have emphasized problem solving as a way of teaching 
though an emphasis on problem solving as an important process standard.   

 
Background on New York City Teaching Fellows 

The NYCTF program is an alternative certification program developed in 2000 in 
conjunction with The New Teacher Project and the New York City Department of Education 
(Boyd, Lankford, Loeb, Rockoff, & Wyckoff, 2007; NYCTF, 2008).  The program goal was to 
recruit professionals from other fields to supply the large teacher shortages in New York City’s 
public schools with quality teachers.  Prior to September 2003, New York State allowed for 
teachers to obtain temporary teaching licenses to help fill the teacher shortage.  Teaching 
Fellows generally are recruited to teach in high needs schools throughout the city (Boyd, 
Grossman, Lankford, Loeb, & Wyckoff, 2006). 

 
Background on Teach for America 

TFA is a non-profit organization formed in 1990 with the intention of sending college 
graduates to low-income schools to make a difference for the underserved students.  Its founder, 
Wendy Kopp, was herself a new graduate of Princeton University looking to do something more 
with her life after graduation (Kopp, 2003).  She considered that many recent college graduates 
at America’s top universities would consider teaching low-income students if given the 
opportunity.  The idea was that there should be a teachers’ corps that would allow new graduates 
at top universities with an interest in teaching to quickly begin teaching students in underserved 
communities.   

 
Research Questions 

1. What differences existed between teachers’ mathematical content knowledge before and 
after an elementary mathematics methods course?  

2. What differences existed between teachers’ concepts of self-efficacy before and after an 
elementary mathematics methods course?  Further, what level of self-efficacy did 
teachers possess at the end of the semester? 

3. What level of problem solving abilities did new teachers have in an elementary 
mathematics methods course? 

4. What were teachers’ beliefs about teaching and learning mathematics? 
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Methodology 
The methodology of this study involved both quantitative and qualitative methods.  The 

sample in this study consisted of 24 new teachers in the NYCTF (N = 9) and TFA (N = 15) 
programs.  One third was male and two thirds were female.  The teachers in this study were 
selected due to availability and thus represented a convenience sample.  Participants were 
enrolled in an inquiry-based elementary mathematics methods course for special education 
teachers that involved both pedagogical and content instruction.   

Teachers were given mathematics content examinations and self-efficacy questionnaires at 
the beginning and the end of the semester, and were given a problem solving examination at the 
end of the semester.  The mathematics content examination consisted of 20 multiple choice items 
that measured knowledge of number sense, fractions, decimals, and percents (6 items); 
probability and statistics (4 items); measurement and geometry (5 items); and algebra (5 items), 
and was based on the PRAXIS mathematics examination (ETS, 2005).  Possible scores ranged 
from zero to 20 points.   

The self-efficacy questionnaire was the Mathematics Teaching Efficacy Beliefs Instrument 
(MTEBI) developed by Enochs et al. (2000), and measured concepts of self-efficacy.  The 
MTEBI was a 21-item five-point Likert scale instrument with choices of strongly agree, agree, 
uncertain, disagree, and strongly disagree, and was grounded in the theoretical framework of 
Bandura’s self-efficacy theory (1986).  The MTEBI contained two subscales: Personal 
Mathematics Teaching Efficacy (PMTE) and Mathematics Teaching Outcome Expectancy 
(MTOE) with 13 and 8 items, respectively.  Possible scores ranged from 13 to 65 on the PMTE, 
and 8 to 40 on the MTOE.  The PMTE specifically measured a teacher’s self-concept of his or 
her ability to effectively teach mathematics.  The MTOE specifically measured a teacher’s belief 
in his or her ability to directly affect student learning outcomes.  Enochs et al. (2000) found the 
PMTE and MTOE had Cronbach alpha coefficients of 0.88 and 0.77, respectively.  

The problem solving examination consisted of five problem solving situations as adapted 
from the literature (Krulik & Rudnick, 1989; NCTM, 2000; Posamentier & Krulik, 2008; 
Posamentier et al., 2006).  It is important that students be unfamiliar with the problems because 
in order to be authentic problem solving students should encounter unfamiliar situations with no 
immediate solutions available.  Each item was worth two points and possible scores ranged from 
zero to 10 points.  Sample problems were as follows.  

 
A bicycle dealer just put together a shipment of two-wheel bicycles and three-wheel 
tricycles.  He used 50 seats and 130 wheels.  How many bicycles and how many tricycles 
did he make if he used all seats and wheels available?  
 
Jim bought a new camera that cost more than $30 but less than $40.  He paid for the 
camera with $5 bills and $1 bills.  He paid with the same number of each.  What did the 
camera cost? 
 

Teachers were required to keep reflective journals on their teaching and learning over the 
course of the semester, which provided qualitative data regarding their beliefs about teaching and 
learning mathematics.   
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Results 
The first research question was answered using the mathematical content knowledge test, and 

data were analyzed using paired samples t-test (see Table 1).  The results of the paired samples t-
test revealed a statistically significant difference between pretest scores and posttest scores for 
the mathematics content knowledge test, and there was a large effect size. 

The second research question was answered using the MTEBI with two subscales: PMTE 
and MTOE, and data were analyzed using paired samples t-tests (see Table 1).  The results of the 
paired samples t-test revealed a statistically significant difference between pretest scores and 
posttest scores for the PMTE, and the effect size was moderate.  Further, the results of another 
paired samples t-test revealed no statistically significant difference between pretest scores and 
posttest scores for the MTOE. 

 
Table 1 
Paired Samples t-Test Results for Content Test and Self-Efficacy Test (PMTE and MTOE)  
Assessment Mean SD t-value d-value 
Content Test  
  Pretest  
  Posttest 
 

 
75.00 
87.08 

 

 
16.151 
11.971 

 
-3.778** 

 
0.85 

 

PMTE 
  Pretest 
  Posttest 
 

 
2.70 
2.91 

 
0.504 
0.478 

 
-2.575* 

 
0.45 

MTOE 
  Pretest  
  Posttest   
 

 
2.69 
2.71 

 
0.691 
0.666 

 
-0.213 

 
 

N = 24, df = 23, two-tailed 
** p < 0.01 
* p < 0.05 

 
Further, the second part of the second research question was answered using independent 

samples t-tests to determine if the participants had significantly better concepts of self-efficacy at 
the end of the semester as compared to a neutral value coded as “2” on the survey sheet (see 
Table 2).  For the PMTE and MTOE the results of an independent samples t-test revealed a 
statistically significant difference between efficacy scores and neutral scores, and the effect size 
was very large.   

 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1641



Table 2 
Independent Samples t-Test Results for PMTE and MTOE Scores 
Assessment Mean SD t-value d-value 
PMTE Actual Scores 
Neutral Scores 
 

2.91 
2.00 

 

0.478 
0.000 

-9.310** 2.69 

MTOE Actual Scores 
Neutral Scores   

2.71 
2.00 

0.666 
0.000 

 

-5.249** 1.50 

N = 24, df = 23, two-tailed 
Equal variances not assumed. 
** p < 0.01 

 
Descriptive statistics were used to answer research question three.  At the end of the semester 

teachers had a mean score of 8.54 out of 10 possible points on the problem solving examination 
with a standard deviation of 1.615, which represents the teachers’ level of problem solving 
abilities.   

The fourth research question was answered using data collected from the teaching and 
learning journals.  The teaching journal was used as a reflection upon the teachers’ actual 
teaching and classroom experiences.  As part of the mission of the school of education where this 
study took place, teachers are encouraged to be reflective practitioners.  Similarly, the learning 
journal was used as a reflection on the learning in the mathematics methods course.   
 Analysis of the teaching journals revealed that the most commonly addressed topic was 
special education issues in the classroom.  Teachers addressed their struggles and successes of 
working with students with disabilities.  The next most frequently mentioned topic was 
mathematics anxiety.  Teachers not only addressed the anxiety their students experienced, but 
also the anxiety they themselves held as teachers of mathematics.  Teachers also expressed 
concerns about a lack of conceptual understanding in their students.  Teachers lamented the 
difficulty in helping their students learn mathematics for understanding, as well as the lack of 
understanding students possessed prior to entering the classroom.  Finally, teachers often 
reflected upon the emphasis placed upon standardized testing in their schools and the need to 
prepare students for the examinations, and they resented the emphasis on standardized testing.  
Surprisingly, very few teachers reported difficulty with classroom management.   
 Analysis of the learning journals revealed that the most commonly addressed topics were the 
use of technology and manipulatives in the classroom.  Teachers appreciated exposure to these 
learning tools and implemented them in their own classroom.  Manipulatives used in class 
included base ten blocks, Unifix cubes, Cuisenaire rods, and the Tower of Hanoi, among others.   
Next, teachers most often addressed their conceptual understanding of mathematics content.  
Teachers in the methods course appreciated the focus on understanding mathematics since many 
of them lacked conceptual understanding themselves.  Recall that the teachers reflected upon 
their concern that their own students lacked conceptual understanding in their teaching journals.  
The topic of differentiation and numeracy were frequently mentioned in the journals.  
Additionally, microteaching was a topic that many teachers thought enhanced their learning in 
the course.  Every teacher was required to present a 10 minute micro lesson that involved a 
“hook” to get students interested.  Many teachers found observing other teachers teach to be a 
very valuable aspect of this course.  Finally, problem solving was often mentioned in the 
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reflective journals.  Teachers were given a “problem of the day” problem solving situation that 
they were to solve in groups at the beginning of each class.   

 
Discussion 

It was found that elementary teachers increased their mathematical content knowledge and 
self-perception of their abilities to teach effectively over the course of a one semester inquiry-
based mathematics methods course for special education teachers while teaching in the own 
classrooms.  Further, it was found that at the end of the semester the teachers generally had high 
concepts of self-efficacy both in terms of their ability to teach well (as measured by the PMTE), 
as well as their ability to positively affect student outcomes (as measured by the MTOE).  
Additionally, teachers had relatively high problem solving abilities.  Analysis of the reflective 
journals revealed that teachers revealed that the most commonly addressed topic was special 
education issues in the classroom.  Teachers reflected on their struggles and successes of 
working with students with disabilities.  Teachers found that the use of technology and 
manipulatives were the most important topics addressed in their learning.   

Over the semester there was an increase in mathematics content knowledge, which is 
attributed to the combination of focus on content and pedagogy in the mathematics methods 
course, along with the teaching experience the teachers in this study were gaining.  Future 
studies should focus on the contributions to an increase in content knowledge from the 
coursework and teaching components, separately.   

The results of this study are consistent with the finding of Palmer (2006) and Swars, Hart, 
Smith, Smith, & Tolar (2007), who found that there was an increase in self-efficacy in terms of 
elementary pre-service teachers’ ability to teach well and their ability to positively affect student 
outcomes.  However, Palmer (2006) and Swars et al. (2007) examined preservice elementary 
school teachers, while in this study teachers were in-service and enrolled in alternative 
certification programs.  Also, Palmer looked at efficacy using the STEBI-B for science, and 
Swars et al. used the MTEBI for mathematics, as was done in this present study.  Soodak and 
Podell (1997) also found that preservice teachers exhibited higher levels of self-efficacy than 
when they began teaching in the field, but through experience the level of efficacy rose again.  
The results of this study were somewhat inconsistent with the results found by Hoy and 
Woolfolk (1990), who found a significant decline in beliefs to positively affect student learning 
outcomes during student teaching, which had been attributed to teachers’ exposure to the realities 
of the classroom.  However, in this present study teachers had an increase in this belief despite 
early encounters with the realities of the classroom.  Perhaps there is something different about 
alternative certification preparation that could explain this difference.  Change in self-efficacy 
should be further investigated, especially for alternative certification teachers.      

It was found that teachers had relatively high problem solving abilities.  This is in contrast to 
findings in the literature (Ball et al., 2005; Ma, 1999), and commonly held perceptions of teacher 
problem solving ability (Paulos, 1990).  The translation of strong problem solving abilities into 
the classroom should be further investigated, and it is suggested that alternative certified 
elementary school teachers be evaluated for their implementation of their problem solving 
abilities into the classroom.   

Since the teachers in this study were special education teachers, it was not surprising that 
teachers most often reflected upon the challenges and successes they had with their special 
education students in their teaching journals.  It was surprising, however, that very few teachers 
reflected on classroom management issues.  Classroom management is often considered a top 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1643



concern among new teachers (Costigan, 2004; Cruickshank, Jenkins, & Metcalf, 2006).  This 
should be examined in future studies. 

Teachers expressed concern about lack of conceptual understanding in their students and an 
appreciation for the emphasis on understanding in the methods course.  The method course in 
which these teachers were enrolled had a strong emphasis on teaching for understanding.  It has 
been shown that many U.S. elementary teachers lacked the content understanding needed to 
teach well (Ma, 1999), and that this should not be a surprise given that these teachers graduated 
from the same system that researchers wish to improve (Ball et al., 2005).  Hence, a cycle of 
non-understanding persists.  Nurturing conceptual understanding in teachers is important given 
the relationship between teacher knowledge and student achievement (Hill et al., 2005). 

Teachers frequently mentioned differentiation and numeracy in their learning journals.  The 
school of education where this study takes place has a strong emphasis on differentiated 
instruction.  It should be noted that teachers in this class had been exposed to differentiation prior 
to enrolling in the method course.  Teachers were required to read Paulos’ Innumeracy: 
Mathematical Illiteracy and its Consequences (1990).  In this book Paulos addressed what it 
means to be numerate (i.e. mathematically literate) in a democratic society.   

Teachers often discussed problem solving in their learning journals.  Problem solving as a 
way of teaching was thoroughly addressed in the course with considerable time devoted to 
problem solving in the mathematics classroom as recommended in the literature (NCSM, 1978; 
NCTM, 2000; Schoenfeld, 1985). 

Ball et al. (2005) found that teacher knowledge is an important variable in preventing the 
achievement gap from growing in high need urban schools.  Additionally, self-efficacy impacts 
student learning (Soodak & Podell, 1997).  As earlier referenced, it is possible that beliefs about 
self-efficacy may be a greater variable in quality teaching than content knowledge alone 
(Bandura, 1986; Ernest, 1989).  Future studies should examine content knowledge, concepts of 
self-efficacy, and problem solving abilities in the special education context.  Considering the 
high need for special education teachers, schools of education must be careful in determining the 
abilities and beliefs of special education teaching candidates.  Further, considering the large 
number of alternative certification program candidates who teach in high need schools (Boyd, 
Grossman, Lankford, Loeb, & Wyckoff, 2006; Kopp, 2003), it is extremely important for the 
sake of these students that educational researchers understand teacher knowledge, concepts of 
self-efficacy, and problem solving abilities. 
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The purpose of this study was to compare the mathematics content knowledge, attitudes, and 
efficacy held by teachers in two alternative pathways to mathematics teacher certification: New 
York City Teaching Fellows and Teach for America (TFA).  Differences were not found in 
content, attitudes, and efficacy, but learning and teaching journals revealed several differences 
between Teaching Fellows and TFA teachers.  Particularly, social justice in the classroom was 
mentioned more often by TFA teachers, and Teaching Fellows found classroom management to 
not be as much an issue as had been expected. 

 
The purpose of this study was to compare the mathematics content knowledge, attitudes 

toward mathematics, and concepts of self-efficacy held by teachers in two alternative pathways 
to mathematics teacher certification: New York City Teaching Fellows (NYCTF) and Teach for 
America (TFA).  Secondly, the purpose was to determine differences in their attitudes toward 
their own learning and teaching as new mathematics teachers in New York City.  

Strong teacher content knowledge is an important factor for teaching mathematics 
successfully (Ball, Hill, & Bass, 2005).  Further, negative teacher attitudes toward mathematics 
often lead to avoidance of teaching strong mathematical content and affect students’ attitudes 
and behaviors (Amato, 2004).  Additionally, poor attitudes toward teaching are directly related to 
teacher retention issues (Costigan, 2004), and self-efficacy is an important component for 
successful teaching since self-efficacy is a teacher’s belief in his or her ability to teach 
effectively and positively affect student learning outcomes (Bandura, 1986; Enochs, Smith, & 
Huinker, 2000). 

 
Backgrounds on the NYCTF and TFA Programs 

The NYCTF program is an alternative pathways program developed in 2000 in conjunction 
with The New Teacher Project and the New York City Department of Education (NYCTF, 2008; 
Boyd, Lankford, Loeb, Rockoff, & Wyckoff, 2007).  The program goal was to recruit 
professionals from other fields to supply the large teacher shortages in New York City’s public 
schools with quality teachers.  Prior to September 2003, New York State allowed teachers to 
obtain temporary teaching licenses to help fill the teacher shortage.  The NYCTF program has 
grown very quickly since its inception in 2000: “Fellows grew from about 1 percent of newly 
hired teachers in 2000 to 33 percent of all new teachers in 2005” (Boyd, Lankford, Loeb, 
Rockoff, & Wyckoff, 2007, p. 10).  Teaching Fellows represent 11 percent of all New York City 
public school teachers, and 26 percent of all mathematics teachers (NYCTF, 2010).  NYCTF is 
the largest alternative pathways program in New York City (Kane, Rockoff, & Staiger, 2006).   

TFA is a non-profit organization formed in 1990 with the intention of sending college 
graduates to low-income schools to make a positive difference for the underserved students.  Its 
founder, Wendy Kopp, was herself a new graduate of Princeton University looking to do 
something more with her life after graduation (Kopp, 2003).  She considered that many recent 
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college graduates at top U.S. universities would consider teaching low-income students if given 
the opportunity.  The idea was that there should be a teachers’ corps that would allow new 
graduates at top universities with an interest in teaching to quickly begin teaching students in 
underserved communities.  Kopp considered that her idea could be a Peace Corps for the 1990s, 
and that the teachers would either stay in education or go into other sectors and remain advocates 
for public education.   

 
Literature Review 

There have been several studies that compared different pathways to teacher certification 
with the primary focus on student achievement and teacher retention as measures of success 
(Boyd, Grossman, Lankford, Loeb, Michelli, & Wyckoff, 2006; Constantine et al., 2009; 
Rochkind, Ott, Immerwahr, Doble, & Johnson, 2007).  Rochkind et al. (2007) documented 
teacher experiences from TFA, Troops to Teachers, and the New Teacher Project in Baltimore, 
who described their first year of teaching.  However, this study was limited in scope.  Recently 
the National Center for Education Evaluation and Regional Assistance, Institute of Education 
Sciences, through the U.S. Department of Education, conducted a comparison study of various 
pathways to teacher certification in elementary reading and mathematics (Constantine et al., 
2009).  Constantine et al. claimed that despite the rapid growth in alternative pathways programs, 
little evidence has been gathered to determine their effectiveness.  Constantine et al. found that 
alternatively and traditionally prepared teachers did not have statistically significant content 
knowledge differences, or statistically significant differences in student achievement levels.  The 
latter finding is in contrast to previous research in which differences were found (Boyd, 
Grossman, Lankford, Loeb, Michelli, & Wyckoff, 2006; Darling-Hammond, Holtzman, Gatlin, 
& Heilig, 2005; Laczko-Kerr & Berliner, 2002).  Previous studies had indicated that teachers in 
alternative pathway programs had students who scored about as well as, if not better than, 
students of traditionally prepared teachers in achievement examinations after the initial 
certification process (Kane et al., 2006).   

Plumer (2010) concluded that while alternative pathway teachers appeared to be slightly 
more successful in mathematics and science than in reading, the research had come to conflicting 
and mixed conclusions on the impact of alternative pathways teachers.  In New York the NYCTF 
and TFA programs are two large alternative pathways programs, and this study compared the 
mathematics content knowledge, attitudes toward mathematics, and concepts of self-efficacy 
held by teachers in these two programs.   

 
Theoretical Framework 

 Aiken (1970) was an early pioneer to examine the relationship between mathematical 
achievement and attitudes toward mathematics, and showed that attitudes and achievement in 
mathematics are reciprocal.  Like Aiken, Ma and Kishor (1997) found a small but positive 
significant relationship between achievement and attitudes through meta-analysis.  This 
relationship, along with Ball et al.’s (2005) emphasis on the importance of content knowledge for 
teachers, formed the framework of this study.  Ball et al. said, “How well teachers know 
mathematics is central to their capacity to use instructional materials wisely, to assess students’ 
progress, and to make sound judgments about presentation, emphasis, and sequencing” (p. 14).  
Further, Ball et al. suggested that teachers with high content knowledge could help narrow the 
achievement gap in urban schools.  Teaching Fellows and TFA teachers are placed in high need 
urban schools in New York City. 
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Additionally, Bandura’s (1986) construct of self-efficacy theory framed this study’s focus on 
self-efficacy in Teaching Fellows and TFA teachers.  Bandura found that teacher self-efficacy 
can be subdivided into a teacher’s belief in his or her ability to teach well, and his or her belief to 
affect student learning outcomes.  Teachers who feel that they cannot effectively teach 
mathematics and affect student learning are more likely to avoid teaching from an inquiry and 
student-centered approach with real conceptual understanding (Swars, Daane, & Giesen, 2006). 

 
Research Questions 

5. What differences existed between Teaching Fellows and TFA mathematical content 
knowledge both at the beginning and end of a mathematics methods course?  

6. What differences existed between Teaching Fellows and TFA attitudes toward 
mathematics both at the beginning and end of a mathematics methods course?  

7. What differences existed between Teaching Fellows and TFA concepts of teaching self-
efficacy?  

8. What differences existed between Teaching Fellows and TFA attitudes as measured by 
learning and teaching journals? 

 
Methodology 

 The study used both quantitative and qualitative methods, and participants consisted of 42 
Teaching Fellows and 22 TFA teachers at a partnering university, a medium-sized urban 
university located in New York City.  Teaching Fellows and TFA teachers were both at the 
beginning of their teaching careers teaching middle and high school mathematics while taking 
graduate education courses.  For mathematical content knowledge, attitudes toward mathematics, 
and learning and teaching journals, the sample for TFA is the entire 22 teachers.  However, for 
self-efficacy the sample is reduced to 19 participants because two teachers did not return their 
self-efficacy instruments, and one teacher left teaching, the partnering university, and the TFA 
program all together in the second year.  All 42 Teaching Fellows were available for all 
measurements. 

The teachers were enrolled in a mathematics methods course that was based upon reformed-
based methods and addressed both pedagogy and content from a problem solving perspective.  
The course was one semester for Teaching Fellows, but it was a year long course for TFA.  
However, the same content and same amount of time was devoted to the mathematics content 
and methods in both programs.  It was a year long course for TFA teachers because the course 
was combined with two other courses: assessment and literacy.   

Both Teaching Fellows and TFA teachers took the New York State Content Specialty Test 
(CST) the summer before they began their program, which is required by the State of New York 
for teacher certification.  This test assesses mathematical content knowledge for teacher 
certification and the scores range from 100 to 300 with a minimum passing score of 220.  It 
consists of multiple choice items and a written assignment, and has six sub-areas: Mathematical 
Reasoning and Communication; Algebra; Trigonometry and Calculus; Measurement and 
Geometry; Data Analysis, Probability, Statistics and Discrete Mathematics; and Algebra 
Constructed Response.  Further, both Teaching Fellows and TFA teachers took a mathematics 
content test at the beginning and end of their mathematics methods course.  The mathematics 
content test consisted of 25 free response items ranging from algebra to calculus, and the test 
taken at the end of the course was similar in form and content to the one taken at the beginning.   
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Additionally, both Teaching Fellows and TFA teachers were given a survey instrument that 
measured attitudes toward mathematics at the beginning and end of the mathematics methods 
course.  The attitudinal questionnaire was adapted from Tapia (1996) and had 39 items that 
measured attitudes toward mathematics including self-confidence, value, enjoyment, and 
motivation in mathematics.  The instrument used a 5-point Likert scale with items strongly agree, 
agree, neutral, disagree, and strongly disagree. 

Teaching Fellows were given self-efficacy surveys at the beginning and end of their 
mathematics methods course.  However, TFA teachers were given the self-efficacy survey only 
once in their second year of teaching and enrollment in the graduate education program.  The 
self-efficacy instrument was adapted from the Mathematics Teaching Efficacy Beliefs 
Instrument (MTEBI) developed by Enochs et al. (2000), and measured concepts of self-efficacy.  
The MTEBI is a 21-item five-point Likert scale instrument with choices of strongly agree, agree, 
uncertain, disagree, and strongly disagree, and is grounded in the theoretical framework of 
Bandura’s (1986) self-efficacy theory.  The MTEBI contains two subscales: Personal 
Mathematics Teaching Efficacy (PMTE) and Mathematics Teaching Outcome Expectancy 
(MTOE) with 13 and 8 items, respectively.  Possible scores range from 13 to 65 on the PMTE, 
and 8 to 40 on the MTOE.  The PMTE specifically measured a teacher’s self-concept of his or 
her ability to effectively teach mathematics.  The MTOE specifically measured a teacher’s belief 
in his or her ability to directly affect student learning outcomes.  Enochs et al. (2000) found the 
PMTE and MTOE had Cronbach alpha coefficients of 0.88 and 0.77, respectively.  

Finally, Teaching Fellows and TFA teachers were required to keep reflective journals on 
their learning and teaching over the course of the methods course, which provided qualitative 
data of their attitudes toward learning and teaching mathematics.  The learning journal had 
guiding questions such as: How has this course affected your teaching?  What has been helpful?  
What are the most important concepts you’ve learned in this class?  The teaching journal had 
guiding questions such as: How are your students learning?  What challenges do you face?  What 
successes have you had?  Has your attitude toward teaching shifted over the course of the 
semester? 

 
Results 

Research questions one, two, and three were answered using independent samples t-tests with 
significance levels taken at the 0.05 level.  For research question one, both pre- and post- 
mathematics content test scores and mathematics CST scores were used to determine if there 
were any significant differences between NYCTF and TFA teacher content knowledge.  For 
research question two, both pre- and post- attitudes toward mathematics findings were used to 
determine if there were any significant differences between NYCTF and TFA teacher attitudes 
toward mathematics.  Finally, for research question three, both pre- and post- MTEBI scores, 
separated for both PMTE and MTOE subscales, for Teaching Fellows were used with MTEBI 
scores for TFA teachers to determine if differences existed in teacher self-efficacy between the 
two programs.   

Findings revealed no statistically significant differences between Teaching Fellows and TFA 
teachers on the mathematical content test, CST scores, attitudes toward mathematics instrument, 
and the MTEBI for both subscales: PMTE and MTOE.  This means there are no differences 
between NYCTF and TFA mathematics content knowledge, attitudes toward mathematics, and 
concepts of teaching self-efficacy as measured by the instruments used in this study.   
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Analysis of the learning and teaching journals revealed similarities and differences between 
the two programs.  For the learning journals it was found that both groups cited problem solving 
and numeracy in the methods course frequently.  Techniques for motivating student learning 
were discussed in both NYCTF and TFA journals.  Both Teaching Fellows and TFA teachers 
cited reflective teaching and literature critique reviews least often.  While social justice was cited 
most frequently by TFA teachers, it was mentioned very infrequently by Teaching Fellows.  
While microteaching and learning about motivation techniques were two categories frequently 
mentioned by Teaching Fellows, TFA teachers rarely mentioned these.  In both NYCTF and 
TFA methods classes teachers were expected to present a brief micro lesson that contained a 
motivator for the lesson, to their classmates.   

For the teaching journals both Teaching Fellows and TFA teachers cited classroom 
management as the most frequently cited concern.  However, it should be noted that while every 
TFA teacher reference to classroom management was citing a problem with classroom 
management, several Teaching Fellows mentioned classroom management as not being as 
problematic as they thought it would be.  Also frequently referenced in both NYCTF and TFA 
journals were student motivation for learning, student attendance, and standardized state 
examination preparation as emphasized by their administrations.  TFA cited unsupportive 
administration frequently as a concern, whereas NYCTF did not.    

 
Discussion 

 No statistically significant differences were found between NYCTF and TFA teachers on 
mathematics content knowledge, attitudes toward mathematics, and concepts of self-efficacy.  It 
is commonly claimed by TFA that their candidates come from the most highly ranked and 
selective universities in the United States (TFA, 2010; Xu, Hannaway, & Taylor, 2008), and the 
implication is that those among America’s brightest become TFA teachers.  However, the 
findings in this study indicated that NYCTF and TFA teachers are statistically similar in terms of 
content knowledge, attitudes, and beliefs.  These results are quite surprising considering there is 
a common perception held by those working with the programs in New York that TFA teachers, 
while not staying in education quite as long at Teaching Fellows, do however have stronger 
mathematics content knowledge.  Moreover, Constantine et al. (2009) claimed that of the various 
alternative pathways programs, NYCTF and TFA are the more selective of the other alternative 
pathways program in candidate selection.  In 2008 only about 15 percent of NYCTF program 
applicants were accepted into the program, and over 8 percent of NYCTF applicants actually 
entered training in the summer before teaching with an additional 1 percent beginning early in 
the 2007/2008 academic year (NYCTF, 2008).  In 2008 approximately 20 percent of TFA 
applicants were accepted into the program with about 15 percent of applicants actually starting 
the program (TFA, 2008).  The mean grade point average in 2008 for new Teaching Fellows was 
3.3 (NYCTF, 2008), while the mean grade point average for new TFA teachers was 3.6 (TFA, 
2010).  Statistically significant differences in grade point averages had not been examined. 

Since the results of this study indicate there are no differences found in several variables that 
measured teacher quality between the two programs, the implication is that it should not matter 
in which program teachers are selected based upon content knowledge, attitudes toward 
mathematics, and concepts of self-efficacy.  However, given results from prior studies that 
focused on teacher retention, perhaps NYCTF maintains an advantage over TFA using retention, 
a variable important in student success, as an important criterion for success.  Sipe and D’Angelo 
(2006) found when surveying Teaching Fellows that about 70 percent of them intended to stay in 
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education.  NYCTF reports that 92 percent of Teaching Fellows completed their first year of 
teaching, 73 percent completed at least three years of teaching, and half have taught for at least 
five years (NYCTF, 2010).  Boyd, Grossman, Lankford, Michelli, Loeb, and Wyckoff (2006) 
reported that about 46 percent of Teaching Fellows stayed in teaching after four years as 
compared to 55 to 63 percent of traditionally prepared teachers.  Further, Kane et al. (2006) 
found that Teaching Fellows and traditionally prepared teachers had similar retention rates.  
However, Darling-Hammond et al. (2005) reported that upon becoming certified many TFA 
teachers leaving teaching.  This is in contrast to TFA’s own report of teacher retention.  TFA 
claimed that about two-thirds of TFA teachers stayed in the field upon completing their time in 
the program, and half of those remained in teaching (TFA, 2008).  This means that about one 
third stayed in the classroom upon fulfilling their commitment, which generally lasts several 
years.  Another one third maintained non-teaching roles in education, such as in administration 
or advocacy (TFA, 2008).  Lassonde (2010) claimed that only 11 percent of TFA teachers 
reported planning to teach 10 years or more.  As of 2010 there were 17,000 TFA alumni (TFA, 
2010), and according to TFA, over 5600 remained teaching in the classroom after their 
commitment ended (TFA, 2009).  These findings indicate that approximately more than twice 
the percentage of Teaching Fellows stayed in the classroom compared to TFA teachers over a 
similar time period of several years.  However, no statistical analysis had been conducted to 
determine significant differences. 
 In the learning journals teachers in both programs cited problem solving and numeracy 
frequently.  However, more interestingly, social justice was cited most frequently by TFA 
teachers, but it was mentioned very infrequently by Teaching Fellows.  This is an interesting 
finding given the emphasis on social justice in the school of education where this study took 
place.  If social justice issues in the classroom are of high concern, then perhaps TFA teachers 
have an advantage over Teaching Fellows, in this respect.  This should be further investigated. 

In the teaching journals teachers in both programs cited, unsurprisingly, classroom 
management issues as the most frequently cited concern for new teachers, as documented in the 
literature (Cruickshank, Jenkins, & Metcalf, 2006).  It was surprising, however, that NYCTF 
teachers found classroom management to not be as much of an issue, but TFA teachers found 
classroom management exclusively problematic.   

An interesting finding was that Teaching Fellows cited learning about motivation techniques 
often in their learning journals, while TFA teachers did not, especially since both groups 
frequently mentioned student motivation in their teaching journals, a concept related to the 
microteaching required in the methods class.   

Both Teaching Fellows and TFA teachers cited time needed for, and administrative emphasis 
on, standardized state testing.  In the time of No Child Left Behind (NCLB, 2001) much 
emphasis on accountability means that schools and principals must ensure that teachers are 
raising standardized state test scores.  It is no surprise that both NYCTF and TFA teachers rank 
this highly among their concerns.   
 The major implication from this study is that TFA is not stronger than NYCTF in content 
knowledge, attitudes, or in their confidence of their own teaching efficacy, as is often assumed 
given the reputation of TFA and caliber of college and university pursued by TFA in candidate 
recruitment, and it is hoped that this study changes this perception.  From the literature it 
appeared that Teaching Fellows had an advantage in terms of teacher retention, but the results of 
this study indicated that TFA teachers had an advantage with concern for social justice in the 
classroom.  However, more confirmatory research is needed.  Further studies should compare 
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differences between Teaching Fellows and TFA teachers in actual classroom practice in 
secondary mathematics teaching specifically, given the size of the programs.  How does student 
achievement compare for the two groups among high need students?  This study found no 
differences in content knowledge and beliefs for the two groups of teachers, but it would be 
beneficial to understand NYCTF and TFA direct impact in urban classrooms.   
 Educational researchers must continue to investigate the quality of alternative pathway 
programs.  Since students in high need urban schools are often the ones who receive alternative 
pathways teachers in the classroom, it is imperative that educational researchers, professors of 
education, administrators, and policy makers ensure that these students are getting the highest 
level quality teachers they deserve.  The question posed to administrators and policy makers is: 
Would you accept an alternative pathway teacher in your own child’s classroom?  We must 
continue to understand and improve alternative pathways until the answer is a resounding “yes.”   
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This study examined prospective middle grade mathematics teachers’ mistakes in knowledge of 
algebra for teaching. 115 prospective teachers participated in a survey. It was found that the 
participants performed better in expressions and linear equations but revealed numerous 
mistakes in irrational functions and equations, and relevant advanced mathematics content area. 
They also showed limited knowledge in selecting appropriate function perspectives and 
representations.  
  

Introduction 
Equipping teachers with appropriate knowledge needed for teaching is the key to high-

quality teaching that aims at achieving high student achievement (Conference Board of the 
Mathematical Sciences [CBMS], 2001; National Mathematics Advisory Panel [NMAP], 2008). 
Many studies revealed that U.S. teachers do not have adequate content knowledge and 
pedagogical content knowledge preparations (Kulm, 2008; Ma, 1999; Schmidt et al., 2007). 
Meanwhile, relevant recommendations for improving teacher preparations have been made 
(NMAP, 2008; RAND Mathematics Study Panel, 2003; Kilpatrick, Swafford, & Findell, 2001). 
In particular, CBMS (2001) recommended that prospective middle mathematics teachers should 
have at least twenty-one semester hours in mathematics, including at least twelve semester hours 
of fundamental ideas of mathematics appropriate for middles school teachers. Does taking much 
more mathematics or mathematics education courses matter for preparing qualified teachers?  In 
this study, we examined prospective teachers from a program that meets the requirements 
(CBMS, 2001) how they responded to the survey which was designed to measure knowledge of 
algebra for teaching. By focusing on the particular content of algebra, we hope to provide a 
better understanding of teacher knowledge in the specific area and provide insight into 
mathematics teacher preparation in general. The purpose of this study is to examine the strengths 
and weakness of teachers’ knowledge for teaching algebra with a particular attention to their 
mistakes. 

 
Theoretical Framework 

Teachers’ Knowledge for Teaching Algebra 
In the past decades, researchers have focused on conceptualizing and measuring particular 

mathematical knowledge needed for teaching (MKT) (e.g., Ball, Hill, & Bass, 2005; Hill, 2010; 
Kilpatrick et al., 2001). Recently, growing attention has been given to define and measure 
teachers’ knowledge needed for teaching specific areas (e.g., Chinnappan & Lawson, 2005; 
Even, 1993, 1998; Floden & McCrory, 2007). Since algebra is a core component of school 
mathematics (National Council of Teachers of Mathematics [NCTM], 2000; NMAP, 2008), 
researchers have proposed different models defining teachers’ knowledge for teaching algebra 
(e.g., Doerr, 2004; Even, 1993; Floden & McCrory, 2007). For example, Floden and McCrory 
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(2007) have developed a model to guide the development of a measure of teachers’ knowledge 
of algebra for teaching (KAT). According to this model, the knowledge for teaching algebra 
includes three types of knowledge: school algebra knowledge, advanced algebra knowledge, and 
teaching algebra knowledge. Moreover, they also developed relevant instrument for measuring 
KAT. Thus, we developed our own instrument based on Floden and McCrory’s (2007) 
framework and instrument.  

 
Understanding of the Concept of Function 

Process-object duality is a generally accepted model of mathematics concept development 
(Briedenbach, Dubinsky, Hawks, & Nichols, 1992; Schawarz &Yerushalmy, 1992;  Sfard, 
1991). With regard to the development of function concept, according to the process perspective, 
a function is perceived as linking x and y values: for each value of x, the function has only one 
corresponding y value. On the other hand, the object perspective regards functions or relations 
and any of its representation as entities (Moschkovich, Schoenfeld, & Arcavi, 1993). The term 
“representation refers both to process and product-to the act of capturing a mathematical concept 
or relationship in some form and to the form itself’’ (NCTM, 2000, p. 67). Hence, representation 
is an essential part of the mathematical activity and a vehicle for capturing mathematical 
concepts (e.g., Goldin & Shteingold, 2001). Different representations play different roles in 
helping students understand the concept of function (e.g., Lesh, Post, & Beher, 1987; Schwarz 
&Yerushalmy, 1992). For example, while the algebraic representations can help understand a 
function as a process; the graphical representations help understand a function as an object. 
Thus, it is important to have sound understanding of these two perspectives (Clement, 1989; 
Even, 1998) and use appropriate representations with regard to different contexts (Cuoco 2001; 
NCTM, 2000, 2009).  

 
Teachers’ Knowledge for Teaching the Concept of Function 

There are several studies on teachers’ knowledge for teaching the concept of function (e.g., 
Even, 1993, 1998; Hitt, 1998). For example, based on 152 prospective secondary teachers’ 
completion of an open-ended questionnaire concerning their knowledge about function, Even 
(1993) found that many prospective secondary teachers did not hold a modern conception of a 
function as univalent correspondence between two sets. These teachers tended to believe that 
functions are always represented by equations and that their graphs are well-behaved. In 
summary, teachers have difficulties in (1) understanding the concept of functions as univalent 
correspondence between two sets (sometimes, it is not presented by a formula, or it is not of 
discontinuous graph), (2) shifting different representations flexibly, and (3) relating formal 
function notions to contextual situations which produce the function. 

 
Method 

Data Sources  
The data used for this study were taken from a comparative study (Huang, 2010) consisting 

of 115 U.S. prospective middle mathematics teachers’ survey on knowledge of algebra for 
teaching and follow- up interviews with 5 participants (Larry, Jenny, Kerri, Alisa, and Stacy are 
pseudonym names of the interviewees). The participants were from an interdisciplinary program 
preparing math and science middle school teaches at a large research public University in South 
of the United States. Based on Floden and McCrory’ (2007) questionnaire, we developed an 
instrument which included 17 multiple choice items and 8 open-ended items. The interviews 
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were conducted individually during the week after completion of the survey. Each interview 
lasted about 20 minutes, and was audio recorded. The majority of the participants (87%) were 
junior and senior students and they had completed an average of 7 mathematics and mathematics 
courses.  
Data Analysis 

After quantifying the data, we first analyzed typical mistakes with regard to expressions, 
equations, and graphs (Items 1-17). Then, we analyzed the performance and typical mistakes in 
solving open-ended problems (items 18-25) from two perspectives: function perspectives and 
representations.   

 
Results 

Mistakes in Knowledge Related to Expressions, Equations, and Graphs 
Some typical mistakes in knowledge of algebra for teaching were identified as follows:  (1) 

neglecting the domain of independent variable when transforming and/solving irrational 
functions and equations; (2) inappropriate use of graphic representations; and (3) misconceptions 
in advanced knowledge.   

 
Neglecting the domain of independent variables. In item 4, participants were required to 

find the equivalent expressions of the function  2
2log)( xxf =  from: ⅰ. xy 2log2= ;  

ⅱ. xy 2log2= ;  ⅲ. xy 2log2= .  Their choices of A ( i only),   B ( ii only),  C (iii only),  D 
( i and ii only), and   E (i, ii, and iii),  were 37%, 15%, 6%, 21%, and 0% respectively.  This 
indicates that 37% of them did not consider the domain of independent variable x when 
transforming a function and also 21 % of them did not differentiate these four expressions. 
For another example, participants were asked to comment on the following process of solving 
the equation: 0639 =−− xx : “Peter denoted xy 3= and gets the equation 062 =−− yy ,  
which has 2 different roots. He concluded that the given equation also has 2 different roots”. 
15% of them agreed with Peter’s solution, and 54% of them believed the substitution method 
is wrong, only 18% of them realized the mistake in neglecting the range of y. These results 
suggest that participants were likely to neglect the domain of an independent variable�or 
range of a dependent variable� when transformation irrational functions or expressions.  

 
Inappropriate use of graphic representations. Many participants were not able to 

appropriately use geometrical representations to present algorithms, algebra relationships, 
relationship between time and velocity, and root of trigonometry functions.   For example, only 
30% of the participants realized the following relationships: “ i. The equivalence of fractions and 

percents, e.g. 60
5
3
= % ; ii. The distributive property of multiplication over addition:  For all real 

numbers a, b, and c, we have a(b + c) = ab + ac ; iii. The expansion of the square of a binomial: 
222 2)( bababa ++=+ ” can be represented by rectangles. 26%, 22% and 16% of the 

participants did not realize that the distributive rules of multiplication over addition, the 
equivalence of fractions and percents, and the formula of square of a binomial can be presented 
by rectangles respectively. Thus, the participants did not have profound understanding of using 
geometrical representations to present algorithmic and algebraic relationships.  

Misconception in advanced mathematics.  We identified some essential mistakes in the 
operation rules across different number systems, mathematical induction, and slope of tangent 
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line of a curve. For example, one question is to judge the statement that “ For all a and b in S, if 
ab = 0, then either a = 0 or b = 0”  is true in different number systems (S) such as  real numbers 
(i), complex numbers (ii), and  a set of 2 x 2 matrices with real number entries (iii). 44% of the 
participants selected only (i) (incorrect) and 22 % of selected only (i) and (ii) (correct answers), 
and 30% of them selected i, ii and iii (incorrect). It means that 44% of them are not able to 
generalize the rule to complex number system, while 30% of them inappropriately generalize the 
rule to matrix system. The invariance of operation rules in different number systems is a core 
concept; however, majority of them were not able to differentiate.  

 
Inflexibilities or Mistakes in Quadratic Equations and Functions 

The results are organized into two parts. One is related to the selection of perspectives of 
function concept. The other is about the flexible use of representations.   

 
Weakness in selecting appropriate perspectives of function concept. Items 18, 24 and 25 are 

particularly used for measuring knowledge of understanding and applying function concept from 
different perspectives.  Item 18 is in favor of using process perspective; item 24 is easily proved 
if adopting an object perspective. It is necessary to connect those two perspectives when solving 
item 25. The score distribution of these three items is shown in Table 1.  

Table 1. Score Distribution of Items Related to the Adaption of Function Perspectives 
Item  0 point (%) 1 point (%) 2 points (%) 3 points (%) 4 points (%) 
Item 18 32.2 17.4 27.8 12.2 10.4 
Item 24 98.3 1.7 0 0 0 
Item 25 31.3  17.4 33 13 5.2 

Take item 18 for example.  The item is as follows: On a test a student marked both of the 
following as non-functions  
     (i)  f:  R→  R,  f(x) = 4, where R is the set of all the real numbers.  
     (ii) g(x) = x if x is a rational number, and g(x) = 0 if x is an  irrational number.  

(a) For each of (i) and (ii) above, decide whether the relation is a function;   
(b) If you think the student was wrong to mark (i) or (ii) as a non-function, decide what he or 

she might have been thinking that could cause the mistake(s).Write your answer in the 
Answer Booklet.  

About 23 % of the participants got a correct answer (10%) or almost correct answer with 
minor mistakes (12%). While 32% of them provided nothing or meaningless information about 
the solution and about 28% of them just gave correct answers without any interpretation or gave 
one correct answer and relevant explanations. The participants preferred to use diagrams to 
visualize the function relationship and then make a judgment of these two given relations  

The perspectives used in participants’ interpretations of the item 18 are listed in Table 2 (The 
percentages with wrong answers are omitted in the Table). 

Table 2.  Perspectives Adopted in the Responses to Item 18 
Perspective Description  Percent 
Process  Corresponding relationship between domain and range 

(one-to-one; multiple-to-one) 
6 

Object  Expression feature (constant value; two expressions)  
Graphic features (one line, many holes/un-continuous) 

9 

With regard to this item, it is more appropriate to adopt the process perspective.  However, 
the participants preferred using object perspective (9%), namely, basing on function expressions 
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and graphic features to using essentially corresponding relationship features (6%).  In responding 
to how they made their judgments, except for one Jenny, the others reported they used the 
vertical line test (Larry, Alisa, and Stacy) or diagrams presenting corresponding relationship 
between two sets (Kerri).  Jenny made her wrong judgment based on visually graphical images. 
Since she had difficulty drawing the graph of the second relation, she believed it was not a 
function. However, when asked whether she heard of the vertical line test, she clearly stated that 
“one x value can only have one corresponding y value; one x value cannot be corresponded to 
two y-values.” Kerri said she “is a visual learner, and likes using diagrams to represent the 
relationship between two sets (one-to-one or multiple-to-one, but not one-to-multiple)”. Larry 
not only explained the vertical line test rule, but also showed an example (x=y2) which cannot 
pass the vertical line test. Alisa and Stacy explained the rule by emphasizing “each input [value] 
should have only one [corresponding] value, but that does not mean that different [input] values 
cannot have same [corresponding] value”.  They also attributed students’ mistakes to students’ 
superficial understanding of the vertical line test rule (missing multiple x values correspond one 
y-value) or the confusion with “many holes”, or the repeating output.  

 
Inflexibility of Selecting Representations    

The items 19, 21, 22, and 23 are deliberately designed for measuring knowledge for 
understanding and applying quadratic functions/equations/inequalities through flexibly using 
multiple representations. It is crucial for participants to flexibly use appropriate presentations and 
shift between different representations in order to solve them effectively. Regarding item 19, it is 
expected to have algebraic and graphic representations of equation and inequality. With regard to 
item 21, it is necessary to shift between algebraic and graphic representations in order to solve 
the problem. To solve the problem of item 22, it is necessary to have ability to translate graphic 
representations to algebraic representations. To solve the problem of item 23, it is required to use 
appropriate forms of algebraic expressions and transformations of different algebraic 
expressions, and translation between graphic and algebraic representations. The scores 
distribution of these four items is shown in Table 3. 

Table 3. Score Distribution of Items Related to Flexible Use of Representations 
Item  0 point (%) 1 point (%) 2 points (%) 3 points (%) 4 points (%) 
Item 19 31.3 62.6 5.2 0.9 0 
Item 21 84.3 14.8 0.9 0 0 
Item 22 34.8 24.3 15.7 16.5 8.7 
Item 23 80 16.5 0.9 0 2.6 

Take item 19 for example.  The question is as follows:  
Solve the inequality (x – 3)(x + 4) > 0 in two essentially different ways.  
Only one participant gave two essentially different solutions (i.e., algebraic and graphic 

methods). Around 60% gave an algebraic statement which did not result in a correct answer.  In 
addition, more than one-third (31%) of the participants left it blank or gave some useless 
statements. Overall, the students performed worst in this problem. Moreover, many mistakes and 
misconceptions occurred as shown in Table 4.  
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Table 4. Misconceptions or Mistakes in Solving Inequality in Item 19 

Mistake Explanation  Example Frequency (%)  
1 Misconception: if 

ab>0, then a>0, b>0 
(x-3)(x+4)>0 x-3>0, x+4>0, then 
x>3, x>-4.  

37 

2 Only transforming 
into standard form  

0122 >−+ xx  or 122 >+ xx . 21 

3 Transforming  into 
standard form and 
getting stuck 

0122 >−+ xx or x(x+1)>12 or  
x(x+1)=12. 

7.6 

4 Working on the 
standard form with 
guess and check   

0122 >−+ xx  12)1( >+xx ; 
x>12, x+1>12x>12, x>11. 

12 

0122 >−+ xx , or (x-3)(x+4)>0 
x1=3, x2=-4.  

15 

5 Drawing a number 
line  

Find partial answer: x>3 or x<-4. 4 

6 Using a table   x>3 (x=1, 2, 3, 4... or 0, -1, -2, -3,…). 4 
The table shows that 37 % of the participants adopted the inference: if ab>0, then a>0, b>0. 

None of them realized that a and b are possibly negative. In addition, none of them care about 
the logical operations “or” or “and” between two logical propositions (such as a>0 and b>0 or 
a>0 or b>0).  They also were satisfied with the solution “x>3, x>-4” without any intention to 
further intersect or combine.   

 In order to find another method to solve the inequality, an automatic alternative is to 
transform the factor form into standard form: 0122 >−+ xx .   21% of them stopped with the 
standard form.  7.6 % of them were stuck with further algebraic operation:  x(x+1)>12 or  
x(x+1)=12.  Some of the participants want further with “guess and check strategies”:   

Mistake 1 (12%): 0122 >−+ xx  12)1( >+xx ; x>12, x+1>12x>12, x>11. 
Mistake 2 (15%): 0122 >−+ xx ,or (x-3)(x+4)>0 x1=3, x2=-4. 
 
Participants’ explanations. In the interview, Larry just simplified the factor form into 

standard form ( 0122 >−+ xx ), and then moved forward by “guess and check” such as 
“ 122 −> xx , and then 12−> xx ” although it did not work.  By analogizing the property of 
equation: (x-3) (x+4)=0→x-3=0, or x+4=0, the remaining four interviewees made an inference 
as follows:  04)(x  ,0)3(0)4)(3( >+>−→>+− xxx 4,3 −>>→ xx .None of them had 
intention to work on “x>3, x>-4” further, such as the logical operations “and” or “or” and the 
operations of intersection and combination of two sets. They seemed to be satisfied with the 
“solution”. When asking if they can use a graphic method to solve equation or inequality, they 
recalled the graphs of quadratic equation.  All the interviewees explained they did not know how 
to use quadratic function graph to solve inequality, although they knew the graphing method of 
solving a system of linear equation. They learned quadratic function first (probably late in 
middle schools or early in high schools) and then inequality late in high schools. These contents 
were taught separately.  They were not taught how to use graphic representation to solve 
algebraic problems. They appreciated the method of integration of algebraic and graphic 
representations. The interview showed that participants may have relevant content knowledge 
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but they did not have an interconnected knowledge network; did not have experience in flexibly 
using different kinds of knowledge and relevant representations 

Take Item 21 for another example. The Item 21 is as follows: 
 If you substitute 1 for x in expression cbxax ++2  (a, b and c are real numbers), you get a 
positive number, while substituting 6 gives a negative number.   How many real solutions 
does the equation 02 =++ cbxax have? One student gives the following answer: 
 According to the given conditions, we can obtain the following inequalities: 
           0>++ cba , and  0636 <++ cba . 
 Since it is impossible to find fixed values of a, b and c based on the previous inequalities, 
the original question is not solvable.   
What do you think may be the reason for the students’ answers? What are your   
suggestions to the student?  
Only one participant gave a correct explanation and useful suggestions (there are two roots, 

and a graphic method is suggested). About 84% of the participants agreed with the student’s 
explanation (actually, it is wrong), and they got stuck with the algebraic manipulation to find a,b 
and c, and had no idea about how to help the student get out of their difficulties.  15 % of the 
participants suggested plugging more value of a, b, and c (such as a=-10, b=-9, and c= 20) to see 
whether certain patterns can be found.  They did not think to use graphic or geometrical 
representations to find the answers. Some of them (15%) had the following misconception: if 
you plug more numbers, you can find some patterns, and then you may find the solutions.  

Participants’ explanations. Three of the interviewees fully agreed with the student’s (wrong) 
statement, namely “Since it is impossible to find out fixed values of a, b and c based on the 
previously given inequalities, the original question is not solvable”. They tried to find out a, b, 
and c using algebraic transformation but it did not work. They had no ideas how to help the 
student find a solution. The other two interviewees felt that the problem may be solved, but they 
did not have any concrete ideas about how to solve it (Jenny and Stacy). What they could suggest 
is that the student is to “try different ways, such as plugging more numbers between 1 and 
6.”(Jenny) or “explore in different ways such as plugging more numbers to see whether they can 
find certain patterns, rather than being stuck”(Stacy).When asked whether they can try other 
methods such as graphical methods to solve, they sketched a graph and find possible roots. Four 
of them were successful in finding the number of roots by examining the intersection points of 
the quadratic function.  All of them said that they had never realized such a way because they 
had not got such experiences in solving problems, but they realized the usefulness of the 
graphing method in algebra.  

 
Discussion and Conclusion 

This study showed that the participants from the interdisciplinary math and science middle 
teacher preparation program had relatively weak knowledge of algebra needed for teaching. 
Moreover, they also revealed their weakness in selecting appropriate perspectives of function 
and flexibly using of representations of quadratic functions. These findings are in line with other 
studies on teachers’ knowledge for teaching algebra (Even, 1998; Hitt, 1998). The participants 
had limited advanced algebra knowledge although they had taken advanced courses such as 
calculus, linear algebra, and abstract algebra. The interviews revealed a lack of experience in 
using different representations, possibly because courses in mathematics and teaching methods 
were separately taught.  This raises an issue about the curriculum for preparing mathematics 
teachers for middle and high schools. Equipping prospective teachers with appropriate 
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knowledge for teaching is not a simple issue of adding more mathematics courses. It should 
include developing coherent curriculum that integrates content and pedagogy to help prospective 
teachers develop a well-structured algebra knowledge base with flexible use of different 
perspectives and representations. In order to implement mathematics curriculum that 
recommends providing middle and high school students with experience in developing 
connections and representational flexibility, prospective teachers should have the opportunity to 
develop relevant knowledge and skills needed for organizing classroom activities that promote 
this type of student learning (NCTM, 2000, 2009). The findings imply that beyond providing 
adequate number of math and math education courses, it is important to provide focal and 
coherent curricula from pre-university to university level. It is also important to have coherent 
teaching to emphasize knowledge development and form a well-structured and interconnected 
knowledge base.  

This study has its own limitations. First, the instrument mainly focused on expression, 
equation, inequality, and functions which may not reflect a whole picture of algebra. Second, the 
participants were from a program in a single university, so caution is necessary in generalizing 
these findings.  
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In this five-year study, 600 preservice teachers’ understanding of mathematics as needed for 
classroom teaching was explored. Data sources included pre/post written open-response 
mathematics items, and pre/post semi-structured interviews. Results consistently showed that 
while participants were able to perform standard numeric calculations, conceptual 
understanding of elementary concepts was initially extremely weak. Moderate progress was 
made during the one-year program, with stronger growth for those teacher candidates who 
chose to enroll in the optional course in mathematics-for-teaching. Based on our results, an 
exam in “mathematics for teaching” is now a graduation requirement. 

Objectives 
Our previous anecdotal and observational experiences with upper elementary teacher 

candidates participating in mathematics methods courses were that what appeared to be weak 
understanding of mathematics concepts impacted preservice teachers’ willingness and ability to 
embrace and develop problem-based lessons, even though participants were generally able to use 
a procedure to calculate a correct answer. Hence our research questions were: What 
mathematical understandings, both procedural and conceptual, are demonstrated by preservice 
teacher candidates at the beginning and end of their (in our case one-year) teacher preparation 
program?; What factors appear to influence such development?; What beliefs changes are 
observed?; Does extra course time in related mathematical concepts appear to better support such 
development? 

 
Perspectives and Framework 

This study used the bioecological model of Bronfenbrenner (1999) as a framework. Our 
research questions around teachers’ beliefs and understandings formed the risk and protective 
factors thought to interact and influence growth.  

Substantial literature (for example, Wilkins, 2008) links teacher beliefs with development of 
teacher knowledge, which in turn influences student achievement (Baumert et al., 2010). In 
particular, a specialised body of mathematical knowledge, variously dubbed profound 
understanding of fundamental mathematics (Ma, 1999), mathematics for teaching (Ball, Thames, 
& Phelps, 2008), and pedagogical content knowledge (Shulman, 1986; Baumert et al., 2010) has 
been argued as fundamental to the support of problem-based or inquiry-based classroom 
learning, the mainstay of suggested curriculum reforms over the past few decades (National 
Council of Teachers of Mathematics, 2000). It has been argued that “teachers’ knowledge of 
mathematics alone is insufficient to support their attempts to teach for understanding” 
(Silverman & Thompson, 2008, p. 499), and further that such teaching is “predicated on coherent 
and generative understandings of the big mathematical ideas that make up the curriculum” (p. 
501).  

In particular, teachers need to understand the connection of appropriate classroom 
mathematical models to the concepts as well as have a knowledge of the underlying structure of 
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procedures (Hill, 2010), in order to help students construct understanding and methods 
(including alternate or student-generated methods). Teachers also need to support such learning 
with appropriate questioning as well as the ability to diagnose student misconceptions and 
understand alternate methods (Ball et al., 2008). Such a depth of understanding provides 
significant challenges to new teacher-candidates. 

 
Methods 

The study used a mixed-methods design supported both quantitative and qualitative results. 
Preservice teachers for grades 4 to 10 (approximately 120 per year) were surveyed using a paper 
and pencil instrument (Kajander, 2007) at the beginning and end of their methods course. 
Mathematical understanding was measured as “procedural” as well as “conceptual”; questions 
relating to the former involved asking participants to perform a standard elementary procedure 
such as “3 x 1.6” or “5 – (-3)” using a method of their choice, while questions relating to the 
latter involved asking for an explanation, model, contextual example, or alternate method, all 
thought to be aspects of teachers’ needed specialized knowledge (Hill, 2010). We use the term 
‘conceptual knowledge’ to refer to those mathematical understandings that are mathematically 
specialized, yet may be developed without necessarily making a connection to students and 
teaching, as described by Hill (2010). As well a number of demographic variables were 
collected, such as undergraduate background, highest high school mathematics course taken, 
school curriculum experienced, and years out of university before entering the teacher education 
program. This same survey was used with several cohorts of in-service teachers during the first 
two years of the study. These data continue to be analysed statistically.  

As well as the quantitative data, pre/post semi-structured interviews (50 pairs) were 
conducted during each of the most-recent 3 years of the study to support the survey results, and 
methods classroom artifacts such as assignment work and examination responses were also 
examined. Semi-structured interviews were conducted with 10 participating classroom teachers 
during the latter half of the study, and five were observed on at least one occasion while 
teaching. While all of this data forms the data-sources for the study, the current report focuses on 
the survey results related to preservice teachers’ conceptual knowledge, and the preservice 
interview data related to beliefs about conceptual knowledge.  

The written survey items were directly drawn from the questions used in Ma’s (1999) 
landmark interviews and hence have arguably strong face validity. Reliability was also 
established during the first three years of the study (Kajander, 2010). Descriptive statistics from 
the survey are supported by examination of individual responses, as well as the participants’ self-
reports as drawn from the interview data. A final mandatory examination in “mathematics for 
teaching” was introduced to the program in year 3 based on the earlier data, and participant 
scores on this mandatory examination also support the written survey data.  

 
Results 

Our results consistently show that conceptual understanding of elementary mathematics 
concepts was weak to non-existent for teacher candidates at the pretest, which took place at the 
very beginning of the mathematics methods course. Also, nearly all of the participants 
interviewed mentioned some form of lack of comfort or insecurity with their mathematical 
understanding. The few who did feel slightly more comfortable tended to equate ‘understanding’ 
with procedural skill. Yet many participants who were almost completely unable to explain why 
standard numeracy methods worked, were still able to perform them accurately. While literature 
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suggests that it is likely the case that teachers are better able to perform standard procedures than 
explain them (Hill, 2010), the extent of the problem, when we actually looked at multiple 
samples of prospective teachers’ work, was staggering. According to our evidence, substantive 
numbers of teacher candidates were initially simply unable to provide any explanation, 
justification, model, or context for the standard algorithms they were generally able to perform. 
Explanations, if any, generally took the form of “because that is the rule”. The mode score on 
conceptual knowledge on the pretest written survey was 0, with the mean each year hovering 
around 10%. Yet procedural knowledge on these same items had a much higher mean, over 70% 
(see Table 1). 

Table 1 

Initial Written Survey Mean Scores 
 
Response Type M SD SE 
Procedural knowledge 7.1361 2.05917 .08602 
Conceptual knowledge 1.2670 1.46291 .06111 
Note: All knowledge scores are scaled out of 10 possible points. Pretest survey responses, N=573. SE=standard error 
of the mean. 

The same written survey was re-administered at the end of each year. Substantial growth 
particularly in conceptual knowledge was shown over each of the five one-year cohorts (see 
Table 2). Results have been shown as significant for each of the first three years of the study 
(Kajander, 2010) and analysis for the final two years is underway. 

 
Table 2 
Final Written Survey Mean Scores 
 
Response Type M SD SE 
Procedural knowledge 8.8586 1.58641 .06627 
Conceptual knowledge 5.6021 2.49660 .10430 

Note: All knowledge scores are scaled out of 10 possible points. Post-test survey responses, N=573. SE=standard 
error of the mean. 
 

Yet the numbers alone fail to bring to light the issues as strongly as examining the actual 
participant survey responses. Using a semi-random selection process (every fourteenth response 
in the database was selected from year 5, as space permitted), a selection of specific responses to 
two of the survey questions is offered.  

Two of the seven survey questions are chosen as illustrative. The instructions for each of 
these questions are the same. For Part a) the participants are asked to 
 
Answer the question, showing your steps as needed to illustrate the method you used 
 
while in Part b) they are asked to 
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Explain what you can about why and how the method you used in a) works, using explanations, 
diagrams, models, and examples  as appropriate. If possible, do the question another way. 
 
Part a) questions are scored as procedural knowledge items, while Part b) questions are scored as 
conceptual knowledge. Figures 1 and 2 show sample pretest responses selected from the year 5 
data. 
 
 
 

Selected Pretest Survey Responses to Integers Question 

 
 

 
 

 
Figure 1. Pretest responses to 5-(-3). Part a) asks for answer and Part b) for explanation. 

 
Selected Pretest Survey Responses to Fractions Question 
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Figure 2. Pretest responses to 1 ¾ ÷ ½. Part a) asks for answer and Part b) for explanation. 

 
The following samples (Figures 3 and 4) are post-test responses from the same respective 

participants as shown in Figures 1 and 2. 
 

Selected Post-test Survey Responses to Integers Question 
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Figure 3. Post-test responses to 5-(-3). Part a) asks for answer and Part b) for explanation. 

 
Selected Post-test Survey Responses to Fractions Question 
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Figure 4. Post-test Responses to 1 ¾ ÷ ½. Part a) asks for answer and Part b) for explanation. 
 

Interview data indicated that at the pretest nearly all participants viewed mathematics as 
“something to memorize”. Interview responses at the post-test suggest that participants generally 
felt very good about their deepened understanding, yet there were still indications related to the 
fragility of the newly developed understanding. Many referred to their newly emerging 
conceptual understanding as a kind of revelation. For example, one participant stated “I feel like 
I am learning mathematics for the first time”. 

 
Discussion and Implications 

An examination of the pretest data, both quantitative and qualitative, suggests to us that most 
participants were operating with an almost exclusively procedural view and capacity of standard 
elementary mathematical processes. The vast majority of survey respondents were virtually 
unable initially to offer any conceptual basis for the calculations they generally quite readily 
performed. Interview responses indicated that many participants were both aware of, and deeply 
troubled by, this situation. Significant improvement was noted in many cases by the post-test, 
even though the number of hours of mathematics coursework was less than ideal. While at times 
imperfect or incomplete, participants had generally made strong improvements. Even more 
encouraging was the sense that many participants now had a different view of mathematics, and 
their role in it.  

Our results underscore the on-going and desperate need for specialised and supportive 
mathematical experiences for preservice teachers. We continue to be astonished that even with 
curriculum reform in Ontario, teacher candidates are entering education programs with virtually 
a purely procedural view of the subject and a sense that mathematics is a subject in which you 
have to follow the “steps” or memorize the “rule”. While we had observed preservice teachers’ 
struggles prior to this study, the extent of their initial lack of conceptual understanding was still a 
surprise. An awareness of the pretest results helped us be more sensitive to the struggle and 
effort required by participants as they developed so significantly during the one-year program. 

Concurrently with the development of recommendations for preservice teachers in the U.S. 
(National Council on Teacher Quality, 2008), the Canadian Working Group on Elementary 
Mathematics for Teaching (Kajander & Jarvis, 2009) recommends that preservice teachers take a 
minimum of 100 hours of specialized mathematics courses. Since the mathematics methods 
course described is of a 36-hour duration, with only about half of the hours concentrated directly 
on mathematics concepts, we were far short of a desirable situation. Hence in year 3, an optional 
20 hour course in “mathematics for teaching” was introduced, taken by about a quarter of the 
participants each year. As well, a mandatory examination in “mathematics for teaching” was 
introduced. Initial effects of these program changes seem promising, particularly for low-
achieving students (Holm & Kajander, 2009). Further opportunities for participants to strengthen 
their conceptual mathematical understanding will likely be needed, however, before the full 
vision of mathematics teaching as is described in the Standards (NCTM, 2000) and elsewhere 
can be realized in their classrooms.  
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Research has identified mathematical knowledge for teaching (MKT) as specialized knowledge 
that contributes to a teacher’s ability to teach for understanding. This report discusses one 
teacher’s (Claudia) MKT as she implemented research-based precalculus materials. Claudia 
initially encountered difficulty implementing the materials in ways that supported her students’ 
learning. As the semester progressed, Claudia’s understanding of the central ideas of the course 
deepened and specific ideas emerged as key for understanding other ideas. Once she became 
aware of these connections she made more informed pedagogical choices that supported her 
students’ thinking and learning. 

Background 
It is well established that although content knowledge is an important attribute of a successful 

teacher, content knowledge alone is not sufficient to support students’ learning processes 
(Shulman, 1986; Silverman & Thompson, 2008). Explorations into relationships between a 
teacher’s content knowledge and her/his practice have identified mathematical knowledge for 
teaching (MKT) as a critical link between content knowledge and supporting students’ learning 
(Ball, 1990; Simon, 2006). Recent studies (Silverman & Thompson, 2008) have emphasized the 
importance of exploring teachers’ ability to transform content knowledge from personal 
understandings to knowledge that has pedagogical power in the classroom.  

Project Pathways is an ongoing initiative with a focus on improving secondary mathematics 
teachers’ practice and secondary students’ learning. The project’s interventions (e.g., graduate 
courses, professional learning communities, and workshops) intend to improve teachers’ content 
knowledge and their ability to achieve conceptually oriented classrooms that engage students in 
problem solving activity. During initial phases (years 1-4) of the project the research team 
observed gains in teachers’ content knowledge, but shifts in the teachers’ pedagogical actions 
lagged behind the content knowledge shifts. When investigating the obstacles preventing the 
teachers from shifting their practice, project members identified that the mathematical content in 
their curriculum was incompatible with the mathematical ideas developed during the project’s 
interventions.  

In an attempt to better support the teachers in improving the conceptual focus of their 
teaching, the project shifted the concentration of the summer work and professional learning 
communities (PLCs) to examining and modifying the teachers’ curriculum, but the teachers 
found revising their curriculum to be a daunting and exhaustive task. The heavy burden of 
writing curriculum led the project leaders to offer a research-based, conceptually oriented 
precalculus curriculum (Carlson & Oehrtman, 2010) for use by one precalculus teacher 
(Claudia). We conjectured that the combination of the Project Pathways interventions and 
curriculum tasks would support Claudia in realizing the desired shifts in her practice and 
students’ learning. Our report discusses the role of Claudia’s MKT in her implementation of the 
curriculum. Claudia’s difficulties and successes with the curriculum illustrate the relationship 
between Claudia’s content knowledge, her transformation of this knowledge in ways that inform 
her practice, and her ability to support her students’ learning processes. 
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Theoretical Perspective 

We leverage the construct of key developmental understanding (KDU) (Silverman & 
Thompson, 2008; Simon, 2006) to examine MKT in the context of secondary precalculus 
mathematics. Like Silverman and Thompson (2008), we believe that a teacher’s mathematical 
conceptions and reasoning abilities influence her/his pedagogical choices and actions. In order to 
describe understandings that support MKT, Simon (2006) and Silverman and Thompson (2008) 
characterized KDUs as one’s understandings and ways of reasoning that connect various ideas, 
provide foundations for learning other ideas, and support solving novel but related problems as a 
consequence of these understandings. 

Although KDUs are critical features of a person’s mathematical knowledge, Silverman and 
Thompson (2008) highlighted that a teacher’s development of KDUs does not imply these KDUs 
will inform her/his practice. Silverman and Thompson suggested that MKT is developed when a 
teacher transforms a KDU in a way that shapes and informs their interactions with students. 
Specifically, Silverman and Thompson described: 

A teacher has developed knowledge that supports conceptual teaching of a particular 
mathematical topic when he or she (1) has developed a KDU within which that topic 
exists, (2) has constructed models of the variety of ways students may understand the 
content (decentering); (3) has an image of how someone else might come to think of the 
mathematical idea in a similar way; (4) has an image of the kinds of activities and 
conversations about those activities that might support another person’s development of a 
similar understanding of the mathematical idea; (5) has an image of how students who 
have come to think about the mathematical idea in the specified way are empowered to 
learn other, related mathematical ideas. (p. 508)  

As the Pathways interventions transitioned to focus more on applying the teachers’ content 
knowledge to their teaching practice through curriculum design, we conjectured that the 
interventions would better support the teachers in developing KDUs that informed their 
pedagogical practices. We expected that our providing Claudia with quality curriculum would 
better position her to construct the MKT necessary to achieve shifts in her practice. Specifically, 
we conjectured that the use of quality curriculum would lead to Claudia developing KDUs and 
transforming these understandings in ways that informed her pedagogical actions. 

 
Research Question 

How does a teacher’s MKT impact her pedagogical choices and ability to support student 
learning? How does a teacher’s MKT impact her ability to successfully implement research-
based curriculum? 

 
Methodology 

During the semester in which Claudia used the Pathways curriculum, she attended a weekly 
50-minute PLC composed of 4-6 trigonometry and precalculus teachers. She also sporadically 
attended a 3-hour trigonometry PLC after school with two other trigonometry teachers and a 
project member (the first author of the report) who served as the PLC facilitator. The PLC 
members primarily examined the knowledge involved in understanding and learning key ideas of 
their courses. The PLC members also spent time developing conceptually oriented tasks for 
classroom use. 
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Three Project Pathways members regularly observed Claudia’s classroom and worked with 
Claudia to answer her questions about the curriculum. Claudia’s classroom was videotaped two 
class periods a day and these videos were digitized for analysis. The project members took field 
notes during Claudia’s PLC meetings, when observing Claudia’s classroom, and during her 
meetings with project members. The project members directed the field notes towards Claudia’s 
content knowledge as revealed by her interactions with her colleagues, her students, and the 
project members. As Claudia interacted with her students during class sessions, her responses 
and questioning offered insights into her mathematical understandings and thinking. Similarly, 
her interactions during the PLC meetings offered glimpses into her content knowledge, 
particularly when the PLC sessions focused on discussing how students learn various topics. 
Relative to Claudia’s meetings with Pathways members, she often asked for clarification of the 
mathematical ideas driving the curriculum. Claudia also discussed questions she had about the 
solutions and reasoning that her students were providing. Collectively, the project members used 
these data sources to characterize Claudia’s teaching practice by describing her mathematical 
content knowledge, pedagogical actions, and improvements in her students’ learning. 

As the semester progressed, the project members who observed Claudia’s classroom noted 
shifts in her practice and her ability to scaffold her students’ thinking. In order to characterize 
shifts in her teaching and her questioning, the research team analyzed her classroom videos to 
document relationships between her propensity to focus on student thinking and her questioning 
techniques (Teuscher, Moore, Marfai, Tallman, & Carlson, submitted). After analyzing her 
classroom sessions, the research team chose three particular sessions that were representative of 
her shifts over the course of the semester.  

The present study extends the aforementioned study (Teuscher et al., submitted) by analyzing 
Claudia’s thinking and MKT during the classroom sessions that the research team deemed to be 
representative of Claudia’s practice (see Teuscher et al. for an explanation of the case selection). 
Compatible with Thompson’s description of a conceptual analysis (Thompson, 2008), we 
analyzed Claudia’s interactions with her students in an attempt to characterize the mental actions 
driving Claudia’s pedagogical actions (e.g., the mathematical content knowledge that informed 
her questioning and utterances). We then compared the results of this analysis to the project 
members’ field notes that were taken during PLC meetings in which the teachers discussed 
similar content topics. By comparing these data sources, we characterized information about 
Claudia’s content knowledge and MKT and the influences of these knowledge bases on her 
pedagogical actions. 

 
Results 

In the following section we report the results of Claudia’s interactions with her students when 
they were completing two in-class activities. We also discuss Claudia’s meetings with project 
members and her PLC members in the context of her MKT and ability to support her students’ 
learning. 

During the first week of class Claudia’s students completed The Diving Task (Figure 1) 
while working in groups of 3 or 4. The task asked the students to compare and contrast the 
meaning of average rate of change and average as an arithmetic mean. The previous lesson 
developed a meaning of average rate of change in the context of average speed (e.g., the constant 
rate of change needed to cover the same distance in the same amount of time). Excerpt 1 presents 
Claudia’s interactions with one group of students. 
In a diving competition, a diver received the following scores from 4 judges after making a dive.  
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Judge 1 Judge 2 Judge 3 Judge 4 
8.7 9.3 8.0 8.2 

How does the meaning of the word average when computing a diver’s average score compare 
with the meaning of the word average when computing a diver’s average speed? 

Figure 1 – The Diving Task 
Excerpt 1. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

S1: Do you know the meaning of average in this problem? 
C: Tell me what you have so far. 
S2: If the average is 8.55… 
C: Okay, so… 
S1: I said that 8.55 would mean average would be like the constant or the, I don’t want 

to say constant. 
S2: You said approximate. 
S1: The approximate score. 
C: Keep going. 
S3: Can we use mean to describe average? 
C:  (laughs) No. 
S1: The approximate score to get your score. 
S4: No, cause…  
C: Your… 
S4: …the approximate score given by the judges for that dive… 
C: Keep going, the approximate score by the judges, what… 
S4: …for the dive. 
C: Okay, for what dive? 
S2: For the diver’s dive. 
C: For just one dive? 
S: Yeah (students in unison). 
S2: They only did one dive. 
S1: If each, if one judge per dive or isn’t it… 
C: Four judges for the one dive, okay, alright. Okay so tell me again what you said. 
S4: The approximate score given by the judges for the one dive. 
C: Okay, by which judges? 
S1: By the four judges. 
C: By what? 
S2: By the four judges. (Claudia confirming the student’s answer and moving on) 

During this interaction, Claudia’s questioning did not result in her students making explicit 
connections between average as an arithmetic mean and average rate of change. For instance, she 
failed to leverage a student’s reference to “constant” (lines 5-6) and she did not ask the students 
to expand on their meaning of “approximate” (lines 7-8, 12, & 15), nor did she ask them to 
compare and contrast their thinking with the outcomes of previous tasks. Additionally, Claudia’s 
questions were mathematically shallow and she allowed the interaction to end with the students 
failing to develop the understandings as intended by the curriculum.  

Claudia approached a project member after this class session and expressed an uncertainty of 
the ideas driving the diver task. She also expressed confusion about the tasks relation to previous 
tasks and claimed that her confusion about the intent of the questions prevented her from 
determining how to guide and support her students’ thinking. Claudia’s interactions with the 
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project members, in combination with her interactions with her students in Excerpt 1, suggest 
that Claudia did not understand the content in ways compatible with the curriculum’s intent. In 
lieu of her lacking the understandings necessary to make appropriate sense of the activity, she 
did not have the foundational knowledge necessary to identify ways to support her students in 
learning the key ideas of the lesson. Furthermore, Claudia’s actions indicate that her 
understanding of arithmetic average consisted of a vague connection to an approximate value 
and that she had not cognitively distinguished notions of average rate of change and an 
arithmetic average in a way that she could support her students in making similar comparisons.  

As the semester progressed, the project members observed an increase in the mathematical 
depth of Claudia’s questioning in both her classroom and during her meetings with project 
members. During a lesson on linearity, during which the students created a graph, Claudia 
questioned her students in an attempt to draw their attention to determining changes of output for 
equal changes of input. The shifts the project members observed near the middle of the semester 
indicated that Claudia was developing understandings that enabled her to interpret the curriculum 
tasks in ways consistent with the curriculum’s design. However, our analysis of Claudia’s 
classroom also revealed that she was having difficulty engendering these understandings in her 
students (Teuscher et al., submitted). Such a finding suggests that Claudia had not transformed 
her understandings into mathematical knowledge that was useful in her teaching (e.g., MKT). 

As the semester progressed the project members observed Claudia continuing to improve her 
content knowledge. The project members also observed a transition in Claudia’s ability to 
support her students’ learning. The concluding module of the precalculus curriculum introduces 
trigonometric functions, beginning with a lesson on angle measure. Following the lesson on 
angle measure, a lesson introduces the sine and cosine functions. Specifically, the curriculum 
introduces these two trigonometric functions using a circular motion context (e.g., a bug on the 
tip of a fan blade) and asks the students to determine how the bug’s vertical distance above the 
center of the fan varies as the fan rotates. When beginning this problem, Claudia posed the 
following question: Does the angle measure change if the radius of the fan is changed, but the 
distance the bug travels (measured in radians) is not changed? Excerpt 2 presents Claudia and 
two students discussing their response to this question. 
Excerpt 2 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

S1: How does the angle change if the radius changes? The angle stays the same. 
S2: Yeah, but if the distance traveled around stays the same, but the radius changes 

then it will be a different amount of radians.  
S1: Oh yeah. 
S2: It will be inversely proportional. 
C: It will be a different amount of radians? 
S2: The angle measure. 
S1: Well the distance the bug travels. 
S2: Because as the radius gets bigger, the arc length will be a lesser portion of the 

circle meaning a lesser angle. 
C: Ok, so draw, ok so let’s take any two circles, if you were to cut out a 90 degree 

angle, actually, draw a circle inside of a circle for me. 
S2: The arc length is…  
C: Now draw another circle - yeah. 
C: Ok, now do you have a Wikki Stix, does anyone, you do? 
C: Ok, first for the inside circle I want you to mark off one radian of the 
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17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

circumference.  
S2: Can we just take a Wikki measure, do I have to use radians? 
C: She is trying to find the center of her circle though, is what she is doing. Here let 

me get you a smaller Wikki Stix. Here is a skinner one it might be easier to use. 
S1: It is two and half so it would be like in the middle 
C: Yeah so for the small circle mark off one radian of the circumference. Ok do the 

same thing for the bigger circle. 
S2: One radian?  
C: Yeah one radian 
S2: But the radian of an angle measure is not arc measure, the radian and arc measure 

are the same. No, the angle measure is the same… 
S1: One radian is the same… 
C: What is the same about one radian? 
S1: The same angle. 
C: Yes, what is the not the same about one radian? 
S1: The arc length. 
C: Yes, do you see that S2? 
S1: But then what is distance traveled? Is that the arc length? 
S2: Yes. 

Claudia first asked the students to clarify their claim that the radian measure changes when 
the radius changes (line 6). Student 2 made an incorrect claim (lines 9-10) and in order to support 
the student in confronting his misconception, Claudia focused the students’ attention on the idea 
of measuring arcs in radii (lines 11-29). Claudia’s line of questioning led the students to realize 
that an arc of one radian, regardless of the size of the circle, corresponds to an angle with the 
same amount of openness (lines 28-34). As their interactions continued, Claudia probed her 
students to elaborate on the implications of measuring arcs relative to the radius, with Student 1 
concluding, “The angle measure doesn’t change if the radius is changed.” 

Later in the class session, the same group of students attempted to graph the bug’s vertical 
distance above the center of the fan in relation to the bug’s distance traveled around the fan. The 
students were experiencing difficulty relating the two quantities when Claudia joined their 
discussion (Excerpt 3). 
Excerpt 3. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

C: Let’s back up a step…Your bug's going to start moving. Now what's going to 
happen to the total distance? 

S1: It's going to increase. 
C: Ok, alright. And what's happening to the vertical distance, in general? 
S1: It's increasing at a decreasing rate. 
C:  Ok, it's going to increase, and then, why did you say it's going to increase and then 

decrease (referring to a student’s statement given previous to this interaction)? 
S1: 'Cause once it gets to 12 o'clock, then it's going to, the vertical distance is going to 

decrease back to zero. 
C: Ok, what is the vertical distance at 12 o'clock. 
S1: About 2.6 feet. 
C: And how do you know that? 
S1: Because that's the radius. 
C: Ok, so, you know here (pointing to the top of the fan) that your vertical distance is 
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15 
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20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

2.6 feet. And then what does it do? 
S1: It decreases. 
C: So, at a total of distance of zero, your vertical distance is zero, right? 
S1: (nodding yes) 
C: Now, what is your… 
S1: Then your total distance is 2.6 and your vertical distance is 2.6 as well. 
C: So when you get to the top of the circle, when you get to here (pointing to the top 

of the circle), have you traveled one radian? 
S1: Ya. 
C: How many radians are there in a half circle? 
S1: Oh, um, pi.  
C: So how many radians have you traveled to here? 
S1: Pi over two. 
C: Ok, so what is that? 
S1: That is 1.57 (identifying values on graph). 

In order to support the students in determining the graph, Claudia prompted the students to 
reason about variations in the total distance (lines 1-2). As the discussion progressed, Student 1 
identified that the vertical distance increased and then decreased as the total distance increased 
(lines 5-16). Claudia then asked the student to describe specific pairs of values and Student 1 
incorrectly identified that the bug travels an arc length of 2.6 feet from the starting position to the 
top of the circle (lines 17-20). In response, Claudia returned the student to reasoning about 
measuring the arc length in terms of a number of radii (lines 21-29), which supported the student 
in correcting her graph and creating the sine graph by the completion of this activity.  

Claudia’s continued focus (Excerpts 2-3) on measuring arcs in radii (which was covered in a 
previous lesson) suggests that she found this to be an important idea for understanding the sine 
and cosine functions. Claudia probed her students in ways that supported their measuring arcs in 
radii when determining the graph of a trigonometric function. These actions suggest that Claudia 
had developed an understanding of angle measure that she considered developmentally key for 
learning trigonometric functions (e.g., a KDU), and that she had transformed this understanding 
in a way that influenced her pedagogical actions and ability to support her students’ learning 
(e.g., she developed MKT).Claudia’s interactions with her trigonometry PLC further illustrated 
that her understanding of angle measure informed her pedagogical actions when teaching the 
sine and cosine functions. During the year prior to Claudia’s use of the curriculum, it did not 
occur to her or her PLC members that reasoning about measuring arcs in radii is foundational for 
constructing understandings of the sine and cosine functions. After Claudia’s use of the 
curriculum, her PLC returned to the topic of trigonometry and the PLC members chose to design 
a lesson exploring applications of trigonometric functions. Claudia became troubled about the 
topic choice and explained that she did not believe that they could teach applications of 
trigonometric functions conceptually without teaching angle measure in a way that supported 
students’ understanding of trigonometric functions. Claudia’s justification for her decision is 
consistent with our claim that Claudia’s understanding of angle measure as measuring arc 
lengths in units of radii was key for the way she had come to conceptualize trigonometric 
functions, and that this understanding provided a basis for her pedagogical decisions. 

 
Discussion and Conclusions 
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Claudia exhibited content knowledge shifts during the early phases of implementing the 
curriculum, but she had difficulty supporting her students’ learning. At these early stages, her 
improved understandings did not include connections that supported her re-conceptualizing her 
teaching in terms of how her students may form similar understandings. However, Claudia’s 
sustained focus on her students’ thinking, along with the support she received from the project 
members, resulted in her building connections that she leveraged to support her students’ 
learning. Specifically, as she developed and transformed KDUs to MKT, the research team 
observed Claudia scaffolding her students’ learning by drawing connections between ideas. 
Future research should examine the supports (e.g., conceptual curriculum) necessary to help 
teachers transform their understandings to knowledge that has pedagogical power.  

The findings from this study reveal that the nature of a teacher’s understanding of an idea is 
key to her/his conceptualization of teaching that idea and her/his interactions with students when 
teaching that idea. Claudia’s transitions over the course of the semester suggest that a teacher 
transforming her/his content knowledge in ways that inform her/his practice (e.g., developing 
MKT) is a complex process. As Stigler and Hiebert (1999) have noted, a majority of pedagogical 
shifts are superficial. However, Claudia’s knowledge and pedagogical transitions were 
substantive. These shifts that we observed are consistent with Silverman and Thompson’s (2008) 
claim that significant changes in teaching practices result from “pedagogical conceptualizations 
of the mathematics: both the sense they have made about the mathematics and their awareness of 
its conceptual development” (p. 507). Claudia was unable to support her students’ learning in 
profound ways until she had acquired key developmental understandings (e.g., measuring arcs in 
radii to develop trigonometric functions) and used these understandings to scaffold her students’ 
learning (e.g., she transformed these KDUs to MKT). The findings presented illustrate the 
necessity of future studies that explore the role of KDUs in teaching and the process by which 
teachers’ transform KDUs to understandings (e.g., MKT) that improve their ability to scaffold 
and build upon their students’ learning.  
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This study utilized a qualitative design of naturalistic inquiry to deeper and better understanding 
three preservice teachers’ (PTs) knowledge on unit and unitizing of fractions. Findings 
demonstrated PTs had difficulties profoundly conceptualizing the unit whole and their unitizing 
abilities were limited. When responding to students’ work, PTs identified their own 
misconceptions and were able to provide some basic instructional strategies for correcting 
students’ misconceptions.  

Introduction 
For decades, a large percentage of studies have shown that teaching and learning fraction 

concepts is difficult (e.g., Ball, 1990, 1993; Lamon, 1996, 1999; Ma, 1999; Newton, 2008). 
Recent results of fourth graders’ mathematics performance on the National Assessment of 
Educational Progress (NAEP, 2009) showed that only 25% of the participants could identify the 
fraction, 5/8 as the closest value to 1/2 when comparing it to other given values. In contrast, a 
majority (73%) chose incorrect multiple-choice answers of 1/6, 2/2, and 1/5 demonstrating 
participants’ lack of fraction number sense. The results demonstrated many students did not 
acquire a strong understanding of fractional concepts during classrooms instruction. 
Additionally, this may reflect that teachers have failed to provide essential fractional knowledge 
for children.    

Literature has documented that the problem of learning fractions was not limited to young 
children but adults as well. For instance, Ball (1990) and Ma (1999) acknowledged numerous 
inservice and preservice teachers (PTs) had insufficient knowledge of fractions necessary for 
classroom instruction. As a teacher plays a significant role in teaching and learning a particular 
concept, it is important for the teacher to have profound knowledge of basic concepts. Studying 
teachers’ knowledge for teaching fractions is indeed important as the nature of the topic is 
complex to learn and teach. However, many past and current researchers were limited in their 
focus and overemphasized division of fractions (e.g., Ball, 1990, 1993; Li, 2008; Ma, 1999; 
Rizvi & Lawson, 2007; Tirosh, 2000). Much remains to be explored concerning other fractional 
concepts that are equally important for students’ learning.      

The concept of unit is important when a teacher first introduces fractions to students, 
however it has frequently been neglected in classroom discussions (Lamon, 1999). When 
teachers and textbook authors placed more emphasis on using the same unit such as one pizza, 
students assumed that a unit was always a single pizza (Lamon, 1999). Lamon further claimed 
that teachers’ instruction failed to address the important concept of units during the teaching and 
learning of fractions possibly creating confusion for students. For example, Ball (1993) 
illustrated a 9-year-old student’s misconceptions of the idea of unit when comparing 4/4 and 4/8. 
The student drew two rectangles (Figure 1) with unequal unit wholes and these models showed 
the values,  4/4 and 4/8 were equal.  
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Figure 1. A representational model by a 9-year-old in Ball (1993).  
 
Based on this representation, it appeared the student was not able to connect the concept of unit 
whole and role of a common unit when comparing two fractions. The student and classmates 
struggled to identify which one was a larger value from the drawing failing to understand that the 
rectangles must be the same size (same unit wholes) before making any comparisons. Ball’s 
research findings supported Lamon’s argument that many children tended to refer to a unit (one) 
as a single item (e.g., a single pizza). Most of them are not aware the unit may include more than 
one item or may consist of items packaged as one known as a composite unit. For example, a 
package (the unit) may contain two pizzas with the same or different kinds. In this case, it is 
called a one two-unit and not two one-unit pizzas. Children should be able to differentiate 
between these two types of units: simple and composite units.   

Unitizing is another fundamental topic in teaching and learning fractions that is related to the 
concept of unit.  Lamon (1996) defined unitizing as “The cognitive assignment of a unit of 
measurement to a given quantity; it refers to the size chunk one constructs in terms of which to 
think about a given commodity” (pg. 170).  For instance, a case of cola can be referred to as a 
unit of 24 cans, 2 units of 12-cans, or 4 units of six-cans (Lamon, 1999). Lamon also found that 
the ability to think flexibly with different-sized units is largely dependent on understanding of 
simple and composite unit concepts. These two concepts were considered basic knowledge for 
teaching and learning fractions and have long been misinterpreted during classroom instruction. 
Teachers should first understand unit and unitizing concepts deeply and know how to teach the 
topics effectively to students.   

Theoretical Framework 
As fractions are difficult and complex concepts to teach, it is essential for teachers to have a 

profound mathematical knowledge to teach them effectively to ensure student understanding. 
The present study focused on PTs’ knowledge for teaching and learning units and unitizing of 
fractions utilizing Ball, Thames, and Phelps’ (2008) mathematical knowledge for teaching 
(MKT) framework emphasizing specialized content knowledge (SCK), knowledge of content 
and students (KCS), and knowledge of content and teaching (KCT). According to Ball et al. 
(2008), SCK is the knowledge and skill specifically necessary for teaching mathematics and not 
necessary in other settings. It involves the understanding of different interpretations of 
mathematical operations, languages, representations, and models. KCS combines teachers’ 
knowledge about mathematical content and students’ knowledge concurrently. A teacher must 
always consider student thinking, conceptions, and misconceptions of a particular mathematical 
topic to make wise instructional decisions (Cooper, 2009). On the other hand, KCT is related to 
the interaction between teachers’ understanding of mathematical content and pedagogical issues 
contributing to students’ learning. For example, teachers need to evaluate which instructional 
representations are effective in teaching and learning fractions. 

The purpose of this study was to examine prospective teachers’ (PTs) understanding of unit 
and unitizing based on Ball et al.’s (2008) categories of teaching knowledge: SCK, KCS and 
KCT. The findings will provide some evidences of PTs’ mathematical knowledge for teaching 
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these concepts. Teacher educators may use this evidence to plan appropriate instructional 
strategies to improve PTs’ learning so that they can acquire the knowledge of unit and unitizing 
in depth for use in their future classroom instruction.  

 
Method 

This study was guided by Lincoln and Guba’s (1985) naturalistic-constructivist model of 
inquiry.  Specifically, the qualitative data were gathered through a collective case study 
(Merriam, 2009) to gain a deeper and better understanding on the selected PTs’ knowledge of 
units and unitizing of fractions. The research questions guiding this study were:  
1) What knowledge did selected PTs possess about units and unitizing of fractions?  
2) How did selected PTs respond to students’ solutions of task-based problems on unit and 
unitizing of fractions? 
3) What instructional strategies did selected PTs recommend for correcting students’ 
misconceptions based on the solutions of task-based problems on unit and unitizing of fractions?  
  

Initially, four female PTs at a southwestern public university were invited through email to 
participate in this qualitative research. Only, three PTs, Alisa, Talima, and Monica (pseudonyms) 
volunteered to be part of the study. These three cases were particularistic and heuristic in nature 
(Merriam, 2009). According to Merriam, particularistic means “case studies focus on a particular 
situation, event, program, or phenomenon” (p. 43) whereas heuristic provides readers with 
meaningful understanding of the context under study. Specifically, the present study focused on 
understanding PTs’ conceptions and misconceptions of units and unitizing (SCK), ability to 
analyze students’ responses (KCS), and PTs’ teaching strategies for fraction instruction (KCT).  
All participants were undertaking a bachelor’s degree in education and seeking Texas teacher 
certification. Alisa and Monica are in the elementary education (PreK-6) major with 
specialization in language arts and early childhood respectively. On the other hand, Talima is an 
international student with an emphasis in Grades 4-8 Math/Science. These three PTs completed 
most of their required coursework, will do their student teaching in the Fall, and graduate the 
following semester.      

The selected fractional tasks were adapted from Lamon (1999) and were expected to disclose 
the context under investigation, the PTs’ knowledge of unit and unitizing. A pilot test was 
administered to examine the tasks in terms of reliability and validity for assessing PTs’ 
knowledge. All the tasks involved questions such as “how much?” versus “how many?” It was 
important to capture an individual’s understanding of two kinds of questions that examined 
similar but different mathematical concepts (Sowder, Philipp, Armstrong, & Schappelle, 1998). 
Specifically, Task 1 focused on the concept of unit wholes in which the participants were 
expected to find the shaded part of a pizza that was eaten. Task 2, 3, and 4 investigated the 
knowledge of unitizing. Participants were required to verbalize their reasoning while solving the 
tasks. In addition, they were asked to analyze three to four children’s responses to the same 
problems they had answered earlier (i.e., subsection 1b and 2b). Based on the children’s 
responses, the participants were required to provide some instructional practices that may be 
used for teaching the concepts effectively. 

The data were collected during Spring 2010 through a semi-structured, open-ended interview 
session based on task-based problems of fractions. Two participants agreed to be audio-taped, 
whereas notes were taken during a session with another PT who did not want to be audio-taped 
because of personal reason. Each session lasted about 30 to 40 minutes depending on the 
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interviewee’s responses when they were presented with fractional task-based problems. During 
the interview, the participants’ behaviors and their working papers were noted for analysis as 
well. The audio-tapes and notes were transcribed and were sent to participants for member 
check. Also, PTs’ working papers were used to triangulate the observation notes and the 
transcripts of the audio recording and note taking for the one who was not audio-taped.  Then, 
the transcriptions were unitized and analyzed into smaller significant parts or ideas that 
developed during the examination of data using the constant comparison analysis (Leech & 
Onwuegbuzie, 2007). Common patterns in participants’ responses were grouped into 
interpretable themes (i.e., SCK, KCS, KCT) in order to answer the research questions.  

 
Results 

As noted earlier, the findings were presented in terms of PTs’ conceptions and 
misconceptions of unit and unitizing concepts (SCK), ability to analyze students’ responses 
(KCS), and teaching strategies for fraction instruction (KCT). Specifically, the researchers used 
responses under category SCK to answer the first research questions. The remaining responses 
were grouped into categories KCS and KCT and were interpreted to support the final two 
research questions.  
 
Knowledge of the Units and Unitizing (SCK) 

The study showed participants had insufficient SCK about the units and unitizing. They 
could not distinguish between simple and composite units as defined by Lamon (1999). 
Specifically, the PTs were not able to recognize that the unit can be a group of objects. For 
example, in Task 1a the PTs were presented two pizzas using two similar size circles, which 
were divided into four parts and the shaded part denoted the amount of pizza eaten. All PTs 
agreed that the first shaded circle was one whole pizza and one of the four parts shaded denoted 
¼ of another pizza. Monica indicated 1¼ units of pizza were eaten in contrast to Talima who 
wrote it in the form of an improper fraction, 5/4. Monica believed the two pizzas were two 
separate and could not see how the pizzas could be a whole unit or a composite unit. 
Interestingly, Alisa and Talima mentioned 5/8 (simple unit) as an alternative answer for this task 
demonstrating that their knowledge was not profoundly sufficient because they ultimately 
confused the value (5/8). Alisa believed that the pizza contained eight total parts and there were 
only five parts shaded. However, she canceled 5/8 and argued 1¼ was the best one after 
considering the case of two pizzas. A week later Alisa contacted the interviewer through an 
email and said, “I thought about the first math problem right after I left there. It was 5/8 of the 
pizza, because ‘the pizza’ refers to all the pizza”. Based on Alisa’s latter response, she seemed 
able to reflect on her own thinking about the concept of unit fraction - a group of two pizzas. 

In addition, the PTs were presented Task 1c, which related two different sizes of pizza (i.e., 
small cheese pizza and medium pepperoni pizza) that were cut into eight equal-size pieces. Also, 
the participants were informed that two and three slices of the cheese and pepperoni pizzas were 
eaten respectively. When they were asked how much pizza was eaten, Alisa and Talima were 
able to identify the different sizes of the wholes (small versus medium) and to obtain the correct 
answer (i.e., 2/8 small pizza and 3/8 medium pizza). These same PTs said the sizes were not 
equal, therefore, one could not add both parts together to get 5/16. In this case, it seemed that 
they could understand the concept of common unit as discussed by Ball (1993). Alisa further 
argued that it was impossible to add two different sizes of pizza similar to adding apples and 
oranges. In contrast, Monica counted all the number of pieces eaten from two different sizes of 
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pizza and provided 5/16 of the total pizza as the answer. Monica’s latter response was 
contradictory with her earlier session for Task 1a in which she said that two items could not be 
put together to become a larger one unit. It showed that Monica had misconceptions about the 
concept of units because she could not associate the different sizes of pizza meaning unequal unit 
wholes. The select PTs’ specialized content knowledge (SCK) of a unit-whole was inconsistent; 
they did not understand that a group of items of similar sizes could be one-unit whole. 

On the other hand, in Task 3a the PTs’ responses revealed their unitizing abilities were 
different. The task required PTs to decide which one was a better buy between two cereal boxes: 
16 ounces ($3.36) or 12 ounces ($2.64). Alisa simply thought that the bigger one would be 
cheaper per ounce and upon this based her generalization even though she admitted that this may 
be applied 80% of the time. Talima unitized the number of ounces with the rounded price ($3) to 
obtain an estimated cost per dollar. She chose the larger box because she could get more ounces 
per dollar. Monica calculated the difference of prices ($0.70) and amount of cereal (4 ounces) 
between the two boxes. She estimated $0.60 and $0.80 per ounce for each box respectively 
deciding to choose the cheaper box if the calculation was correct. In contrast to Task 3a, PTs 
possessed a similar understanding of how they unitized a case of cola in Task 2a. The 
participants were provided a scenario, “Steve took a case of cola to Marcia’s party, but it turned 
out that many of his friends drank water. He ended up taking three quarters of the cola home a. 
How much cola did he take home?”Alisa, Talima, and Monica agreed that the answer was ¾ of 
whatever the unit whole was.  In addition, Alisa visualized her thinking of the case of cola by 
using a standard case of 12 cans, then multiplied ¾ with 12 and got 9 cans of cola as the answer. 
However, she still believed that ¾ of the case of cola was still the best answer as the task did not 
indicate the actual cans of cola in a case.  

The “how many” question was quite easy for the PTs even though only Alisa got the answer 
correct during her first attempt. Alisa explained her working algorithmically, 

I just look at the total [writing 7⅓], how many ⅓ [writing ⅓ under “a second super piece free”] 
are in there? So, ok 21/3 plus 1/3, 21..7 times 3  [writing 7x3 on the left side of 21/3] equals 
22/3 [writing 21/3 + 1/3 = 22/3]. Then 22 divided by 2 equals 11 [writing 22/2=11], 2 is what 
each customer can get....each customer will get [writing each customer will get] because there 
is buy one get one free [writing buy 1 get one free]. Ok, so 11 [circle 11] customers [writing 
customers as the label and underlining the word]. 

On the other hand, Monica and Talima used pictorial representation to answer this task. They 
drew eight circles, divided each into three pieces and shaded 7⅓ circles. Then, they paired every 
two parts and counted the number of pairs together which gave them 12 at first. Talima counted 
back and realized that she made a ‘silly mistake’ when adding the number. Although Monica did 
not check the final answer, she, Talima and Alisa had a clear understanding of ‘how many’ as 
compared to ‘how much’ in Task 1a, 1c, and 2a. When they were asked about the difference, 
Alisa mentioned the ‘how many’ question was easier to solve compared to the ‘how much’ 
question. Talima argued that ‘how much’ was related to measurement and ‘how many’ was for 
counting items. On the other hand, Monica thought that when a question asked ‘how much 
pizza’, it would mean number of slices and ‘how many pizzas’ referred to how many whole 
pizzas were involved.  The select participants’ responses were similar to results found by Sowder 
et al. (1998). 
 
Knowledge of Content and Students’ Responses (KCS) 
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The select PTs were able to analyze the children’s responses by providing brief descriptions 
supporting their arguments albeit they had some difficulties on their own. The PTs could identify 
from the children’s responses that they failed to label the final answer for Task 2b. For this 
reason, the PTs had difficulties interpreting what size chunks the children considered as a case of 
cola. At some points, the PTs were not sure what the children were thinking and how hard it was 
for them to predict the figures based on the children’s unlabelled responses. In general, Monica 
explained, 

It seems like that they all assume something to be a whole, maybe I would ask them what they 
consider the whole to be..try to find out why and how they are getting these answers because it 
just give me numbers. I would ask them maybe to show their work, go back and show their 
work and then resubmit it or I will ask them to maybe verbally explain to me what they were 
thinking, what their thinking process was…to try to find out. 

In contrast, Alisa and Talima were able to consider students’ thinking, conceptions, and 
misconceptions when responding to this task. Specifically, they focused in much detail, on the 
number that children provided. Alisa and Talima tried to predict children’s thinking with some 
drawings and working backward to solve the problem. 

Through the observations, the interviewer noticed that Alisa and Monica slowly realized their 
own mistakes to their previous answer while they spoke aloud their reasoning about the 
children’s responses in Task 1b. It showed they were able to make connections to what they 
already knew. Specifically, Alisa was able to detect her own misconceptions when reading Joe’s 
response:   

Alisa: Ok, Kristin did 5/4 because 5 little ¼ pieces are shaded. She was thinking in the right 
direction that she forgot that it’s ¼ of each pizza but there two pizzas so there 8 total pieces [I: 
Ok]. So 5 little one ¼ pieces, but what’s the total? She..she put the total 4 but the total 8 of ¼ 
little pieces [I: Ok]. So, not correct, sorry Kristin [laughing and put a wrong sign beside 
Kristin’s answer]. And then Jean…Jean got it correct 5/8 because there is eight pieces and 5 
are colored. That’s correct Jean. They got the total number and little pieces number. Tom, 1 
and a bite. I guess that’s correct but a bite is not as you know descriptive, that’s a big bite I 
think. But guess you could call it correct because a bite could be ¼ of a pizza [writing ¼ 
denotes a bite]. Joe, it must be 5/8 because 5/4 is impossible. Ohhh..5/4 is [speak 
slowly]....[both were laughing]…now I think 5/4 is correct. Sorry 5/8 is not. [I: That’s ok. 
That’s ok] Oh my God I just realized that. I feel fall down [laughing]. Ok.  
I: Are you sure that Joe is correct? Yeah. Just..Just..yeah [Alisa: I know, it was difficult]. Just 
explain your….  
Alisa: Not I could think of it [drawing a big circle with 8 parts]. 5/8 is like..they could..I don’t 
know... that will be like 8 and [shaded 5 parts] then 5 parts shaded, right. Now when I think of 
it 5/4, he’s right because 4/4 equals 1 [writing it besides the big circle] and then the 1 left over 
will be the 1/4 [writing ¼ equals ¼ below 4/4=1]. So, may be 5/8 is not correct [laughing].  
I: 5/8 is not correct?  
Alisa: This is…this is confusing! [both were laughing]  

These findings demonstrated that Alisa and Monica’s thinking was easily influenced by the 
children’s responses. They admitted that they were confused with their own answers after 
analyzing the responses supporting the notion of PTs’ limited understanding of unit fractions. 
For example in Task 1b, Alisa and Monica believed the children’s responses varied because the 
unit whole could be one object or more objects in the same context. They stated the children 
made choices about the unit they wanted to use. However, Lamon (1999) argued that deciding on 
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the unit was not a personal choice and teachers should make sure students are aware that the unit 
may vary in every new context. Unfortunately, Talima was not aware of her own misconceptions 
while she was analyzing the responses. She strongly believed all the children did not understand 
the units and unitizing of fractions based on their responses.       
 
Knowledge of Content and Teaching (KCT) 

As mentioned earlier, KCT is related to the interaction between teachers’ understanding of 
mathematical content and pedagogical issues contributing to students’ learning. The findings 
found that the participants were able to suggest a number of basic instructional strategies that 
may be used in a classroom. As Monica, Alisa, and Talima acknowledged that the concept of 
unit and unitizing was important for teaching and learning fractions, they agreed with the use of 
concrete manipulatives, real-life application, and multiple representations such as pizzas and 
cake for learning fractions. Specifically, Talima strongly believed real-life examples made 
mathematical learning interesting for students when they shared ideas with their family. On the 
other hand, Alisa argued that teachers should use the same representations for basic fraction 
instruction so students can grasp the concept clearly.  

Similarly, Monica thought pizza was a good representation because teachers could use it 
consistently in the classroom. However, she admitted that any representation would create 
problems and confuse the students if the concept was not taught clearly by the teacher. Monica 
made a connection to the students’ responses explaining why the children considered using a 
different unit whole. She argued this might be due to a teacher’s pedagogical style that children 
had gotten accustomed to. In terms of teaching, Monica further stated that a lesson “reteach” 
(Cooper, 2009) would be needed if students in her class could not understand the concept of unit 
wholes. She believed Task 1a was a great example for students to strengthen their understanding 
of whether to consider one or two pizzas as a unit. 

Discussion 
In conclusion the findings reveal the participants’ knowledge (SCK, KCS, KCT) of teaching 

units and unitizing of fractions is limited. In regard to the first research question, the findings 
showed that PTs could not differentiate between ‘how much’ and ‘how many’ questions.  This 
affirmed Lamon’s (1999) argument that PTs’ profound knowledge of the fractional unit was not 
clear. Even though the selected PTs seemed to slightly understand the concept, they had 
difficulty thinking during the interview session about the composite unit or unit that contained 
more than one same size objects. In contrast, the select PTs could unitize the items into different 
groups; however the strategies they used were mathematically inefficient and not flexible. They 
could not reconceptualize or reunitize the ounces into easier, faster, and more reasonably sized 
chunks (Lamon, 1996).  Units and unitizing are essential concepts and important for teaching and 
learning of fractions; therefore, PTs must have adequate mathematical knowledge for teaching 
that should be developed during their teacher preparation program (Ball et al., 2008; Newton, 
2008).  

In relation to the final two research questions, the findings demonstrated that the PTs’ 
knowledge of units and unitizing (SCK) might have an effect on their understanding KCS and 
KCT. Specifically, the select PTs’ limited understanding of these concepts influenced their 
ability to identify students’ misconceptions. Surprisingly, they were able to notice their own 
misconceptions while analyzing students’ responses. Also, they offered some instructional 
strategies to help children limited to basic representational models such as pizza and cake.  The 
select PTs appeared to have limited experiences with children, therefore, more exposure working 
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directly and engaging in classroom teaching and learning is needed. This kind of experience will 
enhance and develop PTs’ understanding of educational and mathematical theories into practice.  
Teacher educators are accountable for preparing prospective teachers with sufficient profound 
knowledge and experience necessary for teaching mathematics effectively. Future studies are 
needed to examine PTs’ knowledge of fractions in more extensive and broad perspectives with 
these concepts, including quantitative data.  
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RESPONSES TO STUDENTS’ CORRECT AND INCORRECT STRATEGIES IN 
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Ji-Won Son 

The University of Tennessee 
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Recognizing meaning in students’ mathematical ideas is challenging, especially when such ideas 
are different from standard mathematics. This study examined, through a teaching scenario task, 
the reasoning and responses of preservice elementary and secondary teachers to students’ 
correct and incorrect strategies for whole number subtraction along with the standard 
algorithm. Findings revealed that although a large portion of the preservice teachers recognized 
the validity and generalizability of the student methods correctly, they justified it from the 
procedural aspect of each method. When they were asked to provide interventions and connect 
the student method to the standard method, a majority of preservice teachers tended to use what 
is called ‘show-tell’ responses.  

 

Introduction  
The idea of interpreting and responding to student thinking is highlighted as one of the 

central tasks of reform-minded mathematics teaching (NCTM, 2000). Yet, recognizing meanings 
in students’ mathematical ideas is not easy task for teachers, especially when such ideas are 
different from standard mathematics. Van de Walle, Karp, and Bay-Williams (2010) assert that 
students who invent strategies or adopt them from classmates are involved intimately in the 
process of making sense of mathematics and gain confidence in their abilities. Along the same 
line, NCTM (2000) also stresses that teachers need to spend a significant amount of time and 
effort on student invented methods or their informal strategies that arise in a typical mathematics 
classroom and think about how to help students build on them before introducing the standard 
algorithms.  

In this study I set out to investigate preservice elementary and secondary teachers’ 
interpretation of and responses to students’ correct and incorrect strategies involving whole 
number subtraction, and their teaching approaches in connecting student strategies and the 
standard algorithm. Although a growing body of researchers explored teachers’ knowledge and 
their teaching strategies in whole number computation (e.g., Hill, Ball, & Schilling, 2008; 
Thanheiser, 2009), preservice teachers’ responses and their strategies to student-invented 
methods has received limited attention in the research literature. In particular, we know little 
about how preservice teachers connect student-invented strategies to traditional algorithms. 
Whole number subtraction is known to be one of the most challenging operations in both 
calculation and justification of changes made to numbers in elementary school mathematics 
(Flowers, Kline, & Rubenstein, 2003). Not only children experience difficulty in understanding 
the reasons for different subtraction strategies, but also teachers (e.g., Huinker et al., 2003). It is 
important to examine how preservice teachers interpret different ideas that may emerge in the 
classroom and prepare them to deal with such ideas in connection with the standard algorithm.  

In this study, I used a student-invented strategy reported by Carroll and Porter (1997) in 
which the difference is recorded as a deficit or a negative number (e.g., 40-70= -30) so that no 
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“borrowing” or regrouping is necessary where the subtrahend is larger. According to the 
literature (Campbell, Rowan, & Suarez, 1998; Carroll & Porter, 1997), students often invent this 
method on their own with little difficulty. Nonetheless, this method may become cumbersome 
and difficult to use as the numbers get larger, which requires a need for a more efficient method 
(e.g., the traditional method). Thus, this study examined preservice elementary and secondary 
teachers’ reasoning and responses to the correct and incorrect student-invented strategy and how 
they attempt to connect such a strategy to the traditional method. The research questions for the 
study were formulated as follows:  

1. How do preservice teachers interpret and respond to student-invented strategies with whole 
number subtraction along with the traditional method? 

2. How do preservice teachers connect the student-invented strategy to the traditional 
strategy? 

 

Conceptual	  Framework	  
Research on Students’ Invented Strategies in Whole Number Subtraction 

Understanding flexible methods of computation with whole number subtraction requires 
sound understanding of (1) place value, which involves being able to group by tens and treating 
the groups as units, (2) properties pertaining to operations such as the associative of addition, 
commutative, and distributive property, and (3) the relationship between addition and 
subtraction. Table 1 shows the student-invented strategies for whole number subtraction reported 
from the literature with the example problem 41 – 25 (e.g., Huinker et al., 2003).  

Strategies 
(subtracting by) Characteristics Examples (e.g., 41-25) 

1. Adding up Focus on the meaning of subtraction as the 
inverse of addition (think-addition 
strategies). Add up from the subtrahend to 
the minuend in groups of numbers by 
answering what I need to add to 25 to get 
41. 

25+10 is 35; 35+5 is 40; 1 
more is 45. The difference 
between the two numbers 
is the sum of the numbers 
added: 5+10+1=16 

2. Taking away Break the subtrahend apart and taking each 
part away 

41-25= 41- (20+5) 
41-2021-5=16 

3. Compensating Change either subtrahend or minuend as 
compatible number and then compensate 

41-2545-25=2020- 4 
=16 (add 4 to the minuend 
and then subtract 4) 

4. Partial 
differences 

Decompose the numbers based on the 
place value, subtract each part separately 
without regrouping, and add the partial 
differences. 

41-25 (40 +1) – 
(20+5) (40-20) + (1-
5)=20-4=16 
 

Table 1. Student-Invented Strategies for Whole Number Subtraction 

The subtracting by partial differences strategy was chosen for the study since the method 
requires students to use negative numbers. This method allows students to subtract separately in 
each column without requiring regrouping, which lead students to use a negative number. Carroll 
and Porter (1997) point out that it is not important whether students actually think of these partial 
differences as negative and positive numbers and students may simply consider the negative as 
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“being in the hole” or having a deficit of that quantity. However, this method would be become 
cumbersome and difficult to apply when applied to a problem involving larger numbers (e.g., 
642-489). In addition, some students tend to express the negative number as ‘0’ while using this 
method (see, video clip from the Developing Mathematical Ideas). For these reasons, I was 
curious about how preservice teachers interpret and respond to a student who used this method 
and help her/him connect this alternative strategy to the traditional algorithm.  

 
Research on Teacher Knowledge and Approaches with Whole Number Subtraction 

A growing body of researchers has explored teachers’ knowledge and their teaching 
strategies in whole number computation. Flowers, Kline, and Rubenstein (2003), for example, 
investigated elementary school teachers’ understanding of whole number subtraction problems. 
They reported that although most teachers could explain how they perform a procedure, the 
teachers had difficulty justifying why it works. Some teachers tried to use rules they did not fully 
understand or that did not apply to the situation to describe the reasons behind their procedures. 
In addition, Flowers et al. revealed that although teachers recognized the value in developing 
children’s informal strategies, most of the teachers did not fully explain why it worked. 
Similarly, Thanheiser (2009) reported preservice teachers’ lack of understanding about standard 
algorithms for multi-digit whole numbers and their inability to help the child develop conceptual 
understanding of regrouping in whole number subtraction. She suggested that teacher educators 
must be able to build on preservice teachers’ initial conceptions and help them move beyond 
their misconceptions and be able to clearly explain the mathematics behind it. Although these 
studies have helped us gather important data on preservice teachers’ understanding of whole 
numbers and computation, much research needs to be done concerning how preservice teachers 
interpret and respond to student-invented strategies and how they connect student-invented 
strategies to traditional algorithms.  

Methods 
This study investigated preservice elementary and secondary teachers’ interpretation of and 

responses to student-invented strategies through a classroom scenario in which two hypothetical 
students come up with different solution methods to a two-digit whole number subtraction 
problem, as addressed in Figure 1. This task was modified based on an actual elementary student 
who appeared on a video clip from the Developing Mathematical Ideas professional 
development curriculum (Schifter, Bastable, & Russell, 1999). The first student, Tommy, used a 
student-invented (subtracting by partial differences) strategy and produced the correct answer. 
Sally, the second student, tried a method similar to Tommy’s, but did not understand and failed 
to execute the procedure correctly.  
You are teaching whole number subtraction problem 62-25 to third graders. You asked students to 
solve it. After a few minutes, two students came to the board and explained their methods in a 
following way 

Tommy’s strategy 
 

62 
   - 25 

- 3 
40 
37 

 
Tommy said:  
You have 62 and 25. Take 5 away from the 2 

Sally’s strategy 
 
62 

     -25 
 0 
40 
40 

Sally said:  
Well, I have a different answer from Tommy. The 
answer is 40. I put 0 in the ones place since I 
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and you get -3. Now you take 20 away from 
60. That leaves 40. Then take away 3 from 
the 40, and that’s 37. The answer is 37. 

can’t subtract 5 from the 2 because 5 is bigger 
than 2. And then I take 20 away from 60 and get 
40. Since there is nothing to take away from the 
40, the answer is 40. 

Figure 1. Pedagogical Task: “How would you respond to Tommy and Sally?” 
Three questions were developed in order to assess preservice teachers’ understanding of and 
teaching strategies to these two students’ strategies as well as the traditional method for whole 
number subtraction. In the first question, preservice teachers were asked to determine whether 
each method worked for all whole numbers and then were asked to explain their reasoning. 
Preservice teachers were then asked to respond to Tommy and Sally (intervention). In the third, 
they were asked to provide interventions for Tommy in order to develop the traditional algorithm 
for subtraction. 

One hundred-eleven preservice teachers participated in the study from three mathematics 
methods classes. Ninety-six preservice teachers were in their pre-internship year of elementary 
teacher preparation program and fifteen were math majors seeking middle and secondary 
certification at a large southwest university in the United States. Preservice teachers in 
elementary and secondary programs were included in order to obtain a broad range of responses 
to the study’s task. The task went through multiple layers of development which included pilot 
testing with two volunteers who were interviewed in order to check for possible 
misunderstandings. The task was then administered as a survey to the entire class in three 
mathematics methods course sections towards the end of the semester. I only report on the data 
of the preservice teachers who signed the study’s consent form. 

In	  analyzing	  preservice	  teachers’	   interpretation	  and	  approaches	  to	  these	  student-‐invented	  
strategies	  and	  the	  traditional	  method,	  I	  was	  guided	  by	  studies	  such	  as	  Rittle-‐Johnson	  and	  Alibali	  
(1999),	   which	   distinguish	   between	   the	   use	   of	   procedural	   and	   conceptual	   knowledge.	   I	   also	  
referred	   to	   three	   criteria	   articulated	   by	   Campbell,	   Rowan,	   and	   Suarez	   (1998)—validity,	  
generalizability,	   and	   efficiency—that	   teachers	   should	   consider	   to	   support	   various	   student-‐
invented	   strategies	   in	   teaching	   situations.	   In	   particular,	   I	   analyzed	   based	   on	   two	   broad	  
categories	  developed	  from	  Kuhs	  and	  Ball’s	  (1986)	  models	  of	  mathematics	  teaching—‘show	  and	  
tell’	  and	  ‘give	  and	  ask’.	  After	  that,	  their	  teaching	  strategies	  were	  further	  analyzed	  by	  looking	  at	  
the	  patterns	  apparent.	  More	  detailed	  examples	  of	   these	  categories	  and	   the	  criteria	  used	  will	  
follow	  as	  I	  discuss	  the	  findings.	  

 
Summary of Results 

1. How Do Preservice Teachers Interpret Tommy’s and Sally’s Method?  
I mention briefly the findings from preservice teachers’ interpretation of Tommy who 

invented a correct strategy and Sally with an incorrect strategy, as they were helpful in providing 
an initial framework for analyzing their responses to student-invented strategies. In the first 
problem, preservice teachers were asked to determine whether Tommy’s method works for all 
whole number subtraction problems and justify why it works. All preservice secondary teachers 
answered that Tommy’s method was correct and generalizable whereas 77% of preservice 
elementary teachers did so. 23% of the preservice elementary teachers (22 out of 96) answered 
that Tommy’s answer was correct but did not work for all whole number subtraction problems. 
Preservice teachers’ explanations to Tommy’s method were further analyzed by looking at 
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whether they pointed out the underpinning ideas of Tommy’s method, e.g., place value and 
distributive/ commutative properties while referring to negative numbers.  

Table 2 shows a four-point rubric developed based on the sophistication of preservice 
teachers’ justification, ranging from four, being mostly conceptual, to one, being incorrect or 
ambiguous. More than half in both groups fell in level two, indicating that both preservice 
elementary and secondary teachers tend to provide procedural-oriented explanation. However, 
notice the different tendency between preservice elementary and secondary teachers. While more 
than half preservice secondary teachers fell in levels 4 and 3, similar percent of preservice 
elementary teachers fell in levels 1 and 2 (see Table 2). 

 
 Description Participant Example Elem. 

(N=96) 
Second. 
(N=15) 

Total 
(N=111) 

4 Describe both the use of 
property (e.g., distributive/ 
commutative) and flexible 
use of place value 
(decomposing) while 
making reference to 
negative numbers. 

The distributive property 
always works well with whole 
numbers.  Because subtracting 
is really adding a negative, (60 
+ 2) - (20 + 5) = (60 + 2) + -
1(20+5).  Distributive=> 60 + 
2 +  -20 + -5   Because of the 
commutative property of the 
whole numbers with addition 
this = 60 - 20 + 2 - 5 = 40 +  -
3 = 37. 

 
2% 

 
20% 5% 

3 Demonstrates somewhat 
conceptual understanding 
with use of negative 
numbers instead of 
regrouping and/or vague 
understanding of place 
value. 

As long as he keeps his place 
values correct, he can subtract 
60 - 20 or any of the tens 
numbers.  Also, because he 
understands negatives the 
problem will work every time. 

 
33% 

 
33% 33% 

2 Mention place value, but 
response is mostly based 
on procedure or slightly 
ambiguous. 

I believe Tommy's strategy will 
work for all whole numbers 
because he subtracted the one's 
first and the ten's next. 

40% 47% 41% 

1 Provide irrelevant, or 
incorrect information 

Because he cannot invert the 
numbers because it changes 
the value. 

25% 0% 22% 

Table 2. Rubric describing the nature of explanation about Tommy’s method 

As for Sally’s strategy, all preservice teachers answered that Sally’s method was incorrect 
and were not generalizable. Table 3 shows a four-point rubric describing the different levels of 
preservice teachers’ justification to Sally’s method. In general, overall scoring for responses to 
Sally were lower than Tommy. The majority of participants scored level 2 in which preservice 
teachers just restate Sally’s procedure without further explanation. When comparing elementary 
and secondary teachers, similar portions scored level one where preservice teachers were correct 
in their thinking of the strategy, but provide too ambiguous or incomplete explanation. 
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Description Participant Example 
Elem.  

(N=96) 
Second. 
(N=15) 

Total 
(N=111) 

4 Describe limited concept 
of place value and 
regrouping by Sally 
while describing the 
relationship between tens 
and ones in place value.  
 
 

Sally's strategy does not work 
because not only does she not 
understand the concept of place 
value, she does not understand 
the concept of regrouping. She 
does a good job at taking away 
in the 10s place. It is important 
for subtracting problems to take 
both the 1s and 10s place 
values into account by knowing 
10 ones make 1 tens. 

1% 7% 2% 

3 Mention limited concept 
of place value or limited 
concept of regrouping by 
Sally but do not fully 
explain the relationship 
between tens and ones in 
place value 

Sally doesn't have a concept of 
how tens relate to ones with 
subtraction.  In this case, she 
would need to realize that 62-
25 is not the same as 62-22.  
Her assumption does not work 
here, and it will not work for all 
whole number pairs. 

12% 20% 13% 

2 Describes Sally’s procedure 
by pointing out the use of 
‘0’ and vaguely mention 
place value or lack of 
understanding with 
negative numbers. 

Sally's strategy will not work 
for all whole numbers because 
when working with multidigit 
problems and the bottom 
number is larger than the top 
you cannot simply place a zero 
in its place and move to the next 
digit. 

71% 61% 70% 

1 Did not provide 
justification, or provide 
irrelevant or incorrect 
information 

It won’t work because it is 
logically incorrect and didn't 
even work when she did it for 
this problem. 

16% 13% 15% 

Table 3. Rubric describing the nature of explanation about Sally’s method 

 
2. How Do Preservice Teachers Respond to Tommy’s Method?  

In the second question, preservice teachers were asked to respond to Tommy and Sally. As 
previously mentioned, in analyzing the responses of the participants, two categories were 
identified first—‘show and tell’ and ‘give and ask’—and then their responses were further 
analyzed by looking at the patterns apparent under each category. In a ‘show-tell’ approach, the 
preservice teacher tells, explains or shows whether each method works and provides direct 
information about the two strategies. The ‘give-ask’ approach in this study is evident when a 
preservice teacher provides students opportunities to explain and justify their strategy, and would 
guide students as they figure out when each method is or is not efficient. Preservice teachers who 
concluded that Tommy’s method was not generalizable were also analyzed to see how they 
responded to Tommy as categorized into ‘incorrect’. Shown below is the various responses in 
each approach and the percentage of responses. The data dispersion for secondary and 
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elementary preservice teachers was consistently about the same for all categories. A large portion 
of the preservice teachers was categorized into the ‘show-tell’ approaches by confirming or 
rephrasing Tommy’s procedure (44% in the ‘show-tell’ approach) and/or showing Tommy the 
traditional method as Tommy was assumed to be incorrect (20% in the incorrect). Only around 
40% asked Tommy to explain his thinking.  About sixteen percent of the participants gave what 
we would consider fairly ideal responses through student involvement and connecting or 
building on strategies.  
 

Show and Tell (44% in total): Conformation only (7%), Confirms and reminds of negative 
numbers (7%), Rephrases Tommy’s strategy (17%), Confirms and shows another (traditional) 
method (6%), Points out the usefulness of Tommy’s strategy (5%), and Recognizes Tommy’s 
strategy is inefficient for larger numbers (2%) 
Give and Ask (36% in total):  Asks Tommy to explain thinking (14%), Asks Tommy to 
solve another problem (7%), Asks Tommy to show other students to help them understand his 
strategy (8%), Asks Tommy to come up with another strategy (5%), Get Tommy to recognize 
the inefficiency with larger numbers (1%), and Asks other students to show strategies to 
connect (2%) 
Incorrect (20% in total): Show and tell proving counterexamples without reason (4%) or tell 
Tommy his strategy does not work and ask to find another way without negatives (3%), No 
explanation and shows another method (traditional) (7%), Asks Tommy to apply method 
where top number is greater (2%), Asks Tommy to explain use of negatives (1%), and Asks 
Tommy to explain and solve another problem (3%) 
 

3. How Do Preservice Teachers Respond to Sally’s Method?  
Preservice teachers’ replies to Sally were overwhelmingly “show and tell” based.  About 77 

percent of all participants explained Sally’s errors or showed her the traditional method.  Only 
about ten percent of the participants, all being elementary level, attempted to have Sally 
recognize her error without being directly told. Only around 23% asked Sally to explain her 
thinking and used it in correcting her mistake.  Shown below is the various responses in 
categories of ‘show and tell’ and ‘give and ask’ and the percentage of responses. 
 

Show and Tell (77% in total): Tell or explain errors to Sally (28%), Tell or explain errors 
and strengths (5%), Tell Sally to use traditional method (20%), Tell Sally to use Tommy’s 
(with negative numbers), or other strategy (16%), and Use concrete model to show errors with 
place value and or address the traditional method (9%) 
Give and Ask (23% in total): Point out the source of Sally’s errors and have her rework the 
problem to correct (12%), Ask her to explain her strategy and teacher shows traditional 
method (1%), Ask Sally to explain her method and to try another method (4%), Ask Sally to 
use manipulatives to find her error and see the traditional method (3%), and Have Sally 
recognize her error by comparing to other methods (3%). 

 
4. How Do Preservice Teachers Connect Tommy’s Method to the Traditional Method?  

The third question, referring to Tommy, asked participants to explain the traditional method 
by making a connection to his invented strategy. In analyzing the responses of the participants, 
two categories—‘show and tell’ and ‘give and ask’—were utilized first. And then two additional 
categories were identified separately depending on whether preservice teachers provided the 
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connection between Tommy’s method and the traditional method. Then their responses were 
further analyzed by looking at the patterns apparent under each category. Below shows the 
various responses in each approach and the percentage of responses. Even though participants 
were asked to connect Tommy’s method to the traditional strategy, only 28% of the preservice 
teachers attempted to show the connection between two methods. 42 % relied on solely 
explaining the traditional method without any models or using any type of questioning with 
Tommy. 

 
No Connection (71% in total): Explains traditional method (without manipulatives) with 
regrouping (38%), Explains traditional method (without manipulatives) with compensation 
(5%), and Explains traditional method with manipulatives or pictorial model (28%).  
Connection (28% in total):  Has Tommy explain place value/his method and explore 
regrouping (5%), Points out inefficiency with negative numbers and explains traditional 
method (11%), Points out inefficiency with negative numbers and explains traditional 
method with manipulatives (5%), and Shows both methods and how they relate (5%). 

 

	  

Discussion	  and	  Implications	  
The findings of this study shed light upon preservice teachers’ mathematical understandings 

and their teaching approaches to student-invented strategies for whole number subtraction. While 
all preservice secondary teachers in this study determined the validity and the generalizability of 
the student-invented method correctly, a large portion of preservice elementary teachers did not 
initially recognize Tommy’s strategy as a legitimate method for subtracting. However, such 
differences became less distinct when it came to justifying the reasons behind the procedure and 
providing good intervention. Preservice teachers in our study, both secondary and elementary, 
gave mostly procedural explanations for Tommy’s strategy. They also showed a tendency to use 
‘show and tell’ approaches rather than ‘give and ask’ when trying to help students construct their 
own knowledge. In particular, procedural-oriented responses were more evident when student 
methods were assumed to be incorrect and when preservice teachers were asked to respond to 
students, in particular to Sally who provided an incorrect method. This result is consistent with 
the findings from the Son and Crespo’ study (2009). Based on the findings from this study, I 
propose that preservice teachers’ insufficiently developed knowledge of students and teaching 
strategies would be a reason for creating a procedurally oriented instruction. Despite the 
limitations of this study (e.g., the small ration of secondary to elementary preservice teachers), 
this study has implications for teacher educators and future studies. For example, teacher 
educators must provide opportunities for preservice teachers to explore student-invented 
strategies and be able to clearly explain the mathematics behind it. Additional research is needed 
to provide substantiation in how we can help teachers prepare for the multiple student strategies 
that arise in a typical mathematics classroom.   
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TEACHERS’ KNOWLEDGE IS BUILT AROUND THEIR GOALS 
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Teachers’ goals are an understudied link in the chain from teachers’ knowledge, beliefs, and 
decisions to students’ learning and opportunities to learn. Whereas the domains of teacher 
knowledge, beliefs, and behavior have received much research attention recently, teachers’ 
goals—a critical link between these areas—remain understudied. The reasoning teachers 
engaged in related to their goals provided a window into their knowledge and beliefs and how 
their knowledge and beliefs developed around their goals. This information indicates that 
teachers’ goals can be very useful to uncover teacher knowledge and highlights how influential 
teacher goals are in the overall learning environment. 
 

Purpose 
High on the radar of education researchers is the special amalgam of content and pedagogy 

known as pedagogical content knowledge [pck] (Shulman, 1986). And while much effort is 
being made to define and measure pck, equal effort is being made to develop it. And yet, often 
overlooked is how pck develops organically in the ordinary course of teachers’ experiences. The 
research question guiding this research is: How do teachers’ goals of instruction contribute to 
their development of pck? 

The findings reported in this paper were derived from original research that broadly 
examined the nature of five secondary mathematics teachers’ goals of instruction. Hiebert and 
Grouws (2007) defined teaching as consisting of “classroom interactions among teachers and 
students around content directed toward facilitating students’ achievement of learning goals” (p. 
372). Learning goals are at the core of the educational enterprise and research on teaching toward 
specific learning goals in intervention settings claims robust results. Hiebert (2003) wrote, 
“When extra attention is paid to designing classroom instruction with specific learning goals in 
mind, students usually improve their achievement of these goals (Carpenter, Fennema, Peterson, 
Chiang, & Loef, 1989; Cobb et al., 1991; Cognition & Technology Group at Vanderbilt [CTGV], 
1997; Fawcett, 1938; Good, Grouws, & Ebmeier, 1983; Griffin et al., 1994; Heid, 1988; Hiebert 
& Wearne, 1993; Markovits & Sowder, 1994; Stein & Lane, 1996; Wearne & Hiebert, 1989; 
Wood & Sellers, 1996)” (p. 14). Echoing and extending Heibert’s assertion here, I contend that 
when extra attention is paid to designing various aspects of classroom instruction with specific 
goals in mind, the teacher develops greater knowledge and power in that area to achieve the 
recognized goals.  

 
Theoretical Considerations 

Goals are integral to the cognitive aspects of teaching. In Schoenfeld’s (1998) efforts to 
develop a theory of teaching that enables one to “explain how and why teachers do what they do 
while engaged in the act of teaching” (p. 6, emphasis in original), he generated a cognitive model 
of teaching, where knowledge, goals, and beliefs activated in context affect and influence 
teachers’ decision making and actions. These components are influenced by one’s historical 
knowledge of past experiences with the students, the mathematics they have learned, and the 
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plans and routines that have previously been enacted. Schoenfeld’s model advances the cognitive 
research on teaching and brings goals onto equal footing with knowledge and beliefs. 

Goals are defined as “cognitive representations of what individuals are trying to accomplish 
and their purposes or reasons for doing the task” (Pintrich, 2000, p. 96). Goals direct action 
toward desired end states and come with recognition that the present state is lacking. To have a 
goal is to recognize the difference between an ideal state and one’s perception of present reality. 
This recognized difference creates “a state of tension that [is] maintained until reduced by the 
performance or completion of the intended activity or a substitute activity” (Locke & Latham, 
1990, p. 13).  

Knowledge plays a special role in attaining goals. When a goal is chosen, related knowledge 
is activated to the attainment of the goal. For example, if a teacher chooses the goal that students 
understand equivalent fractions, the teacher’s knowledge of representations and classroom 
sequences are drawn upon to meet the goal. But if a goal is chosen that one does not have the 
knowledge to attain, and if one is committed to the goal, the teacher will search for and build 
knowledge necessary to meet the goal. This explains Ball’s (1993) efforts to develop meaningful 
representations of negative numbers for her 3rd grade students, an effort prompted by her 
dilemmas that arose “directly from [her] explicit goals” (p. 377). Locke and Latham (2002) 
reported that challenging “goals… [can lead] to the arousal, discovery, and/or use of task-
relevant knowledge and strategies (Wood & Locke, 1990)” (p. 707). In other words, the 
motivation to develop specific knowledge arises through dilemmas related directly to our goals. 

  
Method 

Case study methodology provided direction in conducting this research. As little research has 
been done to link and describe the connection between teachers’ goals and their pck, I chose 
teachers who were likely to be information rich by virtue of their experience and expertise. The 
two teachers in this study held master’s degrees in curriculum and instruction and were 
recognized by their administration and university faculty as leaders in the school.  

Natalie (as with all participants, a pseudonym) was in her 11th year as a teacher when I 
observed her. The majority of her experience was in teaching from the Core-Plus curriculum. 
However, in her ninth year she moved to a new school where she principally taught Algebra 1. 
The year in which the observation was made she was teaching Algebra 1 for the second time. 

Sarah was in her fourth year teaching high school mathematics. Sarah has since been 
accepted into a PhD program in mathematics education. Sarah had taught only integrated courses 
using the Core-Plus curriculum until the year of observation in which she also taught Geometry 
using a traditional textbook. 
Data Collection and Analysis 

In keeping with the case study research tradition, this study drew upon “multiple sources of 
information such as observations, interviews, documents, and audiovisual materials” (Creswell, 
1998, p. 62). Each teacher was observed at least four times and was interviewed after second, 
fourth, and sixth classroom observations. Classroom teaching sessions were video recorded and 
used for purposes of stimulated-recall interviews. These interviews were semi-structured and 
were designed to allow investigation of teachers’ goals around significant components of their 
instruction.  

The focus of the data analysis was to find and describe how teachers’ goals contributed to 
their development of pck. Analysis proceeded by identifying dilemmas the teachers were 
struggling with, then examining how their efforts led to development of pck.  
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Findings 
To illustrate the findings for each teacher, I describe a broad mathematical pedagogy 

dilemma followed by a more narrowly focused mathematical pedagogy dilemma and the 
resulting efforts and development of pck. I begin with Natalie. Natalie struggled with getting her 
Algebra 1 students to share their thinking and to keep them engaged. These two dilemmas turned 
into broad goals that she spent a great deal of time thinking about. This thinking led to her 
reasoning about the dilemmas and experimenting with solutions. Natalie recognized a strong 
contrast between teaching Algebra 1 and Core-Plus courses. Indeed, in her interview she 
lamented that students were not used to having to discuss ideas. She explained, “When I taught 
with the core-plus curriculum it had more of the questions there for me. The questions were just 
embedded in the students work….[My Algebra 1 students] haven’t had to do that. Their way of 
learning hasn’t been that style” (Natalie, Interview 1).  

This challenge to engage students and provide them an environment in which they would feel 
comfortable sharing their thinking was an issue that Natalie brought up in two of our three 
interviews. In the last interview she said: 

One of my goals is to get closer to 100 percent of my students engaged and involved. The 
kids don’t want to go up to the front they don’t want to write on my board. They don’t 
want to answer out in class even when they probably have the right answer. I just want 
more of my kids to feel comfortable about sharing in class. (Natalie, Interview 3) 

So Natalie experimented with different strategies searching for something that helped. She said: 
Something I’ve been thinking about this year is different ways, what can I do to get the 
kids engaged more? More of them on task and doing the problems. So I’ve tried the 
clickers, I’ve tried working in partners more. Thursday and Friday the learning specialist 
is going to let me use her white boards. So a lot this year I’ve been thinking about what 
are different ways to present my lesson so that I can get more kids involved. (Natalie, 
Interview 2) 

In order to get students engaged she experimented with different strategies and formats for her 
lessons.  

Natalie also wanted to create a classroom where students felt comfortable participating and 
discussing mathematics, but found that she needed to find and enact strategies in which students 
could become prepared to participate in whole-class discussion. She used strategies such as 
pairing, and wait-time, She said: 

I don’t like to [randomly] call on a kid. I don’t like to say ok “Mike would you do this 
problem?” because if Mike doesn’t know how to do it then that’s going to make him less 
likely to answer later. So I don’t want to call on a kid who doesn’t want to offer. So 
finding a way so that, if they do check with a partner, check your answer, or somebody 
and then be able to answer my question, then I should be able to call on anyone. (Natalie, 
Interview 1) 

Natalie avoided calling on students unprepared to respond, to overcome this she found ways to 
ensure they had opportunities to think and discuss the problems. Because of her goal to get them 
engaged and willing to contribute to class discussion (broad mathematical pedagogy goals) she 
developed strategies to successfully meet these goals. She developed pck specific to the area of 
general mathematical instruction.  
Natalie: Teaching Equation Solving—Where To Start and Why Do We Do That? 

In a more topic-focused area of mathematical instruction, a goal Natalie consistently 
identified was to get students to engage in mathematical reasoning and justification. She was 
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teaching equation solving. On the first day Natalie began the class with two warm-up problems. 
One of the problems was “-(2/5)x – 7 = 11.” After students had a few minutes to work both 
problems she asked the students: “I need three reasons, why did I add sevens to both sides?” 
(Natalie, Video Observation 1). In the interview I asked Natalie why she asked this question. She 
said: 

First of all to the students that look at that problem and see a fraction and then they don’t 
know where to go from there. They don’t know where to start. And kind of an order of 
operations thing. Do I add seven first or do I multiply first, or do I distribute first? You 
know, what’s my first step and why is that my first step. So to kind of give them 
somewhere to go, because I heard it today I think. “I don’t even know where to start.” “I 
don’t know what to do.” For other ones just to make them think about, because there are 
the ones that can just do these problems because that’s the way we’ve done them forever. 
They just probably never have been asked: “Why are we doing that?” It’s just Ok we’re 
supposed to add 7 so let’s add 7. “That’s just how we were taught.” So what’s the math 
behind it? (Natalie, Interview 1). 

Based on her knowledge of students past and present she realized they struggled to get started, 
afraid perhaps of making a wrong step. She was also aware that her students typically did not 
know why they were doing certain processes. Her goals here reflected students’ learning needs 
and her strategies were developed to meet these goals. In addition to her students’ learning 
needs, however, her push for reasoning and justification also came from teaching Core-Plus, and 
her knowledge that students would have to justify steps in Geometry. She said:  

I guess I saw that a lot in Core-Plus. And also leading up to proofs in geometry. I used to 
teach stuff with proofs, not the two-column format proof, but more of a paragraph of this 
is the first thing I noticed and giving reasons why. (Natalie, Interview 1) 

Natalie’s goals related here stemmed from her experience with another curriculum, her 
knowledge of students future mathematical demands, and her knowledge that students were not 
confident in the steps to take to solve the problems. With these goals in mind, she developed or 
adapted previous strategies to her current context to promote the reasoning that explains 
traditional equation solving. She held class discussions with many participating in sharing 
justifications for certain steps. She also learned to ask for different ways to begin a problem. 
 
Sarah 

Sarah taught Honors Integrated 4. When she first began teaching this class she initially used a 
strategy she had used previously—holding whole class discussions frequently to summarize the 
mathematics and clear up misconceptions. But when she held these discussions in the Honors 
Integrated 4 class she observed and perceived that the students already understood the 
mathematics. Therefore she was led to ponder how to reduce these unnecessary stops, and at the 
same time ensure learning. These were her broad pedagogical goals in the context of a senior-
level honors, problems-based mathematics class. She said: 

I was used to, they work on the investigation for a while then we stop to kind of clear up 
some misconceptions some groups are having. It was very sectioned off.   
I realize there were times that I thought we needed to stop and talk as a class, and 
everyone would just kind of stare at me like we already know that.  
They worked so hard together, and they worked so well together, that if there’s anyone 
that had it off, the rest of the group helped them figure it out, and they had it corrected.  
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I realized that I was standing in their way by saying ok I want you to stop after this 
problem. I [realized I] need to get out of their way. We don’t need to stop at certain 
points. (Sarah, Interview 1, emphasis added) 

At first, she thought that she needed to hold frequent whole class discussions for her students’ 
sake, but when she did, she observed student expressions that indicated they already knew the 
mathematics she was intending to discuss. She perceived these discussions as unnecessary. Her 
goal was to optimize learning and this meant she needed to get out of the way, to do away with 
unnecessary discussions so students could learn.  

So Sarah developed a plan where the students were given dates for quizzes and tests and 
were instructed to develop group plans to learn the mathematics for those tests and quizzes. This 
was the second year she implemented this idea. She said: 

So I just started it with them this week. However, I’m really struggling with the way 
they’re grouped. They’re not working at the same pace in their group. So we’re going to 
have a quiz next week, and I’m sure that I will put the kids who are working faster 
together, and the kids who work a little slower together, because I think they’ll work 
more together.  
I don’t want everyone to take the same amount of time of time on every problem. That’s 
not the way they learn or have to think through problems. There has to be that point 
where they thought about it before I’m going to give them an answer. (Sarah, Interview 
1) 

After initiating the strategy to let the groups work more freely with targeted quiz and test dates 
she ran into a new dilemma—students working at different paces within groups—this led to her 
thinking about grouping students in pace-alike groups. In other words, her goal to optimize the 
learning organization in her classroom continued to prompt her to analyze her efforts and devise 
new strategies to further enhance the classroom experience. Her goal prompted pck in this 
context. 
Sarah: Teaching Function Notation for Horizontal Translations 

In this final example, Sarah held a narrower content goal—to help students learn and 
understand the relationship between horizontal translations of functions and the corresponding 
function notation. In the following example students were struggling to formulate where in the 
function notation this shift would be represented. She explained: 

In the book, the very first problem has them make a table for f(x), f(x + 3), and f(x-3). 
And they call them f(x), g(x), and h(x). So they actually found the y-values, and they 
made this table so it had four rows: the x-values then 3 sets of y-values. Then they were 
supposed to talk about the coordinate rule. It looks like when you looked at the table, 
weren’t the y-values just going up each time? This is your set x-value and the y-values 
were what were changing. So yeah, if you look at the table, that sure is what’s happening. 
You’re x-values went up and your y-values went down. So then I thought, wow, that was 
almost like a bad thing to do right there because now they’re thinking it’s a change in the 
y not a change on the x-axis. So I didn’t want her to look at that for a minute, so I was 
like let me think of some other things she could look at. So I was trying to hurry and 
come up with something, because I had just realized what a problem that was for two 
groups. 
And did you hear me say let’s do y equals x. And I said, “Nope, let’s not do that one.” 
And I said let’s look at y equals x squared. Well then I was getting the other side of the 
parabola’s outputs. So then it was deceiving again now the left side was crossing over 
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when I moved it over. I was like “Ok this is another bad example, let me come up with 
something where we can look at it.” So I came up with y = 2x, so we graphed some 
points, and then we graphed some points on y = 2(x – 3).  

In this excerpt so far, it is clear that Sarah was struggling to find a way to make the notation 
of horizontal translations clear. She was aware that others were similarly confused. So with the 
goal to help these students make sense of the idea, she is searching for examples. If not the best 
examples, she is searching for better examples to use to make this particular content more 
understandable and accessible to her students. She went on to relate an idea she had found in a 
previous class that she intended to use. 

An Integrated 4 Honors student last year explained it to class this way that made sense to 
the rest of the students, so that’s why I’ve been trying to say it this way a little bit. “If you 
have x minus 3 in the function, like you’re x-values have to be 3 higher to get that same 
output you got on the original function”. And he said, “So the whole graph has to happen 
3 later on the x-axis.” And that helped the students understand it more than anything that 
I had done. So I’m like ok I’m using that one, I wrote it down in my book and I looked at 
it last week and I was like ok I got to remember to explain it the way he did. That’s what 
I was trying to get her to see. We had to put in an x-value that was 3 higher into this new 
function, than we did the original function to get that same output. So we had to move 
everything 3 higher on the x-axis. We had to go over further on the x-axis to get that same 
output.  

In this example Sarah explained her challenge to provide a clarifying example to teach about 
horizontal translations. Her goal to teach this content led her to searching for and collecting 
clarifying examples and powerful phrases that would enable her students to understand. In this 
example her goal led to her development of pck in this area. 

Natalie and Sarah were both working on engaging students and optimizing learning formats 
and routines in the classroom. Their goals in these areas led to their exploration and 
experimentation with various strategies. In this process they developed pck broadly in their 
contexts of facilitating mathematics classes. Then, in content specific ways their content goals 
prompted a search for and development of pck narrower topic areas. 

 
Discussion and Conclusion 

Hiebert and colleagues (Hiebert, Morris, Berk, & Jansen, 2007; Hiebert, Morris, & Glass, 
2003) have delineated the process of learning to teach as a process of monitoring and revision. In 
their 2007 paper they identified four skills for teachers to hold and a process to engage in for 
learning to teach. Those skills are: “Skill 1: Specify the learning goal(s) for the instructional 
episode (What are students supposed to learn?)” (p. 51). “Skill 2: Conduct empirical 
observations of teaching and learning (What did students learn?)” (p. 51). “Skill 3: Construct 
hypotheses about the effects of teaching on students’ learning (How did teaching help [or not] 
students learn?)” (p. 54). “Skill 4: Use analysis to propose improvements in teaching (How could 
teaching more effectively help students learn?)” (p. 55). Findings in this research indicate that 
teachers naturally engaged in this process based on the goals they held in the classroom and in 
doing so developed pck in specific areas. 

In this study, teachers’ goals led to their sensitized observations, evaluations, and reasoning 
about teaching mathematics that in turn led to their development of pck. It is clear that they 
developed pedagogical content knowledge as they learned “ways of representing and formulating 
subject matter that make it comprehensible to others” and “the conceptions and preconceptions 
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that students… bring with them to the learning of… topics and lessons” (Shulman, 1986, p. 9). 
However, my interest here is not that teachers developed pedagogical content knowledge; rather 
it is how this knowledge developed by reasoning about how to achieve their goals. This process 
is called pedagogical reasoning, “the process of transforming content knowledge into forms that 
are pedagogically powerful and adaptive to particular groups of students” (Brown & Borko, 
1992, p. 221). Elsewhere Cooney (1994) used the words adaptation and pedagogical power to 
describe this effort to transform “what we are able to do to what we want to do” (p. 9).  

Teachers’ own interests, contexts and teaching philosophies sensitize them to enhancing 
instruction in unique and idiosyncratic ways. Shulman and Shulman (2004) discussed this issue 
in their development of a framework for teacher learning. In essence, they asserted that the 
teachers’ vision of teaching, their goals, served as a sort of gatekeeper for teacher development 
and learning. They said, “A highly developed and articulated vision serves as a goal toward 
which teacher development is directed, as well as a standard against which one's own and others' 
thoughts and actions are evaluated” (p. 261). Having this vision, they argued, prepares teachers 
to learn things necessary to enact it. 

Learning because of goals is not a new idea. Locke and Latham (2002) stated, “goals affect 
action indirectly by leading to the arousal, discovery, and/or use of task relevant knowledge and 
strategies (Wood & Locke, 1990)” (p. 707). But having a goal is not the whole of the process. 
Goals sensitize and prompt teachers to observe, to think about, to hypothesize, and to experiment 
in order to meet them. Consequently, teachers’ goals and interests lead them to monitor and 
reflect on aspects of the classroom related to these goals.  

In this section I have made the assertion that teacher growth and development is built around 
their goals. Locke (2000) made the assertion about the links between knowledge and goals in 
these words: 

Once the individual decides to act to achieve a goal, spurred on or not by emotion, both 
conscious and subconscious knowledge come into play. Consciously one has to ask: how 
will I go about reaching this goal? How does it tie into my other goals: How long will it 
take: How much effort will be required: Can I do it: What resources will I need: Some of 
these questions will pull relevant subconscious knowledge into awareness and some will 
require more thinking and information search. (p. 412) 

Still, teachers’ goals have not received the attention they should in our quest to understand 
teacher thinking. 
 

Implications 
Teachers’ goals lie at the heart of educational activities. In terms of teacher knowledge, goals 

become a highly accessible avenue to explore teachers’ knowledge, as teachers are highly able to 
explain their reasoning as it relates to specific goals that they hold. In the area of teacher learning 
or learning to teach, goals form a basis for all that follows. Further research in both of these areas 
will be enhanced by increased attention to the role and meaning of teacher goals. Additionally, 
research on beginning teachers’ goals and the sources they cite for their goals would shed 
additional light on the trajectory and challenges beginning teachers face as they develop their 
own expertise. Research on expert or veteran teachers might help us distil those goals we would 
desire for all teachers. 

Teacher development programs and professional development programs can be strengthened 
and more powerfully serve teachers by targeting instruction and support to help them develop on 
the basis of their own goals of instruction. To the extent that teachers’ goals are ignored, the 
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learning process will be limited. Interested parties may voice concern that basing teacher 
development programs on teachers’ goals may unnecessarily limit the potential value added by 
programs constrained in this way. But if teachers are likely to develop competencies according to 
their own goals then organizing this way can actually accelerate the pace at which teachers come 
to realize the limits of their typical practice. By building on teachers’ deeply held teaching goals 
and helping them think about and achieve them, professional development schools could quicken 
the rate of teacher development in positive ways. This effort could help teachers more quickly 
develop strategies to meet their goals, or help teachers more quickly see the limitations of their 
strategies and conceptions of teaching. Research should explore these possibilities. 

Goals serve as the lynchpin between teacher knowledge and beliefs, and behavior. While 
much research has been focused on these three areas, goals have been studied to a much lesser 
extent. I have asserted that goals support the investigation of teacher learning and knowledge. If 
much of learning to teach and teacher’s knowledge is bundled and built around teachers’ goals 
then research in these areas must do better to take this critical area into account. Doing so will 
enhance these research areas. Afterall, goals are the vehicle and path of teacher growth and the 
basis of students’ learning opportunities. 
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This study used stimulated recall interviews to investigate the patterns of knowledge interactions 
that were exhibited by two fifth-grade teachers during the act of teaching. Schematics were 
developed to describe the flow of knowledge interactions and were subsequently examined for 
patterns. During the interviews, the teachers primarily focused on their knowledge of learners 
and curriculum and instructional strategies, with mathematics being used mainly to justify 
claims about learners and instruction. In addition, several patterns of knowledge integration 
were observed and described.  

A focal point of mathematics teacher education is to prepare preservice teachers to make 
effective instructional decisions. Since teachers’ actions are based on their integrated knowledge 
of mathematics, pedagogy, and student thinking, developing integrated knowledge is an 
important component of mathematics teacher preparation.  

Brown and Borko (1992) wrote, “an individual’s knowledge structures and mental 
representations of the world play a central role in that individual’s perceptions, thoughts, and 
actions” (p. 211). In order to plan effective experiences for preservice teachers, teacher educators 
must understand the structure and organization of the various forms of teacher knowledge, and 
how teacher knowledge functions in instructional settings. Teacher educators must also 
understand the connections teachers make between the different types of knowledge and the 
patterns of knowledge interactions that lead to effective instructional decisions.  

The research conducted in this study focused on the interaction among three components of 
teacher knowledge—knowledge of mathematics, knowledge of learners, and knowledge of 
curriculum and instructional strategies. Because of the limited research on teacher knowledge 
integration, we sought to answer the following research question: What were the patterns of 
knowledge integration that were exhibited by two fifth-grade teachers while making decisions in 
the classroom? 

 
Literature review 

In recent years, research has been conducted on teachers’ mathematical knowledge (Ball, 
Thames, and Phelps, 2008; Winsor, 2003). The aim of the research has been to classify the 
different types of mathematical knowledge that teachers possess or need (e.g. Hill, Rowan, and 
Ball, 2005). Unfortunately, there is still little known on how teachers use their mathematical 
knowledge in conjunction with other types of knowledge in the decision-making process. 

Bishop (1976) noted, “Decision making is therefore an activity which seems to me to be at 
the heart of the teaching process. If I can discover how teachers go about making their decisions 
then I shall understand better how teachers are able to teach” (p.42). Bishop and Whitefield 
(1972) propose that decisions are made using a framework or schema. Marshall (1995) examined 
student schema with respect to problem solving in mathematics. Given that teaching is similar to 
problem solving, Marshall’s treatment of schema theory serves as a foundation for this study. 
Marshall posits that: 
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A schema is a vehicle of memory, allowing organization of an individual’s similar 
experiences in such a way that the individual: 

 can easily recognize additional experiences that are also similar, discriminating 
between these and ones that are also dissimilar; 

 can access a generic framework that contains the essential elements of all of these 
similar experiences, including verbal and nonverbal components; 

 can draw inferences, make estimates, create goals, and develop plans using the 
framework; and 

 can utilize skills, procedures, or rules as needed when faced with a problem (or 
teaching episode) for which this particular framework is relevant. (p. 39). 

Understanding the structure of schema and how teachers draw upon their schema when 
making decisions will aid teach educators in preparing meaningful experiences for preservice 
teachers. The main operation of a schema is to store knowledge through a network of connected 
pieces of knowledge called “elements”(Marshall, 1995, p. 43). The more connections that exist 
within a teacher’s schema, the stronger and more useful the schema will be. 

 
Theoretical Framework 

In order to investigate the research question of this study it was necessary to construct a 
model that reflects how teachers use their knowledge in the act of decision-making and how they 
learn from their experiences. The model is based on Marshall’s (1995) work on schema theory. 
As teachers encounter opportunities to make teaching decisions, connected schemata are 
activated in order for the teacher to make decisions. 

The knowledge structures used for decision-making are shaped and adjusted as teachers 
make decisions reflect on instruction. In essence, reflection can be seen as a process that allows 
teachers to build and adapt connected knowledge structures that are then used in decision-
making. Barrett and Green state that, “through this process of reflection, teachers transform their 
inert knowledge into active, classroom practice that continually evolves as they encounter new 
situations and reconsider past experiences in light of more recent experiences” (2009, p. 19). A 
researcher-developed model for the knowledge structure used in decision-making, and the role of 
reflection in that process is provided in Figure 1. The ellipse represents the set of knowledge that 
the teacher has acquired. The arrow entering the ellipse represents reflection on a teaching 
incident that promotes connections between different knowledge elements (the knowledge of 
mathematics (M), of learners (L), and of curriculum and instructional strategies (CI)). Note the 
connections among the different knowledge elements that result from the process of reflection. 
The arrow exiting the ellipse represents the connections among various knowledge elements 
were needed to make an instructional decision.  
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Figure 1: Model of Integrated Knowledge 

Methods 
A case study methodology was used to investigate how two fifth-grade teachers—Amanda 

and Emily--drew upon their knowledge of curriculum and instructional strategies, mathematics, 
and learners while teaching. Each teacher was observed and videotaped as they taught a series of 
three lessons from the Patterns of Change unit of Investigations in Number, Data, and Space 
Curriculum (Tierney, Nemirovsky, Noble, & Clements, 1998). Following each observation, 
stimulated recall interviews were conducted to obtain the teachers’ reactions to the videotaped 
lessons. As they watched the videos, the teachers were prompted to reflect on what occurred in 
the classroom and to comment on the thought processes used to make their instructional 
decisions. The transcripts from these interviews served as the primary data source for analysis.  

Following data collection and transcription, the data were retrospectively analyzed using a 
data reduction approach (Miles & Huberman, 1994). The analysis occurred in several phases. 
The transcripts were initially coded in terms of the type of knowledge discussed: mathematics 
(M), learners (L), or curriculum and instructional strategies (CI). At this point, the research team 
coded portions of the transcripts to develop and test the viability of these definitions. 
Discrepancies in coding were discussed, and definitions adjusted, until all disagreements were 
resolved.  

The data for each interview were divided into individual episodes, defined to be sections of 
the transcript where the teacher was discussing a single thought. An initial analysis of these 
episodes found that one knowledge type was often the primary focus of the episode (primary 
knowledge type), with a second or third knowledge form (secondary knowledge type) being used 
in a supportive role. This support was found to occur in one of two ways: (a) the second 
knowledge type was used to support or justify what was being stated about the primary 
knowledge type, or (b) a discussion of the primary knowledge type led to an implication or 
investigation of the secondary knowledge type. In other words, there was a temporary shift in 
focus to the secondary form of knowledge. Given these initial findings the data were translated 
into schematics that illustrated knowledge interactions, including which knowledge form was 
primary and the purpose of interaction. These mappings were then analyzed to characterize 
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L CI 

L 

M 

CI 

1 

2 

patterns among the interactions and are the basis of the findings that follow. An example 
mapping is provided below. 

In the following excerpt Amanda used her knowledge of curriculum and instructional 
strategies to support a comment she made about one of her students.  

 
Amanda: I was surprised that Kate raised her hand and was giving answers. She usually 
does not participate. It was like a reversal. 
Researcher: Why do you think she was participating? 
Amanda: I think it is because we are using a context, we are using blocks, we are 
showing it, we are showing it in two different formats so we are including two totally 
different types of thinkers. 

 
In this case, the knowledge of learners (L) is the primary knowledge form, represented by the 

bold box, and the knowledge of curriculum and instructional strategies is the secondary 
knowledge type. In this episode Amanda used a statement involving curriculum and instructional 
strategies to justify her original comment about one of her students. An arrow was drawn from 
the secondary knowledge type to the primary knowledge type to signify that the secondary 
knowledge type was used to justify the primary. Figure 2 illustrates this notion.  
 

 

Figure 2: CI used to clarify L 

Each episode was then mapped out using this notation; an example mapping is provided in 
Figure 3.  

 
 
 
 
 

 

Figure 3: Example Mapping 
In this example, the arrow from the primary knowledge type (L) to the secondary knowledge 
type (CI) represents the second type of interaction, where a discussion of the primary knowledge 
type led to an implication for the secondary knowledge type. In addition, numbers were added to 
the arrows to indicate the order in which the interactions occurred. So in this example M was 
initially used to justify a statement about L, which then led to an implication regarding CI.  

 
Findings 

Mathematics’ Place in Teacher Knowledge Integration 
Researchers such as Ma (2000) and Ball (e.g. Ball, D.L., Thames, M.H., & Phelps, G., 2008) 

have focused on the type of mathematics teachers need to know to be successful. Kahan, Cooper, 
and Bethea, (2003) report that knowledge of subject matter alone does not ensure effective 
teaching performance. This study reveals how mathematics knowledge is used in conjunction 
with the knowledge of learners and the knowledge of curriculum and instruction in order to make 
instructional decisions. Table 1 depicts the ways in which Amanda and Emily used their 

CI L 
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knowledge of mathematics. The direction of the arrow depicts the role of interaction as described 
earlier. 

 
Summary of Amanda and Emily’s Knowledge Use 

 Primary Focus Support/ 
Implication 

Amanda Emily Total 

M 
& 
L 

M L 0 6 6 
M L 1 1 2 
L M 5 5 10 
L M 38 10 48 

M 
& 
CI 

M CI 1 2 3 
M CI 0 0 0 
CI M 0 1 1 
CI M 8 8 16 

Table 1: The role of Mathematics 

Of the 86 interactions that involved mathematics, only 11 had mathematics as the primary 
focus of conversation. Of these 11 interactions, 9 of them led to an implication or investigation 
involving mathematics, and only two used CI or L to support a claim about mathematics. In other 
words, mathematics was not the main focus of conversation for Amanda and Emily as they were 
making decisions in the classroom. There were 75 interactions that had mathematics as the 
secondary knowledge type; 11 of these interactions involved a shift of focus from knowledge of 
learners or knowledge of curriculum and instruction to an implication about mathematics. In 
other words as the participants talked about their knowledge of learners or curriculum and 
instruction, their attention was re-directed to investigate or think about mathematics. The main 
use of mathematics was to either justify a claim about learners (48 interactions) or to justify a 
claim about curriculum and instructional strategies (16 interactions). From the data, mathematics 
appears to primarily play a supportive role in teaching for Amanda and Emily, with more than 
half of the interactions utilizing mathematics to justify a claim about learners. In addition, of the 
86 interactions involving mathematics, 66 integrated knowledge of mathematics with learners, 
and only 20 integrated knowledge of mathematics with curriculum and instructional strategies. 

Structures of Teacher Knowledge Interactions 
The structure of the knowledge interactions also sheds light on how teachers’ use their 

knowledge while teaching. The following table describes the frequency of interactions where 
each type of knowledge was the primary focus of conversation (see table 2). 

Primary Focus Amanda Emily Total 
M 2  

(1.6%) 
9 

(10.2%) 
11 

(5.1%) 
L 88  

(68.8%) 
43 

(48.9%) 
131 

(60.6%) 
CI 38  

(29.7%) 
36 

(40.9%) 
74 

(34.3%) 
Total 128 88 216 

Table 2: Frequency of M, L or CI as primary knowledge 
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Knowledge of learners received the most attention from Amanda and Emily. Emily was more 
balanced between knowledge of learners and knowledge of curriculum and instruction. Amanda, 
on the other hand, relied more heavily on her knowledge of learners.  

When knowledge of learners was the primary knowledge type, two prominent patterns of 
interactions occurred. The first pattern observed was that both CI and M were used to justify L or 
M→L←CI (note that the letter in bold represents the primary knowledge type). This pattern 
occurred in 14 of the 24 episodes that involved L as the primary knowledge type. The other 
pattern that occurred was M→L→CI, which was observed in 11 of the 24 episodes that involved 
L as the primary knowledge type. In this pattern, mathematics was used to support the 
knowledge of learners, which in turn had implications for knowledge of curriculum and 
instruction. There was one episode that simultaneously contained both patterns. One might say 
that the knowledge of learners was a linking knowledge between the knowledge of mathematics 
and the knowledge of curriculum and instructional strategies. More complicated connections 
involving L as the primary focus were not observed. 

When knowledge of curriculum and instruction was the primary knowledge type, there are 
several different patterns that occur. There are two patterns that are similar to the patterns for 
when L is the main focus. The first pattern is M→CI→L and the second pattern is M→CI←L, 
both of which occurred in 4 of the 12 episodes where CI was the primary focus. In other words, 
CI can serve as a linking element between M and L, but not as frequently as L serving as a 
linking element. There are also more complicated interactions when CI is the main focus. An 
example is L→CI↔L←M. It seems that in the previous example, starting with CI as the 
primary focus can promote many connections between L and M. 

As noted previously, based on the data, mathematics seems to be used more to justify or 
support CI or L; therefore, mathematics was rarely the primary focus of conversation. For the 
two episodes where M was the main focus of conversation the interactions are as follows: 
CI←M←L and M→L↔CI. In the second mapping, mathematics is the focus at the beginning 
of the episode but the focus then shifts to the knowledge of learners. 

 
Discussion 

From the findings, it is evident that Amanda and Emily employed their knowledge of 
learners frequently. Moreover, their knowledge of learners appeared to play a linking role 
between their knowledge of mathematics and their knowledge of curriculum and instructional 
strategies. In addition, Amanda and Emily rarely had mathematics as a primary focus; instead 
they used Mathematics primarily in support of the other types of knowledge. However, it must 
be noted that the results are based on two teachers that were high regarded by colleagues and 
administration and may not be representative of all teachers. 

Mathematics role as a support knowledge seems to be counterintuitive to the emphasis in 
recent research. This study does not discount the importance of mathematical knowledge, 
because mathematical knowledge is an important foundation for the other forms of knowledge. 
However, it raises the issue of how much focus should be placed on acquiring mathematical 
knowledge without the opportunity to make connections to knowledge of learners and 
knowledge of curriculum and instruction. This study raises questions regarding the role of the 
knowledge of mathematics in teaching elementary mathematics, and subsequently how the 
knowledge of mathematics, learners, and curriculum and instructional strategies are provided 
during teacher preparation.   In addition, the common patterns of knowledge interaction 
demonstrated by Amanda and Emily may provide insight into how we can structure learning 
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opportunities for pre-service teachers to better encode the connections necessary to become 
successful teachers. 
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This study investigates mathematics secondary preservice teachers’ visual representations of 
selected precalculus and calculus tasks (polynomial and rational inequalities, graphs of 
exponential and logarithmic functions, derivative and integral functions) using GeoGebra. Seven 
students who already completed precalculus and calculus classes were asked to use GeoGebra 
to solve selected precalculus and calculus problems. For each problem, they were asked to 
indicate their problem solving procedure on GeoGebra, and to write and explain their reasoning 
for each step in detail with reference to GeoGebra work. I situate my research within a 
framework of visual representations in calculus. The main result is that though teachers were 
successful in obtaining an algebraic solution (using an interval notation, correctly executing 
derivative and integral calculations), in none of them was there a clear indication of a solution 
set (intervals of x) constructed where it should be – on the x-axis. Another result is that geometry 
plays a crucial role as a prerequisite not only in calculus, but in the sense-making of precalculus 
explorations as well. 

Theoretical Background 
Visual representations play a crucial role in understanding and making sense of mathematics. 
Students’ favorite mathematics textbooks and teachers are often the ones that use a variety of 
colorful figures, diagrams, pictures and graphs. Visualizing is also a very important step in 
understanding and attempting to solve a problem (Polya, 1957). Even when a visual 
representation is vague or missing, producing a meaningful one is an indispensable route leading 
to a meaningful solution to the problem (Larkin, 1989; Polya, 1957; Schoenfeld, 1985; Simon & 
Larkin, 1987).  
Just as is valuable to create an algebraic formalism along with its symbols and notation, so is the 
case for creating a visual representation and connecting the two models (Caglayan & Olive, 
2010). As stated by the Principles and Standards for School Mathematics (NCTM, 2000): 
Representation is central to the study of mathematics. Students can develop and deepen their 
understanding of mathematical concepts and relationships as they create, compare, and use 
various representations. Representations − such as physical objects, drawings, charts, graphs, 
and symbols − also help students communicate their thinking (p. 280). Being able to represent 
mathematical ideas in various ways is as important as relating those representations and 
connecting them meaningfully. 
The theoretical framework of this study is inspired from Zimmerman, who postulated that 
successful solutions to calculus problems are the ones that are accompanied by meaningful visual 
representations and graphs (1991). He also reported excellence in geometry as one of the main 
prerequisites of visual thinking in calculus. Though a calculus instructor may take it for granted, 
college students may not always be as proficient in visualizing as they are assumed to be 
(Eisenberg & Dreyfus, 1991). In what follows, I focus on mathematics preservice teachers’ 
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visual representations of selected precalculus and calculus tasks modeled on GeoGebra, and on 
their abilities to connect their visual and algebraic formalism. 

○ Context and Methodology 
This study investigates mathematics secondary preservice teachers’ investigation of selected 
precalculus and calculus tasks (polynomial and rational inequalities, graphs of exponential and 
logarithmic functions, derivative and integral functions) using GeoGebra, a free mathematics 
software that intertwines geometry, algebra, and spreadsheets. Seven students who already 
completed precalculus and calculus classes were asked to use GeoGebra to solve selected 
precalculus and calculus problems. For each problem, they were asked to indicate their problem 
solving procedure on GeoGebra, and to write and explain their reasoning for each step in detail 
with reference to their work on GeoGebra.  
This project included seven mathematics secondary preservice teachers whom I met weekly for 
three weeks in three-hour sessions. My data consists of these research participants’ detailed 
written algebraic solutions and comments, and work saved on GeoGebra. I then created scanned 
version of their work and conducted an in-retrospect preliminary thematic analysis of the whole 
data to generate possible themes for a more detailed analysis. The dataset has then been revisited 
multiple times in order to generate a thematic analysis (with constant comparison) from which 
the following results emerged. 

Results 
The first set of tasks to be modeled using GeoGebra was the following: Use GeoGebra to solve 
the polynomial and rational inequalities given at Pearson’s MyMathLab tech environment. For 
each problem, indicate the solution set on GeoGebra (Find a way to make your solution set 
visible on GeoGebra). Also enter your answer to Pearson’s MyMathLab tech environment. For 
each problem, explain your reasoning for each step in detail with reference to your work on 
GeoGebra. 
For the first set of tasks, all students except Ashley wrote their comments in outline form. In this 
format, students basically described each inequality leading to the solution set of the original 
inequality via a set of phrases, rather than prose format. Only one student, Ashley, was able to 
relate her reasoning with reference to her work in GeoGebra completely. The other students 
seemingly treated the algebraic and graphical solutions as independent tasks. Figure 1 depicts 
Ashley’s solution on GeoGebra and written work for the polynomial inequality 24 25xx > . 
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Figure 1 - Ashley’s Written Work (left) and GeoGebra (right) Solutions to Polynomial Inequality 24 25xx >  
 
Ashley clearly understands the polynomial inequality problem and addresses problem solving 
steps meaningfully (Polya, 1957). She also finds her own way of representing the “solution set” 
on her GeoGebra work, using the two pink dashed subsets of the induced function 

24 25)( xxxf −=  she defines and makes use of1. Her comment “all points on the graph above the 
x-axis are the solutions” corroborates the fact that her interpretation of a solution set to a 
polynomial inequality is actually a set of points on the graph of the induced function; rather than 
the union of the two rays )5,( −−∞ and ),5( ∞ on the x-axis. 

In his written work for the rational inequality problem 3
2
54
≤

+
−

x
x , Norman first “breaks down 

the equation,” by which he obtains the equivalent inequality 0
2
11

≤
+
−
x
x . He then goes on to state 

“There is a vertical asymptote at 2−=x . I proved this in GeoGebra by graphing 2−=x  along 

with 
2
11
+
−
x
x  and the result was undefined meaning that it cannot exist due to the denominator 

being equal to 0.” Figure 2 depicts Norman’s solution on GeoGebra and the concluding parts of 

his written work for the rational inequality 3
2
54
≤

+
−

x
x . 
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Figure 2 – Norman’s Written Work (left) and GeoGebra (right) Solutions to Rational Inequality 3
2
54
≤

+
−

x
x  

 
Norman clearly uses his GeoGebra work as a check to his algebraic solutions, as evident from 
his written comments. Rather than indicating the solution set on the graph, he relies on the 
traditional rational inequality solving procedure algebraically. Though he graphs the vertical 
asymptote 2−=x  and point )0,11(B  on GeoGebra, he fails to construct the line segment 
( ]11,2− , which is the actual visual representation of his solution in “interval form.” 
The second set of tasks to be modeled was about graphing an exponential function and 
constructing its inverse (the logarithmic function) on GeoGebra. Students were also asked to find 
a way to make everything (e.g., the domain and the range of the functions, asymptotes, visual 
proof that the two functions are inverse functions of each other) visible on GeoGebra. The 
instructions once again asked for a detailed explanation with reference to work on GeoGebra. 
Mary first graphed the given exponential equation, 4)( 3 += −xexf , on GeoGebra and stated that 
the domain of f would be the interval ),( ∞−∞ , which she showed as black dashes in function 
graph (Figure 3a). She obtained the horizontal asymptote of f, 4=y , by “just looking at the 
graph. If you zoom in on the graph in geogebra you would see that the line y=4, horizontal 
asymptote, does not touch the function 43 +−xe . This is shown as the blue dashed line.” 
Mary then used the conversion formula to obtain the equation of the inverse function as 

3)4ln()(1 +−=− xxf  algebraically. She also states that she found the range of f by looking at the 
graph. “The y-values run from 4 to ∞. In interval notation the range is ),4( ∞ , which is shown as 
black dots in the function graph of f.” She then explains that she graphed the inverse function by 
typing its equation, which she obtained algebraically, in GeoGebra’s input bar (Figure 3a). 
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Figure 3 – Mary’s (left) and Norman’s (right) Exponential and Logarithmic Function Graphs on GeoGebra 

 
We can say that Mary follows a reasoning, similar to Ashley’s, in that she represents both the 
domain and the range of the exponential function as subsets of the exponential function2. Mary’s 
interpretation of domain and range is actually a set of points on the graph of the original function 
f; rather than the line ),( ∞−∞ and the ray ),4( ∞ , respectively, on the x-axis. Mary is satisfied 
with the fact that the graphs of the two functions are reflections of each other with respect to the 

xy =  axis, visually. Norman, on the other hand, not only graphs the two functions, but he 
verifies that the two functions are inverse functions of each other by constructing a line 
perpendicular to the xy =  axis of reflection. For that purpose, he first constructs an arbitrary 
point, A, on the exponential function graph. He then selects Point A and the line xy = , which 
then enables him to construct the perpendicular line. Consequently, he constructs Point B, the 
intersection of line b and the logarithmic function graph, using GeoGebra’s built-in Intersect 
Two Objects tool. He explains that “Point A of the exponential function graph becomes Point B 
of the logarithmic function graph… They simply interchange their x and y coordinates.” The 
findings stated in this paragraph could be considered as evidence of how geometry plays a 
crucial role as a prerequisite not only in calculus (Zimmerman, 1991), but in the sense-making of 
precalculus tasks as well. 
The final set of tasks to be modeled was about graphing a function along with its derivative and 
integral functions. The instructions were similar to the ones for the previous tasks (detailed 
explanations, request for construction of geometric objects to be determined by the research 
participants). All participants came up with almost identical constructions on GeoGebra, so in 
what follows, I focus on Sally’s work on the derivative and integral function constructions, 
without loss of generality. 
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Figure 4 – Sally’s Sketches for the Derivative Function (left) and Integral Function (right) 
 
Sally starts by writing that she finds GeoGebra easy to manipulate and very helpful in 
understanding the derivative of a function. She first created the graph of the polynomial function 

13)( 23 +−= xxxf  by simply typing the function into the input bar. She then used GeoGebra’s 
built-in Tangents tool to create the line tangent to the curve f at Point A. She states “Being able to 
see the equation of this tangent line helped me evaluate the slope of the line very quickly.” She 
then used the syntax Derivative[f] to graph the derivative function. The next task, constructing a 
geometric object in order to create Point B on the graph of 'f  that should always have the same 
x- coordinate as Point A, was challenging for everyone. Sally immediately thought of using a 
rectangle because the vertical line from Point A would intersect 'f  at some Point B, and they 
would have the same x-coordinate. She then thought that if she drags Point A down a point where 
the slope of the tangent line was 0, she could easily create a perpendicular line to the tangent 
through Point A and it would intersect 'f   at the same x- coordinate.  This approach did not work 
because any movement of A changed the slope of the tangent line and the resulting perpendicular 
line was not guaranteed to intersect 'f  at the same x- coordinate.  She then decided to use 
GeoGebra to construct a vertical line through A by typing the equation of the vertical 
line, )(Axx = , into the input box. By using the Intersect Two Objects tool, she then was able to 
construct Point B from the intersection of the vertical line and 'f  (Figure 4a). 
Although Sally claimed that GeoGebra was very useful and easy to understand while doing this 
problem, there was no clear indication of how Point B was related to the equation of the tangent 
line. Sally just mentioned that the slope of the tangent line was very easy to evaluate, but there 
was no mention of the fact that the y- coordinate of Point B would be equal to the slope of the 
tangent line. In fact, a similar disconnect happened in the task on the exploration of a function 
and its integral function. Sally first constructed the graph of the given function xxf ln)( =  and 
two arbitrary points A and B on the curve. She then used the syntax Integral[f, x(A), x(B)] to 

evaluate the integral ∫
)(

)(

)(
Bx

Ax

dxxf . She commented that she was able to see the area under the curve 

between these two x-values had the same value as the expression ∫
)(

)(

)(
Bx

Ax

dxxf . She then constructed 
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the graph of the integral function using the syntax Integral[f]. The next task was to construct a 
geometric object in order to create Points C and D on the graph of g that should always have the 
same x- coordinates as Points A and B, respectively. This time, everyone easily figured out that 
what needed to be constructed were two vertical lines (Figure 4b). Sally then evaluated the 
difference )()( CyDy −  algebraically, using the traditional integration procedure, instead of 
working it out just by typing the expression into the input bar. Participants failed to relate the 
difference )()( CyDy −  to the area under the curve between )(Ax and )(Bx .  
 

Conclusions and Discussion 
This study aimed to depict visual representations of polynomial and rational inequalities, graphs 
of exponential and logarithmic functions, derivative and integral functions exposed by secondary 
mathematics preservice teachers on GeoGebra. Analysis of these participants’ visual 
representations, accompanied by their algebraic formalism and thorough reasoning, has a crucial 
impact to determine important insights into their sense-making of the mathematics they are 
exploring. This has direct implications for the teaching of precalculus and calculus in a 
technology based environment. Mathematics teachers should be more conscious and explicit in 
modeling problems because otherwise this may be prone to a misinterpretation of the problem 
situation, or even the solution to the problem, as depicted in this present study. For example, 
although students were confident with their algebraic solutions (in interval notation) to the 
polynomial and rational inequality problems, their interpretation of the “solution set” concept 
differed ostensibly from their algebraic formalism when they were asked to represent this 
“solution set” on GeoGebra: A function graph, or a subset of the function graph is not the same 
thing as an interval on the x-axis, therefore, an appropriate distinction of these two fundamentally 
different objects is necessary. 
Constant comparison of Mary and Norman’s work for the problem of creating an exponential 
function and its inverse function and Sally’s work on the derivative and integral functions on 
GeoGebra yielded that proficiency in a variety of geometric entities (e.g., transformations, 
symmetry, constructions of points, lines, line segments, rays, parallel and perpendicular lines) is 
an undeniable prerequisite in the sense making of not only calculus (Zimmerman, 1991) but 
precalculus tasks as well. College geometry is often offered as an upper division class that many 
mathematics and mathematics education majors enroll in long time after they complete the 
precalculus and calculus sequence. In many universities, Calculus II or III are listed as 
prerequisites for College Geometry. In fact, therein lies the dilemma: How could we expect our 
students to master precalculus and calculus while these two being listed as prerequisites for 
college geometry? Some of the participants of this study overcame this obstacle thanks to their 
overexcellence in manipulating the GeoGebra software, however, excellence in a geometry 
software such as Geometer’s Sketchpad or GeoGebra does not necessarily implies excellence in 
geometry. 
This study focused directly on the visual representations and written comments and algebraic 
formalism that the research participants produced. Ferrini-Mundy (1987) found that calculus 
students made more mistakes in the process of just writing a definite integral than in the process 
of calculating the definite integral itself. This finding corroborates my theories concerning Sally, 
for instance, who failed to relate the difference )()( CyDy −  to the area under the curve between 

)(Ax and )(Bx  in dealing with integral function task (Figure 4b). While she was able to carry out 
the derivation and integration procedures, and the construction of the derivative and integral 
functions on GeoGebra perfectly, she failed to relate the slope of tangent line to the value of the 
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derivative function at the corresponding x-value. She also failed to relate the area under the curve 
of the original function to the difference of the y-values of the integral function on GeoGebra. 
Bremigan (2005) postulated that mathematically strong students often modified and 
reconstructed their visual representations in solving calculus problems. The participants of this 
present study showed a similar behavior. For instance, Sally was very creative and determined to 
modify and make changes (e.g., in the task on derivative function, for the construction of Point B 
on the graph of 'f  that should always have the same x- coordinate as Point A) as opposed to 
claims by Eisenberg and Dreyfus (1991), who reported a general reluctance on the part of 
calculus students to visualize in mathematics. 
 

Endnotes 
1. She creates those using the piecewise defined function syntax of GeoGebra. 
2. Mary too creates those using the piecewise defined function syntax of GeoGebra 
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Two different teachers implementing The Geometer’s Sketchpad in high school geometry classes 
were analyzed to examine how the patterns, types, and modes of mathematical discourse differed 
when technology was used. The patterns, types, and modes of mathematical discourse differed 
between the two teachers when they were and were not using technology. For each teacher, the 
mathematical discourse modes appeared to shift when technology was used but the types of 
mathematical discourse did not.  

In 1991, the National Council of Teachers of Mathematics (NCTM) published the 
Professional Standards for Teaching Mathematics in which they emphasized the importance of 
discourse in the teaching and learning of mathematics. They state: 

Like a piece of music, the classroom discourse has themes that pull together to create a 
whole that has meaning. The teacher has a central role in orchestrating the oral and 
written discourse in ways that contribute to students' understanding of mathematics.  

While many acknowledge the important role discourse plays in the teaching and learning of 
mathematics, transforming the classroom to one in which students are active participants in 
classroom discussions does not occur automatically (Hufferd-Ackles, Fuson, & Sherin, 2004; 
Nathan & Knuth, 2003). The teacher needs to choose worthwhile mathematical tasks, identify 
appropriate tools to use, anticipate, monitor, select and sequence student work on those tasks, 
and then bring the class to an appropriate close (e.g., Stein, Engle, Smith, & Hughes, 2008). 
They need to be able to orchestrate the communicational processes (who is speaking, when, and 
how) as well as focus on the mathematical content of the conversations. 

One method of examining discourse processes is to consider the sequence of activities 
involved in an interaction. Cazden (2001) defines “traditional” classrooms as classrooms in 
which discourse follows a typical initiation, response, evaluation/feedback pattern (I-R-E/F) 
pattern. In contrast, discourse in “non-traditional” classrooms more closely resemble a 
conversation two people might have. Discourse in “non-traditional” classrooms do not typically 
follow the I-R-E/F pattern. 

Although it is important to know how discourse transpires in a classroom, to support 
mathematics learning, the content of discourse is also critical to consider. Students providing a 
single answer response to a low-cognitive demand question is different from students discussing 
different solution strategies to a high-cognitive demand mathematical task (Stein, Smith, 
Henningsen & Silver, 2000). How students participate in conversations as well as the types of 
responses they may provide may both be influenced by the norms established in the classroom 
(Yackel & Cobb, 1996).  

Because technology supports students’ conjecturing, problem solving, and exploration of 
mathematical tasks that can be of high cognitive-demand, and may also serve as an agent 
disruptive of current norms and practice (Rochelle, Pea, Hoadley, Gordin, & Means, 2000), this 
may affect the nature of the content of the discourse in which students engage. Also, since 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1723



students are interacting with a computer as well as one or more students as they work on 
problems in pairs or small groups they may pose more questions to each other and to the teacher. 
A question that guided this study was, “In what ways does the inclusion of technology in a 
mathematics class influence the nature of mathematical discourse?” The purpose of this study 
was to characterize the nature of mathematical discourse when students were using technology 
and to contrast this to discourse that was typical in the class when technology was not used.  

Methods 
During the summer of 2010, twenty teachers from four different schools districts attended a 

one-week professional development workshop. The school districts were in different stages of 
implementing 1:1 laptop initiatives. One school district had been using laptops for seven years 
while another was planning on distributing laptops to their students for the first time during the 
2010-2011 school year. The professional development workshop focused on assisting teachers in 
using a dynamic geometry software program, The Geometer’s Sketchpad ver. 5.0, to teach 
particular topics in the high school geometry curriculum (e.g., triangles, quadrilaterals, 
transformations). The summer workshop was followed by an online course that was taught 
during the 2010-2011 school year. These experiences are part of a larger 2-year professional 
development project. The data reported here were collected during the early stages of the 
teachers’ participation in the professional development experience1.  

During the first semester of the school year, twelve of the twenty teachers from the summer 
institute were assigned to teach a high school geometry class. All four school districts were on a 
4 by 4 block schedule. Students took four classes in the first semester and four different classes 
in the second semester. Each class met for 90 minutes. Thus, the typical year long geometry 
course was taught in one semester. Each of the twelve teachers was observed and video-recorded 
three times during the semester. 

The Oregon Mathematics Leadership Initiative (OMLI) Classroom Observation Protocol 
(RMC Research Corporation) was modified and used to gather more detailed information about 
discourse in the classroom when technology was and was not used. This instrument identifies the 
modes and types of mathematical discourse and the tools that were used. However, the purpose 
of this instrument was to focus on student discourse and it did not attend to discourse that was 
initiated by the teacher. Thus, the instrument was modified to allow researchers to code both 
student discourse as well as teacher discourse. The mode was used to identify who was 
participating in the discourse (e.g., teacher to student, student to student) and the type of 
discourse was used to identify the nature of the response or question during the interaction (e.g., 
explanation, prediction, justification, answer). The OMLI project assigned a number to each of 
the different types of discourse to suggest a ranking similar to the categorization of lower and 
higher-level questions identified by other researchers (e.g., Hollebrands & Heid, 2005; Moyer & 
Milewicz, 2002). Especially for this study, the tools that were used for the discourse were 
important to also note. Computers and calculators were assigned different codes rather than the 
same code as was indicated in the original observation protocol. Tools refer to what was used 
during the discursive interaction (e..g, actions, written or spoken words, computers/calculators, 
graphs). The codes that were used for the analysis are shown in Figures 1, 2, and 3. 
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TS Teacher-Student  SS Student-Student 
ST Student-Teacher  SIR Student Individual 

Reflection 
TG Teacher-Group  TIR Teacher Individual 

Reflection 
SG  Student – Group  TW Teacher to Whole Class 
   SW Student to Whole Class 
Figure 1. Modes of Mathematical Discourse 
 
1 A Answering  5 C Challenging 
2 S Making a Statement  6 R Relating 
3 E Explaining  7 P Predicting 
4 Q Questioning  8 J Justifying 
    9 G Generalizing 
Figure 2. Types of Mathematical Discourse 
 
V Verbal  S Symbolization 
A Gesturing/Acting  N Notation 
W Written  C Computers 
G Graphs, Charts, Sketches  Ca Calculators 
M Manipulative  O Other 
Figure 3. Tools for Discourse. 
 

From the twelve teachers, two teachers were initially selected for more in-depth analysis 
based on teaching experience and technology usage. Mrs. Adams and Mr. Smith represented 
teachers at both ends of the teaching continuum and demonstrated facile use of various types of 
technology. The researchers assumed their technological aptitude would eliminate many 
obstacles related to implementing technology in their classrooms; therefore the analytic focus 
would shift mainly to discourse. A training session was conducted with a consultant who was 
part of the original OMLI team. Then a training session with three coders was conducted to 
check for agreement on the number of episodes and the coding of those episodes. An iterative 
process was carried out on two of the six video-recordings until an agreement rate greater than 
70% on the codes was reached. Then two coders analyzed the remaining four video-recordings 
individually. The codes were then tabulated to identify themes and trends in the data.  

Mrs. Adams 
Mrs. Adams has taught high school mathematics for 4-7 years at a small rural high school. 

There are 728 students enrolled in this school: 59% of the students are classified as economically 
disadvantaged, 64% of the students are African American, and 6% are Hispanic. Mrs. Adams 
reported using The Geometer’s Sketchpad for about two years, and she rated her confidence in 
using the software as a 2 on a 5-point scale (5 being very confident). She reported using laptops 
for 1.5 years and demonstrated facile use of technology. She taught an honors level geometry 
course with 30 freshman students. 
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Patterns of Mathematical Discourse 
A statement, question, answer, statement cycle was predominant in the analysis of Mrs. 

Adams’ teaching when facilitating classroom discourse both with and without technology. 
Generally, she would initiate discourse with a statement that lead into a question for either the 
whole class or a particular student. Student(s) would answer the question posed at which time 
Mrs. Adams would confirm/revise their response with another statement, often initiating the 
pattern again. The following episode provides an example. 

Mrs. Adams: Today we are going to look at the other two pieces of our quadrilateral 
tree. (S)  

Mrs. Adams:  What were our other two pieces of the quadrilateral tree that we talked 
about? (Q) 

Student A:  Trapezoids and uh…(A) 
Mrs. Adams:  Trapezoids and…(S) 
Student B:  Rhombuses…(A) 
Mrs. Adams:  Rhombus we talked about with parallelograms (S) 
Student C:  Kites (A) 
Mrs. Adams:  Kites. We are going to look at our trapezoid and our kites today and those 

properties that you need to know. (S) 
This pattern is similar to the I-R-E/F pattern typical of “traditional” classrooms. In this 

instance, Mrs. Adams initiates with a question about the quadrilateral tree, students respond and 
the teacher provides feedback about their responses to her question by correcting or restating 
what the student said. While this example is taken from a portion of class in which students did 
not use technology. Similar instances were noted when technology was used.  

Modes of Mathematical Discourse 
In addition to examining the patterns of discourse, knowing who is participating in classroom 

discussions is important to consider. By analyzing the modes of discourse, the actors involved in 
the discussion become more explicit. For Mrs. Adams, a significant shift in discourse can be seen 
in the reduction of discourse initiated by or directed to the teacher in favor of more student-to-
student discourse when technology was employed (Figure 4a & 4b). 

  
Figure 4a. A chart summarizing the percent of Figure 4b. A chart summarizing the percent of 
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each mode of discourse recorded in Mrs. 
Adams’ classes when technology was not used. 

each mode of discourse recorded in Mrs. 
Adams’ classes when technology was used. 

It should be noted that when students were working with the technology they were generally 
in pairs or small groups and the teacher often allowed them to work for extended periods of time 
on their own. Although she circulated around the room while students were working, she 
generally did not interrupt their work and encouraged students to direct questions toward their 
partner or group. 

Types of Mathematical Discourse 
Although a marked shift was noted in the mode of discourse, changes in the type of 

mathematical discourse when technology was used were minimal. The types of discursive 
exchanges between teachers and students remained approximately the same whether students 
were using technology or not (Figure 5a and 5b).  

  
Figure 5a. The percent of each type of 
discourse recorded in Mrs. Adams’ classes 
when technology was not used. 

Figure 5b. The percent of each type of 
discourse recorded in Mrs. Adams’ classes 
when technology was not used. 

One might expect that if the participants in the discourse change then the nature of that 
discourse change also. However, this was not noted in our observations of Mrs. Adams.  

Mr. Jones 
Mr. Jones has taught high school mathematics for 11-14 years and is the chairperson of the 

mathematics department at a medium-sized suburban high school. There are 948 students 
enrolled in this school: 23% of the students are classified as economically disadvantaged, 18.8% 
of the students are African American, and 8.9% are Hispanic. Mr. Jones reported using The 
Geometer’s Sketchpad for about 6 years and he rated his confidence in using the software as a 4 
on a 5-point scale (5 being very confident). He was named “Teacher of the Year” for the school 
district seven years ago. The class he was observed teaching was a regular geometry class that 
contained 22 students. This school district was beginning the first year of a 1:1 laptop initiative.  
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Patterns of Mathematical Discourse 
Mr. Jones made a determined effort to foster discourse in his classroom. He posed many 

questions to students and provided an appropriate amount of time for students to think about the 
question before requesting an answer. Some of the patterns that were observed when technology 
was and was not used could be described as following a typical I-R-E/F sequence. However, 
there was another discourse pattern that was prevalent when technology was and was not used 
that differed from this traditional pattern. Often the pattern would begin with the posing of a 
question from a student, the teacher would respond with a question, a student would answer, and 
the teacher would follow with a statement. For example, during the first observation students 
were working on the computer on an activity, which required them to identify rotational 
symmetry for a pattern that was provided in a pre-constructed sketch.  

Student:  I don’t get it. (S) 
Mr. Jones:  Okay. Look at the small purple triangles on the outside. These ones. What 

is the smallest angle of rotation? (Q) Did you rotate that one? (Q) I see 
that you have it highlighted. Did you rotate that one? (Q) 

Student:  Yes. (A) 
Mr. Jones:  What are your answer choices? (Q) 
Student:  (student reads answer choices) (S) 
Teacher:  Okay. Hold on a second. Did you tell it where the center of rotation was? 

(Q) You always have to tell it this is the center of rotation is and then this 
is the thing that I am trying to rotate. You’ve got to put a center of rotation 
on the picture. Use the arrow tool to double click. (S) Good. (Student 
performs a rotation) Does that look exactly like the other one? (Q) 
(Teacher walks toward another group in the class) 

In this interchange the teacher posed a sequence of questions to assist the student in using the 
technology so that she is able to respond to the question on her own. These series of questions 
are different from the typical I-R-E/F pattern. In particular, the question about whether the image 
under the rotation looks exactly like the original focused the student on what it means for two 
figures to be the same under a rotation. This enabled the student to use the technology to 
determine the rotational symmetry of the original pattern. 

Modes of Mathematical Discourse 
During the observations when technology was not used, Mr. Jones engaged the class in 

whole-class discussions during which time he generally addressed the entire class (TW). 
Students also responded to the teacher (ST) and the teacher addressed particular students either 
during a whole class discussion or when students were working individually or in small groups 
(TS, TG). There were also instances of students speaking to their group members (SG). The 
percent of episodes that were coded for each of the modes when technology was not used is 
shown in Figure 6a.  
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Figure 6a. The percent of each mode of 
discourse recorded in Mr. Jones’ classes 
when technology was not used. 

Figure 6b. The percent of each mode of 
discourse recorded in Mr. Jones’ classes 
when technology was used. 

When technology was used, the percent of discursive interactions between the teacher and 
whole-class decreased (TW) while the teacher-individual student interactions increased (TS). 
The number of interactions with the teacher that were initiated by the student (ST) remained 
about the same and there was a slight increase in the number of interactions the teacher initiated 
with small groups (TG). There were no instances of student-group interactions or student-student 
interactions.  

The lack of student-to-student interactions was a bit surprising. One might expect that when 
students worked in groups with or without technology there would be an increase in the 
mathematical discourse that was exchanged. However, it is important to note that non-
mathematical discourse was not coded. So there were times when students would ask each other 
about directions or how to complete a task with the technology, but these instances were not 
counted. Also, when students were working in pairs or small groups, Mr. Jones would often 
interject questions to individuals and groups about the task on which they were working and 
students would frequently ask questions of him. This was different from the interactions that 
were observed in Mrs. Adams classroom. 

Types of Mathematical Discourse 
While the mode of discourse allows examination of who is participating and initiating 

discourse in the classroom, it does not provide a clear picture of the content of the discourse. To 
better understand what was discussed when technology was and was not used, the type of 
discourse was analyzed. Figures 7a and 7b depict a summary of the different types of discourse 
identified from all three video-recorded observations of Mr. Jones’ class.  
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Figure 7a. The percent of each type of discourse 
recorded in Mr. Jones’ classes when technology 
was not used. 

Figure 7b. The percent of each type of 
discourse recorded in Mr. Jones’ classes 
when technology was not used. 

There were approximately the same percentage of answers and statements provided with and 
without technology. There was a slight decrease in the number of explanations provided when 
using technology and a slight increase in the number of questions and challenges noted when 
technology was used.  

Conclusions 
The purpose of this study was to characterize the nature of mathematical discourse when 

students were using technology and to contrast this to discourse that was typical in the class 
when technology was not used. The analysis of the patterns, modes, and types of discourse that 
occurred in three video-recorded classes of two teachers provides us with a glimpse of those 
differences. For both Mrs. Adams and Mr. Jones the mode of discourse shifted when technology 
was used. For Mr. Jones there was less teacher-to-whole class discourse and more teacher-
student and student-teacher discourse. For Mrs. Adams there was a striking increase in the 
number of student-to-student discursive interactions when technology was used. However, it is 
important to note that while students were using technology they were also working in small 
groups or in pairs. It is possible that similar changes in the modes of discourse would be 
observed in non-technological settings when students are working in pairs or small groups. This 
is a question that could be further examined. And while changes in discourse modes were noted, 
changes in discourse types were not. While many have suggested that technology has the 
potential to support reasoning and sense-making activities that could foster justification and 
generalization discourse types, this was not observed. Research in non-technological learning 
environments suggests that teachers first build an environment that students feel comfortable 
interacting (modes) and then turn their focus to mathematics (types) (Silver & Smith, 1996; 
Wood, Cobb, & Yackel, 1991). It is also important to note that the first year of the professional 
development did not focus teachers on classroom discourse. As teachers transition into the 
second year and this becomes a more explicit focus for them it would be interesting to see if 
more dramatic changes become evident in the type of discourse that occurs within their 
classrooms.  

 
Endnote 
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This study is designed to measure students’ perceptions of classrooms using a Classroom 
Communication Systems (CCS). Drawing on the work of Bransford, Brown, and Cocking (1999), 
the study is designed to investigate the extent to which CCS classrooms facilitate environments 
which students experience as learner-centered, knowledge-centered, assessment-centered, and 
community-centered. Results suggest that students perceive that CCS technology gives teachers 
more information on what they are thinking, gives them more information on what other students 
are thinking, gives them more information on their own progress, and supports sharing of 
information to facilitate collaborative learning. 
 

Introduction 
More than two decades and of research and experience supports the idea that advanced 

digital technologies can have an important role to play in supporting student learning (Heid, 
1988; Kaput, 1992; Kutzler, 1996; Papert, 1980; Waits and Demana, 1999). The development of 
Classroom Communication Systems (CCS) is providing new possibilities for the role 
technologies play in creating and supporting effective learning environments. The TI-
Navigator™, from Texas Instruments, is a wireless CCS designed for K-12 classrooms. The 
pedagogical potential of CCS technology is still in its early stages but research suggests benefits 
to active student participation in class and collaborative inquiry in the classroom (Abrahamson, 
Davidian & Lippai, 2000; Bransford, Brophy, & Williams, 2000; Dufresne, Gerace, Leonard, 
Mestre, & Wenk, 1996; Pape, Irving, Owens & Abrahamson 2005; Wenk, Dufresne, Gerace, 
Leonard, & Mestre, 1997). This study is designed to measure students’ perceptions of the extent 
to which CCS classrooms facilitate effective teaching and learning environments.  

The research question driving the analysis presented below was: 
Does the use of CCS result in an environment which students experience as more learner-

centered, knowledge-centered, assessment-centered, and community-centered? 
 

Theoretical Framework 
Bransford, Cocking and Brown (1999) developed a framework for designing effective 

learning environments. The design of such environments is based on three principles: 
“To develop competence in an area of inquiry, students must: 
● (a) have a deep foundation of factual knowledge, 
● (b) understand facts and ideas in the context of a conceptual framework, and  
● (c) organise knowledge in ways that facilitate retrieval and application.” (p 18) 
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Furthermore the framework proceeds from the premise that “Students come to the classroom 
with preconceptions about how the world works. If their initial understanding is not engaged, 
they may fail to grasp the new concepts and information that are taught, or they may learn them 
for the purposes of a test but revert to their preconceptions outside the classroom.” (p.14). 

These principles form the basis for a model for describing learning environments with 
specific implications for teaching called How People Learn (HPL). Consequent to these 
principles Bransford et al. propose that effective learning environments should be learner-
centered, knowledge-centered, assessment-centered, and community-centered. 

Aspects of a teacher taking a learner-centered approach include using questions, tasks, and 
activities to show existing conceptions that students bring to the classroom, and exerting an 
appropriate amount of demand on students to think through issues and establish positions. A 
knowledge-centered approach manifests itself in a focus on conceptual understanding, and the 
diagnosis and remedy of misconceptions. Assessment-centered instruction concentrates on 
formative assessment to provide feedback to students and to teachers on student conceptions. 
Finally, a community-centered approach is reflected in, for example, class discussion, peer 
interaction, and non-confrontational competition. (Bransford et al., 1999). 

 
Description of the Technology 

Since the late-80s CCS have been an evolving technology. This genre of classroom tools 
began with hard-wired multiple-choice “response' systems, but is now being transformed by high 
speed wireless networks, handheld devices, and programmable control by a computer. 

Modern CCS consist of five parts: (a) a computer, operated by a teacher, running a software 
package displaying information to only the teacher; (b) a projection panel which displays public 
information; (c) student devices which may be calculators, laptops, etc.; (d) a network which 
connects student devices to the teacher's computer, interprets communication protocols, and 
sends tasks to and from students and the teacher; and, (e) software which allows the whole 
system to function as an integrated classroom tool. Using CCS students can send in answers to 
multiple choice questions, alpha numeric answers, or lists of numbers based on measurements. 
The TI-Navigator™ is a modern CCS which possesses the unique characteristic of being almost 
totally programmable. That is, a Navigator™ “activity” or “task” may be designed to accept 
teacher-authored questions or other specific curricular materials, and also whole new activities 
written by third-party developers or technically sophisticated teachers. 

The following is an example of how a Quick Poll activity might work: The teacher sends 
students a set of multiple choice questions to be answered including the question “What is –
3^2?” with possible answers “A. 3; B. 9; C. –9; D. –3; E. 0”. Students’ progress on the questions 
can be tracked on the teacher console as they send in their answers. The particular question 
“What is –3^2?” is a question that students answer incorrectly due to misunderstanding or 
misremembering the order of operations necessary to get a correct answer. When all students 
have sent in answers to the set of questions, the teacher can display histograms of the students’ 
answers. In a class of 25 students the histogram for the question might look like Figure 1: 
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Fig 1 An example of CCS use for polling a class 
There are several consequences of using the TI-Navigator™ worth noting here: (a) every 

student has had to choose and send in an answer to the question (they cannot just wait for 
someone else to answer), (b) the teacher knows that almost half of the students have a 
misconception as to how to simplify this arithmetic expression, (c) students know that probably 
at least half of them answered incorrectly, (d) students know that if they were one of those who 
answered incorrectly they are not alone, (e) misconceptions about how to answer this question 
have come into the open without any student having to risk the embarrassment of declaring an 
incorrect answer (although the teacher can know which students answered correctly). 

 
Methods and Methodology 

The participants in this study were eight high school mathematics and science teachers and 
their students (n=389). The teachers were experienced in teaching with graphics display 
calculators and took part in a professional development on the technical aspects of operating the 
TI-Navigator™ system as well as pedagogical techniques and possibilities in a networked 
classroom. Before the training teachers were surveyed in open question format about their 
pedagogical practices and were surveyed at the end of the school year about possible changes in 
their practice. A series of visits was undertaken to their classrooms where the TI-Navigator™ 
system was being used.  

Shortly before classroom visits, teachers and students took Likert-style surveys designed to 
elicit their views on the extent to which TI-Navigator™ classrooms reflect the HPL model i.e. 
the extent to which CCS classrooms are learner-centered, knowledge-centered, assessment-
centered and community-centered. Responses to the Likert-style surveys were used as the basis 
for teacher interviews focus group interviews with students. 
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The Focus Group interviews were transcribed and coded independently by at least two of the 
research team for instances of each of the centrednesses. The relevant passages were then 
organised by centredness and further analysed to provide both exemplary and consistent 
instances of manifestations of students’ experiences of the centredness in the CCS environment. 
Finally the data were coded for themes beyond the centerednesses. 
 
Student Survey Items and HPL Centeredness  

The Likert-style student surveys we wrote two statements representing key aspects of each 
centeredness. Each statement was then also expressed in a negative sense, to give a total of four 
statements per centeredness. Thus, for the student survey, we presented statements such as: 
Learner Centeredness  
• Doing activities with the TI-Navigator™ helps me relate new material to things I already know 
• I am equally on task in TI-Navigator™ classes and other classes 
Knowledge Centeredness  
• Doing activities with the TI-Navigator™ helps me get a better understanding of concepts 
• Some TI-Navigator™ questions make me try really hard to answer them 
Assessment Centeredness  
• Using the TI-Navigator™ I can quickly tell whether or not I am right or wrong 
• The teacher knows just as much about my understanding without the TI-Navigator™ as with it. 
Community Centeredness 
• Class dynamics are not affected by the use of the TI-Navigator™ 
• There is a greater sense of community in a TI-Navigator™ class than in other classes 
 
Student Focus Group Interviews 

Student focus group interviews took place after the observed classes. The starting point of the 
interviews was analysis of the student surveys which had been filled out prior to the visit. Thus, a 
typical question was: One of the survey questions asked you respond to the statement “The TI-
Navigator™ helps me tell if the students understand a concept.” Most students said they Strongly 
Agreed (SA). Why did you think they responded in this way? The purpose of this approach was 
to retain the focus on the centerednesses in order to directly address the research question. 
 

Data Analysis 
The analysis presented in this paper is focuses on the student surveys and student interviews 

(with occasional quotes from Teacher interviews) in order to answer the research question: 
Does the use of a CCS result in an environment which students experience as more learner-

centered, knowledge-centered, assessment-centered, and community-centered? 
Student Surveys 

The student surveys were constructed from eight pairs of confirming and disconfirming 
statements designed to reflect aspects of each of the four centerednesses. These results are based 
surveys of all twenty-two classes from eight schools. 
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Figure 2. Composite Results from Student Surveys of Classes Listed 

Each of the four centeredness plots (in Figure 2) above are composite tallies of responses to four 
statements. (Student responses were tallied with ‘D’ and ‘A’ merged for each survey statement to 
gives totals for SD + D, N, A + SA. The resultant four component items for each centeredness 
were summed and normalize (i.e. divide by 4) so totals reflect composite numbers of students).  

The results are generally positive especially in the area of assessment-centeredness and 
community-centredness suggesting students are experiencing the benefit of formative assessment 
made possible in a CCS classroom, and that class dynamics are improved in a CCS classroom. In 
the interviews reported below we see some of the reasons behind these student perceptions. 

 
Interviews 

Focus Group interviews took place at each school after the surveys had been analysed and a 
class at that school observed. The analysis, in keeping with addressing the research question, 
deals separately with each of the centrednesses in turn. 
 
Learner Centeredness 

“The learner-centered perspective focuses on the knowledge, skills, goals, and cultural 
beliefs that each person brings to the learning situation” (Bransford, et al., 2000, p.72). In a TI-
Navigator™ class this is facilitated through the possibility of the work that students are doing 
being available for discussion much more readily than in a non-CCS classroom. The display of 
results, while it is anonymous, has the effect on students that “because they know it’s going to be 
showing on the [panel], they’re trying a little bit harder to get a right answer.” (Teacher 1) and 
“the fact that everybody got it and I didn’t get it makes me think, ‘Ok, I’m doing something 
wrong.’ and it makes me want to go back and see what am I doing, because everybody else got it 
right and I didn’t do it right.” (Focus Group 1, Student 1).  

From the students’ point of view it seems to be apparent that the TI-Navigator™ helps them 
to build constructively on prior knowledge. They attribute this partly to the fact that it also helps 
the teacher to know if they understand knowledge needed to gain further understanding: 

Int: “Doing activities in class with TI Navigator™ helps me relate new material to the things 
that I already know”?  

FG2 Student 4: I think it’s because … we like to see how … where we stand in the class; by 
doing it they get to know if they understand past material. So you have past material and 
then you lead up into the new material when we use the TI Navigator™. 

Int.: Do you think that’s the way her lesson worked today?  
FG2 S4: Yeah, I think it was because she gave us a problem on finding just the derivative 

first, of the equation, and then we worked on the anti-derivative. So it was like going back 
to make sure if we know 

In many interviews students brought up the topic of active engagement. In the following, 
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students discuss the group conversations that are generated by TI-Navigator™ activities:  
FG3 S1: If other people are attentive that keeps me attentive as well.  
FG3 S2: No one is really goofing off and stuff. 
FG3 S4: I think it keeps your mind moving because when one person asks the question it can 

spark another person’s mind and they’re gonna have a question and it just keeps going and 
going. I think you’re learning a lot. Always thinking.  

Students also feel a more direct connection with the teacher: 
FG3 S5: Especially with classes getting bigger like they are now. It gives you more of a 

feeling of you’re more like one on one with the teacher. 
The quotes above illustrate that many students experienced the CCS classroom as more 

learner-centred than their regular classes confirming the possibility, in the CCS, class of an 
experience where the knowledge each student brings to class can be used in a lesson. 
 
Knowledge Centeredness 

A knowledge-centered environment is one in which transferable skills and knowledge in 
context are both developed (Bransford et al., 1999). A major aspect of a knowledge-centered 
approach is, therefore, the building of connections between concepts, between different 
representations of the same concept, and between previously learned concepts and new concepts.  

In Teacher 1’s classroom, visualization and a focus on the essential characteristics of graphs 
allowed students “to see how the equation was similar to the other equations that we had seen 
and where we might start with that picking up with what the vertex was” (Teacher 1). 

In the following excerpt, the discussion began with “grades” but quickly turned to issues of 
effort, understanding, and receiving feedback in a timely manner:  

Int.: If you had been using it all year would it have made a difference to your grades?  
FG3 S2: I would have understood a lot more. I mean, it couldn’t hurt my grade, obviously, 

because I would have stayed awake, and really paid attention.  
FG3 S3: So many times, I would think I had the concept at the end of the chapter, and I 

would take the test and completely bomb it. So I had no idea that I didn’t get it. And, if I 
had [the Navigator™] all year I would probably like been able to tell if I had.  

FG3 S4: I do too. It allows you to know at the time when you’re studying the topic, what you 
know and what you don’t know, and why, and he can explain it to you better.  

However, the process of sense-making and understanding requires sustained effort. Using the 
TI-Navigator™ system, students are seen to be excited and to want to get things right. The fact 
that on some activities they can get immediate feedback “gets them more to the level of thinking, 
‘What was it that I did wrong?’ instead of just glazing over the fact that, ‘Oh. It’s not correct and 
I don’t want to ask about it.’ ” (Teacher 1). The public nature of information and answers in a TI-
Navigator™ classroom leads to them try harder to get a right answer, “I think it makes you try 
harder because you don’t want everybody else to see that you don’t know what you’re doing” 
(FG5, S2). Also, the element of immediacy seems to play an important part for some students 
and this has positive effects on the effort that they apply:  

Int.: Do you think having to do something with the calculator makes you think through things 
that you wouldn’t have put the effort into thinking through?  

FG4 S2: Yeah and you think, “Oh my gosh, am I ready to send?” and, …  
FG4 S4: It makes you think twice about your answer.  

However, it appears that this hesitation, does not result in adverse feelings about the system:  
FG2 S2: It’s like a hands-on activity kind of thing, and it makes it easier.  
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FG2 S3: And it makes it more interesting.  
FG2 S1: Yeah, if we do worksheets, and go to the board. I don’t find that much fun.  
Int.: So you think generally you’re working a bit harder doing it like this?  
FG2 S 1, 2, 3, 4: Yeah. … Yeah...  

Using the system also seems to provide a level of demand on students to think more and try 
harder. However, they tend to view this in a positive light:  

FG2 S1: Yeah, because on homework, a lot of us will leave it blank if we don’t understand, 
but by having to enter an answer it makes you really try and figure it out because you want 
to see if you were right or wrong compared with the rest of the class. 

FG2 S3: Yeah, it makes you try to think on the answer harder.  
Sometimes students had didn’t make connections or see the value of an activity: “I think [the 

simulation] was meant to be more of a fun activity than teaching us anything” (FG1, S3).  
The fact that the TI-Navigator™ system can run simulations and allow multiple sets of data 

generated by students to be compiled and displayed, allowed students the opportunity to make 
connections between the experiments they have done themselves and aggregated results of the 
whole class’s experiments. Data gathered from many students can be compiled, visualized and 
understood as a physical process. “Plugging in numbers and seeing what happens … and see[ing] 
why what you plugged in does what it does or means helps me,” (FG1, S3).  
 
Assessment Centeredness 

“Effective learning environments also require frequent opportunities to make students’ 
thinking visible to see what they are learning” (Bransford et al., 2000, p.69). It is vital to the 
learning process that students have feedback on whether they are learning concepts, and vital for 
teachers to have feedback on how well students are learning concepts. Certain TI-Navigator™ 
activities allow students to find out immediately if they have an answer correct; whereas, without 
the technology “if they’re doing their regular homework, they didn’t necessarily know that they 
didn’t get it correct, so they’re still just doing the same thing and not really asking you, because 
they’re not really thinking that they’re making a mistake.” (Teacher 1). The advantages of this 
feedback are clear to the students: “… it was quicker, more efficient … we like that you 
automatically find out what you made on the quiz.” (FG1, S5). 

The fact that students send answers to a computer means the teacher can see whether they are 
active or not and whether they are successful or not. Teachers noted that “you get more honest 
answers with the Navigator™. It is anonymous so it’s not threatening.” (Teacher 5).  

Advantages of both types of feedback (i.e. to students and teacher) are clear to the students:  
I: “Using the TI Navigator™ does not help in letting me know where I stand on a question?” 
FG3 S3: I disagree.  
FG3 S2: I would disagree a lot on that, because you get instant results right up on the board, 

and it tells you if you got it wrong or right, and if enough people got it wrong, he’ll know 
that he needs to go over that, and you’ll know you need to go over that - instantly.  

FG3 S1: And I think it’s easier on the teacher too, because instead of passing out the papers, 
having to pass them back and him go through it, and then passing them back out and going 
over it he knows right away as a class where everyone stands, instantaneously. 

FG3 S5: And you’re able to fix things at the moment. You know, instead of 2 or 3 days. 
FG3 S1: By that time you forgot even more. You forgot what the question even was.  

Similarly, in the following, from a different teacher’s classroom:  
FG2 S3: If we’re all wrong, or the majority is wrong, she’ll go over the concept again. 
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FG2 S1: I think it gives her an idea of where everybody stands in the class, so she knows 
what we need to review more, … or you know, we can move on, or not.  

A problematic area with this feedback is that, for some activities, it can focus on right/wrong 
answers and doesn’t give a physical record of students making their thinking processes visible. 

It can be argued that the presence of new types of feedback from systems like TI-
Navigator™, means that teachers have to learn to listen in ways that they did not have to before. 
Teachers have a great deal more information but still need to investigate the cause of 
misconceptions, and devise ways to rectify them.  
 
Community Centeredness 

The effect of the TI-Navigator™ system on the classroom environment and dynamics we 
visited was quite dramatic. There was a strong sense of students working harder and working 
towards a common goal: “It’s more closely knit, the class. Because in a normal class you have 
people that are sleeping and here you don’t have room for that.” (FG5, S3) and, “When we used 
it, everyone was doing it and everybody was interacting and it made everybody work and I think 
the class participation went up a lot” (FG1, S4). The public nature of the knowledge state of the 
class, visible in results on screen, gave rise to discussions of the provenance of answers and 
provided many “teachable moments” because misconceptions are made visible: “we’re all 
connected to the same system so we can see each other’s mistakes, where before we would just 
do [our work] individually,” (FG1, S2). Furthermore, students are less afraid to admit mistakes 
because of the more free flowing nature of information in the class. Some students felt that the 
sense of community arose from the novelty of the system and did not impact their learning: “I 
think the sense of community comes just from being something that’s experimental but I haven’t 
felt like I’ve learned very much” (FG1, S3). Others felt that technical problems with the system 
and efforts to overcome those were the source of the community feeling, “Everyone was helping 
everyone else figure out what to do but if it worked properly, then I don’t think that everyone’s 
community would be going on.” (FG1, S3).  

The TI-Navigator™ classroom is a very interactive environment. Students are presented with 
multiple representations such as symbolic, visual, and simulated. The TI-Navigator™ classroom 
is one in which there are class discussions arising out of shared information as well as 
collaboration and a feeling that something novel has happened: “It’s more student based. You’re 
not just looking at chalk boards” (FG 1, S2) 

Int: Class dynamics are not affected by the use of TI Navigator™?  
FG2 S4: I guess that’s why everyone disagreed, cause I think it does change the dynamics of 

how our class is. More interaction …we’re all connected … and if we don’t have the TI 
Navigator™ we’re just sort of in our separate note-taking little world, but with this … 
we’re actually working together. It’s just a different way of learning. This is something 
where we can talk about it and understand it. 
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Conclusion 
This study sought to address the research question: 
Does the use of CCS result in an environment which students experience as more learner-

centered, knowledge-centered, assessment-centered, and community-centered? 
The analysis of the surveys and focus group interviews presented above present compelling 

evidence that a significant level of transformation occurs in students’ experiences of classes 
when CCS technology is deployed. The data are self-reported by the students but reflect 
accurately and consistently their experience of the CCS environment and their perceptions are 
consistent with the teacher and researcher observations of the classrooms. 

Clearly much research remains to be done on the impact of CCS on classrooms but we 
believe that the work done on this project shows that: 

1. The role that CCS technology has to play in implementing HPL principles in the design of 
an effective learning environment centres on the free flow of information in the classroom. That 
is, CCS technology gives teachers more information on what students are thinking, gives 
students more information on what other students are thinking, gives students more information 
on their progress, and supports sharing of information to facilitate collaborative learning. 

2.The accumulation of effects of the use of the TI-Navigator™ on student feeling, 
motivation, behaviour and classroom dynamics suggest that the TI-Navigator™ can have a 
positive influence on student learning.  
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We examined the representations used by the teachers in connected classrooms and whether 
changes occurred in their discourse about multiple representations of functions over time and as 
the result of access to technology.  Analysis of videotapes of 6 teachers’ practices when teaching 
a unit of instruction on functions revealed three major patterns. First, teachers’ approaches to 
teaching functions and their representations were influenced by whether they maintained a 
calculational or conceptual orientation to teaching. Second, their choices of representations 
were closely linked to their view of functions as either a process or an object. Third, as the 
teachers’ technical knowledge of technology increased they illustrated various representations 
more often, however their discourse did not address connections among different 
representations. 

Introduction 
Principles and Standards for School Mathematics (NCTM 2000) place tremendous emphasis on 

the importance of children learning about and using representations when solving problems, 
communicating mathematics, and representing real life situations.  Representations can be taken to 
be the external representations produced to help think, communicate and interpret mathematical 
concepts.  They may also be considered the internal representations a student might possess. 
Representation(s) refer to both the act of representing as well as the external, noun form of 
representation.  In mathematics, internal representations can be considered to be abstractions of 
mathematical ideas or a structured way of thinking that are developed by and are internal to a learner 
(Pape & Tchoshanov, 2001). External representations typically have a sign or configuration of signs, 
characters, or objects that can stand for something else, such as graphs, pictures, diagrams, words, 
symbols, and manipulatives. Internal and external representations are believed to mutually influence 
each other.  However, the literature (Cunningham, 2005; Even, 1998; Galbraith & Haines, 2000; 
Hitt, 1998; Knuth, 2000; Sfard, 1991) points to the difficulty for students to transfer among the 
various  types of representations while preserving meaning. In addressing this challenge, scholars 
have argued that the use of technology can facilitate both the development of knowledge of multiple 
representations and the ability to transition among them (Manouchehri, 2004).  A particularly 
promising tool for doing so is TI-NavigatorTM. Several features of the TI-NavigatorTM have the 
potential to increase discussion or student use of representations.  Quick Poll (QP), Activity Center 
(AC), Screen Capture (SC), and Learning Check (LC) all can invite all students to participate in 
activities and practice using representations.  Through AC and SC, students can see their own 
representations as well as other students’ representations allowing for reflection on and discussion of 
the representations.   AC has the ability to move among three major representations of the same 
object, algebraic, graphical. With several students participating, alternative representations are likely 
to occur.  Pursuing explanations and justifications of why are or are not particular representations 
reasonable can aid students to see representations as tools. 

The purpose of the current study was to investigate the nature of teachers’ use of representations 
in classrooms where connected classroom technology (CCT) was used.  This report is a part of a 
much larger research project in which we investigated the relationship between teacher use of CCT 
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in algebra classrooms and the growth of teacher and student choice of representations of linear 
functions as manifested in the classroom discourse were investigated directed by Classroom 
Connectivity in Promoting Mathematics and Science Achievement (CCMS) research project (Irving 
et al., 2010). In focusing the current study, we considered the topic of linear equations as the context 
for analysis of teachers’ use of and discourse about representations of functions and their 
connections. Two specific questions guided the data collection and analysis: 

a. What representational modes are used by teachers when discussing linear functions? 
b.  How is the quality of teachers’ discourse about representations of functions 

influenced by the presence of technology? 
 

Theoretical framework 
In studying classroom use of representations of functions we grounded our work in the three 

major perspectives on representations of functions as described by Moschovich, Schoenfeld, and 
Arcavi (1993) including algebraic, graphical, and tabular.  Functions have a dual nature. Functions 
can be seen as a process, acting on a set of inputs to obtain outputs.  They can also be seen as objects 
that can be manipulated as a whole.  Although not specifically discussed by Moschovich and 
colleagues, the process perspective and object perspective of functions can be thought of as part of 
the internal representation of functions, since they are the primary ways to think about functions. 
This framework excludes a major representation particularly vital in classroom interactions, the 
verbal representation.  For example, the function f(x) = 3x+5 can be verbally represented as "the 
function that multiplies the input by 3 and then adds 5," which is describing a process.  The same 
function could be represented as "a line with a slope of 3 and a y intercept of 5," which describes an 
object.  The different combinations of external representations and perspectives are captured in table 
1.  Here, the four main representations can be used in conjunction with either the process or object 
perspective.  
 

 
Table 1. Different representations and perspectives of lines. 

 
The process-object framework (Moschkovich, Schoenfeld, & Arcavi, 1993) merged with the 

external-internal representations interaction framework (Pape & Tchoshanov, 2001) allowed us to 
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suggest a model for how representations may interact within a learning environment.  The four main 
representations of a line, algebraic, graphical, tabular, and verbal representations (Moschkovich et 
al., 1993) can be considered to interact with a student’s internal representations and perspectives via 
practice, negotiation, reflection, interaction (Pape & Tchoshanov, 2001).   

Developing student representational thinking requires not only the use of multiple 
representations but also discussing the connections among them. This relates closely to how multiple 
representations are addressed and elaborated in the social context of the classroom, as evidenced in 
teachers’ and students’ discourse.  Certainly, the more elaborate the discussions of connections 
among representations, the greater opportunities for students’ development occur (Manouchehri, 
2004).  To capture the quality of teachers’ discussions of representations we used the Complex 
Mathematical Discourse Network CMDN (Manouchehri, 2004) to rank the level of complexity of 
teacher talk surrounding the usage of different representations of functions.   

 
Methodology 

Participants 
In the larger project, Algebra 1 teachers from 28 states and 2 Canadian provinces and their 

students participated.  Initially, “a total 127 teachers (66 control, 61 treatment; 74% female) were 
randomly assigned to either control or treatment groups” (Irving et al., 2010, p. 8). The student 
participants were students of the teachers from both cohorts during year 1 to year 4 of the study.  
Fifty-five of the teachers in the CCMS study had videotaped classroom observations in at least one 
of the four years of the study. Since the purpose of the study was to describe the types of linear 
representations used, only teachers who were videotaped giving lessons on linear functions for more 
than one year of the study were considered for investigation.  The six teachers who met these criteria 
were used for analysis in the current report. 

 
Data Sources 

Quantitative and qualitative data were gathered by the CCMS project.  This study uses the video 
data.  Classroom observation videos were typically two consecutive days of class. Linear function 
topics ranged from slopes of lines, properties of lines, systems of equations to finding best fit lines.  
Only the video data and verbatim transcripts of these six teachers were used in the study reported 
here.   

 
Data Analysis 

 Observational notes were taken during the first viewing of the video data.  The videos, 
transcripts and observation notes were uploaded into Nvivo, a data analysis software.  

Classroom instruction was coded using three different techniques.  First, teachers’ utterances in 
each lesson were catalogued according to 4 criteria: the level of cognitive load of questions asked 
and their mathematical significance (mathematics), the mode of response elicited from the students 
(closed/dichotomous vs. open/explanatory), the quality of explanations offered to the group 
(conceptual vs. algorithmic), and the quality of discussions regarding the representational choice 
used or analyzed. Additionally, we coded the number of times technology generated representations 
were used by the teacher and whether this choice seemed appropriate to the goals of the lesson. 

To describe the types of representations used in the classroom and the quality of discourse 
surrounding the use of representations by teachers and students in CCT classrooms, we traced the 
number of each representation used or elicited in class, as well as the number of connecting 
statements that teachers made to link these representations in their instruction. 
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The quality of the discourse either about or using representation were coded using the Complex 
Mathematical Discourse Network (CMDN) (Manouchehri, 2004).  Manoucherhi (2004) created a 
holistic scoring procedure that assigned scores from 0 to 4 depending on how complex the 
representational discourse might be.  Simple representational discourse can be characterized by an 
individual using one aspect of a single representation as a solution without support or multiple 
representations or aspects of one representation are present but are not connected.  Discourse 
involving only one aspect of one representation without support could be scored 0 and discourse 
involving multiple representations or aspects but no connections or elaborations could be scored 1.  
Intermediate representational discourse can be characterized by individuals explaining, justifying or 
reasoning with or about representation(s) of lines or aspect(s) of one representation.  Discourse 
explaining, justifying, or reasoning with or about one representation or multiple representations or 
aspects of one representation without statements connecting them could be scored a 2. Discourse 
with these characteristics but where the connections among multiple representations are discussed 
could be scored 3.  Other evidence of intermediate discourse would include reflective behavior such 
as modifying one’s own representation because of the presence of another representation.  Complex 
representational discourse can be categorized by intermediate discourse that is used to make 
generalizations about the connections among different representations.  Complex representational 
discourse could be scored a 4.   

Individual case studies are created for each of the six teachers describing their practices.  
Combining these individual cases we searched for themes that described common and unique 
instructional approaches among data. 

 
Findings  

 The primary goals of our research project was to examine the type of representations used by the 
teachers in connected classrooms and whether changes occurred in their discourse about multiple 
representation over time and as the result of access to facilities provided by technology which could 
have enhanced children’s thinking.  Analysis of videotapes of teachers revealed three major patterns.   

First, teachers’ particular approaches to teaching, what they chose to include in instruction and 
their expectations for mathematical work of children in the context of representations of functions, 
were influenced by their particular orientations to teaching (A. G. Thompson, Philipp, T. W. 
Thompson, & Boyd, 1994).  Teachers’ orientations motivated how they used technology and which 
of its capabilities they chose to capitalize in instruction.  A majority of the teachers exhibited an 
algorithmic orientation to teaching mathematics; instructional emphasis when talking about 
functions and representation was on production of these models as opposed to connections among 
them.  Technology was used primarily for completion of calculational and procedural tasks and not 
to advance children’s understanding of how to allow access to a deep understanding of multiple 
representations of functions and their connections.  

Second, the teachers’ choices of representations in instruction were closely linked to their view 
of functions as either a process or an object.  The questions they asked in class, comments and 
illustrations they used and ways in which they utilized technology were influenced by this basic 
mathematical understanding.  Data indicated that teachers used and motivated the view of functions 
and processes and rarely attempted to draw from functions as objects to help children develop an 
understanding of connections among various representations.   The preferred representational mode 
when talking about functions was symbolic. 

Third, as the teachers’ technical knowledge of technology increased, they tended to use it to 
illustrate various representations, even simultaneously at times. However their discourse did not 
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address connections among different representations and ways in which information obtained from 
these various representations could be used to extract additional information about the behaviors of 
functions. This disconnect was most prominent in places where the primary focus of instruction was 
on symbolic competency.   
Teachers’ orientation and teaching of function concept 
Thompson and colleagues (1994) offered two sharply contrasting orientations to teaching 
characterized referred to as calculation and conceptual. In elaborating on the substantive differences 
between these two orientations, authors characterized a teacher with a conceptual orientation to 
teaching as one who focuses students’ attention away from application of procedures and towards a 
rich conception of ideas, conceptual coherence.  In further elaborating on this construct the authors 
suggested that the conceptually oriented teachers tend to move students towards non-calculational 
contexts and their actions are driven by a system of ideas and ways of thinking that she intends for 
students to develop; an image of how these ideas and ways of thinking can develop; … a productive 
way of thinking that generates a method that generalizes to other situations (A. G. Thompson et al., 
1994, p. 86). In contrast, the calcualtionally oriented teachers show, among many: “A disposition to 
cast solving problems as producing a numerical solution; An emphasis on identifying and 
performing procedures; a tendency to do calculations whenever an occasion to calculate presents 
itself; … A narrow view of mathematical patterns as limited to finding patterns in numerical 
sequences” (pg. 87).  The impact of these orientations became visible in the instructional practices 
of the teachers, what they emphasized in their lessons, tasks they assigned in class and ways in 
which they used technology to discuss functions and their multiple representations. That is, the 
teachers with greater tendency towards a conceptual orientation to teaching tended to refrain from 
being the locus of authority in class and allowed students to generate different representations of 
functions and insisted on children using technology to examine patterns and relationships.  Those 
with a calculational/algorithmic orientation to teaching, even in the presence of technology, 
continued to emphasize procedural productions. Consider the following episode as an illustration of 
such practices.  Prior to this particular episode, the teacher had plotted 5 points of the line y=-x/4 
and asked students to send in their predictions of other possible points using the CCT.   

T:  Look at the point  (-26,7). It looks really close, but is it correct? What’s neg. 26/4? Aren’t 
we dividing by 4 each time?  
S:  No. Oh, yes. 
T:  Does that divide evenly?  
S:  No. 
T:  No, so it can’t come out to 7. So that one was very close, but not quite. And you can tell it’s 
just slightly off, isn’t it? And what about this one?  Neg. 24, 6. If you divide neg. 24/4 you will 
get… 
S:  6. 
T:  6. That one’s correct. How about this one? A couple people did that one. Neg. 20,5. neg. 
20/4 is… 
S:  5. 
T:  All these are correct. What about this one? It’s 22, 6. 
S:  No. 
T:  What’s 22/4? Adele? What’s 22/6? Is it a nice number? 
SS:  No. No, it’s not. 
T:  No. It’s 22/4; I’m sorry. It’s not going to be 6, is it?  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1745



A similar vignette from another class is presented below.  In this vignette the teacher left the 
graph of y=x+1 displayed on the screen, while students calculated and sent in points for the 
function y=2x.  The teacher then prompted a discussion asking students to compare the two lines, 
one green, and one red.  

S:  They meet at (1, 1). They intersect.  SS:  (1, 2) 
T:  (1, 2); you’re right, it is, (1, 2). So let me just talk about that for one second. Look, that 
means that the first one which was X + 1; right? 1 + 1 is 2, and the second one is 2 times 1 and 
2 times 1 is 2, and that’s why because they both make that equation true. Something else? 
Anything else you want to say?  
S:  There’s a positive trend.  T:  There’s a positive trend, awesome. Anything else? Something 
else? S:  They’re all real numbers? T:  Yeah, they do, they’re all real numbers, um hum. 
S:  It’s a straight line. 
T:  It is a straight line. Anything else? And that’s important because pretty soon we might not 
see a straight line. Anything else? … 
S:  They all increase.   
T:  They all increase, and I think somebody said positive.  
S:  The green line is like closer in to the Y. 
T:  Yeah, it is, it’s closer in to the Y. How can you say the same thing? How else can we talk 
about that?  
S:  The Y axis, the angle is smaller? 

The teacher interprets and verifies what the student is saying by placing her fingers on the 
two lines and measuring the angles.  She agrees with the student and moves on to the next 
problem.   

 
Note that in the first vignette the calculational orientation of the teacher is evidenced in criteria 

and methods she used and suggested for testing points.  Relying on computational procedures for 
testing values remained a consistent part of her lessons.  The teacher in the second vignette, which 
might appear less calculational, maintains the same orientation.  This is apparent partially in the 
quality of explanation she offered students on why the two lines intersect at (1,2).  With computation 
not being the primary focus, different questions can be asked, such as having students to compare 
the graphs of lines.  The resulting discourse led naturally to the notion of slope, even though it was 
not taken advantage of at this time.  The teacher appears to not to be the locus of authority as she 
uses statements such as, “I’m looking for observations about those two lines; anything you want to 
say about them.”  However, the resulting discourse is limited to short answers directed back to the 
teacher for verification.  Students are not pressed for elaboration, explanations, or to comment on 
peers’ statements. 

 
Teachers’ Knowledge of Functions: Functions as Objects vs. Processes 

As previously discussed by Moschkovich, Schoenfeld, & Arcavi (1993), functions can be seen as 
a process acting on a set of inputs to obtain outputs.  Functions can also be seen as objects that can 
be manipulated as a whole.  In mathematics classrooms, when functions are viewed as processes, the 
primary focus is on computational production of their representations.   For instance, children may 
be provided with a symbolic representation of a function and asked to generate a table of values, 
graph the function findings specific points, and moving from one to other in a one directional 
motion.  In contrast, when the view of functions as objects is advocated, the instructional tendency is 
to focus students’ attention to the general behaviors of the functions as a whole.  As such, learners 
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might explore for instance, families of functions, the impact of various parameters on the behavior 
of parent functions, and describe movements of functions as transformations relying on graphs, 
numerical data, and symbolic forms simultaneously. 

Data indicated that the primary view emphasized in classrooms by teachers was that of function 
as a process.  The teachers’ discourse regarding the representations of the function and what they 
expected of children to do thus was influenced by this view.  Teachers spent a majority of their 
instructional time on production of multiple representations, as the main goal of activity, without 
elaborating on connection among them and ways in which these different representations could be 
used to make and verify conjectures regarding the behaviors of functions. Such discussions were 
absent even when ample opportunities were present due to either un-expected results provided by 
technology or children’s own questions and comments. This is most illustrative in the episodes 
described below. 

During one lesson, a teacher had given 5 points that were on the line y=6x.  The students were 
asked to send using the CCT their predictions of another point on the line.  When the result of the 
collection was displayed almost all the points followed the pattern of the line, except for the point 
(6,6) that was far away from any of the other points.  An interesting discussion could have occurred 
if the teacher had asked, “Is it still possible to have a line, or a function with all the points displayed 
including (6,6)?” reinforcing the notion of what makes a line a line or a function a function.  What if 
the student legitimately thought (6,6) was a viable prediction of the pattern? Can a line go from 
(5,30) to (6,6) then to (7, 42)?  Rather, the teacher immediately dismissed the point as being wrong, 
“That’s the point (6,6). What do you think happened there? Just a typo? If you plug in 6 are you 
going to get out 6?”  The teacher asked the class what may have been wrong with the point, but the 
question was answered by the teacher herself who concluded the most likely error was a typo.  To 
identify the correct point, the teacher appealed to the process definition of the line to state the point 
should have been (6,36).   

 
Technical Confidence and Content Presentation 

Previous studies regarding the teachers’ use of technology present the view that with increased 
technical knowledge about technology teachers tended to show the tendency to use it more 
frequently in teaching.  The same was true among the range of data we examined. It also became 
evident, that while teachers successfully offered children a greater number of illustrations of various 
representations in their instruction, the quality of their discourse regarding functions or 
representations was not substantially different. Typical practice is described below. 

A teacher put torn pieces of paper with a number written on each and passed them to the 
students and asked the students to evaluate several functions, such as y=-3x, y=x+1, y=2x, and 
y=x2 +1 using the number they were given.  Students submitted their single point on the curve to 
the teacher using the CCT.  The CCT allowed the teacher to collect and display all the students’ 
points.  This activity allowed students to see the tabular, algebraic and graphical representations 
of three different functions as well as a small sample of other students’ representations.  After 
collecting the data points for the quadratic, the teacher quickly identified two points as being 
wrong. By appealing to computation, the teacher asked the two students to correct their points.  
A student noticed that the quadratic was “crooked. Not crooked, but curvy,” and another student 
mentioned it looked like a skateboard half pipe when asked to compare the four functions.  A 
discussion after the teacher prompted with “What was alike in the other three that’s different on 
this one? I mean because something’s making that one curve where all the others are going 
straight,” hinted at the notion of the square being the reason but was not fully realized and 
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explored.  Three main representations of functions were present as well as the notion of function 
as process due to the teachers appeal to computation to correct errors.  The notion of function of 
object did not explicitly appear.  However, it seemed students noticed object like properties of 
functions, i.e. this one is curvy, the others are straight.  Two years earlier this teacher frequently 
used a calculator program to generate graphical and numerical representation of different 
functions and asked students to guess the slope and y-intercept. The program did not include a 
connection back to the algebraic representation of the line; neither did the teacher mention the 
connection.  A maximum of two different representations from the process perspective of 
function were used during the lessons this year.   

 
Final comments 

The study of multiple representations in general and those particular to functions are among 
the most notable goals of current visions for Algebra I curriculum.  The assumptions surrounding 
the utility of graphing technologies within connected learning environments for advancing the 
learning and teaching of these objectives are certainly valid. However, as our data indicated 
using technology in ways to substantially impact learning depends largely on teachers’ 
knowledge about the mathematical goals, content specific knowledge regarding concepts taught 
and their orientations to teaching. These are in line with findings of other studies which have 
examined the interactions between teachers’ resources, instructional motivations and choices 
they make during instruction (Silverman & Thompson, 2008), confirming Thompson’s (2002) 
view that teachers’ pedagogical actions must be viewed as manifestations of their current 
understandings and visions for and of student learning.  Placing new technologies in classrooms 
without providing them the space to engage in reflective abstractions about learning and 
teaching, which can lead to the institution of key developmental understandings (Silverman & P. 
W. Thompson, 2008) central to transformative practice, would have little utility for enhancement 
of knowledge.  Professional development programs designed for teachers need to focus not just 
on increasing teachers’ technical knowledge about the tools but also alternative ways that 
mathematical ideas might be interpreted or taught using them; that is, using technology as a 
vehicle for establishing deep personal and pedagogical understanding of the subject matter.  
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This study utilized two conceptual frameworks to investigate the views of Turkish and American 
preservice mathematics teachers on the use of graphing calculators in mathematics instruction. 
An open-ended survey questionnaire and group interviews were the main data collection 
methods. Results revealed that both Turkish and U.S. participants worried about calculator 
dependency but they both thought that calculators could transform the teaching and learning 
environment positively. However, some differences in their views were also detected. 

 
Introduction 

In the age of technology, mathematics teachers must decide whether to use technology in 
their classes. If so, more decisions must be made, such as which technology to use, and how, in 
order to create an effective teaching and learning environment. While making these decisions, 
teachers’ knowledge and beliefs influence their decisions. (Ball et al. 2001; Stipek, Givvin, 
Salmon, & MacGyvers, 2001). Teachers’ differing views and beliefs about the use of technology 
in mathematics instruction could lead to different levels of use of graphing calculators in 
mathematics instruction. Researchers encourage conducting studies about teachers’ beliefs about 
the benefits/weaknesses of using graphing calculators in mathematics instruction to learn why 
and how teachers come to adopt or reject the use of graphing calculators (Burrill et al. 2002; 
Kastberg & Leatham, 2005). Moreover, the beliefs of teachers about the use and roles of 
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graphing calculators influence the use and roles of those calculators in mathematics classrooms 
(Burrill et al., 2002; Doerr & Zangor, 2000; Fleener, 1995; Kastberg & Leatham, 2005).  

There is limited research comparing the views of teachers from different countries about the 
use of technology in mathematics instruction. Wagner, Lee and Özgün-Koca (1999) compared 
American, Korean and Turkish preservice teachers’ views on many different subjects, including 
the use of technology. They concluded that American teachers were more open to the use of both 
computer and especially calculator technologies in mathematics classes. Turkish preservice 
teachers had more worries about the negative effects of the use of graphing calculators on 
teaching and learning. Other such comparative studies mainly refer to international studies such 
as TIMSS (Antonijevic, 2007; Özgün-Koca & Şen, 2002) with considerably varying calculator 
use in different countries, including an especially dramatic difference between the U.S. and 
Turkey.  

 
Research Questions 

The current study investigates views on the use of graphing calculators in mathematics 
instruction held by Turkish preservice mathematics teachers with very limited experience with 
graphing calculators and views held by more experienced American preservice mathematics 
teachers. The research questions are:  

 What are their views, and underlying reasoning, on using graphing calculators in 
mathematics instruction? 

 What are the similarities and differences between the views of Turkish and American 
participants? 

  
Conceptual Framework 

This study employs two conceptual frameworks —the possible roles of graphing calculators 
in mathematics teaching and learning, as well as technological, pedagogical, and content 
knowledge (TPACK). The aim is to see the general perspective with the TPACK framework and 
then tease out the specific perspective on the use of graphing calculators with the framework for 
the possible roles of graphing calculators in mathematics education. 
 

The Possible Roles of Calculators 
The first conceptual framework emphasizes the five overlapping roles of graphing calculators 

described by Doerr and Zangor (2000): (1) computational tool, (2) transformational tool, (3) data 
collection and analysis tool, (4) visualizing tool, and (5) checking tool. These roles are 
interconnected and several roles could occur simultaneously (see Figure 1).  
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Figure 1. The Use of Graphing Calculators in Mathematics Classrooms 

Among these different uses, calculators as a visualization tool and as a computational tool 
have been emphasized in many mathematics classrooms. Doerr and Zangor described the role of 
graphing calculators as a checking tool “when it was used to check conjectures made by students 
as they engaged with the problem investigation” (p. 156). Because checking could be used when 
students are checking conjectures and/or computational work, this role of graphing calculators is 
renamed as a discovery tool when calculators are used to support inquiry. When calculators are 
used as data collection and analysis tools, they make it possible for students to collect and 
analyze data, and when they are used as transformational tools they change the nature of the 
teaching and learning environment.  

Technological Pedagogical Content Knowledge 
The introduction of pedagogical content knowledge by Shulman (1986) was ground-breaking 

and the research on teachers’ knowledge thereby gained a framework. With Mishra and 
Koehler’s (2006, Koehler & Mishra, 2005) and Niess’ (2005) introduction of the concept of the 
teachers’ TPACK (see Figure 2), technology-related research in the teacher education and 
professional development has gained a conceptual framework. TPACK involves content 
knowledge (CK), pedagogical knowledge (PK), technological knowledge (TK), and their 
combinations. Looking at these combinations, Pedagogical Content Knowledge (PCK) focuses 
on the mutual relationship between content and pedagogy, Technological Content Knowledge 
(TCK), focuses on how the content can be affected as a result of use of technology, and 
Technological Pedagogical Knowledge (TPK) focuses on how teaching could be affected by the 
use of technology. TPACK is at the heart of all of this knowledge and takes all of these factors 
and combinations into consideration.  
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Figure 2. Re-creation of Mishra and Koehler’s TPACK Model 

Data Collection Methods and Analysis 
There were two settings for this study. One was a 5- year teacher education program in 

Ankara, Turkey. The other was in a university in the Midwestern United States. Turkish 
participants in this study were 27 preservice secondary mathematics teachers. Even though these 
participants had no prior experience with graphing calculators in their K-12 schooling, they 
experienced some graphing activities with TI-92 calculators in their methods courses. They did 
not have a chance to use these calculators in their field studies or student teaching. One can 
wonder that if these participants did not have any extensive experience with these technologies, 
why their opinions would be worth investigating. As mentioned above, some of the instructional 
decisions that we make are based on the views and beliefs that we hold. Even though one does 
not have an extensive knowledge about the use of calculators in mathematics instruction, one 
still has an initial view of graphing calculators. U.S. participants included 23 preservice teachers. 
Most of the U.S. participants categorized themselves as intermediate level users of graphing 
calculators. Many of them mentioned that they used graphing calculators in their 9-12 or college 
education as learners of mathematics.  

Data collection involved group interviews and a survey that included open-ended questions. 
The participants were asked to write about their beliefs on the use of graphing calculators in 
mathematics instruction in general. Some of the questions were of a general nature to see what 
different parts of their TPACK participants would bring in to their discussion. However, other 
questions aimed to reveal different parts of the TPACK model. For instance, one asked the 
effects of calculators on the teaching and learning environment and process with the aim of 
revealing participants’ TPK. All participants engaged in taped group interviews in which their 
writings were discussed. The researcher facilitated the group interviews. In these semi-structured 
group interviews, the same questions from the writing portion were discussed with follow up 
questions: How should graphing calculators be used for better learning in mathematics 
classrooms? When are the appropriate times? [As a response to a participant saying that the 
teacher needs to decide appropriate times.]  
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Due to the nature of qualitative data, the analysis was based on categorizing in order to 
investigate emerging themes. First, participants’ individual writings were analyzed for common 
codes to create patterns. At this point, the two conceptual frameworks guided code and pattern 
recognition in the data. Common codes and patterns were tallied in checklist matrices (Miles & 
Huberman, 1994). Checklist matrices were created in order to analyze participants’ views on the 
use of calculators in mathematics instruction. According to Miles and Huberman (1994), “the 
basic principle is that the matrix includes several components of a single, coherent variable” 
(p.105). Therefore, several elements of the participants’ views on the advantages, disadvantages, 
and possible roles of calculators were analyzed more thoroughly. Percentages of participants 
sharing similar views were calculated from those tallies. Taking these codes and patterns into 
account, group interviews were analyzed. Data triangulation and member checks were used to 
ensure the trustworthiness of the study. Although writings guaranteed that the participants had 
sufficient private time to respond without pressure, interviews were added to provide an 
environment where group communication and interaction could be observed. Thus, the two 
forms of data collection with different encounter levels provided rich sources of data for this 
study. Member check questions during the interviews were used in order to ensure correct 
understanding of what the participants meant. 
 

Results 

The Roles of Graphing Calculators  
When Doerr and Zangor’s (2000) framework for the roles for graphing calculators in 

mathematics classrooms was used to analyze the data, four roles of graphing calculators were 
mentioned by the participants—computational, visual, transformational, and discovery tools. In 
general, graphing calculators as computational, visualization or transformational tools and their 
two and three combinations were mentioned by a majority of the participants. Eighty-eight 
percent of Turkish and 74% of U.S. participants see graphing calculators as a way to divert time 
from drudgery and cumbersome work. The time that can be saved from graphing or calculating 
by hand was one of the points brought up by many participants: “[Graphing calculators] could 
save time and energy for the graphs that are hard to draw and require detailed calculations” 
(Writing—Turkish participant). However, most did not mention what they would do with the 
time saved. That is why their data was coded as computational use of graphing calculators. 
Nevertheless, one could still argue that these comments might be a sign of the beginning of a 
change in mathematics classrooms and a signal of the birth of transformational use of graphing 
calculators by these participants (Özgün-Koca, 2009). However, in this analysis, an emphasis on 
change was sought in order to code the data as transformational tool. Approximately half of the 
Turkish and U.S. participants clearly discussed the role of graphing calculators in transforming 
the nature of the teaching and learning environment: “Teachers are able to spend more time on 
concepts not facts so students are actually learning, not just memorizing” (Writing—U.S. 
Participant). Seventy percent of the Turkish and 48% of the U.S. participants stated that one of 
the advantageous uses of graphing calculators was being able to help students to visualize 
mathematical concepts. One-third of the Turkish and 22% of the U.S. participants emphasized 
that graphing calculators could be used as discovery tools: “Calculators, especially in the 
learning environments that are designed according to the discovery approach or constructivist 
theory, could be used to enable students to practice [using their previous knowledge], relate 
different concepts, discover or construct the knowledge [by themselves]” (Writing—Turkish 
participant).  
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No participant in this study mentioned the use of graphing calculators as data experimental 
tools. Since Turkish participants did not experience or observe the use of graphing calculators 
with Calculator Based Laboratories (CBL) or similar technology, it is not surprising that they 
would not discuss this use of graphing calculators. The U.S. participants, on the other hand, did 
not discuss this use, either. During the interviews, the researcher did not intentionally bring up 
each use of graphing calculators with the aim of observing the roles that participants discuss 
freely. This situation emphasizes the importance of the experiences that teachers obtain (or not) 
in their teacher education programs.  

 

Technological Pedagogical and Content Knowledge  
When many participants discussed their views about graphing calculators, they mainly 

focused on the teaching and learning issues of TPACK. Participants’ main discussions focused 
on how graphing calculators might help or hinder students’ learning. A major issue in this 
category of TPACK was the fear of calculator dependency where participants were using their 
TPK by discussing how the availability of technology might affect students’ learning. 
Approximately sixty percent of the U.S. participants and half of the Turkish participants shared 
their worries about students becoming dependent on calculators:  “Some students may rely on the 
calculator to an extreme level. This may cause them to be handicapped when doing things by 
hand” (Writing—U.S. participant). One interesting discussion by U.S. participants was whether 
to use calculators with a group of students who lack basic skills. One group said that they would 
allow such students to use calculators to catch up. The other group emphasized that students 
should be able to compute by hand. At the end of the discussion, participants came to the 
conclusion that they would like their students to have both computational proficiency and higher-
level skills. Another main topic in this category, especially for Turkish participants, was being 
able to get students’ attention and interest with graphing calculators. Seventy-five percent of the 
Turkish and 48% of U.S. participants stated that teachers can engage students when graphing 
calculators are used, which could be a positive benefit for students’ learning: “The main 
superiority of using graphing calculators in teaching is that they would attract the students’ 
attention and students get interested more in the lesson” (Writing—Turkish participant). 

When participants discussed their TPK from a teaching perspective, according to 15% of 
Turkish and 56% of U.S. participants, instructional use of graphing calculators in mathematics 
classrooms should come after students master the skills: “Advanced calculators should start to be 
used by the students after the topics are well understood and exercises are done with paper-and-
pencil” (Writing—Turkish participant) and “I’ve always been not a proponent of calculators until 
they [students] have totally mastered it” (U.S. Interview). Almost half of the Turkish participants 
but only one U.S. participant discussed their worries about classroom management: “I believe 
there is the possibility that a student could sit at a corner during the whole class session without 
doing anything” (Turkish Interview).  

Turkish participants had no experience using graphing calculators as students, nor had they 
any experience teaching with them during student teaching. Their technological knowledge  was 
very limited compared to their U.S. counterparts. Thus, 44% of the Turkish participants said that 
the teacher needs to have technical knowledge of graphing calculators: “[Another disadvantage] 
could be that the teacher would not be competent in, i.e. s/he doesn’t know how to use the 
calculator” (Writing—Turkish participant). Forty percent of Turkish and 35% U.S. participants 
discussed that teachers should have necessary TPK about how to use graphing calculators 
effectively in the classroom: “It is the teacher’s role to use discretion for when calculators should 
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be used. Calculators are most beneficial, any kind, when used for learning not as an answer-
giving black box” (Writing—U.S. participant).  

Content related discussions in participants’ writings were very scarce. Participants were 
referring to their TCK when discussing appropriate subjects to address with graphing calculators 
in mathematics education. Algebra and graphs of functions were mentioned often in these 
discussions. Geometry was the next most-mentioned topic for Turkish participants and statistics, 
data analysis and probability was for U.S. participants. Mainly advanced topics were listed as 
appropriate to use graphing calculators, possibly due to the fear of calculator dependency. 

 

Relationship between the Two Frameworks  
When the two frameworks—the roles of the graphing calculators and TPACK—were taken 

into consideration concurrently, an emergent theme evolved. The main part that was discussed 
by all participants in the TPACK framework was TPK. While doing that, different roles of the 
calculators came into play. When some participants discussed the role of calculators as discovery 
tools, then tended to discuss how this role helps students’ understanding: “It helps students 
internalize the ‘why’ behind a process, rather than what to do…They can also be used to verify 
experimental ideas. ‘What do you think would happen if…?’” (Writing—U.S. participant). 
Conversely, when calculators are used as computational tools, some participants mentioned that 
this might hinder students’ learning: “I do not think that students should use calculators for basic 
computations/operations…the student should do that mentally in order to gain more basic 
computational practice” (Writing—Turkish participant).  

 

Summary of the Views of U.S. and Turkish Participants  
Turkish and U.S. participants had similar views regarding the use of graphing calculators in 

mathematics education. Both worried about calculator dependency but thought that calculators 
could transform the teaching and learning environment, carrying the mathematics experienced in 
classrooms to new levels. Both groups saw graphing calculators as computational tools. Turkish 
participants brought the visualization aspect more into play, while calculator dependency was the 
main discussion topic in U.S. interviews. More U.S. participants than Turkish participants 
thought graphing calculator use was more appropriate after students have mastered basic skills, 
and they focused on more practical issues. More Turkish than U.S. participants worried about 
classroom management and cited their need for technical knowledge. Significantly more Turkish 
participants discussed the motivational aspect of graphing calculators as an advantage. This 
could be the result of the novelty of graphing calculators for Turkish participants.  
 

Discussion and Conclusions 
Even though Turkish and U.S. participants had different experience levels with graphing 

calculators, the main role given to them by both groups was doing fast and accurate 
computations and creating complicated graphs in a short period of time without drudgery—a 
computational tool according to the Doerr and Zangor (2000) typology—without discussing how 
they would use the time saved. This is a superficial use of TPK. Some of the roles that 
participants assigned to the graphing calculators were due to many advantages they saw in using 
them. Here the use of two frameworks was beneficial, because when participants reflected on the 
advantages/disadvantages, they were referring back to their TPACK. One implication of these 
results is to provide environments where preservice teachers experience the potential and 
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effective use of different technologies in mathematics education in order to help them develop 
more informed views. That Turkish and American participants held similar views about the use 
of graphing calculators is both encouraging and questionable. How were Turkish participants 
able to have more positive views in some categories compared to U.S. participants? When half of 
both Turkish and U.S. participants agree that the use of graphing calculators could transform the 
nature of their classrooms so that concepts are more valued, we can see a universal trend where 
understanding is more valued than computation, but one can still wonder what U.S. participants 
have learned from having graphing calculators in use for the last decades (e.g. seeing students 
reaching for calculators for basic calculations) and how this might have affected their TPACK as 
teachers.  

One implication of the results of this study is the need to help teachers develop and reflect on 
a cohesive TPACK (Thompson & Mishra, 2007), rather than a set of disconnected knowledge 
types (TK, PK, CK, TPK, or TCK). The activities and practices that teachers experience frame 
the knowledge and beliefs they construct and develop. For example, if the participants had more 
experience with calculators as data collection tools, they might have discussed it in their writings 
or in the group discussions. Moreover, group interviews helped participants reflect on, confront, 
and defend their own beliefs. Listening to others’ views might have helped many of them to 
reconsider not only their beliefs, but also their knowledge, or to expand their viewpoints to 
include other possibilities. Teacher education offers teachers the knowledge and experience they 
will require. During their education, teachers not only acquire knowledge, but also form their 
beliefs about pedagogy which may affect their future instructional decisions (Ball et al. 2001; 
Stipek, Givvin, Salmon, & MacGyvers, 2001). Therefore, it is critical to identify and study 
teachers’ beliefs in order to advance teacher education to an evolving entity presenting 
opportunities for teachers to reflect on those beliefs.  
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LIGHTS, CAMERA, MATH! THE F PATTERN NEWS 
 

 
 
 
 
 
 
 
 
We define mathematical performance as the process of communicating mathematics using the 
performance arts. By highlighting the role of technologies in shaping mathematical thinking, we 
present two episodes of a qualitative case study. First, considering the use of songs, lyrics, video 
clip, manipulative blocks, and online applet, we illustrate how thinking collectives of students-
teacher-media investigated the L Patterns (sequence and series of odd and even numbers) and 
conjectured a new sequence of numbers called F pattern. Then, we describe how these collectives 
created a digital math performance for the Math Performance Festival based on their conjecture. 
We believe that digital media and the performance arts are helping to create transformative means 
of mathematical communication and learning.  

 
Traditionally, “mathematical performance” is conceptualized as pertaining to the domain of 

assessment and evaluation. However, we see mathematical performance as the process of 
communicating mathematics using the performance arts (Gadanidis & Borba, 2008). “Exploring 
mathematical ideas through performance can offer a way to challenge some of the most limiting 
stereotypes around mathematics learning” (Gadanidis, Gerofsky & Hughes, 2008 p. 19). By 
creating music or movies, math performers can provide surprises to audiences and communicate 
mathematical ideas in an imaginative way. Moreover, digital mathematical performances are 
digital media (e.g., video and audio files, flash animations, and virtual objects) used to 
communicate math through music, cinema, theatre, poetry, storytelling, etc. We do not suggest 
all mathematics should be taught using performance arts. However, thinking about mathematics 
as performance may lead to new ways for (a) student to produce knowledge with technologies 
and (b) sharing mathematics beyond classrooms (Gadanidis, Gerofsky & Hughes, 2008).  

Since 2008, students and teachers have been submitting digital mathematical performances to 
the Math Performance Festival (MPF) (Gadanidis, Borba, Gerofsky & Jardine, 2008). The MPF 
is based on a virtual environment where digital performances are published. Every year, 
Canadian celebrities (e.g., musicians, poets, TV presenters) and mathematicians select their 
favourite performances in terms of: (a) depth of the mathematical ideas; (b) creativity and 
imagination; and (c) quality of the performance. The participants of these performances are 
awarded with medals. Gadanidis and Geiger (2010) have referred to the MPF as “one example 
that helps bring the mathematical ideas of students into public forums where it can be shared and 
critiqued and which then provides opportunity for the continued development of knowledge and 
understanding within a supportive community of learners” (p. 102). 

In this paper, we present a qualitative case study to illustrate how Brazilian students 
investigated and created a digital mathematical performance for the MPF. We suggest math 
performance can offer ways for transformative teaching and learning mathematics. 
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Theoretical Framework 
Vygotsky (1978) investigated children’s development and how development is conditioned 

by the role of culture and language. According to Vygotsky, higher mental functions are 
historically developed within particular cultural groups, through social interactions with 
significant people of children’s life, particularly parents and teachers. Through these interactions, 
children learn the habits of the culture, including patterns of speech, verbal and written language, 
and other symbolic representations. Thus, Vygotsky emphasized (a) the social interaction with 
more knowledgeable others in the zone of proximal development and (b) the role of culturally 
developed sign systems and languages as psychological tools of thinking (Cobb, 1994). In this 
sense, socioculturalism highlights the role of activity in mathematical learning and development, 
by linking activity to participation in cultural practices, taking the individual-in-social-action as 
their unit of analysis (Cobb, 1994). Thinking develops from practical and object-oriented 
activity, that is, “human action is mediated by cultural tools and is fundamentally transformed in 
the process” (Goos, Galbraith, Renshaw & Geiger, 2000, p. 306). 

Tikhomirov (1981) claims that computers reorganize human activities in diverse levels. 
Tikhomirov suggests computers do not replace, substitute, or merely complement humans in 
their intellectual activities. Processes mediated by computers reorganize thinking. According to 
Tikhomirov, computers play a mediating role as language does in Vygotsky’s theory. 
Considering the nature of human-computer interaction in terms of feedback, the dimensions 
involving computational mediation provide new insights for learning and development.  

Levy (1998) claims “as humans we never think alone or without tools. Institutions, 
languages, sign systems, technologies of communication, representation, and recording all form 
our cognitive activities in a profound manner” (p. 121). Levy uses the term thinking collectives 
to discuss the collaboration between human and non-human actors in the cognitive ecology.  

Borba and Villarreal (2005) argue the notion of regulation by computers is qualitatively 
different when compared to the mediation by verbal and written languages. Borba and Villarreal 
argue (a) humans-with-media are thinking collectives in constant reorganization of mathematical 
thinking and (b) media transform mathematics. That is, mathematics produced with paper and 
pencil is qualitatively different from the mathematics produced with computers.  

Therefore, we notice that our research interest is focused on how students-teacher-media 
form thinking collectives when they create digital math performances. Regarding notions within 
socioculturalism, we are interested in understanding the role of technologies in shaping students’ 
thinking and learning when they communicate mathematics using the performance arts.  

 
Methodology 

Stake (2003) argues qualitative case studies are specific and bounded, they have patterns, and 
the focus is on the understanding of the complexity of the case. Yin (2006) claims “the strength 
of the case study method is its ability to examine, in-depth, a case, within its ‘real-life’ context” 
(p. 111). Case study “is best applied when research addresses descriptive or exploratory 
questions and aims to produce a firsthand understanding of people and events” (p. 112).  

In this paper, we analyze data produced through the Students as Performance Mathematicians 
project (Gadanidis, Borba, Gerofsky, Hoogland & Hughes, 2008). Over a period of two years, 
part of the research team of this project worked in partnership with a state public school in Rio 
Claro, Sao Paulo, Brazil. These activities engaged middle school students (and some teachers) in 
a number of activities with the goal of producing digital mathematical performances. These 
performances were submitted and published at the MPF. Thus, our data consists of several 
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resources produced from these activities. These resources are: (a) field notes; (b) students’ 
writings; (c) video recordings of semi-structured interviews with students and teachers; (d) video 
recordings of teaching and learning sessions with students; and (e) digital mathematical 
performances. We use data resources from 4 learning sessions (4 hours each). Eight students 
participated in the first, second, and third sessions. Four students participated in the fourth 
session. The first author of this paper played a role as a teacher. In this paper, we first highlight 
how students-teacher-media conjectured their own sequence of numbers, based on an initial 
investigation. Then, we describe how this thinking collective created a new digital mathematical 
performance for the MPF. 

 
Results 

Barton (2008) states “mathematics is created in the act of communication … An educational 
perspective asks whether this implies that mathematics is learned through communication. This 
perspective also focuses on the nature of the communication, and the role played by different 
people in it” (p. 144). That is our focus in describing the episodes, that is, our focus on 
mathematical thinking emerges through our analysis of how communication through 
performance happened and how media were non-human actors in this scenario. 

 
Episode One 

At the beginning of the first learning session, the teacher engaged all students in investigating 
the “L patterns” using several materials as such as songs, lyrics, video clip, manipulative blocks, 
and online applets. The L patterns (see Figure 1) refer to the study of sequence and series of odd 
and even numbers. L patterns have the potential to offer surprise in generalizing patterns. 
Working with manipulative and applets, students can construct sequences of numbers and they 
can connect blocks (or simulate the connection) to have a geometrical representation for the 
series which works as a visual proof. Playing with L patterns becomes a surprising and visceral 
experience when students connect L’s forming squares (odd numbers) and rectangles (even 
numbers).  

 
 
From the humans-with-media perspective (Borba & Villarreal, 2005), experimentation-with-

technologies and visualization play fundamental roles in mathematical thinking. Students-
teacher-media were involved in figuring out a generalization for Sn = 1 + 3 + 5 +…+ (2n – 1). By 

Figure 1. L Patterns (Applet, video clip, and lyrics) 
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investigating the algebraic sum at each stage (writing, singing, and watching a video) and 
articulating it to the connections of Ls forming a square (constructing with blocks and simulating 
with an applet), the students-teachers-media identified a new pattern together, as thinking 
collectives. They also worked with algebraic representations.  

At the second session, students conducted an investigation in pairs. They were focused on the 
use of both manipulative blocks and online applet, but they were also regarding links with other 
materials as such as the lyrics. By instructing the pairs of students, the teacher was interested in 
hearing conjectures from them. The teacher proposed to students to speak their ideas and/or write 
them all on their paper-notes. From the analysis of the video recording and field notes, we 
highlight that Student 3 came up with an interesting conjecture asking: “But, if we think about it, 
there are even numbers in rectangles, are there not?” The teacher said: “Perfect. What is the 
shape related to the series of even numbers?” Student 3 then argued: “A rectangle, right? I can 
see it with the applet.” With the intention of negotiating the meaning of this idea with all 
students, the teacher brought Student 3’s conjecture to the whole class. However, no further 
discussion happened at this moment involving all students collaboratively. Students were 
focused on their investigation in pairs. Even though students did not engage in a collective 
meaning negotiation, we suggest Student 3 did an important articulation involving several 
representations and media in investigating the L Patterns. Thinking-with-Applet-song-lyric-
video-blocks-and-other-media, Student 3 was able to conjecture a visual representation for both 
the sequences and series of odd and even numbers. Students did not have developed an 
investigation about even numbers until that moment, but Student 3 was able to visualize and 
manipulate the applet and the blocks, relate it to the lyrics, images and sounds, recognize an 
approach on even numbers, relate it to the investigation of odd numbers, and communicate that 
the series of even numbers can be geometrically represented by rectangles. This moment 
revealed a significant role of information technology in shaping student’s thinking and learning. 
Other students came up with interesting ideas along the first session as well, but these students’ 
conjectures and ideas toward odd and even numbers will be addressed in other papers. 

At the third session, students were still working in pairs. Based on the investigation of the L 
patterns, Student 1 and Student 8 decided to create a new sequence of numbers using the 
manipulative blocks. These students created a first F using 6 blocks. They discussed the growth 
of the sequence and they decided to add 3 blocks each stage, forming the sequence (6, 9, 12, 
15,…) (see Figure 2).  The teacher brought up this discussion of F pattern to all students. He praised 
students’ conjecture and imagination in creating a new pattern. He proposed that they could develop 
a similar investigation on the F pattern as they had made to L patterns. “What could be a 
generalization for the sequence? What would be the series? Would be possible to connect the blocks 
and create a visual proof to the series? Could we create a performance about F pattern?” Student 8 
said they were trying to figure out the series, but they did not find a regular shape (as a rectangle) to 
express an algebraic formula for the series. Figure 3 shows students’ tentative of creating a visual 
proof for the F pattern series. The teacher asked them if they had already found a formula to the 
sequence. After fifteen minutes of dialogue between Students 1 and Student 8, where they used 
blocks, and paper and pencil, Student 1 said: “I found it! It is n times 3 plus 3.” The teacher said the 
generalization 3n + 3 seemed to be a good candidate. Focusing on negotiating that meaning 
collectively, the teacher proposed to the class to test it for several stages, and they confirmed 
students’ conjecture. Student 1 and Student 8 celebrated the confirmation of their conjectures 
greeting each other. This moment revealed students’ pleasure in thinking mathematics. It shows the 
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beauty of mathematics as an emotional, visceral, and surprising experience in learning (Gadanidis, 
Hughes & Borba, 2008).  

Student 1: The F pattern is composed by 6, 9, 12, 15, 18, and so on. We are adding three 
blocks each stage. So, what would be the n stage? Here, at the first stage, we have 1 times 3 
plus 3 equals 6. At the second stage, 2 times 3 plus 3 equals 9. At the third stage, 3 times 3 
plus 3 equals 9. And so on. So, at the nth stage, we have n times 3 plus 3. 
Teacher: Great! Congratulations for your discovery!  
 

 
 
Episode Two 

Four students participated in the fourth session. After a teacher’s suggestion, Student 1 and 
Student 8 came up with the idea of creating a new performance based on the theme of TV News. 
Their idea was: to present an interview with a mathematician who had discovered the F pattern. 
That was nicely accepted by the other two students, who indicated important suggestions to the 
script as such as provide humour, use specific songs and sound effects, what kind of images we 
should portray about reporters and mathematicians, how to explain the series of numbers, and so 
forth. “Biased” by his interests as a researcher, the teacher tried to create a parallel between the 
students’ conjecture on F pattern and a performance about a new math discovery. This parallel 
was intentionally related on the performative dimension of students creating identities as 
performance mathematicians (Gadanidis, Hughes & Borba, 2008). Student 1 and Student 8 wrote 
the words they would like to say. Student 3 wrote a description of each scene as a draft of a 
script. Student 5 collaborated with script suggestions and technical support. Students-teacher-
media recorded the scenes at the same order they would like to present it. The process of playing 
and recording involved students’ speech repetition and improvisation through many takes of 
scenes. These actions revealed a significant aspect of improving communication and imagination 
in learning mathematics trough creating a digital skit performance.  

After the recordings, based on other students’ suggestions, the teacher edited the video called 
The F Pattern News (see Figure 4). A theoretical lens on cinema was fundamental to create the 
video. It refers to Boorstin’s (1990) categories about the pleasures we have when we watch a 
film. Here, there is an emphasis on the audiences’ feelings, which in fundamental in terms of 
narrative and identity. Boorstin argues about three different categories: voyeur, vicarious, and 
visceral. The voyeur pleasure refers to the mind's eye and not the heart. It is a more rational 
aspect about the reality or the consistency of the world that is portrayed, but it involves surprise 
and making-sense-of-something. The vicarious pleasure puts our heart into the body of the 
actors. It is when we feel what the actors feel. While the voyeur’s eye requires a more opened-
close, the vicarious requires a close-up on the actors’ faces. The visceral pleasure is when we fail 
to feel what the actors are feeling and began to feel our own emotions.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

	   Figure 2: The F-Pattern constructed with blocks by the students 
Figure 3: Students’ visual 

proof with blocks. 
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The F Pattern News video plays a lot with voyeur’s and vicarious’ pleasures. The close 
parallel with TV News creates a good sense of reality. It involves a lot of surprise in terms of a 
“new mathematical discovery” and making-sense-of the mathematical ideas presented: sequence 
of numbers, use of manipulative materials, explanation on the board, experimentation and test of 
hypothesis, generalization, etc. The sense of humour, the sound effects and music used, the 
reporters’ and mathematician’s actions and speeches allow us to fell a vicarious pleasure. If you 
feel your own feelings in watching this video, if you feel you want to enjoy creating your own 
digital math performance, it means that the F pattern News also works at the visceral level.  

Moreover, the teacher worked with Portuguese/English translations to create subtitles and 
some students were interested in learning how to speak in English the words they said in the 
video. Students agreed that the mathematical idea was been communicated clearly. Then, the 
thinking collective created a final draft at the school’s Lab and one of the administrators of the 
school submitted the video to the MPF. It is available at www.edu.uwo.ca/mpc/mpf2010/mpf2010-
134.html. We suggest that by creating a digital mathematical performance, students can talk about 
mathematics using multiple modes of communication and languages as such as the arts, gestures, 
sounds, words, visual and symbolic elements, and others (Kress, 2003).  

Following, we present a transcription of the video: 
Reporter 1: We are interrupting the TV show to tell you terrific news! One just discovered that 
beyond the L patterns, there is an F pattern! 
Report 2: F pattern? What are you talking about? 
Reporter 1: Our reporter has more information about it. 
Reporter 2: Hey, can you hear us? 
Reporter 3: Yes. I am here with Hypotenuse. She knows 
everything about math. 
Reporter 2: What is this story about F pattern? 
Hypotenuse: The F pattern is here represented by blocks  
Reporter 1: Could you please ask her what would be the 
sequences? 
Reporter 3: Sure. What would be the sequence for the F 
pattern?  
Hypotenuse: As we can see, the sequences increase three 
blocks each stage. 
Reporter 3: Look, at the first stage you used 6 six blocks. At the second stage you used nine 
blocks. At the third, twelve blocks. And so on. What about the hundredth stage? How many 
blocks do you need to construct the hundredth stage? 
Hypotenuse [using the whiteboard and the blocks]: We have a simple formula to figure it out. 
You can notice the result each stage is equal the index of the stage times three plus three. That is, 
3N + 3. At the one hundredth stage we have one hundred times three plus three. It is equal three 
hundred and three.  
Report 2 [with a surprising sound on the background]: I am getting the information that the 
series was discovered. What would it be?  
Reporter 1: In other words, what would be six plus nine plus twelve and so on? 
Reporter 3: Hypotenuse, what would be the series? 
Hypotenuse [in fast motion and using the whiteboard]: I am going to use Gauss’s ideas. The 
series would be the sum of these numbers. Gauss did it twice. Once from the beginning to the 
end, that is, S = 6 + 9 + 12 + … + 3n-3 + 3n + 3n+3. And once from the end to the beginning, 

	  

	  	  	  
Figure 4: The F Pattern News 

Video 	  
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that is, S = 3n+3 + 3n + 3n-3 + … + 12 + 9 +6. Then, we can add these two expressions. So, we 
have 2S = (3n+9) + (3n+9) + (3n+9) + … + (3n+9). Therefore, we have 2S = n times (3n+9). It 
gives us the following formula… [Showing it on the board]. With this formula we can calculate 
the total number of blocks we need until the stage we wish. 
Reporter 1: Last time we talked about the L patterns. Today, we talked about the F pattern. What 
about you? Which one is your favourite pattern?  
Reporter 2: Which one will be our next pattern? 
Report 1: Your local show is coming up next. 
Reporter 2: Good night… have a good day… good afternoon. 
 

Conclusions 
This paper deals with the learning of mathematics and how students can use both digital 

technologies and the performance to communicate mathematics. We suggest mathematical 
performance offers ways for transformative teaching and learning mathematics. Students 
interacted with could be called a new ‘language”, that is, by using multiple modes of 
communication that emerge from the digital world in which videos, pictures, drawings, songs 
and animations are linked to usual printed-based text. In discussing this, we believe that our 
paper is relevant for some of the main topic of the PME-NA 2011 discussion.  

Noss, Hoyles, Geraniou, Gutierrez-Santos, and Pearce (2009) clarify that the difficulties that 
mathematical generalization and algebraic expression pose for students have been thoroughly 
studied. For these authors, the difficulties students face when dealing with generalization 
activities are in some measure due to the way in which they are presented and the constraints of 
the teaching approaches used. Usually, teachers tend to teach the techniques isolated from all 
context to help their students find the rule. There is a need to introduce students to different 
approaches involving generalization of patterns (Noss et al., 2009).  

We do see mathematical performance as one more pedagogical tool to address this need. Two 
students who participated in the creation of the F patterns News were interviewed. They said: 

 
Student 1: I was learning doing something that I love: theatre. To create a performance we 
have to know the content, you have to understand it. If you don’t, it doesn’t work very well. It 
also makes things different. You have to know what you are talking about to create 
something natural. There are interesting things and with performance I realized it is not so 
hard. I love the performance about F pattern. To figure out the formula is something big. It is 
cool because you visualize something and you have to figure out the generalization to know 
the number for any stage, and what is going to happen. You have a set of numbers and the 
formula shows how it is growing up. There is a pattern in this process and I realized that by 
using blocks and seeing the applet. It was a way to learn enjoying. We can use performance 
to make this transformation.  
 
Student 8: Many colleagues asked me what math performance is or what we do to perform 
math. First, they said they did not what to do that, because they hated math. They already 
have too much math classes, and do a drama about math sounded wired.  But I started to 
explain to them exactly what we were doing and the purpose of it. Then, they started to 
change their opinion, seeing math performance as something different. I tried to convince 
and encourage them saying that I was playing what I was learning. 
 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1764



Finally, we highlight that, even though meddle-grade students explored different 
representations for the sequence and series of numbers they created (e.g., )
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recognize the mathematics explored in the learning sessions could have gone further. For example, 
the F pattern (6,9,12,15...) can also be seen as the sum of natural numbers (3,4,5,6,...) and odd 
numbers (3,5,7,9,...) (that is, 3+3, 4+5, 5+7, 6+9, ...). This could be represented as two separate 
visual patterns to get a visual picture of the series in a similar way as the L-patterns. On the other 
hand, by creating a digital math performance, we did see interesting ways for mathematical 
exploration. “Mathematical exploration and play is always possible, at any level. Within the 
environment of existing mathematics there are (have always been) educational resources full of 
wonderful open questions … It is nearly always possible to change some basic assumption of 
mathematics, and to genuinely explore or play in a new environment” (Barton, 2008, p. 150).  
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We report on research conducted with six seventh-grade mathematics teachers who 
participated in a two-year professional development research study on implementing 
formative assessment in networked classrooms. While the full study used a variety of both 
quantitative and qualitative data sources, this report focuses on data from the semi-
structured interviews conducted at the end of the project. We describe three of the categories 
that emerged from the coding (Strauss & Corbin, 1998) and relate these to teachers’ use of 
the technology.    

There are few studies that examine teacher learning and practice for more than a year, 
especially looking at the impact of technology-focused professional development (Mouza, 
2009). In this paper, the impact of two years of professional development on teachers’ 
implementation of formative assessment in a connected classroom is analyzed through the 
lens of the interactive relationship between practices and beliefs. Analysis is based on case 
study data collected from six of 30 teachers who participated in Project FANC1, a research 
study of implementing formative assessment in a networked classroom using the TI-
Navigator System2 and graphing calculators. The goal of the research in Project FANC was 
to investigate the use of formative assessment in a networked classroom as it affects middle 
grades student learning of algebra concepts. In particular, Project FANC studied the effects of 
one-half of the 30 teachers using formative assessment with the TI-Navigator System for two 
years and compared them to the effects of the other half using formative assessment with the 
TI-Navigator System for one year after receiving professional development in formative 
assessment the first year. Detailed descriptions of the two different models of professional 
development can be found in Olson et al. (2010). 

In How People Learn (NRC, 1999), classroom networks were suggested as one of the 
most promising technology-based education innovations for transforming the classroom 
environment. Wiliam’s (2007) description of a pedagogy of contingency, in which the 
essence of formative assessment is instruction contingent on what students have learned, can 
be accomplished through the use of technology that has potential to overcome the major 
hurdle to utilizing formative classroom assessment: the collection, management and analysis 
of data. While feedback loops in the regular classroom are very slow, classroom networked 
technology has the capability to provide rapid cycles of feedback to improve ongoing activity 
in real time (Roschelle, Penuel, & Abrahamson, 2004). Using the TI-Navigator System, what 
students know and can do is easily assessed and anonymously displayed. Students can enter 
and send their responses to the teacher computer and teachers can easily send questions, and 
receive, organize, and display students’ answers, so that the interaction between the teacher 
and students and among students is greatly facilitated. Four functions of TI-Navigator System 
particularly helpful for formative assessment implementation are: (a) Quick Poll—allowing 
teachers to immediately collect and display all students’ responses to a question; (b) Screen 
Capture—allowing teachers to monitor individual students’ progress at anytime; (c) Learn 
Check—allowing teachers to administer quick and frequent formative assessments and 
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provide timely feedback; and (d) Activity Center—allowing students to work collaboratively 
to contribute individual data to a class activity.  

Although teachers may obtain information about student’s knowledge, they do not 
necessarily change their instructional procedure based on the information obtained. 
Researchers at Ohio State found stronger evidence for technology implementation than for 
change in instruction. Even with technology tools available to assist with implementation of 
formative assessment instructional strategies, not all teachers who make significant changes 
in using of technology necessarily make full use of the potential of the connected classroom 
for formative assessment (Owens, Pape, Irving, Sanalan, Boscardin, & Abrahamson, 2008). 
Each teacher will have unique ways of incorporating effective formative assessment practices 
into her or his classroom using connected classroom technology. 

Substantial evidence suggests there is a complex relationship among teachers’ classroom 
practices and the interconnected knowledge and perceptions of mathematics, technology, 
learning, and teaching. The integration of technology in classroom practices is influenced by 
teachers’ background knowledge and experiences, and conceptions of technology, 
mathematics, and learning (Zbiek & Hollebrands, 2008). Teachers’ disposition towards 
mathematics and its pedagogies have been highlighted as a major factor in determining the 
way teachers make sense of technological tools and integrate technology in the classrooms 
 (Ruthven, Deaney, & Hennessy, 2004; Mousley, Lambdin, & Koc, 2003). Mouza (2009) 
found that teacher change was highly dependent on the continual interaction between 
practices and beliefs and that teachers went back and forth between implementation of 
practices from professional development experiences and previous practices. If teachers are 
to effectively use technology, changes in their knowledge, practice and beliefs are needed. 
Mouza also reported that teachers’ beliefs about their students constituted a critical variable 
influencing their decision to use technology. 

Research shows that technology may change the nature of mathematical activity in the 
classroom and consequently the teaching and learning of mathematics (Laborde, 2007). 
Laborde described two levels of teachers using technology: 1) teachers who master the use of 
technology to do an activity and 2) teachers who used the technology for organizing 
instruction and learning to take advantage of the specificities of the technology in relation to 
the meaning of the mathematical content (p.88).  

Methodology 
The 30 teachers in Project FANC were equally divided into two groups, called FA and 

NAV, to study the effects of two different models of professional development on student 
learning of algebraic concepts. All teachers were provided with laptop computers, LCD 
projectors, Elmos, and a classroom set of TI-73 calculators at the beginning of the project. 
During the first summer, the participants in the NAV group received TI-Navigator Systems 
and received professional development using the TI-Navigator for formative assessment 
while the FA participants received professional development in formative assessment only. 
Each group participated in five follow-up sessions during the first school year as well as 
received coaching visits from project staff. During the second summer, the NAV participants 
received continued professional development in using TI-Navigator with more of a focus on 
formative assessment, while the FA participants received TI-Navigator Systems and 
professional development on using the TI-Navigator for formative assessment. Five follow-
up sessions for the combined groups were conducted during the second year and coaching 
continued as well.  

It was expected the implementation of the ideas presented in the professional 
development would vary by teacher and the teacher’s beliefs and perceptions about 
mathematics teaching and learning, efficacy in using formative assessment and networked 
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technology, and support within the school community. To study the implementation process, 
we conducted case studies on ten of the teachers, five in each group. Data sources for the case 
studies were background information provided by teachers, classroom observation field 
notes, notes from coaching visits, focus group and individual interview videos, writing 
prompts, and the Learning Mathematics for Teaching assessment.  

While case study data were collected for 10 participants, this paper focuses on six of the 
teachers. The focus is on issues of implementation of formative assessment in a networked 
classroom and not on individual teachers. A brief description of each teacher, by pseudonym, 
is included.  

Kate was in her late 20s and sixth year of teaching when she entered Project FANC. She 
has secondary mathematics certification and received her degree in mathematics education 
from Northern Colorado. Kate was interested in Project FANC because of the technology. 
She teaches in a middle school that has a significant variety of technology available for 
student and teacher use and was somewhat disappointed that she was not selected for the 
NAV group. The middle school where she teaches has approximately 900 students. 
Ethnicities of the diverse student body include 29% Filipino, 22% part Hawaiian, 15% White, 
and 11% Japanese. Thirty-five per cent of the students receive free and reduced lunch, 6% 
have limited English proficiency, and 9% are in special education. 

Sharon is in her mid 40s and was in her 9th year of teaching when she entered Project 
FANC, although she served as a long-term substitute for several years prior to that. She has 
secondary mathematics certification and a major in mathematics education. Sharon does not 
consider herself a ‘genius’ in mathematics but loves working hard. She teaches at a combined 
intermediate and high school in a rural area with about 1650 students. Ethnicities of the 
diverse student body include 40% part Hawaiian, 21% White, 17% Filipino, and 13% 
Samoan. Forty-five per cent of the students receive free and reduced lunch, 5% have limited 
English proficiency, and 12% are in special education. 

Yaz is in his 30s and had three years of teaching experience in middle grades 
mathematics when he became a participant in Project FANC. Both of his parents were 
teachers. He attended K-12 schools in the Pacific islands but received his undergraduate 
degree, with certification in elementary and middle school education, in Hawai‘i.  Prior to 
participation in Project FANC, he was in his current teaching position for one year.  His 
colleagues view him as the ‘tech’ person. Yaz teaches at the same school as Kate. 

Denby is in her 30s and was in her eleventh year of teaching when she entered Project 
FANC. She received a bachelor’s degree in mathematics and one year later received her 
secondary mathematics certification. She recently received National Board Certification.  
Always looking to learn more, she has been a voracious participant in professional 
development experiences to which she has had access. Denby teaches at an intermediate 
school in a rural area with about 925 students. Ethnicities of the diverse student body include 
40% part Hawaiian, 16% Hawaiian, 10% Filipino, and 7% Samoan. Seventy-five per cent of 
the students receive free and reduced lunch, 5% have limited English proficiency, and 17% 
are in special education. Although a participant for two years, she was not able to participate 
in the activities of the first summer. 

Clarise is in her 30s and had one year of teaching experience in middle grades 
mathematics when she became a participant in Project FANC. She began teaching after 
Teach for America training to teach third grade. With no elementary teaching positions 
available in Hawai‘i, she was asked if she wanted to teach mathematics or English.  Clarise 
chose mathematics and became an eighth grade teacher at a middle school five days before 
the start of school. She moved to seventh grade her second year because the school loops 
with teachers following students from seventh grade to eighth grade. She teaches in a middle 
school with approximately 900 students. Ethnicities of the diverse student body include 64% 
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Filipino, 8% part Hawaiian, and 6% Samoan. Sixty-three per cent of the students receive free 
and reduced lunch, 25% have limited English proficiency, and 10% are in special education. 

Iris is in her 30s and was in her 10th year of teaching when she entered Project FANC. 
She has a degree in mathematics education and both middle school and secondary 
mathematics certification. She teaches at a large middle school with about 1750 students 
where only three-fourths of the students are on campus at any one time. Ethnicities of the 
diverse student body include 26% Japanese, 21% White, 16% part Hawaiian, and 6% 
Filipino. Thirteen per cent of the students receive free and reduced lunch, 2% have limited 
English proficiency, and 11% are in special education. While she has considerable experience 
with technology, she felt she was volunteered for Project FANC.  

 
Results 

In this paper, we report on interviews with six of ten teachers who were part of the larger 
case study. These six were chosen because they represented a wide range of uses of 
technology, differed in their definitions and implementation of formative assessment, have a 
range of years of teaching experience, and were from schools representing a wide-range of 
ethnic diversity and background. While other data were collected, this report focuses on data 
from the semi-structured interviews conducted at the end of the project. Our report 
concentrates on three of the categories that emerged from the data analysis (see Olson et al., 
2011). We focus on categories that involve teachers’ views of formative assessment, 
pedagogy, and the role of students. In the complexity of classroom life, we believe that these 
aspects are interrelated in numerous ways. However, we discuss each category separately 
before looking at how they are manifested in teachers’ use of technology in the classroom. 

Formative Assessment 
All teachers in the case study had been familiar with the term formative assessment 

before entering the FANC project. Some had participated in professional development 
sessions about formative assessment given by the state department of education. Two 
phenomena are of interest here: 1) the variation in teachers’ views about formative 
assessment and 2) whether teachers reported on having changed their views of formative 
assessment as a result of their participation in FANC. 

While all teachers believed formative assessment yielded valuable information, the range 
of views extended from conceiving of formative assessment as a series of mini-summative 
assessments to a view of formative assessment tasks indistinguishable from tasks of the 
ongoing lesson. At one end of the spectrum, teachers used questions and check-ups as one 
would use quizzes to monitor students. The information from students’ responses helped 
them to find out who was following the lesson, which students ‘got it,’ and it provided 
guidance for pacing the lesson. These teachers tended to use Quick Poll and Learn Check 
more than any other of the Navigator features. Moreover, they interpreted students’ responses 
in terms of correct or incorrect answers. Denby’s comment represents this viewpoint. “I use it 
more just…to assess, Where are they? How many of them got this? Can I move on? Or do I 
have to still wait and go back and check?” 

Other teachers used students’ responses to Quick Polls and Learn Checks to focus on 
misconceptions. Displaying these results provided opportunities for the whole class to discuss 
misunderstandings. Such discussions helped teachers better understand student thinking, and 
by making incorrect answers public, students and teacher were able to jointly learn from and 
address incorrect responses. 

In Clarise’s classroom, formative assessment was woven into all teaching and learning 
activities. Clarise had made a major change in her grading policy by no longer grading 
assignments, including homework. “Homework…is more like a discussion point rather than 
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something to grade.” (Clarise) In this way, the homework responses, collected on Quick Poll, 
became part of the dynamic of teaching and learning, so that both students and teacher could 
make formative assessments in the course of the lesson. 

Almost all teachers reported that their participation in the project had broadened their 
view of formative assessment. Most teachers had previously thought that formative 
assessments were those based on a smaller amount of material, such as a quiz, and summative 
assessments were those that covered a larger body of material, such as a test. They now 
realized that there are many formats for conducting formative assessment, and it can be a 
daily occurrence. Yaz expressed his new understanding,  

 
…formative assessment is more than just a quiz and seeing where kids are and what I 
need to re-teach. It goes into depth on misconceptions and why kids think this way, 
how can we address it….   

Pedagogy 
Among the pedagogical issues that arose in the interviews, two key topics were 

questioning and planning. Both of these are important aspects of formative assessment (Ayala 
& Brandon, 2008) and both are integral to using the Navigator features. In their interviews, 
most teachers focused on the importance of questioning, but not all used questions in the 
same way. Iris was representative of teachers who used questions to guide students. 

 
I try to direct them in the way I want them to go, so to speak. With the equations, 
where they had to put their own equations, I ask them, “What is the coefficient?” And 
using that vocabulary, trying to get them used to the vocabulary…. 
 
Other teachers tried to learn more about students’ thinking through questioning. They 

focused on how their students might solve a problem and created questions to expose 
misconceptions and provide interventions as needed. They spoke about “thinking as a student 
yourself” (Yaz) and the importance of knowing the students when introducing new concepts, 
“what might they have a hard time with, what might they misunderstand or misinterpret…” 
(Kate). Kate characterizes herself as a ‘questioner’ and not as a ‘teller.’  

 
I like to ask kids questions, rather than direct them to an answer or tell them their 
answer is correct. I like to know more about why they think they are right or 
wrong…. 
 
Teachers varied in how they planned lessons. The teachers who were focused on student 

thinking tried to anticipate what problems and misunderstandings students would have. Yaz 
and Kate, who collaborate in their planning like to have students’ misconceptions in mind as 
they plan, “…then we are ready for the discussion….” (Kate). Clarise also focused on how 
her students are thinking about the mathematics. Since participating in the FANC project, she 
has reorganized her classroom, including getting different furniture, to enable students to 
work in groups. In her efforts to be responsive to student thinking, her approach to teaching 
has become more spontaneous. “…Sometimes it’s [referring to a Quick Poll question] 
planned ahead of time, but most of the time it’s just right in the moment….” (Clarise) 

The goal of Denby’s planning was to create a lesson that maximized students successfully 
completing the tasks she intended for them. Here she carefully broke tasks down into smaller 
pieces so she could assess if students understood before moving on. She used this approach 
when introducing the Navigator technology and for introducing mathematics content. Using 
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this approach, Denby felt she was both addressing the mathematics goals of her lessons as 
well as how effectively the students were learning what she hoped they would learn. 

Student Role 
The Navigator system is connected to a projector enabling everyone to see student 

responses. While it is possible for these responses to be anonymous, students usually know 
and identify which response belongs to them. Teachers commented that the public nature of 
the display made the students more accountable for their participation in the lesson activities. 

 
With the Navigator, it holds them a little more accountable. ‘Cause they know if they 
are the one student who is not responding, they know they are the one the class is 
waiting for…. With the “Are You On the Line,” they know if they are the one on or 
off the line because they weren’t paying attention. You know, so, it holds them a lot 
more accountable to participate. To be engaged. (Kate) 
 
…having the Navigator…they put in the equation and [they] could immediately see 
who is getting it right or wrong, and we could help them make the corrections right 
away. (Iris) 
 
Besides contributing their own responses, the Navigator features enable students to 

provide feedback for others. In this way, students become sources of knowledge for the 
class and thereby assume some of the responsibility for the group’s learning, both to 
prompt thinking about the tasks and to assess understanding. “My kids have picked up on 
my questioning… they make their peers think about it….” (Kate) Not all teachers 
promoted a shared locus of control to the same degree, but all teachers reported on an 
increase in student discourse and using that discourse to guide their teaching. 

 
…it’s a whole lot better when they’re talking with each other. They teach each other 
stuff, and then there [are] ten teachers in the room instead of just one. (Clarise) 

Discussion: Integration of Technology 
Over the course of the FANC project, teachers used the Navigator system in a variety of 

ways in their lessons. Some examples include using Quick Poll or Learn Check at beginning 
of a lesson as a warm up; posing problems in Activity Center to which all students 
contributed data; and displaying student work on Screen Capture so students could compare 
work in progress. All teachers used the various Navigator features to get feedback about 
students’ progress at critical points during the lesson. Most teachers used Quick Poll and 
Learn Check more often than activity Center or Screen Capture. They reported taking longer 
to become comfortable with Activity Center, and they viewed its applicability mainly to 
algebra topics, especially graphing of data or exploring features of equations.  

Teachers believed that the immediate feedback from all of the Navigator features 
significantly supported teaching and learning in their classrooms. Yet, there was a subtle 
difference in viewpoint about how that support was utilized that relates to their approaches to 
formative assessment, pedagogy and the role of their students. Some teachers primarily used 
the feedback as assessment for how the students were doing. These tended to be the same 
teachers who viewed formative assessment as measures of correctness or incorrectness, 
whose questioning was designed to direct the lesson, and who viewed students primarily as 
receivers of information. 
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Class, why do you think so-and-so got this answer? Oh, because they did the wrong 
step…they multiply first instead of doing power first, whatever…So that’s very 
valuable…you have instantaneous, it’s formative assessment and I can check it and 
see who’s got [it] and who doesn’t; that’s huge. (Sharon) 
 
Another group of teachers viewed the use of the Navigator system as affording greater 

learning opportunities for their students. These teachers also utilized the feedback from 
student responses to inform their teaching, but this assessment occurs via the learning 
activity. 

 
When…we are going over the answers and I see two different set-up proportions…as 
being correct, I would use that as a discussion on why these two look different…and 
are still being considered as correct answers. And then we had a discussion with the 
kids. (Yaz) 

 
In summary, not only were we able to determine different levels of use of technology 

and formative assessment, we found this use corresponded to teachers’ beliefs and 
perceptions related to their views of formative assessment, classroom pedagogy, and 
students’ role in the teaching and learning process. These views then had an impact on 
how they used technology for implementing formative assessment in a networked 
classroom.  

Endnotes 
1. The research reported in this paper was generated by the grant, The Effects of Formative 
Assessment in a Networked Classroom on Student Learning of Algebraic Concepts (DRL – 
0723953) funded by National Science Foundation Research and Evaluation on Education in 
Science and Engineering (REESE) program. The views expressed in this paper are the views 
of the authors and do not necessarily represent the views of the National Science Foundation. 
	  
2.	  TI-Navigator™ is a networking system developed by Texas Instruments that wirelessly 
connects each student’s graphing calculator to a classroom computer. 
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This study explores the Technological, Pedagogical, and Content Knowledge (TPACK) of three 
experienced secondary mathematics teachers and describes ways of using technology. Analyzing 
their TPACK, we noticed that teachers integrated technology to: a) give students opportunities to 
learn and experiment with their mathematical knowledge; b) help pass the content to the students 
in the process of teaching mathematics; and c) assess and evaluate student work, and give them 
feedback.  
 

Introduction and Methods 
This research aims to explore the integration of technology in secondary school mathematics 

classrooms by using the Technological Pedagogical and Content framework (Mishra & Koehler, 
2008). The goals are: to understand existent pedagogical ideas in the context of integration of 
technology into mathematics education by experienced teachers; and to document and analyze 
secondary school mathematics teachers’ choices in integrating technology. The research question 
was: How do mathematics teachers describe their ways of integrating technology?  Three 
teachers from a Toronto school agreed to participate. Data was collected from observations, 
document analysis, and interviews. Data was grouped according to the categories proposed by 
Niess (2008). We structured the findings of this paper based on Niess’s four layers of integrating 
technology for the TPACK framework: 1) overall conceptions of integrating technology, 2) 
knowledge of instructional strategies, 3) knowledge of students, and 4) knowledge of curriculum 
and curricular materials.  

 
Findings  

First Layer 
Overall, the three teachers displayed high competence in teaching the mathematics 

curriculum. They knew the mathematics content required for the secondary school curriculum, 
the students and the context of the school. They were able to acknowledge the difficulties that 
might appear when their students started to learn these mathematical curricular units and were 
willing to use technology in order to let students have their own ways of exploring mathematics.  

 
Second Layer 

Teachers used technology for various purposes in their teaching and for assessments. 
Therefore, we might conclude that the teachers were individuals with a sound Technological, 
Pedagogical, and Content Knowledge, and the administrators supported them to implement 
computer technology in mathematics instruction.   
 
Third Layer  

Each teacher had knowledge about the students’ background, academic performance, and 
possible difficulties. Based on students’ skills, the teacher devised his or her methods that would 
be deemed successful.   
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Fourth Layer  
The teachers had a good knowledge of mathematics curriculum and knowledge of how to 

adapt their curriculum material for their students. For computer technology, they gave students 
the opportunity to experiment with their mathematical ideas and test their knowledge through 
computer technology.  

 
Final Comments 

The teachers were able to make technology available as a support for investigation and to 
establish connections with pedagogy and content. By collaborating and receiving technical 
support from each other helped the teachers to cope with difficulties of integrating technology in 
classrooms. The technology was also used for assessing student knowledge, a fact that 
tremendously reduced the time for feedback of the teachers.  
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Recent theories of cognition model human reasoning as tacit simulated action. Implications for 
the philosophy, design, and practice of mathematics instruction may be momentous. We report 
on findings from a pioneering design-based research study into the embodied roots of 
proportional reasoning that also explored the pedagogical potential of embodied-interaction 
(EI), a form of technology-enabled immersive activity. 22 Grade 4-6 individual/paired 
interviewees remote-controlled virtual objects in a non-symbolic space to solve a problem, then 
progressively mathematized their strategy using symbolic artifacts interpolated into the space. 
Drawing on qualitative analyses of the filmed work, we build a sociocognitive account of the role 
of automated feedback in the mediated construction of perceptuomotor schemes that undergird 
conceptual development, and we offer a heuristic EI design framework. 

Introduction 
Over the recent decades, cognitive scientists, psychologists, and philosophers have begun to 

increasingly question theories of cognition that model the mind as a symbol processor. 
Alternative “embodied” or “enactive” theories suggest that sensorimotor interaction in the 
natural and sociocultural ecology deeply shapes the mind—even thinking with or about 
“abstract” ideas is in fact the mental simulation and coordination of multimodal schematic image 
schemas (for a recent survey, see Barsalou, 2010). In particular, embodied cognition has been 
presented as a useful framework for both theorizing mathematical reasoning and designing 
pedagogically effective learning environments (Abrahamson, 2009; Nemirovsky & Ferrara, 
2009; Núñez, Edwards, & Matos, 1999). 

Parallel to the rise in popularity of theories of embodiment is the dramatic recent progress in 
technological affordances for embodied interaction (e.g., Nintendo Wii and Playstation Move, 
iPhone 4, and Xbox Kinect). Innovative designers tuned to this progress are constantly devising 
ways of utilizing this commercial technology in novel ways that serve a diverse audience of 
researchers and practitioners (e.g., Lee, 2008). As such, media that only recently appeared as 
esoteric instructional equipment will imminently be at the fingertips of billions of prospective 
learners. And yet, What forms should “embodied” learning take? How should we theorize such 
learning? What are best design principles for fostering embodied interaction? 

In what follows, we discuss embodied interaction (EI) as bearing unique affordances for 
mathematics teaching and learning as well as research on this process. We then demonstrate 
these affordances by presenting an EI design for proportions as well as vignettes from 
implementing this design. The vignettes were selected so as to contextualize a proposed 
sociocognitive view on EI design: educators use EI first to foster student development of a 
targeted perceptuomotor scheme, then to guide student appropriation of mathematical forms as 
means of redescribing this scheme in accord with disciplinary practice and parlance. Finally, we 
offer an emerging heuristic design framework for EI mathematics instruction. 
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Embodied Interaction in the Research and Practice of Mathematical Learning 
EI is a form of technology-supported training activity created, implemented, and researched 

by scholars interested in investigating multimodal learning. Through engaging in EI activities, 
users build schematic perceptuomotor structures consisting of mental connections between, on 
the one hand, physical actions they perform as they attempt to solve problems or respond to cues 
and, on the other hand, automated sensory feedback on these actions. One objective of EI design 
is for users to develop or enhance targeted schemes that undergird specialized forms of human 
practice, such as mathematical reasoning. As is true of all simulation-based training, EI is 
particularly powerful when everyday authentic opportunities to develop the targeted schemes are 
too infrequent, complex, expensive, or risky. Emblematic of EI activities, and what distinguishes 
EI from “hands on” educational activities in general, whether involving concrete or virtual 
objects, is that EI users’ physical actions are intrinsic, and not just logistically instrumental, to 
obtaining information (cf. Marshall, Cheng, & Luckin, 2010). That is, the learner is to some 
degree physically immersed in the microworld, so that finger, limb, torso, or even whole-body 
movements are not only in the service of acting upon objects but rather the motions themselves 
become part of the perceptuomotor structures learned. Thus, all EI gestures are perceived as 
epistemic actions, even if they are initiated as pragmatic actions (cf. Kirsh, 2006). In EI, the 
learner’s body—its structure and action—becomes concrete instructional material. EI is “hands 
in.” 

EI activities typically emphasize explorative perceptuomotor tasks and draw less on 
propositional or domain-specific reasoning (e.g., Antle, Corness, & Droumeva, 2009). 
Notwithstanding, EI activities may include standard symbolic elements, such as alphanumeric 
notation, diagrams, and graphs (e.g., Cress, Fischer, Moeller, Sauter, & Nuerk, 2010; 
Nemirovsky, Tierney, & Wright, 1998). Indeed, content-oriented EI activities are often designed 
explicitly to foster the guided emergence of domain-specific conceptual structures from domain-
neutral perceptuomotor schemes. 

We consider EI activities as creating useful empirical settings for research on guided 
mathematical ontogenesis. In particular, because EI begins with amathematical hands-in problem 
solving, data from these activities bring out in relief micro-phases of a learning trajectory that 
may simulate and generalize to all mathematical development: transitioning from unreflective 
orientation in a multimodal instrumented space to reflective mastery over the disciplinary re-
description of this acquired competence. We thus propose to merge enactive and sociocultural 
theory to investigate how social interaction steers individuals to leverage perceptuomotor 
competence in appropriating mathematical forms of reasoning; more broadly, how learners come 
to embody, inhabit, and signify epistemic practice mediated through guided participation in 
cognitively demanding social activity (cf. Roth, 2009). 

Our paper re-analyzes data from a recent study, in which we investigated an instructional 
methodology for scaffolding the emergence of proportional reasoning from EI problem-solving 
activities. Our analyses implicate the vital role of natural discursive modalities, such as verbal 
and gestural utterance, as well as mathematical semiotic artifacts, such as a virtual Cartesian grid 
and numerals, as the means by which students re-describe their entrained perceptuomotor 
enactment in disciplinary form (cf. Edwards, Radford, & Arzarello, 2009). Moreover, we found 
that these re-descriptions can take surprising, pedagogically useful directions, as students 
discover in situ and ex tempore better ways of using the symbolic artifacts so as to enact, explain, 
or evaluate their task strategy (Abrahamson, Trninic, Gutiérrez, Huth, & Lee, in press). As such, 
we see our work as expanding on neo-Vygotskian conceptualizations of appropriation (e.g., 
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Bartolini Bussi & Mariotti, 2008; Sfard, 2002). Namely, we implicate learners’ creative 
reappropriation of symbolic artifacts in ways that are not modeled by the instructor yet students 
nonetheless discover as semiotic–enactive affordances. 

Finally, as reflective designers we also wish to contribute to the theory and practice of EI-
based mathematics instruction, which we view as bearing promise. We therefore conclude this 
report with a summary of our current heuristic design framework for mathematics learning 
activities in learning environments availing of affordances unique to EI technology. 

Design and Implementation of the Mathematical Imagery Trainer 
Our design conjecture, which built on the embodied/enactive approach discussed above, was 

that some mathematical concepts are difficult to learn because mundane life does not occasion 
opportunities to embody and rehearse particular schemes that constitute the requisite cognitive 
substrate for meaningfully appropriating these concepts’ numerical procedures. Specifically, we 
conjectured that students’ canonically incorrect solutions for rational-number problems—“fixed 
difference” solutions (e.g., "2/3 = 4/5" - Lamon, 2007)—indicate students’ lack of multimodal 
action images to ground proportion-related concepts (Pirie & Kieren, 1994). Accordingly, we 
engineered an EI inquiry activity for students to discover, rehearse, and thus embody 
presymbolic dynamics pertaining to the mathematics of proportional transformation. At the 
center of our instructional design is the Mathematical Imagery Trainer, which we introduce 
below (MIT - see Figures 1&2, below, and for detailed descriptions of the device's rationale and 
technical properties, see Abrahamson et al., in press; and Howison, Trninic, Reinholz, & 
Abrahamson, 2011, respectively). 
 

    
a. b. c. d. 

Figure 1. MIT interaction schematics, with the device set at a 1:2 ratio, so that the right 
hand needs to be twice as high than the left hand: (a) incorrect performance (red feedback 

on exploratory gestures); (b) almost correct performance (yellow feedback); (c) correct 
performance (green feedback); and (d) another correct performance. 
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a. b. 

Figure 2. MIT in action: (a) “incorrect” enactment turns the screen red; and (b) 
“correct” enactment turns the screen green. See www.tinyurl.com/edrl-mit for a 5 minute 

video clip showing the MIT in action.  

The MIT measures the height of the users’ hands above the desk. When these heights (e.g., 
10’’ & 20’’) match the unknown ratio set on the interviewer’s console (e.g., 1:2), the screen is 
green. So if the user then raises her hands proportionate distances (e.g., to 15’’ & 30’’), the 
screen will remain green. Otherwise, it will turn red (e.g., raising equal distances to 15’’ & 25’’). 
As such, this MIT is designed to hone pre-numerical struggle around the additive/multiplicative 
tension commonly implicated in the literature as underlying student challenges in moving into 
rational numbers (Lamon, 2007). Study participants were tasked first to find green then to 
maintain it while moving their hands. The protocol included layering a set of mathematical 
artifacts onto the display, such as an adaptable Cartesian grid (see Figure 3c, below), to stimulate 
progressive mathematization of emergent strategies. 

Participants included 22 students from a private K–8 suburban school in the greater San 
Francisco Bay Area (33% on financial aid; 10% minority students). Care was taken to balance 
for students of both genders from low-, middle-, and high-achieving groups as ranked by their 
teachers. Students participated either individually or paired in a semi-structured clinical 
interview (duration of mean 70 min.; SD 20 min.). Interviews consisted primarily of working 
with the MIT. At first, the condition for green was set at a 1:2 ratio, and no feedback other than 
background color was given (see Figure 3a; we used this challenging condition only in the last 
six interviews). Then, crosshairs were introduced (see Figure 3b): these virtual objects mirrored 
the location of participants’ hands in space yet, so doing, became the objects users acted on, then 
through. Next, a grid was overlain on the display (see Figure 3c) to help students plan, execute, 
and interpret their manipulations and, so doing, begin to articulate quantitative verbal assertions. 
In time, numerical labels “1, 2, 3,…” were overlain along the grid’s y-axis (see Figure 3d): these 
enabled students to construct further meanings by more readily recruiting arithmetic knowledge 
and skill so as to distribute the problem-solving task. 
 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1780



 
 
 
 
 
 
 
 

 a. 

 
 
 
 
 
 
 
 

 b. 

 
 
 
 
 
 
 
 

 c. 

 
 
 
 
 
 
 
 

 d. 
Figure 3. Display configuration sketches: (a) continuous-space mode;  

(b) continuous-space mode with crosshairs, i.e. virtual objects users manipulate;  
(c) crosshairs with grid overlay; (d) crosshairs with grid overlay and y-axis numerals. 

For the purposes of this paper, we focus on two brief episodes demonstrating milestones in 
students’ instrumenting their perceptuomotor solution strategies then redescribing them.  

Results and Discussion 
All students ultimately succeeded in devising and articulating strategies for making the 

screen green, and these strategies were aligned with the mathematical content of proportionality. 
We observed minor variation in individual participants’ initial interpretation of the task as well 
as consequent variation in their subsequent trajectory through the protocol. However, by and 
large the students progressed through similar problem-solving stages, with the more 
mathematically competent students generating more strategies and coordinating more among 
quantitative properties, relations, and patterns they noticed.  

Each student began either by working with only one hand at a time, waving both hands up 
and down in opposite directions, or lifting both hands up at the same pace, possibly in abrupt 
gestures. They soon realized that the actions of both hands are necessary to achieve green and 
that the vertical distance between their hands was a critical factor. Importantly, all children 
initially moved their hands at a fixed difference, certainly a legitimate, reasonable strategy. 

The following data excerpts will sketch how we used the MIT-based design first to foster 
student development of a perceptuomotor scheme centered on obtaining “green” feedback and 
then to leverage their skill in mediating its mathematically instrumented re-descriptions. 

We begin with a 6th-grade male student, Penuel, who took longer than others in realizing that 
the relation between the hands’ respective positions is a critical task-relevant quality. 

Penuel:  So it looks like... they have to be a certain distance away from each other for it to 
turn green….and if it’s not a certain distance, it’s not green, it’s yellow or red. 

Penuel then identified that the positions of the hand should be reinterpreted as magnitudes. That 
is, he re-saw the location of each hand in space in terms of how high that hand is above the desk, 
so that empty space below each hand took on the palpability of virtual substance. 

Penuel:  Well, they obviously can’t be at the same distance [above the desk]. But if I start 
here, and if the right one is moving, like, a little faster, and it’s going farther and 
farther away from the left hand, it will still stay green. 

Note references to velocities. Later still, once the grid and numerals were introduced, Penuel 
quantified his sense of “moving… a little faster” as a proto-ratio by noticing a distinctly 
mathematical pattern emerging from green locations. Prompted to sum his discovery, he said: 
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Penuel:  You start from the ground [indicates desk], you try to get to the first green… you 
have to have one… left hand on “1,” right hand on “2.” Exactly. And you start from 
there, and you keep doubling it. 

Like all students, Penuel was prompted to “make the screen green.” As he interacted with the 
MIT, and through our interview prompts, “green” transformed from an objective to feedback, as 
seen by his observations about the “correctness” of types of movements that elicit green. Finally, 
this feedback enabled him to discern a mathematical notion (“doubling”) from the set of hand 
locations eliciting green. This pattern of emergence of mathematical meaning was common to all 
the students interviewed. Here we can provide only one more illustrative case. 

Liat, a 5th-grade female student, exhibited a telltale indication of conceptual transition: 
mismatch between gestured action and verbal explanation (Church & Goldin-Meadow, 1986). 
She consistently moved her hands up in a fixed-distance motion, received red feedback, and 
adjusted the left hand down for green, yet she stated a fixed-distance strategy. 

Liat:  I think if I keep them apart and keep going up, it stays the same... 
Int:  If you keep them apart and you keep going up it stays the same? 
Liat:  It’s not becoming red, but... 
Int:  So... how are you thinking about keeping them apart?  
Liat:  Oh maybe it’s more. If it’s farther up, then it has to be…they have to be more apart. 

Later, upon the introduction of the grid and numerals, Liat was asked to predict green locations 
without moving her hands. She noted “one row” in between the crosshairs when the left hand is 
at 1 and the right hand is at 2, making green. She extended the thought: 

Liat:  And if you go… 10… if you go up to 10, there’s gonna be like 4 or 5 rows. [i.e., if 
the right hand is at 10, the left should be 4-5 rows lower so as to make green.] 

Thus, Liat was able to instrumentalize the grid to enhance her previous qualitative strategy for 
green, namely that the “farther up” her hands are, the “more apart” they ought to be. However, 
the 1:2 ratio was yet to become articulated, as her guess indicated she was still thinking in terms 
of approximate magnitude, “4 or 5,” rather than relying upon more powerful mathematics (e.g., 
half of ten is five). Yet here precisely came the moment of guided transition to the more 
powerful mode of reasoning, multiplicative relations, as seen from the following exchange, 
where the interviewer asked her to decide between 4 and 5: 

Liat:  No… five! 
Int:  Five? How did you do that so quickly? How did you know it was five? 
Liat:  Half of ten is five. 

Later, during the post-interview debriefing, Liat reflected on the activity of finding green. 
Liat:  It’s not just moving hands… it’s… [Liat moves her hands up and down, grasping 

for words]… it’s… you’re trying to do something and get the number. 
In the ensuing discussion, Liat said that, at first, the activity was “not easy” yet that “actually, 
now it’s easier” because she figured out how it works mathematically. Thus Liat, like Penuel, 
comes to re-describe her newly developed skill of “green finding” via mathematics, concurrently 
using green as an objective, feedback, and “conservation” for an ontogenesis of proportion. This 
pattern, common to all our study participants, suggests certain stable affordances of EI design for 
mathematics learning, as we discuss below in the closing section. 

Conclusions and an Outline for a Heuristic Embodied-Interaction Design Framework 
Even as learning scientists are increasingly accepting a view of mathematical reasoning as 

multimodal spatial–temporal activity, technological advances and free-market forces bode an 
impending ubiquity of personal devices capable of utilizing remote-embodied input. Poised 
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between theory and industry, design-based researchers are only beginning to wrap their minds 
around the protean marriage of embodied cognition and remote action. Embodied interaction, a 
form of physically immersive instrumented activity, is geared to augment everyday 
perceptuomotor learning by fostering cognitive structures that leverage homo sapiens’ evolved 
capacity to orient and navigate in a three-dimensional space, wherein the brain developed by and 
for action. We currently have far more questions than answers respecting both the prospects of 
EI and principles for best design and facilitation of these innovations. Our strategy has been to 
engage in conjecture-driven cycles of building, testing, and reflecting. In this spirit, the current 
paper aimed to share our excitement with EI and offer some early observations and caveats. Yet, 
as often occurs when new media are encountered, we learn as much about pan-media practice as 
about the new media per se. As such, the “ontological innovations” we have stumbled upon 
through our design-based research appear to bear more generally on how people do and could 
learn (cf. diSessa & Cobb, 2004). 

Our analyses depicted learning as the evolution of users’ subjective meaning for the 
automated feedback and, in particular, the role of perceptuomotor scheme as a vehicle or 
platform for the mediation of conceptual development. EI automated feedback (such as “green” 
in our design) evolved in the functional and cognitive roles it played. That is, green: (a) began as 
the task objective; (b) soon became the perceptuomotor feedback, as the users attempted to 
complete the task objective; and (c) came to hold together a set of otherwise unrelated hand-
location pairs sharing a common effect and begging a name. Feedback on perceptuomotor 
performance thus came to demarcate the set of “green” number pairs as all belonging to an 
emerging ontology—a phenomenal class connecting seemingly disparate conceptions, 
observations, and hunches. To the expert, this emergence is centered around the concept of 
proportion; the student, however, is merely trying to “make the screen green” and explain exactly 
what makes it green. It is in this sense that green functioned as more than an objective or 
feedback—it served as an ontological scaffold or conceptual placeholder. Through appropriate 
facilitation, the scaffold ultimately collapses, or the placeholder is filled, once users determine 
the activity’s mathematical rule and recognize the rule’s power for anticipating, recording, and 
communicating the MIT’s solution procedure. As one child gleefully quipped, upon determining 
the multiplicative relation of an unknown ratio, “I hacked the system!” Similar, when Penuel 
referred to “green” as the objective of his strategy (see his last excerpt, above), it is evident in his 
response that he has populated the notion of green with appropriate mathematical machinery 
needed to explain and predict “green.” 

EI thus creates arenas for launching mathematical learning trajectories from body-based 
qualitative notions. As the students engage in problem-solving our MIT mystery device, their 
physical actions inscribe a “choreographed” form with increasing deftness—forms that are very 
difficult or perhaps impossible to mediate outside of EI design. Whereas the student views these 
forms as physical solution procedures, the educator—who views the forms from the vantage 
point of an expert’s disciplinary perspective—conceptualizes these forms as the multimodal 
image schema underlying the cognition of the targeted concept. Using representational resources 
and discursive guidance, the instructor may then steer students to progressively signify these 
image schema into what become concept images of the emerging mathematical ideas. That is, 
even as the gestured forms lend meaning to mathematical propositions, they take on the 
epistemological role of metaphorical simulations (concept-specific “math kata,” if you will). In 
practice, the mathematical concept emerges when students utilize new mathematical symbolic 
artifacts, which the instructor introduces into the problem-solving space, as means of enacting, 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1783



explaining, enhancing, and/or evaluating their solution procedure. As such, mathematical 
knowledge emerges through recognizing a particular cultural form (e.g., the Cartesian grid) as 
contextually useful tools. Specifically, students utilize these available forms to articulate their 
physical solution procedures, first multi-modally (verbally and gesturally) and then also 
symbolically (by utilizing numerical inscriptions). Initially, these articulations are naive and 
qualitative, but they progressively adhere to mathematical forms via situated ascension from the 
physical to the mathematical. 

In sum, we view EI as bearing the capacity of supporting transformative teaching and 
learning. Specifically, EI enhances the implementation of visionary design frameworks, by 
which students should begin inquiry into complex mathematical concepts from presymbolic 
action-based quantitative reasoning (Forman, 1988; Thompson, 1993). More generally, we 
submit, EI activities constitute rewarding empirical contexts for research aiming to deepen and 
expand our field’s understanding of how instructors discipline learners’ perception of a shared 
domain of scrutiny (Stevens & Hall, 1998). Whereas our work is in its early stages and our 
conclusions tentative, we hope to have conveyed some enthusiasm over EI’s unique instructional 
and theoretical affordances. Our future work will compare our results with non-EI interventions 
and continue to seek improvements in both theory and design, availing of recent hands-free EI 
development. 
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This study documented means by which STEM educators experienced the mathematics and 
science associated with understanding lunar phenomena. The paper reports how well STEM 
Education graduate students interacted with project-based materials as they engaged in 
transdisciplinary teaching and learning. A mixed-methods approach was used with this 
semester-long design study to expose how focused project work facilitated spatial understanding. 
Significant gains were made on lunar-related concepts that had been previously resistant to 
conceptual change. An implication of this study suggests that technologies, such as Stellarium 
and Geometer’s Sketchpad, facilitated project progress and aided understanding on these 
particular domains including spatial mathematics. 

This paper describes a project-based environment created in a graduate course designed for 
21st Century STEM (science, technology, engineering, mathematics) educators. The modeled 
environment was designed with a project-based framework aimed to allow educators the 
opportunity to experience the Principles and Standards for School Mathematics (NCTM, 2000), 
the National Science Education Standards (NRC, 1996), and the National Educational 
Technology Standards (ISTE, 2008) in a transdisciplinary manner. Through project work, 
students formulated questions, engineered research methods, collected and analyzed data, and 
communicated their findings. Project investigations often situated mathematics in an 
astronomical context and employed the use of various technologies. Use of innovative 
technologies embedded within a STEM project-based environment provided opportunities for 
future 21st Century educators to realize and apply “outside of the box thinking to create solutions 
that will lead to results for students” (U.S. DOE, 2010, p. 13). Four groups of students were 
compared as they conducted project work that required the mathematization of the Earth, Moon 
and sky. Students’ pre/post spatial mathematical understandings were also analyzed for change. 

 
Theoretical Framework 

Project-based instruction allows students to represent, model, and apply their content 
knowledge in novel ways. Necessary criteria for a project classroom include driving research 
questions (Krajcik & Blumenfeld, 2006), benchmark lessons and innovative technologies to 
scaffold understanding (Singer, Marx, & Krajcik, 2000), and milestones (Polman, 2000) to give 
students feedback and time for revisions. Project-based instruction that embraces these key 
features can provide opportunities for students to improve their understanding of both 
mathematical and scientific practices by problematizing various situations, placing a demand for 
knowledge, discovering new principles, refining preexisting understanding, and applying 
understanding in the pursuit of research questions (Edelson, Gordin, & Pea, 1999, p. 394).  

Previous research (Wilhelm, 2009) on the effectiveness of a project-based lunar unit has 
shown middle level students and preservice teachers significantly improved their understanding 
on the mathematics related to periodic patterns (e.g. periodicity of lunar phases), geometric 
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spatial visualization of a moving three-bodied system, and cardinal direction (e.g. documenting 
an object’s vector direction from a given position). Significant improvement on understanding 
these topics is noteworthy since students have had historically difficult times comprehending the 
spatial mathematics needed to understand physical phenomena such as lunar phases and have 
often harbored numerous misconceptions (Baxter, 1989; Zeilik & Bisard, 2000). Although 
research studies on project effectiveness (Wilhelm, 2009) have shown that participating students’ 
mathematical skills were significantly developed in areas of periodicity, cardinal direction, and 
geometric spatial visualization, some spatial concepts have been more difficult to teach and 
resistant to change. These concepts include spatially visualizing the Moon’s motion; how Moon 
phase, sky location, and time of day are related; and how the change in Earthly location affects 
the observed lunar phase. The following research reports significant gains in understanding some 
of these spatial topics that have been resistant to change. Some implications of this design study 
suggest that technologies [such as Stellarium (2010), free planetarium software, and Geometer’s 
Sketchpad (KCP, 2009), dynamic mathematics visualization software] played an important role 
toward engaging students and facilitating understanding. 
 

Research Questions and Methods 
Eleven students (from an eastern south-central university in the United States) participated in 

the graduate course, Project-enhanced Environments in STEM Education, which met for 16 
weeks (2.5 hours/week). Of these eleven students (three male, eight female), two were practicing 
teachers – one kindergarten teacher and one secondary mathematics teacher. The rest were 
obtaining their Masters of Education Initial Certification degrees in the areas of math or science.  

In this course, the Moon was used as a context for students to experience project work since 
it was inherently interdisciplinary and demanded integration of mathematics and science. 
Students were to consider the mathematics and science involved with understanding the Moon 
and its phases. Approximately 20% of class meetings (on average) involved a Moon related 
activity or discussion. Research questions pursued were: 1) How will students’ spatial 
mathematics and scientific understandings develop as they engage in a contextualized, 
technology-rich, project-based environment? 2) How will the students’ group projects affect 
their understanding of lunar related concepts? 

 
 Scaffolding Benchmark Lessons and Project Work 
1. Moon observations (both nature and Stellarium) and journaling. 
2. Earth/Moon/Mars scaling lesson. 
3. Initial practice project investigation: Collecting data to debunk claims of skeptics who believe the lunar landings 

were a hoax. 
4. Investigation of what affects a crater’s size. 
5. Exploration of craters across the Solar System. 
6. Two and Three-Dimensional Modeling of Earth/Moon/Sun geometry required for various lunar phases. 
7. Asynchronous Internet discussion groups with Australian preservice teachers. 
8. Formation of groups and generation of driving questions. 
9. Multiple sharing and feedback sessions of group project data collections and representations. 

Table 1. Benchmark lessons and project work task sequence 
This design study was a semester-long investigation of classroom interactions provoked by 

the use of carefully designed project tasks (Confrey, 2006). Throughout the term, the instructor 
(author) refined the design task sequence (see table 1) based on the students’ progress and their 
need for scaffolding via benchmark lessons. During the enactment of benchmark lessons and 
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project work, students had the opportunity to work cooperatively in small groups, communicate 
their project status on several occasions to the whole class, and revise their work based on peer 
and teacher feedback.  

A mixed methods approach was used with this design study to expose how project work 
facilitated understanding. Students’ lunar-related mathematical and scientific understandings 
were documented before, during, and after project implementation. The mixed methods approach 
was employed with both quantitative and qualitative data sources and data analysis methods. 
Multiple research methods used in tandem allowed for triangulation and strengthened the study 
in greater ways than could have been done with either the qualitative or quantitative research 
alone (Creswell & Clark, 2007). The quantitative data sources used to assess students’ pre and 
post understandings were a Lunar Phases Concept Inventory (LPCI; Lindell & Olsen, 2002) and 
a Geometric Spatial Assessment (GSA; Wilhelm, Ganesh, Sherrod, & Ji, 2007). The LPCI is a 
20-item multiple-choice instrument that assesses eight science domains with four embedded 
mathematics domains and the GSA is a 16-item multiple-choice survey that assesses the same 
four mathematics domains not posed in a lunar context (see table 2). Qualitative data sources 
included students’ Moon journals, on-line discussions with Australians, and project artifacts.  

 
LPCI Scientific Domains GSA Mathematics Domains 

A - Period of Moon’s 
orbit around Earth 

B - Period of Moon’s 
cycle of phases 

Periodic Patterns (occurring at regular intervals of 
time and/or space) 

C - Direction of 
the Moon’s orbit 
around Earth 

E - Phase due to 
Sun/Earth/Moon 
positions 

G - Cause of 
lunar phases 

Geometric Spatial Visualization (visualizing the 
geometric spatial features of a given system as it 
appears in space above/below/within the system’s plane) 

D - Moon Motion from 
Earthly Perspective 

F - Phase-location in 
sky-time of observation 

Cardinal Directions (documenting an object’s vector 
direction in space as a function of time from a given 
position) 

H - Effect of lunar phase with change in Earthly 
location 

Spatial Projection (projecting one’s self into a different 
location, confined to the surface of an object, and 
visualizing from that global perspective) 

Table 2. Concept Domains: LPCI science domains and corresponding GSA math domains 
 

Students began their preliminary project work by exploring the question: Why does the 
Moon’s appearance always seem to change? Over a five-week period, students sketched the 
Moon and sky, recorded the Moon’s altitude and azimuth angles, and documented patterns. One 
of the first design changes occurred due to inclement weather. The instructor employed the use 
of free planetarium software, Stellarium, in order for students to continue observations without 
interruption. Another design modification (an addition of a mini-project) was implemented to 
scaffold struggling students towards understanding how to conduct project work. The mini-
project concerned an investigation of “Moon Hoax” claims. After the lunar journaling, students 
participated in asynchronous Internet discussion groups in a Blackboard blog with Australian 
preservice teachers (five additional weeks). Each week, students discussed an assigned topic and 
compared and contrasted their observation patterns.  

Engaging students in inquiry benchmark investigations, Moon journaling, and on-line 
discussions with Australians helped to direct their follow-up Moon project work and to assist 
them in the generation of their own driving questions. Table 3 displays the questions that 
emerged from the students’ preliminary investigations of the Moon and sky. Four groups 
transpired with topics concerning a) an evaluation of star visibility and location throughout a 
lunar month; b) an exploration of cratering distribution rates on Earth’s surface; c) a comparison 
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of orbital paths of Earth’s Moon and other planetary moons; and d) an investigation of seasonal 
day length from the perspective of observers in northern and southern hemispheres. 

Groups Driving Questions 
Stargazers Are stars in the same location each night, or do they change position? 

Craters What factors determine the distribution of impact craters in Earth’s hemispheres? 
Orbiters How is our moon’s path similar to other moons’? 
Anglers In the Northern Hemisphere, why are the days shorter in the winter than in the summer? 

Table 3. Group Driving Research Questions 
 

Data and Analysis 
The students’ Moon journals contained daily lunar sketches, date and time of observations, 

the Moon’s azimuth/altitude angles, and questions that caused them to wonder as they performed 
their viewings. Early journal entries served as snapshots of participants’ understandings prior to 
the commencement of their projects. For example, approximately one-third of the journals 
contained reference to “a shadow” covering the Moon revealing the Earth’s shadow 
misconception as a cause for lunar phases. An example of a shadow reference is shown in figure 
1. Although it appeared this student had a shadow misconception, she did correctly note an 
eastward movement of the Moon throughout the month; namely, she observed the orbital 
direction of the Moon which denoted a mathematical development of geometric spatial 
visualization understanding (i.e. visualizing the geometric spatial features of a 3-bodied system 
as it appears in space above/below/with the system’s plane). Another student wrote correctly in 
her journal that “I am thinking and learning about the moon. So, since tonight is a full moon, the 
sun, earth and moon are in that order, in other words, the moon is on opposite side of the earth 
as the sun.” This entry is another evidence of a student’s geometric spatial visualization ability. 

On the LPCI pre-test, eight of the eleven students (73%) chose an “Earth’s shadow” cause for 
the lunar phases while two students selected a “Sun’s shadow” explanation. Only one student 
chose the correct response of the Moon’s position relative to the Earth and Sun as the cause. By 
the time of the post-test, only two students stated a shadow explanation.  

 
Figure 1. Student’s moon observation journal entries with reference to a ‘shadow’ and a correct 

reference to the Moon’s eastward movement throughout the month  
In addition to the students’ journals, they also participated in an Australian discussion blog 

where each group of students (U.S. and Australian) described patterns in their data as well as 
differences in their observations. For example, one student described how he noticed that when 
the U.S students witnessed a Moon lit on the left hand side, their Aussie counterparts observed a 
right hand lit lunar surface. This student attached the Stellarium screenshots (see figure 2) within 
his blog entry. Later, students made the realization that the reason for this was due to the fact that 
Australians were looking to the North to see the Moon while U.S. students were looking South. 
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Such a realization is evidence of a mathematical development in spatial projection understanding 
(visualizing from multiple global locations). 

 

 
Figure 2. Stellarium screenshots from Brisbane, Australia and Kentucky, respectively. 

 
The LPCI was given to the eleven students both pre and post project implementation. A 

repeated-measures ANOVA was conducted with overall test scores and by concept domain to 
test for significant change in mean scores. Overall LPCI results showed a mean pre-test score of 
36.8% correct and a mean post-test score of 64.1%. A repeated-measures ANOVA revealed a 
significant increase in the mean values from pre to post-test, F(1, 10) = 32.491, p<<0.001, partial 
η2 = 0.765. Final LPCI results (see table 4) showed students making significant gains on topics 
concerning period of Moon’s phase cycle (Domain-B; Periodic Patterns Math Domain), direction 
of Moon’s orbit (Domain-C; Geometric Spatial Visualization Math Domain), and the cause of 
lunar phases (Domain-G; Geometric Spatial Visualization Math Domain). Gains on these 
particular domains have been observed in prior studies; however, new significant gains were 
observed on Domain D – Moon Motion (Cardinal Direction Math Domain) and on Domain H – 
Effect of lunar phase with change in Earthly location (Spatial Projection Math Domain). 

Table 4 also shows the LPCI results separated by gender to compare gender differences in 
concept domain development. Prior research showed significant gender differences on test 
performance (Wilhelm, 2009). Realizing that our n number is small, significant gender 
differences were difficult to observe; however, trends were noted. For example, male students 
made a 40% significant gain score on the overall LPCI where as the female students made a 
22.5% significant gain score. No significant gains by individual science domains were observed 
for the males due to an n=3; but significant gains on domains D, G, and H were observed for the 
female students. 
Group Project Comparisons 

In order to assess whether group project work affected lunar-related conceptual 
understanding, a repeated-measures ANOVA was conducted with the factor being group and the 
dependent variables being the pre and post scores. A significant time*group interaction effect 
was observed, F(1,3) = 7.528, p < 0.05, partial η2 = 0.763. Figure 3 displays the estimated 
marginal LPCI means by group. The two groups that achieved the greatest significant change 
from pre to post were the Orbiters and Craters. The gender breakdown of each group was as 
follows: Orbiters (one male, two females); Craters (two males, one female); Stargazers (two 
females); and Anglers (three females). It is interesting to note that the Orbiters and Craters 
groups contained the three males of the class. 
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Math 
Domain 

Science 
Domain 

All 
% 
Correct 
Pre 
(SD) 

All 
% 
Correct 
Post 
(SD) 

All 
%  
Gain 

Male  
% 
Correct 
Pre 
(SD) 

Male  
% 
Correct 
Post 
(SD) 

Male 
% 
Gain 

Female 
% 
Correct 
Pre 
(SD) 

Female 
% 
Correct 
Post 
(SD) 

Female 
%  
Gain 

Overall Overall 36.8 
(11.5) 

64.1 
(12.6) 

27.3*** 36.7 
(11.5) 

76.7 
(5.75) 

40* 36.9 
(12.3) 

59.4 
(11.2) 

22.5** 

Periodic 
Patterns 
 

A 

Period of 
Moon’s 
orbit 
around 
Earth 

59.1 
(43.7) 

81.8 
(33.7) 

22.7 50.0 
(50.0) 

100 
(0.00) 

50 62.5 
(44.3) 
 

75 
(37.8) 

12.5 

Periodic 
Patterns 

B 

Period of 
Moon’s 
cycle of 
phases 

48.5 
(22.9) 

72.7 
(20.1) 

24.2* 33.3 
(0.00) 

77.8 
38.4) 

44.5 54.2 
(24.8) 

70.8 
(11.8) 

16.6 

Geom. 
Spatial 
Visual. 

C 

Direction 
of the 
Moon’s 
orbit 
around 
Earth 

54.6 
(35.0) 

86.4 
(32.3) 

31.8* 66.7 
(28.9) 

83.3 
(28.9) 

16.6 50.0 
(37.8) 

87.5 
(35.4) 

37.5 

Card. 
Direct. 

D 

Motion of 
the Moon 

31.8 
(33.7) 
 

63.6 
(39.3) 

31.8* 66.7 
(28.9) 

83.3 
(28.9) 

16.6 18.8 
(25.9) 
 

56.3 
(41.7) 

37.5* 

Geom. 
Spatial 
Visual. 

E 

Phase and 
Sun/Earth/
Moon 
positions 

42.4 
(21.6) 

60.6 
(44.3) 

18.2 33.3 
(0.00) 

(100) 
(0.00) 

66.6 45.8 
(24.8) 

45.8 
(43.4) 

0.00 

Card. 
Direct. 
 

F 

Phase-
Location in 
sky/time of 
observation 

3.0 
(10.0) 

9.1 
(15.6) 

6.1 0.00 
(0.00) 

11.1 
(19.3) 

11.1 4.2 
(11.8) 

8.3 
(15.4) 

4.1 

Geom. 
Spatial 
Visual. 

G 

Cause of 
lunar 
phases 

13.6 
(32.3) 

68.2 
(40.2) 

54.6** 16.7 
(28.9) 

83.3 
(28.9) 

66.6 12.5 
(35.4) 

62.5 
(44.3) 

50.0* 

Spatial 
Project. 

H 
Effect of 
lunar phase 
with 
change in 
Earth 
location 

40.9 
(43.7) 

90.9 
(20.2) 

50.0** 50.0 
(50.0) 

83.3 
(28.9) 

33.3 37.5 
(44.3) 

93.8 
(17.7) 

56.3** 

Table 4. Percentage correct on pre and post Lunar Phases Concept Inventory by mathematical 
and scientific domain and gender group (*p < 0.05; **p < 0.01; ***p < 0.001) 
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Figure 3. Estimated marginal group means of LPCI (pre to post) with a significant 

time*group interaction effect observed 
Three of the four project groups made significant gains from pre to post on overall LPCI 

scores; however, due to small n, significant increases by domain were difficult to observe. 
Only the Orbiters had a significant gain in Domain-G (Cause of lunar phases). Embedded 
within this domain is geometric spatial visualization. The Orbiters had to pay special 
attention to the Earth/Moon/Sun geometry in order to model the lunar path for their project. 
The Orbiters utilized the software program Geometer’s Sketchpad for their orbital modeling. 
Similarly, the Anglers achieved the greatest pre to post score increase (66.7%) in Domain H 
(effect of lunar phase with change in Earthly location; Spatial Projection); however, this 
increase was not statistically significant. The Anglers’ project research involved examination 
of celestial observations from both the northern and southern hemisphere perspectives 
creating spatial projection experiences. Both cases are evidences of how students’ project 
work affected their spatial understandings.  

Like the LPCI, the GSA was given to the eleven students both pre and post project 
implementation. A repeated-measures ANOVA was conducted with overall test scores and by 
domain to test for significant change in mean scores. The only significant gain observed was 
with the cardinal direction domain. Cardinal direction (CD) results showed a mean pre-test 
score of 77.3% correct and a mean post-test score of 95.5%. A repeated-measures ANOVA 
revealed a significant increase in the mean values from pre to post on cardinal direction 
scores, F(1, 10) = 26.667, p<<0.001, partial η2 = 0.727. Further analysis showed female 
students with an 18.8% significant gain score on the CD domain, F(1, 7) = 21.00, p = 0.003, 
partial η2 = 0.750. 

 
Conclusion and Importance 

This study documented means by which 21st STEM educators experienced the spatial 
mathematics associated with understanding lunar phenomenon and how technology became a 
transdisciplinary partner in this project-rich environment. Stellarium was used to supplement 
lunar observations when weather issued problems. Lunar blogging with Australians caused 
students to wonder what others observed across the world—so much so, Anglers made this 
their project focus. Orbiters used Geometers’ Sketchpad to model their lunar paths giving 
them the largest group LPCI gain score. Significant gains were observed on LPCI domains: 
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B, C, and G. Even more intriguing, were the significant gains made on LPCI domains D 
(Moon motion; Cardinal Direction) and H (effect of lunar phase with location change; Spatial 
Projection) which have been previously resistant to conceptual change. Domain D’s 
corresponding mathematics domain, cardinal direction, also showed a significant gain with 
GSA results; however, no other GSA gains were observed. An implication of this design 
study suggests that the use of technology aided spatial understanding.  
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In this presentation we will explore the emerging framework for classification of types of 
mathematics and science integration focusing on cognitive level of mathematical task involved. 
Examples from several longitudinal Professional Development programs for in-service teachers 
will be used for exploring and investigation of the various integration levels.  

The integration of disciplines of mathematics and science helps students develop a better 
understanding of the concepts and establish more connections between the subject areas. One of 
the benefits of such integration is that science can provide students with concrete examples of 
abstract mathematical ideas, and thus can provide relevance to math concepts and a motivation to 
learn. Mathematics, in turn, gives students a means for quantitative exploration and analysis of 
scientific processes.  

In this presentation we will explore the emerging framework for classification of types of 
mathematics and science integration focusing on cognitive level of mathematical task involved. 
For example, the most popular type of integration occurs when a science investigation is 
conducted, and data is collected through some simple measurements, briefly discussed, and then 
displayed in tables or graphs. This type of integration is at the first level, since it only involves 
the simplest mathematical analysis, the procedural.  

Integration at level two is when science investigation is conducted, and then mathematical 
exploration follows with a focus on understanding the mathematical concepts.  

Integration at level three is when science investigation occurs, and then mathematical 
exploration follows with a focus on generalizations and deriving new kinds of mathematical 
relationships. We strongly believe that this classification of mathematics and science integration 
is necessary in order for curriculum to include higher order and critical thinking in both content 
areas.  

Examples from a several longitudinal Professional Development programs for in-service 
teachers will be used for exploring and investigation of the various integration levels. 
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Mathematics and humor are not perceived as being in line with each other. Mathematics is 
perceived as an esoteric and alienated body of knowledge without any humanistic elements. 
Humor constitutes one of the forms of human expression and it has numerous uses in society as 
well as in daily life. Mathematical contents studied at school mostly lack word messages which 
are frequently associated with humor as in most other subjects. The mathematician Littlewood 
wrote that a good mathematical joke is better and better mathematics than a dozen mediocre 
papers. In a subject like mathematics, considered one of the most difficult to comprehend, it is 
highly important to integrate humor. Humor serves as relieving tension, removing anxiety, 
improving self-image and motivating learning. The present paper aims to present the functions of 
humor in general and the possibility to integrate it in the teaching of mathematics in particular. 
The following example may serve as the first course. A math teacher is riding his bicycles. On 
the way he meets one of his students driving a deluxe Volvo. The teacher turns to the young 
man, who he recalled as the student with the lowest grades in class, and asks him: "How did you 
become so successful with your attainments in mathematics?" The young man replies: "I owe it 
all to you, my teacher. I buy pens for $2.00; sell them for $4.00 earning only 10%..." More 
mathematical jokes examples will be included. 
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This research linked educational psychology and mathematics education to investigate how a 
teacher (“Mr. Algebra”) used his knowledge of students in designing and implementing 
mathematical tasks related to piecewise functions and composition of functions. The study 
revealed that Mr. Algebra faced many challenges in the implementation of mathematical tasks 
because students had not mastered early algebra concepts. Additionally, students carried with 
them incomplete formal learning about domain and range, function evaluation, and constant 
functions, which made learning piecewise functions and composition of functions more difficult. 
The study employed various frameworks of mathematical tasks, Self-Determination Theory, and 
Keller’s (2010) ARCS Model. 

This research linked educational psychology and mathematics education to investigate how a 
teacher (“Mr. Algebra”) used his knowledge of students to design and implement mathematical 
tasks related to piecewise function and composition of functions. To guide the study, we applied 
several theoretical frameworks of teacher knowledge (Ernest, 1989), mathematical tasks (Stein, 
Grover, & Henningsen, 1996), Self-Determination Theory (Ryan & Deci, 2000), and the ARCS 
Model (Keller, 2010).  

Our study revealed many students in Mr. Algebra’s course had lost confidence, but he had 
the power to restore that confidence with his flexible teaching strategies and making the course 
materials relevant to their lives. However, he faced many challenges in the task implementation 
because students had not mastered previous course content. Their understanding of function was 
limited in terms of their abilities to (1) identify pre-images and images; (2) transfer from one 
representation to another; or (3) identify functions satisfying some given constraints.  Students’ 
limited understanding contributed to their incomplete formal learning when working with 
function concepts. Hence, recognizing the origins of misunderstanding (incomplete formal 
learning) is necessary to improve the teaching of algebra (Kieran, 2007). 

The study also called for a deeper understanding of students from motivational perspectives. 
As McLeod (1992) suggested, “research in mathematics education can be strengthened if 
researchers will integrate affective issues into studies of cognition and instruction” (p. 575). In 
other words, increased attention to motivational variables can play a vital role in improving 
mathematics teaching and learning. Therefore, the analysis of students’ understanding of 
function concept discussed in our study contributes to the literature on how to engage students in 
mathematics learning related to function concepts. 
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INTERPRETING ZONE OF PROXIMAL DEVELOPMENT THROUGH THE 
ONTOLOGICAL QUADRIVIUM 

 
Definition: Zone of Proximal Development (ZDP) “is the distance between the actual 

developmental level as determined by the independent problem solving and the level of potential 
development as determined through problem solving under adult guidance or in collaboration 
with more capable peers” (Vygotsky, 1978, p. 86). Traditionally, it is interpreted as (a) the 
difference between what a learner can do without help and what the learner can do with help, or 
(b) the range of abilities that a person can perform with assistance, but cannot perform 
independently. 

Proposition: ZDP can be interpreted through metric. There are many issues on 
Russian/English translations involving Vygotsky’s works (Wertsch, 1985), including those on 
ZDP (Junior, 2010). If distance is an appropriate word to define ZDP, then it is possible to 
interpret it through topology and metric spaces (Lewin, 1936). Thus, it is convenient for 
educational psychologists (or any individual interested in developmental psychology) to 
investigate mathematical problems as such as “the taxicab problem or taxicab geometry.” Let M 
! !. d: M x M " R+  is a metric in M if: (1) d(x, y) = 0 " x = y, (2) d(x, y) = d(y, x), # x, y $ 
M and (3) d(x, z) # d(x, y) + d(y, z), # x, y, z $ M. What are the representations of circles when 
d(x, y) = 2

12
2

12 yyxx !+! and when d(x, y) = 1212 yyxx !+! ? 
Theorem: ZDP can be interpreted through the ontological quadrivium (Levy, 1998). ZDP is 

defined under the traditional Aristotle’s notion of metaphysics, where the dialectical relation 
between actual/potential defines reality. However, regarding Deleuzian perspectives (Deleuze, 
1994; Deleuze & Guattari, 1994; Deleuze & Parnet, 2002), Levy (1998) highlights four states of 
being. They are: real-possible and actual-virtual. Levy (1998) uses the expression ontological 
quadrivium to discuss the notion of becoming virtual as the nature of collective intelligence. 
Thus, ZDP can be interpreted as a path connected by humans-technologies through virtual, 
actual, real, and possible levels of development. 

Corollary: Mathematical learning can be understood through this alternative notion of ZDP.  
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A teaching intervention study demonstrates the effective bridging of arithmetic to algebra 
through the linear algebra concept of ‘basis.’  After a unit on base-5 emphasizing the isomorphic 
structural relationships between number bases, students learn to work in ‘base-x,’ applying their 
ordinary notions of arithmetic to compute algebraic arithmetic ‘basis-free,’ without variables.  
Students exposed to base-x performed significantly better at computing algebraic arithmetic than 
a non-treatment control group; and moreover, base-x students demonstrated significant 
retention of knowledge, as compared to control, upon taking a post-post test one month later.  

Several studies on algebra pedagogy indicate that the variable concept presents significant 
challenges for many beginning algebra students.  Herscovics and Linchevski  (1994) describe 
difficulties with the variable concept as a ‘cognitive gap’ between arithmetic and algebra, 
defined as an ‘inability for students to operate spontaneously with or on the unknown (p.59).’  
While much of previous research highlights the ‘differences’ between arithmetic and algebraic 
thinking, this poster describes a teaching intervention focusing on key structural similarities 
using the concept of isomorphism to link algebraic formalism to familiar arithmetic.  After 
generalization of the number base concept by exploring base 5 and other bases, the instructor 
introduces a generalized ‘base- .’  Base-  teaches students to perform subtraction, 
multiplication, and division by first converting polynomials to base-x ‘numbers,’ perform the 
familiar typical algorithms, and then convert back from base- numbers to their algebraic 
representations, as seen in the following example of polynomial multiplication (see Fig.1).       

 
 

 
 
 
 
 
 
 

Figure 1. 
in base- . 

 
The significant results of the study support the hypothesis that isomorphic understanding 

relating arithmetic and algebra enhances transfer of inert arithmetic ability to polynomial 
arithmetic.  The results appear particularly interesting due to the apparent retention demonstrated 
by the treatment group, which the author believes to be evidence of the possible anchoring of 
new isomorphic algebraic thinking to the students’ stable well-known knowledge of arithmetic.   
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The Algebra Standard (NCTM 2000) emphasizes that one of the essential elements in the 
teaching and learning of Algebra is the analysis of change (p. 36).  However, many students still 
struggle with developing an understanding of rates of change (Bell & Janvier 1981; McDermott 
et al. 1987).  This poster contributes to work that has been done to describe how students develop 
an understanding of rates and speed (e.g. Thompson 1994; Thompson & Thompson 1994, 1996).  
We present an analysis of students’ work on a problem where they made use of the concept of 
change to study piecewise linear functions. We draw upon Sfard’s (1991) work describing two 
different ways in which mathematical concepts can be conceived of: structurally—as objects, or 
operationally—as procedures.  We argue that students’ work on the problem provides evidence 
that they were able to move beyond an operational knowledge of change, to a structural 
knowledge.   

We looked for evidence in students’ work of a three-phase transition from an operational 
conception to a structural conception of speed: interiorization, condensation, and reification 
(Sfard 1991, p. 18).  Interiorization is when the learner becomes acquainted with the processes 
that give rise to the concept of speed; for example the learner can compute the difference 
between starting and ending points, starting and ending times, and the quotient of the two.  
Condensation is when the learner is able to think of the process as a whole, without needing to 
consider separately every step in the procedure. Reification is the point when the idea of speed 
becomes a static object, for example a property of a graph.   

We analyzed 44 students’ written work on the problem. We found that 32 students showed 
evidence of interiorization, 27 students showed evidence of condensation, and 20 students 
showed evidence of reification.  We discuss possible elements in the design of the task that could 
have supported students’ transition through these phases.  For example, the lesson provided 
students with a piecewise linear graph to analyze; and students used this graph as an opportunity 
to consider how speed is related to a graph.  An examination of students’ understanding of 
change is helpful for practitioners because teachers can become aware of the resources that 
students may deploy when learning this mathematical concept. 
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To illustrate cross national differences in schooling, this study analyzed content and problems in 
three curricula: a U.S. conventional text, a U.S. standards-based text, and a Chinese reform 
oriented text on the topic of the initial treatment of the concept of function. Analysis results 
revealed that content presentation in the Chinese text is aligned with that in the U.S. 
conventional text; they are designed for teacher-centered instruction. Problems in the Chinese 
text are aligned with those in the U.S. standards-based text, aiming at cultivating students’ 
critical abilities.  

 
To give insights into cross national differences in schooling this study analyzed the initial 

treatment of the concept of function in three curricula: a U.S. standards-based text--Connected 
Mathematic 2: Variables and Patterns, a U.S. conventional text--Glencoe: Mathematics 
Applications and Concepts: Course 2, and a Chinese reformed text--Shu Xue: Grade 8, first 
volume. The concept of function is the fundamental concept of algebra. NCTM (2000) stressed 
that the concept of function should be placed as one of the cornerstones of middle and high 
school mathematics curricula. However, the results from the international assessment studies 
showed that U.S. students fall behind their counterparts from high-achieving countries on this 
topic. Although various factors influence student learning, many researchers generally agree that 
textbooks, as potentially implemented curricula, have a large influence on learning and teaching 
(e.g., Son & Senk, 2010). This study may raise hypotheses about factors affecting achievement 
of students in the U.S. and China, and reveal insights into improving mathematics education 
practice in those countries. 

This study analyzed the corresponding content and problems in three textbooks. For content 
analysis, we explored how the concept of function was introduced, defined, and developed. 
Problems were then analyzed extensively with respect to three criteria: (1) contextual feature, (2) 
response expectation, and (3) cognitive expectation to investigate the kind and level of learning 
opportunities provided by different textbooks. 

 Analysis results showed that Connected Mathematics is designed for student-centered 
instruction while Glencoe and the Chinese text are more teacher-centered. However, in terms of 
problems, Glencoe presented mostly procedure-based examples and problems without illustrative 
contexts. Chinese reform-oriented textbook and Connected Mathematics aimed at cultivating 
students’ critical mathematical abilities, such as mathematical reasoning and problem solving. 
Different from the U.S. texts, the Chinese text provided enough explanations and illuminations to 
facilitate students’ understanding; rather than just presenting worked-out examples, it also 
provided explanations of why and how. 
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To illustrate cross national differences in schooling, this study analyzed content and problems in 
three curricula: a U.S. conventional text, a U.S. standards-based text, and a Chinese reform 
oriented text on the topic of the initial treatment of the concept of function. Analysis results 
revealed that content presentation in the Chinese text is aligned with that in the U.S. 
conventional text; they are designed for teacher-centered instruction. Problems in the Chinese 
text are aligned with those in the U.S. standards-based text, aiming at cultivating students’ 
critical abilities.  

 
To give insights into cross national differences in schooling this study analyzed the initial 

treatment of the concept of function in three curricula: a U.S. standards-based text--Connected 
Mathematic 2: Variables and Patterns, a U.S. conventional text--Glencoe: Mathematics 
Applications and Concepts: Course 2, and a Chinese reformed text--Shu Xue: Grade 8, first 
volume. The concept of function is the fundamental concept of algebra. NCTM (2000) stressed 
that the concept of function should be placed as one of the cornerstones of middle and high 
school mathematics curricula. However, the results from the international assessment studies 
showed that U.S. students fall behind their counterparts from high-achieving countries on this 
topic. Although various factors influence student learning, many researchers generally agree that 
textbooks, as potentially implemented curricula, have a large influence on learning and teaching 
(e.g., Son & Senk, 2010). This study may raise hypotheses about factors affecting achievement 
of students in the U.S. and China, and reveal insights into improving mathematics education 
practice in those countries. 

This study analyzed the corresponding content and problems in three textbooks. For content 
analysis, we explored how the concept of function was introduced, defined, and developed. 
Problems were then analyzed extensively with respect to three criteria: (1) contextual feature, (2) 
response expectation, and (3) cognitive expectation to investigate the kind and level of learning 
opportunities provided by different textbooks. 

 Analysis results showed that Connected Mathematics is designed for student-centered 
instruction while Glencoe and the Chinese text are more teacher-centered. However, in terms of 
problems, Glencoe presented mostly procedure-based examples and problems without illustrative 
contexts. Chinese reform-oriented textbook and Connected Mathematics aimed at cultivating 
students’ critical mathematical abilities, such as mathematical reasoning and problem solving. 
Different from the U.S. texts, the Chinese text provided enough explanations and illuminations to 
facilitate students’ understanding; rather than just presenting worked-out examples, it also 
provided explanations of why and how. 
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This study provides an initial investigation into college instructors' conceptualizations of 
slope. Data were collected from 26 instructors of 11 two- and 3 four-year colleges. Participation 
was optional, and each participant had 15 minutes to complete five items. Working 
independently the members of the research team coded each response using the 11 
conceptualizations of slope identified by Moore-Russo and colleagues (Moore-Russo, Conner, & 
Rugg, 2011; Stanton & Moore-Russo, in press) and adapted from the work of Stump (1999, 
2001a, 2001b). After discussing findings and reaching a consensus on each response, the 
researchers reviewed the frequency of use for each conceptualization. 

The number of conceptualizations used by a single instructor on the five items varied from 
three to nine, with a majority of instructors using five, six, or seven conceptualizations. While all 
11 conceptualizations were used by the instructors, some conceptualizations occurred more 
frequently than others. Based on responses across all five items, functional property was the 
most common conceptualization of slope, followed in order by calculus conception, geometric 
ratio, and real world situation. However, the researchers recognized that some of the assessment 
items might elicit particular conceptualizations while limiting others. Thus, further analysis was 
done to determine the number of instructors who used each conceptualization at least one time 
on the five-item assessment. Based on this analysis, geometric ratio was the most common 
conceptualization, followed by functional property and real world situation (tied) and calculus 
conception.  Stump (1999) similarly reported that geometric ratio was the most common 
conceptualization of slope used by secondary teachers. 

While nearly 85% of the instructors used the geometric ratio conceptualization at least one 
time, functional property and calculus conception were more robust conceptualizations in terms 
of being used on multiple items. The strong presence of these two conceptualizations among 
college instructors provides some evidence that teachers' dominant conceptualizations of slope 
may be linked to the emphasis of the content they teach. Additional research is required to fully 
understand college instructors' conceptualizations of slope and how their conceptualizations 
compare with those of college students.  
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The purpose of this work is to identify the transformative effects that traditional teaching can 

have on student cognition and learning, and to posit a new theoretical framework to connect 
research about basic neurological development and function to phenomena associated with 
mathematics learning.  

This framework identifies basic functions of the brain that produce certain natural 
phenomena that may be observed both at a cellular level and at, what this author will term, the 
“conscious/subconscious” level. The conscious/subconscious level is the area of conscious 
functioning under study that is impacted by subconscious mechanisms independent of conscious 
will.  Further, this author proposes a name, cognitive amblyopia, and a justification for the 
existence of these phenomena.   

Amblyopia is a partial or complete loss of eyesight that is not caused by abnormalities in the 
eye (Hubel, 1988).  Cognitive amblyopia is the partial or complete loss of the ability to see and 
understand concepts that is not caused by abnormalities in the brain.  One aspect of this 
phenomenon may be explicated by discussion of the research underlying the development of the 
theory of cognitive amblyopia.   

While attempting to induce visual amblyopia during a neurobiological research project it was 
found that mechanically inducing discordant visual input between the mammalian subjects’ eyes 
resulted in damage to the subjects’ still plastic eye brain connections. Specifically connections 
between the eyes and the brain that served both eyes developed into connections that were 
dominated by the connections’ dominant eye (Hubel, 1988).  In short the non dominant eye brain 
connection was effectively lost.  This loss of vision indicates that the brain rejects confusing 
input at the most fundamental level.  

Research conducted by Dr. Jerome Bruner and Leo Postman provides an extension of this 
phenomenon into the conscious/subconscious level. In their research, they identified what they 
termed a “dominance” reaction and an extended denial of incongruous stimuli in adult humans 
who were asked to identify flash cards (Bruner & Postman, 1949).  This subconscious denial of 
comprehension was the result of a dominant anticipation and represented a mild and easily 
reversible cognitive amblyopia.  

The theoretical framework surrounding the phenomenon of cognitive amblyopia proffers that 
the brain naturally rejects contradictory and confusing information at a conscious/subconscious 
and cellular level.  Additionally, it asserts that extended exposure to confusing or contradictory 
input will cause structural changes to plastic regions of the brain.  

Some student thinking is subject to change and is plastic by nature. Therefore, ineffective 
methods of teaching mathematics including covering material, inducing potentially irresolvable 
perturbations and presenting material, without respect for student thinking, in a contradictory or 
confusing manner may not just fail to foster learning but may also engender a cognitive 
amblyopia and damage students’ future ability to see meaning in mathematics. 
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A great majority of children in Canada and the United States from Grades 2-6 fail to solve 
equivalence problems (e.g., 2 + 4 + 5 = 3 + __) despite having the requisite addition and 
subtraction skills. The goal of the present study was to determine the relative influence various 
instructional variables in improving performance.  Instructions emphasizing procedural and 
conceptual understanding both were very effective in improving problem solving, but conceptual 
instruction was superior in facilitating performance on other measures to understanding 
equivalence.  Manipulatives had no effect.  These findings provide insights into optimizing 
children’s understanding of equivalence. 

A great majority of children in Canada and the United States from Grades 2-6 fail to solve 
equivalence problems (e.g., 2 + 4 + 5 = 3 + __) despite having the requisite addition and 
subtraction skills (e.g., Falkner, Levi, & Carpenter, 1999; Hattikudur & Alibali, 2010; McNeil 
and Alibali, 2005b). The goal of the present study was to determine the relative influence of two 
variables, instructional focus (procedural or conceptual) and use of manipulatives (with or 
without), in helping children learn to solve equivalence problems and develop an appropriate 
understanding of the equal sign. Instruction was provided in four conditions consisting of the 
combination of these two variables. 

Students in Grade 2 (n = 122) and Grade 4 (n = 151) participated in four sessions designed to 
assess the effectiveness of four instructional methods for learning and retention.  Session 1 
included a pretest of equivalence problem solving and three indicators of understanding of the 
equal sign. In Sessions 2 and 3 instruction was provided in one of the four instructional 
conditions or a control condition. Students were tested for their skill at solving equivalence 
problems immediately following instruction and at the beginning of Session 3 to assess what 
they had retained from Session 2.  In Session 4, one month later, children were re-tested on all of 
the tasks presented in Session 1 to assess whether instruction had a lasting effect. 

All four instructional groups greatly outperformed the control group in solving equivalence 
problems, but differences among instructional groups were minimal. Performance on indicators 
of understanding, however, favoured students who received conceptually focused instruction. 
Preliminary evidence was found that children’s understanding of problem structure and 
attentional skill may be associated with the ability to benefit from instruction on equivalence 
problems.  Children clustered into four groups based on their performance across tasks that are 
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consistent with the view that children’s understanding of the equal sign develops gradually, 
beginning with learning the definition. 

These findings suggest that a relatively simple intervention can markedly improve student 
performance in the area of mathematical equivalence, and that these improvements can be 
maintained over a period of time and show some limited generality to other indicators that 
children understand equivalence. 
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Overview 

 In this poster, we describe an investigation of precalculus students’ behaviors as they 
attempted to make sense of novel word problems. For this report we focus on the processes by 
which students developed meaningful formulas to relate the relevant quantities in applied 
problems. The study revealed that formulas are only meaningful to students if they have first 
conceptualized the quantities and how they are related, and see the development of expressions 
and formulas as a means for representing how the quantities are related and change together. 
 

Research Questions 
 Our primary research focus was to understand the role of quantitative and covariational 
reasoning in a student’s ability to make sense of novel word problems. We identified two 
research goals. 
1) Describe the ways of thinking about solving novel mathematics problems students have prior 
to receiving instruction in a redesigned precalculus course. 
2) Describe, explain and theorize about the role construction of quantity and covariation of 
quantity play in students’ orienting to novel applied precalculus problems. 
 

Results 
A few major aspects of orienting to novel problems emerged in these analyses: (1) 

constructing an image of the situation by relating the attributes (quantities) of the box and bottle 
problems and (2) imagining those attributes simultaneously changing (variable quantities) and 
(3) modeling these dynamic situations with functions defined algebraically and graphically.  
We propose that students’ make sense of complex, novel problems by creating diagrams of the 
measurable attributes of the situation, and these diagrams become useful to the student as a tool 
for thinking about how quantities vary and how they are related. We believe that the students’ 
creation of these diagrams depicting relationships between the measurable attributes of a 
situation provided the students an image with which they could reason about a solution to the 
problem. We think that students’ images of quantities and their relationships, and covariation of 
those measurable attributes allow a student to predict and explain patterns in the formulas that 
represent the relationships between those attributes by generating a specific algebraic function. 
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Learning progressions hold promise as a basis for formative assessment. We describe the first 
phase of a four year project intended to develop and pilot two forms of formative assessment 
based upon mathematical learning progressions for equations and expressions, linear functions, 
and proportional reasoning. 

 
This poster describes the first phase of a four year project focused on improving teaching and 

learning in the classroom by creating and evaluating a set of formative assessments that are built 
around developmental models of student learning. The models guide the assessment design and 
provide support for teachers in understanding the terrain of student learning. The assessments 
focus on four core algebraic constructs — equality, notion of a variable, proportional reasoning, 
and linear functions— and build on what the project team has learned in the context of other 
research projects regarding developmental models (reference removed). The evaluation plan 
addresses the technical quality of the assessments, with a multi-faceted approach to collecting 
validity evidence.  

The poster will focus our approach in the project  to characterizing patterns of learning in 
middle school students, called learning networks (LNs),  Recently, learning progressions (LPs) 
(Heritage, 2009) have gained popularity among researchers as a way of describing increasingly 
sophisticated ways that students understand and use concepts.  LPs typically take the form of a 
linear sequence of levels with respect to one concept. Characterizing students with respect to a 
learning progression then means collecting evidence of their mathematical behavior to make an 
inference to categorize them as being at a particular level. But the learning of one concept may 
be connected to the learning of other concepts.  Lesh, Lamon, Gong, and Post (1993) explored 
this notion of connectivity within the idea of Learning Progress Maps (LPMs), which provide a 
view of the achievement of students with respect to “big ideas” within a curriculum. LPMs 
provide information about students’ depth of understanding of each idea and the connections 
between the ideas.  

In our work, we use research-based LPs as a starting point to develop a learning network 
(LN) that describes likely pathways students can take as they learn multiple concepts in 
mathematics. In assessment, the LN becomes a predictive model of the likely states of 
understanding and pathways through these states.  This approach can then draw upon the relative 
simplicity of assessing students with respect to individual LPs while reporting on and supporting 
learning of multiple concepts and the connections among them as in LPMs. 
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 The effective use of formative assessment methods during instruction improves students’ 
learning, particularly low-performing students’ achievement (Black & Wiliam, 1998). Though 
the achievement gap is a national concern embodied in the US’s No Child Left Behind Act, 
researchers note that many teachers are not engaged in such practice. The current situation 
prompted three broad questions: First, do teachers believe they are engaged in formative 
assessment practices as they teach? Second, could we develop a tool to document formative 
assessment practice? Last, if so, are teachers’ beliefs about their assessment practices similar or 
different from our classroom observations? Thus, the purpose of this illuminative study was (a) 
to develop an analytic framework that captured teachers’ instructionally-embedded formative 
assessment practices (discourse-based assessment practice or DAP), (b) to identify the nature of 
teachers’ questions and forms of feedback in extended exchanges with their students and (c) to 
discuss teachers’ interpretations of their own practices and to consider them in light of what we 
observed. 
 In this study, we take DAP to be teachers’ provision of questions and feedback prompted by 
their students’ thinking manifested in classroom discourse as they make moment-by moment 
instructional decisions. Literatures on questioning, feedback and classroom discourse inform the 
analysis (Cazden & Beck, 2003). We borrow the construct “extended sequence” from Mehan’s 
(1979) ethnomethodological approach for structuring classroom lessons, which is the primary 
unit of analysis. The extended sequence conmprises teachers’ extended exchanges with students, 
providing an opportunity to examine the nature of these exchanges in terms of their questions 
and feedback, which constitute formative assessment practices as teachers deliver instruction. 
  The preliminary examination of 17 lesson videotapes and teacher interview transcripts 
suggests that (a) the analytic framework, though parsimonious, can differentiate teachers’ 
formative assessment practices in terms of questions and feedback and (b) that some aspects of 
teachers’ beliefs about their practices were in alignment with what we observed. If formative 
assessment is critical for productive teaching and learning, then intensive professional 
development is needed to bring beliefs and practices in line. 
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JOURNAL WRITING IN COLLEGE MATHEMATICS 
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The effect of journal writing on achievement in and attitudes toward mathematics has been 

generally inconclusive (Jurdak & Zein, 1998).  Results differ based on the age of the students 
and the type of journal writing employed.  However, at the college level, results indicate that 
there are strong relationships between journal writing and conceptual understanding (Grossman, 
Smith, & Miller, 1993).   

By writing in journals, students make use of writing as a learning tool in the context of 
mathematics; by reading students’ journals, teachers gain insight into their students’ 
understanding in unique and valuable ways (Borasi & Rose, 1989).  Furthermore, by responding 
to students’ journals, teachers open up lines of communication with students that traditionally are 
not open.  This in-progress study seeks to explore the benefits of journal writing.  Particularly, 
three different types of benefits: benefits for students, benefits for teachers, and benefits for 
communication between students and teachers. 

College students enrolled in beginning calculus classes will write homework journals 
throughout the semester.  Each homework journal will be a two-column homework assignment 
based on a mathematical problem of each student’s choosing from the course textbook (Powell & 
Ramnauth, 1992).  The left-hand column is the mathematical problem worked out in detail.  The 
right-hand column is a written reflection of the problem.  The written reflection is guided by a 
number of different prompts.  For example, “What connections do you see between this problem 
and other topics from this course or other mathematics courses?”  The teacher responds to what 
each student writes by posing additional problems, challenging thinking, and drawing out 
conclusions.  Students then have the opportunity to respond to the teacher’s comments, 
continuing the communication.   

At the end of the semester, students will be asked to give an evaluation of homework journals 
by responding to open-ended questions.  Therefore, data will be collected in these two ways: 
homework journals collected throughout the semester as well as end of the semester evaluations. 

Analysis of the data will hopefully provide rich descriptions of the journal writing experience 
and the benefits of the journal writing experience.  The results of this study could be useful to 
college mathematics instructors.  Possible implications of this study are for the teaching and 
learning of college mathematics, especially when it comes to communication between instructors 
and students. 
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Neural-Networks are a powerful alternative to regression especially for prediction and 
forecasting but not widely used in educational research. This study explores how AP-Calculus 
AB and BC scores can be predicted from the Precalculus Concept Assessment (PCA) and 
American College Testing (ACT) mathematics scores employing two commonly used Neural-
Networks models of MLP (Multilayer Perceptron) and RBF (Radial Basis Function). Strong 
positive correlations between the actual and predicted values of the AP-Calculus exam scores 
confirm that Neural Networks are an efficient toolset for prediction. This can help identify the 
students who are at the risk of not passing the AP-Calculus exams and help students, parents and 
teachers take remedial measures in a timely manner. 

Neural-Networks are a powerful alternative to linear and nonlinear regression especially for 
predicting and forecasting but not widely used in the field of education. A neural-network is an 
interconnected group of artificial neurons, processing information through a series of 
connections as a means of computing. The modern neural networks are used for non-linear 
modeling of statistical data revealing the complex nonlinear relationships between the inputs and 
outputs better than nonlinear regression methods for discovering the patterns in the data. 

On the other hand, the PCA was developed by faculty from the Department of Mathematics 
at Arizona State University and was designed to reflect core content and common 
misconceptions students have about functions (Carlson et al., 2010). Carlson et al. (2010) 
administered the PCA to 902 college precalculus students and found the “Cronbach’s alpha of 
0.73 indicating a high degree of overall coherence” (p. 137).  

Overall, this study demonstrates how AP Calculus AB and BC scores can be predicted from 
the Precalculus Concept Assessment (PCA) results (Carlson et.al. 2010) and ACT mathematics 
test scores (ACT, 2011) employing two commonly used Neural-Networks models: the MLP and 
the RBF Models (Kutner et.al. 2005). The simulation revealed Pearson correlation values, 
between the actual and predicted values of the AP Calculus AB and BC, in the range of 0.50 to 
0.95 and statistically significant at the 0.01 level. This confirms that Neural Networks are an 
efficient toolset in predicting students’ AP Calculus AB or BC scores from the PCA and the 
ACT mathematics scores which can help identify the students at the risk of not passing the AP 
Calculus AB or BC exams and help students, parents and teachers take the necessary measures in 
a timely manner. 
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     This poster is a preliminary report for a research project that aims to build an understanding 
of the complexity of teachers’ technology tool promotion in classrooms as it relates to students’ 
adoption of such tools in their independent mathematical work. The project focuses not only on 
the mathematical aspects of technology tool promotion and use, but the affective aspects as well.  
We examine how these aspects impact the how and why of students’ choices to use technology 
tools when working independently.  Given the expectation that today’s students must use 
technology tools to engage in mathematical problem solving (CCSSI, 2010; NCTM, 2000) both 
in and outside of the classroom (i.e. on homework, teacher created and standardized assessments, 
the application of mathematical concepts to other contexts) this is an important sequence of 
events to understand.   
     This investigation is a mixed method multi-case study of six high school mathematics classes. 
We are investigating six classes, two classes each from three high school teachers who work in 
three types of schools (rural, suburban, and urban). Teachers that regularly use technology tools 
and who teach at least one section of algebra I and one of algebra II, pre-calculus or calculus 
were invited to participate. Since the purpose is to gain insight from all members of the 
classroom community about how technology use is being promoted by the teacher and actually 
used by the students, data will be collected from both the teacher and the students before, during, 
and after designated units of study. Data will include video recording of two instructional units 
for each class, teacher interviews, student surveys, student task-based journal artifacts, post 
assessment questionnaires and focus students’ interviews. The quantitative data will be analyzed 
using descriptive statistics. Qualitative data will be analyzed using rubrics developed based on an 
adaptation of Pierce and Stacey’s (2004) framework for aspects of effective technology use.  
Ultimately this study will develop an empirically refined set of conjectures about teacher-related 
factors that impact students’ independent technology use when doing mathematics.  

The study will be in its early stages at the time of PME-NA 2011 and we will use the poster 
session to report preliminary results and to engage in critical conversations about the project 
design with fellow researchers.   
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The purpose of this study was to investigate the nature of group collaboration as student’s 
reasoned about a pattern task.  The fifth grade participants attended a science, mathematics and 
technology magnet school.  The participants were asked to complete a series of three isomorphic 
pattern finding tasks using pattern block squares, triangles, and hexagons to generalize a rule. 
During the teaching experiment students were encouraged to collaborate with their partners to 
find patterns and write either recursive or explicit rules.  Once the participants had generalized 
their rules a whole class discussion was held so that participants could share their ideas and 
justify their reasoning to the entire group.  

Mueller, Maher and Yankelewitz (2009) developed a framework for analyzing the ways that 
collaboration influences the construction of mathematical arguments and its promotion of 
mathematical understanding.  We used this framework to answer the research questions: What 
types of collaboration emerged during the teaching experiment and which types influenced the 
reasoning of the group?  This framework, which is composed of three modes of student 
collaboration, includes: co-construction, integration and modification.  With the co-construction 
mode of collaboration, students build their argument in a negotiary or back and forth type of 
dialogue.  Integration occurs when another student strengthens another student’s ideas.  Finally, 
modification occurs when one student finds another student’s argument faulty or unclear and 
attempts to help that student make sense of the argument.   

This study focused on one pair of students, Jennifer and Felix, as they reasoned about the 
tasks.  It is important to note that the students typically did not work in collaborative pairs.  
During day one of the teaching experiment, the pair did not collaborate at all.  Each worked on 
the task separately and only Jennifer was able to find both a recursive and explicit rule for the 
task.  On day two, the pair began to collaborate with each other; however, their collaborative 
effort switched back and forth between modification and integration in an argumentative manner.  
Felix found a rule for the triangle tables, but Jennifer did not agree.  Her participation consisted 
of trying to understand his argument and pointing out his mistakes.  During day two the pairs’ 
collaborative effort did not progress to an explicit rule.  On day three, as the pair worked on a 
rule for hexagon tables, their collaborative effort took the form of co-construction, with each 
student contributing to the effort.  The final results of day three were that the pair found both a 
recursive and explicit rule for hexagon tables. 

Over the three day experiment the collaborative efforts of these students progressed from no-
collaboration, collaboration based on defending one’s strategy to productive collaboration on the 
final day.  During day one only one student was able to find an explicit rule, during day two 
neither was able to find any rule and on day three both found an explicit rule.   
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 Recent reforms in math education have outlined particular processes students should use 
to develop meaningful mathematical understandings (NCTM, 2000). Extant literature indicates 
that teachers’ responses to student mathematical thinking shapes the ways in which students 
communicate about their thinking and can influence levels of mathematical understanding 
(Franke, Webb, Chan, Ing, Freund & Battey, 2009). The purpose of this study is to examine how 
curricula provide teachers with pedagogical support as they build and promote students’ 
capacities in communicating mathematically. Although curriculum materials can be considered a 
“representation of the content for instruction” (Ball & Cohen, 1996, p. 7), a body of research 
conceptualizes it as a transformative educative tool for teachers (Collopy, 2003; Remillard, 
2000). Specifically, curricula may be valuable artifacts that support teachers in introducing 
students to the practices and language of the mathematical community (Herbel-Eisenmann, 
2007). Past studies have examined texts as an objectively given structure, in which “the structure 
and discourse of the written unit – not what happens when an individual (i.e., the teacher or 
student) interacts with it – is the focus” (Herbel-Eisenmann, 2007, p. 346). I analyzed the written 
language of the textbook’s pedagogical guidance to see how it actively guides teachers to create 
opportunities for students to make their thinking visible and facilitate communication of 
mathematical ideas. The theoretical basis for the framework was developed from interpretations 
of mathematical communication drawn from existing empirical studies (Brendefur & Frykholm, 
2000; Cai, Jakabcsin, & Lane, 1996; NCTM, 2000). Five lessons from three NSF funded 
elementary mathematics texts were analyzed to illuminate how teacher learning opportunities are 
instantiated. The results suggest the possibility of a divergence between the conceptualized ways 
in which the texts may intend for teachers to interpret the pedagogical guidance and the ways 
teachers may be “reading the textbook” (Remillard, 2000). Some pedagogical guidance provided 
could potentially be read in ways that lead to the implementation of discussions where students 
rely on the authority of the teacher to validate the “correctness” of an answer.  

References 
Ball, D. L., & Cohen, D. K. (1996). Reform by the book: What is – or might be – the role of  

curriculum materials in teacher learning and instructional reform? Educational  
Researcher, 25(9), 6-8, 14. Brendefur, J. & Frykholm, J. (2000). Promoting mathematical 

communication in the classroom:  
Two preservice teachers’ conceptions and practices. Journal of Mathematics Teacher  
Education, 3, 125-153. Cai, J., Jakabcsin, M. S., Lane, S. (1996). Assessing students’ 

mathematical communication.  
School Science and Mathematics, 96(5), 238-246.  

Collopy, R. (2003). Curriculum materials as a professional development tool: How a  
mathematics textbook affected two teachers' learning. The Elementary School Journal, 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1825



103(3), 227-311.  
Franke, Webb, Chan, Ing, Freund and Battey (2009). Teacher questioning to elicit students’ 

mathematical thinking in elementary school classrooms. Journal of Teacher Education, 
60 (4), 380-392.  

Herbel-Eisenmann, B. (2007). From Intended Curriculum to Written Curriculum: Examining the 
"Voice" of a Mathematics Textbook. Journal for Research in Mathematics Education, 
38(4). 344-369.  

Remillard, J. T. (2000). Can curriculum materials support teachers’ learning? Two fourth-grade 
teachers use of a new mathematics text. Elementary School Journal, 100(4), 331-350.  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1826



 
LEARNING MATHEMATICS THROUGH PLAY: THE EMERGENCE OF 

MATHEMATICS DURING PLAYTIME IN PRESCHOOL 
 

Diana Chang 
University of Georgia 

dblom@uga.edu 
 
This poster focuses on the quality of mathematics that emerged during playtime in a 
prekindergarten classroom. Studies have shown that play contributes to math development in the 
early ages (e.g., van Oers, 2010); however, there is still relatively little research on the 
“naturally occurring mathematics activities in which children engage” (Tudge & Doncet, 2004, 
p.34). To address this need, my study focused on two main questions: (1.) How does mathematics 
emerge during play?  and (2.) Under what conditions does play promote deep thinking in 
mathematics? 
 

Theoretical Frameworks and Methods 
 In this study, I drew on socio-cultural theories of learning that see children’s mathematical 
learning as shaped by interactions among children, with teachers, and with materials in the 
classroom (Vygotsky, 1978). The study was situated in the preschool of Taylor County Public 
School, a small rural school with a largely African-American student body. I collected fieldnotes 
from August until mid-November, observing two focal children: Carter and Jamal. I observed the 
children six times during weekly visits to the school. In total, I collected around 12 hours of data, 
including written observations, audio records  and video clips.  Following traditional methods of 
ethnographic analysis (Erickson, 1986), I coded my data for formal and informal learning 
settings, mathematical topics, activity type, and materials used.  
 

Results 
 In this classroom, I found that students engaged with more significant mathematical concepts 
during their play when they were allowed to work independently than when their play was 
guided by teachers. For example, when Carter built a tall Dulpo structure of two towers that 
stood side-by-side, he had an opportunity to experiment with symmetry, composing and 
decomposing shapes, equivalence and comparison of size. He searched for only 4-by-2 blocks or 
8-by-2 blocks to build his tower, rejecting all others, and worked to make sure that his two 
towers stayed the same size. In contrast to episodes like this one, interactions that involved 
teachers often were limited to basic mathematics, like counting and shape identification. 
 

Discussion 
I am not arguing that all teachers focus on low-level mathematics during play interactions; 

however, at a time when we are pushing toward more formal mathematics curricula for PK 
children, it is good to remember that there is still educational value in play. Giving children the 
ability to explore on their own without adults monitoring, guiding, and interrupting them is 
important. Playing without adult interruption can give children a comfortable environment where 
they do not have to worry about right or wrong answers, or think about the expected answer that 
adults want to hear. At the same time, teachers need professional development on how to push 
children toward more significant mathematics in their interactions with students during play. 
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Analysis of mathematical errors can serve as learning opportunities for elementary school 
students. Whether they function as a “springboard for inquiry” (Borasi, 1996) or a turning point 
in improving a solution method (Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Oliver, 
Human, 1997), by discussing and analyzing errors, students can learn how to productively work 
with errors when they encounter them in their work. This study draws on error analysis models 
in mathematics education research (Lannin et al., 2006, Oser (1999) as cited by Heinze, 2005, 
Schleppenbach, et al., 2007), to develop a new, three-part framework for analyzing text and tasks 
that deal with errors in elementary mathematics textbooks. The framework illustrates 
characteristics of (1) error analysis tasks, and also expands our understanding to include text and 
tasks that can support students in (2) preventing and (3) recognizing errors in their own work.  

In this study, I applied the framework to analyze a fractions chapter in two fourth-grade 
Standards-based textbooks, Math Expressions and Math Trailblazers. An interesting contrast 
resulted from applying this framework. Through suggestions of tools or strategies to use in Math 
Trailblazers, and example problems for students to view (prior to completing a set of similar 
problems) in Math Expressions, both units offered suggestions and hints for students that could 
result in preventing errors in their own work. There were also multiple problems in both units 
where students were asked to explain their thinking, however, only Math Expressions required 
students to show work for every story problem given, which could potentially result in students 
recognizing their own errors on a more regular basis.  In regards to the nature of error analysis 
problems, the Math Expressions chapter was nearly evenly split between conceptual and 
procedural, while the Math Trailblazers chapter focused exclusively on concepts, with one 
exception bringing in non-mathematical content. The content of error analysis tasks in both units 
was similar, primarily focusing on comparing and ordering fractions, as well as analyzing 
different sized wholes. Overall, results from the application of this framework illustrate the 
variety of opportunities available to students to engage with errors through curriculum materials. 
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Place value and fractions are two of the major concepts in the elementary mathematics 

curriculum. While there is no doubt about the importance of teachers’ understandings of these 
concepts, there is little focus in mathematics education or mathematics teacher education on the 
mathematical structures that underlie these concepts. As a result, when these concepts are taught 
in each grade level, it creates the illusion that there are many independent ideas to learn. 
However, when teachers and students become aware of the invariants across a variety of ideas 
and connections that exist among these topics, they develop a deeper understanding of 
mathematics that allows them to see the sameness and the ways in which various mathematical 
ideas can build upon each other (Ma, 1999; Silverman and Clay, 2009). 

In this poster presentation I will highlight the existing research on students’ understandings 
of fractions and place value and describe a framework that includes three key ideas that can be 
used to highlight the similarities between conceptual understandings of fractions and place value. 
For example, research has documented that understanding place value involves two interrelated 
concepts: (1) understanding the rate of change between units and (2) concurrently recognizing a 
number in terms of different units (Ma, 1999; McClain, 2003; Thanheiser, 2009). Similarly 
research has identified conceptual structures that underlie an understanding of fractions, 
including multiplicative relationships and also being able to compose a fraction in terms of 
different units (Lamon, 2007; Thompson and Saldanha, 2003). Building on these ideas, I will 
discuss a framework for understanding the similarities between fractions and place value that 
highlights unitizing, composition, and decomposition. I will also present my ideas for an online 
course for preservice teachers that seeks to help them develop mathematical understandings that 
includes underlying similarities between fractions and place value and to understand the 
mathematical and instructional affordances of developing an understanding of the connections 
between place value and fractions.  
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In this poster, I illustrate a desired relationship between all students and mathematics within a 
classroom community of practice that challenges the status quo.  The premise for how to teach 
mathematics begins with a guiding principle of agape, or universal love, and organizes the 
literature according to that principle of “intentionally promoting success in others”. 
 
     The realm of mathematics education has a few positions that most would not dispute:  1) 
mathematical practices are necessary for access to academic and economic opportunities and 2) 
not all students are given an equal chance at learning those practices (Diversity in Mathematics 
Education, 2007).  Given the importance of providing students with access to mathematical 
practices, and the influential role mathematics educators can have in promoting or denying 
access (Berry, 2008), this poster illustrates a pedagogical ideal for how to teach mathematics.  
The guiding principle of agape, or unconditional love, is used to organize equitable approaches 
to teaching (e.g. culturally relevant pedagogy (Ladson-Billings, 1994), inclusive pedagogy 
(Udvari-Solner, Villa, & Thousand, 2005)) and teaching mathematics (e.g. teaching mathematics 
for social justice (Gutstein, 2006)) within a classroom community of practice (Lave & Wenger, 
1991), to construct teaching mathematics as agape.   Teaching mathematics as agape is 
partitioned into four facets that are defined and necessitated through the literature, with the end 
product being a relationship between students and mathematics that promotes the access to 
mathematical practices that is necessary for participation in society (Moses & Cobb, 2001).  
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Inequitable access to mathematics instruction and, consequently, low mathematical 
achievement among students from urban communities have been identified as major contributors 
to societal inequalities (Moses & Cobb, 2001) and economic deprivation (Gutstein & Peterson, 
2005). Nationally, students from poor communities struggle through mathematics courses and 
become less engaged in the subject as grade level increases. On the one hand, it has been 
suggested that school experiences typically fail to provide early adolescents with opportunities to 
learn the subject matter in meaningful ways, thus de-emphasizing the subject’s importance and 
perpetuating adverse attitudes toward enrolling in elective mathematics courses beyond those 
required for graduation. On the other hand, academic expectations set for children in such 
settings are often too low, resulting in gaps in achievement. Many teachers’ attitudes toward 
children from poor communities remain negative, as they believe them to be incapable of 
academic success (Gutierrez, Baquedano-López, & Tejeda, 1999). Indeed, scholars have 
revealed that even when children in urban schools do succeed, their success is often attributed to 
factors other than ability (Tiezzi & Cross, 1997). In short, formal schooling not only fails to 
enhance children’s education; often it both implicitly and explicitly hinders their motivation, 
desire to learn, and their sense of efficacy towards mathematics (Nasir & Cobb, 2007). Despite 
this, empirical data which documents how school experiences might impact children’s 
mathematical thinking, their views about the nature of mathematics, and sense of efficacy are 
rare. Indeed, it is not clear what aspects of children’s mathematical thinking might be influenced 
by their school experiences over time. Our research project addresses this gap.  
Our longitudinal research project traced the growth of mathematical thinking and practices of a 
cohort of 20 children from urban communities as they progressed from 7th to 9th grade.  Each 
child was interviewed once a year for three years using a focused clinical interviewing 
format.  Each interview consisted of two parts. The first part of the interview elicited children’s 
views about mathematics and their level of confidence towards mathematics. The second part of 
the interview aimed to capture their internalized mathematical practices as exhibited on tasks 
chosen from various mathematical areas.  Featuring members of this cohort, our poster offers an 
analysis of areas in which children have shown greatest growth and decline over time. 
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Students with mathematics learning disabilities (MLD) have been shown to have a weak 
understanding of fraction concepts that underlie success in fraction computation, problem 
solving, and estimation (Mazzacco & Devlin, 2008). One such concept is fraction equivalency. A 
multiple baseline across participants design was employed to evaluate the effects of a fraction 
intervention based in ratio interpretations on performance on a test of fraction equivalence. A 
functional relationship was demonstrated between the instruction and performance through 
replication of skill increase across three students. Results as well as possible implications and 
future research are discussed. 
 
 Learning fraction equivalency through ratio interpretations removes the act of partitioning 
used in traditional part-whole approaches that have been demonstrated as problematic for many 
students with MLD (Grobecker, 2000; Hecht, et al., 2006; Lewis, 2010).  This study evaluated 
the effects of a fraction intervention rooted in ratio interpretations on performance in fraction 
equivalency for middle school students with MLD.  A multiple baseline across participants 
design was used.  The experimental design demonstrated a functional relationship between the 
intervention and understanding of fraction equivalence by repeatedly increasing performance of 
correct responses after the introduction of treatment (Horner et al., 2005; Kazdin, 1982).  Two 
additional tests, a conventional independent t-test and a split-middle technique, were employed 
to further evaluate the results of the intervention. 
 Visual analysis suggests relatively flat trends in data points collected during baseline as 
opposed to positive, steeper slopes in intervention for all three students.  The combined baseline 
mean was 4.47 (SD = 3.17; range = 1-11); during instruction the mean increased to 18.38 (SD = 
4.95; range = 7-26); at the end of instruction, the mean number of points earned was 25.00 (SD = 
1.00; range = 24-26).  Treatment effects were also calculated using percentage of non-
overlapping data (PND) (Kazdin, 1982), a non-parametric means of finding effect size.  A 
moderate PND of 70% was revealed for the intervention effects. 
 Using elements of Lamon’s (1993) ideas on ratio-backed unitization and expansion of 
concepts of equivalency, the instructional sequence seemed to have built an increased 
understanding of fraction equivalency through the ratio interpretation.  The students’ initial 
inability to generate equivalent fractions from their part whole based instruction from school was 
evident before instruction; after instruction, students increased their performance in fraction 
equivalency. 
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The fastest growing student population in the United States is children of immigrant families. 

In 2000, 5 million school-age children, totaling more than 10 percent of all K–12 students, were 
English language learners (ELL) (National Clearinghouse for English Language Acquisition, 
2006). While 63% of all U.S. schools have students enrolled who are considered limited-English-
proficient (National Center for Education Statistics, 2004), that statistic grows to 77% for urban 
communities. In 2007-2008, according to NCES, total populations of ELL students were below 
10% for suburban, 9% for town, and 6% for rural, while urban was nearly 20%. Indeed, the U.S. 
Latino population is expected to grow to 100 million by 2050, which will result in ELL students 
in most city, suburb, and rural schools and classrooms (Moschkovich, 2007). As the ELL school 
population continues to grow, and with the importance of mathematical achievement and literacy 
at an all-time high, the relationship between mathematics and English language learning is 
becoming important. Yet little is known about how these children transition in their 
mathematical development when immersed in prominently English language environments. 

Our poster features the profiles of two ELL students, one male and one female, with differing 
limited-English-proficiency classifications, from our longitudinal research cohort of 20 children 
from urban communities. Our data, captured through three years of annual clinical interviews, 
traces the growth of each child’s mathematical thinking using Pirie and Kieren’s (1994) 
theoretical model.  The interviews elicited the children’s view about mathematics and their level 
of confidence towards mathematics, as well as captured their internalized mathematical practices 
as exhibited on tasks chosen from various mathematical areas. Gee’s (1996) critical discourse 
theory was used to analyze the interview data. The poster features an analysis of areas in which 
children showed greatest growth and decline over time. Data indicated that with greater linguistic 
diversity reliance on multiple representations diminished; students with limited linguistic ability 
rely more frequently on pictorial representations to communication their understanding. Over 
time, the ELL students have increased participation, are more resistant to agreeing to different 
views of mathematical thought. These students also displayed more standard and conventional 
ways of doing mathematics as their English language fluency increased.   
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Secondary school mathematics teachers, mathematics department heads, curriculum leaders, 
and administrators from 11 schools, with support from a local university, participated in the 
project Collaborative Teacher Inquiry. In this presentation, we will focus on challenges that 
teachers face when they teach grade 9 applied mathematics.  

INTRODUCTION 

The transition from Grade 8 to Grade 9 is particularly challenging in many school systems 
(Galton, 2009). In Ontario, students are promoted to the next grade regardless of their level of 
performance until Grade 8. In addition, Grade 9 students in Ontario are subject to streaming, 
being categorized into academic, applied, or essential levels (Ontario Ministry of Education, 
2007). As a result, Grade 9 is a critical year for students and teachers. This is especially 
challenging for urban populations such as the Greater Toronto Area (GTA), where there is a 
large multicultural population with the highest percentage of foreign-born students in Canada 
(Statistics Canada, 2005). In fact, 44% of the student population of the GTA has a first language 
other than English. In this paper, we report the findings to the research question: What 
challenges do Grade 9 Applied Mathematics teachers face? By identifying the difficulties 
encountered by mathematics teachers, this research promises to move forward teaching 
mathematics in applied classrooms, by energizing teams of teachers within schools to activate 
and guide the teacher improvement process.  

FINDINGS AND DISCUSSIONS 

 We will discuss the various challenges faced by teachers in teaching Grade 9 Applied 
Mathematics. Due to time limitation, we selected only few categories. There are a number of 
challenges in urban mathematics education in Greater Toronto schools. There were a number of 
situations when challenges identified were multifold. Sometimes teachers did not believe in their 
capability to achieve success under these circumstances. Teachers said that these negative 
attitudes along with the students’ lack of mathematical background were major barriers to foster 
student success. Teachers mentioned that they can not be successful alone if their students and 
their parents do not believe themselves in succeeding.   

A mix of behavioral issues and lack of attitudes toward learning was another area of concern. 
Family situations of students differ considerably and these contexts also brought many issues for 
several schools. Teachers emphasized the complexity of students being in the same time with 
behavioral issues and having individual education plans. Lack of time for teachers to prepare 
their lessons, students need to learn the basics first, concerns about student behavior; and the 
concerns of preparing students for provincial tests were common themes in both studies. At 
times, teachers’ professional development programs had their own limitations. Implementing 
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reforms that the new curriculum required was challenging by many teachers. In addition, some 
new teachers had problems in class management. By contemplating on teachers’ views in our 
study, some teachers faced considerable pressure when teaching for applied.  

REFERENCES 

Galton, M. (2009). Moving to secondary school: initial encounters and their effects. Perspectives 
on Education (Primary–secondary Transfer in Science), 2, 5–21. Retrieved at November 
28, 2010 from www.wellcome.ac.uk/perspectives 

Statistics Canada. (2005). Proportion of foreign-born population, by census metropolitan area 
(1991 to 2001 Censuses). http://www40.statcan.gc.ca/l01/cst01/demo47a-eng.htm 

 
 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1841



A CASE STUDY OF A CHINESE-AMERICAN STUDENT’S MATHEMATICAL 
ABILITIES 

 
Xianwei Yuan Van Harpen 

Illinois State University 
xyuan@ilstu.edu 

 
In recent decades, many cross-national studies showed that students in East Asian countries 
outperformed their counterparts in the United States in mathematics. However, there are also 
claims that East Asian students and U.S. students have different strengths in their mathematics 
learning. In this sense, Chinese-American students, who are raised in Chinese families and 
educated in U.S. schools, become a special group for mathematics education researchers to 
investigate the possibility of combining the strengths of both U.S. and Chinese ways of 
mathematics education. This study investigated a Chinese-American student’s strengths and 
weaknesses in his mathematical abilities. The participant of this study was a fifth grade Chinese-
American student. The student was interviewed one and a half hours every week for four weeks 
and was asked to give both written responses to the problems as well as oral explanations of his 
solutions. All the interviews were videotaped. The tasks used in this study included 
computational tasks, component problems, open-ended problems, and problem posing tasks. 
These tasks were adopted from Krutetskii’s (1976) study on the structure of mathematical 
abilities and Cai’s (1995) comparative studies on sixth grade Chinese students and American 
students. The results of the study indicate that, on the one hand, like the Chinese students in 
Cai’s research, this student has proficient computational skills and simple-problem solving skills, 
and tends to use symbolic or notational representation more frequently than visual or pictorial 
representation in solving problems. On the other hand, like the American students in Cai’s 
research, he shows a good ability in solving complex problems. These findings suggest that this 
student has obtained both Chinese students and U.S. students’ strengths in mathematical abilities. 
The results of this study also indicate that the student’ mathematical ability type can be 
categorized as “abstract-harmonic type” (Krutetskii, 1976, p. 327), which means that the student 
can depict mathematical relationships equally well by verbal-logical and visual-pictorial means 
but shows an inclination for mental operations without the use of visual-pictorial means. The 
findings of this study also suggest that the middle zone (Gu, 2003) between the U.S. and the 
Chinese way of teaching and learning of mathematics may exist.   
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Analysis of mathematical errors can serve as learning opportunities for elementary school 
students. Whether they function as a “springboard for inquiry” (Borasi, 1996) or a turning point 
in improving a solution method (Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Oliver, 
Human, 1997), by discussing and analyzing errors, students can learn how to productively work 
with errors when they encounter them in their work. This study draws on error analysis models 
in mathematics education research (Lannin et al., 2006, Oser (1999) as cited by Heinze, 2005, 
Schleppenbach, et al., 2007), to develop a new, three-part framework for analyzing text and tasks 
that deal with errors in elementary mathematics textbooks. The framework illustrates 
characteristics of (1) error analysis tasks, and also expands our understanding to include text and 
tasks that can support students in (2) preventing and (3) recognizing errors in their own work.  

In this study, I applied the framework to analyze a fractions chapter in two fourth-grade 
Standards-based textbooks, Math Expressions and Math Trailblazers. An interesting contrast 
resulted from applying this framework. Through suggestions of tools or strategies to use in Math 
Trailblazers, and example problems for students to view (prior to completing a set of similar 
problems) in Math Expressions, both units offered suggestions and hints for students that could 
result in preventing errors in their own work. There were also multiple problems in both units 
where students were asked to explain their thinking, however, only Math Expressions required 
students to show work for every story problem given, which could potentially result in students 
recognizing their own errors on a more regular basis.  In regards to the nature of error analysis 
problems, the Math Expressions chapter was nearly evenly split between conceptual and 
procedural, while the Math Trailblazers chapter focused exclusively on concepts, with one 
exception bringing in non-mathematical content. The content of error analysis tasks in both units 
was similar, primarily focusing on comparing and ordering fractions, as well as analyzing 
different sized wholes. Overall, results from the application of this framework illustrate the 
variety of opportunities available to students to engage with errors through curriculum materials. 
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MATHEMATICS TEACHER EDUCATORS’ DIFFICULTY IN ASSESSING PRE-

SERVICE TEACHERS’ MATHEMATICAL KNOWLEDGE 
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This poster reports on the difficulties that three instructors of mathematics content courses for 
prospective elementary teachers had in designing assessments to test their students’ 
understandings of fraction multiplication and division.  It discusses the nature of these 
difficulties and some possible reasons why they occurred.    
 

Researching and designing assessments to determine mathematical knowledge for teaching 
(MKT) has been an important part of educational research since the 1960s and before.  Being 
able to determine what teachers know is important for multiple reasons, especially providing 
“highly qualified teachers” to our nations’ students.  (Hill, Sleep, Lewis, & Ball, 2007).  
However, designing assessments to accurately assess teacher knowledge beyond procedures is 
very difficult (Hill, Schilling, and Ball, 2004).  Skemp, (1976) discusses “the difficulty of sound 
examining in mathematics” (p. 24) because knowing whether a person understands mathematics 
relationally or instrumentally by looking at what he or she writes on paper is very challenging. 

Despite the difficulties of designing appropriate assessments, an integral part of the job of 
mathematics teacher educators is being able to assess what teachers know and also how these 
teachers are able to access that information.  This poster reports on the difficulties that three 
instructors of mathematics content courses for prospective elementary teachers had in designing 
assessments to test their students’ understandings of fraction multiplication and division. 

This study, which is part of a larger study looking at mathematical knowledge for teacher 
educators looked at three mathematics teacher educators (MTEs) who were teaching 
mathematics content courses for prospective elementary teachers.  Despite all three of the MTEs 
expressing that their goals were for their students to develop conceptual understanding of 
fraction multiplication and division, only one of the teacher educators designed assessments that 
helped her determine if her students were actually developing these understandings.  The other 
two had questions that were either strictly procedural, or seemed conceptual in nature, but 
produced procedural responses from their students.  The poster will discuss possible reasons for 
the difficulty the MTEs had in designing effective assessments as well as implications of these 
difficulties for teacher education. 
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Taking as a basis a collection of video recordings from a mathematics classroom at the 
secondary level, this article presents an analysis of several forms of discourse used in the 
process of institutionalization of knowledge. In particular, the functions and effects of the 
teacher’s interventions in formulating generalizations, synthesis and recapitulations of certain 
activities in the classroom are analyzed. This study allowed us to identify regularities in the 
verbal forms, which affect the development of the lesson, either by maintaining the continuity of 
the discourse, or supporting the institutionalization process.  

What the teachers and students express during the collective construction of mathematical 
ideas? To answer this question we use the concept of institutionalization. This concept is 
associated with the definition and articulation of the mathematical ideas studied in the classroom. 
We analyze the institutionalization process through the identification and characterization of the 
verbal structures used during classroom discussions. We believe that the words used, their 
meaning and emphasis, have an impact on how the mathematical ideas are defined and 
structured; but also on how arguments are validated and justified. The methodology used in this 
study is based on the assumption that the discursive devices can be inferred from observable 
indicators in the classroom. Furthermore, such indicators have an explicit role in teacher’s 
discourse. These indicators become variables in the institutionalization process, because as 
explained before, institutionalization is associated with the conclusion or synthesis of ideas in the 
classroom. We consider necessary to place this study in a school setting, so we could observe the 
everyday teacher’s and students’ discourse during the process of institutionalization of 
knowledge. We claim that this institutionalization process is associated with very specific 
discursive resources having their own semantics. Thus, our aim in this paper is to analyze the 
video recordings of the classroom discourse in order to identify empirical evidence indicating the 
existence of a process of institutionalization. This not only involves identifying phrases or words, 
but also the effects that the teacher’s discourse has in the construction of knowledge.  
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Over the past decade and a half, reform efforts have called for mathematics classrooms to 

become discussion and inquiry based (National Council of Teachers of Mathematics [NCTM], 
2000). As this reform has taken hold teachers and students have been called upon to envision and 
enact new and different participation patterns while engaging in the study of mathematics. The 
primary voice in the classroom is no longer the teacher telling students how to solve problems, 
but rather students sharing their ideas about their understandings and (mis)conceptions of 
mathematics. Thus, discussions in mathematics classes have become an important part of 
learning mathematics. It is ambitious work for teachers and students. Ambitious not only in 
terms of what teachers and students say to one another in mathematical discussions, but 
ambitious in how teachers and students are called to listen to one another as well.  

While much work has been done to learn about and understand what teachers and 
students need to know and do to engage in this ambitious work (e.g. Lampert, 1992) very little 
effort has been directed toward understanding the other side of language (Fiumara, 1990), 
listening. How we listen, and what we listen for informs the ways we hear words and ideas, 
process and understand (or not) what has been said, and respond to others, and yet, only a 
handful of researchers and educators have fully considered listening and it’s potential to reveal 
and expand what it means to teach and learn mathematics.  

In this poster, we present findings from two different qualitative studies that focused on 
listening in elementary mathematics classrooms. Study A took place in a first and fourth grade 
classroom and focused specifically on identifying the mathematical and interactional demands 
students experience as listeners during mathematical discussion. Study B occurred in a fourth 
and fifth grade classroom in a school with high numbers of students who are becoming bilingual 
and who are from households who live in poverty. The purpose of this study was to learn about 
the roles of listening in learning, by studying how teachers and children listened to one another. 
Both studies drew from aspects of the same theoretical framework, socio-cultural theory, and 
both researchers collected and analyzed video data of mathematics lessons, interview data with 
children, and artifacts of students’ work.  

Our findings reveal important implications for learning and teaching, the details of which 
will be highlighted on our poster. First, listening, which includes not only what students hear, but 
also whether or not they feel heard, is an important form of participation. In addition to 
broadening their own listening practices, teachers can deepen students’ learning by supporting 
students to grow their repertoires for listening. Second, different kinds of listening produce 
different types of mathematical learning. What teachers and students listen for has important 
implications for participation. Third, when students feel heard, it creates a socially supportive 
environment. Reciprocally, students are more willing to risk sharing their thinking in a safe 
environment.  
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Queer students face special challenges in their schooling, this schooling includes the 
mathematics classroom. This group of students has not been studied in regards to mathematics. 
This poster examines preliminary data pertaining to the lived experience exploring the 
intersection of a queer identity and mathematical identity. Because of the inclusive nature of 
Queer Theory there is also discussion of the impact of racial/ethnic identities and gender identity 
within this study.  

Students with a queer identity, non-heteronomative, face special challenges in in the 
classroom. Harassment and discrimination lead to high rates of skipping school, and this in turn 
is problematic for students’ educational attainment (Kosciw Et.Al, 2008). A positive attitude 
towards mathematics, a positive mathematical identity, results in greater engagement in 
mathematics (Nasir, 2002).  

This Phenomenological study explored the intersection of the participant’s mathematical 
identity with their queer identity. This poster will present preliminary findings and analysis from 
multiple participants and reports on the essence of the intersection. It also reports on the variance 
of experiences that improve resilience as well as those that cause barriers to improving 
mathematics performance. By using the lens of Queer Theory this study seeks to include the 
complicating factors of racial/ethnic identity and gender identities (Kumashiro, 2002).  

The poster will begin the conversation of how queer students both perceive and respond to 
mathematics and the mathematics classroom. While it is not possible to separate all of the 
various factors involved quantitatively, this qualitative examination of the data seeks to make 
sense of the queer students experience while examining risk factors and factors that lead to 
resilience in the mathematics classroom. This data may assist teachers and teacher educators in 
working toward an anti-oppressive pedagogy in the mathematics classroom.  
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MATHEMATICALLY PRODUCTIVE AND SOCIALLY SUPPORTIVE DISCOURSE: A 
TEACHER AND HER STUDENTS’ PERSPECTIVES 
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 Recent efforts within practice-based teacher education have spurred the development of 
innovative pedagogies that support teachers to learn the practice of teaching as they enact 
practice (Grossman & McDonald, 2008).  One such effort employs a set of Instructional 
Activities (IA’s) that provide a purposefully-bounded space for teachers to manage complex 
interactions among students and content (Lampert et al., 2010). Teacher educators are using IA’s 
that travel across contexts as teachers learn how to create interactive environments for 
mathematics learning that include: eliciting student thinking, pushing for mathematical 
reasoning, and orienting students to each others’ ideas.  As teachers facilitate the IA, they enact 
pedagogical moves that support a range of student participation, manage discursive interactions, 
and foreground important mathematical ideas that arise from student contributions.  All of this 
occurs within the accessible, bounded space of the activity.   
 The use of IA’s, then, is a way to make the demands of facilitating and participating in 
mathematical discourse accessible while maintaining mathematical rigor. Just as teachers 
navigate a host of demands as they orchestrate mathematical discourse, students simultaneously 
encounter a wide range of mathematical and interactional demands as well. Mathematically, 
there is subject matter knowledge a student must make use of, and work with, in order to engage 
in the IA.  Interactionally, a child must be able to engage socially because s/he is a student in a 
classroom with other children engaging in the IA.   

This poster highlights two qualitative studies that focused on a particular IA, choral 
counting. Choral counting is a 10-15 minute warm-up activity where students engage in chorally 
counting by a number as the teacher records the count, discussing both strategies and patterns 
within the count. Across the two research studies, we examined what the IA of choral counting 
affords for mathematics teaching and learning from two distinct angles within the same 
elementary mathematics classroom.  Study A examined the teacher’s role within choral 
counting, tracking pedagogical moves and considering the potential for the enactment of  
“ambitious instruction” (e.g. Lampert, 2001). Study B examined the affordances of the IA from 
the students’ point of view, documenting the mathematical and interactional demands that 
students must manage while engaged in chorally counting with classmates. Uniquely drawing 
from the dual perspectives of a classroom teacher and her elementary students, our research 
makes connections to current research on teaching and learning while offering implications for 
practicing teachers and teacher educators who strive to create discourse that is both 
mathematically productive and socially supportive for students.   
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     This poster is a preliminary report for a research project that aims to build an understanding 
of the complexity of teachers’ technology tool promotion in classrooms as it relates to students’ 
adoption of such tools in their independent mathematical work. The project focuses not only on 
the mathematical aspects of technology tool promotion and use, but the affective aspects as well.  
We examine how these aspects impact the how and why of students’ choices to use technology 
tools when working independently.  Given the expectation that today’s students must use 
technology tools to engage in mathematical problem solving (CCSSI, 2010; NCTM, 2000) both 
in and outside of the classroom (i.e. on homework, teacher created and standardized assessments, 
the application of mathematical concepts to other contexts) this is an important sequence of 
events to understand.   
     This investigation is a mixed method multi-case study of six high school mathematics classes. 
We are investigating six classes, two classes each from three high school teachers who work in 
three types of schools (rural, suburban, and urban). Teachers that regularly use technology tools 
and who teach at least one section of algebra I and one of algebra II, pre-calculus or calculus 
were invited to participate. Since the purpose is to gain insight from all members of the 
classroom community about how technology use is being promoted by the teacher and actually 
used by the students, data will be collected from both the teacher and the students before, during, 
and after designated units of study. Data will include video recording of two instructional units 
for each class, teacher interviews, student surveys, student task-based journal artifacts, post 
assessment questionnaires and focus students’ interviews. The quantitative data will be analyzed 
using descriptive statistics. Qualitative data will be analyzed using rubrics developed based on an 
adaptation of Pierce and Stacey’s (2004) framework for aspects of effective technology use.  
Ultimately this study will develop an empirically refined set of conjectures about teacher-related 
factors that impact students’ independent technology use when doing mathematics.  

The study will be in its early stages at the time of PME-NA 2011 and we will use the poster 
session to report preliminary results and to engage in critical conversations about the project 
design with fellow researchers.   
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The purpose of this study was to investigate the nature of group collaboration as student’s 

reasoned about a pattern task.  The fifth grade participants attended a science, mathematics and 
technology magnet school.  The participants were asked to complete a series of three isomorphic 
pattern finding tasks using pattern block squares, triangles, and hexagons to generalize a rule. 
During the teaching experiment students were encouraged to collaborate with their partners to 
find patterns and write either recursive or explicit rules.  Once the participants had generalized 
their rules a whole class discussion was held so that participants could share their ideas and 
justify their reasoning to the entire group.  

Mueller, Maher and Yankelewitz (2009) developed a framework for analyzing the ways that 
collaboration influences the construction of mathematical arguments and its promotion of 
mathematical understanding.  We used this framework to answer the research questions: What 
types of collaboration emerged during the teaching experiment and which types influenced the 
reasoning of the group?  This framework, which is composed of three modes of student 
collaboration, includes: co-construction, integration and modification.  With the co-construction 
mode of collaboration, students build their argument in a negotiary or back and forth type of 
dialogue.  Integration occurs when another student strengthens another student’s ideas.  Finally, 
modification occurs when one student finds another student’s argument faulty or unclear and 
attempts to help that student make sense of the argument.   

This study focused on one pair of students, Jennifer and Felix, as they reasoned about the 
tasks.  It is important to note that the students typically did not work in collaborative pairs.  
During day one of the teaching experiment, the pair did not collaborate at all.  Each worked on 
the task separately and only Jennifer was able to find both a recursive and explicit rule for the 
task.  On day two, the pair began to collaborate with each other; however, their collaborative 
effort switched back and forth between modification and integration in an argumentative manner.  
Felix found a rule for the triangle tables, but Jennifer did not agree.  Her participation consisted 
of trying to understand his argument and pointing out his mistakes.  During day two the pairs’ 
collaborative effort did not progress to an explicit rule.  On day three, as the pair worked on a 
rule for hexagon tables, their collaborative effort took the form of co-construction, with each 
student contributing to the effort.  The final results of day three were that the pair found both a 
recursive and explicit rule for hexagon tables. 

Over the three day experiment the collaborative efforts of these students progressed from no-
collaboration, collaboration based on defending one’s strategy to productive collaboration on the 
final day.  During day one only one student was able to find an explicit rule, during day two 
neither was able to find any rule and on day three both found an explicit rule.   
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 Recent reforms in math education have outlined particular processes students should use 
to develop meaningful mathematical understandings (NCTM, 2000). Extant literature indicates 
that teachers’ responses to student mathematical thinking shapes the ways in which students 
communicate about their thinking and can influence levels of mathematical understanding 
(Franke, Webb, Chan, Ing, Freund & Battey, 2009). The purpose of this study is to examine how 
curricula provide teachers with pedagogical support as they build and promote students’ 
capacities in communicating mathematically. Although curriculum materials can be considered a 
“representation of the content for instruction” (Ball & Cohen, 1996, p. 7), a body of research 
conceptualizes it as a transformative educative tool for teachers (Collopy, 2003; Remillard, 
2000). Specifically, curricula may be valuable artifacts that support teachers in introducing 
students to the practices and language of the mathematical community (Herbel-Eisenmann, 
2007). Past studies have examined texts as an objectively given structure, in which “the structure 
and discourse of the written unit – not what happens when an individual (i.e., the teacher or 
student) interacts with it – is the focus” (Herbel-Eisenmann, 2007, p. 346). I analyzed the written 
language of the textbook’s pedagogical guidance to see how it actively guides teachers to create 
opportunities for students to make their thinking visible and facilitate communication of 
mathematical ideas. The theoretical basis for the framework was developed from interpretations 
of mathematical communication drawn from existing empirical studies (Brendefur & Frykholm, 
2000; Cai, Jakabcsin, & Lane, 1996; NCTM, 2000). Five lessons from three NSF funded 
elementary mathematics texts were analyzed to illuminate how teacher learning opportunities are 
instantiated. The results suggest the possibility of a divergence between the conceptualized ways 
in which the texts may intend for teachers to interpret the pedagogical guidance and the ways 
teachers may be “reading the textbook” (Remillard, 2000). Some pedagogical guidance provided 
could potentially be read in ways that lead to the implementation of discussions where students 
rely on the authority of the teacher to validate the “correctness” of an answer.  
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LEARNING MATHEMATICS THROUGH PLAY: THE EMERGENCE OF 
MATHEMATICS DURING PLAYTIME IN PRESCHOOL 

 
Diana Chang 

University of Georgia 
dblom@uga.edu 

 
This poster focuses on the quality of mathematics that emerged during playtime in a 
prekindergarten classroom. Studies have shown that play contributes to math development in the 
early ages (e.g., van Oers, 2010); however, there is still relatively little research on the 
“naturally occurring mathematics activities in which children engage” (Tudge & Doncet, 2004, 
p.34). To address this need, my study focused on two main questions: (1.) How does mathematics 
emerge during play?  and (2.) Under what conditions does play promote deep thinking in 
mathematics? 
 

Theoretical Frameworks and Methods 
 In this study, I drew on socio-cultural theories of learning that see children’s mathematical 
learning as shaped by interactions among children, with teachers, and with materials in the 
classroom (Vygotsky, 1978). The study was situated in the preschool of Taylor County Public 
School, a small rural school with a largely African-American student body. I collected fieldnotes 
from August until mid-November, observing two focal children: Carter and Jamal. I observed the 
children six times during weekly visits to the school. In total, I collected around 12 hours of data, 
including written observations, audio records  and video clips.  Following traditional methods of 
ethnographic analysis (Erickson, 1986), I coded my data for formal and informal learning 
settings, mathematical topics, activity type, and materials used.  
 

Results 
 In this classroom, I found that students engaged with more significant mathematical concepts 
during their play when they were allowed to work independently than when their play was 
guided by teachers. For example, when Carter built a tall Dulpo structure of two towers that 
stood side-by-side, he had an opportunity to experiment with symmetry, composing and 
decomposing shapes, equivalence and comparison of size. He searched for only 4-by-2 blocks or 
8-by-2 blocks to build his tower, rejecting all others, and worked to make sure that his two 
towers stayed the same size. In contrast to episodes like this one, interactions that involved 
teachers often were limited to basic mathematics, like counting and shape identification. 
 

Discussion 
I am not arguing that all teachers focus on low-level mathematics during play interactions; 

however, at a time when we are pushing toward more formal mathematics curricula for PK 
children, it is good to remember that there is still educational value in play. Giving children the 
ability to explore on their own without adults monitoring, guiding, and interrupting them is 
important. Playing without adult interruption can give children a comfortable environment where 
they do not have to worry about right or wrong answers, or think about the expected answer that 
adults want to hear. At the same time, teachers need professional development on how to push 
children toward more significant mathematics in their interactions with students during play. 
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BEYOND THE “PUZZLED PENGUIN”:  
ENGAGEMENT WITH ERRORS IN ELEMENTARY MATHEMATICS TEXTBOOKS 
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Analysis of mathematical errors can serve as learning opportunities for elementary school 

students. Whether they function as a “springboard for inquiry” (Borasi, 1996) or a turning point 
in improving a solution method (Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Oliver, 
Human, 1997), by discussing and analyzing errors, students can learn how to productively work 
with errors when they encounter them in their work. This study draws on error analysis models 
in mathematics education research (Lannin et al., 2006, Oser (1999) as cited by Heinze, 2005, 
Schleppenbach, et al., 2007), to develop a new, three-part framework for analyzing text and tasks 
that deal with errors in elementary mathematics textbooks. The framework illustrates 
characteristics of (1) error analysis tasks, and also expands our understanding to include text and 
tasks that can support students in (2) preventing and (3) recognizing errors in their own work.  

In this study, I applied the framework to analyze a fractions chapter in two fourth-grade 
Standards-based textbooks, Math Expressions and Math Trailblazers. An interesting contrast 
resulted from applying this framework. Through suggestions of tools or strategies to use in Math 
Trailblazers, and example problems for students to view (prior to completing a set of similar 
problems) in Math Expressions, both units offered suggestions and hints for students that could 
result in preventing errors in their own work. There were also multiple problems in both units 
where students were asked to explain their thinking, however, only Math Expressions required 
students to show work for every story problem given, which could potentially result in students 
recognizing their own errors on a more regular basis.  In regards to the nature of error analysis 
problems, the Math Expressions chapter was nearly evenly split between conceptual and 
procedural, while the Math Trailblazers chapter focused exclusively on concepts, with one 
exception bringing in non-mathematical content. The content of error analysis tasks in both units 
was similar, primarily focusing on comparing and ordering fractions, as well as analyzing 
different sized wholes. Overall, results from the application of this framework illustrate the 
variety of opportunities available to students to engage with errors through curriculum materials. 
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Place value and fractions are two of the major concepts in the elementary mathematics 

curriculum. While there is no doubt about the importance of teachers’ understandings of these 
concepts, there is little focus in mathematics education or mathematics teacher education on the 
mathematical structures that underlie these concepts. As a result, when these concepts are taught 
in each grade level, it creates the illusion that there are many independent ideas to learn. 
However, when teachers and students become aware of the invariants across a variety of ideas 
and connections that exist among these topics, they develop a deeper understanding of 
mathematics that allows them to see the sameness and the ways in which various mathematical 
ideas can build upon each other (Ma, 1999; Silverman and Clay, 2009). 

In this poster presentation I will highlight the existing research on students’ understandings 
of fractions and place value and describe a framework that includes three key ideas that can be 
used to highlight the similarities between conceptual understandings of fractions and place value. 
For example, research has documented that understanding place value involves two interrelated 
concepts: (1) understanding the rate of change between units and (2) concurrently recognizing a 
number in terms of different units (Ma, 1999; McClain, 2003; Thanheiser, 2009). Similarly 
research has identified conceptual structures that underlie an understanding of fractions, 
including multiplicative relationships and also being able to compose a fraction in terms of 
different units (Lamon, 2007; Thompson and Saldanha, 2003). Building on these ideas, I will 
discuss a framework for understanding the similarities between fractions and place value that 
highlights unitizing, composition, and decomposition. I will also present my ideas for an online 
course for preservice teachers that seeks to help them develop mathematical understandings that 
includes underlying similarities between fractions and place value and to understand the 
mathematical and instructional affordances of developing an understanding of the connections 
between place value and fractions.  
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ABILITIES 
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In recent decades, many cross-national studies showed that students in East Asian countries 
outperformed their counterparts in the United States in mathematics. However, there are also 
claims that East Asian students and U.S. students have different strengths in their mathematics 
learning. In this sense, Chinese-American students, who are raised in Chinese families and 
educated in U.S. schools, become a special group for mathematics education researchers to 
investigate the possibility of combining the strengths of both U.S. and Chinese ways of 
mathematics education. This study investigated a Chinese-American student’s strengths and 
weaknesses in his mathematical abilities. The participant of this study was a fifth grade Chinese-
American student. The student was interviewed one and a half hours every week for four weeks 
and was asked to give both written responses to the problems as well as oral explanations of his 
solutions. All the interviews were videotaped. The tasks used in this study included 
computational tasks, component problems, open-ended problems, and problem posing tasks. 
These tasks were adopted from Krutetskii’s (1976) study on the structure of mathematical 
abilities and Cai’s (1995) comparative studies on sixth grade Chinese students and American 
students. The results of the study indicate that, on the one hand, like the Chinese students in 
Cai’s research, this student has proficient computational skills and simple-problem solving skills, 
and tends to use symbolic or notational representation more frequently than visual or pictorial 
representation in solving problems. On the other hand, like the American students in Cai’s 
research, he shows a good ability in solving complex problems. These findings suggest that this 
student has obtained both Chinese students and U.S. students’ strengths in mathematical abilities. 
The results of this study also indicate that the student’ mathematical ability type can be 
categorized as “abstract-harmonic type” (Krutetskii, 1976, p. 327), which means that the student 
can depict mathematical relationships equally well by verbal-logical and visual-pictorial means 
but shows an inclination for mental operations without the use of visual-pictorial means. The 
findings of this study also suggest that the middle zone (Gu, 2003) between the U.S. and the 
Chinese way of teaching and learning of mathematics may exist.   
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TEACHING MATHEMATICS AS AGAPE:  
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Joel Amidon 

University of Mississippi 
jcamidon@olemiss.edu 

 
In this poster, I illustrate a desired relationship between all students and mathematics within a 
classroom community of practice that challenges the status quo.  The premise for how to teach 
mathematics begins with a guiding principle of agape, or universal love, and organizes the 
literature according to that principle of “intentionally promoting success in others”. 
 
     The realm of mathematics education has a few positions that most would not dispute:  1) 
mathematical practices are necessary for access to academic and economic opportunities and 2) 
not all students are given an equal chance at learning those practices (Diversity in Mathematics 
Education, 2007).  Given the importance of providing students with access to mathematical 
practices, and the influential role mathematics educators can have in promoting or denying 
access (Berry, 2008), this poster illustrates a pedagogical ideal for how to teach mathematics.  
The guiding principle of agape, or unconditional love, is used to organize equitable approaches 
to teaching (e.g. culturally relevant pedagogy (Ladson-Billings, 1994), inclusive pedagogy 
(Udvari-Solner, Villa, & Thousand, 2005)) and teaching mathematics (e.g. teaching mathematics 
for social justice (Gutstein, 2006)) within a classroom community of practice (Lave & Wenger, 
1991), to construct teaching mathematics as agape.   Teaching mathematics as agape is 
partitioned into four facets that are defined and necessitated through the literature, with the end 
product being a relationship between students and mathematics that promotes the access to 
mathematical practices that is necessary for participation in society (Moses & Cobb, 2001).  
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Inequitable access to mathematics instruction and, consequently, low mathematical 

achievement among students from urban communities have been identified as major contributors 
to societal inequalities (Moses & Cobb, 2001) and economic deprivation (Gutstein & Peterson, 
2005). Nationally, students from poor communities struggle through mathematics courses and 
become less engaged in the subject as grade level increases. On the one hand, it has been 
suggested that school experiences typically fail to provide early adolescents with opportunities to 
learn the subject matter in meaningful ways, thus de-emphasizing the subject’s importance and 
perpetuating adverse attitudes toward enrolling in elective mathematics courses beyond those 
required for graduation. On the other hand, academic expectations set for children in such 
settings are often too low, resulting in gaps in achievement. Many teachers’ attitudes toward 
children from poor communities remain negative, as they believe them to be incapable of 
academic success (Gutierrez, Baquedano-López, & Tejeda, 1999). Indeed, scholars have 
revealed that even when children in urban schools do succeed, their success is often attributed to 
factors other than ability (Tiezzi & Cross, 1997). In short, formal schooling not only fails to 
enhance children’s education; often it both implicitly and explicitly hinders their motivation, 
desire to learn, and their sense of efficacy towards mathematics (Nasir & Cobb, 2007). Despite 
this, empirical data which documents how school experiences might impact children’s 
mathematical thinking, their views about the nature of mathematics, and sense of efficacy are 
rare. Indeed, it is not clear what aspects of children’s mathematical thinking might be influenced 
by their school experiences over time. Our research project addresses this gap.  
Our longitudinal research project traced the growth of mathematical thinking and practices of a 
cohort of 20 children from urban communities as they progressed from 7th to 9th grade.  Each 
child was interviewed once a year for three years using a focused clinical interviewing 
format.  Each interview consisted of two parts. The first part of the interview elicited children’s 
views about mathematics and their level of confidence towards mathematics. The second part of 
the interview aimed to capture their internalized mathematical practices as exhibited on tasks 
chosen from various mathematical areas.  Featuring members of this cohort, our poster offers an 
analysis of areas in which children have shown greatest growth and decline over time. 
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Students with mathematics learning disabilities (MLD) have been shown to have a weak 
understanding of fraction concepts that underlie success in fraction computation, problem 
solving, and estimation (Mazzacco & Devlin, 2008). One such concept is fraction equivalency. A 
multiple baseline across participants design was employed to evaluate the effects of a fraction 
intervention based in ratio interpretations on performance on a test of fraction equivalence. A 
functional relationship was demonstrated between the instruction and performance through 
replication of skill increase across three students. Results as well as possible implications and 
future research are discussed. 
 
 Learning fraction equivalency through ratio interpretations removes the act of partitioning 
used in traditional part-whole approaches that have been demonstrated as problematic for many 
students with MLD (Grobecker, 2000; Hecht, et al., 2006; Lewis, 2010).  This study evaluated 
the effects of a fraction intervention rooted in ratio interpretations on performance in fraction 
equivalency for middle school students with MLD.  A multiple baseline across participants 
design was used.  The experimental design demonstrated a functional relationship between the 
intervention and understanding of fraction equivalence by repeatedly increasing performance of 
correct responses after the introduction of treatment (Horner et al., 2005; Kazdin, 1982).  Two 
additional tests, a conventional independent t-test and a split-middle technique, were employed 
to further evaluate the results of the intervention. 
 Visual analysis suggests relatively flat trends in data points collected during baseline as 
opposed to positive, steeper slopes in intervention for all three students.  The combined baseline 
mean was 4.47 (SD = 3.17; range = 1-11); during instruction the mean increased to 18.38 (SD = 
4.95; range = 7-26); at the end of instruction, the mean number of points earned was 25.00 (SD = 
1.00; range = 24-26).  Treatment effects were also calculated using percentage of non-
overlapping data (PND) (Kazdin, 1982), a non-parametric means of finding effect size.  A 
moderate PND of 70% was revealed for the intervention effects. 
 Using elements of Lamon’s (1993) ideas on ratio-backed unitization and expansion of 
concepts of equivalency, the instructional sequence seemed to have built an increased 
understanding of fraction equivalency through the ratio interpretation.  The students’ initial 
inability to generate equivalent fractions from their part whole based instruction from school was 
evident before instruction; after instruction, students increased their performance in fraction 
equivalency. 
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The fastest growing student population in the United States is children of immigrant families. 

In 2000, 5 million school-age children, totaling more than 10 percent of all K–12 students, were 
English language learners (ELL) (National Clearinghouse for English Language Acquisition, 
2006). While 63% of all U.S. schools have students enrolled who are considered limited-English-
proficient (National Center for Education Statistics, 2004), that statistic grows to 77% for urban 
communities. In 2007-2008, according to NCES, total populations of ELL students were below 
10% for suburban, 9% for town, and 6% for rural, while urban was nearly 20%. Indeed, the U.S. 
Latino population is expected to grow to 100 million by 2050, which will result in ELL students 
in most city, suburb, and rural schools and classrooms (Moschkovich, 2007). As the ELL school 
population continues to grow, and with the importance of mathematical achievement and literacy 
at an all-time high, the relationship between mathematics and English language learning is 
becoming important. Yet little is known about how these children transition in their 
mathematical development when immersed in prominently English language environments. 

Our poster features the profiles of two ELL students, one male and one female, with differing 
limited-English-proficiency classifications, from our longitudinal research cohort of 20 children 
from urban communities. Our data, captured through three years of annual clinical interviews, 
traces the growth of each child’s mathematical thinking using Pirie and Kieren’s (1994) 
theoretical model.  The interviews elicited the children’s view about mathematics and their level 
of confidence towards mathematics, as well as captured their internalized mathematical practices 
as exhibited on tasks chosen from various mathematical areas. Gee’s (1996) critical discourse 
theory was used to analyze the interview data. The poster features an analysis of areas in which 
children showed greatest growth and decline over time. Data indicated that with greater linguistic 
diversity reliance on multiple representations diminished; students with limited linguistic ability 
rely more frequently on pictorial representations to communication their understanding. Over 
time, the ELL students have increased participation, are more resistant to agreeing to different 
views of mathematical thought. These students also displayed more standard and conventional 
ways of doing mathematics as their English language fluency increased.   
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Secondary school mathematics teachers, mathematics department heads, curriculum leaders, 
and administrators from 11 schools, with support from a local university, participated in the 
project Collaborative Teacher Inquiry. In this presentation, we will focus on challenges that 
teachers face when they teach grade 9 applied mathematics.  

INTRODUCTION 

The transition from Grade 8 to Grade 9 is particularly challenging in many school systems 
(Galton, 2009). In Ontario, students are promoted to the next grade regardless of their level of 
performance until Grade 8. In addition, Grade 9 students in Ontario are subject to streaming, 
being categorized into academic, applied, or essential levels (Ontario Ministry of Education, 
2007). As a result, Grade 9 is a critical year for students and teachers. This is especially 
challenging for urban populations such as the Greater Toronto Area (GTA), where there is a 
large multicultural population with the highest percentage of foreign-born students in Canada 
(Statistics Canada, 2005). In fact, 44% of the student population of the GTA has a first language 
other than English. In this paper, we report the findings to the research question: What 
challenges do Grade 9 Applied Mathematics teachers face? By identifying the difficulties 
encountered by mathematics teachers, this research promises to move forward teaching 
mathematics in applied classrooms, by energizing teams of teachers within schools to activate 
and guide the teacher improvement process.  

FINDINGS AND DISCUSSIONS 

 We will discuss the various challenges faced by teachers in teaching Grade 9 Applied 
Mathematics. Due to time limitation, we selected only few categories. There are a number of 
challenges in urban mathematics education in Greater Toronto schools. There were a number of 
situations when challenges identified were multifold. Sometimes teachers did not believe in their 
capability to achieve success under these circumstances. Teachers said that these negative 
attitudes along with the students’ lack of mathematical background were major barriers to foster 
student success. Teachers mentioned that they can not be successful alone if their students and 
their parents do not believe themselves in succeeding.   

A mix of behavioral issues and lack of attitudes toward learning was another area of concern. 
Family situations of students differ considerably and these contexts also brought many issues for 
several schools. Teachers emphasized the complexity of students being in the same time with 
behavioral issues and having individual education plans. Lack of time for teachers to prepare 
their lessons, students need to learn the basics first, concerns about student behavior; and the 
concerns of preparing students for provincial tests were common themes in both studies. At 
times, teachers’ professional development programs had their own limitations. Implementing 
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reforms that the new curriculum required was challenging by many teachers. In addition, some 
new teachers had problems in class management. By contemplating on teachers’ views in our 
study, some teachers faced considerable pressure when teaching for applied.  
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 PATTERNS OF MATHEMATICAL PROBLEM SOLVING AMONG FEMALES: A 
LONGITUDINAL STUDY  

 
Over two decades ago, Leder (1990) reported that fewer women enroll in advanced courses in 

mathematics, suggesting that this trend leads to unequal participation of females in STEM related 
careers (cited in Geist & King, 2008).  More recent reports suggest this trend has been reversed, as 
currently there is no enrollment bias in advanced high school math courses. According to Science 
Daily (2008) women earn 48 percent of mathematics bachelor's degrees in the US.  Despite gender 
equality in number of courses taken, there is sufficient evidence that while boys and girls achieve at 
the same level in elementary school mathematics (4

th

 and 6
th 

grades), gaps in achievement widen as 
high school approaches (Amelink, 2009).  This performance gap is most apparent on open-ended 
problem solving tasks. Several scholars have attributed this gender gap to affective factors such as a 
loss of confidence in mathematics ability and a lower valuation of the usefulness of mathematics 
(Zhu, 2007).  These scholars offer that with less confidence, girls tend to feel less autonomous when 
experiencing mathematics, particularly during problem solving when they must make decisions about 
how to proceed and what strategies to use. Other studies posit that differences in performance might 
be due to the use of differing strategies and problem solving patterns (Zhu, 2007).  Zhu (2007), in 
synthesizing a substantial body of research, advocated the need to study patterns of performance and 
problem solving strategies of females on authentic tasks to create a platform for discourse on gender 
differences. The goal to meet this need motivated the current study.  

Our longitudinal research traced attitudes and growth of mathematical thinking and practices of 5 
female adolescents from urban communities as they progressed from 7th

 to 9
th

 grade. Each child was 
interviewed once a year (for three years) using a focused clinical interviewing format. Each interview 
consisted of two parts. The first part elicited views about mathematics, level of confidence towards 
mathematics, and usefulness of a concept being learned about in school.  The second part aimed to 
capture their performance on problem solving tasks from different areas of mathematics including 
discrete mathematics, geometry, and probability. The contexts chosen for data collection elicited the 
use of differing heuristics and modes of reasoning.  While subjects’ attitudes towards mathematics 
remained positive, their performance on mathematical tasks that resembled contexts seen in school 
became more mechanical.  In their inclination to rely on procedures learned in school, they became 
reluctant to aggressively tackle problems that appeared more open ended.  
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ELEMENTARY STUDENTS’ VIEWS OF MATHEMATICS AND MATHEMATICIANS: 
BOYS’ AND GIRLS’ PERSPECTIVES 
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In North America, many people fear or dislike mathematics and fail to see its relevance to 

their lives (Boaler, 2008). Mathematicians are often negatively stereotyped as white, middle-
aged males who are socially inept and unattractive (Mendick, Moreau, & Hollingworth, 2008). 
These views are perpetuated by popular media, which portray mathematics as a difficult subject 
only understood by a select few, who are depicted negatively (Applebaum, 1995). 

This study investigates elementary students’ views of and experiences with mathematics and 
mathematicians. It also examines how those views may be impacted by popular media, parents’ 
views, and teachers’ views. This ongoing, multi-faceted study, conducted in Ontario, Canada, 
involves Grade 4 and 8 students, teachers, and parents. To date, students have completed online 
questionnaires and drawn pictures of mathematicians, and parents and teachers have participated 
in interviews. Children’s media will later be analyzed for representations of mathematics, and 
these examples will be used in focus group interviews with students. 

This poster session reports on initial findings from an analysis of student questionnaire data, 
specifically 30 Likert-scale questions regarding views of and experiences with mathematics and 
mathematicians. These questions were divided into four topics – views of mathematics, views of 
mathematicians, parents and mathematics, and gender and mathematics – and the results were 
separated by the gender of the 156 participants (86 girls, 70 boys). 

As with similar studies (e.g., Picker & Berry, 2001), boys and girls in my study had very 
comparable, generally positive views about mathematics, but expressed little interest in 
becoming mathematicians. My participants generally felt there were no gender differences in 
mathematics ability or enjoyment. These sentiments accord with contemporary views of 
mathematics as an increasingly gender-equitable field at the school level (Forgasz, Leder, & 
Kloosterman, 2004). Participants’ parents were perceived as holding positive views of 
mathematics, which may have impacted the participants’ views (Toliver, 1998). 

The similarities in boys’ and girls’ views of mathematics, particularly in terms of confidence, 
enjoyment, and gender issues, are encouraging. However, students continue to adhere to some 
stereotypes regarding mathematics and mathematicians, and the lack of occupational interest in 
the field they enjoy is troubling. These and other issues will be discussed in the poster session. 
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EXAMINING COGNITIVE DEMAND, FUNCTIONAL REPRESENTATIONS, AND 
TEACHER QUESTIONS IN CONNECTED MATHEMATICS PROJECT 2 
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emeikle@udel.edu 

 
 This study aims to analyze how two Connected Mathematics Project 2(CMP2) units, 
Variables and Patterns and Moving Straight Ahead, adhere to the reform goals of the 2000 
NCTM Standards with respect to functional representations and high-level student thinking. In 
order to determine the extent to which CMP2 utilizes high-level tasks, the Investigations were 
analyzed using the Task Analysis Guide levels of cognitive demand (Boston and Smith, 2009). 
Ronda (2009) claims that teachers are not provided with the appropriate tools in a textbook to 
know how to facilitate student learning to a more advanced level. Therefore, questions that were 
specifically written in the teachers’ materials as suggestions to pose to students were analyzed to 
see what support teachers were given for implementing high-level tasks. A framework was 
developed in which Boaler and Brodie’s (2005) question types were ranked based on their 
importance in students’ cognitive development of mathematical understandings. The two units 
claim to focus on getting students to understand and use different functional representations.  
Results from the analysis indicated that most tasks in the CMP2 chapters provided opportunities 
for students to use multiple functional representations and had higher-level demands, most 
frequently Procedures with Connections. Questions provided for teachers in the teachers’ 
materials were most frequently higher-level questions that could lead to the development of 
deeper understandings. The most cognitively demanding tasks, Doing Mathematics tasks, usually 
had fewer functional representations and fewer suggested questions for teachers to pose than 
Procedures with Connections tasks, potentially due to the range of multiple solution strategies or 
their ambiguous nature. These findings suggest implications for teachers, professional 
developers, and curriculum writers. 
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Over the last several decades mathematics teachers and their knowledge about mathematics 

have been under close scrutiny. This new era with standardized testing has placed the spotlight 
on the mathematics teacher and demands teachers ensure their students master mathematical 
skills and develop a conceptual understanding of the mathematics. This requires that teachers 
gain skill and knowledge about the mathematics and skill and knowledge about teaching. The 
joining of mathematics knowledge and the related pedagogy that is required to teach mathematic, 
pedagogical content knowledge (PCK) that Shulman (1986) defines as the “understanding of 
what is to be learned and how it is to be taught” (p.7). We believe that a conceptual 
understanding of mathematics and the integration of the appropriate pedagogical knowledge as 
promoted by PCK can be achieved by examining mathematics teaching as an applied 
mathematics, as suggested by Usiskin (2001) for preservice middle school mathematics teachers.  

Researchers have demonstrated the interplay between teachers’ content knowledge and 
pedagogical content knowledge during teaching practice that influences the quality of their 
teaching (Ball, & Wilson, 1990; Usiskin, 2001; Hill, Rowan, & Ball, 2005). Walshaw and 
Anthony (2008) found that teachers, who engage their students in mathematical argumentation, 
critique, interpretation, generalization, and the defending of their own ideas, enhance the 
development of their student’s mathematical thinking on key concepts. We believe the notion of 
mathematics teaching as an applied mathematics, like engineering, offers a new perspective for 
mathematics teacher educators when unpacking PCK for the middle school mathematics teacher.  
Considering mathematics teaching as an applied mathematics places the focus on three 
categories of mathematics: mathematical generalizations and extensions, problem analysis, and 
concept analysis (Usiskin, 2001). We believe concept analysis is the foundational component for 
PCK when applied to mathematics education. Concept analysis includes “alternative definitions 
or conceptions of mathematical ideas and their consequences, why the concepts arose and how 
they have changed over time and the range of applications of the concept” (Usiskin, 2001, p. 90). 
Usiskin (2001) draws on a four dimensional model of understanding that is found in the UCSMP 
texts, “Skills, Properties, Uses, and Representation” (p. 90), SPUR1. We applied concept analysis 
to geometric concepts to explore the potential benefit of addressing mathematics teaching as an 
applied mathematics.  
 

Endnotes 
1 "SPUR." Abbreviations.com. STANDS4 LLC, 2011. 2 March. 2011. 
http://www.abbreviations.com/b1.aspx?KEY=283547 
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In this report we deal with the design of software that has been programmed in the Program of 
Mathematics Education (PROME) hold at the National Polytechnic Institute (named IPN for 
the Spanish Instituto Politécnico Nacional) of Mexico. In PROME we do research on the 
mathematics teaching-learning processes; PROME also offers a Master Degree and a PhD 
Degree in Mathematics Education, both are on line. The programmed software is one of the 
first results of a project co-sponsored by National Council of Science and Technology and the 
Government of the State of Veracruz. The project is titled “Design, development and 
generation of on line didactic materials for teaching mathematics in the school system of 
Veracruz” (Register number CONACYT108952). We used Java

®
 language for the 

programming of the adidactic activity (AUTHORS, 2010).  

As Java applets already are used in education our question is ¿which are the new aspects our 
programmed activities offer? Under constructivism approach we know that people learn with 
the interactions with objects (Chevallard, Bosch & Gascón, 1998), we agree with this idea and 
this is why the basement of the project is the interactions student-computer that applets provide. 
It is also necessary to determine many variables: what information should the applet show on 
computers’ screen, how and why information is presented, and how the applet collects 
information from the student. This artificial place where interactions happen is called 
“environment” (Chevallard, Bosch & Gascón, 1998).  

Many applets available in the web and designed by other researchers give to students some 
means to interact with the computer. Our proposal’s novelty is the implementation of an 
adidactic situation in the environment; in other words, a school mathematics problem given by 
the teacher to the student to be solved (Brousseau, 1997). This solving procedure leads the 
student to build new mathematical knowledge. We call adidactic activity to the couple of a 
computer program and an adidactic situation.  

This poster includes one adidactic situation to study inverse trigonometric ratio.  

References 
Brousseau, G. (1997). Theory of Didactical Situations in Mathematics. Kluwer Academic 

Publishers.  
Chevallard, Y., Bosch, M., & Gascón, J. (1998). Estudiar matemáticas: el eslabón perdido entre 

enseñanza y aprendizaje. SEP/ICE Universitat de Barcelona.  
Molina Zavaleta, J. G., Rosas, A.M., & Castaneda, A. (2010). Reporte Técnico primera etapa 

[Technical report of the first stage]. Unpublished manuscript.  

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1880



WHAT DO PROSPECTIVE MIDDLE LEVEL MATHEMATICS TEACHERS LOOK 
FOR IN CLASS? 

Nermin Tosmur-Bayazit 
Georgia State University 
nbayazit@gsu.edu 

Stephanie Behm-Cross 
Georgia State University 
scross@gsu.edu 
 

Prospective teachers’ (PTs) struggle to make connections between what they learn in their 
teacher education programs and “real” classroom practices has been a focus of much research 
(Worthy, 2005). Student teaching is generally viewed as the most valuable part of teacher 
preparation as it offers an avenue for prospective teachers to employ theory in real classroom 
settings (Feiman-Nemser, 1983). However, there is considerable research showing that student 
teachers tend to “survive” instead of taking the benefit of the experience to practice the theories 
(Korthagen & Kessels, 1999). With the intent of promoting the integration of theory with 
practice, we developed an assignment called “observation protocol”. The purpose of this 
presentation is to share the PTs experiences as they developed their observation protocols and to 
also highlight their thoughts on the role of teachers and the structure of effective classroom tasks.     

Participants in this study were 20 middle grade PTs in an undergraduate mathematics 
methods course. The course met once weekly for three hours, and took place during Fall 2010 at 
a large urban state university in the South-Eastern region of the United States. The course 
focused primarily on theoretical readings, field-based observations guided by those readings (as 
described below), and lesson plan development. All students enrolled in the course were also 
required to be in a field experience course, which required 2 full days per week attendance in a 
middle school mathematics classroom.  

For this assignment, each PT was required to keep an observation and interview journal for 
the following two course topics:  nature of classroom tasks and role of the teacher. PTs were 
instructed to list things they thought were critical to observe and come up with questions to ask 
their mentor teachers in the field. Students were also required to take observation notes for each 
item that they listed.  
 Data for this presentation consists of the 20 prospective teachers’ written observation 
protocol assignments. To analyse the assignments we read and re-read all narratives separately in 
order to identify general themes. After we developed these themes individually, we worked 
together to re-examine each of the 20 papers more carefully to confirm themes and generate a list 
of quotes to support each idea. 
 The results of the study revealed that majority of the PTs see the major role of the teacher 
as facilitator who should promote scaffolding, reasoning, and student participation. However, 
they also see the pressure of the high stake testing, curriculum load and the classroom 
management issues as the three major barriers for them to carry out this role. In a similar vein, 
the PTs looked for classroom tasks that are “problematic”, intriguing, engaging and developing 
mathematical insight. They argued that the classroom tasks should foster classroom discourse, 
reasoning and “true” understanding. 
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Being able to analyze data, graphs, charts, and tables is essential for students to be able to 
effectively engage as a citizen in a democratic society. After the NCTM Standards introduced 
statistics as a major content area, there has been a trend in recent research studies that stress the 
importance of shifting instruction from introducing procedural skills to developing students’ 
abilities to reason statistically (Garfield & Ben-Zvi, 2007). The purpose of this study is to 
analyze two standards-based eighth grade curriculum units on data analysis from the Connected 
Mathematics Project 2 (CMP2) (Lappan, Fey, Fitzgerald, Friel, & Phillips, 2006) and 
Mathematics in Context (MiC) (Encyclopaedia Britannica, 2006) to determine what 
opportunities are available for students to learn to exhibit statistical reasoning. 

The analytic framework developed to analyze the questions presented in each unit integrated 
a number of different conceptualizations of statistical reasoning found in the mathematics 
education research literature. Mooney (2002) identified four data-handling processes that are 
essential for middle school students to exhibit statistical reasoning: describing data, organizing 
and reducing data, representing data, and analyzing and interpreting data. Curcio’s (1987) graph 
comprehension levels served as a means to rank the data-handling processes into three levels, 
which were labeled as suggested by Friel et al. (2001): elementary, intermediate, and overall. 
The questions from each unit were coded according to sub-processes defined for each data-
handling process. 

Application of the analytic framework revealed that both units appear to provide students 
ample opportunities to engage in all of the data-handling processes that are required for students 
to learn to exhibit statistical reasoning, despite a majority focus on the elementary level 
processes. There were some notable differences between the two units, including the fact that 
MiC lacked questions that addressed measures of center and spread and that CMP2 had 
significantly fewer questions addressing the analyzing and interpreting data data-handling 
process. Despite these issues, both units provide ample opportunities for students to engage in 
questions which encourage students to learn to exhibit statistical reasoning. 
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ENHANCING K-8 MATHEMATICS COACHES’ KNOWLEDGE FOR TEACHING 
PROBABILITY 
 
Yating Liu Ryan Harrison Scott Zollinger 
The Ohio State University The Ohio State University The Ohio State University 
liu.891@buckeyemail.osu.edu harrison.407@osu.edu zollinger.4@buckeyemail.osu.edu 
 

This study is embedded in the Mathematics Coaching Program (Brosnan & Erchick, 2010), a 
statewide professional development program designed to enhance K-8 teachers’ Mathematical 
Knowledge for Teaching (MKT) using children’s cognition as a vehicle to situate the learning. In 
the current study, we examined the impact of sessions designed for improving participants’ 
knowledge of probability. 19 mathematics coaches participated in the intervention sessions. Two 
types of activities were designed and used. First, samples of students’ work with corresponding 
quantitative data on certain probability items of the state achievement tests were shared. The 
coaches were asked to: 1) make conjectures about students’ sources of misconception, 2) judge 
the quality of given problems, 3) offer suggestions about improving either students’ learning or 
the quality of the problems. Second, the coaches engaged in solving probability problems which 
were designed to help them realize the necessity of developing an understanding of the concept 
of “randomness” in probability thinking (Shaughnessy, 1992). Key concepts for discussions 
included: experimental probability, theoretical probability and probability assumption due to 
their centrality in the conceptual map of the probability knowledge as identified by NCTM. 

To evaluate the effect of the intervention sessions, we administered an identical pre- and 
post-questionnaire to the coaches. The questionnaire asked coaches to identify: 1) the concept of 
probability, 2) the reason why probability should be taught to children, and 3) the appropriate 
probability knowledge that school children would need to learn. Participants’ responses to each 
of the questions were studied first to determine categorical themes that emerged from them. 
These categories were used to trace changes in coaches’ knowledge. Analysis of data indicated 
that on the pre-questionnaire, a majority of the coaches used general descriptions of probability 
and referenced reasoning, decision making, and real life application as chief rationale for 
teaching probability in schools. Among the post-questionnaire responses, we observed that over 
half of the coaches were more explicit in identifying probability concepts and referenced 
“importance of understanding and interpreting probability” using precise and correct language of 
probability; we also observed that statements that logically connected two or more probability 
topics (as opposed to listing concepts separately) significantly increased. To further investigate 
coaches’ learning of these concepts, a follow-up plan using a more focused evaluation program 
is under development. Our poster presentation will offer a detailed account of categories of 
coaches’ responses that reveal misconceptions about their own understanding of probability. 
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LEARNING WITH AREA PROPORTIONAL VENN DIAGRAMS 
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In this poster presentation, I will explore the use of dynamic geometry software as a visual 

dynamic tool for supporting high school students’ understanding of probability, more 
specifically, understanding of conditional probability and Bayes’ theorem. Kahneman, Slovic & 
Tversky (1982) claimed that intuitive errors proceed from using certain heuristic principles that 
often lead to erroneous probability judgments. For instance, people tend to neglect the base rates 
which are, according to Bayes’ theorem, relevant to the calculation of probabilities. On the other 
hand, in the last couple of years there has been a focus on dynamic learning environments which 
allow us to create mathematical objects and explore them visually and dynamically. Moreno-
Armella (1999) and  Kaput and Hegedus (2008) describe learning environment in which students 
can visualize, construct and manipulate mathematical concepts. The dynamic learning 
environments can enable students to act mathematically, to seek relationship between object that 
would not be as intuitive with a static paper and pen representations. 

The goal of my research is to substantiate the claim that dynamic learning environment 
enables student to grasp abstract mathematical concept by manipulating mathematical objects 
constructed within these systems. More specifically, I investigate the role of dynamic 
visualization using area proportional Venn diagrams  in students’ understanding of 
Bayes’theorem. Moreover, I am  interested whether the introduction of visualization has an 
effect on student’s committing the base rate and the inverse fallacy. Using a quasi-experimental 
design, I presented a well known breast cancer problem (Eddy,1982)   in which Bayes’ theorem 
needs to be applied to students who are introduced to Bayes’ theorem via the Bayes’ formula as 
well as to the group of students who were presented with the visualization of the Bayes’ theorem 
created by the author. 

The results show that the students who were introduced to the dynamic visualization of the 
Bayes’ theorem were significantly more successful in solving the breast cancer problem. In this 
case, using the dynamic visualization provided by the animation feature of dynamic geometry 
software, students could easily grasp the idea that the conditional probability depends on the base 
rate and were also less likely to commit the inverse fallacy. This serves as the evidence that 
dynamic visualization do create means for the deeper analysis of mathematical concepts. In 
addition, my research contributes to the research on application of area-proportional Venn 
diagrams which have not received much attention in the mathematics education community. 
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EXPLORING THE EFFECTS OF CURRICULA ON FIFTH-GRADE STUDENTS’ 
PROBLEM SOLVING  
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This study explores the impact of different curricula on students’ problem solving. 
Effective problem solvers (1) read and understand the problem, (2) create a situation model, 
(3) develop a mathematical model, (4) implement a strategy and arrive at a result, (5) interpret 
the result, and (6) communicate the solution (Verschaffel, Greer, & De Corte, 2000). Students’ 
using reform-oriented materials tend to use more representationally diverse strategies than 
peers using traditional materials (Senk & Thompson, 2006), which may impact how they solve 
problems.  

Two fifth-grade students were selected from a larger sample based on curricula use 
and self-reported prior achievement. All names are pseudonyms. Kristy has been using 
Everyday Mathematics (Bell et al., 2004) materials since Kindergarten whereas Gavin has 
only used traditional mathematics textbooks. Word problems were selected from prior 
research with fifth-grade students (Bostic & Jacobbe, 2010; Verschaffel et al., 1999). 
Students practiced thinking aloud and then solved five tasks during an audio-recorded 
interview. After solving each problem, participants were asked whether they could show 
another strategy. The interviews were transcribed and analyzed using thematic analysis 
(Hatch, 2000).  

Both participants employed symbolic strategies initially, used the problem’s context to 
assist with interpreting their result, and were fairly successful. Gavin read each problem one 
time, carried out the problem-solving process, and reported his answer as a number. Kristy read 
the problem, reflected on it, and reread the problem, specifically attending to areas of text. Next, 
she offered a conjecture of the solution followed by creating a situation model. She continued to 
execute the problem-solving process and reported her solution as a number with corresponding 
units. Gavin was usually unable to provide another strategy; however, Kristy successfully used 
symbolic and pictorial strategies. Kristy also often located errors in her prior strategies. Kristy’s 
utterances and behaviors suggest she self-evaluated her progress while problem solving whereas 
Gavin did not reread the problem, reexamine his situation model, or employ a pictorial strategy. 
Results offer directions for future research. 
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     Does mathematics aim to develop abstract- logical thinking and find original and 
interesting relations in its various structures, or to serve as an auxiliary aid for solving 
problems in areas of science, society and daily life? One could say that the debate is 
senseless since mathematics is designed for both goals. However, teaching it in elementary 
school does not take the authentic daily component very seriously, in spite- of the 
curriculum statement of intents. The aim of this study was to investigate how 3rd to 6th 
grade students solve a real-world problem: What is the middle floor in a 9-floor building? 
The highest success percentage was at the 4th-grade and the lowest at the 6th-grade. 
Nevertheless, the most interesting finding of the study was the students' reference to the 
illogical and unrealistic answer: the fourth-and-a half floor, being the result of 9:2. About 
half of the 6th-graders and about one third of the 5th-graders gave such answer without any 
word of criticism about the obtained number. Only about 13%-15% of the 3rd-4th grade 
students gave such an answer. An inevitable conclusion is that the higher the elementary 
school age group is, the more the learnt mathematics detaches students from reality. The 
students do not use logical considerations, solving problems mechanically, without critical 
reflection. It is recommended dedicating a considerable part of mathematics lessons at 
elementary school to the solution of real-world day-by-day problems and to pay more 
attention to the processes of reflection about the received answers.  
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DEVELOPING STUDENTS’ INFORMAL UNDERSTANDING OF THE 
COMMUTATIVE PROPERY OF ADDITION 
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The aim of this poster is to share insights gathered on students’ informal understanding of the 
commutative property of addition.  Three lessons from the ON TRACK Learn Math pilot study 
were selected that provide substantial insight into the students’ developing reasoning. By 
scaffolding progressively more challenging problem-solving activities, our enrichment program 
provided the students with the opportunity to make important connections. 
 
 The aim of this poster is to share insights gathered on students’ informal understanding of the 
commutative property of addition during the pilot phase of the ON TRACK Learn Math study 
conducted during the fall semester of 2010. ON TRACK Learn Math is an after-school program 
for students in grades 3-5 that focuses on problem-solving enrichment activities. For the pilot, 
nine sessions were held over five weeks at a local elementary school.   
 Of the nine sessions, three lessons were selected that provide substantial insight into the 
students’ developing understanding of the commutative property of addition.  In the Towers Task 
(Maher & Martino, 1996), students used blocks of only two colors and determined the number of 
different towers that could be built of varying heights.  The video recordings show that several 
students recognized that they could build both a red-blue-blue tower and a blue-blue-red tower, 
yet none of the students were able to notate this on their papers or generalize a rule.   During the 
third week in a similar activity, students used Cuisenaire Rods to determine how many pairs of 
smaller rods would sum to a specific larger rod.  As with the Towers Task, the video recordings 
show that several of the students recognized the distinction between a purple-yellow pair and a 
yellow-purple pair, for example, yet they still did not notate this in writing.  In the following 
session, students attempted to list all of the different pairs of numbers that sum to a given value.  
It was noteworthy that many of the students not only wrote expressions such as 2+3 and 3+2 as 
distinct pairs, but also made references to the Towers and Rods Tasks.  We considered this to be 
a significant development in the students’ understanding.  Though they were unable to clearly 
notate their thinking at the times of the first two tasks, they were now connecting all three of the 
activities.  By scaffolding progressively more challenging problem-solving activities, our 
enrichment program provided the students with the opportunity to make these important 
connections. 
 Peer-reviewed articles on the development of students’ understanding of commutativity are 
scarce and this portion of the ON TRACK study is an attempt to address that gap.  As the study 
moves into full implementation in five local elementary schools, we plan to continue gathering 
more written data on the development of students’ understanding of commutativity.  
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With the support from an NSF grant, twenty mathematics teachers participated in a 2-week 
summer Mathematical Modeling Workshop. In the fall semester after the workshop, these 
teachers used what they learned at the workshop (mathematical modeling ideas/skills and related 
pedagogy) to teach students in their own classrooms. This study was conducted to investigate the 
impact of the mathematical modeling approach on the teachers who participated in the summer 
modeling workshop and on their students (including at-risk students). 

The general hypothesis of this study was that the reformed teaching featured by mathematical 
modeling can effectively enhance the content and pedagogical knowledge of the teachers and the 
performance of their students in mathematics learning. Specifically, the study sought to answer 
the following research questions: 1) What is the impact of the summer modeling workshop on 
the participating teachers? 2) Do the students taught by the teachers who participated in the 
summer modeling workshop perform better than the students taught by the teachers who did not? 

Experimental designs were the main research method used for the study. A pre-test and a 
post-test were administered for all participating students. The instrument for the pre- and post-
tests of the students was the test created by the California Mathematics Diagnostic Testing 
Program (MDTP). The pre-test was administered during the beginning weeks of the school year 
for students in the Algebra II, Geometry, Algebra I and Pre-Calculus classes. The post-test was 
administered one week before Christmas break for the same classes of students. Analyses of 
variance (ANOVA) and t-tests were implemented to analyze the quantitative data.   

Classrooms observations were conducted, and different surveys were administered 
respectively for the participating teachers in the experimental group and those in the control 
group. The classrooms observations and the surveys were designed to collect information about 
what was going on in the classrooms, the teachers’ teaching styles, their students, any issues and 
concerns, possible obstacles, what support the teachers expected from the researchers, etc. The 
pilot study also used in-depth interviews of six teachers (three experimental teachers and three 
control teachers) to collect more qualitative data, and the case study method (Yin, 2003) was 
used to analyze the data.  

The main findings of the study included: 1) The teachers who participated in the above-
mentioned modeling workshop (“experimental” teachers) developed teaching styles that were 
significantly more Standards-based, reform-oriented, and student-centered than those who did 
not have such experience (“control” teachers); and 2) The “experimental” teachers were more 
effective in helping students understand concepts and develop problem-solving skills than the 
“control” teachers, at least in most of the cases. In summary, this study has, at least initially, 
provided evidence to support its general hypothesis about the role of the reformed teaching 
featured by mathematical modeling.  
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The purpose of this ongoing study is to examine practicing middle and secondary teachers’ 
different strategies and method of solutions towards given geometry problems in a hybrid (online 
& face-to-face) geometry course. The course is designed to encourage divergent thinking during 
problem solving while reflecting on and discussing solution processes. While the larger study 
includes 25 middle and secondary mathematics teachers, this poster is a case study that reflects 
the thinking of one female teacher middle school teacher. Data collected includes online and in-
class discussions, solutions to problems and the teacher’s reflections problems. Guilford and 
Merrifield’s five features of divergent thinking are used to frame this case study. Results indicate 
evolving levels of divergent thinking by the teacher during the semester while using technologies 
such as MS Excel and Geometer's Sketchpad.  

 
Method 

Guilford and Merrifield (1960) define five kinds of thinking abilities that involve 
creativity and divergent thinking: 

! Sensitivity to problems: seeing defects, needs, deficiencies, seeing the odds, the unusual; 
seeing what must be done. 

! Flexibility: ability to shift from one approach to another, one line of thinking to another, 
to free oneself from a previous set. 

! Fluency: ability to produce large number of ideas. 
! Originality: ability to produce remote, unusual, or new ideas or solutions to “embroider” 

or elaborate. 
! Redefinition: ability to define or perceive in a way different from the usual, established, 

or intended way, use, etc. 
The teacher explored problems to seek multiple solutions while using technologies. 
  

Results 
An analysis of this teacher’s solution procedures, reflections, and discussions shows an 

evolution of divergent thinking and seeking creative ways to solve geometry problems 
throughout the course. The use of technologies, more specially internet research, MS Excel, and 
Geometer's Sketchpad served as key elements in sparking her divergent thinking and 
mathematical creativity. Examples of her solutions and evolving reflections that demonstrated 
increases in divergent thinking and creativity will be on display.   
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In this article we report the proofs and argumentations provided by 15 high school students (16-
17 years of age) when solving triangle congruence problems, in a paper and pencil environment. 
The proofs provided by the students, from the nine problems which were assigned, coincide with 
those reported in the research literature related to this subject matter. Our results suggest that 
students, many a time, in their proofs and argumentations, lean over empirical evidences, 
institutions and even on personal experiences brought about by the geometric figures which were 
provided in the problems.  

Introduction 
The appropriateness of whether or not including the topic of proof in the mathematics 

syllabus at basic levels (secondary school and high school) has been discussed for about 40 
years. It is true that not all the mathematical contents at these educational levels need formal 
proofs; however, when the study of Euclidean geometry topics begins, students are required to 
provide arguments of why certain propositions are true or false, or how to argue that a geometry 
problem is adequately solved. The majority of students at these educational levels are not 
interested in either comprehending, or learning how to prove Euclidean geometry theorems, 
since, for them, the geometric properties and some propositions are often evident, due to the fact 
that they are supported by figures.    

The research literature related to proof in mathematics, and to the academic field is vast. Due 
to space restrictions, in this paper we only include some bibliographic references; whose 
emphasis is the proof and argumentation given by the students at the different academic levels. 
For instance, Van Dormolen (1977, quoted by Ibañes & Ortega, 2005, p.25) refers to three levels 
of proof, provided by students; such levels are: a) zero level, characterized thus because the 
student focuses only on concrete objects, b) level one, thus characterized because the student 
thinks of objects as representative of one kind, c) level two; in this level the student is capable of 
generalizing. Bell (1976) proposed three objectives for proof; they are: verification, illumination 
and systematization; de Villiers (1993, quoted by Ibañes & Ortega, 2005, p.29) propose two 
functions of proof: discovery and communication; whereas, Balacheff (1987) mentions two kinds 
of proof by students, supported by examples: the pragmatics, based upon the ostention; in this 
kind of proof, students resort to the action and concrete examples, and the intellectual ones; 
based upon the formulation of the mathematical properties brought into play and the 
relationships that exist between them. In turn, pragmatic proofs are subdivided into different 
kinds: the naïve empiricism, the crucial experience, the generic example and the mental 
experience. Siñeriz and Ferraris (2005), Van Ash (1993, quoted by Ibañes & Ortega, 2005, p.26) 
and Hanna (1990), among others, have contributed as well to the study and development of 
proof, in accordance with the kind of language and the level of formality used.  

Paying attention to the problems outlined above, we pose the following objective for this 
research: To explore the function of the task in a paper and pencil environment in the proof. That 
is to say, how the task suggested by the teacher, motivates and makes evident the necessity to 
prove propositions. In this paper, we pretend to provide an answer to the question: What kinds of 
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proofs emerge during the solutions given by students to geometric problems of triangle 
congruence?  

Theoretical Perspective 
This research was theoretically supported by diverse kinds of argumentation and proof 

provided by some of the authors mentioned aforesaid. For instance, the different kinds of 
pragmatic proofs which are referred to by Balacheff (1987, pp. 156-157):  
a) Naïve empiricism: is based upon a few examples; generally, selected in a random way, in 
order to verify the statement to prove; 
b) Crucial experience: based upon the careful selection of an example, convinced that if the 
conjecture is true for that case, then it will be for all the others; 
c) Generic example: based upon the selection of an example that acts as representative of its 
kind; in such a way that even though the proof refers to that particular case, it could be 
generalized to all that kind; 
d) Mental experience: based upon the actions previously carried out by the student who, 
afterwards, internalizes (generally they are observations of examples) and then separates the 
particular actions to turn them into deductive abstract arguments.  

Montoro (2009, pp. 5-6) identifies the following categories:  
a) Formal deductive argumentation: when the subject makes inferences based on the hypotheses, 
properties or definitions and presents a logic sequence of symbolic expressions;  
b) Colloquial deductive argumentation: when the subject makes inferences based upon the 
hypotheses, properties or definitions, above all, in a colloquial way;  
c) Colloquial explanation: when the subject clarifies (or it is clarified) the situation. Generally, 
the subject presents an aspect of deductive argument without being real inferences;  
d) Explanation by evidence: when the subject tries to evidence the proposition by the use of 
affirmation of that some property or some definition is fulfilled without arguing; only making 
affirmations;  
e) Explanation by means of a draw: when the subject shows, using a draw; his affirmations lack 
arguments.   

Hanna (1990, pp. 6-12) identifies the following kinds of proof: 
a) Formal proof: a finite sequence of affirmations where the first one is an axiom and each one 
of the following ones is an axiom as well, or else it derives from the previous affirmations, by 
means of the correct application of inference rules. The last affirmation is the one which should 
be proven;  
b) Proof that proves: it is used to see that a fact is true, but it is not necessary to explain because 
it is. This kind of proof can be based upon mathematical induction or even only upon syntactic 
considerations;  
c) Proof that explains: it provides a series of reasons which derive from the phenomenon itself. It 
should provide a justification based on the mathematical ideas involved, and on mathematical 
properties.  

Beyond the different processes of argumentation and proof used by students in order to 
justify their results in geometry, there exist the problems related to the diverse types of 
interpretation of a geometric representation, in which reasoning and visualization are aspects of 
paramount importance, as they are discussed by Camargo, Pery and Samper (2005) and by Palais 
(1999).  

Methodology 
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Participants 
This study was carried out with 15 students (16-17 years old) in the second year of a high 

school located in Mexico City. The students did not have experience on how to carry out 
demonstrations in geometry. During three working sessions (the first one of one hour and the 
remaining two of two hours, each one was conducted by one of the authors of these paper), 
students solved problems of Euclidean geometry; which included tasks as: recognition of figures, 
geometric constructions, use of theorems and criteria of triangle congruence, as well as the 
validation of their results. Due to the fact of space restrictions, in this paper we will only 
document the work of seven students; whose demonstrations exemplify the diverse types of 
demonstrations reported in the research literature.  

Selection and Modification of the Problems 
From the book Plane and Solid Geometry (Wentworth & Smith, 1979), nine problems of 

triangle congruence were chosen; these problems were modified in their original writing. The a 
priori solution of the problems posed to students was carried out; such solutions are aimed at 
foreseeing the possible proofs and argumentations by students. Due to space restrictions, such a 
priori solutions of the problems are not included in this paper.  

Data Gathering 
Between 10 and 15 minutes were allocated for the solution of each problem (individually), 

and some minutes were devoted to group discussion; conducted by the researcher. We have the 
register of the nine problems of the activity, with their respective answers provided by each one 
of the students, using paper and pencil, as well as the video recordings from the individual work 
and group discussion.   

Data Analysis and Discussion of Results 
Next are shown four problems (the numbering of them does not correspond to the order in which they were proposed) and the 

argumentations provided by the students.  

Problem 1 
In ABCD!  (Figure 1), P is the 

midpoint of AB . Prove that PC PD= . 

 
 

    
 

 
 

 
 

 
 

BA

D C

P

  

 
 

 
 

 
 

 
      Figure 1. Problem Representation 

Some solutions  

 
Figure 2. Student A2: Formal Deductive Argumentation; Use of the Pythagoras Theorem 
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Figure 2 shows the use of the problem’s hypotheses: given that =DA CB  and =AP PB , then, using 

The Pythagoras Theorem, conclude that =CP DP . 

 
Figure 3. Student A4: Argumentation Based upon Evidences 

As it is shown in Figure 3, the student asserts that the segments PC  and PD  measure the 
same, only by the fact that the figure, whose vertexes are A, B, C and D, is a square, but no 
argumentation is given. 

 
Figure 4. Student A5: Affirmations Based upon the Initial Figure 

As shown in Figure 4, the student asserts that PC PD= , because he observes that P is the 
midpoint of one of the sides of the square and that right-angled triangles are formed, whose sides 
are the sides of the square. He only asserts without arguing. 

 
Figure 5. Student A11: Proof by Visualization  
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Figure 5 allows to observe that the students focuses on the elements or graphic 
representation, and builds the auxiliary straight line that passes P, in order to obtain four 
congruent triangles, which helps him conclude that PC PD= .  

Problem 2 
In Figure 6, AC BC=  and AD BD= . 

Prove that CBD DAC! =! . 

 
       Figure 6. Representation of the Problem 

Some solutions 

 
Figure 7. Student A2: Colloquial Deductive Argumentation Based on the Figure; Use of 

Unclear Language 

In accordance with Figure 7, the student uses colloquial language in order to argue the 
validity of the proposition based upon the properties of isosceles triangles. Similarly, he seems to 
deduce that the triangles of interest are equal since he sees him as the same addition of two 
angles; however the way of writing his ideas is not clear.  

 
Figure 8. Student A11: Colloquial Argumentation Based upon Evident Actions 
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According to Figure 8, the student uses colloquial language to prove the affirmation. He 
traces the auxiliary straight line CD which cuts AB  at its midpoint in a perpendicular way, and 
since AD BD= , he concludes (by the SSS criterion) that ADC!  is congruent to BDC! . 

Problem 3  
In ABC!  equilateral (Figure 9), P and 

Q are midpoints of BC  and AC , 
respectively. Prove that AP BQ= . 

  
      Figure 9. Problem Representation 

Some Solutions 

 
Figure 10. Student A10: Argumentation Based upon Evidences 

In accordance with Figure 10, the student asserts that the measurements have the same length 
by the mere fact that the triangle is not equilateral. He does not provide any argumentation. 
Problem 4  

In ABCD!  (Figure 11), the midpoint 
of AB  is M. With center in M an arc is 
described that cuts AD  in Q and BC  in P. 
Prove that MBP! ! MAQ!  

 
      Figure 11. Problem Representation 

Some solutions 
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Figure 12. Student A12: Argumentation Supported by the Use of non Evident Colloquial 

Language  

It is observed in figure 12 that for the student, two triangles are congruent is two of the sides 
of one are equal to two of the sides of the other, and then he concludes that the right-angled 
triangles are equal, even though he does not refer to the right angle.  

 
Figure 13. Student A7: A Proof he explains by the Use of geometric concepts 

As it is observed in Figure 13, the student provides a justification based on triangle congruence (SAS criterion). Two equal 
corresponding sides (and the right angle which he does not mention) are enough for him to affirm that the two right-angled triangles 
involved are equal. 

Conclusions 
Generally, from the second and third working session it was observed that the majority of 

students justified the results using a colloquial language, and, sometimes, the processes of 
argumentation were imprecise or incomplete; however, in some cases, they did use a formal 
symbolic language with clarity. In general, students elaborated, in an acceptable way, the 
demonstration in which they resort to triangle congruence, or at least, this element allowed them 
to infer and elaborate a discourse with which they tried to justify the results.  

To the light of students’ answers, in this research, the kinds of proof which emerge during 
the solution the geometric problems of triangle congruence are the ones already mentioned in the 
research literature related to proof in mathematics. In our research, we could verify that there 
exists a great difficulty, on behalf of the students, to identify auxiliary elements which could be 
useful in order to ensure the veracity of the result. Students need to develop intuitive reasoning 
of the geometric objects in order to access both a better understanding of Euclidean geometry 
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and a formal deductive reasoning for its study; in order to reach the lather, it is required to take 
into account the kind of tasks to be solved and the way in which they are guided.  
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Introduction 
 Recent reforms in mathematics education have led to an increased emphasis on 
argumentation practices in mathematics curricula (National Council of Teachers of Mathematics, 
2000). The relevance of argumentation in mathematics curricula has been demonstrated at 
various levels of K-16 mathematics. All findings consent that argumentation should be a central 
aspect of mathematics teaching and learning at all levels of schooling.   
 Argumentation, in this work, is defined as an act of communication intended to lend 
support to a claim. This definition presupposes a relationship between argumentation and proof, 
where proof is defined, in this work, as a logically correct argument constructed from given 
conditions, definitions, and theorems within an axiom system.  
 This exploratory work provides a description of argumentation practices among pre-
service secondary mathematics teachers during an undergraduate mathematics capstone course. 
The work presents a possible relationship between the use of transformative mathematical tools, 
specifically technological tools, and pre-service teachers’ argumentation practices. Additionally, 
this exploratory work investigates: (1) the role of pedagogically sound mathematical tools in the 
advancement of teaching acceptable argumentation practices, which lead to sound reasoning and 
proof processes; and (2) mathematical tasks useful to prospective teachers in the teaching of 
argumentation practices.    

 
Results 

 This work revealed that the pre-service teachers’ conception of argumentation directly 
influenced their instructional approaches in teaching. Involving them in reasoning through 
argumentation under different instructional practices enhanced their abilities to evaluate, 
integrate, bridge, and explain their mathematical knowledge. Significant developments in 
students’ argumentation practices occurred as students used technological tools as a medium to 
support and define their reasoning. The integration of these transformative tools (i.e. Geometer’s 
Sketchpad, Mathlab, etc.) with the students’ content knowledge led to the production of strong 
mathematical products in the form of argumentation, reasoning, and proof.   
 With the use of similar tasks and tools, students’ argumentation practices were 
conceptualized and categorized in four different categories: Argumentation as Confirmation, 
Argumentation as Validation, Argumentation as Discovery, and Argumentation as Explanation. 
Many aspects of the pre-service teachers’ conception of argumentation are represented in work 
samples from each argumentation category. Models of student work from each category will be 
visually displayed in the full presentation.   
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This paper reports the results of research with the objective of analyzing the ways students 
related two or more representations to make sense of motion situations. In the study of 
movement phenomena some researchers have identified and documented the students' 
difficulties to read and interpret distance-time graphs. In line with this observation Bowers and 
Doerr (2001) point the tendency for students to interpret the distance time graph as a picture of 
the path of the motion phenomena. In the same sense Monk (1992) documents that when the 
students work with distance time graph, they can determine correctly the distance traveled by a 
car at different time intervals, although they can´t identify if the car speed increased or 
decreased. Goldin and Kaput (1996) said that when students are in problem solving activities 
they use different representations to work with the information provided, each representation 
bring forward different aspects related to the same concept. Previous researches make clear how 
important it is the underlying information in each representation.  

The conceptual framework is based on complementary external representations to support the 
construction of deeper understanding. Ainsworth and Van Labeke (2004), pointed out that when 
learners interact with appropriate representations, their performance is enhanced. 

We report three students' work which was selected after us identifying that they showed a 
representative work of the group, also they wrote their reports in more detail than their peers. 

The activity reported was undertaken during two sessions of one hour and one half each.  In 
this task we analyzed the relationship that students established between verbal and graph 
representations to make sense of motion situations; particularly we were interested in two points: 
a)Identify if they relate, in a distance-time graph, the slope whit the speed value; b) Identify how 
they represent in a distance-time graph the velocity changes at different time intervals 

The findings obtained make it possible to assert that when students work on tasks that 
include complementary external representations they improve their understanding of motion 
situations. 
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Many researchers have used Albert Bandura’s work on self-efficacy as a theoretical 
framework in analyzing how beliefs affect educational performance.  He defines it as “beliefs in 
one’s capabilities to organize and execute the courses of action required to produce given 
attainments (Bandura 1997).”  Investigators have found evidence that support his theory when 
applied to school mathematics.  Studies among college students (Hackett and Betz 1989), 7th 

grade (Chen 2002), and high school students (Randhawa, Beamer et al. 1993) provide data that 
show positive correlations between self-efficacy measurements and mathematics performance. 
Likewise, a qualitative research documenting the beliefs and performance of middle school 
children present congruent information (Usher 2009).  

This research was conducted as part of a study that investigated the relationship of self-
efficacy beliefs to mathematics achievement among Filipino high school students selected from a 
homogenous, rural, and low-SES community.  Utilizing observations, interviews, and focus 
group discussions, self-efficacy was related to academic behavior, peer group activities, and 
parental support, and to mathematics performance.  

Despite the emphasis on qualitative techniques, there was still a need to quickly assess self-
efficacy for the whole student population of the school.  The Clothesline Method is one 
instrument that allowed the respondents to rank and rate beliefs at the same time.  Based on test-
retest statistics, it was shown that the data produced were more reliable compared to a typical 
belief rating scale.  Nonetheless, there were disadvantages in using this method.  It can produce 
confusion among students and may result to many invalid data. The effectiveness of the 
instrument was highly dependent on how well the administrator explained the instructions. 
Finally, it was more time consuming.  If perfected however, this may serve as an alternative to 
Likert or Bandura’s scales especially for populations who are not familiar to conventional survey 
techniques.  
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Students of tomorrow not only need basic ideas of science but also need to have an 
understanding of why science is so important to societies financial, social, political and cultural 
being (COSEPUP, 2007). Consequently, educators and researchers have begun to carefully 
evaluate how today’s students learn and it is generally accepted that students learn best by 
“doing” especially in science classrooms (Dalton et al., 1997). However, besides hands-on 
instruction, current researchers and educators have also recognized the impact of technology on 
today’s learners. In the new millennium, literacy takes on a new meaning. For example, the 
current generation of teenagers often referred to as the E-Generation have grown up in the era of 
Internet, cell phones, I-pods, and Nintendo which some believe has not only changed the way 
students think but also the way that they learn. (Jones-Kavalier, 2006). Therefore, some argue 
that that the use of multimedia technologies such as virtual laboratories, simulations and 
computer models are better suited for today’s science students (Roschelle et al., 2000).  
 

Purpose of the Study 
The study will compare the effectiveness of student learning in a virtual computer laboratory 
experience to that of a traditional hands-on laboratory experience. Student attitudes and 
opinions of virtual labs will also be considered. Students will be asked to partake in a survey 
where they share individual feelings of the overall effectiveness and future usefulness of 
computer models.  

 
Significance of Study 

The significance of this study is to gain a better perspective on today’s technological learners. In 
planning lessons, teachers can give more consideration to computer models and virtual lab 
simulations if this study and future studies show that such applications are more effective and 
motivating to present learners.  

Methods Research Design 
This study randomly divided four high school chemistry classes into two control groups and two 
experimental groups. The control groups conducted an in-class experiment under the supervision 
of the teacher and the experimental groups conducted an experiment using a computer module. 
The objective for all groups was the same; students were to determine the limiting reactant in a 
chemical reaction.  

The experimental groups were assigned a virtual computer simulation. Students met at 
the school’s computer lab and were assigned a lab on limiting reactants. The computer module 
asked students to make a comparison between building a cheese sandwich and chemical 
reactions. For example, students determined the limiting reactant in making a cheese sandwich 
when they were given eleven pieces of bread but only four pieces of cheese.  

The control groups participated in a very similar experiment which took place in the 
classroom with the science instructor. Again, the key concept was asking students to deduce the 
limiting factor in a chemical reaction. Similar to the virtual lab in which students were making a 
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relationship between recipes and chemical reactions, students were given the ingredients and the 
recipe for rice crispy treats or otherwise referred to in the experiment as carbohydrate chewies. 
Students were instructed to make chewies following the recipe they were given and then 
determine which ingredient limited the product.  

Prior to both experiments, all students were given identical pretests concerning their 
attitudes and opinions towards virtual labs and hands-on experiences. Both experimental and 
control groups were given identical quizzes on limiting reactants and scores were compared.  

Finally, approximately three months after carrying out the study, all students who 
participated in the study will be given a follow up or post quiz so as to gain a better 
understanding of student retention. The follow up quiz scores will then be compared to the 
original quiz scores of all students.  

 
Results 

T-Test will be used to compare means of treatment and control group subjects. Attitudes of the 
experimental and control groups toward virtual and hands-on experiments will also be compared. 
Results and conclusions with a discussion of results will be presented at the October PME 
conference.  
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The Algebra Project’s Cohort Model (APCM) offers a structure for high school mathematics 
classrooms that supports the development of an effective peer culture for developing 
mathematical understanding and mathematics learning efficacy. The APCM is built on 15 years 
of experience. The purpose of this study was to observe the peer culture transformation in one 
APCM classroom.   

Poster Summary 
The Algebra Project’s Cohort Model (APCM) offers a structure that supports the 

development of an effective peer culture for developing mathematical understanding and 
mathematics learning efficacy. The APCM is an innovative approach for high school 
mathematics for students who have been consistently low performing on state or national 
achievement tests to “catch up” by graduating in four years and qualify for college mathematics 
courses, if they choose to attend (West, 2011). The APCM is built on 15 years of experience in 
middle schools and high school pilot programs that included instructional materials development 
funded by the National Science Foundation. 

The purpose of this study is to observe within one Algebra Project Cohort Model classroom’s 
peer culture transformation from “‘I dare you to teach me’ to ‘I need and want you to teach me’” 
(Bob Moses, Summer 2010). The idea of harnessing the peer culture for mathematics learning is 
anticipated to occur during the traditional four years of high school in response to an APCM 
implementation. However, after a little over one year evidence of the transformation has 
manifested in the site that I have been studying.  

The target Algebra Project Cohort classroom is located in a small urban community and is 
comprised of 19 students. My poster will present preliminary evidence of the peer culture 
transition using a multimedia and print display and include an overview of the Algebra Project’s 
Cohort Model including an introduction of the cohort class and teacher, an APCM structural 
description, and community outreach through the Young People’s Project.  
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Throughout the United States, high school students who take a college preparatory 

curriculum are often surprised when they are placed into a remedial mathematics course in 
college as they assume their high school courses have adequately prepared them to enroll in 
courses such as calculus.  Although a college preparatory curriculum is necessary for college 
readiness, it alone is not sufficient to assure success.   Indeed, in 2004 Achieve conducted a study 
which confirmed a gap between what students knew leaving high school and the actual 
knowledge that they needed to know coming into college (2010). Differences in the skills gained 
in high school and the expectations of knowledge needed in college may be a key component in 
this issue (Kirst & Venezia, 2001).   Research has also suggested that the lack of coordination 
between high school and post secondary institutions could be part of the problem (Kirst & 
Venezia, 2001).  Most scholars agree that this “expectations gap” exists, yet how to address this 
gap and provide an easy transition from high school to college has yet to be found. 

Research done by the US Department of Education shows that the single best predictor of 
college success is not test scores, class rank or GPA, but the intensity and quality of a student’s 
secondary school curriculum (Adelman, 1999).  Too often the college preparatory curriculum in 
high school does not get a student through the mathematics placement test in college.  The skills 
and knowledge actually necessary for success in post secondary mathematics courses needs to be 
clarified (Haycock, 2003).  High school and college courses may not use the same criteria to 
determine what constitutes “success” (Berry, 2003). 

What should readiness standards include?  What knowledge or skills are needed and 
expected at the college level for success?  Do both high school teachers and college professors 
agree on these factors?  Exploring these questions this study looked at the perspectives of high 
school teachers and college professors surrounding factors which contribute to college 
mathematics success.  Interview data from both groups was analyzed to determine if perspectives 
on contributing factors were uniquely or collaboratively viewed as important for success in 
college mathematics courses.  Initial findings indicate both overlapping and disjoint views on 
what contributes to student success. 
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In an effort to understand the development of teaching practices of future post-secondary 
teachers of mathematics, individual and group interviews with mathematics graduate students 
were undertaken to explore their experiences and perspectives of mathematics teaching. These 
conversations probed their personal histories in studying mathematics, current experiences as 
mathematics graduate students, views of mathematics, and their possible futures in academia. In 
observing their lives during the academic year, it was noted that as they learned of the relative 
importance (or unimportance) of different aspects of a life in mathematics, the research 
participants observed that post-secondary mathematics teaching took on a certain form and that 
mathematicians adopted particular identities. Framed by the idea of legitimate peripheral 
participation (Lave and Wenger, 1991), in their transitions from graduate students to professors, 
the participants in this study seemed to move from a marginal position to a central place in the 
community as their identities, actions, and teaching more closely resembled those of the 
mathematicians in their department.  
Four stages through which the participants passed and by which this transition process can be 
described are: replication, resignation, despondence, and repetition. First, in their process of 
becoming mathematicians, the participants first felt a need to replicate – not only mathematical 
content, but also who they could be as post-secondary teachers of mathematics. They were 
limited in what they could do as future teachers by the structures of the department and by the 
advice, or lack of it, from their faculty advisors. The participants were thus left to creating 
meaning amongst themselves, relying solely on the replication of the teaching they observed. 
Beyond the sense of replication came feelings of resignation, where the participants felt as 
though they must resign their aspirations and expectations for their teaching practices in order to 
be considered legitimate within the department. However, in attending to what was legitimate in 
the department, there seemed to be a considerable cost, bringing about a sense of despondence, 
where the participants began to feel hopeless about what they could do and how they could be as 
post-secondary teachers of mathematics. Finally, Caputo’s (1987) notion of repetition, where an 
individual “forges his personality out of the chaos of events” despite the “incessant ‘dispersal’ of 
the self” (p. 21), helps to understand the elements of their identities and practices the participants 
held onto as they transitioned to becoming professors. These themes – replication, resignation, 
despondence, repetition – will be illustrated on this poster presentation, along with the transitions 
and connections between them. Also, the details and structure of the research project, as well the 
data that relates to each theme, will be presented. 
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New K-12 mathematics teachers enter classrooms with “high expectations for themselves 

and for their students,” where the “early years of teaching are often characterized by a ‘sink-or-
swim’ or ‘survival’ mentality because we have often failed to provide for careful support and 
thoughtful development of teaching expertise over time” (Bartell, 2005, p. 3). Similarly, new 
mathematics teacher educators must learn to navigate the often rocky terrain of their institutions, 
wherein they seek support for finding ways to strike a balance between teaching, research, and 
service. As Reys, Cox, Dingman, and Newton (2009) point out “important aspects to be 
monitored are the challenges that lie ahead for these new Ph.D.s as they begin their careers in 
higher education” (p. 9). While others (e.g., Golde & Walker, 2006) have looked to these 
challenges to help understand how doctoral education could provide better preparation for 
careers in academe, this research project sought to look at the similar challenges faced by two 
groups of novice teachers (with less than three years of experience): those teaching mathematics 
education courses at universities and those teaching mathematics in K-12 classrooms. In 
particular, this research study focused its attention on addressing the research questions: How are 
the experiences of new mathematics teacher educators similar to those of new K-12 mathematics 
teachers? In what ways could the knowledge of these similarities help to inform and possibly 
transform new mathematics teacher educators’ practices in working with pre- and in-service 
teachers? 

To explore these questions, we asked a cohort of new mathematics teacher educators to 
answer questions related to their new academic positions. This poster will present: 1) the 
preliminary results of a survey of new mathematics teacher educators, 2) results of a meta-
analysis of recent research that explores the experiences and challenges of new K-12 
mathematics teachers; 3) a comparison of the two groups’ experiences and challenges; and 4) 
how this research has the potential to inform and transform our approaches to mathematics 
teacher education at all levels. 
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Grounded in constructionism, socio-cultural theories, and a cognitive apprenticeship model of 
learning, this study investigated the dynamics of the teacher-intern-professor model as a support 
to effective mathematics instruction and how they used the teacher work sample as a tool for 
instruction and performance assessment to enhance the teaching and learning process conducted 
by pre-service intern teachers as they implement standards-based lessons.  

 
Although teacher preparation programs offer the strategies needed for pre-service intern 

teachers to be successful in their first years of teaching, the retention rates for new teachers, 
especially those in urban schools and high needs areas, are declining. As a result, student success 
is compromised with the transiency of qualified individuals (Wright & Nassar, 1991). In spring 
2011, at a research I university in the southeastern region of the United States, the TIP Anchor 
Action Research Project was implemented to address the needs of teachers through their 
preparation phase and examine the effect on student achievement. The Teacher-Intern-Professor 
(TIP) model consists of a mentor or supervising classroom teacher, a pre-service intern teacher, 
and a university professor.   

Through the use of the teacher work sample (TWS) as a tool for instruction and performance 
assessment, each of ten TIP groups and its comparison class examined a unit of instruction 
administering similar pre- and post-tests. Reflective of the knowledge gained from the pre-test, 
each intern use the results to hone the instructional design and to build more meaningful lessons 
aligned with the desired learning goals. During the study, the university professor ensured that: 
(1) each group received needed supplies, (2) school visits were made to support and conduct 
discussions with the TIP group, and (3) the research activities were in progress. Earlier research 
suggested that interns’ teaching experiences benefit by having support that bridges both 
university and school experiences (Zeichner, 2010). 
 The TIP group participates in discussions, interviews, and records data in journals. This 
serves as the qualitative technique to support the quasi-quantitative data being collected from the 
pre- and post-tests.  This study, which is grounded in constructionism, socio-cultural theories, 
and a cognitive apprenticeship model of learning seeks to answer the following research 
questions: (1) In what ways did the TWS enhance the teaching and learning process conducted 
by pre-service intern teachers as they implement standards-based lessons in the TIP model and 
(2) what are the dynamics of the TIP model as a support to effective mathematics instruction?  

Preliminary results suggest that: (1) the intern teachers felt comfortable and more open to the 
groups’ decisions on pedagogical and classroom management concerns, (2) the collaborative 
approach in meetings, observations, and research was useful and effective, and (3) the use of the 
TWS was recognized as a constructive and meaningful way in be-coming an effective 
mathematics teacher who consistently reflects on his/her practice.  
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PRE-SERVICE TEACHERS OF COLOR INCORPORATING A CHILD’S HOME AND 
COMMUNITY MATH KNOWLEDGE  

Crystal Kalinec Craig 
University of Arizona 

CKalinecCraig@email.arizona.edu 

The purpose of this study was to analyze the experiences of four Pre-Service Teachers (PSTs) of 
Color as they crafted math lessons that utilized a child’s home and community knowledge. 
Diverse, underrepresented students benefit from such lessons because learning is more 
meaningful and relevant. Some PSTs have personal experiences as diverse learners that help 
them to effectively teach students from similar backgrounds. Data collected included lesson 
plans, individual interviews, and written reflections. Findings showed that while PSTs of Color 
eagerly incorporated a diverse child’s home and community knowledge into their lessons, they 
did not feel confident in sustaining this practice. 

As part of a larger dissertation study aimed at describing four pre-service elementary 
teachers’ beliefs and experiences related to teaching mathematics for conceptual understanding 
(Fennema & Romberg, 1999) and with cultural relevance (Ladson-Billings, 1995), this poster 
will focus specifically on how the Pre-Service Teachers (PSTs) of Color come to teach 
elementary mathematics to diverse learners by connecting to the child’s home and community 
knowledge. Children possess a home and community knowledge that may be rooted in their 
culture (Ladson-Billings, 1997), in their Funds of Knowledge (González, N., Moll, L. C., & 
Amanti, C. 2005), and/or is based on their experiences within the local community (Turner, E., 
Gutierrez, M. V., Simic-Muller, K., & Diez-Palomar, J., 2009). It is widely understood that PSTs 
come to the teacher preparation program with prior beliefs and experiences in education and 
mathematics (Featherstone 1992; Lidstone and Hollingsworth, 1992) and what it means to teach 
diverse learners (Meaney et al., 2008). Throughout the mathematics methods coursework and 
elementary field experiences, research has suggested that PSTs should be challenged and/or 
supported in their prior beliefs and experiences on teaching diverse learners (Cabello & 
Burnstein; 1995; Aguirre, 2009). Work in this area is particularly important for PSTs who are 
diverse learners and/or are from underrepresented backgrounds (Montecinos, 2004).  The prior 
experiences of PSTs of Color may shed some insight into how all teachers (not just those from 
the demographic majority) might better educate diverse students in the field of mathematics—a 
content area that has historically marginalized students based on culture, language, ability, and 
class.  

The three female and one male PSTs in the study (all self-identified as Latina/o) were a 
part of a larger elementary methods cohort in the Fall 2010 and were placed in field experience 
classrooms at three local elementary and middle school, made up largely of Latina/o and low 
socioeconomic populations. My poster will analyze how PSTs’ of Color acquired and integrated 
the knowledge of the local community and of their students in order to write more meaningful, 
relevant math lessons. The experiences were recorded in a variety of ways: three interviews 
individual reflections on the School and Community Math Project, reflections about relevant 
course readings, and reflections on a case study with a young child.  
 The findings showed that all of the PSTs of Color considered a child’s home and community 
knowledge as being important in how he/she learns mathematics, yet they still wanted more 
experiences in making meaningful and sustainable connections to their daily practice. 
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Additionally, nearly all of the PSTs of Color framed a child’s home and community knowledge 
around consumption (e.g. buying a toy or consuming food).  The adage of “getting the most bang 
for your buck” ran predominantly throughout their lessons. Bilingual PSTs of Color saw a 
student’s native language as another way to connect to a child’s home and community 
knowledge.  Other themes and implications for teacher education will be included in the analysis.  
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TEACHER’S STRUGGLE WITH DISCONNECTED TEACHING EXPERIENCES 
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In the U.S. and most parts of the world, the student-teaching internship is the culminating 

experience of initial teacher education programs (Guyton & McIntyre, 1990). Most teachers view 
this internship as the most valuable part of their preparation, claiming that most of what they 
know comes from first-hand teaching experience (Feiman-Nemser & Buchmann, 1985). The 
purpose of this presentation is to share the story of Julie as she navigates this experience.  

Julie is a middle level prospective mathematics teacher enrolled in an undergraduate teacher 
education program at a large urban state university in the South-Eastern region of the United 
States. In Fall 2010, she participated in a 2-day per week field-based practicum experience and a 
university-based mathematics methods course. The course and field experiences in the fall 
focused primarily on theoretical readings, field-based observations guided by those readings, and 
lesson plan development. In Spring 2011, Julie completed her full-time student teaching in the 
same 6th grade mathematics classroom where she completed her practicum hours in the fall. 

Data for this paper consist of Julie’s written assignments from the Fall 2010 mathematics 
methods course, observation field notes from student teaching, and transcribed interviews from 
both fall and spring semester. To analyse the assignments and interviews, the researchers read 
and re-read all narratives separately and collectively to identify general themes. Common themes 
from Julie’s case include the following: philosophical differences between mentor and student 
teacher, the disconnect between theory and practice, and the question of whether this is the 
correct career choice. These themes are highlighted below.  

From the beginning of the fall practicum experience, Julie struggled with the disconnect 
between her newly developing teaching philosophy as shaped by her university coursework, and 
the quite different mathematics teaching actions of her mentor teacher. She states,  

I wanted so badly to be with the picture perfect teacher, but I am not. I think what is 
frustrating for me is how she teaches math. The goal is not to understand the concept and the 
why but be able to do the steps and get the answers. I also know she was frustrated with me 
because I was spending so much time on things. We’re just very different. (Interview 1) 

In addition to the struggle between coursework and field experiences, Julie also appeared to be 
struggling with her decision to become a teacher. She states,   

I’ve been down and questioning whether or not I’m really going to teach and go forward. It 
has been difficult.  It is a lot of work, which I don’t think I was prepared for. (Interview 2) 
These, and other quotes from Julie’s written work and interviews, will be shared during the 

presentation to explore issues of disconnect. In particular, we focus on the lack of autonomy and 
flexibility experienced in this setting and possible implications for teacher education.  
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INVESTIGATING PRE-SERVICE CANDIDATES’ IMAGES OF MATHEMATICAL 
REASONING 
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North Carolina Central University 
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Subject Matter Knowledge (SMK) and Pedagogical Content knowledge (PCK) are seen as 
diverse, multidimensional, and vital to a teachers’ knowledge base for teaching. Understanding 
pre-service candidates’ (PSC) organizational knowledge, connections among ideas, proof and 
inquiry, and knowledge growth within mathematics are important factors to explore when 
examining their images of mathematical reasoning. This research was conducted during a 
methods course. 
 

Research Focus 
Borko and Putnam (1996) suggested that learning opportunities for teachers be grounded in 

the teaching of subject matter and “provide opportunities for teachers to enhance their own 
subject matter knowledge and beliefs” (p. 702). In response to this assertion and Schoenfeld’s 
(1999) call for theoretical research that is focused on practical and relevant applications 
throughout education, the focus of this research is to explore PSCs’ images of mathematical 
reasoning. 

 
Conceptual Framework 

The conceptual framework for the research helps explain PSCs’ images of mathematical 
reasoning when examining responses to several related questions about reasoning and proof. The 
conceptual framework uses components of Shulman’s (1986) knowledge base in teaching and 
incorporates Pirie-Kieren’s (1994) notions of primitive knowledge and images from their model 
for growth in mathematical understanding. 

 
Methods of Inquiry 

The investigation of PSC’ knowledge of mathematical reasoning was part of a study 
investigating prospective teachers’ knowledge of what and how to teach concepts in an 
elementary mathematics methods course. The study was done over a 15-week semester, 
involving several PSCs.  

 
Results 

In examining the PSCs’ responses to the questions there is a need to help them define 
terminology when explaining their images.   As the PSCs draw upon their images of 
mathematical reasoning, the data has strong implications for their propositional knowledge while 
examples of case knowledge and strategic knowledge are combined throughout to exemplify 
either observations or the personal experiences they have had as a student in a mathematics 
classroom.  In addition, the data reveals that it becomes evident that the PSCs have strong images 
with regards to propositional knowledge.  

 
Discussion 
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With current reform efforts such as the Core Common Standards guiding curriculum decisions, it 
is imperative that teacher education programs look forward to the Standards for Mathematical 
Practice, so that instruction is aligned with these efforts.  These practices are built on established 
processes and proficiencies for mathematics education that rely heavily on PSCs’ knowledge and 
beliefs of mathematical reasoning.  Therefore, investigations into PSCs’ beliefs on mathematical 
practices need to be continually explored and best practices further defined for all mathematics 
teachers. 
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NOVICE TEACHERS’ PERSPECTIVES OF TEACHER PREPARATION 

Brian W. Gleason 
University of New Hampshire 
brian.w.gleason@gmail.com 

I report here on research that examined novice secondary mathematics teachers’ perceptions of 
their preparation and their perceptions of ideal teacher preparation. The teachers expressed 
more positive views of teacher preparation than those typically found in the literature. 
Furthermore, the teachers provided insights into how teacher preparation could be made more 
meaningful and effective. These suggestions were grounded in their teaching experience, their 
beliefs about teaching, and their experiences as prospective teachers. 

Most interested groups have a less than favorable view of teacher preparation (Labaree, 
2006). To examine how teachers perceive their preparation, I interviewed relatively recent 
graduates of a large, well-respected secondary mathematics teacher preparation program. 
Contrary to what might be expected, the teachers were generally satisfied with their preparation. 
The suggestions they made for future teacher preparation were phrased as improvements, rather 
than reinventions, of the existing program. Moreover, their views of their preparation were 
heavily rooted in their beliefs about what teaching is and should be, so that as this latter belief 
shifted or stabilized during their preparation and initial years of teaching, so too did their view of 
their preparation experience. This phenomenon aligns with Green’s (1971) notions of primary 
and derivative beliefs. 

In particular, the teachers held a view of teaching that was more social and less cognitive 
than many teacher educators, which sometimes led to teacher educators and prospective teachers 
having conflicting goals during the teacher preparation program. This in turn led to missed 
opportunities that directly affected the teachers’ level of preparedness. For example, the teachers 
acknowledged a tendency to disengage from coursework they perceived as irrelevant or 
inefficient. From their current point of view as experienced teachers, this disengagement 
deprived them of possible learning experiences that would have benefited them in their later 
teaching. Consequently, the teachers suggested direct actions teacher educators and teacher 
preparation programs could take that would prevent these episodes of disengagement, thereby 
improving teacher education by encouraging more continuous and authentic participation from 
prospective teachers. 

The teachers’ views of ideal teacher preparation are also revealing, and surprisingly similar. 
One alteration every participant proposed was to either increase or foreground (or both) the field 
experience component of their preparation wherein they observed and taught in middle or 
secondary schools. This recommendation is connected to the prior point about disengagement. 
Field experiences, the teachers felt, had a significant impact on their beliefs about what teaching 
is. Experiencing classrooms from the point of view of teachers rather than students, often for the 
first time, affected their thinking about the nature of teaching. The experiences also provided 
concrete knowledge for them to draw upon in later mathematics and methods courses. Thus, 
foregrounding and expanding the field experience component would prompt prospective teachers 
to seriously attend to later instruction in mathematics and pedagogy and also allow them to better 
make sense of that instruction because they would have personal experiences to connect it to. 
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WHAT DOES “REAL-LIFE” REALLY MEAN TO 
ELEMENTARY PRESERVICE MATHEMATICS TEACHERS? 
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Many mathematics teacher educators and teachers emphasize the importance of connecting 
mathematics to real-life in order to engage students in learning mathematics. Several researchers 
have also explored the benefits of involving students in real life contexts (e.g. Civil, 2007 and 
Gutstein, 2003). For example, Luis Moll and his colleagues (Moll, Amanti, Neff, & Gonzalez, 
1992) suggest that connections to household funds of knowledge can motivate students to learn 
mathematics in the classroom. While researchers have extensively explored the outcomes of 
engaging students in real-life contexts, what remains unexplored is how teachers understand and 
use ideas about real-life in their classrooms (Author 2 and others, 2011). This poster begins the 
exploration of teacher understandings by examining how one preservice teacher (Francis) made 
sense of real-life in her school experiences. 

Francis participated in an elementary teacher preparation program at a large university in the 
southwest. She was also part of a research project examining the relationship between the math 
methods classroom and her field placement. The research project collected a variety of data from 
Francis including transcripts from 2 interviews and copies of all written work for the course. In 
total, the written data on Francis comprises over 53 pages of text.  The findings below arise from 
examination of each of these documents. 

Francis’ work shows three different ways in which she connected real-life to mathematics 
teaching and learning: (a) Using students’ “real-lives” – their already lived experiences (i.e. 
their home, language, and cultural experiences) – to engage them in mathematics. For example, 
Francis tried to make mathematics more accessible for one of her students from Mexico by 
discussing the mathematics problem in Spanish with her. (b) Creating “real-life” experiences for 
students to help them understand mathematics problems. Francis helped a student understand 
“round-trip” (which was an important component of a mathematics word problem) by asking the 
student to walk across the classroom back and forth. (c) Using mathematics to make sense of real 
world situations. Francis stated that she would use mathematical explorations of her students’ 
community to help her students become more aware of the social issues around them.  Making 
sense of teachers’ use of “real-life” provides insights into teachers’ mathematics pedagogical 
thinking including their constructions of students’ lives and how to connect students to content. 
This poster is an initial exploration into this sense-making. 
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The purpose of the poster is to present preliminary findings from an exploration of gathering 

evidence as a support to develop preservice elementary teacher’s (PST’s) ability to notice to 
children’s mathematical thinking. This research focuses on two primary questions: (1) How do 
PSTs report evidence of children’s mathematical thinking? (2) How do the processes of 
gathering evidence and reporting evidence support PST to notice the specifics in children’s 
mathematics thinking? Recent research provides evidence that, in-service teachers, if given 
opportunities to discuss children’s mathematical thinking in the form of video clips, can learn to 
notice more specific aspects of children’s mathematical thinking as opposed to noticing aspects 
about teaching (e.g., Sherin & Van Es, 2006). However, the trajectory of PSTs developing their 
ability of noticing children’s mathematical thinking is different from that of in-service teachers 
in that they have had fewer opportunities to work with children as compared to in-service 
teachers, and thus have fewer resources from which to draw from.  Little attention has been paid 
to the design of activities that can help PSTs notice children’s thinking. Building on this work, 
we use gathering evidence as a scaffold to develop PSTs’ noticing of children’s mathematical 
thinking and examined how the activity of gathering evidence supported PSTs’ ability to notice 
children’s mathematical thinking in terms of the evidence PSTs provided for their noticing. 

Data from this study is taken from the Videocases for Preservice Elementary Mathematics  
(VPEM) Project, which involved the implementation of 8 videocases in a mathematics content 
course for PSTs. Videocases were implemented at regular intervals across one semester. During 
the implementation of the videocases in the content course, PSTs first worked on the 
mathematics problems discussed in the video, and then viewed the videos through the lens of the 
focus questions. PSTs were encouraged to gather evidence, as part of their responses to the focus 
questions, to support their noticing. We analyzed PSTs’ collective discussions of what they 
noticed and the types of evidence they provided employing a grounded theory approach (Strauss 
& Corbin, 2008). We first identified the discussion of notice (DON), after which we examined 
the ways PSTs reported their evidence to support their noticing. We then examined the patterns 
of evidence reported and its relation to the quality of noticing, i.e. general noticing or specific 
noticing.  

Four types of reported evidence emerged from the data: (a) citing line numbers from the 
transcript, (b) quoting what children said in the transcripts or videos, (c) describing or 
summarizing the events that happens in the video, and (d) making interpretations. More than one 
third of the DONs share the following pattern: starting with a noticing by providing evidence 
using inferences, then being prompted by the facilitator, more specific noticing with line 
numbers or quotes or general descriptions are shared. As the way of reporting notice increase, 
the more the specific details that are provided.  
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Data from assessments such as TIMSS and NAEP indicate that students are weak in the area 

of measurement (Thompson & Preston, 2004). Bearing this in mind, it is important to make sure 
that preservice teachers are prepared to teach measurement topics to their future students. As 
such, in the fall of 2010, fifty-two preservice teachers were given a measurement application test 
as part of their mathematics methods course. About 94 % of the group were female, ranging in 
age from 20-59. The largest ethnic group was Anglo followed by Hispanics and then African 
American.   

The measurement application test consisted of 12 multiple-choice questions that were 
modeled after the released 5th grade state tests. The scores on this section were approximately 
33% mastery (scoring 90-100%), 33% passed (scoring between 75-90%) and 33% failed (scoring 
below 75%). The results of this test were used to develop skills modules to help the students 
master these concepts. In addition, a majority of the missed questions appeared to be due to a 
misapplication of key measurement and geometry terms and concepts. Some researchers believe 
curriculum should not focus solely on terminology (e.g., National Council of Teachers of 
Mathematics, 2000). However, there is a place for vocabulary instruction in the content areas 
(Gunning, 2003). Since our students will become teachers some day, our purpose was not to 
assess their knowledge of vocabulary, but to determine if the students, perhaps, were not able to 
apply this knowledge properly. As a follow-up, in the Spring 2011 semester, the students were 
given a vocabulary test which included 24 words that were listed by several textbook sources as 
geometry words expected to be mastered by 6th graders. It was given in a matching format. There 
were three groups of eight words where each group had one or two distracters (i.e. a triangle has 
three sides). While the distracter was true it could have fit several of the choices but there was 
only one correct answer for the other questions in the set. The distracter had to be used after the 
one and only correct answers were selected for the other questions. Approximately 60 % of the 
participants scored mastery (90-100%) on the vocabulary section. Less than 5% had a failing 
score (below 75%) and the remaining 35% scored passing but not mastery.  

 The tests or inventory of skills were given within the first month of the semester. The 
inventories were given in order that skill modules can be developed to meet the student specific 
needs. These will be developed and given to the students during the Spring 2011 semester. A 
large majority of these students will be in the classroom either for student teaching or as teacher 
of record within a year.  Therefore it is imperative that the teacher candidates are prepared to 
teach these geometry skills effectively. 
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The challenges of simultaneously developing deep content knowledge and pedagogical 
content knowledge (e.g., Shulman, 1986; Ball & Bass, 2000) for both in-service teachers and 
pre-service teacher candidates have been expressed for some time. Utilizing the power of the 
hidden mathematics framework as suggested by Abramovich and Brouwer (2006) requires 
finding, creating and working with mathematical problems that connect across the mathematics 
curriculum. We have met these challenges, and achieved new levels of success through a set of 
unique inquiry experiences, which develop visualization and deep, analytical content knowledge 
as well as pedagogical knowledge within an urban pre-teacher mathematics methods course. Of 
particular interest in this approach are the unique objects that are used - Giant Triangles.  These 
triangles are equilateral, 1-meter in edge length, made of highly resilient, lightweight and 
brightly colored plastic (similar to that used in many popular kites), and can be quickly 
assembled and reassembled to create a wide range of polyhedra. The giant triangles, as 
constructed, have powerful inbuilt mathematics that naturally emerge as learners interact with 
them using very carefully designed activities. Furthermore, the triangles relate physically to 
learners through their kinesthetic character and aesthetic appeal. The learners’ use of the 
materials changes as their knowledge develops observably shifting from concrete to abstract 
through interaction, in groups, with the materials. 

The university where this work was done is one of the most ethnically diverse liberal arts 
institutions in the mid-south-western United States and is a federally designated Minority 
Serving Institution. It provides 4-year degree programs and has an open enrolment policy. A 
large percentage of its undergraduate students are the first college attendees in their families, and 
work full-time while attending college. We share a learning trajectory that was successfully 
enacted in ten mathematics methods classes for elementary and for middle-grades pre-service 
teachers in single 160-minute class sessions during two successive semesters.  

The learning trajectory consists of constructing and comparing the pyramids formed from 
equilateral triangles; constructing the triangle-faced Platonic solids and reasoning about the 
limited number of Platonic solids through newly developed visualizations; enumeration of 
patterns relating the numbers of vertices, edges and faces of a variety of polyhedra; doubling the 
edge lengths of the tetrahedron to determine the scaling effect on surface area and volume, and 
associated tessellation of space using tetrahedra; and, duality among the Platonic solids. 
Reflective comments from learners attest to the power of this learning trajectory in changing 
attitudes among pre-service teacher candidates about doing and teaching mathematics. 
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Some educators have recently suggested taking a new orientation toward teacher education, 
in which prospective teachers (PTs) are taught the skills and dispositions needed to improve their 
teaching over time through a systematic study of their own practice.  One method for this 
improvement of teaching, in which teachers use a framework of setting learning goals, teaching a 
lesson and collecting evidence of student achievement of those goals, creating hypotheses about 
how instruction helped that achievement, and revising the lesson accordingly, was outlined by 
Hiebert, Morris, Berk and Jansen (2007).  This method (“lesson experiments”) is similar to the 
practices of lesson study, but does not require a collaborative group of educators and may thus be 
easier to implement for individual teachers. 

Emerging research (e.g. Spitzer et al., 2010) suggests that classroom interventions can help 
PTs improve their lesson experiment skills.  However, the time needed for interventions may be 
difficult to integrate into already-full teacher education programs.  Thus, online formats, in 
which PTs can interact with each other and collaboratively improve their skills outside the 
classroom, have an obvious advantage.  This study aims to investigate the effectiveness of an 
online discussion board in helping PTs improve their analysis of a lesson. 

To investigate this question, we used an online discussion board to help PTs (N = 15) learn to 
evaluate evidence of students’ learning and form hypotheses about the success of a lesson.  PTs 
were given a learning goal and asked to watch a videotaped lesson online.  Then, PTs posted 
initial reactions analyzing the effectiveness of the lesson.  Next, PTs read classmate’s posts and 
responded with a reflective comment.  Finally, PTs read all posts and then wrote a short paper 
about their final judgment of student learning and the success of the lesson.  Data were analyzed 
in terms of how well PTs we able to look past surface features of the lesson and instead attend to 
students’ mathematical thinking related to the learning goal. 

Initial results suggest that participation in the discussion board activity helped PTs improve 
their lesson experiment skills; specifically, PTs moved toward evaluating the lesson in terms of 
student achievement of the learning goal.  Specifically, by the end of the intervention (i.e. after 
the discussion board participation), a higher percentage of PTs' claims were mathematical and 
relevant to the learning goal (47% compared to 38% in their initial responses).  PTs' focus on 
irrelevant mathematics declined (22% of claims compared to 30%), indicating that they made the 
learning goal more of a focus in their analysis.  However, PTs continued to reference non-
mathematical ideas in their evaluation of the lesson (23% of claims in initial responses and 24% 
at conclusion), suggesting that the PTs’ beliefs about teaching, rather than a focus on student 
mathematical thinking, continued to play a major role in their analysis of lessons.  These results 
suggest that an online discussion board can be used to help improve PTs’ lesson experiment 
skills, though room for improvement remains. 
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There is a growing emphasis on the development of prospective mathematics teachers’ 

technological, pedagogical, content knowledge, but little is known currently about how discourse 
in mathematics education courses may affect the construction of this specialized knowledge.  
Knowing more about how prospective teachers may engage and interact with one another and the 
knowledge they construct in face-to-face and online settings may reveal important similarities 
and differences for teacher educators to consider.  With variability being the content focus of this 
study, the TPSK framework (Lee and Hollebrands, 2008) is used to identify knowledge disclosed 
through discourse in face-to-face and synchronous, online settings.   
 

Research Question and Methodology 
• What is the relationship between discourse and the development of knowledge for 

teaching variability with technology in face-to-face and online mathematics education 
courses?  

Because discourse and constructed knowledge cannot be completely identified and analyzed 
quantitatively, a qualitative research methodology was selected (Patton, 2002). The author taught 
a five-week unit on teaching data analysis and probability with technology to middle and 
secondary prospective teachers as part of a Teaching Mathematics with Technology methods 
course. The face-to-face group (n=25) and an online group (n=17) which met live, using the 
web-conferencing tool Elluminate Live used the same curriculum (Lee, Hollebrands, & Wilson, 
2010).  Each class session was video-taped or recorded.  In addition, a small focus group was 
selected to watch closely during small group discussions during class and each member of the 
focus groups was interviewed twice during the study.  A pre/posttest was given to obtain 
information about prospective teachers’ statistical and probabilistic knowledge, particularly as it 
related to variability.   

 
Discussion 

Data for this study is under analysis.  However, data from a pilot study with face-to-face 
(n=14) and online (n=8) groups revealed discourse patterns between prospective teachers and 
misconceptions regarding box plots, residuals, and the law of large numbers. This poster will 
present: (1) three tasks, given to prospective teachers in the current study, aligned to address 
those misconceptions, and (2) a comparative analysis of discourse from both environments and 
prospective teachers’ knowledge about how to teach variability with technology. 
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Images of mathematics as fallible or infallible can have potential negative and positive 

impacts on pedagogy of mathematics with the subsequent change of attitude towards 
mathematics as positive or negative (Belbase, 2010; Goolsby, 1988; Lakoff and Nunez, 2000; & 
Ma and Kishor, 1997). An image of mathematics due to a lack of comfort that someone might 
encounter when required to perform mathematically may result into a mathematics anxiety 
(Wood, 1988), or the feeling of tension, helplessness, and cognitive disorganization one may 
face when required to manipulate numbers, symbols and shapes (Richardson and Suinn, 1972; 
Tobias, 1978). In a long run, mathematics anxiety can harvest different feelings such as 
like/dislike, happiness/worrisome, and motivation/fear (Hart, 1989; Wigfield and Meece, 1988).  

A theoretical-analytical model with combinations of images (fallible, infallible), anxieties 
(high, low self-esteem), and attitudes (positive, negative) toward mathematics resulted eight 
possible outcomes representing philosophical-psychological-perceptions about mathematics. 
These combinations are- (1) infallible, high self-esteem, and positive attitude; (2) infallible, high 
self-esteem, and negative attitude; (3) infallible, low self-esteem, and positive attitude; (4) 
infallible, low self-esteem, and negative attitude; (5) fallible, high self-esteem,  and positive 
attitude; (6) fallible, high self-esteem, and negative attitude; (7) fallible, low self-esteem, and 
positive attitude; and (8) fallible, low self-esteem, and negative attitude (Belbase, 2010). Some of 
these combinations (1, 4, 5, & 8) seem to be theoretically and practically viable, but others (2, 3, 
6, & 7) can be non-practical because high self-esteem and negative attitude and low self-esteem 
and positive attitude toward mathematics seem contradicting. Such analyses may be helpful to 
understand possible consequences of these relationships with viable research and pedagogical 
implications. 
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In this report we researched about the beliefs calculus teachers in Mexico have about 
meanings associated to the derivative function. We designed a questionnaire containing 
problems: one of them qualitative related to the filling of containers and the other one 
conceptual related to the analysis functions. Their written and spoken arguments allowed us 
to categorise their beliefs, determine their strength, coherence and the relations that they 
establish individually which internally form individual systems that are called Internally 
Coherent Systems of Beliefs. 

Introduction 
One of the most serious problems that Mathematics teaching faces in Mexico is a heavy 

operative load (De la Peña, 2002). This contributes very little to construction, to the 
comprehension of the meaning of concepts and it deteriorates the conceptual part (Amit y 
Vinner, 1990; Schoenfeld, 1985; Hiebert y Lefevre, 1986). Particularly the derivative 
function, we have a concept with many meanings associated to it, his comprehension is more 
complex because it is not the same learning derivative techniques, understanding its 
meanings. This doesn’t mean that calculus teaching at High School level must be aimed at a 
strict presentation that takes the place of meanings, not by any means. But the direction 
depends on the teacher because he is the one who in the end chooses teaching topics and 
decides on their organisation moved of course by his or her beliefs, ideas and attitudes 
(Philipp, 2007; Sivunen & Pehkonen, 2009). But, ¿Do teachers understand and distinguish 
between qualitative and conceptual parts and the management of ideas? ¿What are their 
beliefs about those ideas? There is very little research about such questions in the field of 
calculus (Törner, 1999; Badillo, 2003; Speer et al. 2005; García, et.al. 2006 Hähkiöniemi, 
2006;). Exploring the beliefs of teachers is important since recognising such beliefs has a 
great potential to inform about educational research and practice. According to MaaB & 
Schlöglmann (2009), identifying them is an essential prerequisite, mostly in relation to 
central concepts contained in the curricula of school mathematics in order to change and 
improve teaching in schools. This is our research’s rationale whose objective is to describe 
and interpret the beliefs calculus teachers at a High School level have and the relationships 
such teachers establish among  them, about the meanings of the derivative function. The 
questions that guide it are: ¿Do calculus teachers notice that the derivative function allows the 
study of instant change rate? ¿Is the adequate nature of the derivative function clear for 
calculus teachers?  

 
Methodology, Questionnaire and Participants 

The research we did is a qualitative one and is a study of multiple cases. We chose the 
survey. The instrument we used was a questionnaire whose design responds to the warning 
made by Tirosh (2009) in the sense that the design of reliable research instruments or tools is 
one of the challenges that research in mathematical education generally faces. Besides this, 
we brought about conversations between pairs considering that it demands proof and 
refutation about their arguments. Those conversations allowed us to prove the effectiveness 
of the intervention in the creation, modification and elimination of one of the teachers' 
beliefs. The questionnaire contains two problems that are no routine: the first of them 
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involves an activity of matching seventeen containers that can be either cylindrical, conical or 
both in which water is poured at a constant rate. It contains graphs showing water height 
variation in function of time 
 

         
 
The second problem involves obtaining the derivative of a function: 

 
 

This type of functions simulate the filling of combined water containers with different radius 
and have been utilized in other research studies (Hirst, 1972; Hohensee, 2006). Participants 
are made up of twelve teachers that belong to three different teaching communities: four 
engineers who studied at a Polytechnic Institute , four engineers who studied at public 
Universities and four engineers who studied at normal schools. In Mexico there is no 
institution devoted to the formation of mathematics teachers for high school levels. 
Regarding experience in calculus class, teachers Roldán, Buendía, González, López and 
Camacho are fairly experienced, whereas Zedillo, Rosas, Matías and Zavala show an 
intermediate level of experience. On the other hand, Gutiérrez, Montoya and Elizarrás show 
very little or no experience. 

 
Theoretical Framework 

In this theoretical framework it is assumed, to begin with, that beliefs exist in the subject 
related in a system which is logical to its bearer (internal coherence) and probably 'illogical to 
the researcher' (inconsistency); the reason for this lies in the explanation that beliefs being 
highly psychologically loaded take the place of logic. In this sense, the dimensions of Green's 
(1971) metaphor about beliefs are used: strength (central or not peripheral central), quasi 
logical relations (basic or not basic) and cluster grouping, along with Thagard's (2000) 
coherence theory as theoretical references.  

 
Results 

When the fact that teachers have different mathematical qualifications comes to mind, one 
could pose a hypothesis stating that differences between beliefs would be significant; 
however, reality shows the opposite. 
 

one variable (shape) 

      

Everybody makes associations correctly like this: cylindrical container-straight line and 
conical container-curve and in the latter not everyone does it. Most of them use visual and 
geometric arguments for instance, Rosas  

 

The second problem involves obtaining the derivative of a function:
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This type of functions simulate the filling of combined water containers with different radius 

and have been utilized in other research studies (Hirst, 1972; Hohensee, 2006). Participants 

are made up of twelve teachers that belong to three different teaching communities:  four 

engineers  who  studied  at  a  Polytechnic  Institute  ,  four  engineers  who  studied  at  public 

Universities  and  four  engineers  who  studied  at  normal  schools.  In  Mexico  there  is  no 

institution  devoted  to  the  formation  of  mathematics  teachers  for  high  school  levels. 

Regarding  experience  in  calculus  class,  teachers  Roldán,  Buendía,  González,  López  and 

Camacho  are  fairly  experienced,  whereas  Zedillo,  Rosas,  Matías  and  Zavala  show  an 

intermediate level of experience. On the other hand, Gutiérrez, Montoya and Elizarrás show 

very little or no experience.

THEORETICAL FRAMEWORK

In this theoretical framework it is assumed, to begin with, that beliefs exist in the subject 

related in a system which is logical to its bearer (internal coherence) and probably 'illogical to 

the researcher' (inconsistency); the reason for this lies in the explanation that beliefs being 

highly psychologically loaded take the place of logic. In this sense, the dimensions of Green's 

(1971) metaphor about beliefs are used:  strength (central or not peripheral central),  quasi  

logical  relations  (basic  or  not  basic) and cluster  grouping, along  with  Thagard's  (2000) 

coherence theory as theoretical references. 

RESULTS

When the fact that teachers have different mathematical qualifications comes to mind, one 

could  pose  a  hypothesis  stating  that  differences  between  beliefs  would  be  significant; 

however, reality shows the opposite.

one variable (shape)

Everybody  makes  associations  correctly  like  this:  cylindrical  container-straight  line  and 

conical container-curve and in the latter not everyone does it. Most of them use visual and 

geometric arguments for instance, Rosas 
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Or physical arguments like López who talks about celerity and speed:  

López: First of all the graphs were considered to have two axes t and h(t). That is 
t=time; h(t)=speed or filling celerity. In the first exercise it is possible to 
appreciate that since the shape is a cylinder, the speed is constant and so is 
time, for which reason a function of a straight line appears and that is 
answer C. In exercise two it is a cone where the base is at the top, 
wherefore, the celerity is pretty high at the beginning; as time passes the 
filling speed becomes slow and the graph that sticks to this is option A. In 
exercise three it is a cone where the part of the base (wide) starts filling, 
so the filling is slow and as time passes the filling is faster because the 
container is narrower at the top, the answers is B.  

 
 
 
 
 
 
 
 
 
 
 
When the radius of the containers is changed, teachers' answers show an advance in the 
cognitive route because they notice the direct relationship that exists between straight line 
inclination and radius variation. They establish the functional relationship: straight line slope-
base radius, a function like f(t)=f’(t)t. When it comes to conical tanks the situation changes a 
little Zavala, Rosas and Elizarrás identify the curve as the graph that simulates but fail to 
associate the corresponding concavity. Particularly when analysing cones standing on their 
vertex, Zavala is also unable to notice the celerity with which the height changes in the 
containers when  t→0. For the third activity involving mixed containers, in the case of 
cylindrical assembled containers all of the teachers establish the correct and coherent 
association: container-broken line, even when such containers are made up of a conical 

Trad: 

1).The height remains constant

2). Variation changes in relation to the radius

3) It remains constant at the beginning

4) It changes its variation and after that it will grow in an almost constant way

Or physical arguments like López who talks about celerity and speed: 

López: First of all the graphs were considered to have two axes t and h(t). That is 

t=time; h(t)=speed or filling celerity. In the first exercise it is possible to 

appreciate that since the shape is a cylinder, the speed is constant and so is 

time, for which reason a function of a straight line appears and that is 

answer  C.  In  exercise  two  it  is  a  cone  where  the  base  is  at  the  top, 

wherefore, the celerity is pretty high at the beginning; as time passes the 

filling speed becomes slow and the graph that sticks to this is option A. In 

exercise three it is a cone where the part of the base (wide) starts filling, 

so the filling is slow and as time passes the filling is faster because the 

container is narrower at the top, the answers is B. 

When the radius  of the containers  is  changed,  teachers'  answers show an advance in  the 

cognitive route because they notice the direct relationship that exists between straight line 

Two variables (shape and radius)

Zavala

Rosas y

Elizarrás

 Two variables (shape and radius) 

      
Zavala 

      
Rosas y 
Elizarrás 
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section, container-smooth curve.  The following dialogue between Roldán and Gaby shows 
the change of beliefs regarding a smooth curve resulting from the solution of this task  

Gaby: But now in these ones, I mean for instance here we obtain a smooth curve 
because this base is the same as the other, and also here and also here 
(pointing at some graphs that correspond to containers that join with the 
same radius). 

 
Gaby: Then where the shape changes where they join. Lets say this thin cylinder 

and this big part, the curve is not smooth any more.  

Roldán: And this one no, it is the curve that is not smooth…  
Gaby: That means, C, D and H, mmmm  

 
Roldán: Well, they are not physically smooth where they join they are from 

different areas. 
  

inclination and radius variation. They establish the functional relationship: straight line slope-

base radius, a function like f(t)=f’(t)t. When it comes to conical tanks the situation changes a 

little Zavala, Rosas and Elizarrás identify the curve as the graph that simulates but fail to 

associate the corresponding concavity. Particularly when analysing cones standing on their 

vertex,  Zavala is  also unable to notice the celerity  with which the height  changes in the 

containers  when  t→0.  For  the  third  activity  involving  mixed  containers,  in  the  case  of 

cylindrical  assembled  containers  all  of  the  teachers  establish  the  correct  and  coherent 

association:  container-broken line,  even  when  such  containers  are  made  up of  a  conical 

section, container-smooth curve.  The following dialogue between Roldán and Gaby shows 

the change of beliefs regarding a smooth curve resulting from the solution of this task 

Gaby: But now in these ones, I mean for instance here we obtain a smooth curve 

because this base is the same as the other, and also here and also here 

(pointing at some graphs that correspond to containers that join with the 

same radius).

     
Trad: 

Smooth curve

Trad: 

Different radius, not smooth curves

Gaby: Then where the shape changes where they join. Lets say this thin cylinder 

and this big part, the curve is not smooth any more. 

Roldán: And this one no, it is the curve that is not smooth… 

Gaby: That means, C, D and H, mmmm 

Trad: 

No smooth 

Trad: 

No smooth 

Roldán: Well,  they  are  not  physically  smooth  where  they  join  they  are  from 

different areas.

For some teachers like Lopez, it only meant the combination of the two previous activities 

Trad:

inclination and radius variation. They establish the functional relationship: straight line slope-

base radius, a function like f(t)=f’(t)t. When it comes to conical tanks the situation changes a 

little Zavala, Rosas and Elizarrás identify the curve as the graph that simulates but fail to 

associate the corresponding concavity. Particularly when analysing cones standing on their 

vertex,  Zavala is  also unable to notice the celerity  with which the height  changes in the 

containers  when  t→0.  For  the  third  activity  involving  mixed  containers,  in  the  case  of 

cylindrical  assembled  containers  all  of  the  teachers  establish  the  correct  and  coherent 

association:  container-broken line,  even  when  such  containers  are  made  up of  a  conical 

section, container-smooth curve.  The following dialogue between Roldán and Gaby shows 

the change of beliefs regarding a smooth curve resulting from the solution of this task 

Gaby: But now in these ones, I mean for instance here we obtain a smooth curve 

because this base is the same as the other, and also here and also here 

(pointing at some graphs that correspond to containers that join with the 

same radius).

     
Trad: 

Smooth curve

Trad: 

Different radius, not smooth curves

Gaby: Then where the shape changes where they join. Lets say this thin cylinder 

and this big part, the curve is not smooth any more. 

Roldán: And this one no, it is the curve that is not smooth… 

Gaby: That means, C, D and H, mmmm 

Trad: 

No smooth 

Trad: 

No smooth 

Roldán: Well,  they  are  not  physically  smooth  where  they  join  they  are  from 

different areas.

For some teachers like Lopez, it only meant the combination of the two previous activities 

Trad:
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For some teachers like Lopez, it only meant the combination of the two previous activities  
 

 

 
 

The following chart shows a net of concepts established by them 

 
Net of beliefs in the problem of container-graph association 

In the task of calculating the derivative of the function defined by pieces, most teachers 
notice singular characteristics of the function regarding continuity of the function and its 
relation with its capability of differentiation. They obtain formulae parting from the formulae 

inclination and radius variation. They establish the functional relationship: straight line slope-

base radius, a function like f(t)=f’(t)t. When it comes to conical tanks the situation changes a 

little Zavala, Rosas and Elizarrás identify the curve as the graph that simulates but fail to 

associate the corresponding concavity. Particularly when analysing cones standing on their 

vertex,  Zavala is  also unable to notice the celerity  with which the height  changes in the 

containers  when  t→0.  For  the  third  activity  involving  mixed  containers,  in  the  case  of 

cylindrical  assembled  containers  all  of  the  teachers  establish  the  correct  and  coherent 

association:  container-broken line,  even  when  such  containers  are  made  up of  a  conical 

section, container-smooth curve.  The following dialogue between Roldán and Gaby shows 

the change of beliefs regarding a smooth curve resulting from the solution of this task 

Gaby: But now in these ones, I mean for instance here we obtain a smooth curve 

because this base is the same as the other, and also here and also here 

(pointing at some graphs that correspond to containers that join with the 

same radius).

     
Trad: 

Smooth curve

Trad: 

Different radius, not smooth curves

Gaby: Then where the shape changes where they join. Lets say this thin cylinder 

and this big part, the curve is not smooth any more. 

Roldán: And this one no, it is the curve that is not smooth… 

Gaby: That means, C, D and H, mmmm 

Trad: 

No smooth 

Trad: 

No smooth 

Roldán: Well,  they  are  not  physically  smooth  where  they  join  they  are  from 

different areas.

For some teachers like Lopez, it only meant the combination of the two previous activities 

Trad:

Trad: Exercise 1 

consists of two 

cylinders, thin cylinder 

graph and big cylinder 

graph together

The three 

together

 
Trad:

Four…Together

The following chart shows a net of concepts established by them

Net of beliefs in the problem of container-graph association

In the task of calculating the derivative  of the function defined by pieces,  most  teachers 

notice singular characteristics  of the function regarding continuity of the function and its 

relation with its capability of differentiation. They obtain formulae parting from the formulae 

with which it is defined by using derivation techniques disdaining what the graph visually 

offers  to  them.  Buendía  and  López  provide  two sample  cases  where  definition  intervals 

simply disappear. 

Container

Conical 
Cilindrical

Straight line as graph of water 

height variation 

Its base

Its  vertex

 Downward concave 

curve as the graph of 

water height variation
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as the graph of water 

height variation
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with which it is defined by using derivation techniques disdaining what the graph visually 
offers to them. Buendía and López provide two sample cases where definition intervals 
simply disappear.  

 
 
Cedillo comes a little close to a good reasoning but ends up doing the same: 
 

 

Trad:  
all the function is not continuous, that's 
why it can't be derived. Only its 
intervals can be derived separately 

 

 

 
others like Montoya apply derivation rules and even sketch out the “derivative of the 
function”  

Trad: Exercise 1 

consists of two 

cylinders, thin cylinder 

graph and big cylinder 

graph together

The three 

together

 
Trad:

Four…Together

The following chart shows a net of concepts established by them

Net of beliefs in the problem of container-graph association

In the task of calculating the derivative  of the function defined by pieces,  most  teachers 

notice singular characteristics  of the function regarding continuity of the function and its 

relation with its capability of differentiation. They obtain formulae parting from the formulae 

with which it is defined by using derivation techniques disdaining what the graph visually 

offers  to  them.  Buendía  and  López  provide  two sample  cases  where  definition  intervals 

simply disappear. 

Container

Conical 
Cilindrical

Straight line as graph of water 

height variation 

Its base

Its  vertex

 Downward concave 

curve as the graph of 

water height variation

Upward concave curve 

as the graph of water 

height variation
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mixed

Cilindricals: Cilindricals-conicals Conicals 

No smooth curve Smooth curve 

uave

Smooth curve No smooth curve
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r r= 1 2

r r≠

Trad: 

These  are  the  derivatives  but  it  is  not 

continuous, therefore the derivatives are not 

accepted.

Trad:

it  is  a  function  by  pieces  and  is  not 

continuous. It can't be derived

Cedillo comes a little close to a good reasoning but ends up doing the same:

Trad: 

all the function is not continuous, that's 

why  it  can't  be  derived.  Only  its 

intervals can be derived separately

others  like  Montoya  apply  derivation  rules  and  even  sketch  out  the  “derivative  of  the 

function” 

So the task of obtaining the derivative of these functions defined by pieces is reduced to 

obtaining formulae from the formulae that define the function. This is a very strong belief.  

Roldán's dialogue shows this strong belief as well but trough the dialogue, from which an 

extract is presented, he is able to relate continuity-smoothness of the curve-differentiability.

Roldán: But  the  criteria  to  say  that  a  function  can  be  derived  is  that…it  is 

continuous ¿isn't it? It is the first criterion ¿isn't it? Er…¿Because of the 

limit or? …(silence) since in my classes I never get to these… from mi 

classes  at  university  I  don't  remember  it  divides  in  intervals… er,  by 

pieces. I don't remember functions by pieces because the teachers I think 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

1941



 
 

So the task of obtaining the derivative of these functions defined by pieces is reduced to 
obtaining formulae from the formulae that define the function. This is a very strong belief. 
Roldán's dialogue shows this strong belief as well but trough the dialogue, from which an 
extract is presented, he is able to relate continuity-smoothness of the curve-differentiability. 

Roldán: But the criteria to say that a function can be derived is that…it is 
continuous ¿isn't it? It is the first criterion ¿isn't it? Er…¿Because of the 
limit or? …(silence) since in my classes I never get to these… from mi 
classes at university I don't remember it divides in intervals… er, by 
pieces. I don't remember functions by pieces because the teachers I think 
they were cheating, I don't remember them teaching me a function by 
pieces; then um… it must be continuous… 

Guide: I don't know. 
Roldán: They must be united smoothly and to do this we have to get the same 

slope in the value that I am considering, which in this case is one and in 
this, for these two, it is thirteen sixths. Then I'm going to replace the 
derivative... of all of them in the number… well of the two first ones in 
number one,…in number one the result of the first exercise is one. 

 
Conclusions 

Teachers have a qualitative “understanding” of the rate of change which is independent 
from any meaning of the derivative function. What can be perceived is that the concept of 
differentiability of the function is an encapsulated concept without any relations with real 
situations as long as they don't make clear the need for using it. Coherent association in all 
the cases is due to good perception more than to the posing of an analytic strategy since the 
arguments offered respond more to what is believed and felt. This is confirmed in the second 
problem where teachers are coherent with their ideas about derivation. They simply apply 
techniques without paying attention to the intervals that define the function. Any function 
defined by formulae believes that it must have a derivative defined by other formula. This 
research allows us to obtain a general conclusion: beliefs are an independent variable in 
teacher formation and their experience. It has two separate beliefs clusters, the one of the 
concepts and another one, the one of perceptions both of which are incompatible. However, 
this doesn't stop teachers from being sure about the coherence between elements that they 
cause to intervene. In this sense the teacher and the general subject have an Internally 
Coherent Beliefs System (ICBS). A secondary conclusion emerging from this research has to 

Trad: 

These  are  the  derivatives  but  it  is  not 

continuous, therefore the derivatives are not 

accepted.

Trad:

it  is  a  function  by  pieces  and  is  not 

continuous. It can't be derived

Cedillo comes a little close to a good reasoning but ends up doing the same:

Trad: 

all the function is not continuous, that's 

why  it  can't  be  derived.  Only  its 

intervals can be derived separately

others  like  Montoya  apply  derivation  rules  and  even  sketch  out  the  “derivative  of  the 

function” 

So the task of obtaining the derivative of these functions defined by pieces is reduced to 

obtaining formulae from the formulae that define the function. This is a very strong belief.  

Roldán's dialogue shows this strong belief as well but trough the dialogue, from which an 

extract is presented, he is able to relate continuity-smoothness of the curve-differentiability.

Roldán: But  the  criteria  to  say  that  a  function  can  be  derived  is  that…it  is 

continuous ¿isn't it? It is the first criterion ¿isn't it? Er…¿Because of the 

limit or? …(silence) since in my classes I never get to these… from mi 

classes  at  university  I  don't  remember  it  divides  in  intervals… er,  by 

pieces. I don't remember functions by pieces because the teachers I think 
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do with the design of didactic situations which show the beliefs of the subjects and provide 
precise information which allows to pronounce, just as a good doctor would do, a precise 
diagnose in order to design the appropriate treatment. The intervention project to eliminate, 
modify or create certain beliefs, in this sense the dialogue, is the technique that allows this. 
Roldán illustrates this situation because he shared many of the beliefs at first, he agreed on 
their strength, on the quasi logical relations and even on the clusters. Intervention by means 
of “dialogue” shows that it is possible to modify those beliefs. 

 
Discussion 

This research leads to consider deeply teachers beliefs. Perhaps attention should not be 
paid in looking for didactic situations but first address the need of changing teachers' beliefs 
about concepts into real knowledge.  
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MATHEMATICS TEACHERS’ BELIEFS AND THEIR TEACHING PRACTICES 
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This study focuses on exploring in detail the relationship between teachers’ professed beliefs and 
their classroom practices. The goals of the paper are to examine the kinds of beliefs a 
mathematics teacher states and to compare those professed beliefs with two teacher’s enacted 
beliefs as seen through their teaching practices. Professed beliefs were elicited through 
interviews with the teachers. To compare professed beliefs with enacted beliefs, I then analyzed 
episodes of their classroom teaching.  Analyses suggest that a teacher’s professed beliefs may 
differ from his or her enacted beliefs and the relationship between professed and enacted beliefs 
is complex, and mediating factors need to be further explored.  

Teachers’ beliefs about teaching, learning, and the nature of mathematics play a major role in 
the ways that teachers shape their classroom practices. Yet, as David Cohen’s study of “Mrs. 
Oublier” demonstrates, there is not necessarily a clear relationship between teachers’ professed 
beliefs and their beliefs as they appear to be enacted in classroom practices (Cohen, 2009). 
Accordingly, this study set out to explore in depth the relationship between professed beliefs and 
classroom practices. 

Although there is no universally agreed upon definition of beliefs in education research, there 
are many common threads between different definitions. For the purposes of this study, I adopted 
the following definition, which is largely consistent with general conceptions of beliefs in the 
literature: 

[Mathematical beliefs are] interpreted as an individual’s understandings and feelings that 
shape the ways that the individual conceptualizes and engages in mathematical behavior 
(Schoenfeld, 1992, p. 358). 

Most studies of teachers’ beliefs use questionnaires and surveys. However, data from survey 
methods can be limited in how far it allows a researcher to examine beliefs in detail. Also, data 
from questionnaires are often superficial.  Therefore, in order to create an accurate representation 
of teachers’ professed beliefs, I conducted in-depth recorded interviews with two teachers. In 
order to compare these professed beliefs to teachers’ enacted beliefs, I analyzed recorded 
episodes of the teachers’ classroom teaching as well. The video data is drawn from a lager study, 
the mathematics component of the Strategic Education Research Partnership. Analyses began 
with a transcription of all interviews and teaching videos. I then developed a coding scheme for 
each teacher separately. From this coding, I generated a summary of all teacher beliefs that 
appeared from what they stated in their interviews. Upon generating categories of teachers’ 
professed beliefs identified in the interview, I then applied these two teacher-specific coding 
schemes to analyze their enacted beliefs in the classroom. 

Analyses suggest that a teacher’s professed beliefs may differ from his or her enacted beliefs. 
Some of their professed beliefs were strongly consistent with their enacted beliefs. Others were 
weakly consistent with their enacted beliefs. Furthermore, some professed beliefs were not 
enacted at all in their teaching practices. Findings may have some implications for mathematics 
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teachers’ professional development, pre-service teacher education, and research about teachers’ 
beliefs. The examples of these results and findings will be discussed in the poster.  

There are some limitations in this study. Interviews may not sufficiently capture teachers’ 
beliefs and I may need to examine their beliefs more deeply with other methods. Furthermore, 
the teaching videos that I analyzed are limited cases for examining their beliefs. Therefore, 
expanded cases and mediating factors of the relationship between professed beliefs and enacted 
beliefs need to be further explored.   
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 CONSTRUCTING EQUITABLE TEACHING PRACTICES: AN ANALYSIS OF 
MATHEMATICS TEACHERS’ CONVERSATIONS  
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This poster traces teachers’ evolving narratives of student performance that arise in their 
conversations. Analysis of the conversations showed teachers’ frames became more nuanced in 
their representation of mathematical competence, disentangling issues of ability from school-
savvy. Overall, teachers’ frames shifted from less agentic to more agentic ways of understanding 
problems of practice as co-occurring with development of more equitable teaching practices. 
 

Poster Summary  
How does teacher community matter to teachers’ development of equitable teaching 

practices? Teachers’ collegial conversations about student ability not only provide important 
frameworks for collective understandings but shape consequential decisions about teaching 
(Horn, 2007). Teachers’ colleagues thus play an influential role in constructing notions of and 
potential solutions to problems of practice. The same situation can be narrated differently––a 
student “flunked out” or “was not yet ready to learn”––and each interpretation positions teachers 
differently in relationship to less agentic and more agentic ways of understanding such problems.  

This poster represents an analysis of conversations among 5 mathematics teachers at urban 
Clark High School who sought to raise the achievement of students in first year college 
preparatory mathematics classes. The project aimed to help teachers reconceptualize student 
competence while they made major changes to their teaching practices to combat the struggling 
student problem, shifting away from direct instruction toward a particular equity-centered 
groupwork method. The focal department had 50% failure rate in these classes before the project 
began. After one year of deliberate work, the failure rate fell to 29%. State exam scores 
demonstrated increased student learning, especially among underperforming student populations.  

To understand teachers’ learning throughout this process, we traced the evolving narratives 
of student performance that arise in their conversations over the year using a case study design 
and ethnographic methods. Out of a dataset of 32 audiotaped meetings, we focused on 4 
meetings that took place in October, January, March, and May of the school year. Using 
discourse analytic concepts, particularly Goffman’s (1974) idea of frames, we analyzed the 
shifting understandings evidenced in teachers’ talk.  

Analysis of the meetings showed that many initial framings did not provide teachers with an 
obvious actionable response. For example, the teachers diagnose students’ academic troubles in 
the October meeting as stemming from students “choosing to fail” or “being flaky.” In contrast, 
during the May meeting, frames emerge that allow for clearer action, such as students “having 
low academic status” and “not knowing how to do school.” While the former frames place the 
onus for achievement primarily on the students, the latter provides teachers a means for action. 
As such, the teachers’ frames became more nuanced in their representation of mathematical 
competence, disentangling issues of ability from school-savvy. Overall, teachers’ frames shifted 
from less agentic to more agentic ways of understanding problems of practice as co-occurring 
with development of more equitable teaching practices.  
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 A large achievement gap of mathematics learning between high and low socioeconomic 
status (SES) students has been observed in Taiwan, possibly coming from the difference of 
SES-different teachers’ instruction (Chen, Crockett, Namikawa, Zilimu, & Lee, accepted). 
Research (Crockett, Chen, Namikawa, & Zilimu, 2009) has suggested that improving teachers’ 
discourse-based assessment practice (DAP) helps  enhance the weak link between teacher 
professional learning and their students’ learning. This article aims to bridge this gap by 
reporting a research project that tries to improve mathematics teachers’ DAP in low-SES 
schools in Taiwan. The teacher professional development program for DAP was conducted 
from the end of August 2010 to mid-April 2011. In the study, the first author facilitated 
participating teachers to view videotapes and transcripts of their own lessons, to analyze the 
quality of teacher-student discourse with a focus on questioning and feedback, and then to 
discuss their own findings with one another. Mehan’s (1979) ethnomethodological approach, a 
parsimony framework for analyzing DAP (Chen et al., accepted), was applied to identify IRE 
and extended sequences.  
 Research findings indicate that after professional development, the participating teachers: 
(a) allowed more wait time for their students’ responses; (b) were more aware of the quality of 
questioning; (c) used more high-level questions to cultivate their students’ mathematics 
understanding; and (d) invited greater student participation in teacher-student discourse. In 
addition, students’ learning benefits from their teachers’ professional learning. They actively 
participated in classroom discussions more than before and began to pose questions and debate 
on mathematics ideas with one another.  
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This presentation examines changes in mathematical knowledge for teaching of mathematics 
coaches participating in an ongoing, embedded professional development program.  This in-
progress study aims to determine whether the coaching program is making statistically 
significant change as it relates to coaches' mathematical knowledge for teaching.    
 
  The Mathematics Coaching Program (MCP) is an ongoing professional development 
program aimed at improving student understanding of mathematics using mathematics coaches 
embedded in low-performing schools throughout the state of Ohio (Brosnan & Erchick, 2010).  
heir intensive model provides sustained professional development of teachers within their own 
classrooms.  Additionally, MCP provides two days of professional development every month for 
their mathematics coaches.  Regionally located facilitators provide two additional days of coach 
professional development each month.     
  Over the course of roughly six weeks, MCP coaches provide daily support to 
participating teachers; helping them to examine and understand their students' mathematical 
thinking and how to use this knowledge to guide classroom instruction.  Dialogues between 
coach and teacher improve practice through collegial interactions and personalized support 
(Becker, 2001).  Throughout the course of both the coaches' and teachers' involvement in MCP, 
growth in mathematical knowledge for teaching (Ball, Hill, & Bass, 2005; Hill, Schilling, & 
Ball, 2004) as well as transformation of pedagogical methods may occur.    
  Data will be drawn from the past six years of MCP participants, using the University of 
Michigan Learning Mathematics for Teaching (LMT) Project’s instrument.  All participating 
coaches are analyzed for development of mathematical knowledge for teaching over time.  
Coaches are tested at the beginning of their first year of participation, and again at the end of 
their first, second, and third years of participation.  Average pre-post change for each group of 
coaches (first year, second year, third year), as well as p-values and effect sizes will be 
displayed.  Interpretation of said analysis will occur and be presented on the poster.  Preliminary 
results from the first three years of data indicate growth in all three LMT content areas, most 
notably in algebra.  
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In this paper, the nature of an intermediate algebra student’s use of a metaphor and a metonymy 
is discussed. A metaphor of slope is used in the description of the concept and the same 
metaphor became a metonymy in responding to mathematical questions.  

Introduction 
The concept of slope is essential to college mathematics learning, especially for those covered in 
courses calculus and up. Because of the importance of slope in higher mathematical 
understanding, it is necessary to make sure that students gain an accurate understanding of the 
basics of the concept before taking advanced courses. Many students in entry-level courses do 
not have a background of mathematical knowledge from which to attempt to make sense of 
newly introduced mathematical information (Sfard, 1997).Thus they turn to their existing 
knowledge, which mainly originates from everyday experiences. This paper reports on a 
metaphor originating from everyday experiences and a metonymy formed as a result of 
classroom instructions, which are used to construct an understanding of the slope ideas.  
  

Metaphor 
A metaphor can be defined as an implicit analogy (Presmeg, 1997). Presmeg adds that a 
metaphor has both ground and tension. According to her, similarities between concepts constitute 
the ground and differences constitute the tension. For instance, for the mathematical statement, 
“A is an open set,” the tension of a metaphor may be the physical idea of openness (an open 
space view) without a boundary and the mathematical idea of an open set with a boundary. 
Consider a set of all points that satisfy the inequality, x2+y2<1. Here, the open set is bounded by 
the unit circle (XXXX, 2007). Considering that similarities between concepts (source and target) 
are mainly determined by students based on past experiences, rather than being given to them 
(Sfard, 1997), students, in this case, may apply the no boundary characteristic of the source 
concept, and come to a conclusion that the particular set is not open since it has a boundary 
(XXXX, 2007). Moreover, the students’ misconception may further be strengthened if initially 
introduced examples of mathematical open sets are those without boundaries.   
Metaphors play an important role in reasoning in mathematics (Lakoff and Nunez, 2000; 
Presmeg, 1997). Presmeg illustrates how one may reason with metaphors in her example of a 
high school student who used “Dome” metaphor to reason in solving the question of finding the 
sum of the first 30 terms of a sequence (5, 8,11,…). This high school student’s personal 
metaphor seemed to play a significant role in solving the problem. The student whose interview 
excerpts are reported here also appeared to reason with his metaphor in describing slope.  
  

Metonymy 
Work on metonymies mainly focuses on them as literary devices, rather than cognitive constructs 
that are used to encode information. Presmeg (1998; 1997) and Lakoff &Johnson (2000) on the 
other hand view metaphor and metonymy as cognitive structures. The act of using one object to 
stand for another is considered as functioning with metaphors or/and metonymies. Presmeg 
(1998; 1997) considers two types of metonymies. One of which, namely metonymy proper, is 
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defined as “a figure by which one word is put for another on the account of some actual relation 
between the things signified” (Webster). An example of this kind is “We studied Gauss.”  Here, 
the word “Gauss” is used to indicate Gauss’ work (Gauss     Gauss’ work). Moreover, 
mathematical symbols can be put for various mathematical entities such as number families. The 
symbol “x” for example can represent real numbers (x    real number) even though the symbol x 
and the numbers are two unrelated objects.   
Second type of metonymy is considered as figure of speech. In this type, a part is used to 
represent the whole or vice versa (Presmeg, 1998). An example of this kind may come from the 
sentence, “I’ve got a roof over my head.” Here, the part “roof ” stands for the whole “house” 
(roof      house). An illustration of a circle taken to represent the class of all circles can also be 
considered as the metonymy of this kind. Presmeg (1997) however argues that this example may 
go beyond the figure of speech type to metonymy proper for the signifier may not be an element 
of the class represented. In other words, because the elements of classes are mental constructs, 
and an act of interpretation by an individual is involved in setting up the metonymy, individual 
may use the illustration to consider a class of circles that are not closely related to the figure. 
Hence, the illustration may become an example of a metonymy proper.   
  
Methodology 
Data comes from an intermediate algebra student’s interview conducted as part of a study that 
gathered concept maps (Novak and Gowin, 1984) and interpretive essays along with interviews 
to investigate students’ conceptualizations as they were introduced to the various aspects of the 
mathematical slope and function concepts throughout the fall 2003 semester from two 
intermediate algebra sections offered at a four year midsize Southwest University in the United 
States. The intermediate algebra course at the University provides basic mathematical concepts 
and skills that are prerequisite for college mathematics courses such as pre-calculus and calculus. 
Both sections of the course were traditional in the sense that its material was covered through a 
lecture by instructor mode. We refer to the student, whose interview responses reported in this 
paper, with a pseudo name “SAL” (Hispanic-American Male).   
Each interview was videotaped and lasted about an hour and a half. Interviews began with more 
personal questions, and proceeded to questions on the slope or function concepts and concept 
maps. Students’ inaccurate responses were not corrected throughout the interviews in order to 
further understand the sources of their mistakes, and to eliminate the possible influence of the 
interviewer’s opinion on students’ thought processes. Two mathematics graduate students 
transcribed the interviews, which were then analyzed by the same graduate students and the 
investigator in order to identify emerging patterns applying a qualitative approach, namely the 
constant comparison method (Glaser, 1992). 
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Table 1. SAL’s metaphor of slope. 
 
Source                                   Attributes                              Target 
 
Arcs of houses                    Meaning of “slope”                            Mathematical  
Edges of buildings              in English                                           slope concept 
Sides of roofs                      Inclination of physical structures     
                                            Inclination of common examples  
                                            of graphs of linear functions (lines) 
                                                                                                               

 
 

       
 

           
           

                 

 
 
 

 
 

            
            

          
            

           
             

          
            
              

              
            

   
            

            
           

            
            

         
           

            
                

 
      

 
                                                                  

 
                                                      

                                                              
                                

                                                 
                                                  
                                                                                                               

RESULTS 
 
Metaphor of Slope and Student Description  
 
During the interview, student SAL provided descriptions in both everyday and 
mathematical settings. Descriptions came about when SAL was asked to introduce 
and teach the ideas of slope to the interviewer, and to talk about what he thinks of 
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when he hears the word “slope” as well as to address the question, “what a slope 
is.”  

Table 1 outlines SAL’s metaphor of slope. As seen in the table SAL compares 
similarities between houses/buildings and graphs of non-horizontal linear functions 
to form a mathematical understanding of slope. The setting for the metaphoric 
comparison appeared to have emerged from his instructors both from high school 
and early college courses giving examples from daily life.  

When student SAL was asked to tell the first time he was introduced to slope, 
he talked about his high school and early college teachers introducing “slope” as 
the tilt of a line or physical entity that is used in construction (see excerpts below). 
These examples appeared to have encouraged SAL to consider houses as an 
example of having “slopes” in the sense of the edges of roof tops, a physical 
attribute. Even though SAL also considered slope as something used to determine 
how tilt lines are, the physical feature of slope was more dominant in his 
knowledge and reasoning.  

Physical objects like houses/construction buildings seemed to encourage a 
formation of a physical entity of slope in the case of SAL. That is, examples 
provided by his instructors appeared to have acted as analogies for SAL in forming 
an understanding of the mathematical concept slope. The similarity between the 
inclined edges of a building described by the English word “slope” may have 
further enhanced SAL’s consideration of the physical attribute of “inclined lines” 
as being “slopes.”  

In the following responses, SAL is clearly comparing the aspects of 
buildings/houses with lines. His phrases “depend how tilt it is” and “it’s like a way 
to know how tilt the line is” provide the clues for his comparison. He is focusing 
on the tilt/inclination of edges of buildings, beams and houses in describing the 
mathematical aspects of the slope. Specifically, it is clear in his third response 
below that he is in fact focusing especially on one attribute of the examples given 
in the source domain, which is the inclination of structures.   
  

SAL:  OK, slope? During my second year in high school? Yeah, It was 
basically said some about, you know, lines, depend how tilt it is. That’s the 
slope. So like, you didn’t get into it really that much. That’s about the first time 
I heard. 

 
SAL:  Yeah, he [his college instructor] said slope was something that it could 
be used on almost anything, even like constructions, even buildings, things like 
that. So it’s like a way to know how tilt the line is used in the field of engineers. 
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 SAL:  Oh, yeah. I guess when the teacher said it could be used as an 
engineering tool and as a way of beam stuff, yeah, it makes sense, you know, 
everything has, I mean, an inclination, also you can see the inclination, so, I 
started looking at the stuff. so…house has inclination… 

 
Metonymy  (Slope         Tilted Line) and Student Reasoning  
 
Later in the interview when asked why he included “house” in his concept map, 
SAL described more of a metonymic aspect of the concept than a metaphoric one. 
It is evident with two phrases “You know “house looks like two slopes” and 
“have a house slope” that, for SAL, the term “slope” solely stands for “an 
inclined line.”  

 
           SAL:  because I don’t, when I … I don’t perceive slope, but house is just an 

example like you know. You know house looks like two slopes.  
SAL:  I guess architecture, houses, even anything a house they can have a 
house slope… 

 
In answering mathematical questions, SAL’s preference appeared to be the 
particular metonymy (slope    tilted line) over his metaphor. SAL used this 
metonymy consistently throughout the interview. For instance, when he was asked 
to give an example for the slope of a linear function, he drew an inclined line and 
said: 
 

SAL:  OK. This could be a slope [draws an x-y coordinate with a line on]. 
 

He further stated that a horizontal line is not a slope. This response leaves no doubt 
that during the interview SAL used the term “slope” as a metonymy to stand for 
inclined lines.SAL provided further explanation to why he did not consider a 
horizontal line as a slope. In fact, his explanation below reveals that he is 
associating slope with a characteristic of lines, that is their “tiltedness,” and 
through this association tilted lines are becoming slopes for him.  
 

SAL:  Because the line is tilt…  
          SAL:  So I know it’s sloppy. I know. I think I know that any tilt line is a 

slope. That line [pointing to a horizontal line drawn on a paper] doesn’t, it 
isn’t tilt at all… and doesn’t just slope. 

 
Later in the interview he was asked about the role of a numerical value that the 
interviewer called “a slope” of a linear function. His response (given below) to this  
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question is further verifying his metonymic use of slope as tilted line. He in fact 
declares that the value can be graphed, clearly meaning a line. 
 
           I: I guess I was wondering and just curious why it’s that we need to get that 

number [referring the slope value written on a paper]. 
SAL:  Which? 
I:     This number. 
SAL:  Oh, you know because so you can graph it. 
I:     Oh, I see. Graph what? 
SAL:  You can graph this slope. 

 
During the interview, SAL was aware of the slope formula and was able to 
calculate the slopes of lines provided that two points on the graphs of lines are 
given. He however did not appear to hold the meaning of slope as “a measure of 
rate of change.”  
 

I:     What is that formula for?  
SAL:  … This formula is, when they give you two points, so you can get a 
slope on those two points. And this one, the one with “m,” like y equals to m 
and and b. This is to get a, just to get a slope.  

  
 Lack of the knowledge of slope as a measure of rate of change can further be seen 
clearly in his response below. When SAL was asked whether he could obtain a 
function value for a given x-value provided that another point and the slope value 
of the function are given, he stated that, with the given information, he could get 
the intersection points of the graph of the function. He also added that, with slope 
and a point, he only taught of a line and a point, and nothing more. It is evident in 
his phrase “this point will intersect with the slope” and the excerpts below that he 
is clearly not considering slope as a measure of rate of change, but using the term 
“slope” to mean a line. 
 

SAL:  Ok, the slope is 2 and the point is… we can get the intersection of 
the, the line…. 
SAL: This point…yes, it is just this point. I don’t know, what all that I see is 
a line and a point, that’s all I see… 

            I: Which line do you see? Which line?   
            SAL:  Oh, the slope, anyway, it’s supposed to go… 

SAL:  I’m thinking maybe this point will intersect with the slope, but, it’s 
just some, maybe, I don’t know. 
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Discussion and Conclusion 
 
Student SAL used one kind of metaphor in his description of the mathematical slope concept. 
SAL furthermore, later in the interview, turned this metaphor into a metonymy of “slope” for 
“tilted lines.” Mathematical concept formation appeared to be embedded in one’s social, cultural 
and pedagogical activities. SAL’s understanding of slope in fact does not solely come from 
classroom activities but from the cognitive processing of his social and cultural experiences 
integrated with classroom experiences.   
SAL formed an understanding of slope as tilted lines or “tiltedness” of lines by adopting the 
similarities between two domains; source domain of inclined edges (that are called slopes in 
English) of buildings/houses and the target domain of the inclination of the graph of linear 
functions (tilted lines). The fact that “slope” term is used to describe both the inclined edges of 
physical objects and to describe the mathematical concept seemed to have encouraged SAL to 
form only a visual (physical) understanding of the mathematical slope ideas.  
It was apparent in the interview responses that SAL’s metonymy of slope standing for tilted lines 
began with his metaphor of slope. After the initial metaphoric understanding of slope, SAL 
turned this metaphoric understanding to metonymic reasoning. In fact, when it came to 
answering mathematical questions, he consistently preferred the metonymic aspect of slope.   
Recalling that student SAL had instructors using “construction/houses” as analogies to introduce 
the mathematical slope concept one implication of the findings for the teaching and learning of 
mathematics may be that the teachers of mathematics need to be cautious with the use of 
analogies such as “beams/bridges” and “ski slopes” in introducing the concept. As Max Black 
indicates, “Similarity is created in the mind of conceivers of the metaphor rather than being 
given to them” (reported in Sfard (1997, page 342)). What is tension in the eye of a teacher may 
become the ground for students. It is an unavoidable fact that students bring their everyday 
experiences into mathematics classroom, and consider them during the process of 
conceptualizing a newly acquired mathematical concept. Teachers may need to explicitly cover 
the relevant similarities between source and target objects especially when there is a potential of 
applying irrelevant or incomplete aspects by students. In the case of slope, the rate of change 
aspect needs to be emphasized. Furthermore, the similarities and differences between the 
examples from the source domain and the mathematical slope concept from the target domain 
need to be covered explicitly to make sure students do not consider irrelevant aspects and/or only 
one relevant feature such as the physical attributes to form an understanding of the subject. This 
paper reported findings of a single student’s metaphoric understanding and metonymic 
reasoning. They by no means can be taken as generalization to all mathematics learners. The 
findings reported in this article though may become the springboard for future investigations 
with larger sample groups.  
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This poster illustrates the use of lesson study as a professional development tool. In particular 
the poster focuses on the way in which the teachers increased their understanding of how tasks, 
classroom activity and teacher actions scaffolded student learning of early algebraic reasoning 
of equivalence and the commutative principle. Teacher voice is used to illustrate how lesson 
study cycles caused the teachers to reflect and review their own understandings of early 
algebraic concepts and how their students considered them.    
 
 This poster reports on the use of lesson study as a professional development tool to 
facilitate a group of teachers enhanced development of their algebraic ‘eyes and ears’ (Blanton & 
Kaput, 2003). Lesson study is a form of professional development which aims to increase 
teachers’ knowledge about mathematics, knowledge about ways of teaching mathematics, and 
knowledge about the ways to engage learners in, and make sense of, mathematics (Fernandez & 
Yoshida, 2004). A specific focus of the poster is on how teachers increased their understanding 
of how tasks, classroom activity and teacher actions scaffolded student learning of early 
algebraic reasoning of equivalence and the commutative principle through the lesson study 
process.  
 Research studies investigating children’s development of early algebraic reasoning 
covers a wide field including those which focus on classroom practices which scaffold student 
justification and generalizations. However, in this poster, focus is placed on how lesson study 
supported teachers to understand how their students constructed early algebraic reasoning in two 
areas of early algebra; equivalence (equality) and the commutative principle. Participants 
included two groups of elementary teachers who worked as a professional learning community 
within their own schools. ‘Study lessons’ were planned and taught in one classroom and 
observed by the research group. In-depth analysis and discussion followed observations of the 
study lesson and subsequent iterations as it was re-planned, re-taught and re-observed in different 
classrooms as part of the lesson study cycle.  
 In the poster, teacher voice is used to illustrate how lesson study cycles caused the 
teachers to reflect on and review their own understandings of early algebraic concepts. The 
opportunities to closely observe student responses provided a foundation for them to build 
understandings of how their students approached tasks which challenged their understandings of 
the commutative principle, and the equal sign. The teachers recognised the pivotal role they held 
in making links between the early arithmetical and algebraic reasoning and pressing the students 
towards situations of generality.  
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An analysis of how a teacher’s instructional practice changed over time as a result of 
participating in professional development is presented. The specific questions addressed in 
this analysis include an analysis of the shifts that took place over a three year period. A 
framework for analyzing teacher’s practices as a useful tool for professional development is 
presented.  

Supporting teachers to make shifts in their instructional practice towards reformed 
approaches that support conceptual understanding is not an easy task. Even though, teachers 
attend professional development sessions, understanding how it impacts their practice is critical 
for designing effective professional development. Teachers have to make pedagogical decisions 
that are adaptive to the learning situation. Recent research on teacher professional noticing 
(Gamaron, Sherin, Jacobs & Phillips, 2010) point out that teachers’ ability to make professional 
decisions is influenced by their ability to notice and interpret what is going on in the classroom.  

Method  
Three classroom episodes of a teachers instruction over three years is analyzed using Strauss 

and Corbin (2001) Constant Comparative method. This teacher participated in a larger Math 
Science Professional development project in a western state.  

Results  
The results revealed that shifts in teacher questioning changed along with her beliefs of teaching 
math. The initial class discussion data revealed that the teacher asked direct questions aimed at 
getting the “correct” answer such as “So 
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?” Students directly 
answered teacher comments. The teacher questioning shifted along with student participating. 
She asked more questions aimed at understanding student reasoning and understanding. In 
addition, students started to respond to each other’s comments.  

Discussion  
We argue that professional developer’s ability to notice shifts in teachers’ instructional 

practices and break practice into core components is an important part of designing 
professional development tasks for teachers. We agree with Gamaron, Sherin, Jacobs & 
Phillips (2001), that teachers’ ability to professionally notice their practice is an important 
part of improving teaching.  
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In this poster presentation we discuss the theoretical and practical issues that we have 

encountered in trying to conceptualize and document teacher change by examining teacher 
questioning. Our work is situated within the context of a mathematics-science partnership 
project, conducted as a 3-year Master’s degree program, that engages teachers in intensive 
coursework and practical experiences designed to enhance their content and pedagogical content 
knowledge in mathematics and science. The 22 teacher participants are from a public school 
district in a mid-sized city in the Midwest.  

This poster traces our efforts to utilize questioning frameworks that are prominent in the 
mathematics and science education literature to characterize changes in teachers’ questioning 
practices. Our focus on questioning, per se, was motivated by the IICC teachers’ interest in this 
aspect of their instructional practice. Accordingly, we sought a framework that could be useful 
from both theoretical and practical perspectives. We examined the literature for models that 
could inform our analysis of teachers’ video-recorded lessons, hoping that an existing framework 
might be applied to our data, directly or with only slight modification. At the same time, we 
sought a framework that would be accessible and meaningful to teachers in improving their 
questioning practices. Drawing on the extant literature to meet the dual requirements of 
theoretical and practical utility posed certain challenges.  

A recurring concern was that of grain size–whether frameworks were detailed enough to 
detect subtle changes in questioning, yet expansive enough to offer teachers insights into the 
nature of their questioning. For example, Oliveira (2010) used a broad echoic/epistemic – 
teacher-centered/student-centered framework. In our analysis we found that the categories were 
not easily distinguishable and did not provide enough detail to identify subtle changes in the 
teachers’ questioning. Chin's (2007) four overarching categories of questions that promote 
productive thinking addressed many of our concerns, yet we encountered issues in distinguishing 
between nonproductive and productive questions. Boaler and Brodie's (2005) framework enabled 
us to detect differences in the types and frequency of questions teachers posed and could assist 
teachers in making micro-level changes in specific questions, however it might not necessarily 
support them in making macro-level changes in questioning. We conjecture that teachers require 
a different kind of framework to further promote their development, one that acknowledges the 
flow of discourse rather than focusing on specific questions only. That is, teachers need to 
consider what is asked, how it is asked, when it is asked, and how it is followed up; essentially 
the context within which a specific question occurs.  
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Objectives  

We present a theoretical framework for understanding teachers’ uses of student learning 
data in collaborative inquiry processes. The framework is useful to researchers interested in 
describing and analyzing the ways teachers conceptualize, collect, and analyze student 
learning data, as well as how teachers discuss results of their analyses  

The framework is grounded in five years of analyses of multiple teacher groups at 
multiple sites. We address the term inquiry stance in the context of a teacher group to more 
fully capture the dialogic aspects of collaborative inquiry. We have found that a group of 
individuals, even with various stances, do construct a describable group stance toward 
collaborative work, and our analysis considers the nature of the interactions amongst group 
members rather than any individual teacher’s orientation. We further narrowed our own 
perspective to that which seemed most pressing to the work of the teacher group – their 
conceptualization and use of student mathematics learning data. We detail the two core 
dimensions of our framework below.  

Framework  
For the purposes of this paper, we describe an epistemological stance as a way of thinking 

and being in relation to a particular phenomenon. In our specific case, we are analyzing 
mathematics teacher interactions in the context of collaborative inquiry processes that 
incorporate student learning data. Our framework for considering and discussing teachers’ 
epistemological stance toward data lies on a continuum from proving to improving. Teachers 
with an improving stance toward student data seek to surface limitations in classroom practice 
through an examination of the data. Teachers with a proving stance toward student data attempt 
to verify strengths in their practice by uncovering changes in student achievement. The second 
dimension of our theoretical framework involves the ways in which teachers position and 
interact with each other in the context of collaborative uses of student data. When differing 
perspectives are surfaced and made explicit, these may be questioned, tested against evidence, 
compared and contrasted to others’ ideas and experiences, and potentially transformed. We 
characterize these types of interactions as negotiation, during which cognitive conflicts are 
surfaced and explored by group members. At the other extreme, not negotiation is evidenced by 
conversational turns that may be superficially connected through sharing related stories about 
teaching or students, or teachers taking a task-oriented approach to data. Conversational turns 
may be related to each other in short sequences, but remain at the descriptive level.  

Findings  
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This study is part of a larger NSF-funded research project involving 8 secondary 
mathematics and science teacher groups. The above framework was continually refined and 
described in a matrix used to code transcripts of collaborative inquiry meetings across three 
years. These data reveal descriptive statistics on the nature of talk and uses of student learning 
data inside a wide range of teacher groups. Our analysis also focused on the kinds of data 
teachers accessed during interactions related to student learning. Findings were also related to 
broader contexts, such as extrenal mandates and school or teacher leadership.  
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Secondary school mathematics teachers, mathematics department heads, curriculum leaders, 
and administrators from 11 schools, with support from a local university, participated in the 
project Collaborative Teacher Inquiry. In this presentation, we will focus on challenges that 
teachers face when they teach grade 9 applied mathematics.  

 

INTRODUCTION 

The transition from Grade 8 to Grade 9 is particularly challenging in many school systems 
(Galton, 2009). In Ontario, students are promoted to the next grade regardless of their level of 
performance until Grade 8. In addition, Grade 9 students in Ontario are subject to streaming, 
being categorized into academic, applied, or essential levels (Ontario Ministry of Education, 
2007). As a result, Grade 9 is a critical year for students and teachers. This is especially 
challenging for urban populations such as the Greater Toronto Area (GTA), where there is a 
large multicultural population with the highest percentage of foreign-born students in Canada 
(Statistics Canada, 2005). In fact, 44% of the student population of the GTA has a first language 
other than English. In this paper, we report the findings to the research question: What 
challenges do Grade 9 Applied Mathematics teachers face? By identifying the difficulties 
encountered by mathematics teachers, this research promises to move forward teaching 
mathematics in applied classrooms, by energizing teams of teachers within schools to activate 
and guide the teacher improvement process.  

 

FINDINGS AND DISCUSSIONS 

 We will discuss the various challenges faced by teachers in teaching grade 9 applied 
mathematics. Due to time limitation, we selected only few categories. There are a number of 
challenges in urban mathematics education in greater toronto schools. There were a number of 
situations when challenges identified were multifold. Sometimes teachers did not believe in their 
capability to achieve success under these circumstances. Teachers said that these negative 
attitudes along with the students’ lack of mathematical background were major barriers to foster 
student success. Teachers mentioned that they can not be successful alone if their students and 
their parents do not believe themselves in succeeding.   

A mix of behavioral issues and lack of attitudes toward learning was another area of concern. 
Family situations of students differ considerably and these contexts also brought many issues for 
several schools. Teachers emphasized the complexity of students being in the same time with 
behavioral issues and having individual education plans. Lack of time for teachers to prepare 
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their lessons, students need to learn the basics first, concerns about student behavior; and the 
concerns of preparing students for provincial tests were common themes in both studies. At 
times, teachers’ professional development programs had their own limitations. Implementing 
reforms that the new curriculum required was challenging by many teachers. In addition, some 
new teachers had problems in class management. By contemplating on teachers’ views in our 
study, some teachers faced considerable pressure when teaching for applied.  
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This poster shows one piece of a larger Research and Development effort to design a 

professional development focused on math discourse in elementary classrooms. This 
professional development evolved from the idea that merely exposing teachers toimportant 
instructional moves was not enough to support high quality implementation in mathematics 
classrooms. Rather, we claim that it is necessary to instruct teachers on howto implement 
instructional moves that support math discourse.  

Through collaboration with experts in literacy, the professional developmentincorporates 
literacy instructional models that support classroom discourse into mathematics teaching and 
learning. The project has a focus on fully engaging all studentsin mathematics discourse, 
including English Language Learners (ELL). We contend thatthese models are beneficial to all 
students (Saunders & Goldenberg, 1999). 

Here we focus on the results of presenting one graphic organizer, the Frayer model, to a 
group of elementary math coaches. One important feature of a classroom rich in mathematical 
discourse is appropriate use of mathematical vocabulary. Thus, weproposed to the coaches the 
use of the Frayer model as one tool to launch a discourse-rich mathematics lesson. Using the 
model can support the assessment of prior knowledge ofvocabulary, allow the class to discuss 
multiple representations of concepts, and develop acommon understanding of the meaning of a 
word. We engaged the coaches in completing a Frayer model, with an emphasis on how the 
model could be used to launch a lesson rich in Math Talk. We then asked them to plan how to 
take the tool back to their respectiveschools. Coaches were given the option to implement the 
tool with teachers or students. 

In examining the work implemented by the coaches, we addressed the following 
research questions: What did coaches consider appropriate adaptation of the Frayer Model? 
What issues emerged for the coaches as pros and cons of using the Frayer Modelin a math 
lesson? For this study coaches’ written reflections and audio-recorded group debriefings were 
analyzed. Among the fifteen coaches’ implementations, a majorityimplemented the model 
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directly with students.  Those who implemented with teacherschose to do so as they had 
experienced the model. The implementations of the modelvaried, with common themes 
including: student engagement, teacher adoption and adaptation, and the tool as an assessment. 
The analysis of this data has implications for how graphic organizers are presented in the 
professional development.  
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The National Council of Teachers of Mathematics published Focus in High School 
Mathematics: Reasoning and Sense Making (NCTM, 2009) to address the need for high school 
mathematics programs to align with the K-12 curriculum goals that were set forth by Principles 
and Standards for School Mathematics (NCTM, 2000). This focus document places emphasis on 
developing students’ reasoning and sense making abilities in order to develop mathematically 
literate citizens who are prepared for an array of postsecondary work or study options. This study 
investigates the experiences of seven mathematics teachers responding to these curricular 
recommendations through individual action research.  

Teacher action research is a democratic form of professional development in which teachers 
can critically examine curricular recommendations generated by outsiders (Stenhouse, 1975). In 
addition to professional development, action research values the ‘insider’ stance that teachers 
hold in their own classroom, and positions teachers as knowledge generators rather than simply 
recipients and consumers of the knowledge of others (Cochran-Smith & Lytle, 2009). Through 
collaborative action research, teachers can investigate their individual inquiries while 
collaborating around a common theme.  

A group of mathematics teachers was formed by recruiting teachers interested in 
investigating their practice through action research. We initially agreed upon the theme of 
Reasoning and Sense Making (NCTM, 2009) as the focus of our work together. We met 
regularly throughout the school year, a total of nine times, as teachers read Reasoning and Sense 
Making and related practitioner literature that aligned with their chosen foci for their action 
research. As teachers learned about action research, they individually selected specific actions to 
take in their practice to incorporate reasoning and sense making. Meetings served as a time for 
them to share their goals, dilemmas, and successes.   

This study used a narrative inquiry approach to investigate the ways teachers incorporated 
the recommendations for Reasoning and Sense Making into their practice, how they interpreted 
the impact of their actions, and the challenges and opportunities that they encountered 
throughout the process. Data collected include teachers’ conversations, journal reflections, 
interviews, and classroom observations. This poster presentation will present the preliminary 
analysis of this study, sharing the variety of ways that teachers focused their action research 
inquiries, and how their choices were a reflection of those aspects of the recommendations that 
held meaning for them within the context of their teaching and their visions for their practices. 
Dilemmas that teachers identified and the lessons they learned will also be shared.  
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The goal of this study is to inquire into secondary school mathematics teachers’ understanding 
about logical structure and validity of proof by contradiction. Three proof tasks were given to 23 
teachers and they were asked to evaluate the tasks and to provide reasons. Sixteen teachers were 
unable to find the premises and conclusions of the statement which were really proved in proof 
by contradiction, and only a few teachers could explain the validity of the method of proof.  

Researches on proof by contradiction which has a specific logic structure of proof, that focus 
on students’ difficulties seem to be greater than those related to direct proof. A proof by 
contradiction is different from a direct proof which infers a straightforward conclusion from the 
premise of a given statement. Thus a proof by contradiction shifts from the given statement to 
another one in which the hypothesis is the negation of the given statement and the conclusion is a 
contradiction. This research examined teachers’ understanding of proof by contradiction, a topic 
that has not received adequate attention (Antonini & Mariotti, 2008). 

This research focused on the following questions: How do teachers understand the logical 
structure of proof by contradiction and how do teachers understand its validity? Three proof 
tasks that were purportedly written by students were given to 23 teachers, and they were asked to 
evaluate tasks and to provide reasons. 

After investigating participants’ understanding about the hypotheses and conclusions of the 
new statements which were proved in the format of direct proof, their hypotheses were identified 

as p�q, p�~q and ~q. Their conclusions were identified as a contradiction of the premise, a 
contradiction of the conclusion for the given statement, and a false proposition. Seventy percent 
of the teachers were unable to find the correct hypotheses and conclusions of all tasks. On the 
other hand, six of the participants recognized the valid logical structure of proof by contradiction. 
To validate the proof method, four of them used truth-table, contraposition and partial 
contraposition which make a contrapositive statement with one premises and conclusion in case 
a given statement contains two premises and one conclusion. Only a few teachers could explain 
the validity, but their responses were inconsistent with the contradiction which occurred in the 
premise or false proposition. Furthermore, their understanding of the validity of the method of 
proof was an unconscious one for the majority of the teachers.  
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In this paper we investigate the phenomenon of “suspension of sense-making” (Schoenfeld, 

1991) with preservice elementary teachers (PETs) when solving word problems whose solution 
is not obtained by the straightforward application of the arithmetic operation suggested by the 
numbers given in the problem. A paper-and-pencil test was administered to 68 PETs enrolled in 
two sections of a content mathematical course. The test consisted of 8 experimental items and 4 
buffer items. The experimental items were adapted from Verschaffel and De Corte’s (1997) 
study. Prospective teachers performed poorly on the experimental items. The number of realistic 
responses varied from 5 to 58. One of the two lowest numbers of realistic responses was for the 
problem “Sven's best time to swim the 50 m breaststroke is 54 seconds. How long will it take 
him to swim the 200 m breaststroke? One of the two highest numbers of realistic responses was 
for the problem “228 tourists want to enjoy a panoramic view from the top of a high building that 
can be accessed by elevator only. The building has only one elevator with a maximum capacity 
of 16 persons. How many times must the elevator ascend to get all the tourists on the top of the 
building?” In summary, 178 (33%) out of 544 responses were correct or involved a realistic 
comment. Prospective teachers’ difficulties with modeling problematic word problems is also 
examined in Contreras and Martínez-Cruz (2007). Possible explanations about mature adults’ 
suspension of sense-making when solving problematic word problems will be provided in the 
poster presentation. 
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The continuous search to find solutions to mathematical problems has extended the frontiers 

of mathematical knowledge since antiquity. Creating mathematical problems is conceived by 
both mathematicians (e.g., Halmos, 1980) and mathematical educators (e.g., Silver, 1994) as a 
fundamental mathematical activity. Professional organizations (e.g., NCTM, 2000) and the 
National Research Council (Kilpatrick, Swafford, and Findell, 2001) include problem posing as a 
core element of mathematical proficiency. NCTM (2000) for example, calls for teachers to 
regularly ask students to pose and solve interesting problems based on a wide variety of 
situations. However, we know very little about both prospective and practicing teachers’ abilities 
to pose mathematical problems and their dispositions to engage their students in problem-posing 
activities.  

One of the goals of our research project is to document prospective teachers’ initial abilities 
to pose mathematical problems. To this end, and as a starting point, we asked a group of 25 
prospective elementary and middle school teachers to complete four problem-posing tasks within 
geometric contexts. The students were enrolled in a geometry course for elementary and middle 
school teachers in spring 2011. The students were told verbally that they will have about 45 
minutes to complete each problem-posing task, but they spent about 20 minutes on each 
problem-posing activity. The written responses are the data sources for examining their initial 
problem-posing abilities.  

In the first problem-posing task, the diagonals task, students were asked to observe a 
quadrilateral, a pentagon, and a hexagon with all of their diagonals. The diagrams were 
accompanied with the statement “We notice that a quadrilateral has 2 diagonals, a pentagon has 5 
diagonals, and a hexagon has 9 diagonals”. The directions asked students to examine the 
examples and think about other analogous diagrams and to write down as many different 
mathematical problems or questions as they could.  

For the diagonal task, the students generated 63 responses out of which 56 were problems. 
The students generated 13 extended problems, 14 general problems, 1 proof problem, 2 converse 
problems, 13 further extended problems involving formulas or patterns, and 13 additional further 
extended problems of other kind. A more complete description of the data coding, analysis, and 
discussion of the results for each of the four problem-posing tasks will be reported in a longer 
version of this paper.   
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This study is part of a larger study on designing and implementing professional development.  
Research indicates that teachers’ understanding of fractions is limited (Squire & Bryant, 2002) 
with few teachers being able to explain reasons and meanings for division of fractions (Ball, 
1990).  “Greer (1992) argued that though people were usually able to solve division sums 
involving fractions written mathematically, they were not able to use the concept to represent 
real life situations” (Rizvi & Lawson, 2007).  Similarly, Toluk-Ucar (2009) found pre-service 
teachers to be unable to provide appropriate representations and explanations in given fraction 
situations.   
 The central focus of our study is to investigate elementary in-service teachers’ abilities to 
make connections between algorithmic representations and word problem representations with 
division of fractions.  This study examines the teachers’ ability to pose problems based on a 
given algorithm and generate and solve an algorithm from a given word problem.  The problems 
are listed below: 

1.  Write a story problem for the following division problem: 5 1/4  1/2. 
2.  Nancy has 6 2/3 meters of material.  It takes 5/6 of a meter to make her fabulous fancy 
hair ribbons.  How many fabulous fancy hair ribbons can she make? 

 Of the 35 participants in the sample, 8 successfully wrote a word problem from a given 
algorithm.  31 participants translated a word problem into an algorithm and successfully solved 
it.  All 8 participants successful in generating a word problem were also successful at solving a 
given word problem.  A sign test was calculated on this data and yielded significant results 
( ).  The analysis of a sign test revealed that participants are more likely to successfully 
solve a given word problem than generate a word problem from a given algorithm.    
 These results emphasize the importance of problem posing in teaching division of fractions 
for professional development.  Teachers must have a conceptual understanding of fractions in 
order to accurately pose problems within a context.  Therefore, problem posing cannot only serve 
as valuable and necessary teaching tool, but also as an assessment tool.   
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Transformative mathematics teaching and learning is predicated upon high-quality 

instruction which requires sophisticated, professional knowledge that goes beyond pedagogical 
skill. Hill, Rowan, and Ball (2005) demonstrated that first- and third- grade teachers’ specialized 
content knowledge significantly predicted the size of student gain scores. Clotfelter et al. (2008) 
found evidence that teacher credentials, particularly licensure and certification, positively 
impacted high-school student achievement on statewide end-of-course exams in comparison to 
their lateral entry peers. However, less is understood about the mathematical content knowledge 
necessary or background characteristics of teachers that might influence instructional quality in 
the middle-school grades. The current study uses data from a five year NSF-funded project 
whose goal was to improve teachers’ specialized mathematical content knowledge for teaching.  

The sample included urban and rural middle-level mathematics teachers (N = 66; 89% 
female) in a Midwestern state with elementary (n = 11), middle (n = 19), and secondary (n = 27) 
certification. Two longitudinal linear mixed models were estimated in SAS PROC MIXED to 
examine the relationship between teachers’ certification level as well as knowledge of Number & 
Operations (N&O) and Patterns, Functions, & Algebra (PF&A) across three testing occasions. 
Mathematical Content Knowledge for Teaching (MCK-T; Hill, Ball, & Schilling, 2004) is a pre-
post measure that contains both of these subscales. We hypothesize algebra requires 
sophisticated knowledge of numbers and operations and will predict content knowledge in that 
area. We tested this by comparing two models. In Model 1, N&O was treated as the outcome and 
PF&A a time-varying predictor. Model 2 reversed this treatment. Both models included teacher 
certification level as a time-invariant predictor. We constructed piecewise slopes to observe the 
effect of time.  

In Model 1, the intra-class correlation indicates 34% of the variance is cross-sectional. The 
unconditional baseline model suggests there are individual differences in the linear rate of 
change in initial N&O subscale scores. We found two main effects: for every 1-unit higher than 
the mean PF&A subscale score, N&O increased significantly by .55, p < .0001; and for every 1-
unit change from baseline score, N&O increased significantly by .32 at that testing occasion, p < 
.001.  

In Model 2, the intra-class correlation indicates 58% of the variance is cross-sectional.  
Through an examination of linear mixed models we determined the model that best represented 
the data was a compound symmetry model that examined the between person effects of N&O on 
the intercept and slopes, with main effects of initial N&O, change from initial N&O, and 
certification level.  We found greater initial N&O scores lead to greater initial PF&A subscale 
scores (p<.001).  We found for N&O scores between the first two exams, PF&A scores were 
statistically unchanged, p > .05. For N&O scores between the second and third exams, PF&A 
scores increased by .19, p = .05. 

There is still a significant amount of variance to account for within both of the final models. 
Future directions include analysis of the Geometry subscale of the MCK-T, for a more holistic 
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portrait of how knowledge in one area of mathematics might be related to different branches. 
Other teacher background characteristics will be included as predictors.  
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This study examined how two teachers handled unanticipated student questions during typical 
classroom interactions. I grounded this study in the literature of the specialized knowledge for 
teaching mathematics and the activities of teaching mathematics. To answer the research 
questions, I observed and interviewed two experienced teachers of accelerated secondary school 
mathematics. Each teacher was observed for one unit of instruction and interviewed four times. 
From the observations and interviews, I found that these teachers responded to unanticipated 
student questions in four ways. When responding to the student questions, these teachers 
followed one of three approaches. 

 
How does a teacher use his or her own mathematical knowledge? In particular, when an 

unexpected moment occurs during the normal course of teaching, how does he or she apply what 
he or she knows? This study investigated how teachers of students in an accelerated secondary 
mathematics course applied their mathematical knowledge in unexpected moments during 
classroom discussions. The research questions that guided this study are as follows: 

• What mathematical knowledge does a teacher call upon when presented with an 
unanticipated/unplanned student question? 

• What are the approaches a teacher uses when responding to a student who has posed an 
unanticipated question? 

There are two parts to this study, observations and interviews. I observed teachers in their 
typical classroom environment in order “to illuminate an understanding of the culture, not to 
predict future behavior” (Pirie, 1997, p. 82). I used two recording devices for the classroom 
observations: one device focused on the teacher, and the captured additional student discussions 
in another part of the classroom. I observed the participants for one unit of instruction. In 
addition to the observations, I interviewed both teachers four times as part of this study: once 
before the observation, twice during the observation, and once after the observation. I 
interviewed each teacher for a total of three hours.  

I identified four ways these teachers handled unanticipated student questions or comments. I 
used three of Fernandez’s (1997) categorizations: posing simpler or related questions, providing 
counterexamples, and following through with a student’s thought. The fourth category, 
acknowledging challenging questions, reflected gifted students’ ability to ask teachers complex 
questions quickly (Park & Oliver, 2009). The teachers’ content knowledge built from prior 
experience explained the infrequent occurrences of these episodes. Future studies would examine 
teachers’ responses to unanticipated student questions in longer observations in a variety of 
mathematics courses.  
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This poster describes a synthesis conducted to determine what research says regarding 
preservice teachers’ understanding of fractions and to identify the gaps in their existing fraction 
knowledge. Specifically, this poster will address a smaller portion of the synthesis and report the 
findings from fraction multiplication and division topics.  Results indicated that preservice 
teachers’ understanding of fraction multiplication and division is limited and largely based on 
rote procedures. Implications for teacher education programs and future research studies are 
provided. 
 

Teachers need a “solid understanding of mathematics so that they can teach it as a coherent, 
reasoned activity and communicate its elegance and power” (Conference Board of the 
Mathematical Sciences (CBMS), 2001, p. xi). In particular, the National Mathematics Panel 
affirmed the “proficiency with fractions” as a major goal for K-8 mathematics education because 
“such proficiency is foundational for algebra and, at the present time, seems to be severely 
underdeveloped” (p. xvii). Therefore, developing such proficiency in preservice elementary 
teachers is a critical task for mathematics educators. In this poster, we discuss the main findings 
from a research synthesis of existing studies on preservice elementary teachers’ fraction 
knowledge to identify critical directions for future research specifically in the area of fraction 
multiplication and division.    

Research regarding preservice teachers’ mathematical content knowledge illustrates that 
preservice teachers have a rule-based conception of fraction multiplication and division.  Within 
the topics of fraction multiplication and division, misconceptions result from overgeneralized 
rules from other number systems, such as multiplication always makes bigger, or result from not 
understanding algorithms for multiplying and dividing fractions.  Other difficulties preservice 
teachers have with fraction multiplication and division stem from not having a conceptual 
understanding of the mathematics. Thus, when asked to provide contextualized situations for 
multiplication and division problems, preservice teachers tend to create situations not related to 
the original problem or are unable to generate a situation at all.   

By understanding preservice teachers’ knowledge of fraction multiplication and division, 
future studies and improvements in teacher education programs can start to investigate the ways 
in which preservice teachers overcome their misconceptions to develop the mathematical 
understandings needed to be an effective teacher. Virtually every study suggests that strong 
teacher education programs and improvements to teacher education courses are needed, however 
little has been done to document the types of experiences preservice teachers need. There is still 
not enough for teacher educators to have an adequate understanding of how preservice teachers 
think.  
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The aim of this study is to investigate the effects of students learning of trigonometric 
functions through the use of TI-Nspire technology. The effects of students learning are assessed 
in terms of (a) students ability to explore trigonometric functions, to develop mathematical 
modeling skills and to solve problems involving trigonometric  functions concepts with the use 
of TI-Nspire CAS technology; (b)students ability to use the TI-Inspire CAS technology to 
engage in mathematical discussions and reflections and to communicate their understanding of 
the key concepts of trigonometric functions; and (c) students attitudes towards the use of TI-
Inspire CAS technology in exploring and learning about  trigonometric functions in the grade 12 
Advanced Functions course. 

The theoretical framework of this study is The Ten dimensions of Mathematics Education 
Framework which breaks down the essential components of a successful mathematics education 
program (Ross, McDougall, Hogaboam_Gray, & LeSage, 2003). 

The mixed methods triangulation design procedure, specifically the convergence model is 
used to collect and analyze different but complementary data on the effects of using TI Nspire 
technology in the process of learning trigonometric functions.  

The findings of this paper might disclose significant factors that contribute to improve the 
teaching and learning or Trigonometric Functions with the use of TI Nspire technology. For 
example, it might reinforce some educational research conclusions that simulations of different 
real life situations with the use of technology help students extend their mathematical 
understanding and enhance their critical thinking either through helping them visualize 
mathematics or by applying the mathematics to everyday settings.  

This study guides and informs educators about the potential benefits and limitations of using 
TI Nspire CAS technology in mathematical explorations, investigations and problem solving. It 
also helps reveal strategies and techniques to be incorporated or avoided in the teaching of 
Trigonometry in grade 12 Advanced Functions course. 
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Access to advanced mathematics courses is often denied to students in low SES schools, which 
negatively impacts their ability to attend more selective universities and obtain technical jobs in 
STEM fields.  This poster details an innovative program that used technology to link a high and 
low SES school to provide access to AP Calculus BC.  The students at both schools attained 
statistically significant AP examination scores and cited rigor, motivation, and collaboration as 
main aspects of the program that led to success in a challenging mathematics class.  This poster 
candidly describes this program and discusses both the benefits and concerns in the hope of 
increased research into and application of technology to address equity issues. 
 

When discussing equity in education, there is often a focus on providing students with equal 
access so that the average student in one community has the same resources and affordances as 
the average student in another community.  Rarely does the discussion extend to the needs of the 
high achieving student.  The National Council for Teachers of Mathematics writes that equity, 
“demands that reasonable and appropriate accommodations be made and appropriately 
challenging content be included to promote access and attainment for all students” (NCTM, 
2000).  The emphasis on all students, italicized in the original document, highlights the belief 
that equity is not simply an issue for students who are performing below standards, but rather an 
issue for all students at all levels of performance.  As such, an important part of achieving equity 
concerns students who have the potential to succeed in higher level mathematics classes (whom 
we will term “high achieving students”) but lack physical access to these classes or to a highly 
qualified teacher. 
 This poster presentation documents a two year project designed to address the equity 
disparity faced by a group of high achieving, underrepresented high school students in the 
southern United States through the use of distance learning technology.  By adapting teaching 
practices to include such elements as teacher focused cameras and microphones, two high school 
teachers at two different schools were able to collaborate and bring Advanced Placement (AP) 
Calculus BC to high achieving students who previously had no access to such a course.  This 
case study presents to the mathematics education community an example of how practitioners in 
the field are utilizing advances in technology in order to achieve equity in advanced mathematics 
courses.   
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Technology has the potential to transform the teaching and learning of mathematics (NCTM, 
2000). For many teachers however, technology brings fears and feelings of uneasiness.  Thus 
teachers and administrators seek out professional development opportunities to learn about 
technological innovations before trying them in a classroom. But with little consistency in 
professional development or time to implement new technology, “the average individual is 
doomed to a cycle of continual technology implementation” (Straub, 2009, p. 643) without 
thought of its impact on student learning.  Thus, teachers “must be able to locate and take 
advantage of appropriate professional development” (Heid, 2005, pp. 364-365) in order to 
create a paradigm shift for technology readiness. 
The research presented in this poster is part of a three year professional development initiative 
involving 34 teachers from rural districts in the Northwest.  This geographic area is agrarian, 
has a high population of ELL students, and is economically disadvantaged.  Teachers were 
immersed in 96 hours of professional development involving a week long summer institute and 
three two-day follow up seminars throughout the school year and ongoing regular classroom 
observations. The professional development introduced teachers to dynamic software and a 
variety of Web 2.0 applications and asked them to consider how they might be able to implement 
this technology in their mathematics classrooms to improve student learning. 

The Concerns Based Adoption Model (CBAM) (Hall, 2010; Hall& Hord, 2001) is an 
innovation adoption model that examines teachers’ concerns and describes their innovation 
levels of use, innovation configurations, and facilitator leadership styles.  Teachers in this study 
were measured on the first construct, the Stages of Concern, which examines their feelings and 
perceptions as they relate to a particular innovation they are facing. Teachers were given a 35 
item questionnaire which indicated a score of relative intensity for each of the seven stages of 
concern. Teachers will have some level of concern for each of the seven stages at any given time 
and stages are not intended to be hierarchical (Straub, 2009). This poster will present an analysis 
of the teachers’ stages of concern regarding the implementation of new technology in their 
mathematics pedagogy. Results indicate that as teachers adopted and used the technology, their 
concerns shifted from self-based at the beginning toward more task- or impact-based as they 
progressed. These results help fill the gap regarding the process teachers go through as they are 
presented with new tools and face pedagogical change as a result of new technological tools. By 
understanding teachers’ feelings and perceptions, teacher educators can work to provide 
successful professional development that impacts student learning and provide support that seeks 
to meet the teachers’ needs and concerns.  
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The National Council of Teachers of Mathematics [NCTM] Principles and Standards for 

School Mathematics (2000) suggested that teachers integrate problem solving into the context of 
mathematical situations by choosing specific problems because they are likely to prompt 
particular strategies and allow for the development of certain mathematical ideas. Skinner (1991) 
defined a problem as a question that engages someone in searching for a solution and a problem 
cannot exist separately from the person who poses and solves it. Problem posing allows students 
to generate or to reformulate new problems based on a given situation or problem (Gonzales, 
1994). In addition, NCTM encouraged teachers to incorporate problem posing as a means of 
instruction to engage students with problems involving higher order mathematical thinking. 
Therefore, the objective of this study was to identify the types of problems the preservice 
teachers (PT) reformulated based on a framework by Stickles (2006). In addition, the study 
examined the PT’ reflections on posing a new problem.  

In this research an open-ended mathematical problem was presented to 40 middle school PT 
at a southwestern public university. Using the Polya’s approach (1973), PT were required to 
solve the problem. Later, based on the given problem, PT were asked to pose a new problem 
with the same or higher level of difficulty. After some sessions of problem posing interventions, 
PT were asked to reformulate the original problem based on Brown and Walter’s (2005) 
approach called “What-If-Not”. Moreover, using a reflexive journal, the PT’ perceptions of 
posing new problems were investigated. The data were analyzed using both quantitative and 
qualitative approaches. The classification scheme (Stickles, 2006) was used to categorize the 
problem posing statements in terms of problem types. Qualitatively, the journal entries were 
organized by categories of statements and ideas. 

Results revealed some significantly different types of problems before and after the 
intervention. Also, the findings from the reflective journals enabled the researchers to study the 
differences in PT’ perceptions in creating their own problems. In the poster, we will present the 
details of the problem posing study. Examples from the data analysis of preservice teachers’ 
strategies when posing the problem before and after the “What-if-not” approach will be 
presented.   
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     We are investigating the impact of integrating haptic devices into mathematics classrooms. 
During the first year of our three-year project we developed a set of activities for 32 elementary 
and undergraduate students that involved the use of a haptic device. Haptic devices are physical 
machines that provide force-feedback to users in order for them to interact with computer-
simulated objects.  

In our investigations we employed the use of the SenseAble PHANTOM Omni® haptic 
device. We define a haptic environment as consisting of the haptic device, hapticons, and users 
and their discourse during interactions within the environment. Hapticons (i.e. “haptic icons”) 
are dynamic visual representations (e.g. a sphere or flat surface) that become tangible through 
their ability to provide force-feedback to a user via a haptic device. We have defined two classes 
of hapticons, objective and relative. Objective hapticons link force-feedback to interactions with 
a specific visual representation within the haptic environment, e.g. putting a sandpaper-like 
surface on a box. Relative hapticons, however, link force-feedback to a phenomenon in the 
haptic environment, such as a force that is a function of the distance between two spheres. The 
visual representation for a hapticon, in either class, may be hidden. 

Informal interviews were conducted with elementary and undergraduate students while they 
interacted within our haptic activities. Hapticons within the activities included perpetually 
moving spheres that “bumped” into students, and impenetrable walls impeding students’ 
movements. Through analysis of the students’ discourse during these interviews, we identified 
four hapticons that elicited rich use of metaphors stemming from student reactions to the 
hapticons: break point, lock-on, viscosity and pulse. Break point is an objective hapticon, in that 
it provides resistance to a student’s movement while they are in contact with an object, until the 
student exerts enough force and the resistance disappears. Lock-on is also an objective hapticon, 
consisting of a magnetic force attracting the user to an object in the haptic environment (e.g. line, 
sphere). It is also considered a composite hapticon, because a break point acts as the object’s 
magnetic field, keeping users in contact with an object until they provide sufficient force to 
escape the field. The final two hapticons, viscosity and pulse, are relative, and affect a user’s 
movement through the haptic environment. While a user moves through the environment, the 
viscosity hapticon provides a motion-opposing force, such that the user feels as though they are 
moving through a viscous material, while the pulse provides a vibrotactile force.  

These hapticons provide the basic haptic elements that will be incorporated into our 
mathematical haptic activities. The first mathematical activity created using these hapticons 
focused on the concept of reflective symmetry. The activity takes place within a 2D haptic 
environment, in which students are shown a point and must find its reflection across a given line 
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of symmetry. Aiding in this goal is a viscosity hapticon, where the opposing force is a function 
of the student’s perpendicular distance from the line of reflection. While the student’s goal in the 
activity is to correctly identify the placement of a reflected point, the pedagogical goal is for 
students to abstract a relationship about the opposing forces and the distance from the line of 
reflection. This activity will be implemented during our main intervention with elementary 
students in the spring of 2011, as part of a suite of mathematical haptic activities on symmetry. 
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Veracruz is a Mexican state placed along the Gulf of Mexico, its natural geography includes 
many changes in topography: from narrow coastal plains to mountains of over 5,000m height. 
Veracruz has small arid zones, valleys, jungles, small lagoons and many rivers (more than 40 and 
tributaries) so that its climate varies from hot and humid to snow. Temperatures range from 0ºC 
to 40ºC. All these differences make it very difficult to cover the whole state with schools in order 
to give education to every child in the state. To solve this problem Veracruz’s government called 
for projects to develop an on line education network and cover every city and town of the state 
(Consejo Nacional de Ciencia y Tecnología, 2009). 

In 2009 we started a project co-financed by National Council of Science and Technology 
(named CONACYT for Consejo Nacional de Ciencia y Tecnología) and the Government of the 
State of Veracruz in Mexico (Authors, 2009). The project named “Design, development and 
generation of on line didactic materials for teaching mathematics in the school system of 
Veracruz” has two main goals. The first is to encourage the design and production of on line 
didactic materials to teach mathematics and sciences in basic schools and in high schools in the 
State of Veracruz in Mexico. The second is to create videos and demonstration material for 
teacher’s training in the use of on line didactic activities.  

The project is divided in four stages. After the first stage we have designed 20 activities 
applying the Theory of Didactic Situations (Brousseau, 1997) to teach trigonometry to basic 
school students (Authors, 2010). Those activities were designed to be used online only because 
they are programmed in Java®. In this poster we describe and show some of those activities and a 
few remarks we have received from teachers and students. 
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MATH + SCIENCE PERFORMANCE FESTIVAL 
 
 
 
 
 

Traditionally, “mathematical performance” is conceptualized as pertaining to the domain of 
assessment and evaluation. However, we assume a view of mathematical performance as the 
process of communicating mathematics using the performance arts (Gadanidis & Borba, 2008). 
Exploring mathematical ideas through performance can offer a way to challenge stereotypes 
around mathematics learning. Learning mathematics can be viewed as an aesthetic and human 
experience (Higginson, 2006) rather than an impersonal and unpleasant activity. By creating 
music or skits, math performers can provide surprises to their audiences and communicate deep 
mathematical ideas in a creative way. Digital technologies play a significant role in mathematical 
performance. Digital mathematical performances are digital media (e.g., video and audio files, 
flash animations, and virtual objects) used to communicate mathematics through music, cinema, 
theater, poetry, storytelling, and so forth. Gadanidis, Hughes, and Borba (2008) suggest thinking 
about mathematics as performance may lead to new ways for (a) students’ learning with 
technologies and (b) sharing mathematics beyond classrooms. Since 2008, students and teachers 
have been submitting digital mathematical performances to the Math + Science Performance 
Festival (see www.mathfest.ca). This Festival is based on a virtual environment (a website) 
where digital performances are published and shared. Every year, Canadian celebrities (e.g., 
musicians, song writers, poets, TV presenters) and mathematicians select their favorite 
performances in terms of: (a) depth of the mathematical ideas; (b) creativity and imagination; 
and (c) quality of the performances. Gadanidis and Geiger (2010) have referred to this Festival as 
“one example that helps bring the mathematical ideas of students into public forums where it can 
be shared and critiqued and which then provides opportunity for the continued development of 
knowledge and understanding within a supportive community of learners” (p. 102). In this poster 
presentation, we highlight a case study to illustrate how Brazilian students created digital 
mathematical performances for the Festival. Based on the video recordings of students’ skit 
performances, activities in learning sessions, and interviews, we suggest mathematical 
performance can offer ways to: (a) disrupt students’ negative images and stereotypes of learning 
mathematics; (b) produce mathematical meanings and knowledge with creativity and 
imagination; and (c) share mathematics beyond classrooms. 
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Students can move between representations with the help of technology such as graphing 
calculators (NCTM, 2000). Using instructional strategies with handheld calculators provides 
dynamically linked representations and observation of immediate changes, which leads to deeper 
conceptual understanding. The relationship between the coefficients of a quadratic equation and 
its graph is a good illustration. Representational fluency is the ability to translate between 
representations as well as make meaningful interaction and generalizations between different 
representations (Zbiek, Heid, & Blume, 2007).  In the present study, we used representational 
fluency as the analytical framework to examine one teachers’ instructional practice. Through this 
analysis, we demonstrate how a teacher used the TI-NavigatorTM to help students’ developing 
representational fluency skills that facilitate the development of in-depth understanding of 
quadratic equations. 

We used four principles of effective mathematics instruction incorporating Classroom 
Connectivity Technology (CCT) (Pape et al., 2011) to analyze three videotaped teaching 
episodes. Additionally, we examined the teachers’ post-observation interviews and student focus 
group interviews using an inductive approach to explore the teacher’s instructional strategies. 
Findings revealed that the teacher used different instructional strategies and processes to provide 
a context in which students were supported to develop representational fluency including 
students working in groups to model a parabola in a real-world context by translating and 
transforming among verbal, symbolic, and graphical representations. In one lesson, students 
submitted group equations to match the curve of a necklace projected on a screen.  A whole-class 
discussion led to an examination of their responses and suggestions for changes to more closely 
match the curve. Representational fluency was developed as students made conjectures based on 
their prior knowledge, checked their conjectures by making changes to the equations, and were 
able to see the results of these changes immediately. We will focus on the classroom discourse 
that provided the students the opportunity to analyze the graphs and make generalizations about 
the impact of changing each of the coefficients in the quadratic equations on the parabola. We 
argue that this discourse resulted in active student engagement.  
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Research has found that the mathematical thinking that students do while engaging with 
instructional tasks has important consequences for student learning (Stein and Lane, 1996), but 
few studies have examined how technology influences students’ mathematical thinking in 
general.  This study investigates the role of digital cognitive technologies in supporting students’ 
mathematical thinking while engaging with classroom instructional tasks.  Data was collected in 
three secondary and one middle school mathematics classrooms via classroom observations, 
collection of student work, and post-lesson teacher interviews.  The Mathematical Tasks 
Framework (Stein, Smith, Henningsen, & Silver, 2009) is employed to evaluate the opportunities 
for mathematical thinking present in the mathematical tasks chosen by these teachers, and how 
those opportunities were realized or not during implementation.  The use of technology was 
coded with respect to whether it served to amplify students’ thinking by making students’ work 
more efficient or accurate without changing the nature of the task, or whether it was used to 
reorganize students’ thinking by shifting their cognitive focus (Pea, 1987).  Results suggest a 
general association of the level of cognitive demand of a task with the way in which technology 
is used.  When technology is used as an amplifier, it generally has no influence on or relationship 
with the cognitive demand of the task. On the other hand, teachers generally used technology as 
a reorganizer to set up high level tasks, but three of the four teachers failed to maintain the high 
level demand during implementation on a consistent basis.  The role of technology in the decline 
or maintenance of high level thinking during implementation is discussed.  In particular, the 
Vygotskian notion of tool use, and the process of instrumental genesis (Drijvers & Trouche, 
2008) by which students construct meaning for and with tools, is used to explain the results.  I 
hypothesize that students’ ability to use technology as a reorganizer while engaging in high level 
mathematical tasks is related to a trajectory of instrumental genesis.  
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Representatives from five quasi-experimental projects using professional development 
approaches for K-6 teachers modeled after those of the Cognitively Guided Instruction 
project and the Early Algebra project will compare the features of their professional 
development designs. Teacher assessment and student achievement data will promote a 
discussion of the challenges of documenting the impact of professional development. 

When Wayne, Yoon, Zhu, Cronen & Garet (2008) advocated experiments and quasi-
experiments as fruitful designs to explore which specific features of professional development 
matter and what happens to a PD program when implemented across a range of settings by a 
variety of trainers. Our discussion group will include representatives from five quasi-
experimental PD projects focusing on helping elementary school teachers reform their 
mathematics teaching practices. Our discussion of our PD and our data should provide some of 
the specificity that Wayne et al. proposed was necessary to guide PD design. All of the projects 
include a focus on children’s mathematical thinking approaches similar to that of the Cognitively 
Guided Instruction (CGI) project (Carpenter, Fennema, Peterson, Chiang & Loef, 1989) and its 
sequel, the Early Algebra Project (Jacobs, Franke, Carpenter, Levi & Battey, 2007). All five 
projects, funded by the Improving Teacher Quality program under the auspices of the California 
Post Secondary Education Commission, span three years of intensive work with teachers and 
reflect the best practices identified by Darling-Hammond and Richardson (2009). Foundational 
to each project is the idea that children have the capacity to develop their own strategies. While 
this idea comes from extensive research, teachers tend to question whether the students in their 
classrooms are capable of this. In our discussion group, we will explore similarities and 
differences among the five projects to determine how each facilitates teachers’ learning about 
students’ mathematical thinking and how each project helps teachers’ come to believe that these 
ideas pertain to their students. 

While descriptive accounts in the literature attest to the success of CGI oriented professional 
development (PD) in a variety of settings (see for example, Franke & Kazemi, 2001), these have 
been limited to what Wayne and his colleagues (2008) called efficacy trials, in which the 
developers of the PD are directly involved with its implementation with teachers. In existing 
mathematics education literature we were not able to find effectiveness trials that document the 
success of CGI approaches “when delivered in typical settings by those not involved in the 
development of the program (Wayne et al, p. 470).” Three of our projects claim to implement 
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CGI with K-2 teachers, and vary in the degree to which PD providers are affiliated with the CGI 
project designers. In one case, the project director worked as a graduate student researcher on the 
CGI project, in the second case the project director was an advisee of a former graduate student 
researcher on the CGI project and in the third case project leaders do not have direct connections 
to CGI developers. While each of these three settings was in some ways “typical” of California, 
they were distinct from one another and quite distinct from those of the original CGI project. An 
examination of teacher and student data from each of these three projects will allow us to explore 
the effectiveness of a CGI approach in CA at this point in time. 

We also plan to discuss the professional development design of each project to explore the 
ways in which each project addressed the recommendations prevalent in the research on PD. Ball 
and Cohen (1999) in making their case for practice based PD advocated the use of “records of 
practice” including student work, videotapes of student activity and curriculum activity. They 
alluded to the challenge of choosing which records to focus and pointed out that “the pull of the 
personal and the immediate in the case of one’s own classroom can mitigate against reflection, 
analysis, and investigation of alternative perspectives and courses of action. Moreover, the 
current norms of teacher interaction and discourse do not readily support the kinds of joint 
consideration of one another’s practice that would be useful. (p. 24).” They suggested that 
analyzing artifacts generated in a stranger’s classroom allows teachers to critique and generate 
questions that would be too awkward to raise about a peer’s classroom. On the other hand, 
analyzing artifacts generated from teachers’ own and their colleagues’ classrooms has an 
authenticity that contributes to the meaning and utility of the analysis. Kazemi and Hubbard 
(2008) noted that records of practice can be considered boundary objects that serve as a conduit 
between teachers’ classrooms and the PD. Each of our projects differed in the types of records of 
practice utilized and the origins of the record enabling us to explore Kazemi and Hubbard’s 
question “Whose practice is represented in the PD context and with what kinds of records? (p. 
431)” 

Wayne, et al. (2008) noted research is needed to examine the assumption that PD is best when 
school-based. School or district-based PD might contribute to the creation of strong working 
relationships between teachers which breaks the isolation teachers often experience which tends 
to inhibit their growth (Darling-Hammond, Wei, Andree, Richardson & Orphanos, 2009). Our 
PD projects had three distinct contexts; two were school-based, one was based in a small district 
and the other two included many districts. This diversity of settings will allow us to examine the 
benefits and constraints of each of these contexts. 

All of the PD projects served teachers working in “under-performing” schools who faced 
pressures to use the state adopted textbook and to prepare their students for the state standardized 
tests. Some teachers had to adhere to administrative mandates including district benchmark 
assessments and pacing guides that they perceived limited their freedom to experiment with new 
instructional practices in their classrooms. Our differing contexts led each project to address 
these pressures differently and we will share our approaches and reflections on the success of our 
efforts. 

Each discussion session will include some brief presentations of data and artifacts from each 
project. We hope to spend the bulk of our time in discussion of the above issues. We hope that 
others who have conducted similar PD will join us to discuss ways in which we can establish the 
efficacy of our work through research and improve our practices. 
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The purpose of this working group is to identify ways in which teachers and students can use 
models of mathematical development productively as part of a formative assessment process. In 
the sessions, and starting from some existing “seed” examples, participants will identify different 
ways of representing, communicating, and using these models in formative assessment in the 
classroom, generate new examples, and draft a research agenda investigating the efficacy of 
these approaches. Follow-on activities include expanding, piloting, and evaluating the different 
approaches through collaborations among researchers and practitioners, and convening again to 
share and learn from our collective experiences. 

Background 
Formative Assessment 

Formative assessment is “a process used by teachers and students during instruction that 
provides feedback to adjust ongoing teaching and learning to improve students’ achievement of 
intended instructional outcomes.” (CCSSO, 2008). There is a large body of research linking the 
consistent and systematic use of formative assessment to improvements in student learning (Black 
& Wiliam, 1998, Brookhart, 2005, Nyquist, 2003). Wiliam (2004) stated that “in order for 
assessment to function formatively, it needs to identify where learners are in their learning, where 
they are going, and how to get there” (p.5). Most current work on formative assessment draws 
attention to both the teacher role and the student roles, emphasizing the importance of bringing 
students into the formative assessment process (Heritage, 2010). There is a small but developing 
body of research that suggests that within the process of formative assessment, teachers struggle 
particularly when it comes to determining  “how the get there” i.e. the next instructional steps 
they should take with their students based on the assessment evidence (Heritage, Kim, Vendlinski 
& Herman, 2008).  

Learning Progressions 
Heritage (2010) citing Black and Wiliam (1998) reminds us that one requirement of formative 

assessment “is a sound model of students’ progression in the learning of the subject matter, so 
that the criteria that guide the formative strategy can be matched to students’ trajectories of 
learning" (Black & Wiliam, 1998, p. 37). The notion is that in order for teachers and students to 
identify what the next learning goal should be, they need to be able to assess where a student 
currently is on a path of learning. The next step on the path is then a natural learning goal for that 
student. Progressions define a series of points or states of understanding as an ordered sequence. 
By knowing a students’ current state and the ordered sequence, teachers and students can target 
the next significant state of understanding that the student should move towards. While 
progressions can be used to determine the next state of understanding, they do not necessarily 
define what a student, with teacher support, needs to do to move into this next state of 
understanding, i.e. they define where to go, but not how to get there.  

Within mathematics, Daro, Mosher, and Corcoran (2011) state that the term learning 
trajectory is more commonly used in mathematics, and allows for the possibility that the a 
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trajectory includes the learning and teaching strategies that are needed for shifting students’ 
understanding to the next level.  

In our work on learning in mathematics, we have used the term model of mathematical 
development to make clear that the characterization of different levels of understanding is 
essentially a descriptive theory of the different states of understanding, and is predictive to the 
extent that the sequence of states captures common sequences of changes in understanding. We 
define a model of mathematical development as describing the major shifts in understanding that 
generally occur over medium to large time periods (typically months to years) as students grapple 
with mathematical knowledge. These shifts describe how a variety of types of knowledge (e.g. 
conceptual, procedural, contextual and metacognitive knowledge) change over time with respect 
to central ideas of the domain as students’ competency improves due to learning within the 
domain and related domains, as well as more general cognitive development. Developmental 
stages can include shifts in view and belief, as in the shift from an understanding of the equal sign 
as a “calculate something” sign to an understanding of the equal sign as a truth-value statement of 
equality or balance between two mathematical quantities or objects. Developmental stages also 
can include increases in generality, integration, and robustness of existing knowledge, as in 
increases in procedural or representational fluency (Harris & Bauer, 2009).  

Two progressions are included in table 1 and table 2. In an in-progress literature review, the 
authors identified 18 mathematics concepts that have associated candidate models of 
mathematical development (Bauer, Graf, Harris, Haberstroh, Attali, Wylie, and Leusner, in 
preparation). The first example, a model characterizing different understandings of central 
tendency is drawn from Watson and Moritz (1999), and Callingham and Watson (2003). Their 
proposed a theory of development for the concept of average and measures of central tendency 
(median and mode) is based upon the SOLO taxonomy Biggs and Collis, 1991) which is a neo-
Piagetian framework for characterizing learning and development. The Watson and Moritz (1999) 
model focuses on how students develop an understanding of average as a measure of 
representativeness and draw conclusions about a variety of types of data. Table 2 provides a 
description of each of the levels (excerpted from Watson and Moritz, 1999) and examples drawn  
from Callingham and Watson, 2003, and Watson and Moritz, 1999). 
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Table 1 
Central tendency developmental levels 

Level Description Example 
Preaverage (P) 

 
Students have no term for average, even in a 
colloquial sense. When asked to solve 
problems involving concepts of central 
tendency, they typically provide tautological 
responses or idiosyncratic stories about the 
context.  

To a question about the relation 
between average wage and median 
home price in Australia, an example 
response from a 9th grader at this level 
is “average means it is small and good 
for little families” (Watson & Moritz, 
1999, p. 27) 

Single 
Colloquial 
Usage for 
Average (U) 
 

Students use colloquial terms for average, 
such as normal or okay 
and sometimes refer to "add up" colloquially 
but not in a calculation sense. They do not 
have an understanding of how to calculate an 
average.  

Student use terms such as “same as 
others,” “okay,” “normal.” 
(Callingham & Watson, 2003, p. 31 
Avg 2.2) and refer to median of set of 
measures as “the most accurate value.” 
(Watson & Callingham, 2003, p. 40 
ME 13.1). 

Multiple 
Structures for 
Average (M) 
 

Students use at least one, often two or three 
ideas for the concept of central tendency 
including “most”, “middle”, and the add and 
divide algorithm for the mean to describe 
average in straightforward situations. 
However, they fail to consolidate multiple 
concepts meaningfully. They rarely use more 
than one of these ideas in complex questions. 
Students sometimes acknowledge conflict 
between incorrect calculations of mean and 
idea of mode.  

“mean is a lot of numbers added up and 
dived by how many numbers there 
were to start.” (Watson & Moritz, 
1999, p 28). 

Representation 
With Average 
(R) 

Students refer to add-and-divide algorithm for 
the mean to describe average in 
straightforward situations. They can 
distinguish between the concepts of mean and 
median. They are aware of the association of 
the decimal form with the algorithm for 
mean. Students express some ideas related to 
the representative nature of average (e.g., 
prediction, estimation, or representing whole 
data set) and refer to “most” to describe data 
distributions compatible with mean or offer 
mode as alternative average concept. They 
know the algorithm for the mean but do not 
successfully apply it in complex contexts 
without prompting;  

“not an average which would include 
all the extremes…out of 100 it would 
include 49.5 above it and 49.5 below 
it.” (Watson & Moritz, 1999, p. 28). 

 
A second example is provided in Table 2 which is a model of students’ understanding proposed by the authors of 

equations and expressions with respect to two underlying concepts: equality and variable. The table begins with a 
description, that we call level 1, that represents the most basic level of understanding of both of these concepts 
addressed by the table, and then proceeds through four more levels of understanding. At each 
level there is a description of how a student thinks about equality and also the notion of a 
variable, and by combining two understandings, a description of what that student would be able 
to do and not do at that level of understanding Before looking at the table, which combines both 
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idea, it is worth describing major conceptual changes in student understanding of equality and 
variable separately.  

For equality, the primary distinction that is made is between thinking operationally about 
equality and thinking relationally about equality (Kieran, 1981; Knuth, Stephens, McNeil, & 
Alibali, 2006). The operational thinker treats the equal sign as a signal to do something – add or 
subtract or whatever action was called for on the left hand side of the equation. This way of 
thinking likely arises from students seeing many more arithmetic problems in math written as 
5+3=__ compared to __=3+5 and often teachers will say “five plus three gives you what?” When 
a student begins to think relationally, he or she understands that the expression on the left hand 
side of the equation has the same value as the expression on the right hand side i.e. they are in 
balance. And furthermore, when a student understands relational equivalence, he or she will 
understand that equality in an equation is maintained provided you perform the same operation on 
both sides of an equation and will be able to judge equivalence in many cases without having to 
calculate values for each side of an equation by using techniques such an compensation and 
cancellation (Rittle-Johnson. Taylor, Matthews., & McEldoon, in press). 

For variable, an important distinction is between students thinking of a variable as 
representing a specific unknown, i.e. as a placeholder for one and only one number, and as a 
generalized number i.e. that a variable can take on many values and be part of more complex 
mathematical relations as in a linear function (Booth, 1984; Weinberg, Stephens, McNeil, Krill, 
Knuth, and Alibali, 2004). Prior to these two understandings, students may have one or more 
contextually dependent beliefs about variables such as an algebraic letter must be the same as the 
first letter of what it stands for (e.g. ‘b’ for brownies) (Küchemann, 1978; Booth, 1984).. The 
table below combines these understandings of equality and variable into five levels of 
understanding overall. 
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Table 2 
Equality and Variable: Equations and Expressions 

At level 1, students have a superficial understanding of the concept of variable that does not include the idea 
of variable representing an “unknown.” Instead, students may hold one or more beliefs about variable 
including, for example, that variables represent objects (e.g. that the variable “b” stands for “brownies” in a 
word problem because it starts with a b). Alternatively students may treat variables like individual digits of a 
number (if 2x=24, x must equal 4), they may ignore variables in an equation only operating on the numbers, 
or separate variables from numbers in an equation or expression. 

At this level students also have an operational sense of equal sign. Students with this type of understanding 
believe that the equal sign is a signal that indicates that there is s problem to be solved or computation 
expressed on the left of the equal sign and that the answer should be placed to the right of the equal sign. 

Given these understandings of equality and variable, students should have trouble solving word problems, 
even with informal methods, algebra solving follows misconceptions as described in model of equality. 
At level 2 students still have an operational understanding of equality as in level 1 above. Their 
understanding of variable is different. Students have an understanding of variable as a “specific unknown” in 
which letters stand for one and only one number. For example, at this level if asked “in the expression 2n+3, 
can the variable n stand for the number 4?” the, student will say yes and but, then if asked if the variable n 
can stand for 37 they will say “no. 

Students can apply informal methods to solve simple algebraic word problems, but will continue to display 
misconceptions when attempting to solve symbolic equations. Students can attempt to solve equations using 
guess and check strategy and other approaches that do not involve substantial symbolic manipulation 
At level 3, students have “specific unknown” level concept of variable as in level 2. What’s different is their 
understanding of equality. They have a more sophisticated understanding of the equal sign as expressing that 
the quantity to the left of the equal sign has the same value or is in balance with the quantity expressed on the 
right of the equal sign (described sometimes as a relational understanding of equality). They also know some 
simple procedures for algebraic manipulation. 

Students can solve problems with one variable represented in text symbolically using algebraic manipulation. 
Because students have few ways of understanding algebraic expressions and equations, they may apply less 
efficient methods to solve equations. Expressions are only understood correctly if they can take on a single 
numerical value (i.e., consistent with students’ understanding of variable as specific unknown).  
At level 4, students’ understanding of equality is richer than in level 3. They understand relational 
equivalence in most contexts (meaning that they not only understand that both sides of an equation are 
equivalent, but they also understand that performing the same operation to both sides of the equation 
maintains the equivalence) and can readily use transformations to balance equations to solve for an unknown. 
Students still have the same understanding of variable as in level 3 i.e. the “specific unknown” level concept 
of variable. 

Students do not yet have a “generalized number” concept but because of relational equivalence they can 
solve many equations with one unknown algebraically  
At level 5, students have “generalized number” level concept of variable, in which a variable can function as 
a pattern generalizer for arithmetic, as in the statement a + b = b + a, or can express relations among sets of 
numbers as parameters and arguments as in the linear equation x = mx + b. Students have the same 
understanding of equality as in level 4, i.e. they understand relational equivalence and can readily use 
transformations to balance equations to solve for an unknown. 

Students can solve symbolic equations, parsing expressions to flexibly apply operations on to solve equations 
efficiently. 

 
There is substantial research and development still needed to understand the characteristics of 

effective and practical formative assessment. Additional research is needed also in identifying, 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

2003



 

 

describing, and evaluating models of mathematical development. In this working group, in order 
to help advance both fields, we will explore the mutual constraints that these two areas provide. 
We believe answers to a variety of useful questions can be developed by making explicit 
constraints that models of mathematical development provide to the field of formative 
assessment, and the constraints that formative assessment can provide to the creation of models of 
mathematical development. To make this idea clearer, the aims and plans of the working group 
are described next. 

 
Aims of the Working Group 

Models of mathematical development are central to formative assessment. They provide 
testable theories of how student understanding changes in light of instruction and time. They are 
needed to define gaps between students’ current understanding and learning goals in a way that 
makes closing the gap feasible. If the gap between two states of understanding has been 
empirically validated, is present within the population of learners, and many students have moved 
from one state to the other in the past, teachers and students should be confident that this unit of 
learning is feasible. There has been research on the feasibility of developing interim and 
summative assessments to collect evidence and make statistically valid inferences about student 
levels within models (Watson and Callingham, 2005; Weaver and Junker, 2004; Wilson, 2008). 
There has been less work on how best to represent models for use by teachers and students, (but 
see Lesh, Lamon, Gong, & Post, 1993; Wilson, 2005; Watson and Callingham, 2005). Still less is 
known about how to use models of mathematical development in the service of deciding on next 
instructional steps to be taken by teachers and students (Heritage, Kim, Vendlinski & Herman, 
2008).  

Wiggins (1998) provides an example of formative assessment within a welding classroom. In 
the example, students are learning to weld a ninety degree corner joint. When students think they 
have completed the weld to industry standards, they compare their welded corner joint to a set of 
joints to determine to which joint theirs matches best. The joints are ordered in terms of quality 
and each has specific characteristics relevant  to beginning welders In doing this comparison, 
students are a) assessing at what level they are performing b) determining their next learning 
goals, and most importantly c) understanding what specific next things they need to do to 
improve. In other words, a student can consider his or her next instructional steps by, for example, 
realizing that on the next joint he or she works on, the two pieces to be joined must be more 
precisely positioned, or that gaps need to be filled, or bubbles removed. In this example, the 
connections from student performances to level of competency and next instructional step are 
transparent. Teachers and students can compare student performance to benchmark performances 
and determine what they need to do next. 

Unfortunately, this sequence of inferences is not so transparent in mathematics learning. How 
does the Wiggins welding example translate to a mathematics context, when it is not skill in a 
directly observable work product that is evolving and improving, but rather knowledge and 
understanding around abstract concepts such as the meaning of “average” or “variable”? While 
there has been some work in this area (e.g. Forster and Masters’ work on the Developmental 
Assessment Resource for Teachers (DART) (2004), much still needs to be learned. How can 
models of mathematical development be structured to best support formative assessment? Is a 
linear sequence of levels an adequate model to characterize student understanding to inform 
formative assessment? Are there circumstances in which model in the form of a network of states 
of understanding could provide greater value? Is a model in the form of a set of understandings 
better in some circumstances? What other structures are possible and advisable? How can models 
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of mathematical development be represented and presented to make learning goals and 
instructional approaches as transparent as possible to teachers and students? What additional 
information will be helpful to provide? The aim of this working group is to begin to develop 
answers to these questions.  
 

Plan for the Sessions 
The sessions will focus on three work products 1) a list of different ways of representing 

models of mathematical development with examples that might be especially useful to teachers 
and students 2) descriptions of the use of these representations in making next instructional 
choices or adjustments transparent along with descriptions any additional materials and 3) a 
research agenda for expanding, piloting, and evaluating the use of different representations of 
models of mathematical development in formative assessment along with specific work 
individuals or groups will be doing in the coming year with respect to this agenda.  

In session 1, the organizers will present the aims of the group and the session, provide some 
examples of models of mathematical development, a common definition and explanation of 
formative assessment, example tasks, and a video of the use of one model to support formative 
assessment as part of a classroom discussion. The bulk of the session will be a facilitated 
brainstorming session on different structures and representations of models for use in formative 
assessment. One area of interest to the organizers is how to include students (following from the 
welding example) in the use of the models of development. Much of the writing around formative 
assessment has emphasized not just the teacher role in the process, but the centrality of students to 
the process. Given that models of development may span several years of student development, 
there are questions about when it is appropriate to be explicit about the developmental model, and 
how a model can be of most value to students. 

In session 2, the working group will select a set of the representations and break into small 
groups to flesh out examples of their use with respect to specific models of mathematical 
development. In the later portion of this session, the working group will reconvene to discuss and 
contrast the examples and potential value of the different representations. 

In session 3, the working group will identify research questions and associated approaches 
and activities for addressing them based upon the work in sessions 1 and 2. Participants will 
discuss their interest and willingness in engaging in continued research collaborations to address 
these questions and sketch out next steps for the working group. 

 
Follow-On Activities 

Throughout the year, participants may explore the use of the representations of models and 
ideas for use in formative assessment in their research or in their practice. It is the hope of the 
organizers that early pre-proposal explorations are carried out. And one or more research 
proposals may be generated. The work will also inform an aspect of an existing grant on which 
the organizers are working. The organizers are currently working with a group of approximately 
15 middle school teachers, and will have opportunities to pilot some of the emerging ideas from 
this working group session and will provide feedback to the working group participants on their 
ideas. The intent is to reconvene at the next PME-NA to share experiences on specific 
collaborations that developed, to discuss progress on aspects of the work, and to plan and focus 
continued efforts in this area. 
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 1 The elements of teaching: James M. Banner, Jr. and Harrold C. Cannon. 
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Training has never been a priority for teachers as it is for other activities for which society 
demands that someone must be trained to be able to practice. We can’t accept buying bread 
from a baker who never learned how to make bread, neither to be operated on by a surgeon 
who never knew how to operate, nor to accept a haircut from hairdresser who never learned to 
use scissors. Teaching has always been considered as natural, easy and possible without 
necessarily knowing what it is about. Some years ago, this idea changed, mainly because of 
the multiple results of education and psychological sciences that revalued teaching as an 
activity that can build the individual and showed further the deep consequences on the 
individual practice, thinking, working, and all facets of his life. As a result, training teachers 
of schools (all primary schools and some high schools) became a necessity in many countries. 
However, training university teachers remains an exception so far in many parts of the world 
if not all over the world. Aren’t we committing, again, the same mistake by considering that 
university teaching is easy and automatic? 
 
1. The teacher-student relationship 

Beyond the socioprofessional obstacles which cause students to fail in mathematics, there 
exist the psychological impacts related to the failure in mathematics which can create a 
negative behaviour against this science. You can find many individuals who have graduated 
in other fields, who could succeed easily in mathematics, but who have kept the fear and the 
uncomfortable feeling about mathematics from their early school years. Many of these 
negative beliefs are closely related to the teacher behaviour. 
If we do define exactly the teacher’s role in the teaching process, it’s clear that this latter is 
very important and even decisive. In addition to being the knowledge transmitter, the teacher 
is a very important element in the whole system besides curricula, students, knowledge, 
books, teaching methods ... The teacher’s impact on the learner is very strong. Everyone 
remembers at least one of his teachers and carries certainly with him many memories related 
to the science and the learning process and many other good or bad details. In fact we learn 
from a teacher a lot of other things than science. 
Many studies show that students identify the science to the teacher, which is very dangerous. 
Most of teachers aren’t aware enough of this question; they don’t realize how every move, 
every side of their personality, and every thought shapes the science for the student. Many 
students chose to study mathematics because they had teachers who could make them like it, 
however many decided to never study it after having teachers who were not able to show 
them what mathematics is besides many complicated and weird formulas. As a result, we 
receive many students at the universities believing strongly that mathematics is a senseless 
science full of abstract notions that have no existence in reality. They need time and 
especially teachers who have to focus on those wrong ideas to change and correct them; 
otherwise those students will never learn how to write proofs and how to understand 
mathematics. But it can happen, if these students are unlucky, that they never get such 
teachers and continue to learn mathematics blindly as a set of nonsense notions. 
As the university is the last school, if the wrong beliefs are not corrected there, they can be 
kept a long time later or forever. 

The Relation Evolution 
The teacher-student relationship began with a traditional model presenting the teacher as the 
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knowledge source who transmits it to the students and assesses them at the end. This relation 
was qualified as unidimensional, vertical or descending. Later, this traditional model changed 
because many elements came out, such as: 
• The importance of environment made us aware that all is related. Individuals understood 

that knowledge is not only some written information in some books but it’s more focused 
in the real world and in our daily real life with our health, relationships, thoughts, eating 
habits, childrising, economic issues, and many other fields. 

 The group phenomena focused on leaning and working in groups, in order to serve many 
students better than learning only with the teacher. Group learning became a part of the 
learning process. 

 The different interactions with others sciences, with the society and with the media make 
learning became a continuous process and information can be found elsewhere than with 
the teacher. 

 The knowledge conception changed from being a special activity among special people to 
a normal and a daily activity to anybody. Everyone can learn anything at any time of his 
life. 

 C competency took more and more space beside the knowledge; we value more someone 
competent than someone highly educated with no competency. Knowledge became more 
realistic and applicable than before. 

 Evaluation changed as competency was taken more into consideration. So, we evaluate 
more the individual’s competency than their ability to get or memorize information. 

 The learner ’s role changed from being the center of the teaching-learning process to be the 
principal actor in it. 

So, a new model has been created. It’s a modern one, by which the student-teacher 
relationship is different. A data bank exists somewhere outside of the teacher. Both teachers 
and students have access to it. They collaborate together so that the student transforms the 
information to knowledge. The student becomes more independent and handles his learning 
and training himself. 
As a result, the relationship is multidimensional: 
 Ascending and interactive: from the student to the teacher. 
 Transversal and interactive: between the students. 
 Multiform and interactive: the student with the whole environment. 
This brought the teaching-learning process to be a dual, and a face-to-face meeting for both 
teachers and students who share continuously the role of teaching and learning at the same 
time. The teaching process focuses more in integration into the reality, professional actions of 
comprehension and the understanding of oneself. The result of the pedagogic action is no 
more in the objects (knowledge) but in building a person made by a complex set of 
competencies (cognitive, psychological, social, ...). 

Difficulties of the Relationship 
This teacher-student relationship, even with strong action, has many problems to manage in 

order to reach the goals. 
 Sharing the power or not. 
 Managing the great individual diversity. 
 Dealing with delicate individuals. 
 Managing the age difference between the teacher and the students. 
 The teacher personality. 
 Managing time. 
 Labeling teachers. 
 The big humain investment. 
Beginning with new students especially in the first year at the university is not easy; the teacher 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

2009



 

should create above all a confident climate in which he will work on their complex against 
mathematics, correct and better interpret their wrong beliefs. He should also show that he’s 
not the student’s enemy; this complex, long lasting with the students, must disappear to revalue 
the teacher as a guider and a saver. 

A big part of the learning-teaching process rests on the mistake. How to present it, how to 
use it and how to deal with it has been the subject of much research. It has also been an 
obstacle for many teachers and many students. The fear and the uncomfortable feeling 
about the mistake can lead both students and teachers to bad results. It’s more present with 
teachers than with students, so many questions come up. Is it possible to learn without 
making mistakes? Do we have to avoid mistakes or correct them? Many students have long 
thought that writing a problem solution comes directly without review by correcting or adjusting 
some points and some steps; this comes from observation of teachers who have been writing 
the solution directly. Many teachers also thought that making mistakes at the blackboard when 
making some calculations would ruin their image and their career in front of their students 
and so become hostile to a student who notices spontaneously a small mistake of a sign or 
whatever hidden somewhere. 

Another point, not of less importance, is the dialogue between the students and the teacher. 
A teacher talking to his students and listening to them would understand better their 
difficulties and the origin of their weaknesses. Most of the time, we think that we found the 
method that works, but the same teaching method can give different results with different kind of 
students. The teacher should ask and talk to his students to see how it works with them. 
Many students hate a teacher that always points out their failures. They need encouragement 
very often even for the least they do. It’s important to a teacher to know that learning is one of 
the most difficult processes that an individual can undertake. Particularly learning 
mathematics is often far from simple and delightful. Encouragement will prove to the students 
again and again how wrong are their prejudices about learning mathematics such as: 
mathematics is just possible for geniuses, or solutions must be accepted and not understood, 
or students will never be able to find solutions unless they become teachers. 

Believing in students’ abilities has always been a strong stimulation to their desire to learn 
and we need to keep in mind that a student who believes that he or she is bad, will be bad 
even if it’s not true. Even adults need someone to encourage them and appreciate their efforts. 

 
A Study about the Student-Teacher Relationship 

The following quiz has been given to almost 250 students in different Algerian universities. It 
contains three questions about the teacher-student relationship and how students define good 
and bad teachers according to them. These questions were given to check if the good-bad 
teacher definition of students is the same, nearly the same or completely different from the 
definition held by the teachers. We were motivated by noticing that many experienced 
teachers with high degrees getting less appreciation from the students than some others with 
fewer degrees and much less experience. We also want to set a training teacher program in 
our university. With this study, we could know more about which fields should be focused on. 
We also wanted, throughout this questionnaire, to know what the new generation of students 
wants in their teachers. With time, everything has changed as the whole world changed, but 
how has the teacher role or status towards the students evolved? We wanted it mainly as an 
update for teachers. 
1. Who is a good teacher for you? 
2. Who is a bad teacher for you? 
3. What are your expectations of the student-teacher relationship? 

I need to remark before giving the results; first, they were beyond our expectations. 
Second, we got nearly the same results with the same percentages in different universities. One 
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of them welcomes students from all over the country, so we got the opinion of students from 
nearly all parts of Algeria. Third, the students gave some requests about point they felt 
necessary to be given even with no questions. 
The answers to the questions are given by decreasing percentage. The answers have been 
gathered by me under the same idea which is given as a title. The students’ exact words are 
given without any change. 
1. The answers to the first question about a good teacher. 
 Explains very well: goes slowly, repeats as many times as we ask, teaches without being 

boring, sure about his information, writes less and talks more, methodical, has simple 
ideas, spontaneous. 

 Answers to the students’ questions: even the silliest ones. 
 Close to the student: shows that he cares for him, listens to him, talks to him, guides him, 

corrects his mistakes, considers him as his son, puts himself in his place, pushes him to 
work even if he has a weak level and tries to understand why, encourages him especially 
when he has bad grades, trains him, prepares him for the future. 

 Modest and nice  : smiling, cool, kind, calm, doesn’t scare, doesn’t give complexes, doesn’t 
show that he is superior because he just has got more information than us, doesn’t yell, 
doesn’t became nervous. 

 Honest and sincere: doesn’t cheat and keeps his promises. 
∑ Deals with the students in the same way: treats the students equally even if they are at 

different levels, girls equally with boys, punishes those who do not work and rewards 
those who work hard. 

 Does his best so that the students succeed.  
 Masters the class and imposes silence.  
 Deals positively with students’ mistakes: without yelling, no hard feelings, no 

intimidation. 
 Has clear handwriting.  
 Likes his course and his work.  
 With a respectable physique.  
 Fights social problems: drugs, smoking, disrespectful clothing, and any undisciplined 

form. 
 Is an example for the students. 
These two answers came many times: 
 When we like the teacher, we inevitably like the course. 
 The teacher gives 50% of courage and wills to the student to succeed. 

2. The answers to the second question about a bad teacher. 
 Haughty: who gets the truth, considers himself as perfect, genius, crack. 
 Intimidates and disparages students: treats them as ignorants, of no value, silly, stupid, 

laughs at them, breaks them down, disheartens them, diminishes their dignity. 
 Becomes nervous: yells, sulks, angry, wicked, monster, bad, mocking, never laughs, 

blames for anything and nothing. 
 Doesn’t answer the students’ questions.  
 Imposes himself: doesn’t listen, stops students to talk, and imposes his idea even when it’s 

not the best one, not sure about himself, memorizes everything. 
 Fast: uses difficult words, skips the work, makes a lot of mistakes, just recites memorized 

information. 
 Doesn’t keep his promises.  
 Works only with some students: those who are good or those who are sit in the front rows. 
 Has no work method: works in a non ordered way, with confused ideas, muddle-headed, 

complicates even the simple things, wastes time, doesn’t prepare his courses, goes 
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frequently off topic. 
 Shows no interest to the students: considers them as objects, talks alone at the blackboard, 

comes just to write down without even looking at the students. 
 Doesn’t accept the criticism and doesn’t admit his faults and mistakes. 
 Refuses to adapt his course and method to the students’ level. 
 Considers the student as a genius, as a teacher like him. 
 Doesn’t stop writing: especially when he copies from a sheet that he never leaves. 
 Doesn’t stop talking about finishing the program and the course: doesn’t care about the 

students’ comprehension. 
 He’s not realistic: doesn’t understand the real students’ situation, pays attention to 

nothing. 
 Works for money: doesn’t like his work, fills the emptiness, makes the students work at 

his place. 
 Gives points to some students and not to others. 
 Doesn’t give zero to the student that has cheated on the exam. 
 Gives very difficult exams. 
 Smokes in the classroom. 
3. The answers to the third question about the student-teacher relationship. 
 Kinship, teachers as parents. 
 Fraternal relationship, as brothers and sisters. 
 Friendly relationship, as friends but without private life details. 
 Respect, exchange, communication, sincerity, reciprocity, familiar ambiance, love. 

Conclusion 
It’s very amazing to notice that nearly all the answers are not related to the 

scientific side. This is completely opposite to what we teachers do and think. Most of our 
efforts and thoughts are about preparing the course scientifically. We never pay attention to 
other sides; if it happens that we do, we always think that it’s not so important for the students. 
We might have some behaviour for years that students hate all that time. We also learned that the 
teacher behaviour comes first for the students and then the information and then knowledge 
side; however, teachers think that the opposite is true. 
Students consider that the pedagogic relationship is very important and can have a big 
influence on their learning, on their ability to make the necessary efforts and on their results. 
They expect their teachers to be competent not only in the scientific side, but also and 
particularly in the pedagogical side. They consider that the teacher is a guide, a parent, an 
idol. If we have to train teachers, we need to take this into consideration. 
The qualified university teacher has a price to pay, the consideration and the respect of the 
student-teacher relationship beyond any caprice in full discipline and dignity. In such 
perspective, it’s the one who gets power who should show maturity and make the first steps 
not to seduce more but to better understand and to reach evolution and improvement. 
2. Multiple reforms 

Algeria, like many other countries, has made many systemic reforms in many levels 
especially these last ten years. Many changes have been made in the high schools programs, in 
primary schools programs, and in the past five years, in the university programs. Difficulties 
of how to adapt the teaching styles to the new programs came up even for the most 
experienced teachers. All teachers became beginners after each reform. 
For instance, for this last university reform, changes were focused on reducing the scheduled 
time for each chapter and course; that is, if you are used to teaching some course in four 
sessions, then with the new program, you have to do the same but in only two sessions. How 
and in which way? 
The teacher has to decide which are the more important and the less important topics, about 
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the priorities, as when you deal for example with sequences, group theory or integrals. What 
are the sacrifices to make and at which level; what about the students learning? 
Administrators and politicians who supported this new reform have always directed 
teachers to teach the most important and in a light way and it’s up to the teachers to change 
their teaching method so that they can teach the same materials in less time than before. I asked 
almost fifty teachers two years after this reform about how they manage their time. Here are the 
questions and the teachers’ answers. 
The teachers were divided, according to their answers, into three sets when they were asked 
about how they manage their time with their courses: 
 Those who think that it’s easy and fast and even done with less effort than before. 

However, they guarantee nothing about the students’ learning as they don’t feel concerned 
about that now that the administrators do not stop controlling the program progress during 
the academic year. 

 Those who think that it’s impossible to realize and even ridiculous as it’s in opposition to 
the didactic contract about learning and teaching. 

 Those who are in between and seek so far the best way to deal with it. 
I need to define some notions at this point as our reform concerns mainly time. Didactic time, 

according to Chevallard and Mercier, is the cutting of a knowledge through a duration of time.  
For instance, if I teach differentiation, I need three courses, and I need to decide what to do in 
the first, the second and the third. However, if I have been given only two courses, I’ll decide 
again about the cutting and decide again what to put in the first and the second course. I may put 
the first and the second courses of the first time in the first course of the second time and teach 
the third course for the entirety at the second course. I may also decide to teach the two first 
courses in one and let only the last one for the second course. So, many options are offered, 
but it’s not easy to decide. What exactly do we base the decision on? That’s why this didactic 
time management is one of the difficulties in a teacher’s work both for beginner teachers and 
the most experienced ones every time that they are faced with new data. The problem is that 
this time is closely related to watch time and we have to manage both. It can happen that the 
watch time advances and didactic time doesn’t advance, for instance when some material 
takes more time than expected. So, the cutting through that period of time didn’t work or was 
not suitable. 
Many other questions came up after this reform, such as: 
 With a short time, what is can be the most important part in a mathematics course? 
 Is it definitions, or theorems and results? 
 What should we cut down? What about the proofs? 
 Is it possible to make a mathematics course without any proofs? 
 If not, which proofs can we cut down? 
I asked the same teachers as before how they make their courses with shorter time. I got two 
sets of answers. 
 Those who work in a horizontal way; they were the majority: they do: 
− almost all definitions, 
− some theorems and some results, 
− no proofs. 

 Those who work in a vertical way, they do: 
− some definitions, 
− the theorems and the results that correspond to the past definitions, 
− selected proofs. 

Other questions arise about the exercises that correspond to both methods and assessment for 
each one. But still we need necessarily time to be familiar with some notions and notations, let 
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some ideas mature, assimilate the material, learn how to write in mathematics, develop ideas 
 (try to make connections between them), ask and answer questions, take some distance 
backwards to see things clearly, and just to talk. 

 
Conclusion 

Time management and how to adapt any change to teaching style taking into 
consideration results of both student learning and mathematics teaching is not so easy, neither 
natural or automatic. Taking all the time where it’s necessary and going faster where it is 
necessary; that’s the dilemma in order to be efficient and to reach quality. 
3. Evaluation systems 

When talking about evaluation, we can’t consider any assessment method unless it’s 
faithful. That is, it gives as closely as possible the truth about the students’ level, the students’ 
efforts and the teachers’s teaching methods. Thirty years ago, the evaluation results in Algeria, in 
all levels, were not doubted by anyone. Society trusted completely that the results were 
translating true and real results. Nowadays, the least I can say about evaluation is that the 
situation is upset and all of society questions it. The worst is that we trust nobody and nothing. 
If your son gets a very high grade, you know that you can’t be so happy, just because you 
would not to be surprised that this same son will get a worse mark in the next exam or in other 
course. In the university, the most frequent situation is that almost all new university students 
(in the first year) come to the university with good and even very good results, but two to 
three months later, the first exam results show that almost all of them are bad. This situation 
also exists with every first exam in each year with newcomer students (in a higher level). 
Another frequent situation that is to be questioned is when many good students who worked hard 
for a long period get bad results in their exams. 
One of the evaluation definitions is (Stufflebeam, 1975) ‘assessing a student is measuring the 
distance which separates his acquisitions from the objectives set and followed by the teacher or 
the institution’. How is this definition realized with our students and our teaching method? 
It’s clear that evaluation is managed by many factors. The main question is how to choose and 
set priorities to realize a faithful evaluation. It’s important to know how to make an exam 
subject, how to set teaching objectives, how to adapt the programs to the given data, what is 
to be evaluated, how and which way, and who to manage time during an exam. In all exams in 
any field, (sport competitions, cooking tests, medicinal exams, driving exams,...) the 
candidates know the evaluation rules, the mistakes to be avoided and know mainly what is 
required to succeed. So, what about the students in mathematics exams, is it the same? 
According to what we read in our students’ exams, the answer is clearly no! 
According to a study made with the first year university students in Algeria, many principal 
factors were revealed to be directly related to the students exams results, I just give them 
without any comment to not make the paper longer than it should be. 
 The students’ comprehension is most of the time wrong before the exams; they correct 

most of their notions after the exams, but late after paying that by bad grades. The 
preparation for the exams reveals this important point, or how do we prepare the students 
for the exams? 

 Writing style in mathematics can be a cause of failure even with a student who masters 
his results or at least thinks he is doing so. We all know that in a mathematical formal 
sentence, switching the existential quantificator with the universal one gives two different 
meanings. So, how do we teach our students to write and to read formal sentences, in 
which level, and do we pay attention to the writing details? 

 The grading scale or method. Students generally do not know about the teacher’s grading 
scale. It becomes worse when teachers have all different methods. For instance, a teacher 
may consider an exercise half correct if the method is correct with a calculation mistake, 
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but another one may consider it entirely false. For an integral with two parts, a teacher may 
give half of the credit if one of the parts is correct whereas another one may give nothing 
considering it all false. 

 The mistake is the main element during the evaluation. But how is this element dealt with 
in the teaching and learning process; do we teach the students mistakes or do we avoid 
them making mistakes and then give them bad grades when they make them in their 
exams? It is a full dilemma for the students. 

 Time management takes a large part during the examination. A slow student can correctly 
solve two exercises out of four and get the same score as another one who gets only the 
simple questions in all the exercises. A frequent situation is to have students who didn’t 
get enough exercises and so not enough practice before the exam. On the exam day, they 
are still slow and can not solve all the questions. 

 The psychological side of the students is also not less important in this matter. We get 
different results with the same exam given to encouraged students and discouraged ones. 
And with students treated with hostility and stress versus other students treated with 
confidence. 

Conclusion 
Assessment is itself a science. Many factors need to be managed and to be taken into 

consideration. But the most difficult question remains how to adopt an evaluation which can 
give true results. Without that, we can never progress, at least not in any good way. How can 
we strengthen the link so that we teach to evaluate and evaluate to teach? 
4.  Mathematics education research 

We can not teach mathematics without being in touch with what’s happening in mathematics 
education. Research is dealing with almost all sides and all fields of teaching and learning 
mathematics. The multiple studies and the multiple experiences can serve any teacher. When 
dealing with, for instance, a course about limits, or a course on rings, you can find many 
possibilities with good and bad sides for each: you can work on the right examples and avoid 
the bad ones and choose the right exercises and avoid the wrong ones to reach some 
objectives and so on. This can make the teaching and the learning process progress. When you 
find the same mistakes with the same level in many studies, you gain confidence and learn to 
question and so you progress. Mathematics education research can reveal many secrets, solve 
many problem situations and explain many difficult enigmas. Nowadays, simply, a training in 
mathematics education for any teacher is a necessity. 
5.  What about the principles of the teaching mission? 

If you ask many teachers about the definition of teaching, you will get as many definitions 
as people you ask. Isn’t that weird? I wondered one day, when I noticed that we teachers all 
teach in different ways. You’ll say that’s a good and not a bad thing; it may be a richness. I 
would agree if our all different ways were not opposite. The students learn different and 
opposite principles with their teachers at different levels. 
A student can be asked for a long time to accept all the results and one day, he will be asked 
to prove all the results. He can be told all the time to not ask questions and with some teacher, 
he’ll be asked to ask all the questions, if he doesn’t, he’ll find some of those questions in the 
exam. He can never know, for a long time, what mathematical comprehension is and one day 
he will be asked all the time ‘did you understand’ without knowing how to answer this 
question; if it is yes, almost or no as he didn’t learn how and what to understand. 
How is it that we are all different teachers? Shouldn’t we have common points that students 
know for sure that they must exist with every teacher? In a bestseller that I read 1, the writers 
who consider that teaching is not only a science but rather an art, redefined teaching by the 
most important elements that should exist with any teacher dealing with any science, giving 
fruit to a long experience and a deep study. I’m glad to cite them here to revalue the teacher 
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and to destroy the bad image that has been formed these last years especially about the 
university teacher as ‘someone who is able to write and to read what’s written at the 
blackboard’. 
Nine principles have been associated to a teacher to accomplish his noble mission: 
1. learning before teaching, 
2. authority, 
3. ethics, 
4. order, 
5. imagination, 
6. compassion, 
7. patience, 
8. character, 
9.  pleasure. 

Conclusion 
I’ll conclude with some quotes from the cited book. 
‘It’s much easier to talk or write about teaching than it is actually to teach. The aspects of 

teaching that we examined in this book are ideals –ends always to be sought if only rarely 
gained, their pursuit one of life’s most difficult tasks. Those who have never taught probably 
cannot fully imagine the demands on energy, patience, and will imposed by classroom work 
It’s exacting labor, often lacking clear and tangible results and requiring teachers to begin all 
over again what they have already tried to do; and it has been made more demanding today 
by trying social conditions that all too frequently challenge teachers and their students.’ 
‘Teaching is also the gift of one person to another. It is a compassionate extension of self in 

acknowledgment of the needs and aspirations of someone else, usually but not always 
younger than we are and always, for a time at least, depending on us for some kind of 
knowledge. In that gift of self consists teaching’s greatest satisfaction –the giving not so 
much of knowledge, which each person must acquire, as of habits of mind and heart and 
powers of thought.’ 
Universities need not only trained teachers, but teachers who challenge the continuous change 

of the world. We need to prepare and to offer to any society professional citizens, balanced, 
mastering perfectly their work and knowledge, and ready to give more and better, especially 
citizens who can handle again and again the permanent challenge of life. 
 

Endnote 
1 The elements of teaching: James M. Banner, Jr. and Harrold C. Cannon. 
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The purpose of this working group is to identify ways in which teachers and students can use 
models of mathematical development productively as part of a formative assessment process. 
In the sessions, and starting from some existing “seed” examples, participants will identify 
different ways of representing, communicating, and using these models in formative 
assessment in the classroom, generate new examples, and draft a research agenda 
investigating the efficacy of these approaches. Follow-on activities include expanding, 
piloting, and evaluating the different approaches through collaborations among researchers 
and practitioners, and convening again to share and learn from our collective experiences. 

Background 
Formative Assessment 

Formative assessment is “a process used by teachers and students during instruction that 
provides feedback to adjust ongoing teaching and learning to improve students’ achievement 
of intended instructional outcomes.” (CCSSO, 2008). There is a large body of research 
linking the consistent and systematic use of formative assessment to improvements in student 
learning (Black & Wiliam, 1998, Brookhart, 2005, Nyquist, 2003). Wiliam (2004) stated that 
“in order for assessment to function formatively, it needs to identify where learners are in 
their learning, where they are going, and how to get there” (p.5). Most current work on 
formative assessment draws attention to both the teacher role and the student roles, 
emphasizing the importance of bringing students into the formative assessment process 
(Heritage, 2010). There is a small but developing body of research that suggests that within 
the process of formative assessment, teachers struggle particularly when it comes to 
determining  “how the get there” i.e. the next instructional steps they should take with their 
students based on the assessment evidence (Heritage, Kim, Vendlinski & Herman, 2008).  

Learning Progressions 
Heritage (2010) citing Black and Wiliam (1998) reminds us that one requirement of 

formative assessment “is a sound model of students’ progression in the learning of the subject 
matter, so that the criteria that guide the formative strategy can be matched to students’ 
trajectories of learning" (Black & Wiliam, 1998, p. 37). The notion is that in order for 
teachers and students to identify what the next learning goal should be, they need to be able 
to assess where a student currently is on a path of learning. The next step on the path is then a 
natural learning goal for that student. Progressions define a series of points or states of 
understanding as an ordered sequence. By knowing a students’ current state and the ordered 
sequence, teachers and students can target the next significant state of understanding that the 
student should move towards. While progressions can be used to determine the next state of 
understanding, they do not necessarily define what a student, with teacher support, needs to 
do to move into this next state of understanding, i.e. they define where to go, but not how to 
get there.  

Within mathematics, Daro, Mosher, and Corcoran (2011) state that the term learning 
trajectory is more commonly used in mathematics, and allows for the possibility that the a 
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trajectory includes the learning and teaching strategies that are needed for shifting students’ 
understanding to the next level.  

In our work on learning in mathematics, we have used the term model of mathematical 
development to make clear that the characterization of different levels of understanding is 
essentially a descriptive theory of the different states of understanding, and is predictive to 
the extent that the sequence of states captures common sequences of changes in 
understanding. We define a model of mathematical development as describing the major 
shifts in understanding that generally occur over medium to large time periods (typically 
months to years) as students grapple with mathematical knowledge. These shifts describe 
how a variety of types of knowledge (e.g. conceptual, procedural, contextual and 
metacognitive knowledge) change over time with respect to central ideas of the domain as 
students’ competency improves due to learning within the domain and related domains, as 
well as more general cognitive development. Developmental stages can include shifts in view 
and belief, as in the shift from an understanding of the equal sign as a “calculate something” 
sign to an understanding of the equal sign as a truth-value statement of equality or balance 
between two mathematical quantities or objects. Developmental stages also can include 
increases in generality, integration, and robustness of existing knowledge, as in increases in 
procedural or representational fluency (Harris & Bauer, 2009).  

Two progressions are included in table 1 and table 2. In an in-progress literature review, 
the authors identified 18 mathematics concepts that have associated candidate models of 
mathematical development (Bauer, Graf, Harris, Haberstroh, Attali, Wylie, and Leusner, in 
preparation). The first example, a model characterizing different understandings of central 
tendency is drawn from Watson and Moritz (1999), and Callingham and Watson (2003). 
Their proposed a theory of development for the concept of average and measures of central 
tendency (median and mode) is based upon the SOLO taxonomy Biggs and Collis, 1991) 
which is a neo-Piagetian framework for characterizing learning and development. The 
Watson and Moritz (1999) model focuses on how students develop an understanding of 
average as a measure of representativeness and draw conclusions about a variety of types of 
data. Table 2 provides a description of each of the levels (excerpted from Watson and Moritz, 
1999) and examples drawn  from Callingham and Watson, 2003, and Watson and Moritz, 
1999). 
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Table 1 
Central tendency developmental levels 

Level Description Example 
Preaverage (P) 

 
Students have no term for average, even in a 
colloquial sense. When asked to solve 
problems involving concepts of central 
tendency, they typically provide tautological 
responses or idiosyncratic stories about the 
context.  

To a question about the relation 
between average wage and median 
home price in Australia, an 
example response from a 9th 
grader at this level is “average 
means it is small and good for 
little families” (Watson & Moritz, 
1999, p. 27) 

Single 
Colloquial 
Usage for 
Average (U) 
 

Students use colloquial terms for average, 
such as normal or okay 
and sometimes refer to "add up" colloquially 
but not in a calculation sense. They do not 
have an understanding of how to calculate an 
average.  

Student use terms such as “same 
as others,” “okay,” “normal.” 
(Callingham & Watson, 2003, p. 
31 Avg 2.2) and refer to median of 
set of measures as “the most 
accurate value.” (Watson & 
Callingham, 2003, p. 40 ME 13.1). 

Multiple 
Structures for 
Average (M) 
 

Students use at least one, often two or three 
ideas for the concept of central tendency 
including “most”, “middle”, and the add and 
divide algorithm for the mean to describe 
average in straightforward situations. 
However, they fail to consolidate multiple 
concepts meaningfully. They rarely use more 
than one of these ideas in complex questions. 
Students sometimes acknowledge conflict 
between incorrect calculations of mean and 
idea of mode.  

“mean is a lot of numbers added 
up and dived by how many 
numbers there were to start.” 
(Watson & Moritz, 1999, p 28). 

Representation 
With Average 
(R) 

Students refer to add-and-divide algorithm for 
the mean to describe average in 
straightforward situations. They can 
distinguish between the concepts of mean and 
median. They are aware of the association of 
the decimal form with the algorithm for 
mean. Students express some ideas related to 
the representative nature of average (e.g., 
prediction, estimation, or representing whole 
data set) and refer to “most” to describe data 
distributions compatible with mean or offer 
mode as alternative average concept. They 
know the algorithm for the mean but do not 
successfully apply it in complex contexts 
without prompting;  

“not an average which would 
include all the extremes…out of 
100 it would include 49.5 above it 
and 49.5 below it.” (Watson & 
Moritz, 1999, p. 28). 

 
A second example is provided in Table 2 which is a model of students’ understanding 

proposed by the authors of equations and expressions with respect to two underlying 
concepts: equality and variable. The table begins with a description, that we call level 1, that 
represents the most basic level of understanding of both of these concepts addressed by the 
table, and then proceeds through four more levels of understanding. At each level there is a 
description of how a student thinks about equality and also the notion of a variable, and by 
combining two understandings, a description of what that student would be able to do and not 
do at that level of understanding Before looking at the table, which combines both idea, it is 
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worth describing major conceptual changes in student understanding of equality and variable 
separately.  

For equality, the primary distinction that is made is between thinking operationally about 
equality and thinking relationally about equality (Kieran, 1981; Knuth, Stephens, McNeil, & 
Alibali, 2006). The operational thinker treats the equal sign as a signal to do something – add 
or subtract or whatever action was called for on the left hand side of the equation. This way 
of thinking likely arises from students seeing many more arithmetic problems in math written 
as 5+3=__ compared to __=3+5 and often teachers will say “five plus three gives you what?” 
When a student begins to think relationally, he or she understands that the expression on the 
left hand side of the equation has the same value as the expression on the right hand side i.e. 
they are in balance. And furthermore, when a student understands relational equivalence, he 
or she will understand that equality in an equation is maintained provided you perform the 
same operation on both sides of an equation and will be able to judge equivalence in many 
cases without having to calculate values for each side of an equation by using techniques 
such an compensation and cancellation (Rittle-Johnson. Taylor, Matthews., & McEldoon, in 
press). 

For variable, an important distinction is between students thinking of a variable as 
representing a specific unknown, i.e. as a placeholder for one and only one number, and as a 
generalized number i.e. that a variable can take on many values and be part of more complex 
mathematical relations as in a linear function (Booth, 1984; Weinberg, Stephens, McNeil, 
Krill, Knuth, and Alibali, 2004). Prior to these two understandings, students may have one or 
more contextually dependent beliefs about variables such as an algebraic letter must be the 
same as the first letter of what it stands for (e.g. ‘b’ for brownies) (Küchemann, 1978; Booth, 
1984).. The table below combines these understandings of equality and variable into five 
levels of understanding overall. 
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Table 2 
Equality and Variable: Equations and Expressions 

At level 1, students have a superficial understanding of the concept of variable that does not include the idea 
of variable representing an “unknown.” Instead, students may hold one or more beliefs about variable 
including, for example, that variables represent objects (e.g. that the variable “b” stands for “brownies” in a 
word problem because it starts with a b). Alternatively students may treat variables like individual digits of a 
number (if 2x=24, x must equal 4), they may ignore variables in an equation only operating on the numbers, 
or separate variables from numbers in an equation or expression. 

At this level students also have an operational sense of equal sign. Students with this type of understanding 
believe that the equal sign is a signal that indicates that there is s problem to be solved or computation 
expressed on the left of the equal sign and that the answer should be placed to the right of the equal sign. 

Given these understandings of equality and variable, students should have trouble solving word problems, 
even with informal methods, algebra solving follows misconceptions as described in model of equality. 
At level 2 students still have an operational understanding of equality as in level 1 above. Their 
understanding of variable is different. Students have an understanding of variable as a “specific unknown” in 
which letters stand for one and only one number. For example, at this level if asked “in the expression 2n+3, 
can the variable n stand for the number 4?” the, student will say yes and but, then if asked if the variable n 
can stand for 37 they will say “no. 

Students can apply informal methods to solve simple algebraic word problems, but will continue to display 
misconceptions when attempting to solve symbolic equations. Students can attempt to solve equations using 
guess and check strategy and other approaches that do not involve substantial symbolic manipulation 
At level 3, students have “specific unknown” level concept of variable as in level 2. What’s different is their 
understanding of equality. They have a more sophisticated understanding of the equal sign as expressing that 
the quantity to the left of the equal sign has the same value or is in balance with the quantity expressed on the 
right of the equal sign (described sometimes as a relational understanding of equality). They also know some 
simple procedures for algebraic manipulation. 

Students can solve problems with one variable represented in text symbolically using algebraic manipulation. 
Because students have few ways of understanding algebraic expressions and equations, they may apply less 
efficient methods to solve equations. Expressions are only understood correctly if they can take on a single 
numerical value (i.e., consistent with students’ understanding of variable as specific unknown).  
At level 4, students’ understanding of equality is richer than in level 3. They understand relational 
equivalence in most contexts (meaning that they not only understand that both sides of an equation are 
equivalent, but they also understand that performing the same operation to both sides of the equation 
maintains the equivalence) and can readily use transformations to balance equations to solve for an unknown. 
Students still have the same understanding of variable as in level 3 i.e. the “specific unknown” level concept 
of variable. 

Students do not yet have a “generalized number” concept but because of relational equivalence they can 
solve many equations with one unknown algebraically  
At level 5, students have “generalized number” level concept of variable, in which a variable can function as 
a pattern generalizer for arithmetic, as in the statement a + b = b + a, or can express relations among sets of 
numbers as parameters and arguments as in the linear equation x = mx + b. Students have the same 
understanding of equality as in level 4, i.e. they understand relational equivalence and can readily use 
transformations to balance equations to solve for an unknown. 

Students can solve symbolic equations, parsing expressions to flexibly apply operations on to solve equations 
efficiently. 

 
There is substantial research and development still needed to understand the 

characteristics of effective and practical formative assessment. Additional research is needed 
also in identifying, describing, and evaluating models of mathematical development. In this 
working group, in order to help advance both fields, we will explore the mutual constraints 
that these two areas provide. We believe answers to a variety of useful questions can be 
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developed by making explicit constraints that models of mathematical development provide 
to the field of formative assessment, and the constraints that formative assessment can 
provide to the creation of models of mathematical development. To make this idea clearer, 
the aims and plans of the working group are described next. 

 
Aims of the Working Group 

Models of mathematical development are central to formative assessment. They provide 
testable theories of how student understanding changes in light of instruction and time. They 
are needed to define gaps between students’ current understanding and learning goals in a 
way that makes closing the gap feasible. If the gap between two states of understanding has 
been empirically validated, is present within the population of learners, and many students 
have moved from one state to the other in the past, teachers and students should be confident 
that this unit of learning is feasible. There has been research on the feasibility of developing 
interim and summative assessments to collect evidence and make statistically valid inferences 
about student levels within models (Watson and Callingham, 2005; Weaver and Junker, 
2004; Wilson, 2008). There has been less work on how best to represent models for use by 
teachers and students, (but see Lesh, Lamon, Gong, & Post, 1993; Wilson, 2005; Watson and 
Callingham, 2005). Still less is known about how to use models of mathematical 
development in the service of deciding on next instructional steps to be taken by teachers and 
students (Heritage, Kim, Vendlinski & Herman, 2008).  

Wiggins (1998) provides an example of formative assessment within a welding 
classroom. In the example, students are learning to weld a ninety degree corner joint. When 
students think they have completed the weld to industry standards, they compare their welded 
corner joint to a set of joints to determine to which joint theirs matches best. The joints are 
ordered in terms of quality and each has specific characteristics relevant  to beginning 
welders In doing this comparison, students are a) assessing at what level they are performing 
b) determining their next learning goals, and most importantly c) understanding what specific 
next things they need to do to improve. In other words, a student can consider his or her next 
instructional steps by, for example, realizing that on the next joint he or she works on, the two 
pieces to be joined must be more precisely positioned, or that gaps need to be filled, or 
bubbles removed. In this example, the connections from student performances to level of 
competency and next instructional step are transparent. Teachers and students can compare 
student performance to benchmark performances and determine what they need to do next. 

Unfortunately, this sequence of inferences is not so transparent in mathematics learning. 
How does the Wiggins welding example translate to a mathematics context, when it is not 
skill in a directly observable work product that is evolving and improving, but rather 
knowledge and understanding around abstract concepts such as the meaning of “average” or 
“variable”? While there has been some work in this area (e.g. Forster and Masters’ work on 
the Developmental Assessment Resource for Teachers (DART) (2004), much still needs to be 
learned. How can models of mathematical development be structured to best support 
formative assessment? Is a linear sequence of levels an adequate model to characterize 
student understanding to inform formative assessment? Are there circumstances in which 
model in the form of a network of states of understanding could provide greater value? Is a 
model in the form of a set of understandings better in some circumstances? What other 
structures are possible and advisable? How can models of mathematical development be 
represented and presented to make learning goals and instructional approaches as transparent 
as possible to teachers and students? What additional information will be helpful to provide? 
The aim of this working group is to begin to develop answers to these questions.  
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Plan for the Sessions 
The sessions will focus on three work products 1) a list of different ways of representing 

models of mathematical development with examples that might be especially useful to 
teachers and students 2) descriptions of the use of these representations in making next 
instructional choices or adjustments transparent along with descriptions any additional 
materials and 3) a research agenda for expanding, piloting, and evaluating the use of different 
representations of models of mathematical development in formative assessment along with 
specific work individuals or groups will be doing in the coming year with respect to this 
agenda.  

In session 1, the organizers will present the aims of the group and the session, provide 
some examples of models of mathematical development, a common definition and 
explanation of formative assessment, example tasks, and a video of the use of one model to 
support formative assessment as part of a classroom discussion. The bulk of the session will 
be a facilitated brainstorming session on different structures and representations of models for 
use in formative assessment. One area of interest to the organizers is how to include students 
(following from the welding example) in the use of the models of development. Much of the 
writing around formative assessment has emphasized not just the teacher role in the process, 
but the centrality of students to the process. Given that models of development may span 
several years of student development, there are questions about when it is appropriate to be 
explicit about the developmental model, and how a model can be of most value to students. 

In session 2, the working group will select a set of the representations and break into 
small groups to flesh out examples of their use with respect to specific models of 
mathematical development. In the later portion of this session, the working group will 
reconvene to discuss and contrast the examples and potential value of the different 
representations. 

In session 3, the working group will identify research questions and associated 
approaches and activities for addressing them based upon the work in sessions 1 and 2. 
Participants will discuss their interest and willingness in engaging in continued research 
collaborations to address these questions and sketch out next steps for the working group. 

 
Follow-On Activities 

Throughout the year, participants may explore the use of the representations of models 
and ideas for use in formative assessment in their research or in their practice. It is the hope 
of the organizers that early pre-proposal explorations are carried out. And one or more 
research proposals may be generated. The work will also inform an aspect of an existing 
grant on which the organizers are working. The organizers are currently working with a 
group of approximately 15 middle school teachers, and will have opportunities to pilot some 
of the emerging ideas from this working group session and will provide feedback to the 
working group participants on their ideas. The intent is to reconvene at the next PME-NA to 
share experiences on specific collaborations that developed, to discuss progress on aspects of 
the work, and to plan and focus continued efforts in this area. 
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The Gender and Mathematics Working Group (GMWG) reconvenes this year at PME-NA to: 
discuss current work on gender at the national and international levels; examine feminist and 
gender study theories that inform our work; and connect gender and mathematics research findings 
to practice in schools and communities. Members share seven short summaries within topical 
subgroups to discuss theoretical frameworks, research questions, and results; and to make 
recommendations for further work. After sharing out results from the topical subgroups, the 
GMWG discusses future directions and makes plans for collaborations during the coming year. 
Collaborations include support in developing research agendas, collaborative writing, and 
pursuit of funding opportunities. The GMWG is open to any PME-NA members interested in issues 
of gender and mathematics; one does not have to have been a past participant. 

Introduction 
The Gender and Mathematics Working Group (GMWG) of PME-NA suspended its activity 

so that members and leadership could take the time to pursue agendas defined by the group. The 
GMWG members reconvened at PME-NA XXXIII to discuss current work done by GMWG 
participants and in the field at large and to organize additional work. In the paragraphs that 
follow we share a brief history of the working group, explain the emphases of this year’s 
meetings and how they relate to PME-NA goals, and outline our group’s agenda. 

Brief History of the Working Group 
The GMWG met annually at PME-NA from 1998 until 2007, except for the year of the joint 

meeting with the International Group for the Psychology of Mathematics Education in 2003. The 
work of the group began with reviews of gender and mathematics scholarship and an effort to 
identify absences in the research strands reviewed. Committing to an integration of our collective 
scholarship on gender and mathematics, we defined future directions for research and for the 
working group. An early result was a visual representation, a graphic, of our conception of the 
field of gender and mathematics, and the complexity of the elements with(in) which we work 
(Damarin & Erchick, 1999; Erchick, Condron & Appelbaum, 2000). 

After the first meeting of the GMWG, we continued to gather annually at each PME-NA 
meeting, sharing our scholarship on gender and mathematics, collectively and individually 
redefining our directions and purposes. We supported each other and sought feedback from the 
GMWG participants and the PME-NA membership at large. Forming peer groups of individuals 
with common interests and related research efforts, we reviewed, critiqued, and discussed our 
body of scholarship. It was the support of the individuals’ work that defined our group, as we 
mentored, critiqued, and collaborated with each other across the varied directions members
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pursued. This approach to our work exemplifies a way in which the group practiced a particular 
element of the scholarship connected to gender – agency. As agency became an emphasis of our 
group, it determined the most appropriate approach for us in our work together. 

At the 2004 PME-NA sessions in Toronto, the GMWG members began moving our work 
into new spaces. In these sessions we explored ways in which we can more deeply examine the 
relationship between gender and mathematics, with reflection upon international perspectives 
and critical theory, connected work in gender and technology, and critical perspectives on 
pervasive, recurring questions about the place for gender work in mathematics education 
(Erchick, Applebaum, Becker, & Damarin, 2004). At the 2005 PME-NA sessions in Roanoke, 
we discussed topics across the range of the scholarship of our members, and found a unifying 
framework emerging in our work. That framework was the role and development of social 
agency in women and girls’ experience as students, teachers, and researchers in mathematics 
education and led our way until we temporarily suspended our work together after 2007. 

Connection to PME-NA Goals 
The major goals of the International Group and the North American Chapter are: 
1. To promote international contacts and the exchange of scientific information in the 

psychology of mathematics education. 
2. To promote and stimulate interdisciplinary research in the aforesaid area, with the 

cooperation of psychologists, mathematicians and mathematics teachers. 
3. To further a deeper and better understanding of the psychological aspects of teaching and 

learning mathematics and the implications thereof. 
The first of these goals, involving international contacts and exchanges, was one of the areas 

for which our group had just begun to make gains. We intend through the 2011 meetings to 
reignite our international initiative with presentations in the sessions and efforts to extend and 
develop the international aspect of the work of this PME-NA group. The second and third goals 
are in part addressed by our GMWG goals to utilize the theory of feminist and gender studies in 
our research, to focus more of that research on teaching practice, and then to apply more of those 
findings to the classroom setting, at all levels. Both the second and third goals are also addressed 
in part by our third area of interest, the advancement of theory around concepts related to the 
study of gender and mathematics (e.g. voice, agency, epistemology), both for its broad 
theoretical advancement and for its application to teaching and learning. Finally, we encourage 
emergent agendas that arise within this work, especially those that support the goals of PME-NA. 

Plan for Active Engagement of Participants 
As has always been the case with the GMWG, the sessions we conduct this year are intended 

to be active with discussion, decision-making, and work activities. We remain committed to an 
initiative that depends upon participant voices for direction and support. In this year's sessions, 
we began with introductions and a very brief presentation of a multi-faceted framework to help 
inform directions in this year’s GMWG meetings. As participants discuss theory, research, and 
application to practice in the topical subgroups, we asked they consider the framework elements 
to help guide their work. The framework elements are: 

• Recent calls to incorporate additional perspectives such as queer theory, and to 
clarify the definition of gender (see more at Sexual Identity and Mathematics 
Education Research and Practice and The Importance of Defining “gender” below); 
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! Recent findings on international studies on gender and mathematics (see more at An 
International Survey of the General Public’s Views on Gender-related Issues and 
Mathematics Learning and International Perspectives on Gender and Mathematics 
Education below); and 

! Attention to the focus of research funding possibilities: Discussion of Gender in Science 
and Engineering program (GSE), Joanne Rossi Becker. 

The GSE programs seeks to develop the nation’s knowledge, social, and human capital aimed at 
broadening the participation of girls and young women in STEM education. The GSE program 
covers grades K-undergraduate education with particular attention to transition points in 
women’s educational experiences. The program also is broad enough to include research and 
diffusion activities that focus on men and boys underrepresented in STEM fields. 
The GSE program funds three types of projects: 
1) Research projects to investigate: 

i) Gender-based factors that affect the learning in STEM education and choices students 
make to choose STEM education and careers 

ii) Societal, formal and informal systems and how they interact with individuals to 
encourage or discourage interest and persistence in study or careers in STEM fields. 

2) Diffusion of research-based innovation projects to: 
i) Provide a mechanism to engage a wider audience of practitioners with research findings 

and strategies for changing educational practice relative to gender issues 
ii) Pilot, scale up or disseminate 

3) Extension services to create a cadre of agents who can inform and assist practitioners in 
adopting proven gender-inclusive policies and practices in pedagogy (train the trainer model). 

We encouraged interested members of the GMWG to consider collaboration and possible grant 
applications. Discussion supported generating questions for research, questions for diffusion, and 
models of extension services. 

These three themes (gender theory, international perspectives, and funding possibilities) cut 
across the discussion in the topical subgroups listed below. After the brief framework discussion, 
the group spent the rest of its time in day one and half of its time in day two working in the 
topical subgroups, sharing and discussing each others’ current work (in various stages of 
development), feedback on research questions, and recommendations to further the work. 
Sharing out across subgroups, and making decisions on directions for the year complete day two. 
Day three was dedicated to participants actively planning research for the upcoming year. 

Topical subgroups will be organized around the PME-NA and GMWG goals as follows: 
! International Contributions to the Study of Gender and Mathematics 
! Utilizing Multiple Theoretical Perspectives in the Study of Gender and Mathematics 

(Feminism, Postmodernism, and Gender Studies) 
! Taking Gender and Mathematics Research Findings into Teaching (School, Teacher 

Education, and Out-of-School Experiences) 
The sharing of work in the subgroups is brief, interactive, and introduces questions to the whole 
group for further discussion. In the following paragraphs we describe work contributors will 
share work as a part of the subgroups’ discussions. 

Introduction to Shared Work 
The following sections summarize the work contributors shared in groups and discussion 

questions to help facilitate the topical groups. Additional participants joining the group at the 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

2028



 

 

PME-NA meeting, also shared their work in discussions receiving feedback and support as well. 

Helen Forgasz, Monash University 
An International Survey of the General Public’s Views on Gender-related Issues and 

Mathematics Learning 
Among many factors found to contribute to gender differences favoring males in 

mathematics learning outcomes is the perception that mathematics is considered a male domain. 
Gender-stereotyped beliefs associated with mathematics learning include, for example, beliefs 
that boys are “naturally” better than girls at mathematics and that males are more suited to 
careers in mathematics-related fields (e.g., science, computing). While the views of students, 
teachers, parents, and other stake-holders have been gathered fairly regularly and in a range of 
countries, less often are the opinions of the general public determined. Using an innovative 
approach, participants in a survey aimed at gauging the general public’s views on gender 
stereotyping and mathematics learning were recruited using the social networking site, 
Facebook. The target audience for the advertisement about the survey was limited to those over 
18 years of age (an ethical consideration), and the penetration was global. Responses were 
received from over 300 from 54 different countries. The general findings were that the majority 
of respondents did not hold gender-stereotyped views. However, among those that did, the 
traditional male-stereotype persisted. 
Discussion questions 
! Considering the progress that has been made in many aspects of women’s lives in many 

parts of the world, why is the male stereotype so pervasive with respect to mathematics 
learning? 

! What can or should be done to address the persisting view that mathematics is a male 
domain? To whom should action be targeted? 

! What additional research is needed in this field? 

Olof Steinthorsdottir, North Carolina State 
International Perspectives on Gender and Mathematics Education 

This short report focuses on the recently published book International Perspectives on 
Gender and Mathematics Education edited by Helen J. Forgasz, Joanne Rossi Becker, Kyeong-
Hwa Lee, and Olof Bjorg Steinthorsdottir (Forgasz, Becker, Lee & Steinthorsdottir, 2010). This 
book emerged from five years of working groups at the international conferences of PME. 
Separated into four sections, the book provides papers on: history, policy and non-school factors 
affecting gender and mathematics; foci on the status of gender research in various countries; 
discussions of high achievers and mathematics education; and reports on tertiary students. 

The first section begins with a reprint of a 1979 paper by Teri Perl on the Ladies Diary and 
the mathematics therein published in the US from 1704-1941. Remaining chapters focus on how 
parents do math with their children, review out-of-school programs, discuss a longitudinal study of 
youth in New Zealand, and examine how attention paid to gender equality in Australia has changed 
over time. The second section has a focus on the state of gender research in a variety of 
international venues, with two chapters from Mexico, a synthesis of several large-scale 
international studies, and work from Iceland and Germany. The third section of the volume 
focuses on research on high achievers in mathematics, with work from Korea, Australia, and the 
US. The final section of the book includes three chapters that focus on gender and mathematics 
beyond high school, with particular work from Canada, the US, and a variety of other countries. 
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Discussion questions: 
! Are gender differences in mathematics actually diminishing? Is the situation the same in 

all countries or just in developed countries? 
! What are some critical areas of research to benefit from cross-cultural investigation? 
! What theoretical frameworks make sense in various cultural contexts? 

Lynda R. Wiest, University of Nevada, Reno 
Sexual Identity and Mathematics Education Research and Practice 

According to Alexander (2008), “Queer theory is a collective of intellectual speculations and 
challenges to the social and political constructions of sexualized and gender identity” (p. 108). 
The sciences are charged with being heterosexist in nature with narrow, essentialist perspectives 
grounded in biological determinism and systems for classifying living things into “neat” 
categories, and other assumptions (Toynton, 2007). Interestingly, research shows a relationship 
between sexual orientation and spatial abilities (specifically, mentally rotation of objects), with 
heterosexual men performing better than bisexual or homosexual men and the reverse being true 
for women (University of Warwick, 2007). It is thus curious that the field of gender and 
mathematics education has paid so little attention to sexual identity in research and practice. 

Rands (2009) notes that subject areas other than mathematics have incorporated attention to 
sexual identity and asserts, “The time has come to queer elementary mathematics education” 
(p. 182). Suggestions for “queering” mathematics education include “adding gays and stirring,” 
where one has gay people and topics in otherwise heterosexist activities, such as using a story 
problem about children with two moms, constructing a timeline of gay history, and doing 
mathematical explorations with gay symbols such as the pink triangle. “Queering” also includes 
analyzing social statistics on topics such as census figures, same-sex marriage, and the school 
and everyday experiences of sexual-minority individuals (e.g., school attendance, hate crimes); 
and challenging fundamental assumptions and perspectives, such as binary male/female and 
masculine/feminine distinctions in which mathematics is mainly associated with male/masculine 
and presumptions about opposite-sex attractions and distractions in single-sex schooling 
(Copping, 2011; Mendick, 2006; Rands, 2009). 

Discussion Questions 
1. What relationships may exist between sexual identity and mathematics? 
2. What research objectives and methods do you suggest for investigating the nature of the 

relationship between sexual identity and mathematics? 
3. What obstacles are researchers and practitioners likely to face when incorporating sexual-

identity topics/content into mathematics instruction? How might they address these 
challenges? 

4. Should tests that disaggregate data by other social identities, such as gender, race/ethnicity, 
socioeconomic status, and language proficiency, also disaggregate data according to students’ 
sexual identity? Why or why not? 

Diana B. Erchick, Ohio State University at Newark 
The Importance of Defining “gender” 

What do we mean by “gender”? Damarin and Erchick (2010) raise the issue of defining what 
we mean by gender in their JRME article “Toward clarifying the meanings of gender in 
mathematics education.” They note Glasser and Smith’s (2008) call to the education research 
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community at large, and reviewed all JRME issues between 2000?? and 2007 in their analysis of 
the meanings of gender therein. What they found is one of the areas we need to keep in our view 
as we proceed with our work around gender and mathematics. From Fennema and Hart’s 1994 
JRME article in which those scholars identified the need for bringing cognitive and feminist 
perspectives to bear on the study of gender and mathematics, to biological perspectives, to 
postmodern and socio cultural approaches, it is clear that we are not clear about what we mean 
by gender. Damarin and Erchick argue “it is time to take a new turn by acknowledging that the 
relationships of gender to mathematics education are much more complex than once thought and 
bringing theories of gender to bear on research. In this rich context, clarity must supplant 
vagueness in the meaning of gender in mathematics education research” (p. 321). 

Recommendations from Damarin and Erchick (2010) include deconstructing the binary; 
attending to power, agency and voice; considering what it is about mathematics that might 
contribute to our struggles to define gender; and considering what it is about sex/gender that 
makes it different from or similar to other biological/social constructs such as race. One might 
consider Burton’s 1995 seminal work “Moving towards a feminist epistemology of 
mathematics” to inform our thinking about the nature of mathematics. And consider the 
collection of works in International Perspectives on Gender and Mathematics (Forgasz, Becker, 
& Lee, 2010) in exploring sociocultural connections. Overall, the sex/gender system, introduced 
to the first GMWG by Suzanne Damarin in 1998 (Erchick & Damarin, 1999), has a complexity 
that both challenges us and incites us to define, each in our own work, what we mean by gender. 
Discussion questions: 

! How can consideration of feminist epistemology help inform our work? 
! How can gender identity help us broaden our understanding of gender? 
! Do multiple definitions of constructs in the sex/gender system clarify or compound the 

definitions of gender? 

Judith Olson and Melfried Olson, University of Hawaii at Manoa 
Nonverbal Communication When Parents and Children Work on Mathematics Tasks 

In the project, The Role Of Gender In Language Used By Parents And Children Working On 
Mathematical Tasks, the authors investigated gender-related differences in verbal language used 
by parents and children working on mathematical tasks. We analyzed three ten-minute videos for 
each of 114 dyads, mother-son, mother-daughter, father-son, and father-daughter. Additionally, 
66 ten-minute videos for 22 dyads (five boys, with both mother and father, and 6 girls, with both 
mother and father) were analyzed for gender-related differences in nonverbal communication. 

Nonverbal communication is sending and receiving wordless messages, both intentional and 
unintentional. In everyday situations we often use verbal and nonverbal channels simultaneously 
to convey intent. Nonverbal messages constitute an integral part of speech and provide visual 
referents, punctuate key points, add structure to words, and synchronize body and thought. 
Nonverbal communication can be used in a variety of ways, such as to repeat and strengthen a 
verbal message; complement a verbal message; send opposing or conflicting message; regulate 
conversation; substitute for a verbal message; or alter interpretation of a verbal message. 

While much nonverbal communication is based on arbitrary symbols that differ from culture 
to culture, a large proportion is to some extent iconic and may be universally understood. Our 
investigation examined eight different nonverbal actions, each with two subareas: 1. body 
positioning (proximity or action toward another; proximity or action away from another), 2. 
gesturing (finger or hand pointing; moving of objects in workspace), 3. head movements 
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(nodding or shaking head or shrugging shoulders; tilting while focused on work area), 4. 
attempted eye contact (seeking approval and expecting a response; monitoring actions with no 
response expected), 5. making eye contact (to give or seek approval or a response; face to face 
discussion); 6. facial expressions (demonstrating emotion; disengaged); 7. smiling (happy; 
discomfort), and 8. laughing (happy; discomfort). All but the facial expression actions were 
coded by dyad according to whether a mother, father, daughter or son initiated the action. 
Hence, when we recorded DF, we recorded actions for the daughter-father dyad, but for which 
the daughter initiated the action. Facial expression was coded only by dyad, not by who 
initiated. Preliminary results and initial analysis were shared in the GMWG. 
Discussion Questions: 

! Of the actions and categories we have identified, which might make significant 
contributions to gender research? 

! What variations are there in interpretation of the nonverbal actions? 
! What is the relevant theoretical base for gender-related nonverbal interactions among 

parents and children working together on mathematical task? 
! Does each nonverbal action have communication implications? 

Manjula P. Joseph, Ohio State University 
Supporting Student Learning In A Girls’ Mathematics Summer Camp Classroom 

This study examined pedagogy in a mathematics summer camp for girls conducted at a 
large mid-western university in the United States. The day-camp is for female students in the 
middle grades and is conducted for a period of five days with twenty teaching sessions that cover 
five units of middle school mathematics. Camp curriculum and video-recordings of the teaching 
sessions were analyzed to find correlations between curricular aspects and equity pedagogy and 
teaching practices that support a gender-equity agenda. Curriculum was examined to identify 
those practices that most support equity and activities that enhance certain equity practices. 

The research questions for this study included: 
! What curricular and pedagogical decisions in a middle school mathematics camp setting 
support girls’ learning? 

! How do teachers’ perspectives, and practice support equitable teaching in the classroom? 
! How does a teacher’s ethnicity/race/gender influence classroom practice for equity? 
Study participants are teachers from the summer camp. Transcriptions of video-recordings of 

sessions and follow-up interviews with teachers comprise qualitative data for the study. Session 
transcriptions were coded for those particular equitable practices that attend to gender-related 
issues in mathematics teaching and learning. The camp’s curriculum was studied to identify 
connections between aspects that provide opportunities for teachers to enhance student learning 
and participation for girls in their classrooms. Data from the interviews with participants helped 
make connections between teacher perspectives and beliefs and their classroom practice. 
Discussion Questions: 

! What questions should be asked to identify “equitable practices” for teaching girls? 
! What interview questions inform understanding teacher perspectives on girls’ learning? 
! Is it worthwhile to explore teacher race/ethnicity/gender as influencing 

classroom environment/culture in an all-girls classroom? 
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Katrina Piatek-Jimenez, Central Michigan University 
Women’s Choices of Mathematical Careers 

For years, women have been earning nearly half of the mathematics baccalaureate degrees in the 
United States; but, they continue to make up a smaller percentage of those pursuing advanced 

degrees in mathematics or entering mathematics-related careers. Although these statistics are 
well-documented, the literature does not thoroughly address why many women who choose to 

study mathematics at the undergraduate level do not continue with careers in the field. 
During the spring semesters of 2006, 2007, and 2008, I conducted individual interviews with 

a total of 12 undergraduate women mathematics majors at two different universities in the 
Midwest. The goal of the interviews was to investigate what influenced these women to choose 
to study mathematics at the undergraduate level and how they had determined their future career 
plans. I asked each of these students if they would be interested in participating in a follow-up 
interview three to five years after the initial interviews. During the Spring semester of 2011, I 
conducted follow-up interviews with the majority of these women to learn what career decisions 
they made after graduating and to learn what influenced these decisions. 

Results suggest a variety of reasons influenced participants’ choice to study mathematics at 
the undergraduate level. They all considered themselves to be good at mathematics and felt they 
had a strength in the subject. All of these women also had at least one significant person (family 
member or teacher) who supported and encouraged them in the field of mathematics. Many of 
them liked the idea of majoring in mathematics because it meant, to them, that they were 
breaking gender boundaries. Finally, for some of the women intending to become high school 
teachers, the promise of marketability also influenced their decision to major in mathematics. 

The most predominant theme that influenced their career aspirations, while they were still in 
college, was the desire to have a career where they could help people and make a difference in 
the world. For those not earning degrees to become high school teachers, their lack of 
knowledge of mathematical careers also played a large role in their future career goals. 
Discussion Questions 
! How can we learn about patterns of discouragement/encouragement of women entering 

mathematics? 
! How does perception of mathematics as a male domain interact with discouragement 

patterns – both sending and receiving? 
! What mathematical careers can be framed as more helping? 

Michael Dornoo, The Ohio State University at Newark 
Addressing Gendered Needs in Mathematics Learning Through Social Networking 

Mathematics educators interested in issues of gender equity have designed and implemented 
awareness-raising experiences for parents, counselors, and teachers as well as special programs 
to encourage female students in mathematics learning (Karp & Niemi, 2000). Despite these 
efforts, findings vary about how best to address gendered needs because female students remain 
less likely than male students to persist in mathematics study (Ansell & Doerr, 2000; Lubienski, 
McGraw, and Strutchens (2004). Leder (1992) found that gender differences in mathematics 
achievement between males and females are small compared to differences within gender 
groups. Ansell and Doerr (2000) and Lubienski et al. (2004) have identified differences between 
males and females in multiple areas of mathematics, including the strategies that students employ 
to solve problems and performance on computation tasks. In addition to differences in 
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mathematics achievement, Ansell and Doerr (2000) documented gender differences related to 
affective factors, including students’ attitudes, self-concepts, and self-confidence. For instance, 
while male students tend to have a more positive attitude and self-concept toward mathematics, 
females tend to lack confidence and have negative attitudes (Lubienski et al., 2004). 

Damarin and Erchick’s (2010) cultural/historical construction model, in the context of 
women and work, has gender and technology as a co-constructed foundation of the model. As 
technology becomes more prevalent, and advancements make working interactively under a 
global network more feasible, the advancements add complexity to the study of gender and 
mathematics and other STEM fields. How do interactive technologies that emphasize online 
collaboration, social collaboration and resource sharing among users free of charge support or 
hinder the gendered development of girls in mathematics? Web 2.0 could be an appropriate 
technology to build many global virtual communities among students, teachers, educators and 
social workers from every corner of the world, but does it help girls in terms of their relationship 
with mathematics? Or does it instead reinforce barriers between girls and STEM fields. 
Discussion Questions 
! How can a new generation of mathematics educators address gendered needs in 

mathematics learning through social networking? 
! Will modifications in the delivery of mathematics instruction by integrating technology 

provide experiences that bridge gaps in gender groups or create another barrier? 

Anticipated Follow-Up Activities 
The following work will continue following the PME-NA meetings: 
! Members will continue supporting the development and implementation 
of individual and collaborative projects clarified or identified in the GMWG sessions. 
! Members so inclined will pursue funding opportunities in gender and 
mathematics research, individually or collaboratively, with grant development support as 
available. 
! Members will expand the functionality of the PME-NA GMWG website. 
The website currently is used primarily as a repository for prior PME-NA GMWG 
proceedings papers. We expect to expand it to include a reference list of gender and 
mathematics scholarship, both from our members and from scholars outside of our group; 
a password-protected component for group discussions in between annual meetings; and 
a repository for PME-NA proceedings papers from our GMWG members. 

Closing 
In pursuing research on gender and mathematics, the 2011 PME-NA Gender and 

Mathematics Working Group participants continue prior work that was a part of the GMWG in 
its first years, and readily reconvene to again collaborate with and support each other. The most 
recent work on international perspectives, syntheses and new questions around gender study and 
gender identity, and renewed views on pedagogy inspire our work. We welcome the challenges 
of addressing the complexities emerging in the literature and as we commit to an interpretation 
of the field of gender and mathematics as complex and nonlinear. We choose, too, to do our 
work in support of each other, consistently respecting and welcoming the voices that emerge. 
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National reports have identified the need to increase the pool of highly qualified mathematics 
teachers as a way to improve mathematics education. However, providing high quality 
mathematics education for all students goes beyond the recruitment of knowledgeable teachers. 
This working group is designed to offer an opportunity to examine the role that professional 
development and support play in the work and retention of mathematics teachers. Retention 
focuses on new teachers, especially those in urban areas and mathematics teachers in hard-to-
hire settings. Discussions concentrate on the study of interventions through Professional 
Development and Support Models. Efforts to deepen our understanding of the complex and 
multifaceted picture of why teachers leave and why they stay, and how efforts to retain teachers 
impact their work in the classroom and their decisions to stay or leave, are developed through 
the sharing of research designs, data collection, and on-going results. This working group is 
appropriate for anyone who has work to share or who is thinking about supporting a retention 
project. Throughout, we address this very complex task in terms of both the opportunities and 
challenges for mathematics education researchers to provide quantitative and qualitative input 
on a major political issue. It is hoped that this working group will enrich the dialogue about a 
national crisis in mathematics education. 

Brief Overview of the STIR Working Group 
The Supporting Teachers to Increase Retention Working Group was launched in 2009 at 

PME-NA 31 in Atlanta, GA to investigate the relationship between Professional 
Development/Support and the retention of mathematics teachers. A second meeting in 2010 at 
PME-NA 32 in Columbus, OH elaborated on this initial ground work and directions identified 
for participants to focus on. Over the past two years, a total of 16 participants attended the 
working group sessions aimed at identifying the gaps in the research on mathematics teacher 
retention in order to move forward in tackling this complex national issue. The emerging 
dialogue was based on the results of research studies and ideas of the participants. Participants 
shared their backgrounds and interests in retention issues, and discussed potential research 
directions with the ultimate goal of addressing key research issues that would constitute a 
research agenda for the group. Participants were interested in examining the on-going 
preparation, support and retention of grade 7-12 mathematics teachers from a variety of angles, 
including: (1) Impact of Professional Development on Teacher Retention ; (2) Relationship 
between Content Knowledge and Retention ; (3) Obtaining Research that examines the 
Dimensions of Professional Development and Support that impact Retention. The overarching 
question of Mathematics Teacher Retention is often overlooked under the assumption that 
effective professional development would in essence lead to increased retention. However a 
closer look at what type of support helps teachers stay in their school, let alone their profession is 
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necessary. 
At PME-NA 32 in Columbus, OH, the group elaborated on the research agenda that was 

outlined at PME-NA 31 in Atlanta, GA. To stimulate discussions, members of the group 
provided summaries of on-going projects to be discussed during the group meeting sessions. 
These projects fall under the following categories: (1) Role of technology in support/retention; 
(2) Professional support community that reflect the building of networks and contacts to support 
work, decisions, challenges, and opportunities that arise in the teaching of mathematics, 
including lesson study and electronically-based communities of practice; (3) Role of leadership 
and/or career enhancement in retaining mathematics teachers, including the PD directed towards 
new teachers entering the field through alternative certifications, those coming from other 
careers and shifts in PD needed as new teachers move through the challenges of their first 5 
years of teaching; (4) Content-based Professional development with emphases on conceptual 
linking and problem solving; and (5) Research issues that arise in examining teacher retention. 

Issues of Psychology of Mathematics Education to be Focused on 
The study of the relationship between Professional Development and Support Models on the 

work and retention of mathematics teachers in grades 7 – 12 merits careful examination. Several 
national reports have pointed to the need to increase the pool of highly qualified mathematics 
teachers as a way to improve mathematics education and maintain the United States’ economic 
competitiveness (National Academy of Sciences, 2007; Glenn Commission, 2000). However, 
providing high quality mathematics education for all students goes beyond the recruitment of 
mathematically knowledgeable teachers to encompass issues of teacher support, professional 
development, and retention. Over the past two decades, analyses of teacher employment patterns 
reveal that many new recruits leave their school and teaching a short time after they enter. 
Ingersoll, using data from the School and Staffing Survey concluded that in 1999-2000, 27% of 
first year teachers left their schools. Of those, 11 percent left teaching and 16 percent transferred 
to new schools (Smith and Ingersoll, 2003). Earlier research revealed that teachers who leave 
first are likely to be those with the highest qualifications (Murnane and other 1991; Schlecty and 
Vance 1981). This “revolving door” problem is even worse in large urban districts; for example, 
25% of the teachers new to Philadelphia in 1999-2000 left after their first year and more than 
half left within four years (Neild and other 2003). In Chicago, an analysis of turnover rates in 64 
high-poverty, high-minority schools revealed that 23.3 percent of new teachers left in 2001- 
2002. 

Reasons for the lack of retention of new teachers and teachers in high-poverty schools are 
often related to “working conditions” and lack of support (Ingersoll, 2001; Smith & Ingersoll, 
2004; Johnson et al., 2004), though pay also plays a role (Hanushek, Kain, & Rivkin, 2001). This 
support includes professional and collegial support such as working collaboratively with 
colleagues, coherent, job-embedded assistance, professional development, having input on key 
issues and progressively expanding influence and increasing opportunities (Johnson 2006). 
Preparation, support, and working conditions are important, because they are essential to 
teachers’ effectiveness on the job and their ability to realize the intrinsic rewards that attract 
many to teaching and keep them in the profession despite the relatively low pay (Johnson & 
Birkeland, 2003; Liu, Johnson, & Peske, 2004). 

A status report on teacher development focusing on professional development and support of 
teachers (Darling-Hammond et al, 2009) summarized findings and put forth recommendations 
for effective professional development. The basis for the paper included national surveys with 
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self reported data, a meta-analysis of 1,300 research studies, and specific studies. The conclusion 
is that “well designed” professional development can influence teacher practice and student 
performance. The paper focuses on what is or could be regarded as well designed. One strand of 
the paper is that of effective support for new teachers. Although half of the states require support 
for new teachers (Education Week, 2008) it was found that rates of participation in teacher 
induction programs varied by school types with highest rates in schools with the least poverty 
and lowest in schools with high levels of poverty. Beyond the rates of participation and 
availability of support, there is the question of what is effective support. The paper cites an on-
going large-scale research project currently underway, which aims to measure the impact in 
terms of classroom practices, student achievement and teacher mobility. Initial results seem to 
reflect the difficulty in identifying the impact of support. 

Another study presently in its fourth year, Supporting Teachers to Increase Retention (STIR) 
is studying the relationship between retention and support of mathematics teachers across the 
state of California. This five-year study is looking through the lens of 10 sites with different 
support models to relate retention to content knowledge, classroom practices, professional 
communities of support, leadership and needed support. Initial results are complex but are 
showing relationships between sustained professional development and support and teacher 
retention. Data collected to establish a base line for retention across a five-year period 2002-2006 
preceding STIR shows that yearly attrition averaged 20% across all 10 sites. For the five-year 
period the attrition average was 54% with sites reporting an attrition of mathematics teachers as 
high as 73%. In the first year the attrition dropped from 20% to 14%. Three years of data and 
results of intervention are now available for sharing. But, what is the relationship between the 
support and the retention? One of the 10 sites from this study observed that success of a retention 
initiative takes root in a variety of needs: the need to know your District and its teachers – a need 
that is often addressed by established, long-term relationships between the university and district 
leaders; the need to offer sustained support as opposed to punctual interventions in order to break 
the isolation of beginning teachers and to create a sustainable community; the need to establish 
relevance of the professional development activities proposed by engaging participants in deep 
introspection of their own knowledge gaps; the need to involve all players in the community to 
prevent miscommunication from annihilating attempts made towards change; the need to nurture 
the community created by moving its members forward into roles and responsibilities they are 
ready to take on; and last but not least, the need to refine even successful models to keep the 
momentum (Felter & Faughn, 2009). These findings align with prior research emphasizing that 
support must be specific in addressing the needs of teachers in their particular context (Fulton et 
al., 2005). 

As indicated in the comments above, support comes from multiple sources. Another recent 
study from Peabody College, Vanderbilt University, finds that principals play a critical role in 
the support of new mathematics teachers (McGraner, 2009). This confirms Ingersoll’s recent 
analysis of Mathematics and Science teacher turnover from the past two decades indicating a 
steady increase in the phenomena. Since the existing pool of Mathematics and Science teachers 
is not as well supplied as in other non-STEM disciplines, this increase is not easily absorbed by 
individual schools, even though enough newly qualified teachers are produced each year to cover 
increases in students’ enrollment and the effects of retirement. Indeed, upon leaving their 
teaching position, Mathematics and Science teachers are more likely to opt for non-educational 
professions than teachers in other fields. According to data gathered by the National Center for 
Education Statistics with the School and Staffing Survey and the Teacher Follow-up Survey, the 
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provision of useful Professional Development is one of the organizational factors influencing 
choices of Mathematics teachers to leave or remain in their positions. Another factor is the 
degree of individual classroom autonomy (Ingersoll & May, 2010). But how do we successfully 
involve principals in supporting professional development that increases retention? 

Finally, an additional aspect of the issue at stake is the retention of mathematics teachers 
entering the profession through alternative certification as brought up by one working group 
participant. In a presentation to the group at PME-NA 2009, Brian Evans emphasized retention 
issues within the New York City Teaching Fellows program and provided us with the following 
literature review: “Teachers leave teaching in New York City for three reasons (Stein, 2002): 
retirement, leaving the profession, and transferring to a school outside New York City. [...] A 
concern with alternative certification is lack of retention, especially in large urban areas such as 
New York City (Darling-Hammond, Holtzman, Gatlin, & Heilig, 2005). Sipe and D’Angelo 
(2006) found when surveying Fellows that about 70% of them intended to stay in education. 
NYCTF reports that 89 percent of Fellows begin a second year of teaching after the completion 
of their first year (NYCTF, 2008). Boyd, Grossman, Lankford, Michelli, Loeb, and Wyckoff 
(2006) reported that about 46% of Teaching Fellows stay in teaching after four years as 
compared to 55% to 63% of traditionally prepared teachers. Kane, Rockoff, and Staiger (2006) 
found that Teaching Fellows and traditionally prepared teachers have similar retention rates. 
Further, Tai, Liu, and Fan (2006) claim that alternative certification teachers, in general, have 
comparable commitment to the teaching profession as do traditionally trained teachers. In a 
survey of 31 Teaching Fellows, 90 percent said they were considering leaving their high needs 
schools for better schools in or outside of New York City, or leaving the teaching profession 
altogether (Stein, 2002). [...] Similar to results found in other studies (Costigan, 2004; 
Cruickshank, Jenkins, & Metcalf, 2006; Evans, 2009), teachers were very concerned with 
student behavioral problems and unsupportive administration.” (Evans, 2009) During the 2010 
meeting, Evans elaborated on these findings by incorporating information about the Teach of 
America Program: “Darling-Hammond, Holtzman, Gatlin, and Heilig (2005) cautioned that, 
upon becoming certified, many TFA teachers leave teaching. This is in contrast to Teach for 
America’s own report of retention of TFA teachers on their website. TFA claimed that about 
two-thirds of TFA teachers stay in the field of education upon completing their time in the 
program, and half of those remain in teaching. This means about one-third of all TFA alumni 
stayed in the classroom upon fulfilling their commitment, and another one-third maintained non-
teaching roles in education, such as in administration or advocacy (TFA, 2008). As of 2010, 
there were 17,000 TFA alumni (TFA, 2010). According to TFA, over 5600 TFA members 
remained teaching in the classroom after their commitment ended (TFA, 2009).” (Evans, 2010) 

This working group is designed to offer a comprehensive, multifaceted examination of the 
ongoing preparation, support and retention of 7-12 grade mathematics teachers based on the 
results of research studies and ideas of the participants. It is hoped that this working group will 
enrich the dialogue relating the “support gap” and the work and retention of teachers of 
mathematics. It is also expected that this working group will propose areas ripe for further 
research. In light of national efforts to close “poor performing schools” this work to identify 
ways to improve retention of mathematics teachers becomes especially critical. 
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Year 1 & 2 of the Working Group: Summary 
A Summary Report from the first two years of the working group is included below. This 

year’s proposal builds upon the proposal from last year by integrating participants’ research 
interests and focusing the discussions around four major themes relating to teacher retention. A 
reference list produced by combining the references from the proposal and work of the first two 
years is found at the end of this proposal. 

Summary Report: Activities of Working Group PME-NA meetings 2009 & 2010 
Participants: Douglas Owens (Ohio State University, OH); Drew Polly (UNC Charlotte, 
NC); Candice Ridlon (UMES, MD); Brian Evans (Pace University, NYC); Christine D. Thomas 
(Georgia State University, GA); Ellen Clay (Drexel University, PA); Allyson Hallman (UGA, 
GA) ; Michael Meagher (CUNY, NYC); Barbara Pence (SJSU, CA); Axelle Faughn (WCU, NC); 
Nancy Schoolcraft (IN); Terran Felter (CSUB, CA); Molly Fisher (University of KY); Jacqueline 
Leonard (UC Denver, CO); Sharilyn Owens (ASU, NC). 

Participants were asked to consider the question “Can support impact teacher retention?”, 
and more specifically “What are the different aspects of support? How is impact measured? 
What are opportunities and challenges encountered when researching teacher retention?” The 
major task for our first session consisted of coming up with directions to work and identifying 
missing foci in literature. Participants organized the questions and interests into four main 
categories that emerged from the initial brainstorming: Impact of Professional Development on 
Teacher Retention; Content Knowledge and Retention; Research issues and Retention; Equity 
and Retention. A detailed list of questions arranged by interests under the four major themes can 
be found in the 2009 Working Group Summary (Faughn, Pence, Thomas, 2010). 

Further discussions underlined that PD must be sustained, long-term, and involve a 
community of learners: Mentoring necessitates careful pairing, could be done through videotapes 
and reflections; Decreasing the number of preps for beginning teachers could provide more time 
for planning and reflecting; We need to connect retention to student learning: Is seeing students 
succeed part of teacher perceived success that could help with retention? i.e., would evidence of 
increased students’ performance help build confidence & a sense of competence? Finally, 
advantages of “whole school” reforms and developing leadership skills of individuals to bring 
PD back to their site were emphasized to increase onsite presence through lesson study, lesson 
planning, online community, coaching, and/or videotapes. 

In addition to identifying interest and gaps from the literature, participants shared the 
following models of support: 
! Brian Evans – NYCTF literature review 
! Drew Polly – UNC Charlotte - Researcher-beginning teacher onsite mentorship 
! Candice Ridlon – PD through reform curricula in Utah 
! Axelle Faughn – Addressing content knowledge through higher education courses 
! Barbara Pence – CMP STIR 10 sites, 10 models 
! Christine Thomas – Developing an online community of support 

The core question of the relationship between Professional Development/Support and 
retention was significant and central to all discussions but due to lack of directly related research, 
formed the springboard for lists of questions. The 2010 working group built a more focused and 
active research based on active engagement of participants in productive reflection on the issues 
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across projects. After a review of previous work for new participants, two main breakout groups 
aimed at lay the foundations of publishable collaborative work. Returning participants were 
asked to inform the group of any progress they made in their respective projects. Ideas were then 
shared on further work and dissemination in order to better define the direction of our efforts. In 
response to the question “Where do we want to go from here?”, several options were put 
forward, including developing research and papers, participation in future conferences (New 
Teacher Center; AERA; 2012 Symposium on Mathematics Teacher Retention), establishment of 
a website/webbase on teacher retention, draft of a monograph on teacher retention, write up of a 
joint paper for an editorial journal (NCTM/AMTE), and ultimately publication of a book on 
Professional Development (Math content, Technology, Communities of Practice, Leadership) 
a i m e d  a t  t e a c h e r  e d u c a t o r s  w h o  f o c u s  o n  b r i d g i n g  r e s e a r c h  a n d  p r a c t i c e .  
This brainstorming was followed by a detailed overview of breakout groups by group leaders. 

Description and Summary of 2010 Breakout Sessions Listed by Category 
(1) Category A: Role of technology in support/retention (Axelle Faughn). 
We discussed issues pertaining to the role of technology in empowering teachers both in the 
classroom and the larger mathematics education community. Questions to address include: (1) 
What model of PD has been provided that engaged participants in technology use? (2) What 
trends are you noticing in technology use by teachers? (3) Are you able to relate technology to 
Retention or Leadership? (4) What constitutes technology in the work of mathematics teachers? 
(5) What are issues related to equity when working with instructional technologies? 
Background: Teachers constantly ask for engagement strategies, including games, 
technology, etc. Students live in a technology-embedded world; how does this affect their 
learning schemes? How can teaching take this into consideration? Teachers are often less 
technology-savvy than their students. How do we support teachers in increasing confidence and 
competence on learning the instrumentation, shifting from learning to use technology to 
using it for teaching math, staying up-to-date with new technology (at T^3 last year many 
teachers were looking for TI-84 talks, but most presentations focused on the TI-NSpire) 
Questions/Issue: 

! How can we best support teachers to acquire TPACK? 
! Can technology help with student engagement/collaborative learning, student learning for 

understanding, teacher leadership, teacher retention, and access to higher cognitive 
demand tasks? 

! What different types of technology are involved in the work of mathematics teachers and 
how do they support teaching: Technology for presentation purpose and/or 
planning; Technology for conceptual learning; Technology for Community Building 
(Teachers, students) 

! How do we collect evidence of support through technology? (Use TPACK qualitative 
framework and TPACK stages of development) 

! What type of technology do teachers tend to embrace first? 
Work was shared about teachers using the TI-Navigator, looking at discourse through case 
studies (CCMS). 

! Other issues raised in the discussion: How do we bring communities of practice into an 
online environment? What is the promotion step beyond being a Master Teacher except 
for leaving the classroom? (Coach, Higher Ed.) 

Work in Progress: AERA paper to be presented in April 2011 in New Orleans, LA, on four 
CMP-STIR sites. 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

2041



 

 

(2) Category B: Professional support community that reflect the building of networks and 
contacts to support work, decisions, challenges, and opportunities that arise in the teaching of 
mathematics, including lesson study and electronically-based communities of practice (Christine 
D. Thomas). 

We share our evaluation and synthesis of the literature on Second Life, professional 
development within a PLC, and distance learning used in our participatory action research study 
of this Second Life project. The Second Life project that spans August 2009-May 2011 aims 
at: (1) sustaining mathematics teachers who are attempting to improve their teaching and 
students' learning and (2) conducting research for the dissemination of knowledge on 
retention of secondary mathematics teachers in these schools. We use this as an opportunity to 
share our understandings, interpretations, and analysis of the literature on the topic as it relates to 
the goals, and needs of the urban community and the mathematics teachers we serve. In addition, 
we share our beginning analysis, and initial findings of the study based on the baseline data 
collected. 
Background: Description of work with an Online Professional Community of Teachers in 
Second Life in Atlanta, GA, allowing for more convenience and flexibility in the offering of PD, 
and enhancing opportunities for teacher leadership. 
Themes: Online learning, social theories of learning (situated learning), Peer leadership, Adult 
learners. 
Questions/Issues: 

! Finding a framework for looking at the dimensions of teacher retention through online 
professional learning communities, especially for teachers in high need schools – 
Suggestion was made to investigate Collective Efficacy within Communities of Practice 

! How do we protect users through modeling and training on the ethical use of technology? 
! How do teacher leaders reinforce retention? How can teachers become more integral 

parts of the school leadership? 
! Other issues raised: What type of mathematics is discussed among teachers? Is generating 

a professional community of mathematics teachers online different from other such 
communities in other disciplines, in other words, how do you provide math PD online? 

Work in Progress: One paper in press and one paper to be presented at AERA 2011. 
(3) Category C: Content based Professional development with emphases on conceptual linking 
and problem solving and establishing collaboration with mathematicians (Imre Tuba) 
Background: Professional Development and Mathematical Understandings 

! Mathematical Knowledge (Kathy Heid) –Mathematical Thinking – Problem Solving 
! Mathematical Knowledge for Teaching – D. Ball 
! Integrated Pedagogy and Math Content 

Questions: 
! Does content driven PD result in improved mathematical understanding? 
! Can the PD content be linked to classroom practices? 
! How does this effect retention? 

Data: 
! Pretest/Posttest on Content 
! Beliefs about content understanding relative to content to be taught (Confidence, 

Competence) 
! Classroom practice (Self reports, Classroom Observations 

Work in Progress:  Specific to Imperial Valley site 
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– Content tests linked with self reported changes in classroom practices 
! Overview of PD 
! Pre/Post results (Full test, Scales) 

– Classroom observations and self reported reflections relative to the PD 
! Confidence and Competence 

Plans for the Third Year of the Working Group 
In advance of the conference, last year’s participants will be surveyed to identify any 

questions or shifts in foci that occurred this year. Additional people will also be contacted. The 
Supporting Teachers to Increase Retention 2011 working group comes in conjunction with the 
working group organizers’ endeavors to promote discussion and raise national awareness of the 
issue of Mathematics Teacher Retention through a Mathematics Teacher Retention Symposium 
to be held March 22-24, 2012 in Los Angeles. In preparation for this symposium, several 
documents have been drafted that will support the work of this working group, namely a clear 
statement of the current problem in Mathematics Teacher Retention, a list of guiding principles 
in attempting to address this national issue, and a list of guiding questions aimed at advancing 
research-based knowledge. All these will be shared with working group participants ahead of 
time, and will inform the directions and foci for the 2011 meeting. 

Additionally, recent work by Ingersoll and May (2010) on the current national trends in 
mathematics teacher retention will guide some of the discussions and questions for the group to 
ponder in light of their own on-going projects. In particular Ingersoll and May investigated 
mathematics and science teachers’ turnover using data from the Teacher Follow Up Survey 
through the lenses of Magnitude, Destinations, and Determinants. In preparation for this 
Working group, participants will be asked to read and report on these findings. 

Regarding Professional Development and Support, we will continue to explore the themes of 
Technology, Online Professional Communities, and Content Knowledge. Additionally, models 
of Communities of Practice through Lesson Study, and establishment of leadership roles for 
teachers to support retention will specifically be addressed. Participants interested in examining 
the Lesson Study theme will address implementation strategies and techniques for implementing 
lesson study. Questions to be discussed include: (1) What is the timeline for planning, teaching 
and re-teaching? (2) How do teachers define/identify misconceptions by students? (3) How and 
what do teachers decide in changing their lesson? (4) Who is involved in the Lesson Study 
planning and implementation? We also plan on exploring the role of early-career leadership 
and/or career enhancement in retaining mathematics teachers, including the shifts in PD needed 
as new teachers move through the challenges of their first five years of teaching. 

The general outline of the three days of the working group will include: 
Day 1 • Introductions and Review of past years’ work and update on work by 

those who are attending, including review of new literature 
! Overview of MTRS and reflection/focus on work by Ingersoll and 

May in small groups 
Day 2 • Introductions of new attendees 

! Breakout groups around new and old themes chosen by participants 
! Brief discussion of issues addressed in each group 

! Small group work focused on challenges and knowledge base 
Day 3 • Breakout group reports and future directions 
The productivity of the working group will be a function of the advanced organization. But at 

this point, we anticipate that the breakout groups will either continue to address the questions 
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generated from the previous years’ discussions, or attempt to tackle new directions in light of 
recent research findings. 

Anticipated Results of the Working Group 
To continue addressing the particular issues of retention and technology, retention and 

community, retention and leadership, and/or retention and content-based professional 
development, each participant will share a description of the work to date in their project, the 
stage of development the project is in, research design and instrumentation, and a summary of 
current findings. Joint collaboration was already successful through the efforts of this Working 
Group to disseminate findings at the 2011 meeting of AERA. As noted earlier, the organizers of 
the working group plan to solicit more papers emerging from this collaborative work, and 
possibly the development of a monograph synthesizing our work on mathematics teacher 
retention and support. 

The network will also be included in the development of a Mathematics Teacher Retention 
Symposium (MTRS), sponsored by the CMP-STIR group, to take place in spring 2012. 
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As the title suggests, this Working Group has a dual focus on issues of mathematics teaching and 
learning and issues of equity and diversity. This includes topics discussed at the Working Group 
in 2009 and 2010, namely: pre-service mathematics teacher education for social justice, 
culturally relevant and responsive mathematics education, supporting mathematical discourse in 
the linguistically diverse classroom, creating observation protocols around instructional 
practice, and examining student experiences. This work attempts to take a multifaceted 
approach, aimed at multiple levels from the classroom to broader social structures, within a 
variety of contexts both in and out of school, and at a broad span of relationships, including 
researcher to study participants, teachers to schools, schools to districts, and districts to 
national policy. 

Brief History 
This Working Group builds on and extends the work of the Diversity in Mathematics 

Education (DiME) Group, one of the Centers for Learning and Teaching (CLT) funded by the 
National Science Foundation (NSF). DiME is a group of emerging scholars (new faculty and 
graduate students) who graduated from, or in some cases are still studying at, three major 
universities (University of Wisconsin-Madison, University of California-Berkeley, and UCLA). 
The Center was dedicated to creating a community of scholars poised to address some critical 
problems facing mathematics education, specifically with respect to issues of equity (or, more 
accurately, issues of inequity). 

The DiME Group (as well as subsets of that group) has already engaged in important 
scholarly activities. After two years of a cross-campus collaboration dedicated to studying issues 
framed by the question of why particular groups of students (i.e. poor students, students of color, 
English learners) fail in school mathematics in comparison to their white (and sometimes Asian) 
peers, we presented a symposium at AERA 2005 (DiME Group, 2005). This was followed by the 
writing of a chapter in the recently published Handbook of Research on Mathematics Teaching 
and Learning which examined issues of culture, race, and power in mathematics education 
(DiME Group, 2007). Further, in an effort to bring together and expand the community of 
scholars interested in this work, DiME, at AERA in 2008, sponsored a one-day Professional 
Development session examining equity and diversity issues in Mathematics Education. In 
addition, DiME members have joined with other scholars in joint presentations and conferences. 
A book on research of professional development that attends to both equity and mathematics 
issues has recently been published (Foote, 2010). Many DiME members as well as other scholars 
contributed to this volume. 

Moreover, the Center has historically held DiME conferences each summer. These 
conferences provide a place for fellows and faculty to discuss their current work as well as to 
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hear from leaders in the emerging field of equity and diversity issues in mathematics education. 
Since the summer of 2008, the DiME Conference opened to non-DiME graduate students with 
similar research interests from other CLTs such as the Center for the Mathematics Education of 
Latinos/as (CEMELA), as well as graduate students not affiliated with an NSF CLT. This was 
initially an attempt to bring together a larger group of emerging scholars whose research focuses 
on issues of equity and diversity in mathematics education. In addition, DiME graduates, as they 
have moved to other universities, have begun to work with scholars and graduate students 
including those with connections to other NSF CLTs such as MetroMath and the Urban Case 
Studies Project in MAC-MTL whose projects also incorporate issues of equity and diversity in 
mathematics education. 

It is important to acknowledge some of the people whose work in the field of diversity and 
equity in mathematics education has been important to our work. Theoretically we have been 
building on the work of such scholars as Marta Civil (Civil & Bernier, 2006; González, Andrade, 
Civil, & Moll, 2001), Megan Franke (Franke, Kazemi, & Battey, 2007), Eric Gutstein (Gutstein, 
2006), Danny Martin (Martin, 2000), Judit Moschkovitch (Moschkovich, 2002), and Na'ilah 
Nasir (Nasir, 2002). We have as well been building on the work of our advisors, Tom Carpenter 
(Carpenter, Fennema, & Franke, 1996), Geoff Saxe (Saxe, 2002), Alan Schoenfeld (Schoenfeld, 
2002), and again Megan Franke (Kazemi & Franke, 2004), as well as many others outside of the 
field of mathematics education. 

A significant strand of the work of the DiME Center for Learning and Teaching included 
implementing professional development programs grounded in teachers’ practice and focusing 
on equity at each site. The research and professional development efforts of DiME scholars are 
deeply intertwined, and much of the research thus far produced by members of the DiME Group 
addresses issues of equity within Professional Development. Additionally, since the majority of 
the DiME graduates, as new professors, along with a number of current Fellows, are engaged in 
teaching Mathematics Methods courses, the integration of issues of equity with issues of 
mathematics teaching and learning in Math Methods has become a site of interest for research. 
We have learned through experience that collaboration is a critical component to our work. 

We were pleased for the opportunity offered by the first two years of being a Working Group 
at PME 2009 and PME 2010 to continue working together as well as to expand the group to 
include other interested scholars with similar research interests. In 2009 an ambitious number of 
sub-groups were formed. Some of these sub-groups worked together throughout 2009-20 10; 
others had less success in accomplishing goals set out at PME 2009. During PME 2010, several 
of the sub-groups were collapsed so that a smaller number of sub-groups evolved out of the 2010 
Working Group Meeting. These groups have set agendas for collaboration during 2010-2011 and 
work is in progress. We were encouraged that our efforts were well received; more than 40 
scholars from a wide variety of universities and other educational organizations took part in the 
Working Group in 2009 and an equal number did so in 2010. 

 Under the umbrella of attending to equity and diversity issues in mathematics education, 
researchers are currently focusing on such issues as teaching and classroom interactions, 
professional development, pre-service teacher education (primarily in mathematics methods 
classes), student learning (including the learning of particular sub-groups of students such as 
African American students or English learners), and parent perspectives. Much of the work 
attempts to contextualize the teaching and learning of mathematics within the local contexts in 
which it happens, as well as to examine the structures within which this teaching and learning 
occurs (e.g. large urban, suburban, or rural districts; under-resourced or well-resourced schools; 
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and high-stakes testing environments). How the greater contexts and policies at the national, 
state, and district level impact the teaching and learning of mathematics at specific local sites is an 
important issue, as is how issues of culture, race, and power intersect with issues of student 
achievement and learning in mathematics. 

Existing research tends either to focus on professional development in mathematics (e.g., 
Barnett, 1998; Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Kazemi & Franke, 2004; 
Lewis, 2000; Saxe, Gearhart, & Nasir, 2001; Schifter, 1998; Schifter & Fosnot, 1993; Sherin & 
vanEs, 2003), or professional development for equity (e.g., Sleeter, 1992, 1997; Lawrence & 
Tatum, 1997a). Little research exists, however, which examines professional development or 
mathematics methods courses that integrate both. The effects of these separate bodies of work, 
one based on mathematics and one based on equity, limits the impact that teachers can have in 
actual classrooms. The former can help us uncover the complexities of children’s mathematical 
thinking as well as the ways in which curriculum can support mathematical understanding in a 
number of domains. The latter has produced a body of literature that has helped to reveal 
educational inequities as well as demonstrated ways in which inequities in the educational 
enterprise could be overcome. 

To bridge these separate bodies of work, the Working Group has begun and will continue to 
focus on analyzing what counts as mathematics learning, in whose eyes, and how these culturally 
bound distinctions afford and constrain opportunities for students of color to have access to 
mathematical trajectories in school and beyond. Further, asking questions about systematic 
inequities leads to methodologies that allow the researcher to look at multiple levels 
simultaneously. This research begins to take a multifaceted approach, aimed at multiple levels 
from the classroom to broader social structures, within a variety of contexts both in and out of 
school, and at a broad span of relationships including researcher to study participants, teachers to 
schools, schools to districts, and districts to national policy. 

Some of the research questions that the Working Group will consider are: 
 

Teachers and Teaching 
! What are the characteristics, dispositions, etc. of successful mathematics teachers for all 

students across a variety of local contexts and schools? How do they convey a sense of 
purpose for learning mathematical content through their instruction? 

! How do beginning mathematics teachers perceive and negotiate the multiple challenges 
of the school context? How do they talk about the challenges and supports for their work 
in achieving and equitable mathematics pedagogy? 

! What impediments do teachers face in teaching mathematics for understanding? 
! How can mathematics teachers learn to teach mathematics with a culturally relevant 

approach? 
! What does teaching mathematics for social justice look like in a variety of local contexts? 
! What are the complexities inherent in teacher learning about equity pedagogy when 

students come from a variety of cultural and/or linguistic backgrounds all of which may 
differ from the teacher’s background? 

! What are dominant discourses of mathematics teachers? 
! What ways do we have (or can we develop) of measuring equitable mathematics 

instruction? 
Students and learning 

! What is the role of student academic and mathematics identity in achievement? 
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! How do students’ out-of-school experiences influence their learning of school 
mathematics? 

! What is the role of perceived/historical opportunity on student participation in 
mathematics? 

! Policy 
! How does an environment of high-stakes standardized testing affect whether and how 

teachers teach mathematics for understanding? How does this play out across a variety of 
local contexts? How can we support teachers to teach mathematics for understanding in 
that environment? 

! How do we address issues of tracking/ability grouping and in particular the grouping of 
students by test designation? 

Plan for Working Group 
The overarching goal of the group continues to be to facilitate collaboration within the 

growing community of scholars and practitioners concerned with understanding and addressing 
the challenges of attending to issues of equity and diversity in mathematics education. The PME 
Working Group provides an important forum for these scholars to come together with other 
interested researchers who identify their work as attending to equity and diversity issues within 
mathematics education in order to develop plans for future research. Our main goal for this year, 
then, is to continue a sustained collaboration around key issues (theoretical and methodological) 
related to research design and analysis in studies attending to issues of equity and diversity in 
mathematics education. 

In order to support this collaborative research, smaller research groups were formed from 
participants in the large Working Group. The plans and goals for these sub-groups are detailed in 
the final section: Previous Work of the Group and Anticipated Follow-up Activities. 

Much of our work is qualitative in nature and we recognize that one way to increase the 
number of participants is to conduct research across several sites. In order to do this, we need to 
use the same protocols for data gathering. One of our sub-groups has taken as its charge to 
develop an observation protocol. Another sub-group is collecting vignettes of practice. We 
intend that, during what we hope to be the long life of this Working Group, research protocols 
and other materials that can support researchers, teacher educators, and teachers may be 
developed and used across a variety of research and professional development (including 
preservice teacher education) projects. 

More specifically, for PME 2011 we will proceed as follows. 
SESSION 1: 

! Review and discussion of goals of Working Group. 
! Introduction of participants. 
! Reports of the work of sub-groups during 2010-2011  
! Initial brief meeting of sub-groups 

SESSION 2: 
! Sub-group meetings to discuss and delineate further plans to address and expand 
research questions initially developed at PME 2009, and refined at PME 2010. 
SESSION 3: 
! Sharing and discussion of work from Session 2. 
! Planning for further collaboration. 
! Developing a tentative agenda for future Working Group meetings. 
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Previous Work of the Group and Anticipated Follow-up Activities 
The Working Group met for three productive sessions at both PME 2009 and PME 2010. In 

2009, we identified areas of interest to the participants within the broad area of equity and 
diversity issues in mathematics education. Much fruitful discussion was had as areas were 
identified and examined. In 2010, sub-groups were reorganized to streamline the work, as it 
became apparent during 2009-20 10 that participants could not participate in more than one subgroup 
during the year. During 2010, participants met in an identified sub-group of their choice. Within 
these sub-groups, rich conversations ensued regarding theoretical and practical considerations of 
the topics. Plans and goals for the 2010-2011 academic year were developed. What follows are the 
plans and goals of the sub-groups following the 2010 PME meeting. The activities stated in these 
plans are currently in progress. 

Pre-service Teacher Education that Frames Mathematics Education as a Social and Political 
Activity 

This sub-group is interested in teacher education that frames mathematics as a social and 
political activity, including multicultural education, teaching math for social justice, funds of 
knowledge, ethnomathematics, issues of equity and diversity in mathematics, and so forth. Our 
goal is to share resources to improve our own work as teacher educators and to support each 
other in our research. Our long term goals include developing an annotated list of articles, 
developing an annotated collection of resources (lessons, activities, syllabi, etc.), writing a paper 
about our differing meanings and approaches to teacher education that frames mathematics as a 
social and political activity, and conducting research about doing this work across contexts. 

This sub-group acknowledges tensions in our work focusing on equity and social justice in 
relationship to reform mathematics. Frameworks are needed to understand these issues. These 
can build on work in culturally relevant pedagogy (Ladson-Billings, 1995), teaching for social 
justice (Gutstein, 2003), funds-of-knowledge (González et al., 2001) as well as more general 
issues of equity, diversity, social analysis, and critical pedagogy. We need to begin by defining 
what we mean by these terms (e.g. reform mathematics, social activity, political activity); and 
how we recognize them in the classroom. 

Goal for 2010-2011. Each month (or so) one person will be responsible for engaging this 
sub-group in some fashion that that person will determine, and then recruiting someone to take 
over for the next month. This could be as simple as uploading a few materials and letting people 
know about them or it could involve asking others to read and respond to an article, task, and so 
forth. 

 
Culturally Relevant and Responsive Mathematics Education (CRRME) 

 The title reflects our view that mathematics education needs to be both culturally responsive 
and culturally relevant and a primary goal of this group is develop a comprehensive collection of 
the scholarship we draw on to define these terms. We are interested in language, discourse, 
ethnicity, ways of interacting, family, community, experiences, generational issues, expectations 
(not high and low, but individual or community’s expectations). We want to examine what we 
mean by social justice. Issues can be examined, such as teaching (a) about social justice (the 
context), (b) with social justice (status and participation), and (c) for social justice (power and 
question). Various aspects of CRRME include (a) local contexts, (b) local associations, (c) using 
cultural referents, (d) ethnomathematics, (e) critical pedagogy, and (f) teaching “classical” math. 
We are concerned as well with how literature on culturally relevant pedagogy is grounded in 
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existing theory and research on culture and social constructivism. 
Goal for 2010-2011. Two key goals of this group are to (a) develop a comprehensive 

collection of the scholarship we draw on, and (b) develop a collective definition of what 
Culturally Relevant and Responsive Mathematics Education means. The second goal requires an 
examination of what social scientists say about culture and how we view the relationship of 
culture to research in mathematics education. 

Creating Observation Protocols around Instructional Practices 
This group is developing a protocol that can measure instructional practice AND be a tool to 

help teachers improve their instructional practice. Our focus is on the importance of improving 
instruction for students of color; this is our goal. We recognize that protocols have limits. For 
example, protocols do not necessarily look at microgenesis, teacher change, structural issues, 
dispositions. At the past PME-NA we reviewed various protocols to examine discuss existing 
protocols posted on google groups to stimulate rich discussions around questions such as: What 
do we like? What are they missing? How might we revise, combine, and extend them? Since 
group members were using various measures and it was not viable to have everyone use the same 
one, we began to develop a dimension that could be added on to the different protocols. To focus 
the work we decided to develop a dimension on expanding notions of competence in the 
classroom. 

Goal for 2010-2011. The observation protocol group has two goals for the year. First, we 
plan to develop the dimension on expanding notions of competence in the classroom. Second, 
we want to begin field testing this dimension and compare results across various school sites 
including variation in terms of geography, class, race etc. Our longer-term goal is to develop 
multiple dimensions that are theoretical grounded in order to produce an observation tool that 
does not ignore issues of race, class, and so forth. We also hope to develop a paper or report 
focused on the validity, reliability, and utility of this tool. 

Language and Discourse Group: Issues around Supporting Mathematical Discourse in 
Linguistically Diverse Classrooms 

This sub-group is interested in examining language diversity in the mathematics classroom. 
They think about this broadly and want to be inclusive of the perspectives of teachers, students, 
and parents. 

Goal for 2010-2011. The language and discourse group has identified two tasks for 2010-11. 
One is to identify vignettes embedded in academic articles or book chapters on (a) teachers’ 
experiences with language during mathematics instruction, (b) involvement of parents who are 
native speakers of a language other than English, and (c) experiences of students who are native 
speakers of a language other than English or are bilingual speakers of English and another 
language. We will explore the possibility of categorizing these vignettes in such categories as (a) 
social benefits of bilingualism, (b) cognitive benefits of bilingualism, (c) language ideologies, 
and (d) policy initiatives. The second task is to network in order to identify others (teachers, 
researchers, students) who would be willing to write-up their experiences/journeys as they relate 
to the use of language in mathematics activities in and outside of the classroom. 

A Critical Examination of Student Experiences 
This sub-group is interested in examining the intersectionality of students’ experiences as 

learners of mathematics and in mathematics classrooms. This involves considering students’ 
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mathematics identity in relationship to one or more of their racial, social, cultural, and gender 
identities. This also includes understanding how structural inequalities shape students’ 
mathematics experience, particularly students from non-dominant groups. 

Goal for 2010-2011.The primary goal of the student experiences group for this year is to 
develop our capacity for collaboration. First, we will reach out to researchers in mathematics 
education interested in issues at the intersection of student identity/identities and mathematics 
learning experiences and establish a network to facilitate the sharing of our empirical work, data 
collection and analysis resources (e.g., interview and observation protocols), and theoretical 
resources. Based on the connections that develop, we will then consider potential joint products 
for next year—e.g., literature review, conference symposia, edited volume. 
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The “Developing Investigations of Mathematical Experience” (DIME) working group is focused 
on building a research-based understanding of the interiorized experiential world of 
idiosyncratic mathematics. Goals of this research are to characterize individual experiences in 
ways that acknowledge a person’s active and reflective thinking efforts within mathematical 
contexts linked to emotive dimensions of their lived and living mathematical experiences, in 
order to inform mathematics teaching practices. To probe these largely unexplored complex 
domains, we are using both and phenomenological and constructivist theories and methods. We 
seek to identify and relate expressed indicators of intended and actual mathematical 
experiences, as they appear to occur in the complex relationships of participants involved in 
mathematics teaching and learning. Because today’s goals and strategies for a sound 
mathematical education embody a major emphasis upon stimulating, nurturing, and 
demonstrating high quality thinking arising from particular kinds of intended experiences, we 
must now seek to understand more clearly the nature of what students and teachers are actually 
experiencing in their “math lives.” These working group sessions will build upon the DIME 
Research Team meetings conducted during the initial planning conference of the Wyoming 

Institute for the Study and Development of Mathematics Education (WISDOMe) held September 
2010 at UW. The primary goal of the PME-NA Working Group will be to involve additional 
interested scholars in the ongoing work of the team, through further conceptual analyses related 
to the phenomena of lived and living mathematical experiences, to extend our epistemological 
and psychological perspectives for characterizing critical elements, and to identify and address 
methodological issues inherent in investigating interiorized mathematical experiential 
phenomena. 

Brief History of the Group 

A core membership for this new PME-NA Working Group was established through the 
initial invitational “Planning Conference for WISDOMe” conducted September 8-10, 2010 at the 
University of Wyoming. The background context for that conference is the establishment of 
three collaborative, interdisciplinary Research Teams connected to four new Ph.D. program 
research identities: quantitative reasoning, mathematical modeling, technology tools and 
applications, and lived/living mathematical experience. Each of the teams consists of UW 
mathematics education, mathematics, and educational cognate faculty, mathematics education 
doctoral students, and four-to-five young, active Mathematics Education researchers from a 
variety of national and international universities. Following four invited plenary papers prepared 
and presented at the conference by key active senior researchers, each team met to frame an 
initial program of collaborative work. The DIME (Developing Investigations of Mathematical 
Experience) Team currently includes six UW faculty members, six UW Mathematics Education 
Ph.D. students, and five faculty members from as many other universities. 
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Through the opportunity to conduct Working Group sessions at PME-NA, we seek an 
important venue to continue and expand discussions of the background perspectives and issues 
related to investigations of lived and living mathematical experience, to share information, 
issues, and problems related to ongoing research, to promote interest and potential participation 
in furthering these and other disciplined inquiries into these phenomena, and to provide 
continuing support to the team members to collaborate within and across ongoing and future 
research. 
 

Perspectives on Lived and Living Mathematical Experience 
Today, there is surely an implicit and implied emphasis globally upon high quality 

mathematical experiences within the goals and expectations for a sound mathematical education. 
Yet, within our literatures and advocacies for curriculum, for teaching, for learning and 
development, and for research knowledge there seems to be very little explicit attention to the 
phenomenal data of an individual’s lived/living mathematical experiences. This may be partially 
explained by the nature of what most mathematicians and mathematics educators seem to focus 
upon within mathematically productive activity: cognition, thinking, sense making, reasoning, 
solving, explaining, etc. Research to build models of such focal emphases should surely be a 
fundamental cornerstone of mathematical education research. But, to further our knowledge of 
actual lived/living mathematical experience set against such mathematically productive activity 
frames an important goal DIME research efforts. 

Some fundamental questions that we are seeking to investigate include the following: 
• What is the nature of lived and living mathematical experiences? 
• What are the particular qualities (essences) of human experience that make it a 

“mathematical experience?” 
• Are these experiential qualities that are unique to mathematics, or are they also found more 

broadly in other human experiences? 
• How do identifiable qualities of lived/living mathematical experiences relate to learning 

mathematics and to psychological models to describe mathematical thinking and feeling? 
• In what ways do lived/living mathematical experiences vary or differ among humans, and 

why? 
• What factors related to the individual or the experiential context might frame or affect the 

actual phenomenon of a high quality “living mathematical experience?” 
• In what ways do the experiences of individuals vary within mathematical contexts, such as 

classroom situations that are intended to engender the “same” kinds of experiences for all 
participants? 

• How do lived mathematical experiences accumulate within differing individuals, and with 
what more general intellective and emotive consequences? 

• In what ways do thinking and feeling aspects of mathematical experience interact within a 
living experiential context, and with what kinds of impacts or outcomes? 

• In what ways might a mathematics educator use what can be learned about lived/living 
mathematical experiences of students, parents, teacher educators, mathematicians, or others 
in society to improve educational practices? 
These are some of the questions that serve as “starting points” for DIME research. In 

addition, we are confronting many research methodological questions that are challenging much 
of our initial struggles to conceptualize viable approaches to such phenomena. 

If we want educational outcomes that mirror the empowerment that a deep knowledge and 
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proficiency of mathematics can afford, we must now seek to move beyond our current 
perspectives and approaches that still seem to produce (for too many of our students) much less 
than we seek. If we are to understand deeply why so many of our students still achieve very poor 
understandings of the mathematical ideas and processes after experience with our reformed 
curricula and our improved teaching methods, materials, and tools, we must begin to penetrate 
beyond more superficial indicators, such as test scores or written work, or even observed 
classroom behaviors into the interior world of the student’s actual lived/living mathematical 
experiences where we may be able to identify deeper explanatory aspects of the individual’s 
progressive growth (or deficits) toward greater mathematical knowledge and proficiency. 

There is one other rationale that seems increasingly important. Too many of our citizens bear 
negative feelings toward their own past mathematical education (Hersch & John-Steiner, 2011), 
but for us educators to help our current students avoid such debilitating beliefs, feelings and 
attitudes we must begin to understand the nature of their experienced emotions that occur and 
develop within the mathematical contexts we offer. That is, not only must we understand the 
intellective dimensions of a person’s constructions and reconstructions of their mathematical 
knowledge and proficiency, but we must also understand the origins and dynamics of emotional 
dimensions of their experiences, and how the interplay of thinking and reasoning actually 
functions within their live experiential feelings, emotions and affective schemas in relation to 
engaged, productive mathematical thinking. It is time to seek to understand the “whole 
mathematical life” of our students. 

The goal of such new understandings is the assumed potential that from such knowledge we 
mathematics educators will all be helped to engage in improved forms of mathematical education 
in which enhanced qualities of lived/living mathematical experiences occur for all persons. We 
seek a pedagogy that understands and honors the experiences of the other (surely a primary 
intention of humanist philosophy and constructivist epistemology). 

Further perspectives on mathematical experience can be found in the limited literature on this 
subject. One of the notable senior scholars of mathematics education, Hans Freudenthal (1983) 
claimed an early phenomenological perspective. In his review of Freudenthal’s book, Usiskin 
(1985) identified a general view of mathematics as an abstraction of reality, where mathematical 
ideas come from commonalities inherent in a wide variety of situations. Through his “didactical 
phenomenology,” Freudenthal sought to return the mathematically minded to the world from 
which it was abstracted. In greatly detailed ways that form an analytical compendium of most 
school mathematics concepts, Freudenthal discussed analytical connections between an idealized 
conceptual world and the complex world, which relates to it. It is these connections, Usiskin 
explained, that form Freudenthal’s personal “phenomenology” of the mathematical structure, and 
it is the implications for the instruction of students that forms his “didactical phenomenology.” 

Brown (1996) described the mathematics classroom from the perspective of social 
phenomenology where it is seen as an environment of signs, comprising things and people, 
which impinge on the reality of the child. His framework sees mathematical ideas as contained 
and shaped by the child’s personal phenomenology, which evolves through time. He introduces 
the notion of “personal space” as a model for describing how children proceed through a 
classroom environment of phenomenal experiences toward their idiosyncratic “sense making.” 
The report provides interesting data from children solving symmetry tasks, and demonstrates 
how Brown uses his framework to interpret the child’s functioning in experiential terms. 

Roth (2001) critically questioned some of these views and approaches in his review of 
Brown’s (1997) book, an extensive attempt to relate many important aspects of mathematics 
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learning and teacher education to phenomenology, hermeneutics, post-structuralism, and 
semiotics. In particular, Roth’s central concern is whether all mathematical activity and 
experience can be reduced to text, based upon Brown’s unequivocal assertion that “There is no 
experience outside the text” (p. 226). 

One interesting study, reported by Francisco (2005), involved the elicited reflections of five 
high school students in their 12th year of a longitudinal study in which their school mathematics 
from grade one had been developed in ways claimed to be consistent with a constructivist 
approach (called “Rutgers Math”).  Maher (1987) had described these learning conditions to 
include: collaborating in work, exploring patterns, conjecturing, testing their own hypotheses, 
reflecting on extensions and applications of the concepts, and explaining and justifying their 
reasoning. Steffero’s (2010) study of one female student’s beliefs and mathematical activities 
that occurred over a seventeen-year period in “Rutgers Math” and beyond constitutes an 
enormous record of her mathematical experiences from grade four through graduate school. 
Handa (2006, 2011) examined ways of knowing and doing mathematics using phenomenological 
reflections to construct views of experiential relationships with the subject matter of 
mathematics. 

Perhaps there are good reasons why so little explicit focal attention is given to “mathematical 
experience.” Thompson (1991) observed that while the authors of papers in an ICME conference 
are concerned with the epistemological foundations of mathematical experience, they offer no 
information about “what is a mathematical experience.” Indeed, in DIME we fully acknowledge 
a serious lack of clarity of constructs in this domain, but through systematic efforts to study 
lived/living mathematical experience, we will seek to build new, grounded clarities of meanings. 

It is the goal of the DIME research program to begin to study intentionally the phenomena of 
lived/living mathematical experiences. Why bother? Are not the traditional views emphasized in 
intended curriculum, instruction, learning, assessment, evaluation, and research on learning and 
teaching adequate? Indeed, it is exactly because the goals and strategies of a sound mathematical 
education today embody a major emphasis upon stimulating, nurturing, and demonstrating high 
quality thinking arising from particular kinds of intended experiences that we must now seek to 
understand more clearly the nature of what students and teachers are actually experiencing in the 
“flow of their math lives” (Csikszentmihalyi, 1990). 
 

Issues in a Psychology of Mathematical Experience 
We each know the centrality of our own lived experiences. Even modest personal reflection 

can lead an individual to a sense of realization that it is specific experiences that shape “who they 
are, what we know, how we think” in powerful and fundamental ways. This includes what is 
experienced “outside,” in the so-called “real world” that involves our interactions within our 
proximal environment (our sensory-based physical experiences) and within our interactions and 
relationships with other minds (our socially-based logical and emotional experiences). But, this 
also includes interior experiences that occur in our mind within our “interiorized” constructed 
world, where our thinking and our feeling “being” (person) is shaped and functions in thought 
(mind). 

In DIME, we acknowledge the significance of the typical “mathematical” environment that 
includes students, teachers, parents, discourse, textbooks, technology tools, classrooms in 
schools, tasks and tests, the structured contexts of lessons, local, state and national curriculum 
frameworks, professional preparation and development, mathematicians, societies and cultures, 
governance, politics---all of the usual cultural and social elements in and around a person’s 
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mathematical education today. In doing so, we also accept that the meaning structures for any or 
all of these elements is a totally idiosyncratic construction for any of the multitudes of persons 
attending to matters of mathematical education. Now, we seek to “look into” the interior 
phenomenal world of lived experiences where each individual dynamically encounters and 
processes their idiosyncratic “mathematical experiences that lead to “who they are and become,” 
mathematically. As educators, perhaps a most important aspect of this involves the dynamics of 
lived/living experiences that might characterize how experience might possibly bring about 
change (transformations) in an individual’s thought and feeling with respect to mathematics. 

Phenomenology begins in the lived world, and seeks to bring to reflective awareness the 
nature of the events of lived experience (Hegel, 1977; Husserl, 1970, 1982). The principle of 
intentionality acknowledges an inseparable connection to the world (in our focus, the world of 
mathematical education) wherein “…we question the world’s very secrets and intimacies which 
are constitutive of the world, and which bring the world as world into being for us and in us” 
(van Manen, 1990, p. 5). In DIME, we are choosing to study thematic meanings, adopting 
themes and conducting thematic analyses within our particular orientation to the phenomenon of 
mathematical experience as “people of mathematics:” all being teachers, teacher educators, 
students of learning and teaching, mathematically educated, and interested is pedagogic theories. 
We are trying to be explicit about our individual and shared intentions and orientations as a 
preparatory anchoring step in our research process. 

As such, phenomenology accepts the curriculum of being and becoming (paideia), pursuing 
understanding of the personal, the individual, set against the background of an understanding of 
the other, the whole, the communal, or the social. It seeks to explicate phenomena as they present 
themselves to consciousness---the only access humans have to the world. But, consciousness 
cannot be described directly (the fallacy of idealism); the world cannot be described directly 
either (the fallacy of realism); real things in the world are only meaningfully constituted by 
conscious human beings, and these constructed meanings can only be revealed by the 
constructing human as inferences. 

In our formative research approaches we presume the nature of lived/living experience to be 
fundamentally an internal construction/re-construction that emphasizes a consciousness of 
“sense-making,” attempted within the unique idiosyncratic mental operations, schemas and 
constructive mechanisms as they exist and function in the mind of the individual within that 
lived/living experience. To emphasize Piaget’s (Piaget & Inhelder, 1969) theoretical conclusions 
that both intellective and affective aspects are involved within experience leading to 
development, we seek to study both as a seamless whole, even as we reject many other 
dichotomies as false (such as “thinking versus feeling”) typical of a strictly modernist 
structuralism. 

Among the constructivist focal constructs we want to consider in our study of lived/living 
mathematical experience are representation and re-presentation, reflection and reflective analysis 
and abstraction, intuition and intuitive reasoning, and perturbation and equilibration, and 
particularly to search for where and how they may be found to function in, impact upon, and in 
turn be affected by particular experiential contexts. For example, in today’s curricular 
frameworks one sees a major attention given to “representations” and representational activities; 
students are expected to learn to understand, use, and make various canonical mathematical 
representations. Yet, what from a study of lived/living mathematical experiences can we find 
about a student’s actual conceptions and views of representations, and especially how they 
experientially use such images in problem contexts to re-present the conceptual ideas they are 
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presumed to represent? Moreover, von Glasersfeld’s (1991) view of cognitive functioning sees 
representation, re-presentation, and reflective abstraction as inseparable aspects; can we find this 
exhibited in lived/living mathematical experience? 

Against these theoretical lenses, we have identified a variety of issues to confront as we 
attempt to study lived/living mathematical experiences. Some of these are identified below, and 
these will be addressed in the activities of the Working Group described next. 
1. In what ways is it possible to study the lived/living mathematical experiences of anyone: 
one self? The “other?” We have found helpful literature that addresses important theoretical 
perspectives and methodological strategies for this question [e.g., Dewey, 1938; Hegel, 1977; 
Hurlburt & Akhter, 2006; McLeod, 1964; Moustakas (1994); Petitmengin, (2006); van Manen 
(1990)]. We have identified these guiding principles: 

A. A research methodology for studying lived/living experience includes the theoretical 
precepts behind the methods---the values and assumptions of phenomenology and constructivism 
as briefly discussed above. Within a focus on actual experience, we are willing to yield upon 
procedures or techniques that certain methods, even in qualitative research, attempt to objectify 
or make more standardized. 

B. Our overall framework is adapted from van Manen’s (1990) structure “…seen as a 
dynamic interplay among six research activities: 

(1) Turning to a phenomenon which seriously interests us and commits us to the world; 
(2) Investigating experience as we live it rather than as we conceptualize it; 
(3) Reflecting on the essential themes that characterize the phenomenon; 
(4) Describing the phenomenon through the art of writing and rewriting; 
(5) Maintaining a strong and oriented pedagogical relation to the phenomenon; 
(6) Balancing the research context by considering parts and whole.” (p. 30-31) 
C. Some views of phenomenology aim at being “presuppositionless,” warding off a tendency 

to construct or enact a predetermined set of fixed procedures or techniques that would rule-
govern the research. We will engage our observations and analysis with general acceptance of 
this view, while also making efforts to stipulate and articulate, a priori, as many of our individual 
values, assumptions, beliefs, and attitudes about the phenomenon of “mathematical experience as 
we can and seems relevant. One view (van Manen) ---our problem is not that we know too little 
about it, but that we know too much! (p.46). As such, we are predisposed to interpret the nature 
of the phenomenon before we have even come to grips with the phenomenological questions. 

D. In those research contexts where our aim will be to stimulate new experiences within real-
time, unfolding events, we adopt the dynamics of constructivist orientations but set aside 
“teaching or learning” aims, per se (e.g., where questions from the researcher-teacher would seek 
to provoke particular kinds of mathematical thinking or productions). Rather, within an initial 
problematic situation posed to provoke or engender lived mathematical experiences, we honor 
the paths as determined and taken by the person. 

E. We seek to address the phenomenon of mathematical experience in a variety of ways. In 
doing so, we will seek attentively to orient to the phenomenon as we strive to deepen our 
formulation of the phenomenological questions. 

F. We are building a team approach with a purposeful aim of including a variety of 
perspectives and voices, and this brings opportunities beyond research conducted by one, or even 
two collaborating scholars. As such, we have adopted views and tactics to mirror what we 
perceive as formative, developmental research, and to be alert to elements of our inquiry that 
includes aspects of team building, per se. 
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2. Whose experiences should be studied, and why? Who are to be the subjects of the 
research? How are they chosen? Because mathematics as a human endeavor in society and 
globally is so pervasive and seemingly universal, we foresee a full range of research participants 
who experience mathematics in a wide array of situations and for a diverse set of reasons. Of 
course, one orientation we bring to this is the “enterprise” of mathematical education, and this 
will greatly influence our choices for whose experiences we will try to investigate, and also 
determine how we frame the contexts and the templates of analysis and interpretation. We want 
to include at least these in our sampling of lived/living mathematical experiences---ourselves, 
mathematicians, mathematics teacher educators, mathematics education researchers, pre-service 
and in-service mathematics teachers across levels of school mathematics, mathematics students 
across levels of school mathematics, and parents of the students. Different types of participants 
will allow us to address a variety of aims; specific individuals will be chosen in terms of 
particular aims and purposes.  

3. What are sources or forms of “data of lived/living experience?” How can these be 
generated in ways that yield penetration into phenomena? Be seen to be accurate (true to 
the phenomena)? Valid? Reliable? Viable (Steffe, 2010)? We accept the following views 
about the nature of “data of lived/living experience.” The world of lived/living mathematical 
experience is for us both the source and the object of our research. We each bring strong (yet 
varying) orientations to it. But, we share a fundamental assumption:  experiential accounts are 
never identical to lived/living experience itself.  

We already see that the sources and forms of our “data of lived experience can be rich and 
varied. Yet, we will pursue in each the step of generating written descriptions, and these may be 
of two kinds: (a) an immediate description of the “life-world as lived,” or (b) an intermediate (or 
a mediated) description of the “life-world as expressed in symbolic form.” While we accept that 
in this step there occurs interpretation, among team members we will share in an analysis of the 
description as produced, and engage in intentional interpretation (hermeneutic) to produce a 
“second-generation description” that purposefully seeks to identify and describe “essences as 
deeper meanings of the lived mathematical experience.” 

Subsequently, through team interactions, we will question the accuracy of these descriptions 
and interpretations to assess if they seem “true to the phenomena” (as such, are they valid?). We 
will try to address some sense of reliability, at least in terms of a quality of internal consistency 
among individuals in the team. To deepen or extend the possible derived meanings arising from 
group work, we will try to view the expressed perspectives of individuals in the team compared 
to their initial written description of “a priori conceptions about mathematical experience noted 
earlier [a way of possibly using “bracketed” aspects to clarify meanings]. Husserl (1970) 
acknowledged that “common sense” pre-understandings, suppositions, assumptions, and existing 
bodies of knowledge can lead one to premature influences in one’s effort to interpret, to “make 
sense.” How can we best suspend such influences? Husserl (who was at first a mathematician) 
used the notion of “bracketing” to describe how one must try to place outside of the present 
phenomenon one’s prior or extant or presumed knowledge about the phenomenon. 
4. In what ways can research subjects be directly engaged in experiential mathematical 
situations while informing the researcher about what they are experiencing? It is one of the 
basic assumptions of phenomenology that experience will be changed within an attempt to 
introspect---to “rise above” and give attention to the experience while it is occurring, and that the 
distinctions between what is introspection and retrospection are blurred (thus our use of 
“lived/living”). While we accept this assumption in theory, we also want to explore this 
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phenomenon. Petitmengin (2006) used an interview method aimed at helping a person to become 
aware of her subjective experience and to describe it with great precision. Hurlburt and Akhter 
(2006) used a “descriptive experience sampling” method to explore inner experience. Their 
subjects were prompted by an electronic beeper which they carried as they moved in their natural 
environments. When the beep sounded, they were trained to “capture their inner experience and 
jot notes about it; they discussed it during a later expositional interview. 

As researcher-observers interactively engaged in mathematical situations we’ve posed for the 
purposes of engendering active involvement by, say, a student, we intend to become a part of the 
student’s experiences, per se---to get into “the flow” of what the student is experiencing 
(Csikszentmihalyi, 1990). “Being there” can mean (to the student) that, as a part of their 
unfolding experience, we ask questions. While these questions will primarily focus upon their 
activity and their “thinking aloud” verbalizations related to it, at times we will ask a question 
pointing more directly to their conscious reflection upon their experiences, per se. In some sense, 
we anticipate that such a question can result in a kind of interruption of the flow of experiences 
related to the posed mathematical situation; we intend to ask the student later about the effects of 
such questions upon their perceptions of the flow of their experience. We anticipate there will be 
variable impacts reported by different persons, but we also expect that across time and 
successive observational interviews, individuals will develop a greater capacity for minimizing 
(or perception of) the disruptive effects of such questions. 
5. When or how might a research intervention or analysis or interpretation influence or 
alter or “contaminate” an experiential context under study? How can this be avoided? This 
concern admits that there may be ways in which our research methods could negatively impact 
upon what is being experienced, both in immediate or longer-term ways. Indeed, one 
characterization of instruction are the intentional impacts that alter otherwise natural experiences 
of students.  As such, these would not be avoided. 

Here is one nexus of conflict within the aims and processes of phenomenological research 
and mathematics education. We accept this tension, and seek to probe and penetrate into the 
lived mathematical experiences while realizing the potential invasive violations we may induce 
into what “the other” is experiencing. We believe our resolution of this conflict resides in the 
distinctions to be found in “natural, every-day” experiences and “intended” experiences of 
mathematics education, though we realize that as effective teachers we strive for there to be a 
quality of “natural” in what and how a student might experience and build-up their mathematical 
knowledge. Here again, as explorers we will remain open, yet exercise surveillance to this 
concern. 
6. How do we, as researchers, conduct analysis and interpretation of data to build accurate 
portrayals of lived/living mathematical experience? Key to phenomenological or 
constructivist research is analysis and interpretation as an observer, or teacher-researcher. 
Critical to either are the struggles to maintain, as much as possible, open thinking in which one 
consciously acknowledges potential biases and avoids “projecting” one’s own experiences onto 
the situation. Intentional “bracketing” is attempted; members of our team are trying to describe, a 
priori to individual or shared acts of analysis and interpretation, our individual perspectives on 
what we each may “see” in the phenomena of lived mathematical experience---we will refer to 
these as our “initial construct views” (ICV). We will share these written ICV descriptions, and 
try to use these when we are subsequently engaged in analyses and interpretations of our 
observations and descriptions. We are unsure about exactly how we will use these, but one could 
be when we disagree about what we “see” in a particular protocol or description; we may be able 
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to find reasons for a researcher’s interpretations in the anchoring viewpoints they expressed in 
their ICV. 

We believe that through a team approach in which multiple descriptions can be generated 
independently and then discussed and debated, we will likely achieve more sensitively accurate 
interpretations of the phenomena---“negotiated meanings.” Across experiential episodes we will 
look for consistencies as well as variation, thus being attuned to elements of cross-validation of 
the qualities to be found in a person’s lived mathematical experiences. Also, in these we will 
look for how the nature of experiences for each subject may change; again, as educators we seek 
and expect change--growth and development as a consequence of something we call 
“mathematical experience.” 

In our studies, we will focus not only on indicators of change in relation to mathematical 
knowledge, but also on the emotional elements within experience and how these occur within the 
dynamics of various qualities of lived experience. Further, we will be alert to how the person’s 
capacities to reflectively abstract in relation to their lived experiences might change, and what 
impacts that may have upon their future awareness of themselves within, and after, lived 
mathematical experiences. In some studies, we will explore how the subject might be given our 
description of their experiences, and asked to provide critical review, reaction and feedback 
about it; this may lead to new insights into the “essences” of it, and result in another form of 
“negotiated meanings.”  
7. In what ways can we “make sense of” our study of the observed lived/living 
mathematical experience in relation to its implications and potential applications? This 
question speaks to the important intent that our research results lead beyond information about 
the interior “mathematical life,” although such research-based information is generally lacking 
today. Our goals include the possible implications for such new insights and understandings 
about lived mathematical experience to impact upon future mathematical experiences. We 
foresee possible benefits to the ways that mathematics teachers seek to stimulate and engage 
their students to engender certain qualities of experiences they might have. Information about 
what is occurring in the lived mathematical experiences of students may prompt changes in 
curricular topics, placements, or treatments. Deeper understandings from studies of experience 
may raise implications for testing and assessment strategies related to mathematics learning. 
 

Specific Plans for DIME Sessions at PME-NA 2011 
Overall, the sessions will be conducted in “workshop” format, structured by an overview 

presentation (20 minutes) followed by four brief (10-12 minutes each) plenary “highlighting” 
presentations to pose research issues and problems, guiding written resources distributed to 
all participants, “breakout” sessions for four working sub-groups, guided sub-group task-
oriented discussions, and closing plenary summarizing presentations and discussions. 
Feedback and input from all discussions will be collected; post-conference written 
summaries for each sub-group will be prepared at UW and distributed to all WG participants, 
and posted to the public Institute website. 

The four sub-groups will focus upon one of the following domains of discussion (while 
respecting that these are not a partitioning, so overlaps and interactions among the issues and 
questions of the focal domains will likely occur): 

A. Framing ‘problems and questions’ for research on lived/living mathematical 
experience---what to study? 
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B. Addressing ‘issues and concerns’ for research methodologies to be used---how it is to 
be studied? 

C. Discussing techniques for using and transforming data to describe, analyze, and 
interpret in ways that illuminate and inform---how is data to be evidentially used? 

D. Discussing approaches to reporting what is found and to applying to inform improved 
educational practices---how results are to be reported and used? 
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Discussion document for the Working Group “Representations of Mathematics Teaching” 
 
(a) Brief History of the Working Group 

This is the second meeting at PMENA of this RMT working group. The idea of this working 
group emerged during a series of three-day conferences on representations of mathematics 
teaching held in Ann Arbor, Michigan in 2009 and 2010,(and earlier workshops in 2007 and 
2008) organized by ThEMaT (Thought Experiments in Mathematics Teaching), an NSF-funded 
research and development project directed by Herbst and Chazan. ThEMaT originally created 
animated representations of teaching using cartoon characters to be used for research, 
specifically to prompt experienced teachers to relay the rationality they draw upon to justify or 
indict actions in teaching. The original workshops were conceived to begin disseminating those 
animations to be used in teacher development . The (Representations of Mathematics Teaching) 
RMT conferences in 2009 and 2010 gathered developers and users of all kinds of representations 
of teaching to present their work and discuss issues that might be common to them. These 
conferences included users of video, written cases, dialogues, photographs, comic strips, and 
animations. An outcome of the 2009 RMT conference was a special issue (Volume 43, issue 1, 
2011) of the journal ZDM—The International Journal of Mathematics Education, guest edited by 
Herbst and Chazan Outcomes of the 2010 Conference included two sessions at the 2011 NCTM 
Research Presession. The 2011 Conference (June 13-15) will also work toward the goal of 
creating events related to the use of representations of mathematics teaching in other 
conferences. In proposing a continuation of the working group for PMENA 2011 we are 
interested in continuing the discussion and work we had in Columbus during PMENA 2010 
around the elaboration and investigation of a pedagogical framework for teacher development 
that makes use of representations of teaching and work toward an edited book on the subject. 

 
(b) Issues in the Psychology of Mathematics Education that Will Be the Focus of the Work 

Review of Existing Work Relating the Theme of the Working Group to the Field 
The use of representations of mathematics teaching, particularly those that are maintained in 

a digital form, calls for specialized pedagogical practices from teacher developers. They also 
open new areas for investigation of how future professionals learn to practice and the role that 
various technologies play in scaffolding that learning. In the 2010 PMENA discussion paper, 
Herbst, Bieda, Chazan, and Gonz‡lez (2010) briefly reviewed the literature on the use of video 
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records and written cases in teacher education. We also noted that classroom scenarios sketched 
as cartoon animations have begun to be utilized for those purposes and argued that they have 
affordances that are distinct from those of video and written cases (see also Herbst, Chazan, 
Chen, Chieu, & Weiss, 2011) . We also noted existing literature on the use of written and video 
cases in teacher education and cited examples that concern mostly face-to-face facilitation. We 
argued that the increased capabilities of information technologies for creating, manipulating, and 
collaborating over multimedia point to a promising future for teacher development assisted by 
representations of practice. In the special issue of ZDM referenced above , several new articles 
have added to this literature. In particular Ghousseini and Sleep (2011) and Nachlieli (2011) 
describe the facilitation of face -to-face discussions around representations of practice and 
provide two views on what makes these effective for studying practice. Yet the features of novel 
media and their use with digital technologies may require other pedagogical strategies for teacher 
education that have not been sufficiently identified and explored. 

In this document we complement the previous year’s review by briefly accounting for three 
areas of emergi ng scholarship: (1) information technologies that support teachers’ learning from 
representations of practice; (2) the particular challenge of helping prospective teachers 
understand students’ thinking; and (3) research and theory about what is important or possible to 
achieve in having prospective teachers look at or work with representations of teaching.  
 
Information Technology and Teacher Education 

The field of teacher education is becoming more adept at using technology in teacher 
education classes. Communication technology is connecting teacher education students, 
university faculty, and mentor teachers through shared access to classroom videos (Price & 
Chen, 2003; Whipp, 2003), as well as providing another (sometimes more effective) mode of 
communication between teacher education students and university faculty (Derry, Seigel & 
Stampen, 2002; Reasons, Valadares & Slavkin, 2005). Teacher education is also leveraging 
communication technology to support the development of teacher communities (Farooq et al, 
2007; Gomez et al, 2008). These communities increase teacher candidates’ access to resources 
and interaction with peers. 

Digital video technology allows for prospective teachers to interact with practice in more 
meaningful ways than in the past. In addition to watching videos, teacher education students can 
now annotate and edit video quickly and easily (Chieu, Herbst, & Weiss, 2011; Pea, Mills, Rosen 
& Dauber, 2004; Rich & Hannafin, 2008, 2009). These technologies allow for faster 
communication as well as discussions that focus on specific moments of an instructional episode 
and therefore on the particulars of teaching practice. Video and animations have also been used 
effectively to illustrate to prospective teachers how the theoretical principles that they learn in 
university courses can be put into practice in the classroom (Moreno & Ortegano-Layne, 2008). 

The availability of new technologies to represent teaching for its use in teacher education 
offers an interesting challenge for research on the pedagogy of teacher preparation and teacher 
candidates’ learning to teach: These issues are of importance to the PMENA community. 
Scholars have noted, for example, that in addition to the functionalities afforded by various 
technologies, it is paramount to consider the tasks that teacher candidates engage with, and the 
support that teacher education students receive from the course instructor (Lockhorst, Admiraal 
& Pilot, 2002). Other scholars have looked more in depth at technology-enabled instructional 
interventions and expanded upon features that could be situated into Lockhorst et al’s list of 
important features. Chieu, et al. (2011) looked at the use of online forums containing embedded 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

2066



 

 

animations of classroom episodes and argued that this access allows for richer conversations 
among teacher candidates. Llinares & Valls (2009, 2010) focus on the tasks posed to teacher 
candidates and the effect of these tasks on learning These studies all highlight the role of 
pedagogy in the use of new technologies in teacher education. As technology develops, teacher 
educators need to continue to develop their pedagogies to make the best use of the technology. 

 
The Challenge to Help Teacher Candidates Understand Students’ Thinking 

There continues to be a need for improving the connection between research on students’ 
thinking and learning and the work of teacher development. What kind of cognitive research on 

students is useful for teaching and teacher education ? How might teachers come to learn it and 
use it? How can new media assist in this work? Researchers have addressed those questions by 
1) using multimedia to show examples of actual student responses to research-based tasks (e.g. 
Franke et al., 1998); 2) drawing upon research to develop representations of student thinking 
(e.g. Balacheff, 1988); and 3) using such research to analyze pedagogical moves in classroom 
dialogues created by teacher candidates (Crespo, Oslund, & Park s, 2011). 

Professional development connected to the research on Cognitively Guided Instruction (CGI) 
pioneered the use of records of student work to engage teachers with research on students’ 
thinking (Carpenter, Fennema & Franke, 1996). By showing teachers video of students solving 
mathematical problems, as well as providing students’ written responses for further analysis, the 
CGI project aimed to build upon teachers’ existing knowledge of student thinking by 
systematizing and enriching this knowledge. The responses from participants of that program 
highlighted the value of having teachers analyze student work as a way to build knowledge that 
they could draw upon to make instructional decisions. 

Beyond records of students’ work, research on students’ thinking has also been produced 
other representations of students’ work, though less is known about the effects of their use in 
teacher education. Balacheff (1988) provides an early example, using a comic strip to represent 
responses provided by two students as they worked on the prompt: “provide a means of 
calculating the number of diagonals of a polygon when you know the number of vertices it has” 
(p. 220). This representation, included in a book for teachers, suggested a new way to acquaint 
teachers with student thinking in story form. Students’ work has also been represented in 
narrative cases embedded within cases of teaching episodes (e.g. Stein et al., 2000). It is 
important to continue to look for ways of making students thinking accessible to teacher 
candidates and to find out what teacher candidates learn from these different representations of 
students thinking. 

 
What is Possible to Achieve with Representations in Teacher Education 

The combination of the use of representations of teaching and new technologies has 
facilitated the goals of teacher education in several areas. In particular, teacher educators have 
more diverse access to several types of representations of teaching (Grossman et al, 2009) and 
are able to use these in more flexible ways to support the learning of teaching “in, from, and for 
practice” (Lampert, 2010). Two important goals of teacher education are to increase teachers ’ 
ability to notice aspects and events in the instructional environ ment (Rosaen et al, 2008; Sherin 
& Han, 2004; Sherin & van Es, 2009) and to afford teachers the skills and opportunities to 
reflect on their practice (Santagata & Angelici, 2010; Stockero, 2008). Two related goals are to 
enable teachers to learn from their own practice (Borko et al, 2011; Santagata & Guarino, 2011) 
and to alter or improve their teaching practices (Lampert et al, 2010; Polly & Hannafin, 2010, 
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2011; Van Zoest & Stockero, 2008). 
A goal still ahead is to improve the connection between theories and conceptualizations of 

mathematics teaching and specifications of the curriculum of mathematics teacher education: 
Can we expect theories of teaching to determine the curriculum of teacher education? For 
example, in the context of the Teacher Education Initiative at the University of Michigan an 
innovative program for elementary teacher preparation has been emerging with a 
practice-centered curriculum. This curriculum prescribes teacher candidates’ learning of specific 
practices of teaching that are deemed high leverage—these include “leading whole-class 
discussions of content” and “recognizing and identifying common patterns of student thinking 
in a content domain” (Curriculum Group, 2009). This curriculum gathers those practices in 
domains such as “assessing students” and “enacting instruction” (Curriculum Group, 2008). 
While it is possible to tie each of these practices and domains to the existing literature, it is not 
evident how one could argue that they constitute all the domains and practices that teacher 
candidates need to learn. A theory of practice would be useful to systematically generate all the 
domains and practices, to provide an underlying coherence to these domains and practices, 
and eventually to limit or at least modularize expansions of the curriculum. 

An example of a theory of teaching that could provide such systematization is our theory of 
instructional exchanges in which we conceptualize the work of teaching as centered on the 
problem of exchanging students ’ mathematical work for claims on their knowledge of the 
mathematics at stake within classroom environments that respond to four obligations (to the 
discipline, the individual students, the groups of students, and the school institution; see Herbst, 
2010). But while this theory provides a conceptual basis for subject-specific descriptive models 
of the regulations of the work of teaching (with constructs such as situations, norms, and 
dispositions) it has no t yet operationalized the work of teaching in ways that support professional 
education or development. There is a pervasive need in the field to articulate prescriptive 
theories of teacher education with descriptive theories of teaching—the latter can give 
completeness and validity to the former while the former can operationalize the latter. 

 
Toward a Pedagogy for Teacher Development Assisted by Representations of Practice 

Building on the proposal from last year , the working group’s purpose is somewhat ambitious: 
to design a pedagogy for teacher development that meets the goal of helping teacher candidates 
learn teaching in, from, and for practice by taking advantage of representations of practice and 
new technologies. This development includes conceptual developments, for example in 
articulating connections between descriptive theories of teaching and the prescription of a 
curriculum for teacher education. Our work will include asking questions such as, is it possible 
to further develop the descriptive norms (e.g. when a teacher expects students to do a proof she 
will provide them with ‘givens’ and the ‘prove’) into an operational specification of what a 
teacher candidate needs to learn to do, say, not only to be able to proficiently comply with such 
norms but also to negotiate tasks that depart from the norm? The working group will discuss the 
articulation between theories of teaching practice and practices of teacher education. 

The convenors of this working group are also particularly interested in exploring how 
cartoon-based representations of practice facilitate teacher learning. Our thinking of how to make 
such representations usable for teacher education has been influenced by Lampert ’s (2010) 
notion of learning teaching in, for, and from practice and by Grossman et al. (2009) account of 
professional education ’s use of representations, decompositions, and approximations of practice. 
We surmise that cartoon-representations of teaching are sufficiently malleable to create not only 
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representations of practice (that prospective professionals can view and annotate) but also to 
create decompositions of practice that prospective professionals can study from as well as 
approximations of practice in which prospective professionals can practice their skills. In this 
sense, cartoons can fashion virtual settings for teacher learning in, for, and from practice before 
the teacher candidates are ready to learn in real settings. 

The LessonSketch environment (www.lessonsketch.org) is one example of a set of tools and 
resources that can exemplify what such a virtual setting for teacher development could be like. 
We are interested in having the RMT working group use LessonSketch to engage concretely in 
applying the elements of a pedagogical framework for teacher education assisted by 
representations. We expect that such work will help improve the framework and further develop 
specifications for technologies that respond to the needs of the field. With that purpose in 
mind, this document sketches current and envisioned features of LessonSketch as it lays out an 
updated version of a pedagogical framework for teacher education assisted by representations of 
teaching (building on last year’s working group document; see Herbst et al.,2010). 

This revised pedagogical framework considers the need for a larger library of representations 
of practice. While in the past we had only included representations of lessons in which teaching 
and learning mathematics were integrated in scenarios of classroom instruction, the notion of 
decomposition of practice proposed by Grossman et al. (2009) suggests the need for two more 
sets of representations. One of those sets of representations consists of representations of 
students’ work: Depictions of how students solve problems, indexed in a database that permits 
searches by problems, operators, representation systems, and controls (Balacheff & Gaudin, 
2010). The other new set of representations consists of representations of practices, strategies, 
tactics, and techniques in teaching, depicted through commented scenarios of instruction and also 
indexed in a database. We surmise that the cartoon medium can be useful for researchers on 
students’ cognition in the PME-NA community to reach teachers with representations of how 
students think about specific conceptions; likewise the cartoon medium can be useful to support 
the learning of teaching skills by prospective teachers. 

The remaining elements of the framework expand on what we offered last year, taking 
advantage of the materials we brought to the meetings of the working group and the feedback 
received from participants. Last year we proposed that a pedagogy of teacher preparation assisted 
by representations of practice needed at least four categories of elements: open ended 
expressions, activity types, problem types, and technology tools or screens. 

The first element of the framework we call open-ended expressions. These are terms and 
expressions that can be used in transactions between teacher developers and their clients without 
needing to be completely defined; tokens that teacher developers and their clients may be able to 
take as shared so as to negotiate activities, problems, and representations. One such expression is 
“mathematical action” which we have observed being used in a geometry class for future 
teachers and in the context of having the students watch an animation of geometry instruction. 
Other open-ended expressions that can serve comparable purposes are “student thinking,” 
“teaching move,” “instructional goal,” “resources,” etc. We surmise that these boundary objects 
may be useful to mobilize the work with representations-- enabling explorations of practice that 
may lead to shaping more precise meanings. 

A second element of the framework proposed in last year’s document is a taxonomy of 
activity structures or activity types for mathematics teacher education—behavioral 
configurations that describe the formal division of labor between instructor and students. Some 
of these activity types could be the same as those found in K-12 classrooms, such as mini-
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lecture, homework review, etc. (see Lemke, 1990). But there are activity types that are particular 
to the work of mathematics teacher education assisted by representations of teaching. A quite 
common activity type could be described as “working on the math:” Quite often, mathematics 
teacher developers who intend to show a video that displays students working on a mathematical 
task will first have their clients work on the mathematics problem that will be featured in the 
video. Another activity type we have used in teacher education is a form of review of homework 
in which clients enact scripts of action that they conceive outside of class in response to practical 
problems of teaching such as how to explain a step in a procedure. Usually those enactments 
give some clients practice enacting teaching moves they had planned; other clients give 
feedback, and the event supports raising more general questions about the task of teaching being 
learned. In general different activity structures involve clients in interactions with (manipulate, 
annotate, etc.) the representations being used and for that reason they become quite important in 
the design of technological tools and interfaces. A partial list of activity types, which we brought 
to the meeting of the working group last year, is shown in Figure 1. 

 

 
Figure 1. Activity types 

A third element of the framework consists of problem types. By this we mean specific 
intellectual work that participants do within an activity type involving representations—problem 
types specify the perspective or the goal with which clients confront a representation of practice. 
Different problem types may engage different kinds of thinking and doing on the part of clients 
and as a result different problem types might need to be chosen and articulated to promote 
different kinds of learning. A noticing problem might lead to developing the capacity to spot 
opportunities to probe student thinking, and a norm ativity problem might be used to engage the 
client in designing how to do so. Specific problem types are described in Figure 2. 
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Figure 2. Problem types 

The final element of this emerging framework addresses the technological affordances 
needed to realize this pedagogy of mathematics teacher education. Clearly one could do many of 
these activities having only a video projector and playing media off a single computer. But there 
are important pedagogical considerations associated with more technology-intensive 
environments. Chieu, et al. (2011) show evidence that clients’ comments in forum or chat 
benefitted from having an embedded screen for the animation being discussed, which they could 
access at the same time as they interacted with peers in a forum or chat. This media-enabled-
forum is one of several functionalities available in LessonSketch. We expect the working group 
will be able to explore these functionalities, and the potential combinations that could be made 
with them; we also expect the working group to have suggestions of new functionalities to add. 
Figure 3 includes the tools and resources that we considered in last year’s meeting. 

 
Figure 3. Technology tools and functionalities 

We envision that instructional actions in a pedagogy of teacher education will integrate the 
elements of those categories in experiences in which clients use technology tools to work on 
problems (that resemble one problem type) involving boundary objects and in the context of an 
activity type supported by a particular representation of practice. These experiences are geared 
to help them learn about or learn to do a particular practice of teaching. 
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sessions they’d like to engage their clients in. The idea is to use the collective planning of these 
sessions to enrich the framework by adding more items to the lists considered, and possibly also 
adding new categories of elements. The first meeting of the working group will involve a 
discussion of this document and the demonstration of the current framework. Participants will 
then form groups and spend the second half of the first session and the first half of the second 
session creating exemplars. Then the second half of the second session and the closing session will 
be dedicated to sharing these exemplars and improving the framework. 

 
(d) Anticipated follow -up activities 

By the time this working group meets we will have had the third conference on 
Representations of Mathematics Teaching in Ann Arbor (June 13-15, 2011). We will be 

proposing a session slot at the AMTE Annual Meeting in 2012 to continue this work. We plan to 
use that slot to mirror the work done at the PMENA meeting and to engage in further work on 
(1) improving the exemplars and (2) using the exemplars to improve the taxonomies. We hope 

we will be able to use those products to continue this working group at next year’s PMENA. 
 

Endnote 
1. Some of the work of reported here has been done with the support of NSF grants ESI-0353285 
and DRL- 0918425 to Patricio Herbst and Daniel Chazan. All opinions are those of the authors 
and do not necessarily represent the views of the Foundation. 
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The proposed working group will review some basic definitions on the features and affordances of 
Dynamic and Interactive Mathematics Learning Environments (DIMLE) and explorative 
learning. First, we suggest setting a stage to explore, identify, and conceptualize the features 
and affordances of DIMLE. Then, we aim to conceptualize explorative learning, dynamic 
learning, visual learning, and multiple-linked representations in the context of DIMLE. It is 
our goal to organize this discussion so that it will deepen our understanding of the explorative 
activities in learning mathematics and develop possible strategies for increased implementations of 
and our expectations from existing and prospective DIMLE. It is also our intention to establish a 
working group to continue exploring the topic after the conference and to contribute to the 
academic studies with a new publication. 

 
Introduction 

The innovations in technology have accelerated the evolution of mathematics education and 
mathematics itself, and this evolution is well-documented in the literature (e.g., Moreno-Armella, 
Hegedus, & Kaput, 2008). Not surprisingly, mathematicians, mathematics educators, and 
cognitive scientists have been interested in exploring, discussing, and improving their 
understanding and possible implementations of technology use in mathematics education at 
various national and international conferences such as ICME, ICMI, PME, and PME-NA 
(Arcavi, 1999; Duval, 1999; Galbraith, 2006; Hitt, 1999; Hoyles, 2008; Kaput, 1999). Moreover, 
some specific working groups, i.e., ICMI 17 Study Group and the Working Groups at PME-NA, 
have been established to take these discussions even further (Hoyles &Lagrange, 2010; Karadag 
& McDougall, 2009; Radakovic, Karadag, McDougall, & Stoilescu, 2010). 

In addition to the growing interest in this topic in scholarly community, many well-argued 
articles and reports on the descriptions and needs of learning habits of N-Gen’ers (Attewell, 
2001; Caron & Caronia, 2007; Freiman & Lirette-Pitre, 2009; Martinovic, 
Freiman, & Karadag, 2011; Ministry of Children and Youth Services, 2007; Newman, 
2008) have motivated us to propose a working group for PME-NA201 1. The focus of this 
proposed working group will be on Dynamic and Interactive Mathematics Learning 
Environments (DIMLE), a term coined by Martinovic and Karadag (2010), and explorative 
learning, which are at the heart of technology use in mathematics education. 

The following sections will briefly address the theoretical framework, which is also 
closely related to the literature that we plan to share with the audience at the conference, the 
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rationale and the goals of the working group, the format of the proposed meeting, and a future 
proposal to publish an international book in the area of discussion. 

 
Theoretical Framework 

The contemporary technological tools provide DIMLE for learners to explore, learn, and model 
mathematics. These environments provide many intuitive affordances such as multiple-linked 
representations to engage learners in explorative learning. By explorative learning, we also mean 
experimentation, inductive reasoning, and visual learning. Of course, explorative learning in 
DIMLE may also include deductive learning with a proper guidance. The following themes are 
intended to spark the discussants’ interest and initiate a collaborative effort to explore 
and discuss DIMLE and explorative learning more deeply. 
 
Explorative Learning 

A literature review searching for the definition and possible implementations of explorative 
learning usually results in either discovery learning or computer science applications (e.g., 
simulations) while some people use discovery learning and explorative learning 
interchangeably. For example, Njoo and de Jong (1993) argue that “exploratory or discovery 
learning” (p. 821) is based on free exploration in an open learning environment, where learners 
can interact with learning objects to uncover the relationships among them and to track the 
processes to create and/or employ them. Then, they claim that explorative learning triggers 
learners’ inductive reasoning through exploration. Similarly, Bass (2011) puts exploration and 
experimentation together by claiming that: “we explore and experiment with the context” (p. 4). 
He, then, argues that “mathematics is not merely a descriptive science” (p. 5) because learners 
need to explore the concept or the process to be able to develop an insight for the mathematics 
behind them. For other scholars, this development of insight as a process and as an outcome is 
the abstraction itself (Gray & Tall, 2002; Hershkowitz, Schwarz, & Dreyfus, 2001). 

Presently, we have enough evidence that the emergence of contemporary digital tools affects 
learning habits of 21st century youth and that this youth, also called N-Gen’ers, prefer 
explorative approaches to learn about the world around them. Therefore, the shift in the learning 
habits of youth motivates curriculum developers and policy makers to seek new approaches 
(Martinovic, Freiman, & Karadag, 2011; Ministry of Children and Youth Services, 2007; 
Newman, 2008). Kondratieva (2011) speculates on the results on these attempts by saying that: 
“Modern curriculum is moving from a formal approach towards more exploration based 
and inquiry-based study of mathematics.” (p. 376) 

Multiple-linked representations. Multiple-linked representations usually refer to 
different representations that are accessible through a computer and that are linked by the 
software (Kaput, 1992). For example, learners can easily access algebraic, graphical, and 
numeric representations in GeoGebra (see Figure 1) and similar DIMLE, and navigate from 
one representation to another (Martinovic, Freiman, & Karadag, 2010). 
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Figure 1. A snapshot of algebraic, graphical, and numeric representations in GeoGebra 

In such a context, learners have the opportunity not only to explore one specific 
representation, but also to compare, contrast, and analyze different representations (e.g., 
algebraic, graphical, and numeric representations as illustrated in Figure 1), and conjecture on 
how each is related to another. Furthermore, once a conjecture is created, they can test it through 
experimentation and see if it holds in all cases. 

Experimentation. The process of experimentation in mathematics education refers to the 
student interaction with mathematical objects such as exploring, comparing, and contrasting to 
create and test conjectures (e.g. Bass, 2011). The ultimate goal of experimentation is to help 
students identify patterns, to generate rules based on their observations, and to build upon their 
existing knowledge or further their own understanding. 

Computer technology is specifically conducive to experimentation, because users can work 
on open-ended problems and easily re-do them by changing parameters and navigating among 
different representations. Borba and Zullatto (2006) mention that different technologies provide 
for different levels of experimentation intensity. What additions, if any, would make DIMLE the 
highly intensive experimentation spaces? 

Inductive reasoning. Inductive reasoning refers to “examining particular cases, identifying 
relationships among those cases, and generalizing those relationships” (Greenes & Findell, 
1999, p. 128). Students studying mathematics in DIMLE have the opportunity to benefit from 
multiple representations and to generate conjectures or test conjectures. 

Visual learning. Visualization, visual learning, and visual thinking have different meanings 
depending on the discipline: “Visualization is multifaceted: rooted in mathematics, the field has 
important historical, philosophical, psychological, pedagogical and technological aspects” 
(Zimmermann & Cunningham, 1991, p. 7). Its potentiality ‘urges the student to decide on the 
representations to be displayed in his/her interface so as to best support his/her investigation’ 
(Buteau & Muller, 2007, p. 1117). 

As many others, Zimmermann and Cunningham (1991) consider that visual 
representation is equivalent to graphical representation and is valuable if linked to algebraic and 
numeric representations. In a more recent publication, Sinclair and Yurita (2005) argue that 
“dynamic features of Sketchpad promoted a shift in the nature of questions and actions 
along the way, placing the visual in a central role in the process of exploration" (p. 5). In 
contrast to considering visual representation and visual thinking as a complete dichotomy, 
Giaquinto (2007) suggests taking them as a spectrum. Is it so? We may speculate on the 
existence of multiple visual representations within the same representation means (see 
Figure 2) to explore the boundaries between various representations. 
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Figure 2. Two different graphical representations of the function f(x)=1/x created in GeoGebra 
As seen in the figure 2, it is also possible to integrate other representational systems (algebraic 
representation in this example although numeric representation is also possible). The 
perception in this context could be more complex than one may assume. For example, what 
does f(x) on the second axis of dynagraphs represent? A number or a distance from zero? 
Dynamic and Interactive Mathematics Learning Environments (DIMLE) 
Having these questions in mind, we aim to conceptualize the features and affordances 
provided by DIMLE. Dynamism and interactivity seem to be most striking affordances of 
DIMLE and will be briefly discussed below. 

Dynamism. New technologies may help Net Gen’ers in handling mathematical problems in 
new contexts and in new ways. Without these technological means, at the school level, many 
sophisticated mathematical results and procedures could not be explained, applied, and 
efficiently obtained. Dynamism used in software packages is not a pure dynamism in the 
sense we understand in science, rather it is a quick transition among discrete states of the 
mathematics system; states that depend on the user action (i.e., input), to present transition 
from one image to another as a continuous and dynamic process. As emphasized by Laborde 
(2007), “the meaning constructed by the individual is not only affected by the features of the 
representations available but also by the possible ways to use them. Mathematical activity 
requires manipulations of and operations on these representations” (p. 71). 

Moreover, this perception of continual change in mathematical objects may affect the 
users’ understanding of mathematics concepts and lead them to develop a new type of learning, 
what we call dynamic learning. Does dynamic learning and dynamic perception provide 
opportunities to learn mathematics in a natural way? According to those who write about 
“hyperproof” (Barwise & Etchemendy, 1991) and “visual proof” (Gravina, 2008), it is possible. 
Therefore, we suggest exploring dynamic learning as a theme in the working group meeting. 

Interactivity. In the context of computer software, interactivity provides a kinaesthetic 
experience to the user and is often seen as some kind of a feedback to the user’s action. The 
interaction mechanism is actually an action-reaction-new action iterative process, because when 
users perform action (i.e., virtual manipulation), they get reaction from the software (in terms of 
changing representation), and consequently perform another action (self-regulated action). 

According to Buteau and Muller (2007), “the potentiality of interactivity encourages the 
student to make explicit the parameters that could play a role in the investigation of his/her 
conjecture or real-world situation in such a way that they are accessible from the interface” (p. 
1117). In this way, through use of learning objects and simulations, students apply inductive 
reasoning and conjecturing; interactivity of the software may enhance students’ inductive 
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reasoning by providing opportunities to build their own mathematical understandings through 
experimentation. 
 

The Rationale and Goals of Working Group 
The goals of this proposed working group are to explore and discuss the features and 

affordances of DIMLEs and explorative learning and their dimensions. Furthermore, we shall 
suggest discussing the consequences of a possible shift in designing mathematics learning 
environments and formal mathematics learning in the context of college and university 
mathematics. We shall invite invite participants to explore the relevancy of explorative 
learning for N-Gen’ers. 

Objectives 
! To perform a comprehensive review of concepts regarding DIMLE and explorative 

learning 
! To explore and conceptualize the features and affordances of DIMLE 
! To explore and conceptualize the dimensions of explorative learning 
! To identify possible effects of explorative learning in formal mathematics education. 
Questions to frame our discussion 
! What are characteristics of DIMLE? 
! Which representations are more compatible with the nature of N-Gen’ers’ learning? 
! How can DIMLE alleviate algebra being a barrier to progressing through school 

mathematics? 
! How can we observe or track the effects of visual versus symbolic representations in 

learning mathematics and their effects on concept development? 
! How could the DIMLE be effective in explorative learning of concepts and processes? 

Format for the Discussion Group Meeting  
 

Day 1: Identifying the features and affordances of DIMLE 
We propose to begin the discussion with a brief introduction of the topic, and then, ask the 
participants to reflect on these definitions in small groups and share their reflections with the 
whole group. The second hour of the discussion will be devoted to generating a 
workingdefinition for DIMLE and engaging the participants to brainstorm on the features of 
DIMLE by demonstrating examples from GeoGebra, Geometer’s SketchPad, and Cabri. 
 
! Introducing group members 
! Introducing discussion group topics and goals 
! Reviewing related literature on definitions and engaging participants in reflecting on these 

definitions 
! Brainstorming on the features and affordances of DIMLEs 
! Brainstorming on the various forms of representations used in DIMLEs 
! Re-assessing the features of DIMLE suitable for addressing the needs of N-Gen’ers 
! Conceptualizing the features and affordances of DIMLE. 
Day 2: Discussing explorative learning and its components 
We will start the meeting by briefing previous day’s discussion and by outlining 
themes emerging from the discussion. Then, we will set the stage for the use of DIMLE in 
mathematics education, that is, explorative learning and its dimensions. We will demonstrate 
a couple of dynamic worksheets created in GeoGebra and ask participants to develop 
scenarios in their small groups on how to use these dynamic worksheets in learning 
mathematics and to share their scenarios with the whole group. During the last half hour, we 
will encourage the participants to discuss the connection of explorative learning to formal 
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mathematics curriculum. 
! Summarizing previous discussions 
! Revisiting the concept of DIMLE 
! Exploring the dimensions of explorative learning 
! Brainstorming on the various forms of representation ideas in the same mode of 

representation such as dynagraphs and Cartesian coordinate systems in graphical 
representation 

! Exploring the relation between explorative learning and the learning habits of N-
Gen’ers. 
Day 3: Summarizing the discussions and setting goals for the future collaboration 

opportunities 
! Summarizing previous discussions 
! Forming an international working group on the topic 
! Setting an agenda for the future. 

Possible Future Agenda Items 
! Set up an international collaboration on DIMLE and explorative learning 
! Create possible research questions to explore in the field 
! Discuss opportunities to disseminate the outcome of the discussions, likely a book 

publication. 
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In this Working Group, we will continue to reflect on a Models and Modeling Perspective 
(MMP) to understand how students, teachers, and researchers learn and reason about real-
life situations. During the Conference, we will continue ongoing discussions of the role of Model-
Eliciting Activities (MEAs) and model-centric Design Experiments in our work in Student 
Development, Teacher Development, Assessment, Curriculum Development, Problem 
Solving, and Research Design. We will also dedicate special attention to two emerging themes: 
the application of MEAs in Elementary Grades, and the exploration of a Mathematics of 
Collections/Collectives, bridging the perspectives offered by Statistical and Complex Systems 
approaches to modeling phenomena. 

Introduction 
The Models & Modeling Working Group of PME-NA has been a significant presence at 

the Conference since its inauguration in 1978. Over that time it has been successful in 
supporting the pursuit of high-quality research projects and programs, and it has acted as a 
means of convening a diverse set researchers to work collaboratively on larger projects and 
research problems. The purpose of the Group is to discuss and extend the ways in which 
models are used both to learn mathematics and applied science and to study those very 
learning processes in action. 

In this context, models are considered as conceptual systems that are expressed using 
external representational media or notation systems, and that are used to construct, describe, 
or explain the behaviors of other systems. Models are thus conceptual and representational 
tools that have the additional advantage of providing illumination into how students, teachers, 
researchers, and other educators learn, develop, and apply relevant mathematical concepts 
(Lesh & Doerr, 2003; Lesh, Doerr, Carmona, & Hjalmarson, 2003). 

The study of model development is a robust area of research: it appears in a variety of 
settings and is generally a complex, dynamic, and iterative process. In the classroom, the 
tradition of Model-Eliciting Activities (MEAs) has grown over the years, reaching an ever-
broadening range of learning settings. Such MEAs generate rich information and thought-
revealing artifacts that can both extend our understanding student thinking and learning and 
provide the basis for various nuanced forms of assessment. At other units of analysis for 
educational research, model development has also yielded fruit as a framework for inquiry. 
In particular, Design Experiments of various kinds have enabled researchers in the Models 
and Modeling Perspectives (MMP) tradition to study the types of models that students, 
teachers, and researchers develop (explicitly) to construct, describe, or explain 
mathematically significant systems that they encounter in their everyday experiences (Lesh, 
Hoover, Hole, Kelly, & Post, 2000). 

We would like to invite participants to this Working Group to foster the continued 
development of a community of researchers and practitioners to enrich the field of research 
on the ways in which models are used in Problem Solving, Curriculum Development, Student 
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Development, Teacher Development, Assessment, and Research Design. In addition, this 
year we intend to give special emphasis to two emerging themes, described briefly below. 

Emerging Theme One: Model-Eliciting Activities in the Elementary Grades. 
The first theme concerns the application of Models, Modeling, and Model-Eliciting 

Activities (MEAs) in elementary grades. For example, Data Modeling with learners of this 
age group has been an area of particular focus for Lehrer and Schauble at Vanderbilt (see, 
e.g., Lehrer & Kim, 2009; Lehrer & Schauble, 2010). Also, during the past year, other 
leaders among the Models & Modeling Working Group have been using videoconferencing 
seminars to work with more than forty faculty members and graduate students in countries 
ranging from Turkey, Cyprus, and Israel, to Australia and Mexico – as well as the United 
States. The use of modeling activities with primary-grade children has been one of several 
key foci for this group. For primary-grade children and pre-schoolers, working group 
members’ research shows that the use of children’s stories often sets the context for 
productive inquiry–similar to the way “real life” contexts have functioned for older students. 
At PME-NA, we hope to share detailed results from this work and encourage expanded 
participation and collaboration across these discussions and research efforts. 
Emerging Theme Two: A Unified Mathematics of Collections/Collectives. 

Our second theme would bring together researchers in both statistics and complex 
systems/dynamic systems education, in order to explore common issues and themes 
concerning the “mathematics of collections/collectives” – that is, mathematics that concern 
the measures, models, data, and trends that describe collective or systemic phenomena. The 
consideration of complex systems is certainly not new to the Models and Modeling Working 
Group (see, for example, the proceedings of the Group at PME-NA XXIV and XXVIII for 
themes that engaged complexity as a subject area and as a fruitful perspective on 
educational systems, respectively); and a focus on statistical thinking has been strong 
in the Group from its beginnings. This year, however, we propose to explore ways in 
which bridging these two areas might be generative for both pedagogical and research 
purposes. 

Examples may include work exploring student or teacher understanding of the emergence 
of exponential growth from probabilistic and multiplicative roots (Confrey, Maloney, 
Nguyen, Mojica, & Myers, 2009; Confrey & Smith, 1995; Doerr, 2000); of the encapsulation 
and quantification of behaviors enacted at multiple levels (Wilkerson-Jerde & Wilensky, 
2010); of inference from measures of sampled populations (Abrahamson & Cendak, 2006; 
Garfield, 2002; "Developing Reasoning about Informal Statistical Inference" [Special Issue], 
2011); and of nonlinear behavior stemming from collective feedback, limiting behaviors, and 
other characteristics of complex systems ("Dominance of Linearity in Mathematical 
Thinking" [Special Issue], 2010). 

The rationale for bringing together an interdisciplinary group to discuss the mathematics of 
collectives has both pragmatic and theoretical dimensions. At a pragmatic level, literate and 
effective citizens require increasingly sophisticated skills in reasoning about the behavior of 
collectives. While these skills are not currently well represented in the curriculum, our 
experience is that many of them can be introduced to students at quite a young age. Thus, it 
would be opportune for the community to propose and study options for integrating these 
subjects, for consideration and research. At a theoretical level, while there is a great deal of 
research on student learning within each of the individual components of the mathematics of 
collectives, many exciting avenues for inquiry might emerge in addressing the challenge to 
design and implement curricula and learning environments that cut across these components. 
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Continued focus on the historically-successful themes of the Group. 
In addition to the two Emerging Themes described above, the Working Group will foster 

the ongoing discussion of the cross-cutting strands of inquiry— Problem Solving, Curriculum 
Development, Student Development, Teacher Development, Assessment, and Research 
Design—that have provided a framework for numerous collaborations among Group 
members over the years. 

Advisory Group 
Beyond the principal organizers, we propose to draw upon an Advisory Group to engage 

interested researchers, advocate participation, and support the Working Group’s activity both 
during and after the conference sessions. This Advisory Group will include the following 
members (listed alphabetically): 
! Lyn English, Queensland University of Technology 
! Stephen Hegedus, University of Massachusetts, Dartmouth. 
! Joan Garfield, University of Minnesota 
! Beste Gucler, University of Massachusetts, Dartmouth 
! Richard Lehrer, Vanderbilt University 
! Bharath Sriraman, University of Montana 
! Uri Wilensky, Northwestern University 

During the course of the summer leading up to the conference, we will confer with members 
of this group, as well as with other leading researchers who have participated frequently in 
the Working Group’s meetings, to ensure that the subgroups around each of our themes are 
well-supported and positioned for effective work both during the Conference and afterwards. 

Goals for the Working Group at PME-NA Reno and Beyond 
The Working Group will convene for three sessions during the Conference. In the first 

session, an overview of each of the theme-based subgroups will be provided, and members 
will select the subgroup in which they wish to participate. Subgroup leaders will facilitate 
initial planning discussions and identify objectives for the three-day discussion sessions. At 
the end of the first day, the subgroup leaders will gather to share objectives statements and 
identify points of common interest that may merit connections between the subgroups during 
the following two days. On the second day and third days’ sessions of the Conference, the 
subgroups will work independently toward the objectives they have set for themselves, with 
subgroup leaders maintaining communications. 

The Working Group will reconvene as a whole for the final two hours of the third day’s 
session, to share findings and opportunities for collaboration following the Conference. In 
addition, mailing lists and subgroup Wikis will be put in place by the organizers during the 
Conference. These tools will be employed during the work sessions and will also be 
explicitly demonstrated in the final session, to ensure that all members are familiar enough 
with them to employ them as supports for the work that will continue after the Conference. 

Accomplishments of the Models & Modeling Working Group 
The Models & Modeling Working Group has been one of PME-NA’s most active 

working groups—beginning with the very first PME-NA at Northwestern University in 1978. 
The Group has a long history of encouraging research collaborations among group members —
and of including junior colleagues in a variety of research and development activities. 
Consequently, since the founding of both PME and PME-NA, models and modeling 
perspectives (MMP) have provided useful frameworks for a large number of books, journal 
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publications, funded projects, and conference presentations which featured collaborations 
among multiple working group members. 

During the past year, leaders in the Models and Modeling Working Group have been using 
videoconferencing seminars to work with more than forty faculty members and graduate 
students in countries ranging from Turkey, Cyprus, and Israel, to Australia and Mexico – as well 
as the United States. The focus of this work has been on four on areas: (a) modeling activities for 
primary grade children, (b) modeling activities focusing on integrated approaches to mathematics for 
high school students, (c) modeling-based activities for teacher development, and (d) modeling-
focused design research methodologies. We intend for such fruitful and cross-cutting 
collaborations to continue into the future, and to continue to feed into the Working Group 
community’s annual discussions. 
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The Quantitative Reasoning and Mathematical Modeling (QRaMM) working group is one of 
three research strands initiated by the Wyoming Institute for the Study and Development of 
Mathematical Education (WISDOMe).  QRaMM brings together researchers from multiple 
universities across the country to share ideas and conduct research on quantitative reasoning 
and modeling within an interdisciplinary context.  As part of the work of QRaMM and in 
collaboration with the National Science Foundation MSP Pathways in Environmental Literacy 
Project, a national virtual seminar QRaMM in Science was initiated in Spring 2011.  The 
seminar engaged 15 speakers from across the country in the online video conference, including 
experts in quantitative reasoning and modeling from the fields of science, computational science, 
mathematics, science education, and mathematics education.  The context for the discussion of 
quantitative reasoning and modeling was environmental literacy.  The issues in psychology of 
mathematics education for the seminar included students’ development of quantitative reasoning 
and mathematical modeling from 6th to 12th grade, creation of parallel QRaMM learning 
progressions for those being created by the MSP Pathways project for environmental literacy, 
and study of the impact and interplay of QR and modeling on students’ development of 
environmental literacy.  The national experts informed a QRaMM Science research team 
consisting of faculty and graduate students who developed Environmental Science QR interview 
protocols based on MSP Pathways learning progressions.  Data from these protocols will lead to 
the creation of Environmental Science QR assessments and research-based professional 
development that supports learning environments that lead to environmentally literate citizens 
capable of making informed decisions about the grand challenges facing the next generation.  
Participants in the QRaMM working group will join members of the QRaMM research team in 
critiquing environmental science QRaMM learning progressions, interpret data on QR in the 
sciences, vet QRaMM assessment items, and debate the QRaMM theoretical framework. 
 
 

History of WISDOMe 

A core membership for this new PME-NA Working Group was established through the 
initial invitational Planning Conference for WISDOMe conducted September 8-10, 2010 at the 
University of Wyoming. The background context for that conference is the establishment of 
three collaborative, interdisciplinary Research Teams connected to four new Ph.D. program 
research identities: quantitative reasoning, mathematical modeling, technology tools and 
applications, and lived/living mathematical experience. Each of the teams consists of UW 
mathematics education, mathematics, and educational cognate faculty, mathematics education 
doctoral students, and four-to-five young, active Mathematics Education researchers from a 
variety of national and international universities. Following four invited plenary papers prepared 
and presented at the conference by key active senior researchers, each team met to frame an 
initial program of collaborative work. The QRaMM (Quantitative Reasoning and Mathematical 
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Modeling) Team currently includes faculty from multiple universities and a cadre of 
mathematics education graduate students at the University of Wyoming. 

The QRaMM research team is working in collaboration with the National Science 
Foundation Pathways in Environmental Literacy Project.  The Pathways Project is focused on 
creating learning progressions for three content strands that are fundamental to the development 
of environmentally literate citizens from sixth to twelfth grades:  carbon cycle, water cycle, and 
biodiversity.  The Pathways QR Theme team is exploring the impact of quantitative reasoning on 
the development of environmental literacy.  These two teams have come together through an 
online virtual seminar, where researchers from mathematics, mathematics education, science, 
and science education discuss QR and mathematical modeling from their respective points of 
view.  The research papers and presentations are informing the development of QR and 
mathematical modeling learning progressions, as well as assessment items for clinical interviews 
and the creation of written assessments of QR abilities in the context of environmental science. 

Through the opportunity to conduct Working Group sessions at PME-NA, we seek an 
important venue to continue and expand discussions of the background perspectives and issues 
related to investigations of quantitative reasoning and modeling, to share information, issues, and 
problems related to ongoing research, to promote interest and potential participation in furthering 
these and other disciplined inquiries into these phenomena, and to provide continuing support to 
the team members to collaborate within and across ongoing and future research. 
 

Issues in Psychology of Mathematics Education 
The primary research question for the Pathways project is: What are the characteristics of a 6th to 
12th grade learning progression aimed at developing environmentally literate citizens?   The 
purpose of the QR Theme is to determine the quantitative reasoning aspects of the learning 
progression leading to the primary QR research question: What are the essential quantitative 
reasoning abilities that are required for the development of environmental literacy?  Specific 
research questions include the following.   

• How does quantitative reasoning integrate and interact with environmental literacy? 
• What is the relationship between learning progressions for quantitative reasoning and 

environmental literacy – should they be integrated or is a separate learning progression 
for quantitative reasoning required? 

• What is the current state of quantitative reasoning supporting environmental literacy at 
the 6th grade level (defined as the lower anchor for the learning progression)?  What is 
the required level of quantitative reasoning for an environmentally literate citizen at the 
12th grade level (defined as the upper anchor)?   

• How does the learning progression inform professional development supporting the 
development of environmental literacy?   

The Pathways project is based on the theoretical framework of learning progressions. The 
Consortium for Policy Research in Education defines learning progressions as follows: 

Learning progressions are hypothesized descriptions of the successively more sophisticated 
ways student thinking about an important domain of knowledge or practice develops as 
children learn about and investigate that domain over an appropriate span of time (Corcoran, 
Mosher, & Rogat, 2009, pg 37). 

 
The panel identified essential elements of learning progressions to be: 
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• Upper Anchor: target performance or leaning goals which are the end points of learning 
progression and are defined by societal expectations, analysis of the discipline, and 
requirements for entry into the next level of education. 

• Progress Variables: dimensions of understanding, application, and practice that are being 
developed and tracked over time. 

• Levels of Achievement: intermediate steps in the developmental pathway(s) traced by a 
learning progression. 

• Learning performances: tasks students at a particular level of achievement would be 
capable of performing. 

• Assessments: specific measures used to track student development along the 
hypothesized progression. 

The Pathways learning progressions for environmental literacy are based on research in science 
education and cognitive psychology, foundational and generative disciplinary knowledge and 
practices, and strive for internal conceptual coherence.  The QR in environmental literacy 
frameworks build on these characteristics, incorporating mathematical and statistical 
frameworks. 

The Pathways learning progressions have a lower anchor which is the typical accounts of 
environmental issues given by students at the upper elementary and middle school level 
(Anderson, 2009).  These accounts are empirically tested through a cyclic research process of 
clinical interviews informing the learning progression and leading to the development of written 
assessments given on a large scale.  The Pathways learning progressions upper anchor is based 
on experts views of what a scientifically literate citizen should know and be able to do by the 
12th grade.  The upper anchor is much like a NSTA or NCTM standard, but learning 
progressions differ from standards in that the lower anchor and intermediate achievement levels 
are research-based, reflecting the actual trajectory of student learning.  A limited number of 
achievement levels (4 or 5) are identified as plateaus in students’ development of more 
sophisticated ways of thinking about enduring understandings, concepts, and processes.   The 
progress variables for the Pathways project at the meta-level are the carbon cycle, water cycle, 
and biodiversity, which are considered areas in which students must develop conceptual 
understanding if they are to become environmentally literate citizens.  Within each of these areas 
progress variables are identified.  For example, in the carbon strand the progress variables are 
generation-photosynthesis, transformation-food chain/web/biosynthesis, oxidation-cellular 
respiration, and oxidation-combustion.  Learning performances are exemplars drawn from the 
clinical interviews and written assessments which demonstrate student responses at different 
achievement levels.  Learning progression matrices are created by cross tabulating achievement 
levels (rows in matrix) with progress variables (columns in matrix).  A number of learning 
progressions in science are currently under development including:  tracing carbon in ecological 
systems (Mohan, Chen, & Anderson, 2009), particle model of matter (Merrit, Krajcik, & Swartz, 
2008), modeling in science (Schwarz, Reiser, et. al., 2009), genetics (Duncan, Rogat, & Yarden, 
2009), chemical reactions (Roseman, et. al., 2006), data modeling and evolution (Lehrer & 
Schauble, 2002), explanations and ecology (Songer, Kelcey, & Gotwals, 2009), buoyancy 
(Kennedy & Wilson, 2006), atomic molecular theory (Smith, Wisner, Anderson, & Krajcik, 
2006), and evolution (Cately, Lehrer, & Reiser, 2005).  Examples of three of these learning 
progressions are provided in (Corcoran, Mosher, & Rogat, 2009). 

The QR Theme of the Pathways project is using the learning progressions theoretical 
framework to research the impact of QR on students’ development of environmental literacy.  
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The overarching goal is to study the capacity of students to understand and participate in 
evidence-based discussions of socio-ecological systems.  Three overarching progress variables 
are hypothesized: quantitative literacy which consists of arithmetic understandings supporting 
science, quantitative interpretation which is the process of interpreting scientific models to 
determine trends and make predictions, and quantitative modeling which is the creation of 
models by the student.   Within each of these areas four progress variables are identified that are 
hypothesized to be critical QR for science (Table 1).   
 

Progress 
Variables 

Quantitative Literacy Quantitative Interpretation Quantitative Modeling 

Components Numeracy 
• Number 

Sense 
• Small/large 

Numbers 
• Scientific 

Notation 
Measurement  

• Accuracy-
precision 

• Estimation 
• Dimensional 

Analysis 
• Units 

Proportional 
Reasoning  

• Fraction 
• Ratio 
• Percents 
• Rates/Change 
• Proportions 

Basic Prob/Stats 
• Empirical 

Prob. 
• Counting 
• Central 

Tendency 
• Variation 

Multiple Representations  
(rule of 4)  

• Written/oral 
• Tables  
• Graphs/diagrams  
• Equations 

• Linear 
• Quadratic 
• Power 
• Exponential  

Science models  
Statistics  

• Normal Distribution 
Model 

• Linear Regression 
Model 

• Statistical plots  
• Correlation  
• Causality 
• Z-scores 
• Confidence Intervals 

Logarithmic Scales  
 

Logic  
Problem Solving  
Modeling  

• Normal Distribution 
Model 

• Regression Model  
• linear  
• polynomial  
• power  
• exponential 
• logarithmic  

• Logistic Growth  
• conceptual science 

models  
• table and graph 

models  
Inference  

• Inference 
• Hypothesis testing  

 

Table 1. QR Progress Variables 
 

The development of learning progressions is an iterative process typical of design-based 
research.  The Pathways environmental literacy learning progressions began with hypothetical 
frameworks based on theories about reasoning about processes in socio-economic systems, 
including discourse, practices, and knowledge, as well as linking processes between lower and 
upper anchors.  Challenges for the QR Theme researchers are to determine which of these 
theories carry over to QR aspects of environmental literacy and to discover potential theories that 
are more QR-centric.  For example, students achieving the upper anchor in the environmental 
literacy learning progression should function as informed decision makers within the socio-
economic system at three levels: discourse, practices, and knowledge.  “Knowledge is embedded 
in practices, which in turn are embedded in discourses” (Anderson, 2009).  We all participate in 

PME-NA 2011 Proceedings

Wiest, L. R., & Lamberg, T. (Eds.). (2011). Proceedings of the 33rd Annual Meeting of the North 
 American Chapter of the International Group for the Psychology of Mathematics Education.  
Reno, NV: University of Nevada, Reno. 
 

2091



 

 

multiple discourses that associate us with communities of practice (Gee & Green, 1998) and as 
we gain understanding of a phenomena as our discourse around it matures.  The lower anchor 
discourse for the environmental literacy progression is force dynamic, relying on students’ 
theory of the world with a focus on actors, enablers, actor’s purposes, conflicts between actors, 
and settings for the actions (Pinker, 2007; Talmy, 2003).  At the upper anchor scientific 
discourse is essential, with students moving away from actors in settings to laws that govern the 
work of systems.  Certainly there is a parallel development of mathematical and statistical 
discourse that is essential for quantitative reasoning.  There are four practices that are essential 
for environmentally responsible citizenship: inquiry (What is the problem and who do I trust?), 
accounts-explaining (What is happening in the system?), accounts-predicting (What are the 
consequences of my course of action?), and deciding (What will I do?).  At the lower anchor 
explaining and predicting practices are expressed in force dynamic discourse, while at the upper 
anchor they are expressed using the language and theory of scientific discourse. These practices 
reflect the public roles (voter, advocate, volunteer) and private (consumer, owner, worker, 
learner) roles in which decisions are made.  Informed explaining and predicting practices often 
require QR, which allows for connecting observations to patterns and models, as well as 
analyzing data from a scientific perspective.  Finally knowledge is embedded within discourses 
and practice.  At the lower anchor students focus on knowing facts, while at the upper anchor 
scientific knowledge is applied to create coherent systems of observations, patterns, and models 
which serve as the basis for scientific inquiry and accounts.  QR parallels this trajectory from 
knowing mathematical or statistical algorithms to an understanding of enduring concepts that 
allow one to analyze problems quantitatively. 

A framework for the Pathways learning progression consists of progress variables (matrix 
columns), levels of achievement (matrix rows), learning performances (content of matrix cells), 
and linking processes which are common processes that are recognized by students at all levels 
of achievement (Anderson, 2009).  The carbon framework in Figure 2 provides an example of 
linking processes within the carbon strand.  What are the linking processes for QR?  How do 
they interact with the environmental literacy linking processes? Another aspect of the Pathways 
learning progressions which is highly quantitative in nature is scaling.  Students at the lower  

 
Figure 2: Carbon Linking Processes 

 
anchor often function at a macroscopic or “individual” scale in which they view the world from 
their sensory purview.  Hence, their accounts of environmental issues are based within their daily 
perceptions at this scale.  Moving students to the upper anchor requires that they scale up to a 
global view, as well as scale down to a microscopic view and even an atomic view.  Regardless 

of the scale, moving up or down the scale becomes intensively quantitative. 
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QRaMM Reflection Tasks 

The three QRaMM working group sessions will actively engage the participants in discussion 
of the research questions stated above.  Each session will begin with a 15 minute plenary 
presentation by a member of the QRaMM research team to pose research issues and problems for 
discussion.  Seminal readings related to the presentation will be provided to all participants in the 
first session, serving as support materials for discussions in later sessions.  Breakout sessions for 
four working sub-groups will be organized around task-oriented discussions.   The last session 
will provide plenary summarizing presentations and report out discussions by the working 
groups. 

The four sub-groups will focus on the following domains of discussion: 
1. Framing problems and questions for research on quantitative reasoning and modeling 

related to learning progressions and assessment. 
2. Addressing issues and concerns for research methodologies to be used. 
3. Discussing techniques for using and transforming data to describe, analyze, and interpret 

in ways that will illuminate and inform. 
4. Discussion approaches to reporting what is found and to applying to inform improved 

educational practice related to interdisciplinary aspects of quantitative reasoning and 
mathematical modeling. 

 
QRaMM Follow-up Activities 

We are proposing a follow-up national seminar on QRaMM with virtual presentations by the 
participants of this working group.  With the assistance of the WISDOMe research group we are 
proposing a monograph on QRaMM learning progressions and interdisciplinary teaching issues.  
The monograph would solicit articles from the participants of the working group as well as the 
WISDOMe and Pathways research teams. 
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Number Talks are an innovative pedagogical approach that has great potential in shifting 
mathematics teaching and learning practices to support students’ conceptual reasoning. The 
proposed discussion group will examine the features of Number Talks, how students and 
teachers learn through this approach, and the variations of its use in classrooms, as well as in 
pre-service and in-service teacher education settings. The goal of the discussion group is to 
provide mathematics educators and mathematics teacher educators a context for sharing their 
work with Number Talks and deepen their understanding of this pedagogical approach. 
 
 In 2000, the Mathematics RAND committee proposed that mathematical practices, such as 
reasoning, generalizing, and making connections, should be at the center of instruction (RAND, 
2002), and these practices are now enshrined in the Common Core State Standards (2010). 
However, engaging students in mathematical practices places a new demand on U.S. teachers. 
Despite research evidence outlining the need to engage students in activities that also develop 
conceptual understanding (Fosnot & Dolk, 2001; Fuson, 1992; NCTM 2003), computation in 
elementary and middle school classrooms has traditionally been taught through 
memorization of number facts and repeated practice of procedures. One of the reasons that 
teachers continue to focus on memorization of number facts is that they have not received sustained 
opportunities for learning how to engage students differently (Ball & Cohen, 1999). Thus, 
teachers may feel at a loss when trying to teach mental computation and numerical reasoning in a 
more conceptual manner. 
 One of the innovative pedagogical approaches for conceptual numerical reasoning is called 
‘Number Talks’, a method that has been used in a small number of cases but with extremely 
impressive results (Parish, 2010, Boaler, 1998). This method begins with teachers presenting a 
simple, context free number problem to their class of students. The number problems can target 
many different levels. For example second grade students may feel challenged by a problem such 
as 38 + 55; whereas, 8th grade students might initially struggle with problems such as 48 x 27 or 
12% of 80. After teachers present a problem to students, they ask students to work out the answer 
in their heads or on paper but with no discussion. They then elicit different student solution 
strategies. The problems generally produce multiple solution methods in any class of students. 
Teachers continue by facilitating student discussion; for example, they may ask students to discuss 
the ways the methods are similar and different or explain how they could represent the methods 
visually. Additionally, the teachers may show student methods using numerals or drawings (e.g., 
number lines or geometric representations) to highlight common mathematical ideas across the 
methods and ask students to share connections they notice among the different mathematical 
ways of thinking. In the process, the core mathematical concepts are highlighted and discussed, 
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while students become agents of numerical reasoning. As students work to find answers mentally 
and then discuss the connections between different methods, they develop both computational 
fluency and numerical reasoning. For teachers, the discussions offer important opportunities to 
hear their students’ thinking (Schifter, 1998) and to extend their students’ understanding to the next 
conceptual level, working at and with the students’ ‘zone of proximal development’ 
(Vygotsky, 1978). As teacher educators and mathematics educators, we are interested in 
understanding the features of this pedagogical approach that advance and enrich students’ 
conceptual pathways (Fosnot & Uittenbogaard, 2007; Huffered-Ackles, Fuson, & Sherin, 
2004). 

Goals and Activities of the Discussion Group 
 

 In this proposed discussion group, we will examine and explore the features of 
Number Talks, unpack their benefits and challenges, and discuss their potential for mathematics 
teaching and learning. Different video cases will be presented, and varied Number Talk 
formats (e.g., Number Strings, Math Talk) will be compared and analyzed. The organizers of this 
discussion group will present examples of using Number Talks both in pre-service teacher 
education courses as well as in in-service professional development programs. The goal of the 
discussion group is for mathematics educators and mathematics teacher educators to have the 
context to share their work with Number Talks, to deepen their understanding of this 
pedagogical approach, and to plan for future research on the topic. 
 
The guiding questions for the discussion group are as follows: 
1. What are the features of Number Talks that support students’ numerical reasoning? 
2. How do teachers learn to focus on students’ mathematical thinking through Number 

Talks? 
3. What are the different formats of Number Talks, and how do they support students’ 

numerical reasoning differently? 
4. What are the challenges of using Number Talks in classrooms? 
5. 5. How are Number Talks used to support pre-service and in-service teachers’ learning? 

 
Work and Research with Number Talks 

 Number Talks have been successfully taught to teachers, as well as to teacher education 
students, with clear evidence of increased student learning and engagement. The method was also 
used in a research project aimed at re-engaging failing middle school students (Boaler et al., in 
press). Researchers in the middle school study found that students who learned through ‘Number 
Talks’ changed their views of mathematics, reporting that they had never before realized that 
mathematics problems could be solved with more than one method. The students also increased 
their achievement significantly and improved their subsequent grades in algebra courses 
(Boaler et al., in press). ‘Number Talks’ represent what Grossman & MacDonald (2008) have 
called a ‘high leverage practice’ as they are linked to increased student understanding, but they 
also have the considerable advantage of being easy to learn (as opposed to many other high 
leverage teaching practices). They can be added to any curriculum scheme, as they take about 
15 minutes of class time. 
 The current research on Number Talks is limited (Parish, 2010, Boaler, 1998), but there is a 
wide body of research related to the goals and practices encompassed by Number Talks. We know 
that students who have learned to reason with numbers in a variety of ways demonstrate a 
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deepened understanding of place value (Fosnot & Dolk, 2001; Kamii, 2000), that students with 
differing backgrounds are supported by learning communities where talking mathematics is 
the norm (Spillane, 2000; Hufferd-Ackles, Fuson, & Sherin, 2004), and that equitable outcomes 
are promoted when students engage in communication and reasoning (Ladson-Billings, 1997; 
Martin, 2009). 
Number Talks have the potential to help teachers shift their teaching to focus more on student 
thinking and on mathematical connections, while helping students learn foundational 
mathematics with greater understanding. 
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